WO2005071511A1 - 過電流検出回路及びそれを備えたレギュレータ - Google Patents

過電流検出回路及びそれを備えたレギュレータ Download PDF

Info

Publication number
WO2005071511A1
WO2005071511A1 PCT/JP2005/000605 JP2005000605W WO2005071511A1 WO 2005071511 A1 WO2005071511 A1 WO 2005071511A1 JP 2005000605 W JP2005000605 W JP 2005000605W WO 2005071511 A1 WO2005071511 A1 WO 2005071511A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
output
voltage
terminal
overcurrent detection
Prior art date
Application number
PCT/JP2005/000605
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Hojo
Original Assignee
Rohm Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd filed Critical Rohm Co., Ltd
Priority to EP05703842A priority Critical patent/EP1708069A4/en
Priority to US10/597,381 priority patent/US7573689B2/en
Publication of WO2005071511A1 publication Critical patent/WO2005071511A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications

Definitions

  • the present invention detects and protects, for example, when an overcurrent flows through an output transistor as a component that outputs a current to a load in a regulator that converts a power supply voltage into a predetermined DC voltage
  • the present invention relates to an overcurrent detection circuit and a regulator provided with the overcurrent detection circuit.
  • a switching regulator such as a series regulator, has an output transistor provided between an input power supply voltage and a terminal connected to a load and outputting a predetermined DC voltage, and controls the output transistor. Maintains a predetermined DC voltage. Then, in the event of an abnormality such as when the load is short-circuited, a circuit for detecting and protecting the overcurrent is provided to prevent the output transistor from being destroyed by the overcurrent (for example, Patent Document 1)
  • FIG. 4 shows a conventional overcurrent detection circuit and a regulator provided with the same.
  • the regulator 101 includes an output transistor 11 which is a P-type MOS transistor, a smoothing circuit 12 for smoothing the output of the output transistor 11, an output terminal OUT for outputting a smoothed predetermined DC voltage, and an output terminal.
  • a control circuit 14 that controls the output transistor 11 by feedback-inputting the voltage of OUT, an overcurrent detection circuit 110a that detects and protects an overcurrent of the output transistor 11, and a power are also configured.
  • the load 13 is connected to the output terminal OUT.
  • the overcurrent detection circuit 110a uses the power supply voltage V
  • a monitoring transistor 121 which is a P-type MOS transistor having a gate connected thereto, an output current detection resistor 122 connected to the drain of the monitoring transistor 121 and the other end grounded, a drain of the monitoring transistor 121 and an output current detection
  • the gate is connected to the connection point of the resistor 122, the drain is connected to the control circuit 14, and the source is also configured with the overcurrent detection output transistor 123 which is an N-type MOS transistor whose source is grounded.
  • the size of the monitoring transistor 121 is set to 1ZN of the output transistor 11.
  • the monitor transformer Since the current flowing through the resistor 121 is used only for overcurrent detection, the power loss is not increased, so N is a large natural number so as to reduce the current value.
  • the current of IZN flows, and the voltage corresponding to the output current is detected based on the ground potential.
  • the overcurrent detection output transistor 123 When the threshold value of the output transistor 123 exceeds the value (Vth), the overcurrent detection output transistor 123 outputs a single level. As a result, the control circuit 14 turns off the output transistor 11 assuming that the output current of the output transistor 11 has exceeded the overcurrent detection level (determining that an overcurrent is flowing).
  • the overcurrent detection level can be adjusted by the size of the monitoring transistor 121 and the resistance value of the output current detection resistor 122.
  • This regulator 102 has substantially the same configuration as that of the above-described regulator 101 except for the overcurrent detection circuit 110b.
  • the overcurrent detection circuit 110b has a monitoring transistor 121 and a An output current detection resistor 122.
  • the overcurrent detection circuit 110b includes an overcurrent detection output comparator 125 instead of the overcurrent detection output transistor 123.
  • This overcurrent detection output comparator 125 has an inverting input terminal at the connection point of the monitoring transistor 121 and the output current detecting resistor 122, a non-inverting input terminal at the overcurrent detection reference voltage 124, and an output terminal at the control circuit 14. Are connected to each other.
  • the overcurrent detection output comparator 125 When the output reference voltage 124 is exceeded, the overcurrent detection output comparator 125 outputs a low level. Accordingly, the control circuit 14 turns off the output transistor 11 assuming that the output current of the output transistor 11 has exceeded the overcurrent detection level.
  • the overcurrent detection level can be adjusted by the size of the monitor transistor 121, the resistance value of the output current detection resistor 122, and the value of the overcurrent detection reference voltage 124.
  • Patent Document 1 Japanese Patent Application Laid-Open No. H8-331757 Disclosure of the invention
  • the overcurrent detection circuits 110a and 110b can detect the overcurrent flowing through the output transistor 11.
  • the present inventor has studied higher accuracy of the overcurrent detection level of the overcurrent detection circuit, and has found that in these overcurrent detection circuits 110a and 110b, the voltage generated in the output current detection resistor 122, That is, attention was paid to the fact that the drain voltage of the monitoring transistor 121 is based on the ground potential, and the drain voltage of the output transistor 11 is not based on the ground potential. In other words, this assumes that the drain voltage of the monitor transistor 121 is different from the drain voltage of the output transistor 11, and as a result, the current of the monitor transistor 121 deviates from the value of IZN.
  • the inventor of the present application has found that when the temperature fluctuates, the monitoring transistor 121 and the output transistor 11 and the output current detection resistor 122 have different temperature characteristics, which may affect the overcurrent detection level. I paid attention.
  • the characteristics of the overcurrent detection output transistor 123 also fluctuate, so that the overcurrent detection level is assumed to further fluctuate.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to suppress the fluctuation of the overcurrent detection level when the input power supply voltage or the temperature fluctuates.
  • An object of the present invention is to provide an overcurrent detection circuit and a regulator including the same.
  • an overcurrent detection circuit is configured such that a power supply voltage is input to an input terminal and a control voltage is input to a control terminal to output an output current.
  • An overcurrent detection circuit that detects when an overcurrent flows through an output transistor, the monitor transistor having a control terminal and an output terminal connected to a control terminal and an output terminal of the output transistor, and a power supply voltage, Detection bias voltage controlled at input terminal
  • An output current detection transistor whose input is connected to the input terminal of the monitoring transistor, an output terminal is connected to the input terminal of the monitoring transistor, a constant current source for generating a reference current, a power supply voltage is provided to the input terminal, and a detection bias voltage is provided to the control terminal.
  • the output voltage is compared by comparing the voltage at the output terminal of the output current detection transistor with the voltage at the output terminal of the reference transistor, which outputs the reference current to the constant current source.
  • a comparison circuit that detects when an overcurrent flows through the transistor and outputs an overcurrent detection signal.
  • the output transistor, the monitoring transistor, the output current detecting transistor, and the reference transistor are preferably P-type MOS transistors.
  • the comparison circuit preferably includes a diode-connected first comparison transistor provided between the constant current source and the reference transistor, and a predetermined multiple of a reference current generated by the constant current source.
  • a second constant current source for generating the current of the first current source, and a control terminal connected to the control terminal of the first comparison transistor, interposed between the second constant current source and the output current detection transistor. And a second comparison transistor.
  • a regulator is a regulator including the above-described overcurrent detection circuit, wherein an output transistor is provided between a power supply voltage and an output terminal that outputs a predetermined DC voltage, A control circuit is provided to control the output transistor to maintain a predetermined DC voltage by feedback-inputting the voltage of the output terminal and to turn off the output transistor when an overcurrent detection signal of the overcurrent detection circuit is input. Become.
  • a series body of a monitoring transistor and an output current detection transistor is provided in parallel with the output transistor, and a power reference transistor is connected in parallel with the output current detection transistor.
  • the overcurrent is detected by comparing the output of the output current detection transistor with the output of the reference transistor, so that even if the input power supply voltage or temperature fluctuates, the characteristics of those transistors are relatively high. Since there is no substantial change, the change in the overcurrent detection level can be suppressed.
  • the regulator equipped with the same can stabilize the overcurrent detection level, so that the reliability can be improved.
  • FIG. 1 is a circuit diagram of an overcurrent detection circuit according to an embodiment of the present invention and a regulator including the same.
  • FIG. 2 is an operation waveform diagram of the above.
  • FIG. 3 is a circuit diagram of an overcurrent detection circuit according to another embodiment of the present invention and a regulator including the same.
  • FIG. 4 is a circuit diagram of an overcurrent detection circuit of the background art and a regulator provided with the same.
  • FIG. 5 is a circuit diagram of another overcurrent detection circuit of the background art and a regulator including the same. Explanation of symbols
  • FIG. 1 is a circuit diagram of an overcurrent detection circuit according to an embodiment of the present invention and a regulator including the overcurrent detection circuit.
  • This regulator 1 is a P-type MOS transistor between the power supply voltage V and the output terminal OUT.
  • the output transistor OUT is maintained at a predetermined DC voltage by controlling the output transistor 11 and, when an overcurrent flows through the output transistor 11, the overcurrent detection circuit 1 Oa detects it.
  • the output transistor 11 is turned off. More specifically, the regulator 1 inputs the power supply voltage V to the input terminal (source).
  • the control voltage is input to the control terminal (gate), and the output current I
  • An output transistor 11 that also outputs 0 at the output terminal (drain) force, a smoothing circuit 12 that smoothes the voltage generated at the output terminal of the output transistor 11, and an output terminal OUT that outputs a predetermined DC voltage that has been smoothed.
  • the output transistor 11 is controlled from the node in FIG. 1 and the overcurrent detection signal of the overcurrent detection circuit 10a is supplied to the node D input.
  • the control circuit 14 sets the control voltage at the node C to the power supply voltage V level so as to turn off the output transistor 11, and when an overcurrent flows through the output transistor 11,
  • an overcurrent detection circuit 10a for detecting the overcurrent and outputting the overcurrent detection signal from the node D to the control circuit 14.
  • the load 13 is connected to the output terminal OUT.
  • the overcurrent detection circuit 10a is a monitoring transistor which is a P-type MOS transistor in which the control terminal (gate) and the output terminal (drain) are connected to the control terminal (gate) and the output terminal (drain) of the output transistor 11, respectively. 21 and the power supply voltage V is applied to the input
  • An output current detection transistor 22a which is a P-type MOS transistor, having a control voltage (gate) input to the control terminal (gate) and an output terminal (drain) connected to the input terminal (source) of the monitoring transistor 21; N-type MOS transistor that generates a reference current I (for example, 10 ⁇ )
  • the constant current source 24 and the power supply voltage V control the input terminal (source), and the detection bias voltage 28 controls
  • the terminal (gate) is input and the output terminal (drain) is also supplied with the reference current I to the constant current source 24.
  • the overcurrent detection circuit 10a A series body of the monitoring transistor 21 and the output current detection transistor 22a is provided in parallel with the output transistor 11, and the reference transistor 23 is provided in parallel with the output current detection transistor 22a, and the output of the output current detection transistor 22a is provided.
  • the overcurrent is detected by comparing with the output of the reference transistor 23.
  • the sizes of the monitoring transistor 21, the output current detecting transistor 22a, and the reference transistor 23 are equal and set to 1ZN (for example, 1Z50000) which is the size of the output transistor 11.
  • the overcurrent detection circuit 10a further includes an N-type MOS transistor 26 and a constant current source 27, which determine the current value of the constant current source 24.
  • the detection bias voltage 28 commonly input to the control terminals of the output current detection transistor 22a and the reference transistor 23 should be substantially equal to the voltage of the control terminal (gate) of the monitor transistor 21. Is desirable. For example, when the regulator 1 is a switching regulator, it is desirable to set the detection bias voltage 28 to the ground voltage level.
  • This operating waveform diagram shows the operating waveforms at nodes A and B (curves A and B), that is, the output current I.
  • the current I flowing through the star 21 and the output current detection transistor 22a is approximately I Z2N.
  • the voltage required to supply the reference current I to the sense transistor 23 is based on the power supply voltage V.
  • the current I Z2N flowing through the transistor 21 and the output current detection transistor 22a is the reference current
  • the detection signal at the node D which is the output of the comparison circuit 25a, changes from a high level to a low level (overcurrent detection signal).
  • N is set to 50,000
  • reference current I is set to 10 A
  • the detection signal goes low.
  • the control circuit 14 determines that the output current I of the output transistor 11 has exceeded the overcurrent detection level I (determines that overcurrent is flowing), and
  • the power transistor 11 is turned off.
  • the voltage of each output terminal (drain) of the monitoring transistor 21 and the output current detection transistor 22a in the series body, and the reference transistor 23 is the same as that of the output transistor 11, It is generated based on the power supply voltage V according to the value. Therefore,
  • the output transistor 11, the monitoring transistor 21, the output current detecting transistor 22a, and the reference transistor 23 are all P-type MOS transistors and therefore have the same temperature characteristics. Therefore, the characteristics of the monitoring transistor 21, the output current detection transistor 22a, and the reference transistor 23 change in the same manner as the output transistor 11 even if the temperature changes, and the overcurrent detection level I caused by the temperature change. Fluctuation
  • This regulator 2 has substantially the same configuration as that of the above-described regulator 1 except for the overcurrent detection circuit 10b. The following is explained.
  • the overcurrent detection circuit 10b includes a monitoring transistor 21, an output current detection transistor 22b, a reference transistor 23, and a reference current I
  • the size of the monitoring transistor 21 and the reference transistor 23 is set in the same manner as in the overcurrent detection circuit 10a, and the size of the force output current detection transistor 22b is the size of the monitoring transistor 21 and the reference transistor 23. It is set to double.
  • the overcurrent detection circuit 10b replaces the comparison circuit 25a with a powerful comparator in the previous embodiment with a comparison circuit 25b having another circuit configuration.
  • the comparison circuit 25b is a diode-connected (output terminal (drain) and control terminal (gate) connected) P-type MOS transistor interposed between the constant current source 24 and the reference transistor 23.
  • a current that is a predetermined multiple (in this case, 1) of the reference current I generated by the constant current source 24 is generated.
  • the second constant current source 33 which is interposed between the second constant current source 33 and the output current detection transistor 22b, has a control terminal (gate) connected to the control terminal (gate) of the first comparison transistor 31.
  • a second comparison transistor 32 which is a P-type MOS transistor connected to the second transistor. Accordingly, when the potential of the input terminal (source) of the second comparison transistor 32 falls below the input terminal (source) of the first comparison transistor 31, no current flows through the second comparison transistor 32. (Turn off).
  • the overcurrent detection circuit 10b Assuming that the equivalent resistance of the monitoring transistor 21 and the reference transistor 23 is R, the equivalent resistance of the output current detecting transistor 22b is RZ2, and the equivalent resistance of the output transistor 11 is RZN.
  • the current flowing through the output current detection transistor 22b branches into a current I flowing through the monitoring transistor 21 and a current I flowing into the second constant current source 33. Therefore, at node B,
  • Voltage RI is generated with reference to the power supply voltage V.
  • Node B voltage is Node A voltage
  • the second comparison transistor 32 is turned off, and the output of the comparison circuit 25b, that is, the detection signal of the node D also changes to a low level (overcurrent detection signal).
  • I do Specifically, N is 50,000 and the reference current I 10
  • the overcurrent detection circuit 10b detects the overcurrent and outputs an overcurrent detection signal from the node D to the control circuit. Can be output to road 14.
  • the comparison circuit 25b of the overcurrent detection circuit 10b uses a comparator like the comparison circuit 25a of the overcurrent detection circuit 10a, the number of elements constituting the circuit can be reduced. Occupied area and power consumption can be reduced.
  • the overcurrent detection level I is changed by changing the size of the second constant current source (N-type MOS transistor)
  • the voltage at the node B becomes equal to the voltage at the node A. Therefore, if N is 50000, the reference current I
  • the overcurrent detection level I is changed.
  • overcurrent detection level I is 2.5A.
  • the output transistor 11 of the regulator is a P-type MOS transistor
  • the monitoring transistor 21, the output current detection transistor 22a (22b), and the reference transistor 23 of the overcurrent detection circuit are all P-type MOS transistors.
  • the output transistor 11 can be an N-type MOS transistor, a PNP-type bipolar transistor, or an NPN-type bipolar transistor.
  • the monitoring transistor 21 and the output current detecting transistor 22a are used.
  • the overcurrent detection circuit may be configured by matching (22b) and the reference transistor 23 to those types.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

 入力する電源電圧や温度が変動した場合の過電流検出レベルの変動を抑制することができる過電流検出回路を提供する。この過電流検出回路10bは、出力トランジスタ11の制御端及び出力端にそれぞれ制御端及び出力端が接続されるモニタ用トランジスタ21と、検出用バイアス電圧28を制御端に入力し、モニタ用トランジスタ21の入力端に出力端が接続される出力電流検出用トランジスタ22bと、基準電流IREFを生成する定電流源24と、検出用バイアス電圧28を制御端に入力し、定電流源24に出力端から基準電流IREFを流し込むリファレンス用トランジスタ23と、出力電流検出用トランジスタ22bの出力端の電圧とリファレンス用トランジスタ23の出力端の電圧を比較して検出信号を出力する比較回路25bと、を備えてなる。

Description

明 細 書
過電流検出回路及びそれを備えたレギユレータ
技術分野
[0001] 本発明は、例えば電源電圧を所定の DC電圧に変換するレギユレータにおいて負 荷に電流を出力する構成要素としての出力トランジスタに過電流が流れた場合に、こ れを検出して保護する過電流検出回路及びその過電流検出回路を備えたレギユレ ータに関する。
背景技術
[0002] スイッチングレギユレータゃシリーズレギユレータなどのレギユレータは、入力する電 源電圧と負荷に接続され所定の DC電圧を出力する端子の間に出力トランジスタを 設け、その出力トランジスタを制御することにより所定の DC電圧を維持する。そして、 負荷が短絡した場合などの異常時に、出力トランジスタが過電流により破壊するのを 防止するために、過電流を検出して保護する回路が設けられる (例えば特許文献 1)
[0003] 図 4に従来の過電流検出回路及びそれを備えたレギユレータを示す。このレギユレ ータ 101は、 P型 MOSトランジスタである出力トランジスタ 11と、出力トランジスタ 11 の出力を平滑化する平滑化回路 12と、平滑化した所定の DC電圧を出力する出力 端子 OUTと、出力端子 OUTの電圧をフィードバック入力して出力トランジスタ 11を 制御する制御回路 14と、出力トランジスタ 11の過電流を検出して保護する過電流検 出回路 110aと、力も構成される。出力端子 OUTには負荷 13が接続される。
[0004] 過電流検出回路 110aは、電源電圧 V にソース力 出力トランジスタ 11のゲートに cc
ゲートが接続された P型 MOSトランジスタであるモニタ用トランジスタ 121と、モニタ用 トランジスタ 121のドレインに接続され他端が接地された出力電流検出用抵抗 122と 、モニタ用トランジスタ 121のドレインと出力電流検出用抵抗 122の接続点にゲートが 、制御回路 14にドレインが接続され、ソースが接地された N型 MOSトランジスタであ る過電流検出出力トランジスタ 123と、力も構成される。ここで、モニタ用トランジスタ 1 21のサイズは出力トランジスタ 11の 1ZNに設定されている。そして、モニタ用トラン ジスタ 121に流れる電流は過電流検出にだけ用 V、られるので、電力損失を大きくしな いため、その電流値を小さくするよう Nは大きな値の自然数とされる。
[0005] 今、出力トランジスタ 11に出力電流 Iが流れると、モニタ用トランジスタ 121にはほ
0
ぼ I ZNの電流が流れ、それに応じた電圧が接地電位を基準にして出力電流検出
0
用抵抗 122に生じる。そして、出力電流 Iが過電流となり、この電圧が過電流検出出
0
力トランジスタ 123のしき 、値 (Vth)を超えると過電流検出出力トランジスタ 123が口 一レベルを出力する。これにより、制御回路 14は、出力トランジスタ 11の出力電流が 過電流検出レベルを超えたとして (過電流が流れていると判断して)出力トランジスタ 11をオフする。ここで、過電流検出レベルは、モニタ用トランジスタ 121のサイズと出 力電流検出用抵抗 122の抵抗値によって調整することができる。
[0006] 次に、従来の別の過電流検出回路及びそれを備えたレギユレ一タを図 5に示す。こ のレギユレータ 102は、過電流検出回路 110b以外は上述のレギユレータ 101と実質 的に同じ構成であり、過電流検出回路 110bも、上述の過電流検出回路 110aと同様 に、モニタ用トランジスタ 121と、出力電流検出用抵抗 122と、を有している。そして、 過電流検出回路 110bは、過電流検出出力トランジスタ 123の代わりに、過電流検出 出力用コンパレータ 125を有している。この過電流検出出力用コンパレータ 125は、 モニタ用トランジスタ 121と出力電流検出用抵抗 122の接続点に反転入力端子が、 過電流検出用基準電圧 124に非反転入力端子が、制御回路 14に出力端子が、そ れぞれ接続されている。
[0007] このものも、出力トランジスタ 11に出力電流 Iが流れると、モニタ用トランジスタ 121
0
にはほぼ I ZNの電流が流れ、それに応じた電圧が接地電位を基準にして出力電流
0
検出用抵抗 122に生じる。そして、出力電流 Iが過電流となり、この電圧が過電流検
0
出用基準電圧 124を超えると過電流検出出力用コンパレータ 125がローレベルを出 力する。これにより、制御回路 14は、出力トランジスタ 11の出力電流が過電流検出レ ベルを超えたとして出力トランジスタ 11をオフする。ここで、過電流検出レベルは、モ ユタ用トランジスタ 121のサイズ、出力電流検出用抵抗 122の抵抗値及び過電流検 出用基準電圧 124の値によって調整することができる。
[0008] 特許文献 1 :特開平 8— 331757号公報 発明の開示
発明が解決しょうとする課題
[0009] このように、過電流検出回路 110a及び 110bは、出力トランジスタ 11に流れる過電 流を検出することができる。ところで、過電流検出回路の過電流検出レベルのより高 精度化を研究して 、る本願発明者は、これら過電流検出回路 110a及び 110bにお いては、出力電流検出用抵抗 122に生じる電圧、すなわち、モニタ用トランジスタ 12 1のドレイン電圧は接地電位を基準にしており、出力トランジスタ 11のドレイン電圧は 接地電位を基準にしていないことに着目した。すなわちこれにより、モニタ用トランジ スタ 121のドレインの電圧は出力トランジスタ 11のドレインの電圧と異なり、その結果 、モニタ用トランジスタ 121の電流は、 I ZNの値からずれてくることを想定したのであ
0
る。
[0010] 従って、このずれを予め算出し、出力電流検出用抵抗 122の抵抗値を変えて過電 流検出レベルを調整することも考えられるものの、入力する電源電圧 V が変動した
CC
場合にはずれの程度も変化するので、この対策は効果的ではない。
[0011] また、本願発明者は、温度が変動したとき、モニタ用トランジスタ 121及び出カトラン ジスタ 11と出力電流検出用抵抗 122とは温度特性が異なることによる過電流検出レ ベルへの影響にも着目した。また、過電流検出回路 110aにおいては、過電流検出 出力トランジスタ 123の特性も変動するため、更に過電流検出レベルは変動すると想 定したのである。
[0012] 本発明は、以上の事由に鑑みてなされたもので、その目的とするところは、入力す る電源電圧や温度が変動した場合の過電流検出レベルの変動を抑制することができ る過電流検出回路及びそれを備えたレギユレータを提供することにある。
課題を解決するための手段
[0013] 上記の課題を解決するために、本発明の望ましい実施形態に係る過電流検出回 路は、電源電圧が入力端に、制御電圧が制御端に入力されて出力端力 出力電流 を出力する出力トランジスタに過電流が流れたときそれを検出する過電流検出回路 であって、出力トランジスタの制御端及び出力端にそれぞれ制御端及び出力端が接 続されるモニタ用トランジスタと、電源電圧が入力端に、検出用バイアス電圧が制御 端に入力され、出力端がモニタ用トランジスタの入力端に接続される出力電流検出 用トランジスタと、基準電流を生成する定電流源と、電源電圧が入力端に、検出用バ ィァス電圧が制御端に入力されて出力端力 前記定電流源に前記基準電流を流し 込むリファレンス用トランジスタと、出力電流検出用トランジスタの出力端の電圧とリフ アレンス用トランジスタの出力端の電圧を比較することにより、出力トランジスタに過電 流が流れたときそれを検出して過電流検出信号を出力する比較回路と、を備えてな る。
[0014] 前記出力トランジスタ、前記モニタ用トランジスタ、前記出力電流検出用トランジスタ 、及び前記リファレンス用トランジスタは、望ましくは、 P型 MOSトランジスタである。
[0015] 前記比較回路は、望ましくは、前記定電流源とリファレンス用トランジスタの間に介 装されたダイオード接続の第 1の比較用トランジスタと、前記定電流源が生成する基 準電流の所定倍の電流を生成する第 2の定電流源と、第 2の定電流源と出力電流検 出用トランジスタの間に介装され、第 1の比較用トランジスタの制御端に制御端が接 続された第 2の比較用トランジスタと、を備えてなる。
[0016] 本発明の望ましい実施形態に係るレギユレータは、上述の過電流検出回路を備え たレギユレータであって、電源電圧と所定の DC電圧を出力する出力端子との間に出 カトランジスタを設け、出力端子の電圧をフィードバック入力して所定の DC電圧を維 持すべく出力トランジスタを制御するとともに、過電流検出回路の過電流検出信号が 入力されると、出力トランジスタをオフする制御回路を設けてなる。
発明の効果
[0017] 本発明の望ましい実施形態に係る過電流検出回路は、モニタ用トランジスタと出力 電流検出用トランジスタの直列体を出力トランジスタと並列に設け、力つリファレンス 用トランジスタを出力電流検出用トランジスタと並列に設け、出力電流検出用トランジ スタの出力をリファレンス用トランジスタの出力と比較することで過電流を検出してい るので、入力する電源電圧や温度が変動しても、それらのトランジスタの特性は相対 的には余り変動しないので、過電流検出レベルの変動を抑制することができる。また 、それを備えたレギユレータは、過電流検出レベルが安定するので、信頼性を向上さ せることができる。 図面の簡単な説明
[図 1]本発明の実施形態に係る過電流検出回路とそれを備えるレギユレータの回路 図である。
[図 2]同上の動作波形図である。
[図 3]本発明の別の実施形態に係る過電流検出回路とそれを備えるレギユレータの 回路図である。
[図 4]背景技術の過電流検出回路とそれを備えるレギユレータの回路図である。
[図 5]背景技術の別の過電流検出回路とそれを備えるレギユレータの回路図である。 符号の説明
1、 2 レギユレータ
10a 、 10b 過電流検出回路
11 出力トランジスタ
13 負荷
21 モニタ用トランジスタ
22a 、 22b 出力電流検出用トランジスタ
23 リファレンス用トランジスタ
24 定電流源
25a 、 25b 比較回路
28 検出用バイアス電圧
31 第 1の比較用トランジスタ
32 第 2の比較用トランジスタ
33 第 2の定電流源
V
cc 入力する電源電圧
OUT レギユレータの出力端子
発明を実施するための最良の形態
以下、本発明の最良の実施形態を図面を参照しながら説明する。図 1は本発明の 実施形態である過電流検出回路とそれを備えるレギユレータの回路図である。このレ ギユレータ 1は、電源電圧 V と出力端子 OUTの間に P型 MOSトランジスタである出 カトランジスタ 11を設け、出力トランジスタ 11を制御することにより出力端子 OUTを 所定の DC電圧に維持するとともに、出力トランジスタ 11に過電流が流れた場合には 過電流検出回路 1 Oaがそれを検出して出力トランジスタ 11をオフするものである。更 に詳しく説明すると、このレギユレータ 1は、電源電圧 V を入力端 (ソース)に入力し
CC
、制御電圧を制御端 (ゲート)に入力し、出力電流 I
0を出力端 (ドレイン)力も出力する 出力トランジスタ 11と、出力トランジスタ 11の出力端に生じる電圧を平滑ィ匕する平滑 化回路 12と、平滑ィ匕した所定の DC電圧を出力する出力端子 OUTと、出力端子 OU Tの電圧をフィードバック入力して所定の DC電圧を維持すべく図 1における節点じか ら出力トランジスタ 11を制御するとともに、過電流検出回路 10aの過電流検出信号が 節点 D力 入力されると、出力トランジスタ 11をオフすべく節点 Cの制御電圧を電源 電圧 V レベルにする制御回路 14と、出力トランジスタ 11に過電流が流れた場合に
CC
それを検出し、その過電流検出信号を節点 Dから制御回路 14に出力する過電流検 出回路 10aと、を備える。出力端子 OUTには負荷 13が接続される。
過電流検出回路 10aは、出力トランジスタ 11の制御端 (ゲート)及び出力端 (ドレイ ン)にそれぞれ制御端 (ゲート)及び出力端 (ドレイン)が接続される P型 MOSトランジ スタであるモニタ用トランジスタ 21と、電源電圧 V が入力端 (ソース)に、検出用バイ
CC
ァス電圧 28が制御端 (ゲート)に入力され、出力端 (ドレイン)がモニタ用トランジスタ 2 1の入力端 (ソース)に接続される P型 MOSトランジスタである出力電流検出用トラン ジスタ 22aと、基準電流 I (例えば 10 μ Α)を生成する N型 MOSトランジスタである
REF
定電流源 24と、電源電圧 V が入力端 (ソース)に、検出用バイアス電圧 28が制御
CC
端 (ゲート)に入力されて出力端 (ドレイン)カも定電流源 24に基準電流 I を流し込
REF
む P型 MOSトランジスタであるリファレンス用トランジスタ 23と、出力電流検出用トラン ジスタ 22aの出力端 (ドレイン)の電圧 (すなわち図 1における節点 Bの電圧)とリファレ ンス用トランジスタ 23の出力端 (ドレイン)の電圧 (すなわち図 1における節点 Aの電 圧)を比較して検出信号を節点 Dに出力するコンパレータ力もなる比較回路 25aと、 を備える。この比較回路 25aは、さらに具体的には、出力トランジスタ 11に過電流が 流れて 、な 、ときはハイレベルの検出信号を出力し、過電流が流れたときそれを検 出してローレベルの過電流検出信号を出力する。つまり、過電流検出回路 10aは、 モニタ用トランジスタ 21と出力電流検出用トランジスタ 22aの直列体を出カトランジス タ 11と並列に設け、かつリファレンス用トランジスタ 23を出力電流検出用トランジスタ 22aと並列に設け、出力電流検出用トランジスタ 22aの出力をリファレンス用トランジス タ 23の出力と比較することで過電流を検出しているのである。また、モニタ用トランジ スタ 21、出力電流検出用トランジスタ 22a及びリファレンス用トランジスタ 23のサイズ は等しぐそして出力トランジスタ 11のサイズの 1ZN (例えば 1Z50000)に設定され ている。なお、過電流検出回路 10aは、更に N型 MOSトランジスタ 26及び定電流源 27を備え、それらは、定電流源 24の電流値を決めるものである。
[0022] また、出力電流検出用トランジスタ 22aとリファレンス用トランジスタ 23の制御端に共 通に入力される検出用バイアス電圧 28は、モニタ用トランジスタ 21の制御端 (ゲート) の電圧にほぼ一致させることが望ましい。例えば、レギユレータ 1がスイッチングレギュ レータの場合は、検出用バイアス電圧 28を接地電圧レベルにするのが望まし 、。
[0023] 次に、過電流検出回路 10aの動作を図 2の動作波形図に基づいて説明する。この 動作波形図は、節点 A及び Bの動作波形(曲線 Aと曲線 B)、すなわち出力電流 Iに
0 対する節点 A及び Bの電圧の変化と、比較回路 25aの動作波形、すなわち検出信号 出力(節点 Dの電圧)の変化を示している。モニタ用トランジスタ 21と出力電流検出用 トランジスタ 22aのサイズは出力トランジスタ 11の 1ZNに設定されているので、出力ト ランジスタ 11に出力電流 Iが流れると、直列接続された (直列体の)モニタ用トランジ
0
スタ 21及び出力電流検出用トランジスタ 22aに流れる電流 Iはほぼ I Z2Nとなる。す
1 0
なわち、モニタ用トランジスタ 21と出力電流検出用トランジスタ 22aの等価抵抗の値 を Rとすると、出力トランジスタ 11の等価抵抗の値は RZNであるから、以下の式が成 立する。
RI + RI = RI /N · · · (1)
1 1 0
よって、
I = I Z2N · · · (2)
1 0
となる。
[0024] そして、節点 Bには、出力電流検出用トランジスタ 22aに I Z2Nの電流を流すため
0
に必要な電圧が電源電圧 V を基準にして生じている。節点 Bの電圧は、出カトラン ジスタ 11の出力電流 Iが増加すると直線的に降下する。一方、節点 Aには、リファレ
0
ンス用トランジスタ 23に基準電流 I を流すために必要な電圧が電源電圧 V を基
REF CC
準にして生じている。従って、出力トランジスタ 11の出力電流 Iが増加し、モニタ用ト
0
ランジスタ 21及び出力電流検出用トランジスタ 22aに流れる電流 I Z2Nが基準電流
0
I の値を超えると、すなわち、節点 Bの電圧が節点 Aの電圧以下に降下すると、比
REF
較回路 25aの出力である節点 Dの検出信号はハイレベルからローレベル (過電流検 出信号)に変化する。具体的には、 Nを 50000に、基準電流 I を 10 Aに、それぞ
REF
れ設定すると、出力トランジスタ 11の電流 Iがほぼ 1A (アンペア)以上で、節点 Dの
0
検出信号はローレベルになる。その結果、制御回路 14は、出力トランジスタ 11の出 力電流 Iが過電流検出レベル Iを超えたとして (過電流が流れていると判断して)出
0 E
力トランジスタ 11をオフする。
[0025] ここで、直列体のモニタ用トランジスタ 21及び出力電流検出用トランジスタ 22a、さ らにはリファレンス用トランジスタ 23の各出力端 (ドレイン)の電圧は、出力トランジスタ 11と同様に、流れる電流の値に応じて電源電圧 V を基準に生じている。従って、こ
CC
れらトランジスタの出力端 (ドレイン)の電圧が他の素子の影響で変動することによつ てそれらに流れる電流の比率がサイズの比率力 ずれることが抑制される。そして、 電源電圧 V が変動した場合でも、これらのトランジスタの出力端 (ドレイン)の電圧は
CC
、電源電圧 V を基準に生じているので、その影響を受けず、過電流検出レベル Iの
CC E
変動はほとんど起こらないのである。
[0026] また、出力トランジスタ 11、モニタ用トランジスタ 21、出力電流検出用トランジスタ 22 a及びリファレンス用トランジスタ 23は、全て P型 MOSトランジスタであるので、同じ温 度特性を有する。従って、モニタ用トランジスタ 21、出力電流検出用トランジスタ 22a 及びリファレンス用トランジスタ 23の特性は、温度が変動しても出力トランジスタ 11と 同じように変化することとなり、温度の変動によって生じる過電流検出レベル Iの変動
E
を抑制することができる。
[0027] 次に、本発明の他の実施形態である過電流検出回路とそれを備えるレギユレータを 、図 3に基づいて説明する。このレギユレータ 2は、過電流検出回路 10b以外は、上 述のレギユレータ 1と実質的に同じ構成であるので、過電流検出回路 10bについて以 下説明を行う。
[0028] 過電流検出回路 10bは、過電流検出回路 10aと同様に、モニタ用トランジスタ 21と 、出力電流検出用トランジスタ 22bと、リファレンス用トランジスタ 23と、基準電流 I
REF
を生成する定電流源 24と、を備える。ただし、モニタ用トランジスタ 21及びリファレン ス用トランジスタ 23のサイズは過電流検出回路 10aと同様に設定されている力 出力 電流検出用トランジスタ 22bのサイズは、モニタ用トランジスタ 21及びリファレンス用ト ランジスタ 23の 2倍に設定されている。
[0029] そして、過電流検出回路 10bは、先の実施形態におけるコンパレータ力 なる比較 回路 25aを、別の回路構成を有する比較回路 25bに替えている。比較回路 25bは、 定電流源 24とリファレンス用トランジスタ 23の間に介装されたダイオード接続の(出力 端 (ドレイン)と制御端 (ゲート)が接続された) P型 MOSトランジスタである第 1の比較 用トランジスタ 31と、定電流源 (N型 MOSトランジスタ) 24とゲート電圧を共通にする ことで定電流源 24が生成する基準電流 I の所定倍 (ここでは 1倍)の電流を生成す
REF
る第 2の定電流源 33と、第 2の定電流源 33と出力電流検出用トランジスタ 22bの間に 介装され、第 1の比較用トランジスタ 31の制御端 (ゲート)に制御端 (ゲート)が接続さ れた P型 MOSトランジスタである第 2の比較用トランジスタ 32と、を備える。従って、第 2の比較用トランジスタ 32の入力端 (ソース)の電位が第 1の比較用トランジスタ 31の 入力端 (ソース)よりも降下すると、第 2の比較用トランジスタ 32には電流は流れなくな る(オフする)。
[0030] 次に、過電流検出回路 10bの動作を説明する。 モニタ用トランジスタ 21とリファレ ンス用トランジスタ 23の等価抵抗の値を Rとすると、出力電流検出用トランジスタ 22b の等価抵抗の値は RZ2であり、出力トランジスタ 11の等価抵抗の値は RZNである 。出力電流検出用トランジスタ 22bに流れる電流は、モニタ用トランジスタ 21に流れる 電流 Iと第 2の定電流源 33に流れ込む電流 I とに分岐する。従って、節点 Bには、
1 REF
出力電流検出用トランジスタ 22bに電流 I +1を流すために必要な電圧 R (I +
REF 1 REF
I ) /2 が電源電圧 V を基準にして生じる。そして、
1 CC
R (I +1 ) /2 + RI = RI /N
REF 1 1 0 …(3)
が成立し、この式を満たすようモニタ用トランジスタ 21に電流 Iが流れることになる。 [0031] 一方、節点 Aには、リファレンス用トランジスタ 23に基準電流 I を流すために必要
REF
な電圧 RI が電源電圧 V を基準にして生じている。節点 Bの電圧が節点 Aの電圧
REF CC
と等しくなると、
R (I +1 ) /2 = RI
REF 1 REF …(4)
が成立する。これを解くと、
I = I - " (5)
1 REF
となる。そして、(5)式を (3)式に代入すると、
1 = 1 = 1 /2N · · · (6)
1 REF 0
となる。そして、モニタ用トランジスタ 21に流れる電流 Iが電流 I を超えると、節点 B
1 REF
の電圧は節点 Aよりも降下するので、第 2の比較用トランジスタ 32はオフし、比較回 路 25bの出力、すなわち節点 Dの検出信号はハイレベル力もローレベル (過電流検 出信号)に変化する。具体的には、 Nを 50000と、基準電流 I 10
REFを Aと、それぞ れ設定すると、出力トランジスタ 11の出力電流 I力 1A以上で、節点 Dの検出信号は
0
ローレベルになる。
[0032] このように、過電流検出回路 10bは、過電流検出回路 10aと同様に、出カトランジス タ 11に過電流が流れた場合、それを検出して過電流検出信号を節点 Dから制御回 路 14に出力することができる。加えて、この過電流検出回路 10bの比較回路 25bは、 過電流検出回路 10aの比較回路 25aのようなコンパレータを用いて!/ヽな 、ので、回 路を構成する素子数を削減することができ、占有面積及び消費電力を減少させること ができる。
[0033] なお、過電流検出回路 10a又は 10bにおいて、過電流検出レベル Iを調整するに
E
は基準電流 I を変えればよい。また、過電流検出回路 10bにおいて、定電流源 (N
REF
型 MOSトランジスタ) 24に対して第 2の定電流源(N型 MOSトランジスタ) 33のサイ ズを変えて流れる電流値の所定の倍率を変えることによって、過電流検出レベル Iを
E
調整することも可能である。例えば、第 2の定電流源 (N型 MOSトランジスタ) 33のサ ィズを 1Z2にすると、
I = 21 /5N · · · (7)
REF 0
で、節点 Bの電圧が節点 Aの電圧と等しくなる。従って、 Nを 50000と、基準電流 I
REF を 10 /z Aと、それぞれ設定すると、過電流検出レベル Iは 1. 25Aとなる。
E
[0034] また、モニタ用トランジスタ 21及び出力電流検出用トランジスタ 22a (22b)に対して リファレンス用トランジスタ 23のサイズ比を変えることによって、過電流検出レベル Iを
E
調整することも可能である。例えば、過電流検出回路 10aにおいて、リファレンス用ト ランジスタ 23のサイズをモニタ用トランジスタ 21及び出力電流検出用トランジスタ 22a の 1Z2とすると、上記条件 (Nが 50000、基準電流 I 力 lO /z A)で、過電流検出レ
REF
ベル Iは 2Aとなる。また、過電流検出回路 10bにおいて、リファレンス用トランジスタ 2
E
3のサイズをモニタ用トランジスタ 21の 1Z2とすると、
I = I /5N …
REF 0
で、節点 Bの電圧が節点 Aの電圧と等しくなる。従って、上記条件 (Nが 50000、基準 電流 I 力 10 μ Α)で、過電流検出レベル Iは 2. 5Aとなる。
REF E
[0035] また、本発明は、上述した実施形態に限られることなぐ請求の範囲に記載した事 項の範囲内でのさまざまな設計変更が可能である。例えば、上述した実施形態では 、レギユレータの出力トランジスタ 11を P型 MOSトランジスタとし、過電流検出回路の モニタ用トランジスタ 21、出力電流検出用トランジスタ 22a (22b)及びリファレンス用ト ランジスタ 23は全て P型 MOSトランジスタにしたもので説明したが、出力トランジスタ 11を N型 MOSトランジスタ、 PNP型バイポーラトランジスタあるいは NPN型バイポー ラトランジスタにすることも可能であり、その場合、モニタ用トランジスタ 21、出力電流 検出用トランジスタ 22a (22b)及びリファレンス用トランジスタ 23をそれらの型に合わ せて過電流検出回路を構成すればよいことは勿論のことである。

Claims

請求の範囲
[1] 電源電圧が入力端に、制御電圧が制御端に入力されて出力端力 出力電流を出 力する出力トランジスタに過電流が流れたときそれを検出する過電流検出回路であ つて、
出力トランジスタの制御端及び出力端にそれぞれ制御端及び出力端が接続される モニタ用トランジスタと、
電源電圧が入力端に、検出用バイアス電圧が制御端に入力され、出力端がモニタ 用トランジスタの入力端に接続される出力電流検出用トランジスタと、
基準電流を生成する定電流源と、
電源電圧が入力端に、検出用バイアス電圧が制御端に入力されて出力端から前記 定電流源に前記基準電流を流し込むリファレンス用トランジスタと、
出力電流検出用トランジスタの出力端の電圧とリファレンス用トランジスタの出力端 の電圧を比較することにより、出力トランジスタに過電流が流れたときそれを検出して 過電流検出信号を出力する比較回路と、
を備えてなることを特徴とする過電流検出回路。
[2] 請求項 1に記載の過電流検出回路において、
前記出力トランジスタ、前記モニタ用トランジスタ、前記出力電流検出用トランジスタ 、及び前記リファレンス用トランジスタは P型 MOSトランジスタであることを特徴とする 過電流検出回路。
[3] 請求項 1又は 2に記載の過電流検出回路において、
前記比較回路は、前記定電流源とリファレンス用トランジスタの間に介装されたダイ オード接続の第 1の比較用トランジスタと、前記定電流源が生成する基準電流の所定 倍の電流を生成する第 2の定電流源と、第 2の定電流源と出力電流検出用トランジス タの間に介装され、第 1の比較用トランジスタの制御端に制御端が接続された第 2の 比較用トランジスタと、を備えてなることを特徴とする過電流検出回路。
[4] 請求項 1乃至 3のいずれかに記載の過電流検出回路を備えたレギユレータであつ て、
電源電圧と所定の DC電圧を出力する出力端子との間に出力トランジスタを設け、 出力端子の電圧をフィードバック入力して所定の DC電圧を維持すべく出カトランジ スタを制御するとともに、過電流検出回路の過電流検出信号が入力されると、出力ト ランジスタをオフする制御回路を設けてなることを特徴とするレギユレータ。
PCT/JP2005/000605 2004-01-22 2005-01-19 過電流検出回路及びそれを備えたレギュレータ WO2005071511A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05703842A EP1708069A4 (en) 2004-01-22 2005-01-19 CURRENT SURCHARGE DETECTION CIRCUIT AND REGULATOR COMPRISING SUCH A CIRCUIT
US10/597,381 US7573689B2 (en) 2004-01-22 2005-01-19 Overcurrent detecting circuit and regulator having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004014988A JP3889402B2 (ja) 2004-01-22 2004-01-22 過電流検出回路及びそれを備えたレギュレータ
JP2004-014988 2004-01-22

Publications (1)

Publication Number Publication Date
WO2005071511A1 true WO2005071511A1 (ja) 2005-08-04

Family

ID=34805442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000605 WO2005071511A1 (ja) 2004-01-22 2005-01-19 過電流検出回路及びそれを備えたレギュレータ

Country Status (7)

Country Link
US (1) US7573689B2 (ja)
EP (1) EP1708069A4 (ja)
JP (1) JP3889402B2 (ja)
KR (1) KR20060127070A (ja)
CN (1) CN100504709C (ja)
TW (1) TW200601658A (ja)
WO (1) WO2005071511A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672107B2 (en) * 2006-10-13 2010-03-02 Advanced Analogic Technologies, Inc. Current limit control with current limit detector
US7957116B2 (en) 2006-10-13 2011-06-07 Advanced Analogic Technologies, Inc. System and method for detection of multiple current limits
US7532448B2 (en) * 2006-10-13 2009-05-12 Advanced Analogic Technologies, Inc. Current limit detector
JP4996203B2 (ja) * 2006-11-07 2012-08-08 ルネサスエレクトロニクス株式会社 電源電圧回路
CN101247212B (zh) * 2007-02-14 2012-06-20 中芯国际集成电路制造(上海)有限公司 数据检测电路
JP4953246B2 (ja) * 2007-04-27 2012-06-13 セイコーインスツル株式会社 ボルテージレギュレータ
CN101188413B (zh) * 2007-11-30 2010-05-26 艾默生网络能源有限公司 一种变频器模拟输入检测电路
JP5310023B2 (ja) * 2009-01-23 2013-10-09 ミツミ電機株式会社 レギュレータ用半導体集積回路
US8325453B2 (en) * 2009-05-28 2012-12-04 Qualcomm, Incorporated Short-circuit protection for switched output stages
JP5285644B2 (ja) * 2010-03-26 2013-09-11 旭化成エレクトロニクス株式会社 過電流保護回路、スイッチングレギュレータ、スイッチングアンプ
JP5537272B2 (ja) * 2010-06-07 2014-07-02 ローム株式会社 負荷駆動回路装置及びこれを用いた電気機器
TWI448870B (zh) * 2010-08-25 2014-08-11 Hon Hai Prec Ind Co Ltd 穩壓電路結構
US8816722B2 (en) * 2010-09-13 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Current detection circuit
CN102594109A (zh) * 2011-01-05 2012-07-18 上海华虹集成电路有限责任公司 限流比较电路
US8890579B2 (en) * 2012-07-20 2014-11-18 Texas Instruments Incorporated Circuit for current sensing in high-voltage transistor
US10041982B2 (en) * 2012-08-15 2018-08-07 Texas Instruments Incorporated Switch mode power converter current sensing apparatus and method
JP6205142B2 (ja) * 2013-03-08 2017-09-27 エスアイアイ・セミコンダクタ株式会社 定電圧回路
JP6302639B2 (ja) * 2013-10-08 2018-03-28 ローム株式会社 電流監視回路
JP6354720B2 (ja) 2015-09-25 2018-07-11 株式会社デンソー 保護回路付きのレギュレータ回路
US11239837B2 (en) * 2017-12-15 2022-02-01 Rohm Co., Ltd. Switch device
JP7149104B2 (ja) * 2018-05-28 2022-10-06 ローム株式会社 半導体集積回路、オーディオ出力装置、電子機器
US11251729B2 (en) 2018-07-02 2022-02-15 Infinno Technology Corp. Device and method for over-current protection
CN110401168B (zh) * 2019-08-22 2022-02-11 广东美的制冷设备有限公司 抗干扰电路及空调器
KR20210051388A (ko) * 2019-10-30 2021-05-10 삼성전자주식회사 전자 장치에서의 보호 회로 및 이를 위한 방법
US11539393B2 (en) * 2020-08-07 2022-12-27 Apple Inc. Radio-frequency front end modules with leakage management engines
CN113884208B (zh) * 2021-09-09 2023-10-10 芯原微电子(成都)有限公司 一种高精度过温检测电路
CN116609643B (zh) * 2023-07-21 2023-09-19 江苏兴宙微电子有限公司 信号检测电路和集成电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159516A (en) * 1991-03-14 1992-10-27 Fuji Electric Co., Ltd. Overcurrent-detection circuit
JPH0576133A (ja) * 1991-05-02 1993-03-26 New Japan Radio Co Ltd 電源用icの短絡保護回路
JPH08331757A (ja) * 1995-06-01 1996-12-13 Toshiba Corp 過電流制限回路
EP0881769A2 (en) * 1997-05-30 1998-12-02 Nec Corporation Abnormal current detection circuit and load drive circuit including the same
JPH10322185A (ja) * 1997-05-16 1998-12-04 Nec Corp 半導体集積回路装置
US20030122530A1 (en) * 2001-12-05 2003-07-03 Takahiro Hikita Voltage regulator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646520A (en) * 1994-06-28 1997-07-08 National Semiconductor Corporation Methods and apparatus for sensing currents
JP2914231B2 (ja) * 1995-07-26 1999-06-28 日本電気株式会社 電流検出回路
JPH09167928A (ja) * 1995-10-11 1997-06-24 Sansei Denshi Japan Kk オペアンプ
JP4574902B2 (ja) * 2001-07-13 2010-11-04 セイコーインスツル株式会社 ボルテージレギュレータ
JP2005235932A (ja) * 2004-02-18 2005-09-02 Seiko Instruments Inc ボルテージレギュレータおよびその製造方法
JP2007166444A (ja) * 2005-12-16 2007-06-28 Nec Electronics Corp 過電流検出回路及びスイッチング回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159516A (en) * 1991-03-14 1992-10-27 Fuji Electric Co., Ltd. Overcurrent-detection circuit
JPH0576133A (ja) * 1991-05-02 1993-03-26 New Japan Radio Co Ltd 電源用icの短絡保護回路
JPH08331757A (ja) * 1995-06-01 1996-12-13 Toshiba Corp 過電流制限回路
JPH10322185A (ja) * 1997-05-16 1998-12-04 Nec Corp 半導体集積回路装置
EP0881769A2 (en) * 1997-05-30 1998-12-02 Nec Corporation Abnormal current detection circuit and load drive circuit including the same
US20030122530A1 (en) * 2001-12-05 2003-07-03 Takahiro Hikita Voltage regulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1708069A4 *

Also Published As

Publication number Publication date
CN100504709C (zh) 2009-06-24
CN1910529A (zh) 2007-02-07
JP2005208949A (ja) 2005-08-04
EP1708069A4 (en) 2008-01-16
EP1708069A1 (en) 2006-10-04
US7573689B2 (en) 2009-08-11
TW200601658A (en) 2006-01-01
KR20060127070A (ko) 2006-12-11
TWI345863B (ja) 2011-07-21
JP3889402B2 (ja) 2007-03-07
US20080247099A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
WO2005071511A1 (ja) 過電流検出回路及びそれを備えたレギュレータ
US8575906B2 (en) Constant voltage regulator
US7626792B2 (en) Power supply control apparatus including highly-reliable overcurrent detecting circuit
US7924542B2 (en) Power supply controller and semiconductor device
JP4630764B2 (ja) ハイ側のスイッチにおいて正および負のピークインダクタ電流を損失無くセンスする方法及び装置
KR101422924B1 (ko) 저전압 강하 레귤레이터
US20030128489A1 (en) Overcurrent limitation circuit
US6917187B2 (en) Stabilized DC power supply device
US11467611B2 (en) Current limiting electronic fuse circuit
US7969703B2 (en) Overcurrent protection circuit and voltage regulator incorporating same
US9063558B2 (en) Current limiting circuit configured to limit output current of driver circuit
US20120154051A1 (en) Voltage regulator circuit
US11105830B2 (en) Voltage detector
US20150188421A1 (en) Voltage regulator
US10185338B1 (en) Digital low drop-out (LDO) voltage regulator with analog-assisted dynamic reference correction
JP5444869B2 (ja) 出力装置
KR20180048326A (ko) 볼티지 레귤레이터
JP2002169618A (ja) 定電圧電源回路および該定電圧電源回路を内蔵した電子機器
US20080238401A1 (en) Method and apparatus for adjusting a reference
US7042280B1 (en) Over-current protection circuit
US7538529B2 (en) Power-supply apparatus
US7773359B2 (en) Overcurrent protection system and method
JP2017198537A (ja) 過電流検出回路
JP2022045499A (ja) 電流検出回路、スイッチ回路
JP6850199B2 (ja) 電源回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580002985.0

Country of ref document: CN

Ref document number: 1020067014794

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10597381

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005703842

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005703842

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067014794

Country of ref document: KR