JP4996203B2 - 電源電圧回路 - Google Patents

電源電圧回路 Download PDF

Info

Publication number
JP4996203B2
JP4996203B2 JP2006301301A JP2006301301A JP4996203B2 JP 4996203 B2 JP4996203 B2 JP 4996203B2 JP 2006301301 A JP2006301301 A JP 2006301301A JP 2006301301 A JP2006301301 A JP 2006301301A JP 4996203 B2 JP4996203 B2 JP 4996203B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
current
output
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006301301A
Other languages
English (en)
Other versions
JP2008117254A (ja
Inventor
洋喜 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2006301301A priority Critical patent/JP4996203B2/ja
Priority to US11/979,609 priority patent/US7855537B2/en
Priority to CN2007101658992A priority patent/CN101178606B/zh
Publication of JP2008117254A publication Critical patent/JP2008117254A/ja
Application granted granted Critical
Publication of JP4996203B2 publication Critical patent/JP4996203B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

本発明は、電源電圧回路に関する。
近年、電源電圧回路の高機能化が進展している。特に、過電流によって電源電圧回路に含まれる出力トランジスタが破壊されることを防止する過電流保護対策に関する技術の進展が著しい。例えば、特許文献1乃至4に示されているとおりである。
過電流保護回路の特性としては、良好な垂下型特性又はフの字特性が求められるとともに、過電流が流れたことを正確に検出する特性も強く求められている。なお、垂下型特性は、出力電流が一定の閾値以上となったとき、出力電流を一定にさせた状態で出力電圧が小さくなる特性である。また、フの字特性は、出力電圧がある閾値以下となったとき、出力電流を低下させる特性である。両者とも、出力トランジスタを発熱破壊から保護することを目的とする。なお、後者は、発熱損失の低減という観点から前者に比べて優れている。
また、上述の特性が求められる一方、電源電圧回路の消費電力の低下も望まれている。例えば、特許文献4記載の技術は、出力トランジスタに流れる出力電流に応じた参照用電流をGNDに流す構成を採用している。この構成では、電源電圧回路の消費電力が増加してしまう。
特許文献2記載の技術は、参照トランジスタのドレインを出力端子に接続させることで消費電力の増加を低減させている。しかしながら、ここではトランジスタの閾値電圧を利用して過電流を検出しているため、正確に過電流を検出できない。これは、MOS(Metal Oxide Semiconductor)型電界効果型トランジスタの閾値電圧は、プロセスや接合面温度によってばらつきが生じることがあるからである。
特開2000−133721号公報 特開2005−293067号公報 特開2003−186555号公報 特開2002−304225号公報
上述のように、良好な過電流保護回路の特性を実現しつつ、消費電力が低減される電源電圧回路は存在しなかった。
本発明にかかる電源電圧回路は、(1)制御端子に入力される誤差増幅器からの制御電圧に基づいて第1電流を出力端子に流す出力トランジスタと、(2)前記第1電流に応じた第2電流を前記出力端子に流す参照トランジスタを含み、前記第2電流に基づいて生成される検出電圧と基準電圧との比較に基づいて前記制御電圧の電位を調整する過電流保護回路と、を備える。
本発明にかかる電源電圧回路は、(1)制御端子に入力される誤差増幅器からの制御電圧に基づいて第1電流を出力端子に流す出力トランジスタと、(2)前記第1電流に応じた第2電流を前記出力端子に流す参照トランジスタと、(3)前記第2電流に基づいて生成される検出電圧と基準電圧とを比較する比較器と、(4)前記比較器から与えられる過電流検出信号に基づいて前記制御電圧の電位を調整する制御電圧調整回路と、を備える。
検出電圧と基準電圧との比較に基づいて、出力トランジスタに過電流が流れたことを検出する。これによって、より正確に過電流が流れたときを検出できる。これとともに、第1電流及び第2電流が出力端子に流れることで、電源電圧回路内で消費される電流が低減される。
良好な過電流保護回路の特性を実現しつつ、消費電力が低減される電源電圧回路を提供することができる。
以下、図面を用いて、本発明の実施の形態について説明する。尚、図面は簡略的なものであって、本発明の技術的範囲を狭めるように解釈してはならない。また、同一の要素には同一の符号を付し、重複する説明は省略するものとする。
[第1の実施の形態]
図1に、本実施形態にかかる電源電圧回路1Aを示す。電源電圧回路1Aは、過電流保護回路が出力電圧調整回路に付加されている。出力電圧調整回路は、基準電圧源E1、誤差増幅器2、出力トランジスタM1、分圧回路3、出力端子Poを有する。過電流保護回路は、検出回路4、基準電圧生成回路5、判定回路6、制御電圧調整回路7を有する。なお、出力端子Poには、負荷Zが接続されている。
(出力電圧調整回路)
出力電圧調整回路では、誤差増幅器2から出力トランジスタM1の制御端子(ゲート)に与えられる制御電圧により、出力トランジスタM1のオン抵抗が制御され、電源電圧回路1Aの出力電圧Voutの値が一定となるように動作する。
まず、接続関係について説明する。出力トランジスタM1のゲートには、誤差増幅器2の出力端が接続される。出力トランジスタM1のソースは、電源電圧VCC(電源端子)に接続され、出力トランジスタM1のドレインは、出力端子Poに接続される。なお、出力トランジスタM1は、P型(Pチャネル型)のMOSトランジスタである。誤差増幅器2の反転入力端子には、基準電圧源E1に接続され、基準電圧源E1から基準電圧が入力される。誤差増幅器2の非反転入力端子は、分圧回路3を構成する抵抗R1と抵抗R2との間の節点に接続され、出力電圧Voutが分圧された電圧(分圧電圧)が入力される。
誤差増幅器2により、分圧電圧と基準電圧の差分が増幅される。誤差増幅器2の出力端は、出力トランジスタM1のゲートに接続され、出力トランジスタM1のゲートには、誤差増幅器2の出力(制御電圧)が与えられる。これにより、出力トランジスタM1のオン抵抗が制御され、出力電圧Voutが一定に維持される。なお、誤差増幅器2の出力端と出力トランジスタM1のゲートとは、配線Lcにより接続される。
分圧回路3は、抵抗R1、抵抗R2を有する。出力電圧Voutは、抵抗R1と抵抗R2とにより分圧され、抵抗R1と抵抗R2との間の節点に分圧電圧が生じる。抵抗R1は、出力トランジスタM1に直列に接続される。抵抗R2は、抵抗R1に直列に接続される。抵抗R1の一端は出力トランジスタM1のドレインに接続され、抵抗R1の他端は抵抗R2の一端に接続される。抵抗R2の一端は抵抗R1の他端に接続され、抵抗R2の他端は接地される。
出力電圧Voutが変動した場合、これに応じて分圧電圧も変動する。誤差増幅器2は、基準電圧源E1から与えられる基準電圧と、分圧回路から与えられる分圧電圧との差分を増幅する。そして、出力トランジスタM1のゲートに入力される制御電圧の電位を制御し、出力トランジスタM1のオン抵抗を制御する。すなわち、出力電圧Voutの変動を補償するように出力トランジスタM1を制御する。
分圧電圧が低下した場合には、誤差増幅器2は、出力トランジスタM1のオン抵抗が小さくなるように出力トランジスタM1のゲートに入力される制御電圧の電位を下げる。そして、出力トランジスタM1の一端から出力端子Poに流れる電流(第1電流I1)をより大きい値に設定する。これによって、出力電圧Voutの低下は抑制される。
分圧電圧が上昇した場合には、誤差増幅器2は、出力トランジスタM1のオン抵抗が大きくなるように出力トランジスタM1のゲートに入力される制御電圧の電位を上げる。そして、出力トランジスタM1の一端から出力端子Poに流れる第1電流I1をより小さい値に設定する。これによって、出力電圧Voutの上昇は抑制される。
(過電流保護回路)
過電流保護回路は、検出回路4、基準電圧生成回路5、判定回路6、制御電圧調整回路7を有する。過電流保護回路は、出力トランジスタM1を通過する第1電流I1が所定の閾値を超えたことを検出した場合、出力トランジスタM1を第1電流I1(過電流)から保護するように動作する。なお、過電流保護回路は、第1電流I1から出力トランジスタM1を保護するとともに、上述の出力端子Poに接続される負荷Zも保護する。
(検出回路4)
検出回路4は、参照トランジスタM2、抵抗R31、差動増幅器8を有する。なお、参照トランジスタM2は、P型のMOSトランジスタである。
参照トランジスタM2の制御端子(ゲート)は、誤差増幅器2の出力端に接続される。参照トランジスタM2のソースは、抵抗R31を介して、電源電圧VCCに接続される。参照トランジスタM2のドレインは、出力端子Poに接続される。抵抗R31は、電源電圧VCCと参照トランジスタM2との間にあり、参照トランジスタM2に直列に接続される。
差動増幅器8の入力端子は、抵抗R31の両端に接続される。すなわち、差動増幅器8の反転入力端子は、抵抗R31と参照トランジスタM2の間の節点に接続される。また、差動増幅器8の非反転入力端子は、抵抗R31と電源電圧VCCとの間の節点に接続される。差動増幅器8は、抵抗R31の両端に生じた検出電圧を増幅する。そして、差動増幅器8は、増幅された検出電圧を、後述の判定回路6に含まれる比較器9の非反転入力端子に出力する。
上述のように、誤差増幅器2の出力端には、出力トランジスタM1のゲートも接続される。従って、参照トランジスタM2のゲートには、出力トランジスタM1のゲートに与えられる電圧と同じ電圧が与えられる。従って、第2電流I2は、出力トランジスタM1に流れる第1電流I1を反映した値となる。抵抗R31の両端間には、検出電圧としての第2電流I2に基づいた電圧が発生する。
上述の説明に基づくと、以下のことが分かる。第2電流I2は、第1電流I1に応じた値の電流である。また、この第2電流I2を電圧変換して得られる検出電圧は、第1電流I1に応じた値である。第1電流I1の電流量を検出電圧で近似させ、これを後述の判定回路6で基準電圧と判定することで、より高い精度で過電流の検出が可能となる。
(基準電圧生成回路5)
基準電圧生成回路5は、電流源CS1、第1ダイオード部D1(ダイオード部D1)、第2ダイオード部D2(ダイオード部D2)を有する。
ダイオード部D1は、電流源CS1と接地電位GNDとの間に順方向に接続される。ダイオード部D1は、3個の直列接続されたダイオードD1a、D1b、D1cから構成される。ダイオードD1aのアノードは、電流源CS1と後述の比較器9の反転入力端子に接続される。ダイオードD1cのカソードは、接地されている。ダイオードD1aのアノードは、ダイオード部D1のアノードを構成し、ダイオードD1cのカソードは、ダイオード部D1のカソードを構成する。
ダイオード部D2は、電流源CS1と出力端子Poとの間に順方向に接続される。ダイオード部D2は、1つのダイオードD2で構成される。ダイオードD2のアノードは、比較器9の反転入力端子に接続され、そのカソードは、出力端子Poに接続される。
ダイオード部D1とダイオード部D2は並列に接続され、電流源CS1に直列に接続される。電流源CS1は、ダイオード部D1又はダイオード部D2のいずれかに順方向に電流を流す。
通常時には、出力電圧Voutの値は、ダイオード部D1の順方向の降下電圧よりも大きい。従って、電流源CS1からダイオード部D1に電流が流れる。しかし、出力端子Poに接続された負荷Zの抵抗値が低下し、出力電圧Voutが低下し、出力電圧Voutがある閾値以下となると、電流源CS1からダイオード部D2に電流は流れる。つまり、電流経路が切り替わる。尚、本実施形態では、第1ダイオード部を構成するダイオードの数は、第2ダイオード部を構成するダイオードの数よりも多い。従って、上述した電流経路の切り替えは、好適に実現される。
また、ダイオード部D1のアノードとダイオード部D2のアノードは、比較器9の反転入力端子に接続される。電流源CS1からダイオード部D1に電流が流れているとき、比較器9の反転入力端子には、ダイオード部D1に生じた電圧VD1が与えられる。電流源CS1からダイオード部D2に電流が流れているとき、比較器9の反転入力端子には、ダイオード部D2に生じた電圧VD2と出力電圧Voutとの合計値(VD2+Vout)が与えられる。以下、説明の便宜上、ダイオード部D1に生じた電圧VD1を、ダイオード部D1のアノード電圧と呼ぶ。また、ダイオード部D2に生じた電圧VD2と出力電圧Voutとの合計値(VD2+Vout)を、ダイオード部D2のアノード電圧と呼ぶ。なお、ダイオード部D1に生じた電圧VD1は、ダイオード部D1の順方向の降下電圧に等しい。また、ダイオード部D2に生じた電圧VD2は、ダイオード部D2の順方向の降下電圧に等しい。
ダイオード部D1のアノードとダイオード部D2のアノードとの節点には、比較器9に与えられる基準電圧が生じる。この基準電圧は、ダイオード部D1のアノード電圧又はダイオード部D2のアノード電圧のいずれかの電圧である。
(判定回路6)
判定回路6は、比較器9を有する。比較器9の反転入力端子には、ダイオード部D2のアノード及びダイオード部D1のアノードが接続される。比較器9の非反転入力端子には、差動増幅器8の出力端が接続される。比較器9の出力端は、後述の制御電圧調整回路7に含まれるカレントミラー回路10に接続される。
比較器9は、検出回路4の差動増幅器8から入力される検出電圧と基準電圧生成回路5から入力される基準電圧との大小を判定し、所定の出力信号を出力する。検出電圧が基準電圧よりも低い場合、比較器9は、過電流非検出信号としてのOFF信号(Lowレベル電圧、以下Lと記載する)を出力する。このとき、過電流は発生していないものとみなされる。検出電圧が基準電圧よりも高い場合、比較器9は、過電流検出信号としてのON信号(Highレベル電圧、以下Hと記載する)を出力する。このとき、過電流が発生したものとみなされる。なお、基準電圧は、上述のように、ダイオード部D1のアノード電圧VD1又ダイオード部D2のアノード電圧(VD2+Vout)の一方に基づいて設定される。
(制御電圧調整回路7)
制御電圧調整回路7は、カレントミラー回路10、誤差増幅器2を有する。制御電圧調整回路7は、比較器9から入力される出力信号(ON信号又はOFF信号)に基づいて、動作状態が決定される。
カレントミラー回路10は、一対のN型トランジスタM3、M4から構成される。トランジスタM3のゲートとM4のゲートとは短絡されている。また、M3のドレインは、トランジスタM3のゲート及びトランジスタM4のゲートに接続されている。比較器9からの出力端は、トランジスタM3のゲート、トランジスタM4のゲート、及びトランジスタM3のドレインに接続される。なお、トランジスタM3のソース及びトランジスタM4のソースは、ともに接地される。また、トランジスタM4のドレインは、誤差増幅器2に接続される。誤差増幅器2は、反転入力端子と非反転入力端子のほか、第3の入力端子(第3入力端子)を有する。トランジスタM4のドレインは、誤差増幅器2の第3入力端子に接続される。
過電流検出信号としてのON信号(H)が比較器9から出力される場合、カレントミラー回路10はオン状態となる。このとき、トランジスタM4は、ON信号の電圧レベルに応じて、第3入力端子を介して、誤差増幅器2の内部配線から電流をGNDへ流し込む。このとき、誤差増幅器2は、出力トランジスタM1のオン抵抗が大きくなるように、出力トランジスタM1を制御する。すなわち、P型の出力トランジスタM1に与えていた制御電圧を、より高い電位に変更する。
過電流非検出信号としてのOFF信号(L)が比較器9から出力される場合、カレントミラー回路10はオフ状態にある。従って、誤差増幅器2は、第3入力端子を介して、誤差増幅器2の内部配線から電流が引き抜かれることはなく、通常どおりに動作する。すなわち、この場合には、カレントミラー回路10は、誤差増幅器2の第3入力端子に接続されていないものとみなせる。
ここで、図2を参照しつつ、出力トランジスタM1に流れる第1電流I1の値が所定の閾値A以上に大きくなった場合の過電流保護回路の動作について説明する。なお、過電流保護回路が好適に動作しないとすれば、出力トランジスタM1自体が発熱により破壊(短絡)し、電源電圧回路1Aの機能が損なわれてしまう。
ある時刻T0にて、出力端子Poに接続された負荷Zの抵抗値が低下するものとする。負荷Zの抵抗値の低下に伴って、第1電流I1は増加する。また、第1電流I1の増加に伴って、第1電流I1の電流量を反映する第2電流I2も増加する。そして、出力電流Ioutは、所定の閾値Aを超える。なお、抵抗R31の両端には、第2電流I2に応じた電圧(検出電圧)が発生する。この検出電圧は、差動増幅器8にて増幅され、比較器9の非反転入力端子に入力される。
差動増幅器8から比較器9に与えられる検出電圧が、基準電圧生成回路5から比較器9に与えられる基準電圧(ダイオード部D1のアノード電圧VD1)よりも高くなると、出力電流Ioutが閾値A以上になったことが検出される(図2参照)。このとき、比較器9は、過電流非検出信号としてのOFF信号(L)に代えて、過電流検出信号としてのON信号(H)をカレントミラー回路10に出力する。そして、カレントミラー回路10は、オン状態となる。そして、誤差増幅器2は、出力トランジスタM1のオン抵抗が大きくなるように、出力トランジスタM1に入力される制御電圧の電位を高く設定する。
尚、この時点では、比較器9の反転入力端子には、ダイオード部D1のアノード電圧VD1が基準電圧として与えられている。この時点では、ダイオード部D2のアノード電圧(VD2+Vout)は、ダイオード部D1のアノード電圧VD1よりも十分に大きく、もっぱらダイオード部D1に電流源CS1から電流が流れるからである。
出力トランジスタM1のオン抵抗が大きく設定されることで、出力トランジスタM1を通過する第1電流I1の増加が抑制される。そして、出力電流Ioutが一定のまま、出力端子Poに接続された負荷Zの抵抗値の低下に伴って出力電圧Voutは低下する。
図2に示すように、出力電圧Voutが閾値Bを下回ったとき、比較器9に与えられる基準電圧は、ダイオード部D1のアノード電圧VD1に代えて、ダイオード部D2のアノード電圧(VD2+Vout)となる。換言すると、上述のように出力電圧Voutが低下し、出力電圧Voutが閾値Bを下回ると、ダイオード部D1が基準電圧の設定に関して支配的であった状態から、ダイオード部D2が基準電圧の設定に関して支配的な状態となる。
この点について、以下説明を加える。第1電流I1が一定に保たれた状態で、出力端子Poに接続された負荷Zの抵抗値が低下すると、出力電圧Voutは負荷Zの抵抗値の低下に従って小さくなる。そして、出力電圧Voutとダイオード部D2に生じた電圧との和(Vout+VD2)が、ダイオード部D1に生じた電圧VD1以下となる。このとき、電流源CS1からダイオード部D1に流れていた電流は、ダイオード部D2に流れる。すなわち、電流経路が切り替わる。そして、比較器9に与えられる基準電圧は、ダイオード部D2のアノード電圧(Vout+VD2)に基づいて設定される。つまり、ダイオード部D1が基準電圧の設定に関して支配的であった状態から、ダイオード部D2が基準電圧の設定に関して支配的な状態となる。
なお、ダイオード部D2を構成するダイオードの個数は1個であり、ダイオード部D1を構成するダイオードの個数は3個である。つまり、ダイオード部D1を構成するダイオードの個数は、ダイオード部D2を構成するダイオードの個数よりも多い。従って、上述のような切り替えが好適に実現される。
また、出力電圧Voutは、出力端子Poに接続された負荷Zの抵抗値の低下に従って小さくなる。従って、出力電圧Voutの低下に従って、ダイオード部D2のアノード電圧(Vout+VD2)は低下する。つまり、比較器9に与えられる基準電圧がダイオード部D2のアノード電圧に基づいて設定されている場合、出力電圧Voutの低下に伴って、基準電圧の電圧レベルは低下する。基準電圧が低下すると、比較器9は、より低い検出電圧によっても過電流検出信号としてのON信号(H)を出力する。そして、カレントミラー回路10はオン状態となり、出力トランジスタM1を通過する第1電流I1の電流量は低下する。
上述のように、出力電圧Voutが低下すると比較器9に入力される基準電圧も低下する。よって、より低い検出電圧によっても、比較器9は過電流検出信号としてのON信号(H)を出力する。そして、カレントミラー回路10はオン状態となり、出力トランジスタM1を通過する第1電流I1の電流量は低下する。このような過程を繰り返すことにより、図2に示すように、出力電圧Voutに加えて、出力電流Ioutも低下する。これにより、効果的に電源電圧回路1Aの発熱損失を低減させることができる。
上述の説明から明らかなように、本実施形態においては、出力トランジスタを通過する第1電流I1が閾値A以上になったと検出された時点から過電流保護回路の動作が開始する。すなわち、第1電流I1が閾値A以上になったことが検出されると、誤差増幅器1は、第1電流I1の増加を抑制するように、出力トランジスタM1に入力される制御電圧の電位を制御する。そして、出力端子Poに接続された負荷Zの抵抗値の低下等に伴って出力電圧Voutが閾値Bを下回ると、比較器9に入力される基準電圧は、ダイオード部D1のアノード電圧に代えて、ダイオード部D2のアノード電圧に基づいて設定される。
基準電圧の切り替わりについて付言する。出力電圧Voutが閾値Bを下回ると、出力電圧Voutとダイオード部D2に生じた電圧VD2との和(Vout+VD2)が、ダイオード部D1に生じた電圧VD1を下回る。そして、電流源CS1からダイオード部D1に流れていた電流は、ダイオード部D2に流れる。つまり、電流経路が切り替わる。このようにして、比較器9に与えられる電圧は、ダイオード部D1のアノード電圧に代えて、ダイオード部D2のアノード電圧に基づいて設定される。比較器9にダイオード部D2のアノード電圧に基づく基準電圧が入力される場合、出力電圧Voutの低下に伴って、比較器9に入力される基準電圧が低下する。そして、図2に示すように、出力電圧Voutに加えて、出力電流Ioutも低下する。
また、本実施の形態における電源電圧回路1Aは、参照トランジスタM2のドレインが、出力端子Poに接続されている。これによって、参照トランジスタM2に流れる第2電流I2を、参照トランジスタM2の一端から出力端子Poに好適に流し込むことができる。そして、電源電圧回路1Aの消費電力を低下させることができる。この点について、比較例を用いて説明する。
図3に比較例としての電源電圧回路1pを示す。図3に示すように、第1の実施の形態に示した電源電圧回路1Aと異なる点は、検出回路4の構成である。すなわち、電源電圧回路1pにおける検出回路4は、参照トランジスタM2及び抵抗R30のみで構成される。抵抗R30の一端は、参照トランジスタM2のドレインに接続され、その他端は接地される。
この比較例の場合には、参照トランジスタM2に流れる第2電流I2は、すべてGNDに流れ込む。第1電流I1の増加又は減少に伴って、第2電流I2は増加又は減少する。従って、第1電流I1が増加すると、それに応じて電源電圧回路1pの内部で消費される電流が増加してしまう。
図4を参照して、この点について説明する。図4には、比較例における電源電圧回路1pの場合(比較例(C1p)の場合)と、第1の実施の形態における電源電圧回路1Aの場合(本実施形態(C1A)の場合)とが示されている。なお、電源電圧回路の内部で消費される電流(内部消費電流)Iwは、電源電圧回路内を流れる電流の合計ICCと出力電流Ioutとの差から求められる。すなわち、内部消費電流Iwは、ICC−Ioutである。
尚、比較例(C1p)の場合及び本実施形態(C1A)の場合、第1電流I1の増加に比例して第2電流I2が増加する。また、ICCは、第1電流I1及び第2電流I2の増加に伴って増加する。
比較例(C1p)の場合、出力電流Ioutは、第1電流I1に等しい。従って、第1電流I1及び第2電流I2が加算されたICCから、出力電流としての第1電流I1を差し引いたとしても、第2電流I2が加算された分は差し引かれない。
他方、本実施形態(C1A)の場合、出力電流Ioutは、第1電流I1及び第2電流I2の和に等しい。従って、ICCから、出力電流Iout(第1電流I1と第2電流I2の和)を引くと、内部消費電流Iwのみが残る。すなわち、比較例(C1p)の場合と比較して、第2電流I2の分(その増加分を含む)だけ内部消費電流Iwを低減できる。
また、出力電流Ioutの増加に関わらず、内部消費電流Iwを一定の値に設定できるという効果もある。図5に、上述の場合ごとに、出力電流の増加にともなって電源電圧回路の内部消費電流(Iw(ICC−Iout))が変化する様子を示す。
比較例(C1p)の場合、出力電流Ioutの増加に伴って、内部消費電流(Iw(ICC−Iout))が増加する。他方、本実施形態(C1A)の場合、出力電流Ioutが増加しても、内部消費電流(Iw(ICC−Iout))は一定である。従って、内部消費電流を適宜低く設定することで、出力電流Ioutの増加に関わらず、電源電圧回路1Aの消費電力を低く設定できる。
[第2の実施の形態]
次に、図6を参照しつつ、本発明の第2の実施の形態に係る電源電圧回路1Bについて説明する。第1の実施の形態と異なる点は、検出回路4の構成である。すなわち、差動増幅器8の非反転入力端子は、抵抗R32(第2抵抗器)と基準電圧生成回路5の間の節点に接続されている。
本実施の形態においては、差動増幅器8は、抵抗R31(第1抵抗器)の一端の電位と、抵抗R32の一端の電位(他の基準電位)との差分の電圧を増幅する。電流源CS1と電源電圧VCCとの間にある抵抗R32の一端の電位を利用することで、別途、差動増幅器8に与えられる基準電位を生成するためのみを目的とする回路を設けなくてよい。従って、電源電圧回路1Bの内部消費電流が増加することを低減できる。
なお、この差動増幅器8を比較器として構成してもよい。この場合、比較器は、抵抗R31の一端の電位と、抵抗R32の一端の電位との比較に基づいて、LOW出力(L)又はHIGH出力(H)のいずれかを出力する。つまり、抵抗R31の一端の電位が、抵抗R32の一端の電位よりも低ければ、HIGHレベルの電圧信号(H)を出力する。すなわち、VCCから与えられる電源電圧が抵抗R31によって降下する量が、VCCから与えられる電源電圧が抵抗R32によって降下する量よりも大きければ、HIGHレベルの電圧信号(H)を出力する。また、抵抗R31の一端の電位が、抵抗R32の一端の電位よりも高ければ、LOWレベルの電圧信号(L)を出力する。すなわち、VCCから与えられる電源電圧が抵抗R31によって降下する量が、VCCから与えられる電源電圧が抵抗R32によって降下する量よりも小さければ、LOWレベルの電圧信号(L)を出力する。
[第3の実施の形態]
次に、図7を参照しつつ、本発明の第3の実施の形態に係る電源電圧回路1Cについて説明する。第1の実施の形態と異なる点は、検出回路4の構成である。すなわち、差動増幅器8の非反転入力端子は、参照トランジスタM2の一端と抵抗R33との間の節点に接続される。また、反転入力端子は、電流源CS2と抵抗R34との間の節点に接続される。
差動増幅器8は、抵抗R33(第1抵抗器)の他端の電位と抵抗R34(第2抵抗器)の他端の電位(他の基準電位)との差分の電圧を増幅する。
本実施の形態においては、抵抗R34の一端は、出力端子Poに接続される。従って、別途、基準電位を生成する回路として、電流源CS2と抵抗R34とを追加したとしても、電源電圧回路1Cの内部消費電流が増加することを低減できる。
なお、この差動増幅器8を比較器として構成してもよい。この場合、比較器は、抵抗R33の他端の電位と、抵抗R34の他端の電位との比較に基づいて、LOW出力(L)又はHIGH出力(H)のいずれかを出力する。抵抗R33の他端の電位が抵抗R34の他端の電位よりも低ければ、LOW信号(L)を出力する。すなわち、抵抗R33に流れる第2電流I2によって決定される抵抗R33の両端間の電圧が、電流源CS2から抵抗R34に流れる電流によって決定される抵抗R34の両端間の電圧よりも小さければ、LOW信号(L)を出力する。また、抵抗R33の他端の電位が抵抗R34の他端の電位よりも高ければ、HIGH信号(H)を出力する。すなわち、抵抗R33に流れる第2電流I2によって決定される抵抗R33の両端間の電圧が、電流源CS2から抵抗R34に流れる電流によって決定される抵抗R34の両端間の電圧よりも大きければ、HIGH信号(H)を出力する。
[第4の実施の形態]
次に、図8を参照しつつ、本発明の第4の実施の形態に係る電源電圧回路1Dについて説明する。第1の実施の形態と異なる点は、検出回路4の構成である。すなわち、差動増幅器8の反転入力端子は、抵抗R31と参照トランジスタM2の間の節点に接続される。また、差動増幅器8の非反転入力端子は、抵抗R35(第2抵抗器)と抵抗R36(第3抵抗器)の間の節点に接続される。
差動増幅器8は、抵抗R35の一端から得られる電位と、抵抗R31の一端から得られる電位の差分の電圧を増幅する。
本実施の形態においては、差動増幅器8に与えられる基準電位を生成するため、抵抗を含む回路を設ける。抵抗R35及び抵抗R36の抵抗値を適宜設定することで、より正確な検出電圧を生成することができる。結果として、より正確に過電流の検出を行える。
なお、この差動増幅器8を比較器として構成してもよい。この場合、比較器は、抵抗R31の一端の電位と、抵抗R35の一端の電位との比較に基づいて、LOW出力(L)又はHIGH出力(H)のいずれかを出力する。抵抗R31の一端の電位が、抵抗R35の一端の電位よりも低ければ、HIGH信号(H)を出力する。すなわち、VCCから与えられる電源電圧が抵抗R31によって降下する量が、VCCから与えられる電源電圧が抵抗R35によって降下する量よりも大きければ、HIGH信号(H)を出力する。また、抵抗R31の一端の電位が、抵抗R35の一端の電位よりも高ければ、LOW信号(L)を出力する。すなわち、VCCから与えられる電源電圧が抵抗R31によって降下する量が、VCCから与えられる電源電圧が抵抗R35によって降下する量よりも小さければ、LOW信号(L)を出力する。
[第5の実施の形態]
次に、図9を参照しつつ、本発明の第5の実施の形態に係る電源電圧回路1Eについて説明する。第1の実施の形態と異なる点は、制御電圧調整回路7の構成である。すなわち、制御電圧調整回路7は、カレントミラー回路10のほか、誤差増幅器2の出力端と出力トランジスタM1のゲートとの間に中間制御回路50を備える。
誤差増幅器2の出力端は、中間制御回路50の端子P2に接続される。出力トランジスタM1のゲートは、中間制御回路50の端子P4に接続される。カレントミラー回路10に含まれるトランジスタM4のドレインは、中間制御回路50の端子P1に接続される。中間制御回路50の端子P3には、電源電圧VCCが与えられる。
図10に中間制御回路50の回路図を示す。図10に示すように、中間制御回路50は、一対のN型トランジスタM5、M6から構成されるカレントミラー回路11を有する。
カレントミラー回路11は、トランジスタM5、トランジスタM6を有する。トランジスタM5のゲートとトランジスタM6のゲートとは接続されている。トランジスタM6のドレインは、トランジスタM5のゲートとトランジスタM6のゲートとの間の節点に接続される。トランジスタM6のドレインは、端子P2を介して、誤差増幅器2の出力端に接続される。トランジスタM5、トランジスタM6のソースは接地されている。トランジスタM5のドレインは、端子P4を介して、出力トランジスタM1のゲートに接続される。また、VCCとトランジスタM5との間の抵抗40は、その一端が端子P3に接続され、その他端がトランジスタM5のドレインに接続される。
他方、カレントミラー回路10に含まれるトランジスタM4のドレインは、端子P1、P2を介して誤差増幅器2の出力端に接続される。すなわち、誤差増幅器2の出力端には、カレントミラー回路11の入力ラインLin2とカレントミラー回路10の出力ラインLout1が並列接続される。
通常時には、カレントミラー回路10はオフ状態にある。従って、誤差増幅器2の出力端には、カレントミラー回路10が接続されていないものとみなせる。他方、検出電圧が基準電圧を超えると、比較器9からON信号が出力され、カレントミラー回路10はオン状態となる。そして、カレントミラー回路10は、誤差増幅器2の出力端から、比較器9から与えられる電圧信号の電圧レベルに応じた電流を引き抜く。このとき、カレントミラー回路11の入力ラインLin2に流れる電流の減少に伴って、カレントミラー回路11の出力ラインLout2に流れる電流も減少する。カレントミラー回路11の出力ラインLout2に流れる電流が低下するため、抵抗R40とトランジスタM5の間の節点における電位は高くなる。すなわち、出力トランジスタM1に与えられる制御電圧の電位が高くなり、出力トランジスタM1のオン抵抗は大きくなる。結果として、出力トランジスタM1を通過する第1電流I1が小さくなり、出力トランジスタが過電流により破壊されることを抑制される。
本実施の形態においては、誤差増幅器に第3入力端子を設ける必要がない。一般的な演算増幅器を用いて誤差増幅器を構成すればよい。
[第6の実施の形態]
次に、図11を参照しつつ、本発明の第6の実施の形態に係る電源電圧回路1Fについて説明する。第4の実施の形態と異なる点は、制御電圧調整回路7の構成である。
制御電圧調整回路7は、N型のトランジスタM7、抵抗R41、誤差増幅器2を有する。トランジスタM7の制御端子(ゲート)は、比較器9の出力端子に接続される。トランジスタM7のドレインは、VCCに接続される。トランジスタM7のソースは、抵抗R41の一端に接続される。抵抗R41の一端はトランジスタM7のソースに接続され、その他端は抵抗R2の一端に接続される。
出力トランジスタM1に過電流が流れたものとみなされ、比較器9がON信号を出力すると、トランジスタM7はオン状態となる。そして、電源電圧VCCからトランジスタM7に流れる電流は、抵抗41、抵抗R2を介して、接地電位GNDに流れ込む。このとき、抵抗R2に流れる電流が増加することに伴い、抵抗R2の両端の電位差が増加し、誤差増幅器2の非反転入力端子に与えられる電圧の電位が上昇する。これによって、誤差増幅器2から出力トランジスタM1に与えられる制御電圧の電位も上昇し、出力トランジスタM1のオン抵抗は大きくなり、出力トランジスタM1は過電流から保護される。
本実施の形態では、誤差増幅器2の非反転入力端子に入力される分圧電圧を制御することにより、出力トランジスタM1を過電流から保護する。これにより、簡素な回路構成で電源電圧回路を構成できる。また、誤差増幅器に第3入力端子を設ける必要がない。一般的な演算増幅器を用いて誤差増幅器を構成すればよい。また、トランジスタM7と抵抗R41を追加するのみの簡素な構成を誤差増幅器2に付加するだけで制御電圧調整回路7を構成できる。
なお、本発明の技術的範囲は、上述の実施の形態に限定されることはない。比較器9からのON信号に基づいて、出力トランジスタM1から出力端子Poに流れる第1電流I1を制限する構成は、他の方法も採用しえる。P型とN型とを適宜逆の極性に代えて、電源電圧回路を構成してもよい。トランジスタは、バイポーラートランジスタで構成してもよい。
第1の実施の形態にかかる電源電圧回路を説明するための概略図である。 第1の実施の形態にかかる電源電圧回路の特性を説明するための概略図である。 比較例にかかる電源電圧回路を説明するための概略図である。 場合ごとの内部消費電流の違いを説明するための図である。 場合ごとの内部消費電流の違いを説明するための図である。 第2の実施の形態にかかる電源電圧回路を説明するための概略図である。 第3の実施の形態にかかる電源電圧回路を説明するための概略図である。 第4の実施の形態にかかる電源電圧回路を説明するための概略図である。 第5の実施の形態にかかる電源電圧回路を説明するための概略図である。 第5の実施の形態にかかる電源電圧回路に含まれる中間制御回路を説明するための概略図である。 第6の実施の形態にかかる電源電圧回路を説明するための概略図である。
符号の説明
1 電源電圧回路
2 誤差増幅器
3 分圧回路
4 検出回路
5 基準電圧生成回路
6 判定回路
7 制御電圧調整回路
8 差動増幅器
9 比較器
10、11 カレントミラー回路
CS1、CS2 電流源
D1、D2 ダイオード
R1、R2、R30〜R37、R40、R41 抵抗
E1 基準電圧源
GND 接地電位
Iout 出力電流
I1 第1電流
I2 第2電流
Iw 内部消費電流
Lc 配線
M1 出力トランジスタ
M2 参照トランジスタ
M3〜M6 トランジスタ
Po 出力端子
Z 負荷

Claims (13)

  1. 制御端子に入力される誤差増幅器からの制御電圧に基づいて第1電流を出力端子に流す出力トランジスタと、
    前記第1電流に応じた第2電流を前記出力端子に流す参照トランジスタを含み、前記第2電流に基づいて生成される検出電圧と基準電圧との比較に基づいて前記制御電圧の電位を調整する過電流保護回路と、を備え、
    前記過電流保護回路は、前記基準電圧を生成する基準電圧生成回路を備え、
    前記基準電圧生成回路は、前記出力端子の電圧である出力電圧の低下に応じて、前記基準電圧が低下するように、電流源と、前記電流源にアノードが接続される第1ダイオード部と、前記電流源にアノードが接続されるとともに前記出力端子にカソードが接続される第2ダイオード部と、を含んで構成されるとともに、
    前記基準電圧は、変動する前記出力電圧に応じて支配的となる前記第1ダイオード部又は前記第2ダイオード部のいずれかのアノード電圧に基づいて設定される、
    電源電圧回路。
  2. 前記過電流保護回路は、前記参照トランジスタに直列に接続された第1抵抗器の両端間の電位差を前記検出電圧として出力する検出回路を含んで構成されることを特徴とする請求項1記載の電源電圧回路。
  3. 前記過電流保護回路は、前記参照トランジスタに直列に接続された第1抵抗器の一端の電位と他の基準電位との電位差を前記検出電圧として出力する検出回路を含んで構成されることを特徴とする請求項1記載の電源電圧回路。
  4. 前記他の基準電位は、前記基準電圧を生成する基準電圧生成回路に接続される第2抵抗器の一端の電位であることを特徴とする請求項3記載の電源電圧回路。
  5. 前記他の基準電位は、前記出力端子に接続される第2抵抗器の一端の電位であることを特徴とする請求項3記載の電源電圧回路。
  6. 前記他の基準電位は、第2抵抗器と第3抵抗器との間の節点の電位であることを特徴とする請求項3記載の電源電圧回路。
  7. 前記基準電圧生成回路は、前記出力電圧の増加に応じて、前記基準電圧も増加するように構成されることを特徴とする請求項1乃至6のいずれか一項に記載の電源電圧回路。
  8. 前記第2ダイオード部を構成するダイオードの数は、前記第1ダイオード部を構成するダイオードの数よりも少ないことを特徴とする請求項記載の電源電圧回路。
  9. 前記過電流保護回路は、前記検出電圧と前記基準電圧とを比較する判定回路から出力される過電流検出信号に基づいて、前記第1電流を小さくするように前記制御電圧の電位を制御する制御電圧調整回路を備えることを特徴とする請求項1記載の電源電圧回路。
  10. 制御端子に入力される誤差増幅器からの制御電圧に基づいて第1電流を出力端子に流す出力トランジスタと、
    前記第1電流に応じた第2電流を前記出力端子に流す参照トランジスタと、
    前記第2電流に基づいて生成される検出電圧と基準電圧とを比較する比較器と、
    前記比較器から与えられる過電流検出信号に基づいて前記制御電圧の電位を調整する制御電圧調整回路と、
    前記基準電圧を生成する基準電圧生成回路と、を備え、
    前記基準電圧生成回路は、前記出力端子の電圧である出力電圧の低下に応じて、前記基準電圧が低下するように、電流源と、前記電流源にアノードが接続される第1ダイオード部と、前記電流源にアノードが接続されるとともに前記出力端子にカソードが接続される第2ダイオード部と、を含んで構成され、
    前記基準電圧は、前記第1ダイオード部の前記アノードと前記第2ダイオード部の前記アノードとの間の節点の電圧に基づいて設定される、
    電源電圧回路。
  11. 前記第2ダイオード部を構成するダイオードの数は、前記第1ダイオード部を構成するダイオードの数よりも少ないことを特徴とする請求項10記載の電源電圧回路。
  12. 前記出力電圧が所定の閾値電圧以下となったとき、
    前記基準電圧は、前記第1ダイオード部のアノード電圧に基づいて設定されることに代えて、前記第2ダイオード部のアノード電圧に基づいて設定されることを特徴とする請求項11記載の電源電圧回路。
  13. 前記第2ダイオード部の前記アノード電圧は、前記出力電圧と前記第2ダイオード部に生じる電圧との和であることを特徴とする請求項12記載の電源電圧回路。
JP2006301301A 2006-11-07 2006-11-07 電源電圧回路 Expired - Fee Related JP4996203B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006301301A JP4996203B2 (ja) 2006-11-07 2006-11-07 電源電圧回路
US11/979,609 US7855537B2 (en) 2006-11-07 2007-11-06 Voltage supply circuit
CN2007101658992A CN101178606B (zh) 2006-11-07 2007-11-07 电压供应电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301301A JP4996203B2 (ja) 2006-11-07 2006-11-07 電源電圧回路

Publications (2)

Publication Number Publication Date
JP2008117254A JP2008117254A (ja) 2008-05-22
JP4996203B2 true JP4996203B2 (ja) 2012-08-08

Family

ID=39359179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301301A Expired - Fee Related JP4996203B2 (ja) 2006-11-07 2006-11-07 電源電圧回路

Country Status (3)

Country Link
US (1) US7855537B2 (ja)
JP (1) JP4996203B2 (ja)
CN (1) CN101178606B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068522B2 (ja) * 2006-12-08 2012-11-07 株式会社リコー 基準電圧発生回路
EP2454643B1 (en) * 2009-07-16 2018-09-05 Telefonaktiebolaget LM Ericsson (publ) Low-dropout regulator
KR20110037367A (ko) * 2009-10-06 2011-04-13 페어차일드코리아반도체 주식회사 스위치 구동 회로 및 구동 방법
CN102117089B (zh) * 2009-12-31 2013-04-17 财团法人工业技术研究院 低压降稳压器
ES2692286T3 (es) * 2013-07-29 2018-12-03 Honda Motor Co., Ltd. Dispositivo de determinación de operación de conmutador
JP6145403B2 (ja) * 2013-12-27 2017-06-14 アズビル株式会社 出力回路および電圧発生装置
JP6316647B2 (ja) * 2014-04-25 2018-04-25 エイブリック株式会社 過電流保護回路、半導体装置、及びボルテージレギュレータ
CN105700611B (zh) * 2016-03-18 2017-11-14 重庆长安汽车股份有限公司 一种可调恒流电子负载
EP3562019B1 (en) * 2018-04-26 2021-03-03 ams AG Inverter circuit arrangement
JP2022191756A (ja) * 2021-06-16 2022-12-28 オムロン株式会社 端子保護用電圧検出回路及び電源装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204224A (ja) * 1984-03-28 1985-10-15 富士電気化学株式会社 変形フの字形過電流保護回路
JPS63316113A (ja) * 1987-06-18 1988-12-23 Seiko Instr & Electronics Ltd 定電圧回路
JPH01257270A (ja) * 1988-04-06 1989-10-13 Hitachi Ltd 半導体素子の電流検出回路
JP2764984B2 (ja) * 1989-01-04 1998-06-11 日産自動車株式会社 電流センス回路
JP3011727B2 (ja) * 1989-10-26 2000-02-21 富士電機株式会社 過電流検出回路
JPH05315852A (ja) * 1992-05-12 1993-11-26 Fuji Electric Co Ltd 電流制限回路および電流制限回路用定電圧源
JPH07146722A (ja) * 1993-10-01 1995-06-06 Fuji Electric Co Ltd トランジスタ用過電流保護装置
JPH08154022A (ja) * 1994-11-29 1996-06-11 Nec Corp 過電流保護回路付き増幅回路
JP4225615B2 (ja) 1998-10-22 2009-02-18 新日本無線株式会社 短絡保護回路
JP3666383B2 (ja) * 2000-11-13 2005-06-29 株式会社デンソー 電圧レギュレータ
JP4734747B2 (ja) 2001-04-06 2011-07-27 ミツミ電機株式会社 電流制限回路及び電源回路
JP2003216252A (ja) * 2001-11-15 2003-07-31 Seiko Instruments Inc ボルテージレギュレータ
JP3834673B2 (ja) 2001-12-19 2006-10-18 松下電器産業株式会社 電源レギュレータ回路
JP3610556B1 (ja) * 2003-10-21 2005-01-12 ローム株式会社 定電圧電源装置
JP3889402B2 (ja) * 2004-01-22 2007-03-07 ローム株式会社 過電流検出回路及びそれを備えたレギュレータ
JP2005293067A (ja) 2004-03-31 2005-10-20 Seiko Instruments Inc ボルテージレギュレータ
US7015680B2 (en) * 2004-06-10 2006-03-21 Micrel, Incorporated Current-limiting circuitry
JP2006053898A (ja) * 2004-07-15 2006-02-23 Rohm Co Ltd 過電流保護回路およびそれを利用した電圧生成回路ならびに電子機器
JP4468316B2 (ja) * 2006-02-15 2010-05-26 株式会社日立製作所 電源装置の過電流検出回路及び過電流検出方法
JP4465330B2 (ja) * 2006-05-08 2010-05-19 株式会社リコー 安定化電源回路の動作制御方法

Also Published As

Publication number Publication date
CN101178606A (zh) 2008-05-14
CN101178606B (zh) 2011-07-06
US20080106245A1 (en) 2008-05-08
US7855537B2 (en) 2010-12-21
JP2008117254A (ja) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4996203B2 (ja) 電源電圧回路
JP4953246B2 (ja) ボルテージレギュレータ
JP4616067B2 (ja) 定電圧電源回路
US8384370B2 (en) Voltage regulator with an overcurrent protection circuit
US8004257B2 (en) Voltage regulator
JP4758731B2 (ja) 定電圧電源回路
KR101739290B1 (ko) 차동 증폭 회로 및 시리즈 레귤레이터
JP5008472B2 (ja) ボルテージレギュレータ
JP5279544B2 (ja) ボルテージレギュレータ
JP2008015925A (ja) 基準電圧発生回路
JP2008112251A (ja) 電流検出回路及び電流検出回路を備えたボルテージレギュレータ
JP2008276611A (ja) 過電流保護回路
US20060256494A1 (en) Overheat detecting circuit
JP2005333691A (ja) 過電流検出回路及びこれを有する電源装置
JP2008052516A (ja) 定電圧回路
CN106066419B (zh) 电流检测电路
JP2009171479A (ja) 演算増幅器
CN110121685B (zh) 电源电路
JP4688581B2 (ja) 定電圧回路
US7057445B2 (en) Bias voltage generating circuit and differential amplifier
JP4555131B2 (ja) 定電圧電源回路
JP5849585B2 (ja) 過電流検出回路
JP4465330B2 (ja) 安定化電源回路の動作制御方法
KR102658159B1 (ko) 과열 보호 회로 및 이것을 구비한 반도체 장치
JP2006351944A (ja) 温度保護回路、半導体集積回路装置、電源装置、電気機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees