WO2005074067A1 - 非水電解液およびリチウム二次電池 - Google Patents

非水電解液およびリチウム二次電池 Download PDF

Info

Publication number
WO2005074067A1
WO2005074067A1 PCT/JP2005/001424 JP2005001424W WO2005074067A1 WO 2005074067 A1 WO2005074067 A1 WO 2005074067A1 JP 2005001424 W JP2005001424 W JP 2005001424W WO 2005074067 A1 WO2005074067 A1 WO 2005074067A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
compound
cyclohexylbenzene
secondary battery
lithium secondary
Prior art date
Application number
PCT/JP2005/001424
Other languages
English (en)
French (fr)
Inventor
Koji Abe
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to CA002555192A priority Critical patent/CA2555192A1/en
Priority to JP2005517560A priority patent/JP4779651B2/ja
Priority to US10/588,063 priority patent/US20070148554A1/en
Publication of WO2005074067A1 publication Critical patent/WO2005074067A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte capable of providing a lithium secondary battery excellent in battery characteristics such as improvement in overcharge safety of a battery and suppression of decomposition gas during cycling or high-temperature storage, and
  • the present invention relates to a lithium secondary battery using the non-aqueous electrolyte.
  • a typical example of a secondary battery widely used as a power supply for driving small electronic devices is a lithium composite oxide such as LiCoO as a positive electrode, and a carbon material or a lithium metal.
  • a non-aqueous electrolyte for the lithium secondary battery a non-aqueous solvent in which the electrolyte is dissolved in a non-aqueous solvent such as a carbonated mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) is used.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • Water electrolyte is used
  • Patent Literature 1 discloses an electrolysis using a nonaqueous solvent obtained by adding a cyclohexylbenzene in which at least one of the hydrogen atoms of a benzene ring is substituted with fluorine to a nonaqueous solvent containing a plurality of types of cyclic carbonate compounds. The liquid is described.
  • Patent Document 2 discloses that a non-aqueous solvent containing a cyclic carbonate compound is further fluoridated. An electrolyte using a non-aqueous solvent obtained by adding a zanyi conjugate is described.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-317803
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-112335
  • the present invention solves the above-mentioned problem relating to the nonaqueous electrolyte for a lithium secondary battery, and in a battery having a high voltage and a high energy density, improves overcharge safety, and at the same time improves cycle characteristics and high-temperature storage. It is an object of the present invention to provide a non-aqueous electrolyte capable of forming an excellent lithium secondary battery which maintains characteristics and suppresses battery swelling due to gas generation, and a lithium secondary battery using the same. I do.
  • the present invention relates to a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent containing a plurality of types of cyclic carbonate compounds, wherein the non-aqueous electrolytic solution further comprises a halogen atom on a 110% by mass benzene ring.
  • a non-aqueous electrolyte for a lithium secondary battery comprising a cyclohexylbenzene compound to which is bonded and 0.1 to 5% by mass of a fluorobenzene conjugate.
  • the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte of the present invention is used as the non-aqueous electrolyte.
  • a secondary battery is also a secondary battery.
  • the lithium secondary battery of the present invention is particularly useful as a lithium secondary battery operated at a maximum operating voltage higher than 4.2V.
  • a cyclohexylbenzene compound having a halogen atom bonded to a benzene ring is represented by the following formula (I) [0010] [Formula 1]
  • the present invention it is possible to provide a lithium secondary battery in which cycle characteristics and high-temperature storage characteristics as well as battery swelling due to gas generation are suppressed, as well as overcharge safety of the battery.
  • the lithium secondary battery of the present invention is particularly useful as a lithium secondary battery that operates at a maximum operating voltage higher than 4.2V (and further higher than 4.2V, and further higher than 4.3V).
  • cyclohexylbenzene compound having a halogen atom bonded to the benzene ring used in the present invention include 1-fluoro-2-cyclohexylbenzene, 1-fluoro-3-cyclohexynolebenzene, and 1-phenololeol 4 —Cyclohexynolebenzene, 1 Chloro-4-cyclohexylbenzene, 1-Bromo-4-cyclohexylbenzene, 1-Hodo-4-six Methoxyhexolebenzene, 1,2-Dichloro-3-cyclohexynolebenzene, 1, 3 Jibu Mouth 4-cyclohexylbenzene, 1,4-dichloro-12-cyclohexylbenzene, 1,2-diphthanol 4-cyclohexylbenzene, 1,3-difluoro-5-cyclohexylbenzene, etc. , Especially 1-fluoro-2-cyclo
  • the amount of the cyclohexylbenzene compound in which a halogen atom is bonded to the benzene ring is excessively large, battery performance may be reduced. Battery performance cannot be obtained. Therefore, a halogen atom is added to the benzene ring.
  • the amount of the cyclohexylbenzene compound bonded to the non-aqueous electrolyte is preferably 1% by mass or more based on the mass of the nonaqueous electrolyte. 1.5% by mass or more is more preferable 2% by mass The above is most preferable.
  • the amount of the cyclohexylbenzene compound in which a halogen atom is bonded to the benzene ring is preferably 10% by mass or less, more preferably 7% by mass or less, and more preferably 5% by mass with respect to the mass of the nonaqueous electrolyte. The following are most preferred.
  • the fluorobenzene compound is preferably a compound in which a fluorine atom is bonded to a benzene ring such as benzene, biphenyl, diphenyl ether, and asol, particularly fluorine-substituted benzene or fluorine-substituted alpha. -Noll is most preferred.
  • fluorobenzene compound used in the present invention include fluorobenzene, diphenylobenzene, benzene, triphenylenobenzene, 2-phenylphenol, 4-phenylphenol, 2-phenolinole, 2-phenyleneoleno, and 4-phenylphenol.
  • Fluorobenzene, 1,2-difluorobenzene and 2,4-difluoroanol are preferred.
  • the amount of the fluorobenzene conjugate used is excessively large, the battery performance may decrease, and if the amount is excessively small, sufficient expected battery performance cannot be obtained. Therefore, 0.1% by mass or more is preferable with respect to the mass of the non-aqueous electrolyte. 0.5% by mass or more is more preferable, and 1% by mass or more is most preferable. In addition, the amount of the fluorobenzene conjugate used is preferably 5% by mass or less, more preferably 4% by mass or less, and most preferably 3% by mass or less, based on the mass of the nonaqueous electrolyte.
  • the ratio of the fluorobenzene conjugate to the cyclohexylbenzene compound in which a halogen atom is bonded to the benzene ring is preferably 0.1 or more by mass, more preferably 0.15 or more by mass ratio. 0.2 or more is most preferable.
  • the ratio of the cyclohexylbenzene compound having a halogen atom bonded to the benzene ring to the fluorobenzene conjugate in the nonaqueous electrolyte is preferably 1.0 or less, more preferably 0.8 or less. Preferred 0.5 or less is most preferred.
  • Plural kinds of cyclic carbonate conjugates contained in the non-aqueous electrolyte include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and biylene carbonate (VC). , Dimethyl biene carbonate (DMVC), butyl ethylene carbonate Also, it is preferable that at least two types are selected from the group consisting of a solvent (VEC) and a fluoroethylene carbonate (FEC). Among them, ethylene carbonate, propylene carbonate, vinylene carbonate, vinyl ethylene carbonate, at least two kinds selected from fluoroethylene carbonate power are more preferable, and particularly, ethylene carbonate, vinylene carbonate, and fluoroethylene carbonate are selected.
  • One of the plural types of cyclic carbonate compounds is a compound selected from the group consisting of ethylene carbonate, propylene carbonate and butylene carbonate, and bi-ethylene carbonate, dimethyl bi-lene carbonate, vinyl ethylene carbonate and fluoroethylene.
  • it is a compound selected from the group consisting of carbonates.
  • the non-aqueous electrolyte further contains a chain carbonated conjugate.
  • chain carbonate compound contained in the non-aqueous electrolyte include dimethyl carbonate (DMC), methinoolethinocarbonate (MEC), ethynolecarbonate (DEC), methyl propyl carbonate (MPC), and dipropyl carbonate (Linear carbonate compounds having an alkyl group, such as DPC), methylbutyl carbonate (MBC), and dibutyl carbonate (DBC).
  • DMC dimethyl carbonate
  • MEC methinoolethinocarbonate
  • DEC ethynolecarbonate
  • MPC methyl propyl carbonate
  • DPC dipropyl carbonate
  • Linear carbonate compounds having an alkyl group such as DPC
  • MMC methylbutyl carbonate
  • DDC dibutyl carbonate
  • the alkyl group portion may be linear or branched! /, Or may be shifted! /.
  • the content ratio of the cyclic carbonate compound and the chain-like carbonate compound contained in the non-aqueous electrolyte is preferably 20: 80-40: 60 as a volume ratio.
  • the volume ratio of cyclic carbonate compound to chain carbonate compound is 40:60 or more, the cyclic force is too large.
  • the electrolyte composition is excessively large, high capacity or high energy density such as cylindrical batteries and prismatic batteries Batteries, especially cylindrical and prismatic batteries that use electrodes with a high electrode material layer density, are adversely affected by the high viscosity, and the electrolyte does not easily penetrate into the batteries, so that a satisfactory cycle is maintained. It becomes difficult to express the rate.
  • the volume ratio of the cyclic carbonate compound to the chain carbonate compound is 20:80 or less and the electrolyte composition has an excessively small capacity of the cyclic carbonate, the conductivity is lowered, and a satisfactory cycle maintenance ratio is exhibited. It becomes difficult to do. Therefore, the volume ratio of the cyclic carbonate compound and the chain carbonate compound contained in the non-aqueous electrolyte is preferably 20:80 to 40:60, and more preferably 20:80 to 40:60. Should be 20: 80—35: 65! / ⁇ .
  • chain carbonates it is preferable to use a chain carbonate compound having a methyl group such as dimethyl carbonate or methyl ethyl carbonate so as to lower the viscosity. It is preferable to use methylethyl carbonate, which is a liquid even at ° C and has an asymmetric chain carbonate carbonate having a boiling point of 100 ° C or higher. Further, among the chain carbonate conjugates, the volume ratio of the asymmetric chain carbonate compound, methylethyl carbonate, to the symmetric chain carbonate compound, dimethyl carbonate and Z or getyl carbonate. Is preferably 100: 0 -51: 49, 100: 0-70: 30 force ⁇ preferred! / ⁇ .
  • the proportion of the cyclic carbonate conjugate contained in the nonaqueous electrolyte is preferably 20% by volume or more, more preferably 25% by volume or more as a total weight.
  • the proportion of the cyclic carbonate conjugate contained in the nonaqueous electrolyte is preferably 40% by volume or less, more preferably 35% by volume or less.
  • vinylene carbonate, dimethinolevinylene carbonate, vinylinoleethylene carbonate, and cyclic carbonate containing fluorine which are cyclic carbonate conjugates having an unsaturated carbon-carbon bond in the non-aqueous electrolyte
  • the content of ethylene carbonate is preferably at least 0.1% by volume, more preferably at least 0.4% by volume, and most preferably at least 0.8% by volume.
  • the proportion of the cyclic carbonate-bonded product having unsaturated carbon-carbon bonds contained in the nonaqueous electrolyte is preferably 8% by volume or less, more preferably 4% by volume or less, and more preferably 3% by volume or less. Most preferred.
  • non-aqueous solvents used in the present invention include, for example, rataton compounds such as ⁇ -petit mouth ratataton (GBL), ⁇ - valerololataton, ⁇ -angelicalactone, tetrahydrofuran,
  • rataton compounds such as ⁇ -petit mouth ratataton (GBL), ⁇ - valerololataton, ⁇ -angelicalactone, tetrahydrofuran,
  • the combination of these non-aqueous solvents is, for example, a combination of a cyclic carbonate compound and a chain carbonate compound, a combination of a cyclic carbonate compound and a rataton compound, and a combination of a cyclic carbonate compound and a ratatone compound.
  • Combination of ratatoni ligated product and chain esteri ligated product, combination of cyclic carbonated ligature, chained carbonatei ligated product and ratatoni ligated product, cyclic carbonated ligated product and chain Various types of combinations such as a combination of a carbonated compound and an ethereal compound, a combination of a cyclic carbonate compound, a chain carbonate compound and a chain esteri compound, and the like. And a chain carbonate compound or a combination of a cyclic carbonate compound and a chain carbonate compound. A combination with a Terui sword is preferred.
  • the ratio is preferably 20:80 to 40:60 as the volume ratio of the cyclic carbonate.
  • a high capacity or high processing such as a cylindrical battery or a prismatic battery is required. Batteries with a high energy density, especially cylindrical batteries and prismatic batteries using electrodes with a high electrode material layer density are adversely affected by high viscosity, and the electrolyte does not easily penetrate into the battery. In some cases, the maintenance rate cannot be exhibited.
  • the capacity ratio between the cyclic carbonate compound and the chain carbonate compound contained in the non-aqueous electrolyte is preferably 20:80 to 40:60, and 20:80 to 35:65. Power of doing ⁇ Better than! / ,.
  • chain carbonated conjugates it is preferable to use a chain carbonated conjugate containing a methyl group such as dimethyl carbonate or methylethyl carbonate so as to lower the viscosity. Low viscosity, liquid at 20 ° C, boiling point below 100 ° C It is preferable to use the above-mentioned asymmetric chain-like methyl carbonate, methyl ethyl carbonate. Furthermore, among the chain carbonate conjugates, the capacity of methylethyl carbonate, which is an asymmetric chain carbonate compound, and the volume of methyl carbonate and Z or getyl carbonate, which are symmetric chain carbonate conjugates. The ratio is preferably 100: 0-51: 1: 49 and 100: 0-70: 30 is more preferred! /.
  • Examples of the electrolyte used in the nonaqueous electrolyte of the present invention include LiPF, LiBF, and LiCl.
  • Chain alkyl groups such as F), LiPF (CF), LiPF (iso-CF), LiPF (iso-CF)
  • a cyclic alkyl such as (CF) (SO) NLi or (CF) (SO) NLi.
  • Lithium salts containing a ren chain are mentioned.
  • Particularly preferred electrolytes include LiPF and Li
  • LiPF LiN
  • the resolving may be used alone or in combination of two or more.
  • a preferred combination of these electrolytes is LiPF
  • the electrolytes when used in combination, the ability to mix them at an arbitrary ratio.
  • the ratio of the other electrolytes used in combination with LiPF to the total electrolyte is mol%.
  • the molar percentage is preferably 45% or less, more preferably 20% or less, still more preferably 10% or less, and most preferably 5% or less.
  • the concentration of the total electrolyte is usually preferably 0.3 M or more, more preferably 0.5 M or more, further more preferably 0.7 M or more, and most preferably 0.8 M or more for the above-mentioned non-aqueous solvent.
  • the concentration of the total electrolyte is preferably 2.5 M or lower, more preferably 2.0 M or lower, further preferably 1.6 M or lower, and most preferably 1.2 M or lower.
  • the non-aqueous electrolyte solution of the present invention is prepared by, for example, mixing a non-aqueous solvent containing the above-mentioned cyclic carbonate compound, dissolving the above-mentioned electrolyte, and bonding a halogen atom to the above-mentioned fluorobenzene compound and the benzene ring.
  • a cyclohexylbenzene compound Etc. can be used for the preparation.
  • the kinematic viscosity at 25 ° C in a non-aqueous electrolyte solution of the present invention 2.
  • 3 X 10- 6 - 3. preferably be a 6 X 10 "V / s instrument 2.
  • 3 X 10- 6 - 3. more preferably is 2 X 10- 6 m 2 Zs instrument 2.
  • 3 X 10- 6 -.. 3 0 X 10- 6 m 2 Zs is the most preferred measure of kinematic viscosity, capillary tube viscometry Measured using a Cannon-Fenske viscometer based on
  • the nonaqueous electrolyte of the present invention contains gas, such as air or carbon dioxide, to suppress gas generation due to decomposition of the electrolyte and to improve battery performance such as cycle characteristics and storage characteristics. Can be improved.
  • gas such as air or carbon dioxide
  • the method for containing (dissolving) diacid carbon or air in the non-aqueous electrolyte includes: (1) before the non-aqueous electrolyte is injected into the battery; And (2) after the injection, before or after the battery is sealed, to contain air or a carbon dioxide-containing gas in the battery. They can also be used in combination. Air and carbon dioxide-containing gas containing as little moisture as possible have a preferred dew point of 40 ° C or less, and particularly preferably a dew point of 50 ° C or less.
  • the non-aqueous electrolyte of the present invention is used as a constituent material of a secondary battery, particularly a lithium secondary battery.
  • the constituent materials other than the non-aqueous electrolyte constituting the secondary battery are not particularly limited, and various conventionally used constituent materials can be used.
  • a composite metal oxide with lithium containing conoreto, manganese, and nickel is used as the positive electrode active material.
  • One of these positive electrode active materials may be selected and used, or two or more thereof may be used in combination.
  • Such composite metal oxides include, for example, LiCoO, LiMnO, LiNiO, LiCoNiO (0.01 x 1), LiCo
  • LiCoO LiMnO, LiNiO
  • Lithium composite metal that can be used at 4.3V or higher based on Li is preferred Lithium composite that can be used at 4.4V or higher, such as LiCo Ni Mn O and LiNi Mn O
  • part of the lithium composite metal oxide is substituted with another element.
  • a part of Co of LiCoO is Sn, Mg, Fe, Ti, Al, Zr, Cr, V,
  • It may be substituted with Ga, Zn, Cu or the like.
  • a lithium-containing olivine-type phosphate can be used as the positive electrode active material.
  • Specific examples include LiFePO, LiCoPO, LiNiPO, LiMnPO, LiFe MPO (M is
  • LiFePO or LiCoPO is preferred as the positive electrode active material for high voltage.
  • Lithium-containing olivine-type phosphates may be used in combination with other positive electrode active materials.
  • the conductive agent for the positive electrode is not particularly limited as long as it does not cause a chemical change and is an electron conductive material.
  • Examples include graphites such as natural graphite (flaky graphite and the like) and artificial graphite, and carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black. Also, graphite and carbon black may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode mixture is preferably from 11 to 10% by mass, and particularly preferably from 2 to 5% by mass.
  • the positive electrode is made of the above-mentioned positive electrode active material using a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), or a copolymer of styrene and butadiene (SBR). ), Kneaded with a binder such as acrylonitrile-butadiene copolymer (NBR) and carboxymethylcellulose (CMC) to form a positive electrode mixture, and then used this positive electrode material as an aluminum foil as a current collector. It is manufactured by rolling into a lath plate and heat-treating it under vacuum at a temperature of about 50 ° C to 250 ° C for about 2 hours.
  • a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), or a copolymer of styrene and butadiene (SBR).
  • the negative electrode negative electrode active material
  • a material capable of occluding and releasing lithium is used.
  • lithium metal, lithium alloy, and carbon material pyrolytic carbons, coatas, graphites (artificial graphite) , Natural graphite, etc.), organic polymer compound burners, carbon fibers], tin-tin sulfides, silicon and silicon compounds.
  • the spacing (d) between lattice planes (002) is 0.340 nm or less.
  • graphite having a graphite type crystal structure m is used.
  • these negative electrode active materials may be selected and used, or two or more thereof may be used in combination.
  • powder materials such as carbon materials include ethylene propylene genta polymer (EPDM), polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (P VDF), a copolymer of styrene and butadiene (SBR), a copolymer of acrylonitrile and butadiene (NBR), and a binder such as carboxymethyl cellulose (CMC) are kneaded and used as a negative electrode mixture.
  • the method for producing the negative electrode is not particularly limited, and the negative electrode can be produced by the same method as the above-described method for producing the positive electrode.
  • the structure of the lithium secondary battery is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode, and a single-layer or multiple-layer separator, and a cylindrical-type battery having a positive electrode, a negative electrode, and a roll-shaped separator. Batteries and prismatic batteries are examples.
  • the separator a known microporous film of polyolefin such as polypropylene and polyethylene, a woven fabric, a nonwoven fabric and the like are used. Further, the battery separator may have any structure of a single-layer porous film and a laminated porous film.
  • the separator for a battery used in the present invention has a force that varies depending on the manufacturing conditions.
  • the air permeability is preferably 50 to 1000 seconds, and is preferably more than 100 to 800 sq.m./100 sq.m. Power is preferred! / ⁇ .
  • the porosity is preferably 30-60%, more preferably 35-55%, and most preferably 40-50%. In particular, when the porosity is in this range, the capacity characteristics of the battery are improved, which is preferable.
  • the thickness of the battery separator is preferably as small as possible because the energy density can be increased. However, from the viewpoint of mechanical strength and performance, 5 to 50 ⁇ m is preferable, and 10 to 40 ⁇ m is more preferable. — 25 m is most preferred.
  • the density of the electrode material layer is particularly important for obtaining an effective additive effect.
  • the density of the positive electrode mixture layer formed on the aluminum foil is preferably 3.2-4. Og / cm 3 force S, more preferably 3.3-3.9 g / cm 3 , and most preferably 3 . it is 4-3. 8gZcm 3.
  • the density of the negative electrode mixture layer formed on the copper foil 1. 3-2. Og / cm 3 is preferred instrument is more preferably 1. 4- 1. 9gZcm 3, most preferably 1. 5- It is between 8 g / cm 3 .
  • the preferable thickness of the positive electrode layer (per one side of the current collector) is 30 to 120 / ⁇ , preferably 50 to 100 m, and the thickness of the negative electrode layer is The thickness (per one side of the current collector) is 1 to 100 ⁇ m, preferably 3 to 70 ⁇ m.
  • the configuration of the lithium secondary battery is not particularly limited, and coin batteries, cylindrical batteries, prismatic batteries, and stacked batteries having a positive electrode, a negative electrode, a porous membrane separator, and an electrolyte solution are provided. And the like. Among them, cylindrical batteries and prismatic batteries are preferred.
  • the lithium secondary battery of the present invention exhibits excellent cycle characteristics over a long period of time even when the end-of-charge voltage is higher than 4.2V, and particularly when the end-of-charge voltage is higher than 4.3V. Shows excellent cycle characteristics.
  • the discharge end voltage can be 2.5 V or higher, and further 2.8 V or higher.
  • the current value is not particularly limited, it is usually used at a constant current of 0.1 to 3C.
  • the lithium secondary battery of the present invention has a power capable of charging and discharging at 40 ° C. or higher, preferably 0 ° C. or higher.
  • the ability to charge and discharge at 100 ° C or lower is preferably 80 ° C or lower.
  • a safety valve can be used for the sealing plate.
  • a method of making a cut in a member such as a battery can or a gasket can also be used.
  • various conventionally known safety elements at least one of a fuse, a metal, and a PTC element as an overcurrent prevention element.
  • the lithium secondary battery of the present invention may be assembled in a battery pack by assembling a plurality of the rechargeable batteries in series, Z, or parallel as needed.
  • the battery pack includes safety elements such as PTC elements, thermal fuses, fuses and Z or current cutoff elements, as well as safety circuits (monitoring the voltage, temperature, current, etc. of each battery and Z or the entire battery pack and monitoring the current. Circuit having a function of shutting off) may be provided.
  • Devices using the lithium secondary battery of the present invention are preferably used for mobile phones, notebook computers, PDAs, video movies, compact cameras, razors, electric tools, automobiles, and the like.
  • a device having a charging current of 0.5 A or more is preferable because reliability is improved by combination with the lithium secondary battery of the present invention.
  • LiCoO positive electrode active material
  • acetylene black conductive agent
  • Bilidene fluoride (binder) was mixed at a ratio of 5% by mass, and 1-methyl-2-pyrrolidone was added to form a slurry, which was applied on an aluminum foil. Thereafter, it was dried and pressed to prepare a positive electrode.
  • the battery was equipped with a pressure release port and an internal current interrupt device (PTC element).
  • the electrode density of the positive electrode was 3.5 g / cm 3
  • the electrode density of the negative electrode was 1.6 gZcm 3
  • the thickness of the positive electrode layer (per one side of the current collector) was 70 m
  • the thickness of the negative electrode layer (per one side of the current collector) was 60 m.
  • EC capacity ratio 28Z2Z70
  • Comparative Example 2 battery fabrication conditions and battery characteristics.
  • a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that fluorobenzene was used in an amount of 1% by mass based on the non-aqueous electrolyte instead of 2,4-difluoroanol, and an 18650 battery was manufactured.
  • the discharge capacity retention ratio was 82.1%.
  • the surface temperature of the battery was 120 ° C or less. Table 1 shows the battery fabrication conditions and battery characteristics. The kinematic viscosity at 25 ° C. of this electrolyte was 2.7 ⁇ 10 mZs.
  • fluorobenzene and 1-fluoro-4-cyclohexylbenzene were added to the nonaqueous electrolyte so as to be 1% by mass and 2% by mass, respectively.
  • an 18650 battery was fabricated in the same manner as in Example 1, and the battery characteristics were measured.
  • the discharge capacity retention rate after 200 cycles was 82.4% of the initial discharge capacity.
  • the surface temperature of the battery was 120 ° C or less.
  • Table 1 shows the battery fabrication conditions and battery characteristics. Kinematic viscosity at 25 ° C of the electrolytic solution, 2. a 7 X 10- 6 m 2 Zs.
  • a non-aqueous solvent is prepared, and LiPF is dissolved in this to a concentration of 1M to obtain a non-aqueous electrolyte.
  • a non-aqueous solvent of EC: VC: DEC (volume ratio) 41: 2: 57 was prepared so that the mass ratio of the cyclic carbonate compound to the chain carbonate compound was 1: 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】 過充電安全性の向上とサイクル特性の向上とを併せて実現するリチウム二次電池を提供する。 【解決手段】 複数種の環状カーボネート化合物を含む非水溶媒に電解質が溶解されている非水電解液であって、該非水電解液がさらに、1~10質量%のベンゼン環にハロゲン原子が結合しているシクロヘキシルベンゼン化合物そして0.1~5質量%のフルオロベンゼン化合物を含有する非水電解液をリチウム二次電池用の非水電解液として使用する。                                                                         

Description

明 細 書
非水電解液およびリチウム二次電池
技術分野
[0001] 本発明は、電池の過充電安全性の改善とサイクル時や高温保存時の分解ガスの 抑制などの電池特性に優れたリチウム二次電池を提供することができる非水電解液 、および該非水電解液を用いたリチウム二次電池に関する。
背景技術
[0002] 近年、小型電子機器などの駆動用電源として広く使用されている二次電池の代表 例は、 LiCoOなどのリチウム複合酸ィ匕物を正極とし、炭素材料又はリチウム金属を
2
負極としたリチウム二次電池である。そして、そのリチウム二次電池用の非水電解液と しては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)などのカーボネ 一トイ匕合物などの非水溶媒に電解質が溶解されている非水電解液が使用されている
[0003] しかし、高電圧、高エネルギー密度の電池が求められており、従来の電解液組成で は、電池性能と安全性との両方を向上させることが難しくなつている。特に、 4. 2Vよ りも高い最大作動電圧にて作動させる高工ネルギー密度のリチウム二次電池におい ては、従来よりも過充電安全性を向上させることが重要である。また同時に、サイクル 特性や高温保存特性を維持することも難しぐガス発生による電池の膨れなども多ぐ これまでに知られて!/、るリチウム二次電池では、その電池特性は必ずしも満足なレべ ルに到達していない。従って、今後要求が高まる高エネルギー密度のリチウム二次 電池に対して、電池性能を維持しながら、安全性も向上させる優れたリチウム二次電 池が求められている。
[0004] 非水二次電池の過充電安全性を改善する方法として、有機化合物を少量添加する 方法が知られている。例えば、特許文献 1には、複数種の環状カーボネート化合物を 含む非水溶媒にさらにベンゼン環の水素原子の少なくとも一つがフッ素置換された シクロへキシルベンゼンを添加してなる非水溶媒を用いた電解液が記載されて 、る。 また、特許文献 2には、環状カーボネートイ匕合物を含む非水溶媒にさらにフルォ口べ ンゼンィ匕合物を添加してなる非水溶媒を用いた電解液が記載されて 、る。
[0005] 特許文献 1:特開 2003—317803号公報
特許文献 2:特開平 10—112335号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、前記のリチウム二次電池用非水電解液に関する課題を解決し、高電圧 、高エネルギー密度を有する電池において、過充電安全性を向上させると同時に、 サイクル特性や高温保存特性を維持させ、ガス発生による電池の膨れを抑制した優 れたリチウム二次電池を構成することができる非水電解液、およびそれを用いたリチ ゥム二次電池を提供することを目的とする。
課題を解決するための手段
[0007] 本発明は、複数種の環状カーボネート化合物を含む非水溶媒に電解質が溶解さ れている非水電解液において、該非水電解液がさらに、 1一 10質量%のベンゼン環 にハロゲン原子が結合しているシクロへキシルベンゼン化合物そして 0. 1— 5質量% のフルォロベンゼンィ匕合物を含有することを特徴とするリチウム二次電池用の非水電 解液にある。
[0008] また、本発明は、正極、負極、および非水電解液からなるリチウム二次電池におい て、非水電解液として、上記の本発明の非水電解液を用いることを特徴とするリチウ ムニ次電池にもある。本発明のリチウム二次電池は、 4. 2Vよりも高い最大作動電圧 にて作動させるリチウム二次電池として特に有用である。
[0009] 本発明にお 、て、ベンゼン環にハロゲン原子が結合して 、るシクロへキシルベンゼ ン化合物としては、下記式 (I) [0010] [化 1]
Figure imgf000004_0001
[0011] (式中、 Xは、ハロゲン原子を示し、 nは 1または 2である。ただし、ベンゼン環上の置 換位置は任意である。 )で表わされる化合物を挙げることができる。
発明の効果
[0012] 本発明によれば、電池の過充電安全性と同時に、サイクル特性や高温保存特性、 更にはガス発生による電池の膨れを抑制したリチウム二次電池を提供することができ る。本発明のリチウム二次電池は、 4. 2Vよりも高い(さらには 4. 25V以上の、さらに また 4. 3V以上の)最大作動電圧にて作動させるリチウム二次電池として特に有用で ある。
発明を実施するための最良の形態
[0013] 本発明で用いるベンゼン環にハロゲン原子が結合しているシクロへキシルベンゼン 化合物の具体例としては、 1 フルオロー 2—シクロへキシルベンゼン、 1 フルオロー 3 —シクロへキシノレベンゼン、 1ーフノレオロー 4—シクロへキシノレベンゼン、 1 クロロー 4— シクロへキシルベンゼン、 1ーブロモー 4ーシクロへキシルベンゼン、 1ーョードー 4ーシク 口へキシノレベンゼン、 1, 2—ジクロロー 3—シクロへキシノレベンゼン、 1, 3 ジブ口モー 4 —シクロへキシルベンゼン、 1, 4—ジクロロ一 2—シクロへキシルベンゼン、 1, 2—ジフノレ オロー 4ーシクロへキシルベンゼン、 1, 3—ジフルオロー 5—シクロへキシルベンゼンなど が挙げられ、特に 1—フルオロー 2—シクロへキシルベンゼン、 1—フルオロー 3—シクロへ キシルベンゼン、 1 フルオロー 4ーシクロへキシルベンゼンが好まし!/、。
[0014] 本発明において、ベンゼン環にハロゲン原子が結合しているシクロへキシルベンゼ ン化合物の使用量は、過度に多いと電池性能が低下することがあり、また、過度に少 ないと期待した十分な電池性能が得られない。したがって、ベンゼン環にハロゲン原 子が結合しているシクロへキシルベンゼンィ匕合物の使用量は、非水電解液の質量に 対して 1質量%以上が好ましぐ 1. 5質量%以上がより好ましぐ 2質量%以上が最も 好ましい。また、ベンゼン環にハロゲン原子が結合しているシクロへキシルベンゼン 化合物の使用量は非水電解液の質量に対して 10質量%以下が好ましぐ 7質量% 以下がより好ましぐ 5質量%以下が最も好ましい。
[0015] 前記フルォロベンゼン化合物としては、ベンゼン、ビフエ-ル、ジフエ-ルエーテル 、ァ-ソールなどのベンゼン環にフッ素原子が結合したものが好ましぐ特にフッ素置 換されたベンゼンまたはフッ素置換されたァ-ノールが最も好ましい。
[0016] 本発明で用いるフルォロベンゼン化合物の具体例としては、フルォロベンゼン、ジ フノレオ口ベンゼン、トリフノレオ口ベンゼン、 2—フノレォロビフエニル、 4ーフノレォロビフエ 二ノレ、 2—フノレオロジフエ-ノレエーテノレ、 4ーフノレオロジフエ-ノレエーテノレ、 2—フノレオ口 ァ-ソール、 4 フルォロア-ノール、 2, 4—ジフルォロア-ノール、 2, 5—ジフルォロ ァ-ソール、 2, 6—ジフルォロア-ノールなどが挙げられ、特にフルォロベンゼン、 1 , 2—ジフルォロベンゼン、 2, 4—ジフルォロア-ノールが好ましい。
[0017] フルォロベンゼンィ匕合物の使用量は、過度に多いと電池性能が低下することがあり 、また、過度に少ないと期待した十分な電池性能が得られない。したがって、非水電 解液の質量に対して 0. 1質量%以上が好ましぐ 0. 5質量%以上がより好ましぐ 1 質量%以上が最も好ましい。また、フルォロベンゼンィ匕合物の使用量は非水電解液 の質量に対して 5質量%以下が好ましぐ 4質量%以下がより好ましぐ 3質量%以下 が最も好ましい。
[0018] ベンゼン環にハロゲン原子が結合しているシクロへキシルベンゼン化合物に対する フルォロベンゼンィ匕合物の割合は、質量比で 0. 1以上が好ましぐ 0. 15以上がより 好ましぐ 0. 2以上が最も好ましい。また、非水電解液中にフルォロベンゼンィ匕合物 に対するベンゼン環にハロゲン原子が結合しているシクロへキシルベンゼン化合物 の割合は、 1. 0以下が好ましぐ 0. 8以下がより好ましぐ 0. 5以下が最も好ましい。
[0019] 非水電解液中に含まれる複数種の環状カーボネートイ匕合物は、エチレンカーボネ ート(EC)、プロピレンカーボネート (PC)、ブチレンカーボネート (BC)、ビ-レンカー ボネート(VC)、ジメチルビ-レンカーボネート(DMVC)、ビュルエチレンカーボネ ート(VEC)、およびフルォロエチレンカーボネート (FEC)力も選ばれる少なくとも二 種であることが好ましい。中でも、エチレンカーボネート、プロピレンカーボネート、ビ 二レンカーボネート、ビニルエチレンカーボネート、フルォロエチレンカーボネート力 ら選ばれる少なくとも二種がより好ましぐ特に、エチレンカーボネート、ビニレンカー ボネート、およびフルォロエチレンカーボネートから選ばれる少なくとも二種が含有さ れていることが最も好ましい。また、複数種の環状カーボネート化合物の一方は、ェ チレンカーボネート、プロピレンカーボネートおよびブチレンカーボネートからなる群 より選ばれる化合物、そしてビ-レンカーボネート、ジメチルビ-レンカーボネート、ビ -ルエチレンカーボネートおよびフルォロエチレンカーボネートからなる群より選ばれ る化合物であることが好まし 、。
[0020] 本発明において、非水電解液にさらに鎖状カーボネートイ匕合物を含有させることが 好ましい。前記非水電解液中に含まれる鎖状カーボネート化合物として、ジメチルカ ーボネート (DMC)、メチノレエチノレカーボネート (MEC)、ジェチノレカーボネート (DE C)、メチルプロピルカーボネート (MPC)、ジプロピルカーボネート(DPC)、メチルブ チルカーボネート (MBC)、ジブチルカーボネート (DBC)などのアルキル基を有する 鎖状カーボネート化合物が挙げられる。但し、アルキル基部分は、直鎖状または分枝 状の!/、ずれであっても構わな!/、。
[0021] また、前記非水電解液中に含まれる前記環状カーボネート化合物と鎖状カーボネ 一トイ匕合物との含有割合は、容量比として、 20 : 80— 40 : 60とすること力 S好ましく、環 状カーボネート化合物と鎖状カーボネート化合物との容量比が 40: 60以上の環状力 ーボネートの容量が過度に多い電解液組成の場合、円筒電池や角型電池のような 高容量または高エネルギー密度の電池、とりわけ、電極材料層の密度が高い電極を 用いた円筒電池や角型電池においては、高粘度の悪影響を受け、電池内に十分電 解液が浸透し難いために、満足なサイクル維持率を発現し難くなる。また、環状カー ボネート化合物と鎖状カーボネート化合物との容量比が 20: 80以下の環状カーボネ ートの容量が過度に少ない電解液組成の場合、伝導度が低くなり、満足なサイクル 維持率を発現し難くなる。したがって、非水電解液中に含有される前記環状カーボネ 一トイヒ合物と前記鎖状カーボネートィヒ合物との容量比は、 20 : 80— 40 : 60、好ましく は 20: 80— 35: 65とするのがよ!/ヽ。
[0022] 特に鎖状カーボネートのうち、粘度が低くなるようにジメチルカーボネートやメチル ェチルカーボネートのようなメチル基を含有する鎖状カーボネート化合物を使用する ことが好ましぐ中でも、粘度が低ぐ 20°Cでも液体であり、沸点が 100°C以上であ る非対称な鎖状カーボネートカーボネートであるメチルェチルカーボネートを使用す ることが好ましい。更には、鎖状カーボネートイ匕合物のうち、非対称な鎖状カーボネ ート化合物であるメチルェチルカーボネートと、対称な鎖状カーボネート化合物であ るジメチルカーボネートおよび Zまたはジェチルカーボネートとの容量比は、 100: 0 -51 : 49であること力好ましく、 100: 0— 70: 30力 ^より好まし!/ヽ。
[0023] 非水電解液中に含有される環状カーボネートイ匕合物の割合は、過度に多いと電池 性能が低下することがあり、また、過度に少ないと期待した十分な電池性能が得られ ない。したがって、非水電解液中に含有される環状カーボネートイ匕合物の割合は、合 計量として 20容量%以上が好ましぐ 25容量%以上がより好ましい。また、非水電解 液中に含有される前記環状カーボネートイ匕合物の割合は、 40容量%以下が好ましく 、 35容量%以下がより好ましい。
[0024] また、前記非水電解液中の不飽和炭素 炭素結合を有する環状カーボネートイ匕合 物であるビニレンカーボネート、ジメチノレビ二レンカーボネート、ビニノレエチレンカー ボネートおよびフッ素を含有する環状カーボネートであるフルォロエチレンカーボネ ートの含有量は、いずれの場合も、 0. 1容量%以上であることが好ましぐ 0. 4容量 %以上がより好ましぐ 0. 8容量%以上が最も好ましい。また、非水電解液中に含有 される不飽和炭素 炭素結合を有する環状カーボネートイ匕合物の割合は、 8容量% 以下が好ましぐ 4容量%以下がより好ましぐ 3容量%以下が最も好ましい。
[0025] 本発明で使用されるその他の非水溶媒としては、例えば、 γ—プチ口ラタトン (GBL )、 γ一バレロラタトン、 α—アンゲリカラクトンなどのラタトン化合物、テトラヒドロフラン、
2—メチルテトラヒドロフラン、 1, 4 ジォキサン、 1, 2—ジメトキシェタン、 1, 2—ジェトキ シェタン、 1, 2—ジブトキシェタンなどのエーテル化合物、ァセトニトリル、アジポ-トリ ルなどの-トリル化合物、プロピオン酸メチル、ビバリン酸メチル、ビバリン酸ブチル、 ビバリン酸へキシル、ビバリン酸ォクチル、シユウ酸ジメチル、シユウ酸ェチルメチル、 シユウ酸ジェチルの鎖状エステル化合物、ジメチルホルムアミドなどのアミド化合物、 グリコールサルファイト、プロピレンサルファイト、グリコールサルフェート、プロピレンサ ルフェート、ジビニルスルホン、 1, 3 プロパンスルトン、 1, 4 ブタンスルトン、 1, 4— ブタンジオールジメタンスルホネートなどの s = o含有化合物などが挙げられる。
[0026] これらの非水溶媒の組み合わせは、例えば、環状カーボネート化合物と鎖状カー ボネートイ匕合物との組み合わせ、環状カーボネートイ匕合物とラタトン化合物との組み 合わせ、環状カーボネートイ匕合物とラタトンィ匕合物と鎖状エステルイ匕合物との組み合 わせ、環状カーボネートイ匕合物と鎖状カーボネートイ匕合物とラタトンィ匕合物との組み 合わせ、環状カーボネートイ匕合物と鎖状カーボネートイ匕合物とエーテルィ匕合物の組 み合わせ、環状カーボネートィヒ合物と鎖状カーボネートィヒ合物と鎖状エステルイ匕合 物との組み合わせなど種々の組み合わせが挙げられる力 環状カーボネート化合物 と鎖状カーボネート化合物との組み合わせ、あるいは環状カーボネートイ匕合物と鎖状 カーボネートイ匕合物と鎖状エステルイ匕合物との組み合わせが好ましい。
[0027] 環状カーボネートイ匕合物と鎖状カーボネートイ匕合物とを組合せて使用する場合、そ の割合は、容量比として、 20 : 80— 40 : 60とすることが好ましぐ環状カーボネートイ匕 合物と鎖状カーボネートイ匕合物との容量比が 40: 60以上の環状カーボネートの容量 が過度に多い電解液組成の場合、円筒電池や角型電池のような高容量または高工 ネルギー密度の電池、とりわけ、電極材料層の密度が高い電極を用いた円筒電池や 角型電池においては、高粘度の悪影響を受け、電池内に十分電解液が浸透し難い ために、満足なサイクル維持率を発現することができない場合がある。また、環状力 ーボネート化合物と鎖状カーボネート化合物との容量比が 20: 80以下の環状カーボ ネートの容量が過度に少ない電解液組成の場合、伝導度が低くなり、満足なサイク ル維持率を発現することができない場合がある。従って、非水電解液中に含有される 前記環状カーボネート化合物と前記鎖状カーボネート化合物との容量比は、 20: 80 一 40: 60とするの力 子ましく、 20: 80— 35: 65とするの力 ^より好まし!/、。
[0028] 特に鎖状カーボネートイ匕合物のうち、粘度が低くなるようにジメチルカーボネートや メチルェチルカーボネートのようなメチル基を含有する鎖状カーボネートイ匕合物を使 用することが好ましぐ中でも、粘度が低ぐ 20°Cでも液体であり、沸点が 100°C以 上である非対称な鎖状カーボネートイ匕合物のメチルェチルカーボネートを使用する ことが好ましい。更には、鎖状カーボネートイ匕合物のうち、非対称な鎖状カーボネート 化合物であるメチルェチルカーボネートと、対称な鎖状カーボネートイ匕合物であるジ メチルカーボネートおよび Zまたはジェチルカーボネートとの容量比は、 100 : 0— 5 1: 49であることが好ましぐ 100 : 0-70 : 30がより好まし!/、。
[0029] 本発明の非水電解液で使用される電解質としては、例えば、 LiPF、 LiBF、 LiCl
6 4
O、 LiN (SO CF ) 、 LiN (SO C F ) 、 LiC (SO CF ) 、 LiPF (CF ) 、 LiPF (C
4 2 3 2 2 2 5 2 2 3 3 4 3 2 3 2
F ) 、 LiPF (CF ) 、 LiPF (iso— C F ) 、 LiPF (iso— C F )などの鎖状アルキル基
5 3 3 3 3 3 3 7 3 5 3 7
を有するリチウム塩や、 (CF ) (SO ) NLi、 (CF ) (SO ) NLiなどの環状のアルキ
2 2 2 2 2 3 2 2
レン鎖を含有するリチウム塩が挙げられる。特に好ましい電解質としては、 LiPF、 Li
6
BF、 LiN (SO CF )であり、最も好ましい電解質としては、 LiPFである。これらの電
4 2 3 2 6
解質は、一種類で使用してもよぐ二種類以上組み合わせて使用してもよい。これら 電解質の好ましい組み合わせとしては、 LiPF
6と LiBF
4との組み合わせ、 LiPF
6と LiN
(SO CF )との組み合わせ、 LiBFと LiN (SO CF )との組み合わせなどが挙げら
2 3 2 4 2 3 2
れる。特に好ましいのは、 LiPF Li
6と BF
4との組み合わせである。本発明では電解質 を混合して用いる場合には、任意の割合で混合することができる力 好ましくは、 LiP Fと組み合わせて使用される他の電解質が全電解質に占める割合は、モル%として
6
、 0. 01%以上であり、より好ましくは 0. 03%以上であり、さらに好ましくは 0. 05%以 上である。また LiPFと組み合わせて使用される他の電解質が全電解質に占める割
6
合は、モル%として、 45%以下が好ましぐより好ましくは 20%以下であり、さらに好 ましくは 10%以下であり、最も好ましいのは 5%以下である。全電解質の濃度は、前 記の非水溶媒に通常 0. 3M以上が好ましぐ 0. 5M以上がより好ましぐさらに 0. 7 M以上が好ましぐ 0. 8M以上が最も好ましい。また、全電解質の濃度は、 2. 5M以 下が好ましぐ 2. 0M以下がより好ましぐさらに 1. 6M以下が好ましぐ 1. 2M以下 が最も好ましい。
[0030] 本発明の非水電解液は、例えば、前記環状カーボネート化合物を含む非水溶媒を 混合し、これに前記の電解質を溶解し、前記フルォロベンゼン化合物およびべンゼ ン環にハロゲン原子が結合しているシクロへキシルベンゼンィ匕合物を溶解する方法 等を利用して調製することができる。
[0031] 本発明の非水電解液の 25°Cにおける動粘度は、 2. 3 X 10— 6— 3. 6 X 10"V/s であることが好ましぐ 2. 3 X 10— 6— 3. 2 X 10— 6m2Zsがより好ましぐ 2. 3 X 10— 6— 3 . 0 X 10— 6m2Zsが最も好ましい。この動粘度の測定は、細管式粘度測定法に基づく キャノンフェンスケ粘度計を使用して測定した。
[0032] 本発明の非水電解液には、例えば、空気や二酸化炭素などの気体を含ませること により、電解液の分解によるガス発生の抑制や、サイクル特性や保存特性などの電 池性能を向上させることができる。
[0033] 本発明にお 、て、非水電解液中に二酸ィ匕炭素または空気を含有 (溶解)させる方 法としては、 (1)予め非水電解液を電池内に注液する前に空気または二酸ィ匕炭素含 有ガスと接触させて含有させる方法、(2)注液後、電池封口前または後に空気または 二酸ィヒ炭素含有ガスを電池内に含有させる方法のいずれでもよぐまたこれらを組み 合わせて使用することもできる。空気や二酸化炭素含有ガスは、極力水分を含まない ものが好ましぐ露点 40°C以下であることが好ましぐ露点 50°C以下であることが 特に好ましい。
[0034] 本発明の非水電解液は、二次電池、特にリチウム二次電池の構成材料として使用 される。二次電池を構成する非水電解液以外の構成材料につ!ヽては特に限定され ず、従来使用されている種々の構成材料を使用できる。
[0035] 例えば、正極活物質としては、コノ レト、マンガン、ニッケルを含有するリチウムとの 複合金属酸化物が使用される。これらの正極活物質は、一種類だけを選択して使用 しても良いし、二種類以上を組み合わせて用いても良い。このような複合金属酸化物 としては、例えば、 LiCoO、 LiMn O、 LiNiO、 LiCo Ni O (0. 01く xく 1)、 Li
2 2 4 2 1-x x 2
Co Ni Mn O、 LiNi Mn Oなどが挙げられる。また、 LiCoOと LiMn O、 Li
1/3 1/3 1/3 2 0.5 1.5 4 2 2 4
CoOと LiNiO、 LiMn Oと LiNiOのように適当に混ぜ合わせて使用しても良い。
2 2 2 4 2
以上のように、正極活物質としては、 LiCoO、 LiMn O、 LiNiOのような充電終了
2 2 4 2
時の電圧が Li基準で 4. 3V以上で使用可能なリチウム複合金属酸ィ匕物が好ましぐ LiCo Ni Mn O、 LiNi Mn Oのような 4. 4V以上で使用可能なリチウム複合
1/3 1/3 1/3 2 0.5 1.5 4
金属酸ィ匕物がより好ましい。また、リチウム複合金属酸ィ匕物の一部は他元素で置換さ れていても良ぐ例えば、 LiCoOの Coの一部を Sn、 Mg、 Fe、 Ti、 Al、 Zr、 Cr、 V、
2
Ga、 Zn、 Cuなどで置換されていても良い。
また、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。その 具体例としては、 LiFePO、 LiCoPO、 LiNiPO、 LiMnPO、 LiFe M PO (Mは
4 4 4 4 1-x x 4
Co、 Ni、 Mn、 Cu、 Zn、および Cdのうち少なくとも一種であり、 xは、 0≤x≤0. 5)な どが挙げられる。特に、 LiFePOまたは LiCoPOが高電圧用正極活物質として好ま
4 4
L 、。リチウム含有オリビン型リン酸塩と他の正極活物質と混合して用いても良!、。
[0036] 正極の導電剤として、化学変化を起こさな 、電子伝導材料であれば特に限定はな い。例えば、天然黒鉛 (鱗片状黒鉛など)、人造黒鉛などのグラフアイト類、ァセチレ ンブラック、ケッチェンブラック、チェンネルブラック、ファーネスブラック、ランプブラッ ク、サーマルブラックなどのカーボンブラック類などが挙げられる。また、グラフアイト類 とカーボンブラック類を適宜混合して用いても良 ヽ。導電剤の正極合剤への添加量 は、 1一 10質量%が好ましぐ特に、 2— 5質量%が好ましい。
[0037] 正極は、前記の正極活物質をアセチレンブラック、カーボンブラックなどの導電剤 およびポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リデン(PVDF)、スチレン とブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、力 ルポキシメチルセルロース(CMC)などの結着剤と混練して正極合剤とした後、この 正極材料を集電体としてのアルミニウム箔ゃステンレス製のラス板に圧延して、 50°C 一 250°C程度の温度で 2時間程度真空下で加熱処理することにより作製される。
[0038] 負極 (負極活物質)としては、リチウムを吸蔵 ·放出可能な材料が使用され、例えば 、リチウム金属やリチウム合金、および炭素材料〔熱分解炭素類、コータス類、グラフ アイト類 (人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊維〕、スズゃ スズィ匕合物、ケィ素やケィ素化合物が使用される。炭素材料においては、特に、格子 面(002)の面間隔(d )が 0. 340nm以下であること力 S好ましく、 0. 335— 0. 340η
002
mである黒鉛型結晶構造を有するグラフアイト類を使用することがより好ましい。これら の負極活物質は、一種類だけを選択して使用しても良いし、二種類以上を組み合わ せて用いても良い。なお、炭素材料のような粉末材料はエチレンプロピレンジェンタ 一ポリマー(EPDM)、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リデン(P VDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共 重合体 (NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して負極 合剤として使用される。負極の製造方法は、特に限定されず、上記の正極の製造方 法と同様な方法により製造することができる。
[0039] リチウム二次電池の構造は特に限定されるものではなぐ正極、負極および単層又 は複層のセパレータを有するコイン型電池、さらに、正極、負極およびロール状のセ パレータを有する円筒型電池や角型電池などが一例として挙げられる。なお、セパレ ータとしては公知のポリプロピレン、ポリエチレン等のポリオレフインの微多孔膜、織布 、不織布などが使用される。また、電池用セパレータは単層多孔質フィルム及び積層 多孔質フィルムのいずれの構成であっても良い。本発明で使用される電池用セパレ ータは、製造条件によっても異なる力 透気度が 50— 1000秒 ZlOOccが好ましぐ 100— 800禾少/ lOOcc力より好ましく、 300— 500禾少/ lOOcc力最ち好まし!/ヽ。また、 空孔率は 30— 60%が好ましぐ 35— 55%がより好ましぐ 40— 50%が最も好ましい 。特に空孔率をこの範囲とすると、電池の容量特性が向上するので好ましい。さらに 、電池用セパレータの厚みはできるだけ薄い方がエネルギー密度を高くできるため 好ましいが、機械的強度、性能等の両面から 5— 50 μ mが好ましぐ 10— 40 μ mが より好ましぐ 15— 25 mが最も好ましい。
[0040] 本発明にお ヽては、有効な添加剤効果を得るために、電極材料層の密度が特に 重要である。すなわち、アルミニウム箔上に形成される正極合剤層の密度は 3. 2-4 . Og/cm3力 S好ましく、更に好ましく ίま 3. 3-3. 9g/cm3、最も好ましく ίま 3. 4-3. 8gZcm3である。一方、銅箔上に形成される負極合剤層の密度は、 1. 3-2. Og/c m3が好ましぐ更に好ましくは 1. 4- 1. 9gZcm3、最も好ましくは 1. 5- 1. 8g/cm3 の間である。
[0041] また、本発明における好適な前記正極の電極層の厚さ (集電体片面当たり)は、 30 一 120 /ζ πι、好ましくは 50— 100 mであり、前記負極の電極層の厚さ(集電体片面 当たり)は、 1一 100 μ m、好ましくは 3— 70 μ mである。
[0042] また、リチウム二次電池の構成は特に限定されるものではなぐ正極、負極、多孔膜 セパレータおよび電解液を有するコイン電池や円筒型電池、角型電池、積層型電池 などが一例として挙げられる。中でも、円筒型電池、角型電池が好ましい。
[0043] 本発明におけるリチウム二次電池は、充電終止電圧が 4. 2Vより大きい場合にも長 期間にわたり、優れたサイクル特性を示し、特に充電終止電圧が 4. 3V以上のような 場合にも優れたサイクル特性を示す。放電終止電圧は、 2. 5V以上とすることができ 、さらに 2. 8V以上とすることができる。電流値については特に限定されるものではな いが、通常は 0. 1— 3Cの定電流放電で使用される。また、本発明におけるリチウム 二次電池は、 40°C以上で充放電することができる力 好ましくは 0°C以上である。ま た、 100°C以下で充放電することができる力 好ましくは 80°C以下である。
[0044] 本発明におけるリチウム二次電池の内圧上昇の対策として、封口板に安全弁を用 いることができる。その他、電池缶やガスケットなどの部材に切り込みを入れる方法も 利用することができる。この他、従来力 知られている種々の安全素子 (過電流防止 素子として、ヒューズ、ノ ィメタル、 PTC素子の少なくとも一種)を備えつけていること が好ましい。
[0045] 本発明におけるリチウム二次電池は必要に応じて複数本を直列および Zまたは並 列に組み電池パックに収納される。電池パックには、 PTC素子、温度ヒューズ、ヒユー ズおよび Zまたは電流遮断素子などの安全素子のほか、安全回路 (各電池および Z または組電池全体の電圧、温度、電流などをモニターし、電流を遮断する機能を有 する回路)を設けても良い。
[0046] 本発明のリチウム二次電池が使用される機器は、携帯電話、ノートパソコン、 PDA, ビデオムービー、コンパクトカメラ、ヒゲソリ、電動工具、自動車などに使用されること が好ましい。特に、充電電流が 0. 5A以上になる機器は、本発明のリチウム二次電池 との組み合わせにより信頼性が向上するので好ましい。
実施例
[0047] 次に、実施例および比較例を挙げて、本発明を具体的に説明する。
[実施例 1]
〔非水電解液の調製〕
EC :VC : MEC (容量比) = 28 : 2 : 70の非水溶媒を調製し、これに LiPFを 1Mの
6 濃度になるように溶解して非水電解液を調製した後、さらに 2, 4—ジフルォロア-ソー ルおよび 1 フルオロー 4ーシクロへキシルベンゼンを非水電解液に対して、それぞれ 1質量0 /0、 2質量0 /0となるようにカ卩えた。この電解液の 25°Cにおける動粘度は、 2. 7 X 10 m Z sであつ 7こ。
〔リチウム二次電池の作製および電池特性の測定〕
LiCoO (正極活物質)を 90質量%、アセチレンブラック(導電剤)を 5質量%、ポリ
2
フッ化ビ-リデン (結着剤)を 5質量%の割合で混合し、これ〖こ 1ーメチルー 2 ピロリド ンを加えてスラリー状にしてアルミ箔上に塗布した。その後、これを乾燥し、加圧成形 して正極を調製した。格子面 (002)の面間隔 (d )が 0. 335nmである黒鉛型結晶構
002
造を有する人造黒鉛 (負極活物質)を 95質量%、ポリフッ化ビニリデン (結着剤)を 5 質量%の割合で混合し、これに 1ーメチルー 2—ピロリドンをカ卩えてスラリー状にして銅 箔上に塗布した。その後、これを乾燥し、加圧成形して負極を調製した。そして、ポリ プロピレン微多孔性フィルムのセパレータ(厚さ 20 μ m)を用い、上記の非水電解液 を注入後、電池封口前に露点 60°Cの二酸ィ匕炭素を電池内に含有させて 18650サ ィズの円筒電池(直径 18mm、高さ 65mm)を作製した。電池には、圧力開放口およ び内部電流遮断装置 (PTC素子)を設けた。この時、正極の電極密度は、 3. 5g/c m3であり、負極の電極密度は 1. 6gZcm3であった。正極の電極層の厚さ(集電体片 面当たり)は 70 mであり、負極の電極層の厚さ(集電体片面当たり)は 60 mであ つた o
この電池を用いて、サイクル試験するために、高温 (45°C)下、 2. 2A (1C)の定電 流で 4. 3Vまで充電した後、終止電圧 4. 3Vとして定電圧下に合計 3時間充電した。 次〖こ 2. 2A(1C)の定電流下、終止電圧 3. 0Vまで放電し充放電を繰り返した。初期 充放電容量は、 1 フルオロー 4ーシクロへキシルベンゼンを添カ卩せず、 2, 4—ジフル ォロア-ノールを非水電解液に対して 3質量%添カ卩した 1M LiPF -EC/VC/M
6
EC (容量比 28Z2Z70)を非水電解液として用いた場合 (比較例 2)とほぼ同等であ り、 200サイクル後の電池特性を測定したところ、初期放電容量を 100%としたときの 放電容量維持率は 80. 8%であった。また、 200サイクル後のガス発生量は、比較例 2と比較して明らかに少ないことが分力つた。さらに、サイクル試験を 5回繰り返した電 池を用いて、常温(20°C)にて、 4. 2Vの満充電状態から 2. 2A(1C)の定電流で続 けて充電することにより過充電試験を行い、電池の表面温度が 120°Cを越えないこと を安全性の基準とした結果、電池の表面温度は 120°C以下であった。電池の作製条 件および電池特性を表 1に示す。
[0049] [実施例 2]
添加剤として、 2, 4—ジフルォロア-ノールに代えてフルォロベンゼンを非水電解 液に対して 1質量%使用したほかは実施例 1と同様に非水電解液を調製して 18650 電池を作製し、 200サイクル後の電池特性を測定したところ、放電容量維持率は 82. 1%であった。過充電試験は、電池の表面温度が 120°C以下であった。電池の作製 条件および電池特性を表 1に示す。この電解液の 25°Cにおける動粘度は、 2. 7 X 1 0 m Z sでめった。
[0050] [実施例 3]
EC :VC : MEC : 1, 3 プロパンスルトン(PS) (容量比) = 28 : 2 : 69 : 1の非水溶媒 を調製し、これに LiPFを 1Mの濃度になるように溶解して非水電解液を調製した後、
6
さらにフルォロベンゼンおよび 1 フルオロー 4ーシクロへキシルベンゼンを非水電解 液に対して、それぞれ 1質量%、 2質量%となるように加えた。この非水電解液を使用 して実施例 1と同様に 18650電池を作製し、電池特性を測定した。初期放電容量に 対し、 200サイクル後の放電容量維持率は 82. 4%であった。過充電試験は、電池 の表面温度が 120°C以下であった。電池の作製条件および電池特性を表 1に示す。 この電解液の 25°Cにおける動粘度は、 2. 7 X 10— 6m2Zsであった。
[0051] [実施例 4]
EC: VC: MEC:シユウ酸ェチルメチル(EMO) (容量比) = 28 : 2 : 69 : 1の非水溶 媒を調製し、これに LiPFを 1Mの濃度になるように溶解して非水電解液を調製した
6
後、さらにフルォロベンゼンおよび 1 フルオロー 4ーシクロへキシルベンゼンを非水電 解液に対して、それぞれ 1質量%、 2質量%となるように加えた。この非水電解液を使 用して実施例 1と同様に 18650電池を作製し、電池特性を測定した。初期放電容量 に対し、 200サイクル後の放電容量維持率は 82. 5%であった。過充電試験は、電 池の表面温度が 120°C以下であった。電池の作製条件および電池特性を表 1に示 す。この電解液の 25°Cにおける動粘度は、 2. 7 X 10— 6m2Zsであった。 [0052] [比較例 1]
EC:VC:MEC (容量比) =28 :2: 70の非水溶媒を調製し、これに LiPFを 1Mの
6 濃度になるように溶解して非水電解液を調製した後、さらにフルォロベンゼンを非水 電解液に対して、 3質量%となるように加えた。この非水電解液を使用して実施例 1と 同様に 18650電池を作製し、電池特性を測定した。初期放電容量に対し、 200サイ クル後の放電容量維持率は 78.5%であった。過充電試験は、電池の表面温度が 1 20°Cを超え、過充電防止効果はな力つた。電池の作製条件および電池特性を表 1 に示す。この電解液の 25°Cにおける動粘度は、 2.7X10— 6m2Zsであった。
[0053] [比較例 2]
EC:VC:MEC (容量比) =28 :2: 70の非水溶媒を調製し、これに LiPFを 1Mの
6 濃度になるように溶解して非水電解液を調製した後、さらに 2, 4—ジフルォロア-ソー ルを非水電解液に対して、 3質量%となるように加えた。この非水電解液を使用して 実施例 1と同様に 18650電池を作製し、電池特性を測定した。初期放電容量に対し 、 200サイクル後の放電容量維持率は 75.2%であった。過充電試験は、電池の表 面温度が 120°C以下であった。電池の作製条件および電池特性を表 1に示す。この 電解液の 25°Cにおける動粘度は、 2.7X10— 6m2Zsであった。
[0054] [比較例 3]
環状カーボネート化合物と鎖状カーボネート化合物との質量比が 1: 1となるように E C:VC:DEC(容量比)=41:2:57の非水溶媒を調製し、これに LiPFを 1Mの濃度
6
になるように溶解して非水電解液を調製した後、さらに 1-フルオロー 4ーシクロへキシ ルベンゼンを非水電解液に対して、 3質量%となるように加えた。この非水電解液を 使用して実施例 1と同様に 18650電池を作製し、電池特性を測定した。初期放電容 量に対し、 200サイクル後の放電容量維持率は 76.6%であった。過充電試験は、 電池の表面温度が 120°C以下であった。電池の作製条件および電池特性を表 1に 示す。この電解液の 25°Cにおける動粘度は、 3.7X10— 6m2Zsであった。
[0055] [表 1]
Figure imgf000017_0001
なお、本発明は記載の実施例に限定されず、発明の趣旨から容易に類推可能な 様々な組み合わせが可能である。特に、上記実施例の溶媒の組み合わせは限定さ れるものではない。更には、上記実施例は円筒電池に関するものである力 本発明 は角柱電池、コイン電池またはラミネート式電池にも適用される。

Claims

請求の範囲
[1] 複数種の環状カーボネート化合物を含む非水溶媒に電解質が溶解されて ヽる非 水電解液において、該非水電解液がさらに、 1一 10質量%のベンゼン環にハロゲン 原子が結合しているシクロへキシルベンゼン化合物そして 0. 1— 5質量%のフルォロ ベンゼンィ匕合物を含有することを特徴とするリチウム二次電池用の非水電解液。
[2] 複数種の環状カーボネート化合物が、エチレンカーボネート、プロピレンカーボネ ートおよびブチレンカーボネートからなる群より選ばれる化合物、そしてビ-レンカー ボネート、ジメチノレビ二レンカーボネート、ビニノレエチレンカーボネートおよびフノレオ 口エチレンカーボネートからなる群より選ばれる化合物を含む請求項 1に記載の非水 電解液。
[3] 非水溶媒がさらに鎖状カーボネートイ匕合物を含有する請求項 1に記載の非水電解 液。
[4] 環状カーボネート化合物と鎖状カーボネート化合物との容量比が 20: 80— 40: 60 である請求項 3に記載の非水電解液。
[5] 鎖状カーボネートイ匕合物としてメチルェチルカーボネートを含むことを特徴とする請 求項 3に記載の非水電解液。
[6] ベンゼン環にハロゲン原子が結合しているシクロへキシルベンゼン化合物力 1ーフ ルオロー 2—シクロへキシルベンゼン、 1 フルオロー 3—シクロへキシルベンゼン、 1ーフ ノレオロー 4ーシクロへキシノレベンゼン、 1 クロロー 4ーシクロへキシノレベンゼン、 1ーブロ モー 4ーシクロへキシルベンゼン、 1ーョードー 4ーシクロへキシルベンゼン、 1, 2—ジクロ 口— 3—シクロへキシルベンゼン、 1, 3 ジブ口モー 4ーシクロへキシルベンゼン、 1, 4— ジクロロ一 2—シクロへキシルベンゼン、 1, 2—ジフルオロー 4—シクロへキシルベンゼン 、または 1, 3—ジフルオロー 5—シクロへキシルベンゼンである請求項 1に記載の非水 電解液。
[7] フルォロベンゼン化合物力 フルォロベンゼン、ジフルォロベンゼン、トリフルォ口べ ンゼン、 2, 4—ジフルォロア-ノール、 2, 5—ジフルォロア-ノール、もしくは 2, 6—ジ フルォロア-ノールである請求項 1に記載の非水電解液。
[8] 正極、負極、そして複数種の環状カーボネートイ匕合物を含む非水溶媒に電解質が 溶解されている非水電解液力もなるリチウム二次電池において、該非水電解液がさら に、 1一 10質量0 /0のベンゼン環にハロゲン原子が結合しているシクロへキシルベン ゼンィ匕合物そして 0. 1— 5質量%のフルォロベンゼン化合物を含有することを特徴と するリチウム二次電池。
[9] 複数種の環状カーボネート化合物が、エチレンカーボネート、プロピレンカーボネ ートおよびブチレンカーボネートからなる群より選ばれる化合物、そしてビ-レンカー ボネート、ジメチノレビ二レンカーボネート、ビニノレエチレンカーボネートおよびフノレオ 口エチレンカーボネートからなる群より選ばれる化合物を含む請求項 8に記載のリチ ゥム二次電池。
[10] 非水溶媒がさらに鎖状カーボネートイヒ合物を含有する請求項 8に記載のリチウム二 次電池。
[11] 正極、負極、そして複数種の環状カーボネートイ匕合物を含む非水溶媒に電解質が 溶解されて ヽる非水電解液カゝらなるリチウム二次電池であって、該非水電解液がさら に、 1一 10質量0 /0のベンゼン環にハロゲン原子が結合しているシクロへキシルベン ゼンィ匕合物そして 0. 1— 5質量0 /0のフルォロベンゼンィ匕合物を含有するリチウム二 次電池を 4. 2Vよりも高 、最大作動電圧にて作動させるリチウム二次電池の作動方 法。
PCT/JP2005/001424 2004-02-02 2005-02-01 非水電解液およびリチウム二次電池 WO2005074067A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002555192A CA2555192A1 (en) 2004-02-02 2005-02-01 Non-aqueous electrolytic solution and lithium secondary battery
JP2005517560A JP4779651B2 (ja) 2004-02-02 2005-02-01 非水電解液およびリチウム二次電池
US10/588,063 US20070148554A1 (en) 2004-02-02 2005-02-01 Non-aqueous electrolytic solution and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-025834 2004-02-02
JP2004025834 2004-02-02

Publications (1)

Publication Number Publication Date
WO2005074067A1 true WO2005074067A1 (ja) 2005-08-11

Family

ID=34824000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001424 WO2005074067A1 (ja) 2004-02-02 2005-02-01 非水電解液およびリチウム二次電池

Country Status (7)

Country Link
US (1) US20070148554A1 (ja)
JP (1) JP4779651B2 (ja)
KR (1) KR20060129042A (ja)
CN (1) CN1938894A (ja)
CA (1) CA2555192A1 (ja)
TW (1) TW200532962A (ja)
WO (1) WO2005074067A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010915A1 (ja) * 2005-07-21 2007-01-25 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池及びその製造方法
WO2007081151A1 (en) 2006-01-09 2007-07-19 Cheil Industries Inc. Nonaqueous electrolyte including diphenyl ether and lithium secondary battery using thereof
WO2007083917A1 (en) 2006-01-17 2007-07-26 Lg Chem, Ltd. Additives for non-aqueous electrolyte and lithium secondary battery using the same
JP2008098097A (ja) * 2006-10-16 2008-04-24 Sony Corp 二次電池
EP1923948A1 (en) 2006-10-17 2008-05-21 Samsung SDI Co., Ltd. Electrolyte for high voltage lithium rechargeable battery and battery employing the same
WO2010013739A1 (ja) 2008-07-30 2010-02-04 ダイキン工業株式会社 リチウム二次電池の電解質塩溶解用溶媒
US8067119B2 (en) 2006-05-19 2011-11-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2012011586A1 (ja) * 2010-07-23 2012-01-26 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
JP2012038716A (ja) * 2010-07-14 2012-02-23 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2012109219A (ja) * 2010-10-28 2012-06-07 Sanyo Electric Co Ltd 非水電解液二次電池及びその製造方法
US20150188192A1 (en) * 2006-04-27 2015-07-02 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
JP2019515444A (ja) * 2016-07-08 2019-06-06 シェンヂェン キャプケム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. 非水電解液を用いたリチウムイオン電池
WO2022081325A1 (en) * 2020-10-13 2022-04-21 Sion Power Corporation Electrolytes for lithium batteries

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108689A (ja) * 2006-09-29 2008-05-08 Sanyo Electric Co Ltd 非水電解質二次電池
KR100814827B1 (ko) * 2007-04-05 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2008138132A1 (en) * 2007-05-15 2008-11-20 National Research Council Of Cananda Dinitrile-based liquid electrolytes
JP5235405B2 (ja) 2007-12-28 2013-07-10 三洋電機株式会社 非水電解質二次電池
JP5446612B2 (ja) * 2009-08-28 2014-03-19 Tdk株式会社 リチウムイオン二次電池
JP5790604B2 (ja) * 2012-08-07 2015-10-07 トヨタ自動車株式会社 密閉型電池の製造方法
KR102295369B1 (ko) * 2016-09-20 2021-08-31 삼성에스디아이 주식회사 리튬전지 전해액용 첨가제 조성물, 이를 포함하는 유기전해액 및 리튬 전지
KR102518992B1 (ko) * 2017-02-03 2023-04-07 주식회사 엘지에너지솔루션 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
CN110176633A (zh) * 2018-02-20 2019-08-27 三星Sdi株式会社 用于可再充电的电池的非水电解质溶液、具有其的可再充电的电池
CN110289443A (zh) * 2019-07-26 2019-09-27 珠海冠宇电池有限公司 一种防过充锂离子电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112335A (ja) * 1996-10-03 1998-04-28 Hitachi Maxell Ltd 有機電解液二次電池
JPH11329496A (ja) * 1998-03-12 1999-11-30 Mitsui Chem Inc 非水電解液および非水電解液二次電池
JP2003317803A (ja) * 2002-02-20 2003-11-07 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2004139963A (ja) * 2002-08-21 2004-05-13 Mitsubishi Chemicals Corp 非水系電解液二次電池および非水系電解液

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077350A1 (fr) * 2002-03-08 2003-09-18 Mitsubishi Chemical Corporation Electrolyte non aqueux et accumulateur lithium-ions contenant un tel electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112335A (ja) * 1996-10-03 1998-04-28 Hitachi Maxell Ltd 有機電解液二次電池
JPH11329496A (ja) * 1998-03-12 1999-11-30 Mitsui Chem Inc 非水電解液および非水電解液二次電池
JP2003317803A (ja) * 2002-02-20 2003-11-07 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2004139963A (ja) * 2002-08-21 2004-05-13 Mitsubishi Chemicals Corp 非水系電解液二次電池および非水系電解液

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010915A1 (ja) * 2005-07-21 2007-01-25 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池及びその製造方法
EP1979978A4 (en) * 2006-01-09 2010-03-17 Cheil Ind Inc NONAQUEOUS ELECTROLYTE COMPRISING DIPHENYL ETHER AND LITHIUM SECONDARY BATTERY IN WHICH THIS ELECTROLYTE IS USED
WO2007081151A1 (en) 2006-01-09 2007-07-19 Cheil Industries Inc. Nonaqueous electrolyte including diphenyl ether and lithium secondary battery using thereof
EP1979978A1 (en) * 2006-01-09 2008-10-15 Cheil Industries Inc. Nonaqueous electrolyte including diphenyl ether and lithium secondary battery using thereof
WO2007083917A1 (en) 2006-01-17 2007-07-26 Lg Chem, Ltd. Additives for non-aqueous electrolyte and lithium secondary battery using the same
EP1979979A4 (en) * 2006-01-17 2011-09-21 Lg Chemical Ltd ADDITIVES FOR NONAQUEOUS ELECTROLYTE AND AUXILIARY LITHIUM ACCUMULATOR USING THE ADDITIVES
EP1979979A1 (en) * 2006-01-17 2008-10-15 LG Chem, Ltd. Additives for non-aqueous electrolyte and lithium secondary battery using the same
US9608291B2 (en) * 2006-04-27 2017-03-28 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US20170084955A1 (en) 2006-04-27 2017-03-23 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US12100809B2 (en) 2006-04-27 2024-09-24 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US11283107B2 (en) 2006-04-27 2022-03-22 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US10333172B2 (en) 2006-04-27 2019-06-25 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US20150188192A1 (en) * 2006-04-27 2015-07-02 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
US8067119B2 (en) 2006-05-19 2011-11-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2008098097A (ja) * 2006-10-16 2008-04-24 Sony Corp 二次電池
EP1923948A1 (en) 2006-10-17 2008-05-21 Samsung SDI Co., Ltd. Electrolyte for high voltage lithium rechargeable battery and battery employing the same
WO2010013739A1 (ja) 2008-07-30 2010-02-04 ダイキン工業株式会社 リチウム二次電池の電解質塩溶解用溶媒
JP2012038716A (ja) * 2010-07-14 2012-02-23 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP5817725B2 (ja) * 2010-07-23 2015-11-18 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
JPWO2012011586A1 (ja) * 2010-07-23 2013-09-09 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
WO2012011586A1 (ja) * 2010-07-23 2012-01-26 宇部興産株式会社 非水電解液及びそれを用いた電気化学素子
JP2012109219A (ja) * 2010-10-28 2012-06-07 Sanyo Electric Co Ltd 非水電解液二次電池及びその製造方法
JP2019515444A (ja) * 2016-07-08 2019-06-06 シェンヂェン キャプケム テクノロジー カンパニー リミテッドShenzhen Capchem Technology Co., Ltd. 非水電解液を用いたリチウムイオン電池
WO2022081325A1 (en) * 2020-10-13 2022-04-21 Sion Power Corporation Electrolytes for lithium batteries

Also Published As

Publication number Publication date
KR20060129042A (ko) 2006-12-14
JP4779651B2 (ja) 2011-09-28
US20070148554A1 (en) 2007-06-28
CN1938894A (zh) 2007-03-28
CA2555192A1 (en) 2005-08-11
JPWO2005074067A1 (ja) 2007-09-13
TW200532962A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
WO2005074067A1 (ja) 非水電解液およびリチウム二次電池
CN111082138B (zh) 用于锂二次电池的电解液和包括其的锂二次电池
JP4902485B2 (ja) 高電圧リチウム二次電池用電解液及びそれを用いる高電圧リチウム二次電池
KR101201170B1 (ko) 리튬 이차 전지용 양극과 이를 포함하는 리튬 이차전지 및리튬 이차전지의 제조방법
CN105576279B (zh) 锂二次电池
KR102402110B1 (ko) 이차전지용 음극의 전리튬화 방법
KR102018756B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
JP7469434B2 (ja) 非水電解液電池及びその製造方法
JP6198684B2 (ja) リチウム二次電池
JP2006286599A (ja) 非水二次電池用負極
KR100763218B1 (ko) 비수성 2차 배터리용 음극
KR102631720B1 (ko) 리튬 이차전지의 제조방법
JP2007265831A (ja) 非水電解質二次電池
JP7134556B2 (ja) リチウム二次電池
JP5070780B2 (ja) 非水電解液及びそれを用いたリチウム二次電池
KR20140145813A (ko) 리튬 이차 전지
JP4765629B2 (ja) 非水電解液およびリチウム二次電池
JP4826760B2 (ja) 非水電解液及びそれを用いたリチウム二次電池
KR102593273B1 (ko) 리튬 이차 전지
JP2022547057A (ja) リチウム二次電池用電解質およびこれを含むリチウム二次電池
JP2009245830A (ja) 非水電解質及び該非水電解質を含む非水電解質二次電池
JP7540858B2 (ja) リチウム二次電池
JP7118479B2 (ja) リチウム二次電池用電解質及びこれを含むリチウム二次電池
JP2009245831A (ja) 非水電解質及び該非水電解質を含む非水電解質二次電池
CN100459274C (zh) 非水电解液和锂二次电池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007148554

Country of ref document: US

Ref document number: 10588063

Country of ref document: US

Ref document number: 2005517560

Country of ref document: JP

Ref document number: 2555192

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067017663

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 3177/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580010139.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067017663

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10588063

Country of ref document: US