WO2005084786A1 - Eau contenant des nanobulles d’oxygène et procédé de fabrication correspondant - Google Patents

Eau contenant des nanobulles d’oxygène et procédé de fabrication correspondant Download PDF

Info

Publication number
WO2005084786A1
WO2005084786A1 PCT/JP2005/003809 JP2005003809W WO2005084786A1 WO 2005084786 A1 WO2005084786 A1 WO 2005084786A1 JP 2005003809 W JP2005003809 W JP 2005003809W WO 2005084786 A1 WO2005084786 A1 WO 2005084786A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
microbubbles
aqueous solution
nanobubble water
producing
Prior art date
Application number
PCT/JP2005/003809
Other languages
English (en)
Japanese (ja)
Inventor
Kaneo Chiba
Masayoshi Takahashi
Original Assignee
Reo Laboratory Co., Ltd.
National Institute Of Advanced Industrial Science And Technology (Aist)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reo Laboratory Co., Ltd., National Institute Of Advanced Industrial Science And Technology (Aist) filed Critical Reo Laboratory Co., Ltd.
Priority to US10/591,979 priority Critical patent/US20070286795A1/en
Publication of WO2005084786A1 publication Critical patent/WO2005084786A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields

Definitions

  • the present invention has the potential of being useful in all technical fields, and is an oxygen nanopub that has a physiologically active effect on animals, plants, and humans.
  • Patent Document 1 discloses that oxygen is dissolved in a gas (bubble) having a diameter different from that of a normal bubble and having a diameter of 50 m or less.
  • a microbubble having a bioactive function has been proposed.
  • microbubbles must act at the tissue level in order to enhance human bioactivity, and large-scale equipment is required to supply a sufficient amount of oxygen to the whole body. There was a problem in terms.
  • the present invention has been made in view of the above-described circumstances, and is an oxygen nanobubble water, which is an oxygen nanobubble water in which oxygen is present in an aqueous solution for a long period of time and has an active effect on living organisms and the like.
  • the purpose is to provide a manufacturing method.
  • the present invention aims to provide oxygen nanobubble water in which an aqueous solution exists for a period of time.
  • the above-mentioned macroscopic method of the present invention is intended to provide a bubble having a diameter of 200 nm or less. This is achieved by comprising an aqueous solution containing oxygen nanobubbles.
  • the above object of the present invention is directed to an aqueous solution having a bubble diameter of 200 nm or less and containing oxygen nanobubbles containing oxygen in the bubble, wherein the aqueous solution has a salt concentration of 0.0. 13 .
  • the above object of the present invention is to provide a method for applying physical stimulation to microbubbles containing oxygen contained in an aqueous solution.
  • the diameter of the micro-bubbles is sharply reduced to produce oxygen nano-bubbles, which is achieved one by one.
  • An object of the present invention is to provide a method for producing oxygen nanobubbles in which oxygen is present in an aqueous solution for a long period of time.
  • the object of the present invention is that the physical stimulation is released into the microbubbles by using a discharge generating device, or the physical stimulation is super-standing.
  • the aqueous solution By irradiating the waves, or the physical stimulus is generated by operating a rotating body mounted in a container containing the aqueous solution, the aqueous solution is caused to flow, and the compression, expansion and vortex generated during the flow are caused.
  • the physical stimulus may be that the solution containing the microbubbles in the container is filled with the microbubbles into the circulation circuit at a port where a circulation circuit is formed in the container. After the solution is taken in, the ⁇ U has a large number of holes and is provided in the circulatory circuit. ⁇ Achieved effectively by brief description of the drawings
  • Fig. 1 shows the particle size frequency distribution of oxygen nanobubbles in the oxygen nanobubble water according to the present invention (the average distribution is about 140 nm and the standard deviation is about 40 nm).
  • Fig. 2 is a schematic diagram showing the mechanism by which oxygen as nanobubbles is stably present in an aqueous solution.
  • FIG. 3 is a side view of an apparatus for producing oxygen nanobubble water using a discharge device.
  • Fig. 4 is a side view of an apparatus for producing oxygen nanobubble water using an ultrasonic generator.
  • FIG. 5 is a side view of an apparatus for producing oxygen nanobubble water by generating a vortex.
  • Fig. 6 is a side view of an apparatus for producing oxygen nanobubble water by generating a vortex in a rotating body.
  • the bubble diameter is 200 nm or less.
  • This oxygen nanopable which is characterized by being composed of an aqueous solution containing oxygen nanobubbles containing oxygen (acid-based nanobubble water), has been present in the solution for a long period of one month or more. It has an effect.
  • the oxygen nanobubble water according to the present invention holds oxygen in an aqueous solution as nanobubbles.
  • Nanobubbles are bubbles having a size of 200 nm or less as shown by the particle size distribution in Fig. 1.
  • the method for storing oxygen nano water according to the present invention, which is characterized in that, is not particularly limited. It will not disappear
  • FIG. 2 shows the mechanism of oxygen present in the oxygen nanobubbles and bull water according to the present invention as oxygen nanobubbles.
  • oxygen microbubbles the smaller the bubbles, the higher the dissolution efficiency of oxygen inside.
  • the extremely high concentration of charge at the gas-liquid interface causes the static repulsion acting between the charges on the opposite sides of the sphere. This prevents the spheres (bubbles) from shrinking.
  • the action of the concentrated electrolyte causes bubbles in the inorganic shell mainly composed of electrolyte ions such as iron contained in the aqueous solution. Formed around the shile to prevent the diffusion of oxygen inside.
  • This shell is different from that of surfactants and organic substances, so the shell itself easily disintegrates due to the deviation of the electric charge around the bubbles generated when oxygen and non-bubbles come into contact with other substances such as bacteria.
  • the oxygen contained inside is easily released into the aqueous solution.
  • the oxygen contained inside is easily released into the aqueous solution.
  • the inventor and others have found that the incorporation of the oxygen nanobubble water according to the present invention into the body of an organism can rapidly remedy the disease and prevent infectious diseases such as bacteria and viruses. For unknown reasons, it is expected that oxygen nanobubbles will penetrate into the body of living organisms and activate cells.
  • oxygen microbubbles having a diameter of 150 m are rapidly reduced by physical stimulation. Electrons such as ions of iron, manganese, calcium, sodium, magnesium, etc., and ions of other minerals, so that the electric conductivity in an aqueous solution containing oxygen microbubbles is 300 S / "cm or more.
  • the electrostatic repulsive force inhibits the bubble from shrinking. The electrostatic repulsive force of the spherical microbubbles is caused by the increase in the curvature of the sphere due to the shrinkage.
  • the (bubble diameter of the nanobubbles) varies depending on the concentration and type of the electrolyte ions, but is 200 nm or less as shown in FIG.
  • oxygen nanobubbles are not only maintain oxygen in a pressurized state inside, but also form an extremely strong electric field due to the concentrated surface charge. It has the power to strongly affect the oxygen inside the bubbles and the surrounding aqueous solution, and has a physiologically active effect, a bactericidal effect, a chemical reactivity, etc.
  • Figure 3 is a side view of a garment that produces nanobubble water using a discharge device.
  • the microbubble generator 3 takes in the aqueous solution in the container 1 by water intake ⁇ 31 and oxygen is injected into the microbubble generator 3 from an inlet (not shown) for injecting oxygen for producing oxygen microbubbles.
  • the oxygen microbubbles produced by the microbubble generator 3 are injected into the container 1 from the oxygen nanobubble-containing aqueous solution outlet 32 by being mixed with the aqueous solution that has been injected and taken in by the water intake P31 1, and the container 1 Oxygen microbubbles will be present in 1 Vessel 1 has anode 21 and ridge 22, and anode 21 and cathode 22 are in contact with discharge generator 2
  • oxygen microbubbles are generated using a microbubble generator 3 in a container 1 containing an aqueous solution.
  • iron, manganese, calcium and other mineral electrolytes In addition, add an electrolyte so that the electric conductivity of the aqueous solution becomes 300 SZ cm or more.
  • an aqueous solution containing oxygen microbubbles in the container 1 is subjected to underwater discharge. More efficient production of oxygen nanopables
  • the value reaches 0% or more.
  • the voltage of the underwater discharge is preferably from 2000 to 3000 V.
  • the oxygen microbubbles in the water are rapidly reduced to nano-level bubbles.
  • the ions present around the bubble at that time have a rapid reduction rate, so there is no time to escape into the surrounding water, and the ions are rapidly concentrated as the bubble is reduced.
  • the concentrated ions form an extremely strong electric field around the bubble. Due to the presence of this high electric field, hydrogen ions and hydroxide ions existing at the gas-liquid interface have a bonding relationship with electrolyte ions having the opposite sign around the bubbles, forming an inorganic shell around the bubbles. I do. Since this shell prevents spontaneous dissolution of oxygen in the bubbles into the aqueous solution, the oxygen nanobubbles are stably contained in the aqueous solution without being dissolved.
  • the oxygen nanobubbles produced are 20
  • FIG. 4 is a side view of an apparatus for producing oxygen nanobubble water using an ultrasonic generator. Similar to the method of producing oxygen nanobubble water by electric discharge, oxygen microbubbles are produced in the microbubble generator 3, the water intake 31, and the oxygen nanobubble-containing aqueous solution outlet 32, and the oxygen microbubbles are sent into the container 1.
  • An ultrasonic generator 4 is installed in the container 1. The installation location of the ultrasonic generator 4 is not particularly limited.However, in order to efficiently produce oxygen nanobubbles, the ultrasonic generator 4 is installed between the intake 31 and the oxygen nanobubble-containing aqueous solution outlet 32. It is preferable to do so.
  • oxygen microbubbles are generated using a microbubble generator 3 in a container 1 containing water containing electrolyte ions.
  • an ultrasonic wave is applied to the aqueous solution containing oxygen microbubbles in the container 1 using the ultrasonic generator 4.
  • the concentration of oxygen microbubbles in the container 1 has reached 50% or more of the saturation concentration.
  • the transmission frequency of the ultrasonic wave is preferably 20 kHz to 1 MHz, and the irradiation of the ultrasonic wave preferably repeats oscillation and stop at 30 second intervals, but may be irradiated continuously.
  • Fig. 5 is a side view of the device when using compression, expansion and vortex to produce oxygen nanobubble water. Similar to the method for producing oxygen nanobubble water by electric discharge and the method for producing oxygen nanobubble water by ultrasonic irradiation, microbubbles are produced at the microbubble generator 3, water intake port 31, and oxygen nanobubble-containing aqueous solution outlet 32. And send oxygen microbubbles into Vessel 1.
  • Container 1 contains oxygen fines in Container 1.
  • a circulation pump 5 for partially circulating the aqueous solution containing small bubbles is connected, and an orifice (perforated plate) with a large number of holes is installed in the piping (circulation piping) in which the circulation pump 5 is installed. 6 is connected and connected to Vessel 1.
  • the aqueous solution containing oxygen microbubbles in the container 1 is caused to flow in the circulation pipe by the circulation pump 5,
  • oxygen microbubbles are generated using a microbubble generator 3 in a container 1 containing water containing charged ions.
  • the circulation pump 5 is operated to partially circulate the aqueous solution containing the oxygen microbubbles.
  • An aqueous solution containing oxygen microbubbles is pushed out by the circulation pump 5, and compression, expansion, and vortex flow are generated in the pipe before and after passing through the orifice (porous plate) 6.
  • Oxygen microbubbles are rapidly reduced by the compression and expansion of the microbubbles during passage, and by the generation of eddy currents by charged oxygen microbubbles due to eddy currents generated in the piping. Stabilizes as oxygen nanobubbles.
  • the order of the circulation pump 5 and the flow path of the orifice (multi-hole plate) 6 may be reversed.
  • the U-fiber (perforated plate) 6 is single in FIG. 6, a plurality of them may be provided, and the circulation pump 5 may be omitted as necessary. In that case, it is also possible to use the driving force of the microbubble generator 2 with respect to the aqueous solution or the flow of the aqueous solution due to the height difference.
  • oxygen nanobubbles can also be produced by attaching a rotating body 7 for generating a vortex in the container 1. By rotating the rotator 7 at 500 to 100 ⁇ pm, a vortex is efficiently generated in the container 1. be able to.
  • the oxygen nanobubbles were measured by a dynamic light scattering optical meter, the oxygen nanobubbles had a particle size distribution centered at about 150 nm. Was placed in a glass bottle and stored in a cool, dark place. When measured in the same way one month later, it had almost the same particle size distribution and maintained stable performance.
  • electrolyte ion is important for the stabilization of nanopables in oxygen nanopable water.
  • PH 8.4
  • hardness 100 mg / L
  • iron 0.03 mg /! _ Pulp
  • manganese 0.016 mg / L
  • chloride ion 211 mg
  • seawater fish such as bream, curry, flounder, sea scallop, Ryugu goby, donko, and freshwater fish such as koi, goldfish, iron fish, ayu, char, etc. are simultaneously placed in one tank.
  • Half a year It was possible to survive for the above period. During this time, rapid growth of fry was confirmed.
  • seawater-based cobalt-freshwater-based guppies and the like were able to survive for more than several days in the same aquarium even at a water temperature of 15 ° C.
  • oxygen in the oxygen nanobubble water is contained as nanobubbles having a bubble diameter of 200 nm or less, and has a long term of more than one month.
  • Oxygen can now be dissolved in aqueous solutions. As a result, it can be used at medical sites, breeding and cultivation of fish and shellfish, and breeding sites for terrestrial organisms, etc. for the purpose of enhancing the physiological activity effect of oxygen.
  • the incorporation of the oxygen nanobubble water according to the present invention into living organisms has enabled rapid recovery of diseases and prevention of infectious diseases caused by bacteria and viruses.
  • By coating the skin with the oxygen nano and bull water according to the present invention it has become possible to promote the recovery of skin diseases.
  • the salt concentration of the oxygen nanobubble water according to the present invention is set to 0.5.
  • the oxygen nanobubble water obtained by the oxygen nanobubble water and the method for producing the same according to the present invention dissolves oxygen in the aqueous solution over a long period of one month or more.
  • it can be used in industries such as medical sites, fish and shellfish breeding and aquaculture, and terrestrial breeding sites that need to enhance the physiological activity effect of oxygen.
  • the disease can recover quickly, and infectious diseases such as bacteria and viruses can be prevented, thus preventing infectious diseases. It can be used in necessary medical fields.
  • freshwater and seawater fish and shellfish can coexist in a single tank. It can be used in fields such as aquaculture and fisheries.
  • Patent Document 1

Abstract

Nanobulles d’oxygène susceptibles d’être présentes dans une solution aqueuse sur une longue période, produites selon un procédé consistant à appliquer un stimulus physique à de fines bulles contenant de l’oxygène que l’on trouve dans une solution aqueuse, pour ainsi réduire rapidement le diamètre des fines bulles ; et procédé de fabrication de telles bulles d’oxygène. L’eau contenant les nanobulles d’oxygène ci-dessus est potentiellement utile dans tous les domaines techniques, et en particulier, l’effet bioactif d’une telle eau sur les animaux et les plantes a été découvert récemment.
PCT/JP2005/003809 2004-03-05 2005-02-28 Eau contenant des nanobulles d’oxygène et procédé de fabrication correspondant WO2005084786A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/591,979 US20070286795A1 (en) 2004-03-08 2005-02-28 Oxygen Nanobubble Water and Method of Producing the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-062160 2004-03-05
JP2004062160A JP4080440B2 (ja) 2004-03-05 2004-03-05 酸素ナノバブル水およびその製造方法

Publications (1)

Publication Number Publication Date
WO2005084786A1 true WO2005084786A1 (fr) 2005-09-15

Family

ID=34918108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003809 WO2005084786A1 (fr) 2004-03-05 2005-02-28 Eau contenant des nanobulles d’oxygène et procédé de fabrication correspondant

Country Status (2)

Country Link
JP (1) JP4080440B2 (fr)
WO (1) WO2005084786A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072370A1 (fr) * 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University Préparation utilisée pour la réparation ou la régénération de tissus
WO2008072371A1 (fr) 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University Préparation pour la stérilisation ou la désinfection d'un tissu
JP2009525818A (ja) * 2006-02-10 2009-07-16 テナント カンパニー 散布装置を有する可動表面洗浄機および可動表面洗浄機上で散布洗浄液を生成するための方法
US7749692B2 (en) * 2006-09-06 2010-07-06 National University Corporation Tokyo Medical And Dental University Tissue preservation method comprising contacting tissue with a solution of nanobubbles and salt
US8147876B2 (en) * 2007-02-27 2012-04-03 National University Corporation Tokyo Medical And Dental University Medical agent for preventing or treating diseases resulting from one of inflammation and remodeling, and method for preventing or treating the diseases
US8156608B2 (en) 2006-02-10 2012-04-17 Tennant Company Cleaning apparatus having a functional generator for producing electrochemically activated cleaning liquid
US8319654B2 (en) 2008-06-19 2012-11-27 Tennant Company Apparatus having electrolysis cell and indicator light illuminating through liquid
US8337690B2 (en) 2007-10-04 2012-12-25 Tennant Company Method and apparatus for neutralizing electrochemically activated liquids
US8603320B2 (en) 2006-02-10 2013-12-10 Tennant Company Mobile surface cleaner and method for generating and applying an electrochemically activated sanitizing liquid having O3 molecules
US8719999B2 (en) 2006-02-10 2014-05-13 Tennant Company Method and apparatus for cleaning surfaces with high pressure electrolyzed fluid
US8962700B2 (en) 2006-10-25 2015-02-24 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US8980325B2 (en) 2008-05-01 2015-03-17 Revalesio Corporation Compositions and methods for treating digestive disorders
US9011922B2 (en) 2009-04-27 2015-04-21 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9034195B2 (en) 1997-10-24 2015-05-19 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
US9198929B2 (en) 2010-05-07 2015-12-01 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
US9402803B2 (en) 2006-10-25 2016-08-02 Revalesio Corporation Methods of wound care and treatment
CN106035142A (zh) * 2016-05-30 2016-10-26 铜陵东晟生态农业科技有限公司 岩原鲤养殖方法
US9492404B2 (en) 2010-08-12 2016-11-15 Revalesio Corporation Compositions and methods for treatment of taupathy
US9512398B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
WO2020079020A1 (fr) 2018-10-15 2020-04-23 University College Dublin, National University Of Ireland, Dublin Système, procédé et générateur pour générer des nanobulles ou des nanogouttelettes

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144669B2 (ja) * 2004-03-05 2008-09-03 独立行政法人産業技術総合研究所 ナノバブルの製造方法
JP2006289183A (ja) * 2005-04-06 2006-10-26 Nano Bubble Kk ナノバブル生成方法とその装置
US8726918B2 (en) 2005-09-23 2014-05-20 Sadatoshi Watanabe Nanofluid generator and cleaning apparatus
JP4430609B2 (ja) * 2005-11-14 2010-03-10 ヤーマン株式会社 ナノバブル発生装置
JP4899434B2 (ja) * 2005-11-16 2012-03-21 有限会社 健康百二十才 新規な物理化学融合型殺菌消毒液
JP2007152301A (ja) * 2005-12-07 2007-06-21 Nanoplanet Kenkyusho:Kk 機能水生成方法及び機能水
KR100744739B1 (ko) * 2006-03-29 2007-08-01 옥철호 수조 내 나노 물방울 생성 장치
JP4899681B2 (ja) 2006-07-18 2012-03-21 富士ゼロックス株式会社 マイクロ流路デバイス
JP4968511B2 (ja) * 2006-08-19 2012-07-04 株式会社 ナノプラネット研究所 生体内にインスリン様成長因子−1(igf−1)を生成させる方法
JP4931201B2 (ja) * 2006-10-13 2012-05-16 独立行政法人産業技術総合研究所 極微小気泡を含む水の製造方法および極微小気泡を含む水
US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
WO2008115290A2 (fr) 2006-10-25 2008-09-25 Revalesio Corporation Méthodes de soins et de traitement de plaies
US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
EP2116589A4 (fr) * 2006-12-11 2013-12-11 Opt Creation Inc Appareil et procédé destinés à produire un liquide contenant des nanobulles
JP2008156320A (ja) * 2006-12-26 2008-07-10 Hydrox Kk 抗酸化性機能水
JP5151204B2 (ja) 2007-03-27 2013-02-27 富士ゼロックス株式会社 マイクロ流路デバイス及びマイクロ流路デバイスの製造方法
JP2008246054A (ja) * 2007-03-30 2008-10-16 Sharp Corp 浴槽装置、治療用浴槽装置、入浴水および治療用入浴水
JP4769963B2 (ja) * 2007-04-12 2011-09-07 株式会社Reo研究所 魚介類の保存方法
CN102105403B (zh) 2007-09-26 2013-07-24 公益财团法人北九州产业学术推进机构 具有氧化还原活性的水的生成方法和具有氧化还原活性的水的生成装置
JP5119848B2 (ja) 2007-10-12 2013-01-16 富士ゼロックス株式会社 マイクロリアクタ装置
JP2009101299A (ja) * 2007-10-24 2009-05-14 Fuji Xerox Co Ltd マイクロナノバブル発生方法、マイクロ流路の洗浄方法、マイクロナノバブル発生システム、及び、マイクロリアクター
JP4921333B2 (ja) * 2007-11-29 2012-04-25 株式会社Reo研究所 二酸化炭素ナノバブル水の製造方法
JP4921332B2 (ja) * 2007-11-29 2012-04-25 株式会社Reo研究所 窒素ナノバブル水の製造方法
JP5053115B2 (ja) * 2008-02-05 2012-10-17 芝浦メカトロニクス株式会社 基板の処理装置及び処理方法
JP5773473B2 (ja) * 2008-09-01 2015-09-02 田中 裕之 Nk活性増強剤およびその利用
JP2010115624A (ja) 2008-11-14 2010-05-27 Fuji Xerox Co Ltd マイクロ流路デバイス、分離装置、並びに、分離方法
KR101085840B1 (ko) 2008-12-04 2011-11-24 주식회사환경과생명 나노 버블수 발생장치
JP5003702B2 (ja) 2009-03-16 2012-08-15 富士ゼロックス株式会社 マイクロ流体素子及びマイクロ流体制御方法
JP2011011126A (ja) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd 機能液生成装置
SG10201403566SA (en) * 2009-08-06 2014-10-30 Sunstar Engineering Inc Composition and process for production thereof
JP4995245B2 (ja) * 2009-09-13 2012-08-08 熊本製粉株式会社 酸素ナノバブル水と過熱水蒸気を処理した穀物
WO2011036722A1 (fr) * 2009-09-25 2011-03-31 Tanaka Hiroyuki Amplificateur d'activité nk et utilisation de celui-ci
RU2519411C1 (ru) 2010-03-08 2014-06-10 Шарп Кабусики Кайся Способ обработки смазкой для пресс-формы, пресс-форма, способ изготовления антиотражающей пленки, устройство для обработки смазкой для пресс-формы и устройство для промывки/просушки пресс-формы
KR101219880B1 (ko) * 2010-10-08 2013-01-08 한국생산기술연구원 나노 버블을 이용한 두부제조방법
JP5445522B2 (ja) * 2011-06-24 2014-03-19 三菱電機株式会社 給湯装置、空調機器
JP2013135661A (ja) * 2011-07-25 2013-07-11 Mg Grow Up:Kk 高濃度酸素処理水生成法、及び、高濃度酸素処理水、並びに、生鮮魚介類の鮮度保持処理法
JP5818090B2 (ja) * 2011-12-16 2015-11-18 学校法人山野学苑 毛髪および環境への負荷が少ないパーマネントウェーブ第2剤
JP6231780B2 (ja) * 2012-06-14 2017-11-15 松本 高明 魚貝類用酸素水とこの製造システム、魚貝類の飼育装置、魚貝類の飼育方法、魚貝類の輸送方法および魚貝類用酸素氷
KR101483842B1 (ko) 2013-02-22 2015-01-16 손덕순 전해질 농축 융합 나노산소기포수 생성 장치 및 방법
WO2014148397A1 (fr) * 2013-03-18 2014-09-25 学校法人北里研究所 Dispositif pour générer des nanobulles par application de courant électrique
RU2693136C9 (ru) * 2013-10-03 2019-10-07 Эбед Холдингз Инк. Генератор нанопузырьков, способ получения жидких растворов, содержащих нанопузырьки, и их применение
JP6214091B2 (ja) * 2014-03-28 2017-10-18 国立研究開発法人産業技術総合研究所 ナノバブルを含む水の製造方法
JP2016104474A (ja) 2014-08-22 2016-06-09 有限会社情報科学研究所 共鳴発泡と真空キャビテーションによるウルトラファインバブル製造方法及びウルトラファインバブル水製造装置。
JP6181341B2 (ja) * 2015-04-08 2017-08-16 SonoCore株式会社 バブルの製造方法
US20170056439A1 (en) * 2015-08-25 2017-03-02 Oxy Young Co., Ltd. Oxygen-enriched water composition, biocompatible composition comprising the same, and methods of preparing and using the same
US20190298653A1 (en) 2016-05-13 2019-10-03 Sigma-Technology Inc. Administrable aqueous solution to living body and method for manufacturing same
KR101767146B1 (ko) * 2016-10-17 2017-08-10 임용범 스마트 포모션구동을 통한 마이크로·나노 믹싱크기의 구슬형버블 생성장치 및 방법
JP2018090514A (ja) * 2016-12-01 2018-06-14 日新技研株式会社 殺菌効果を有する微細気泡混合液
JP6836269B2 (ja) * 2017-03-21 2021-02-24 吉川工業株式会社 観賞魚育成システム
CN108002605B (zh) * 2017-11-17 2021-05-14 浙江海洋大学 一种海水养殖废水中抗生素的处理方法
JP2021175944A (ja) * 2018-07-20 2021-11-04 国立研究開発法人産業技術総合研究所 水の評価方法及び水の評価機構
JP7295395B2 (ja) * 2019-04-03 2023-06-21 ダイキン工業株式会社 気泡の製造方法及び物質の製造方法
CN111265543A (zh) * 2020-03-31 2020-06-12 潘纲 控制血氧分压的医用纳米氧输注剂及其制备方法和用途
CN113680225B (zh) * 2021-08-20 2022-05-31 常州大学 基于加热切割法的荷电微纳米气泡悬浮喷射机
JP7152824B1 (ja) * 2022-08-26 2022-10-13 株式会社ナノバブル研究所 陽イオン含有微細気泡発生装置、及び陽イオン発生装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314888A (ja) * 2000-05-10 2001-11-13 Suzuki Sangyo Kk 排水処理システム
WO2001097958A1 (fr) * 2000-06-23 2001-12-27 Ikeda, Yoshiaki Generateur de bulles d'air fines et dispositif de generation de bulles d'air fines muni de ce generateur
JP2002143885A (ja) * 2000-11-14 2002-05-21 Hirobumi Onari 微細気泡
JP3397154B2 (ja) * 1997-12-30 2003-04-14 博文 大成 旋回式微細気泡発生装置
JP2003334548A (ja) * 2002-05-20 2003-11-25 National Institute Of Advanced Industrial & Technology ナノ気泡の生成方法
JP2004121962A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology ナノバブルの利用方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276675A (ja) * 1996-04-17 1997-10-28 Kankyo Kagaku Kogyo Kk 気液接触装置
JP2000254483A (ja) * 1999-03-12 2000-09-19 Babcock Hitachi Kk キャビテーション反応装置
JP4101979B2 (ja) * 1999-06-24 2008-06-18 株式会社神戸製鋼所 水中放電法及び装置
JP2001225060A (ja) * 1999-12-08 2001-08-21 Mitsubishi Heavy Ind Ltd 水処理方法とその装置
JP3502363B2 (ja) * 2001-05-31 2004-03-02 ジェイイーシー株式会社 廃水処理方法と廃水処理装置
JP2003245662A (ja) * 2002-02-21 2003-09-02 Fm Ecology Kenkyusho:Kk 廃水処理システム
JP2003245533A (ja) * 2002-02-22 2003-09-02 Mori Kikai Seisakusho:Kk 超微細気泡発生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397154B2 (ja) * 1997-12-30 2003-04-14 博文 大成 旋回式微細気泡発生装置
JP2001314888A (ja) * 2000-05-10 2001-11-13 Suzuki Sangyo Kk 排水処理システム
WO2001097958A1 (fr) * 2000-06-23 2001-12-27 Ikeda, Yoshiaki Generateur de bulles d'air fines et dispositif de generation de bulles d'air fines muni de ce generateur
JP2002143885A (ja) * 2000-11-14 2002-05-21 Hirobumi Onari 微細気泡
JP2003334548A (ja) * 2002-05-20 2003-11-25 National Institute Of Advanced Industrial & Technology ナノ気泡の生成方法
JP2004121962A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology ナノバブルの利用方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONARI H.: "Dai 1 Bu, Micro Bubble no Miryoku to Gijutsuteki Kanosei o Sanguru, Konsoryu Lecture Series.", 20 June 2003 (2003-06-20), pages 1 - 14, XP002996423 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034195B2 (en) 1997-10-24 2015-05-19 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
JP2009525818A (ja) * 2006-02-10 2009-07-16 テナント カンパニー 散布装置を有する可動表面洗浄機および可動表面洗浄機上で散布洗浄液を生成するための方法
US8156608B2 (en) 2006-02-10 2012-04-17 Tennant Company Cleaning apparatus having a functional generator for producing electrochemically activated cleaning liquid
US8603320B2 (en) 2006-02-10 2013-12-10 Tennant Company Mobile surface cleaner and method for generating and applying an electrochemically activated sanitizing liquid having O3 molecules
US8719999B2 (en) 2006-02-10 2014-05-13 Tennant Company Method and apparatus for cleaning surfaces with high pressure electrolyzed fluid
US7749692B2 (en) * 2006-09-06 2010-07-06 National University Corporation Tokyo Medical And Dental University Tissue preservation method comprising contacting tissue with a solution of nanobubbles and salt
US9511333B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US9512398B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
EP3170401A1 (fr) * 2006-10-25 2017-05-24 Revalesio Corporation Compositions liquides ioniques aqueuses contentant des microbulles d'oxygene
US9004743B2 (en) 2006-10-25 2015-04-14 Revalesio Corporation Mixing device for creating an output mixture by mixing a first material and a second material
US9402803B2 (en) 2006-10-25 2016-08-02 Revalesio Corporation Methods of wound care and treatment
US8962700B2 (en) 2006-10-25 2015-02-24 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
JP5255451B2 (ja) * 2006-12-12 2013-08-07 国立大学法人 東京医科歯科大学 組織の修復又は再生用製剤
WO2008072370A1 (fr) * 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University Préparation utilisée pour la réparation ou la régénération de tissus
WO2008072371A1 (fr) 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University Préparation pour la stérilisation ou la désinfection d'un tissu
US8147876B2 (en) * 2007-02-27 2012-04-03 National University Corporation Tokyo Medical And Dental University Medical agent for preventing or treating diseases resulting from one of inflammation and remodeling, and method for preventing or treating the diseases
US8337690B2 (en) 2007-10-04 2012-12-25 Tennant Company Method and apparatus for neutralizing electrochemically activated liquids
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US8980325B2 (en) 2008-05-01 2015-03-17 Revalesio Corporation Compositions and methods for treating digestive disorders
US8319654B2 (en) 2008-06-19 2012-11-27 Tennant Company Apparatus having electrolysis cell and indicator light illuminating through liquid
US9011922B2 (en) 2009-04-27 2015-04-21 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9272000B2 (en) 2009-04-27 2016-03-01 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9198929B2 (en) 2010-05-07 2015-12-01 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
US9492404B2 (en) 2010-08-12 2016-11-15 Revalesio Corporation Compositions and methods for treatment of taupathy
CN106035142A (zh) * 2016-05-30 2016-10-26 铜陵东晟生态农业科技有限公司 岩原鲤养殖方法
WO2020079020A1 (fr) 2018-10-15 2020-04-23 University College Dublin, National University Of Ireland, Dublin Système, procédé et générateur pour générer des nanobulles ou des nanogouttelettes
WO2020079032A1 (fr) 2018-10-15 2020-04-23 University College Dublin, National University Of Ireland, Dublin Système et procédé de traitement de biogaz et d'eaux usées
EP4299531A1 (fr) 2018-10-15 2024-01-03 University College Dublin, National University of Ireland, Dublin Système et procédé de traitement de biogaz et d'eaux usées

Also Published As

Publication number Publication date
JP4080440B2 (ja) 2008-04-23
JP2005246294A (ja) 2005-09-15

Similar Documents

Publication Publication Date Title
WO2005084786A1 (fr) Eau contenant des nanobulles d’oxygène et procédé de fabrication correspondant
JP2005246294A5 (fr)
US20070286795A1 (en) Oxygen Nanobubble Water and Method of Producing the Same
JP4059506B2 (ja) オゾン水およびその製造方法
JP4144669B2 (ja) ナノバブルの製造方法
JP4035118B2 (ja) 在船上バラスト水輸送過程方式による生物の殺生方法及び装置
ES2693338T3 (es) Método de producción en agua estéril para acuicultura, y métodos de utilización del mismo para piscicultura que utilizan agua corriente estéril
JP5854502B2 (ja) オゾン除菌装置
JP3645250B2 (ja) 加圧多層式マイクロオゾン殺菌・浄化・畜養殺菌システム
CN105555360B (zh) 经由半电池的治疗性电子和离子转移
JP2005000917A5 (fr)
WO2004016344A1 (fr) Matiere liquide contenant des bulles d'air minuscules et dispositif servant a produire cette matiere liquide
WO2006088156A1 (fr) Procede de traitement de l'eau de ballast
CN102246712B (zh) 驱除养殖鱼的外寄生物的方法
JP2009131770A (ja) 二酸化炭素ナノバブル水の製造方法
CN204162498U (zh) 太阳能微纳米气泡水机
CN111569683A (zh) 一种高浓度长效臭氧纳米气泡水溶液及制备方法
JP4921332B2 (ja) 窒素ナノバブル水の製造方法
JP2012239938A (ja) 水質改善装置、水質改善方法、および金属イオン水生成装置
KR20040002356A (ko) 오존을 물에 고효율로 용해시키는 장치 및 이를 이용한 방법
JP2013193000A (ja) バラスト水処理システム及びバラスト水処理方法
JP2016198096A (ja) 魚介類処理装置、魚介類の処理方法、冷凍された魚介類及び冷凍された魚介類の蘇生方法
JP2004267868A (ja) ラインアトマイザーによる気体の溶存化及び貯蔵・供給システム
CN109936980B (zh) 净化系统
KR20170063117A (ko) 고농도 복합 살균수의 제조장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10591979

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10591979

Country of ref document: US