WO2005067017A1 - Cvd用気化器、溶液気化式cvd装置及びcvd用気化方法 - Google Patents

Cvd用気化器、溶液気化式cvd装置及びcvd用気化方法 Download PDF

Info

Publication number
WO2005067017A1
WO2005067017A1 PCT/JP2004/006635 JP2004006635W WO2005067017A1 WO 2005067017 A1 WO2005067017 A1 WO 2005067017A1 JP 2004006635 W JP2004006635 W JP 2004006635W WO 2005067017 A1 WO2005067017 A1 WO 2005067017A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
carrier gas
cvd
vaporization
material solution
Prior art date
Application number
PCT/JP2004/006635
Other languages
English (en)
French (fr)
Inventor
Hisayoshi Yamoto
Original Assignee
Youtec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co., Ltd. filed Critical Youtec Co., Ltd.
Priority to US10/526,786 priority Critical patent/US20060154480A1/en
Priority to JP2005516786A priority patent/JP4019430B2/ja
Priority to TW093140494A priority patent/TW200524046A/zh
Publication of WO2005067017A1 publication Critical patent/WO2005067017A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Definitions

  • Vaporizer for CVD solution vaporization type CVD device and vaporization method for CVD
  • the present invention relates to a vaporizer for CVD, a solution vaporization type CVD apparatus, and a vaporization method for CVD, and more particularly, to a vaporizer for CVD, in which clogging in a solution pipe or the like is suppressed and continuous use time is extended,
  • the present invention relates to a vaporization method and a solution vaporization type CVD apparatus using the vaporizer for CVD.
  • the method of sublimating and gasifying a solid chemical has the following problems. solid The sublimation rate during sublimation of the chemical is slow, so it is difficult to increase the flow rate of the reactant, and it is difficult to control the flow rate of the reactant, so that the deposition rate of the thin film is small and the reproducibility is poor. Also, it was difficult to transport the sublimated chemical to the reactor using a pipe heated to about 250 ° C.
  • ATMI a U.S.A.
  • a U.S.A. was initially used as a vaporizer for producing a solution by dissolving a solid material in a solvent and gasifying the solution at a high temperature to produce a reaction gas necessary for the SBT thin film synthesis reaction.
  • this vaporizer was clogged in about ten hours, and could not be used as a vaporizer for mass-produced CVD equipment. Therefore, in 1996, the present inventor told Shimadzu 'Yoshioka' and Yamagata University, Faculty of Engineering, Department of Materials Engineering, and Professor Tsuda that the high-performance solution needed to stably form high-quality SBT thin films was used. Ordered the development and manufacture of a supply control system and a high performance vaporizer.
  • FIG. 11 shows the TG CHART (Ar 760/10 Torr, O 760 Torr) of Sr [Ta (OEt) (OCHOME)].
  • FIG. This figure shows that a sample of Sr [Ta (OEt) (OCHOME)] was heated at a rate of 10 ° C / min from 30 ° C to 600 ° C in an argon atmosphere with a pressure of 760 Torr and a flow rate of 100 ml / min.
  • a graph 103 showing a change in sample weight when the temperature is raised is shown. From this figure, it can be seen that Sr [Ta (OEt) (OCHOME)] is about 220
  • FIG. 12 is a diagram showing a TG CHART (Ar 760/10 Torr, O2 760 Torr) of Bi ( ⁇ tAm). This
  • Figure shows a sample of Bi (OtAm) in an argon atmosphere with a pressure of 760 Torr and a flow rate of 100 mLZ.
  • FIG. 13 is a diagram showing a TG CHART (Ar 760/10 Torr, O2 760 Torr) of Bi (MMP). This figure shows the weight of the sample when the Bi (MMP) sample was heated from 30 ° C to 600 ° C at a rate of 10 ° CZ in an argon atmosphere with a pressure of 760 Torr and a flow rate of 100 mlZ.
  • a graph 121 showing the change, and the weight of the sample when the sample was heated from 30 ° C to 600 ° C at a rate of 10 ° CZ in an argon atmosphere at a pressure of 10 Torr and a flow rate of 50 ml / min.
  • Graph 122 showing the change, and the change in sample weight when the sample was heated from 30 ° C to 600 ° C at a rate of 10 ° CZ in an oxygen atmosphere with a pressure force of S760 Torr and a flow rate of 100 mlZ. Is shown in the graph 123. From this figure, Bi (MMP) is 10
  • FIG. 14 shows a TG CHART (Ar 760/10 Torr, O2) mixture of Bi ( ⁇ tAm) / Sr [Ta (OEt)] mixture.
  • the cause of the deterioration of the sublimation characteristic can be understood from the NMR (nuclear magnetic resonance) characteristic shown in FIG.
  • FIG. 16 is a diagram showing TG CHART (Ar 760 Torr) of a mixture of Bi (MMP) / Sr [Ta (OEt) (OCHOME)].
  • This figure shows a sample of Bi (MMP) / Sr [Ta (OEt) (OCHOME)] mixture at 30 ° C to 600 ° C in an atmosphere of argon at a pressure of 760 Torr and a flow rate of 100 ml / min.
  • / 5 is a graph showing a change in sample weight when the temperature is raised at a rate of temperature rise for one minute. From this figure, it can be seen that the mixture of Bi (MMP) / Sr [Ta (OEt) (OCHOME)] sublimates only about 80% in an argon atmosphere.
  • FIG. 17 is a diagram showing TG CHART (Ar 760/10 Torr, O2 760 Torr) of BiPh. This figure shows the change in sample weight when a BiPh sample was heated from 30 ° C to 600 ° C at a rate of 10 ° CZ in an argon atmosphere with a pressure of 760 Torr and a flow rate of 100 ml / min. Changes in the sample weight when the sample was heated from 30 ° C to 600 ° C at a rate of 10 ° CZ in an argon atmosphere with a pressure of 10 Torr and a flow rate of 50 ml / min as shown in Daraf 141.
  • TG CHART Ar 760/10 Torr, O2 760 Torr
  • FIG. 18 is a diagram showing TG CHART (Ar 760,0 760 Torr) of a BiPh / Sr [Ta (OEt) 2] mixture. This figure shows that BiPh at pressure of 760 Torr and argon atmosphere of 100 ml / min.
  • FIG. 19 is a diagram showing Mixing Stability of BiPh3 & Sr [Ta (OEt) 6] 2 (NMR) characteristics. From this figure, no new substances are synthesized in the BiPh / Sr [Ta (OEt)] mixture.
  • FIG. 20 is a diagram showing BiPh TG-DTA CHART (about 760 Torr). As shown in this figure, the oxidation of BiPh occurs at 465 ° C. This is equivalent to 259 of Sr [Ta ( ⁇ Et) (OC H OMe)].
  • the oxidation temperature is too high compared to 209 ° C for Bi (MMP) and 205 ° C for Bi (MtAm).
  • Bi (OtAm) undergoes a hydrolysis reaction with only 180 ppm of water. This is,
  • the Sr [Ta (OEt) (OCHOME)] power is 650 ppm moisture and the Bi (MMP) power Sl l 70 ppm water causes a hydrolysis reaction.
  • Bi (OtAm) reacts and produced Bi oxide may clog pipes and flow meters
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-216150 (Paragraphs 76 to 78, Paragraphs 145 to 167, FIGS. 3 and 8)
  • Patent Document 2 JP-A-2002-105646 (13th to 14th paragraphs, FIG. 2)
  • the technology of sublimating and gasifying a solid chemical at room temperature and using it as a reaction gas for CVD has problems such as a slow deposition rate of the thin film, and is considered to be difficult to put into practical use.
  • the solution vaporization CVD method which uses a chemical that is solid at room temperature, dissolves it in a solvent, atomizes it, and then vaporizes it at a high temperature, has a high deposition rate. And a problem of clogging the solution piping and the like. If the solution piping is clogged, the CVD device can only be used continuously for a short time. Therefore, it is necessary to devise a solution supply system.
  • the present invention has been made in view of the above circumstances, and has as its object to suppress the clogging of a solution pipe or the like and to extend the continuous use time, and to provide a vaporizer for CVD and a solution vaporizer.
  • An object of the present invention is to provide a CVD apparatus and a vaporization method for CVD.
  • a vaporizer for CVD includes:
  • a carrier gas passage which supplies the carrier gas to the dispersion section separately from each of the plurality of raw material solutions
  • a vaporization unit that vaporizes the raw material solution dispersed in the dispersion unit
  • the vaporization section and the dispersion section are connected, and the raw material solution dispersed in the dispersion section is introduced into the vaporization section with pores, A cleaning mechanism for cleaning at least one of the dispersion unit, the pores, and the vaporization unit;
  • the vaporizer for CVD since it has a cleaning mechanism, it is possible to clean at least one of the dispersion part, the pores, and the vaporization part.
  • the solute in the raw material solution gradually precipitates out in at least one of the dispersing part, the pores, and the vaporization tube, and gradually clogs the pores. Clogging can be eliminated by washing at least one of the dispersing part, the pores, and the vaporizing part by using.
  • the vaporizer for CVD according to the present invention preferably further comprises a mechanism for monitoring the pressure of the carrier gas.
  • a mechanism for monitoring the pressure of the carrier gas By monitoring the pressure of the carrier gas using this mechanism, the state of clogging of the pores can be known. For this reason, it is possible to lose the appropriate timing for cleaning at least one of the dispersion part, the pores, and the vaporization part by the cleaning mechanism.
  • the vaporizer for CVD comprises: a dispersing unit for dispersing a plurality of raw material solutions in a carrier gas in the form of fine particles or mist;
  • a carrier gas passage which supplies the carrier gas to the dispersion section separately from each of the plurality of raw material solutions
  • a vaporization unit that vaporizes the raw material solution dispersed in the dispersion unit
  • the vaporization part and the dispersion part are connected, and the raw material solution dispersed in the dispersion part is introduced into the vaporization part with pores,
  • the dispersing portion is disposed between the fine hole and the tip of each of the plurality of raw material solution passages, and the fine hole is formed in the plurality of raw material solution passages.
  • the diameter is smaller than each of the carrier gas passages.
  • the forming section be in a reduced pressure state and the dispersion section be in a pressurized state.
  • the vaporizer for CVD according to the present invention includes a plurality of raw material solution pipes that separately supply a plurality of raw material solutions,
  • a carrier gas pipe arranged so as to surround the outside of the plurality of source solution pipes, and a pressurized carrier gas flowing outside each of the plurality of source solution pipes; A pore separated from the tip of the raw material solution pipe;
  • a vaporization pipe connected to a tip of the carrier gas pipe and connected to the inside of the carrier gas pipe by the pores;
  • the vaporizer for CVD since it has a cleaning mechanism, it is possible to clean at least one of the tip, the pores, and the vaporizing portion of the carrier gas pipe.
  • the solute in the raw material solution gradually precipitates at at least one of the tip of the carrier gas pipe, the pores, and the vaporization pipe, gradually clogging the pores.
  • clogging can be eliminated by cleaning at least one of the tip, the pores, and the vaporized portion of the carrier gas pipe using a cleaning mechanism.
  • the vaporizer for CVD according to the present invention preferably further comprises a mechanism for monitoring the pressure of the carrier gas in the carrier gas pipe.
  • a mechanism for monitoring the pressure of the carrier gas in the carrier gas pipe By monitoring the carrier gas pressure using this mechanism, the state of clogging of the pores can be known. Therefore, it is possible to know an appropriate timing for cleaning by the cleaning mechanism.
  • the cleaning mechanism may perform cleaning by supplying a solvent to a tip end and a fine hole of a pipe for a carrier gas.
  • the key may be provided between the pores in the carrier gas piping and the tips of the plurality of raw material solution pipings.
  • the carrier gas is mixed with the plurality of raw material solutions, and the plurality of raw material solutions are dispersed in the carrier gas in the form of fine particles or mist. Then, it is introduced into the vaporization pipe, and is heated and vaporized by the heating means. Thereby, since only the solvent in the raw material solution can be suppressed from evaporating in the pores and the vaporization tube near the pores, it is possible to suppress the chemical reaction of the raw material solution and to suppress clogging.
  • the pores are preferably smaller than the diameters of the plurality of raw material solution pipes and the carrier gas pipes.
  • the plurality of raw material solutions may be a mixture of Sr [Ta (OEt) (OCHOME)] and a solvent of Bi (MMP).
  • the carrier gas may be an argon gas or a nitrogen gas.
  • a solution vaporization type CVD apparatus includes any one of the above-described vaporizers for CVD.
  • a solution vaporization type CVD apparatus includes any one of the above vaporizers for CVD, a reaction chamber connected to the vaporization tube,
  • the film is formed using the raw material solution vaporized in the vaporization tube.
  • the solution vaporization type CVD apparatus includes a plurality of the vaporizers for CVD, a part of the vaporizer for CVD is cleaned by the cleaning mechanism, and the other vaporizers for CVD are used.
  • the vaporizer is continuously used to supply the vaporized raw material solution to the reaction chamber by changing the vaporizer for use in the used state to a vaporizer for CVD in a cleaning state with the passage of time. Even if it is good. This makes it possible to further extend the continuous operation time of the solution vaporization type CVD apparatus.
  • the plurality of raw material solutions and the carrier gas are separated from each other and supplied to the dispersion section, mixed in the dispersion section, and mixed in the carrier gas. Dispersing the raw material solution into fine particles or mist, and immediately thereafter, adiabatically expanding and vaporizing the raw material solution;
  • the plurality of raw material solutions and the carrier gas are separately separated from each other and supplied to the dispersion section, mixed in the dispersion section, and mixed in the carrier gas. Dispersing the raw material solution into fine particles or mist, and immediately thereafter, adiabatically expanding and vaporizing the raw material solution;
  • the pressure of the carrier gas is monitored during the vaporizing step, and when the carrier gas exceeds a predetermined pressure, the supply of the plurality of raw material solutions to the dispersion unit is stopped, and the dispersion unit and the dispersion unit are stopped. Washing at least one of the regions where the raw material solution is vaporized,
  • the cleaning step is performed by flowing a solvent and a carrier gas through at least one of the dispersion section and the region where the raw material solution is vaporized. Monitoring the pressure of the carrier gas during the cleaning step, and stopping the flow of the solvent when the carrier gas pressure falls below a predetermined pressure, and terminating the cleaning. It is possible.
  • the solvent may be the same as the solvent contained in the raw material solution.
  • the solvent is one or more selected from the group consisting of ethylcyclohexane, n-hexane, benzene, toluene, octane, and decane. It is also possible that
  • FIG. 1 (a) is a configuration diagram schematically showing a solution supply system of a CVD vaporizer according to Embodiment 1 of the present invention
  • FIG. 1 (b) is a solution supply system of a CVD vaporizer
  • FIG. 3 is a cross-sectional view schematically illustrating a dispersion unit and a vaporization unit.
  • the vaporizer for CVD has first and second raw material solution pipes 1 and 2.
  • the first raw material solution pipe 1 is arranged adjacent to and parallel to the second raw material solution pipe 2.
  • a carrier gas pipe 3 is disposed outside the first and second raw material solution pipes 1 and 2.
  • the inner diameter of the carrier gas pipe 3 is formed larger than the sum of the outer diameter of the first raw material solution pipe 1 and the outer diameter of the second raw material solution pipe 2. That is, the first and second raw material solution pipes 1 and 2 are introduced into the carrier gas pipe 3 and the first and second raw material solution pipes 1 and 2 are wrapped around the first and second raw material solution pipes 1 and 2. 3 are formed.
  • the base end of the first raw material solution pipe 1 is connected to a first supply mechanism 4 for supplying the chemical 1 and the solvent.
  • the first supply mechanism 4 is a chemical supply (for example, Sr [Ta (OEt) (OCHOME)
  • the base end side of the second raw material solution pipe 2 is connected to a second supply mechanism 5 for supplying the chemical 2 and the solvent.
  • the second supply mechanism 5 has a supply source for supplying a chemical (for example, Bi (MMP)) 2 and a supply source for supplying a solvent.
  • a valve 8 and a mass flow controller are provided between the chemical 2 supply source and the second raw material solution pipe 2.
  • a valve 9 and a mass flow controller are provided between the supply source of the solvent and the second raw material solution pipe 2. Further, the solvent and the chemical 2 are merged (mixed) between the supply source of the solvent and the second raw material solution pipe 2.
  • the base end side of the carrier gas pipe 3 is connected to a third supply mechanism 12 for supplying an argon gas and a nitrogen gas.
  • the third supply mechanism 12 has a supply source for supplying argon gas (Ar) and a supply source for supplying nitrogen gas (N).
  • Argon gas supply source and carrier gas A valve 10 and a mass flow controller (not shown) are provided between the pipe 3 for use.
  • a valve 11 and a mass flow controller (not shown) are provided between the nitrogen gas supply source and the carrier gas pipe 3.
  • a high-precision pressure gauge 17 is provided between the third supply mechanism 12 and the carrier gas pipe 3, and the high-precision pressure gauge 17 measures the pressure of the carrier gas in the carrier gas pipe 3. It is always monitored.
  • the high-precision pressure gauge 17 can send an output signal to a control unit (not shown). This makes it possible to display and monitor the pressure of the carrier gas on the control screen.
  • One end of a vaporization pipe 13 is connected to the tip of the carrier gas pipe 3.
  • a pore is provided at the tip of the carrier gas pipe 3, and the inside of the carrier gas pipe 3 and the inside of the vaporization pipe 13 are connected by the pore.
  • a heater is provided around the vaporizing tube 13, and the heater heats the vaporizing tube 13 to, for example, about 270 ° C.
  • the other end of the vaporization tube 13 is connected to a reaction chamber (not shown).
  • the tips of the first and second raw material solution pipes 1 and 2 are separated from the pores. That is, the dispersion portion 14 is provided between the tip of each of the first and second raw material solution pipes 1 and 2 in the carrier gas pipe 3 and the pores.
  • the dispersing section 14 is provided with a first raw material solution (a mixture of a chemical 1 and a solvent) flowing out from the tip of the first raw material solution pipe 1 and a second raw material solution flowing out of the tip of the second raw material solution pipe 2.
  • the raw material solution (a mixture of Chemical 2 and a solvent) and the argon gas or nitrogen gas flowing out of the carrier gas piping 3 are mixed, and the first and second raw material solutions are mixed in argon gas or nitrogen gas, respectively. Is dispersed in the form of fine particles or mist.
  • the valve 6 is opened, and the first raw material solution is supplied from the first supply mechanism 4 to the first raw material solution pipe 1 at a predetermined flow rate and a predetermined pressure.
  • the first raw material solution is, for example, a mixture of Sr [Ta (O Et) ( ⁇ CH OMe)] and a solvent.
  • the valve 8 is opened to supply the second raw material solution from the second supply mechanism 5 to the second raw material solution pipe 2 at a predetermined flow rate and a predetermined pressure.
  • the second raw material solution is, for example, a mixture of Bi (MMP) and a solvent.
  • the valves 10 and 11 are opened to supply the carrier gas from the third supply mechanism 12 to the carrier gas pipe 3 at a predetermined flow rate and pressure.
  • the carrier gas is, for example, argon gas or nitrogen gas. Raw gas.
  • the first raw material solution is supplied to the dispersion section 14 through the first raw material solution pipe 1, and the second raw material solution is supplied to the dispersion section 14 through the second raw material solution pipe 2.
  • the supplied and pressurized carrier gas is supplied to the dispersion section 14 through the carrier gas pipe 3.
  • the first and second raw material solutions and the carrier gas are mixed, and the first and second raw material solutions are dispersed in the carrier gas in the form of fine particles or mist.
  • the first and second raw material solutions dispersed in the carrier gas in the dispersion section 14 are introduced into the vaporization tube 13 through the fine holes.
  • the dispersed and atomized first and second raw material solutions are instantaneously heated to about 270 ° C by a heater.
  • the pressure in the dispersion section 14 is under reduced pressure, and the inside of the dispersion section 14 is under pressure.
  • the pressure in the vaporizing tube 13 is, for example, 5-30 Torr, while the pressure in the dispersion section 14 is, for example, 1500-2200 Torr.
  • the carrier gas is ejected to the vaporization tube at an extremely high speed, and expands (for example, adiabatic expansion) based on the pressure difference.
  • the sublimation temperature of the chemical contained in the first and second raw material solutions decreases, and the raw material solution (including the chemical) is vaporized by the heat from the heater.
  • the first and second raw material solutions become fine mist immediately after being dispersed in the dispersing unit 14 by the high-speed carrier gas flow, and thus are easily vaporized in the vaporization tube 13 instantaneously.
  • the first and second raw material solutions are vaporized by the vaporizer for CVD to form the raw material gas.
  • This raw material gas is sent to the reaction chamber through the vaporization tube 13, where a thin film is formed on the substrate to be processed by the CVD method.
  • the pressure of the carrier gas is constantly monitored in real time by the high-precision pressure gauge 17.
  • solutes in the raw material solution gradually precipitate in at least one of the dispersion section 14 and the pores, and gradually clog the pores (spray ports). . This phenomenon is as follows.
  • the radiant heat from 13 evaporates only the solvent having a high vapor pressure (eg, ethylcyclohexane EC H), so that the solute precipitates and clogs the spray port.
  • a high vapor pressure eg, ethylcyclohexane EC H
  • the pressure of the carrier gas in the carrier gas piping 3 increases. Then, after the control unit receives an output signal from the high-precision pressure gauge 17 that the pressure of the carrier gas has exceeded a predetermined pressure (for example, 200 KPa), the valves 6 and 8 are closed and Sr [Ta ( ⁇ Et) (OC H Stop supplying OMe)] solution and Bi (MMP) solution, open valves 7, 9 and let only solvent flow. Alternatively, the outlet of the high-temperature vaporization pipe is switched from the reactor to the exhaust side (not shown), and only the solvent and the carrier gas are supplied to the raw material solution pipes 1 and 2 and the carrier gas pipe 3 to perform cleaning.
  • a predetermined pressure for example, 200 KPa
  • the valves 6 and 8 are closed and Sr [Ta ( ⁇ Et) (OC H Stop supplying OMe)] solution and Bi (MMP) solution, open valves 7, 9 and let only solvent flow.
  • the outlet of the high-temperature vaporization pipe is switched from the reactor to the exhaust
  • the flow rate of the solvent can be increased to twice to ten times or more of the flow rate of the chemical solution, and the cleaning effect can be enhanced.
  • the solvent used in the cleaning step is supplied from the first and second supply mechanisms 4 and 5, but the solvent supply mechanism for the cleaning step is not limited to this. It is also possible to supply a cleaning solvent from this solvent supply mechanism. It is preferable that the substrate to be processed is taken out of the reaction chamber before the cleaning and removal, and a new substrate to be processed is put into the reaction chamber after the cleaning and removal is completed.
  • the pressure of the carrier gas in the carrier gas pipe 3 is monitored by the high-precision pressure gauge 17 even during the cleaning step. This monitors the state of clogging of the pores. As the washing process is continued, the deposited solutes are dissolved, Clear clogging of the mouth). For this reason, the pressure of the carrier gas decreases. Then, after receiving the output signal from the high-precision pressure gauge 17 indicating that the pressure of the carrier gas has become equal to or lower than the predetermined pressure (for example, lOOKpa), the valves 6 and 8 are opened again to start the supply of the solution by opening the valves 6 and 8 again. Evaporate the solution.
  • the predetermined pressure for example, lOOKpa
  • the pipe capacity from the valve 69 to the tip of the first and second raw material solution pipes 1 and 2 is preferably 8Xcc or less when the flow rate of the solution flowing during CVD is Xcc / min. More preferably, it is 2Xcc or less, even more preferably Xcc or less.
  • the timing for cleaning and removing the clogging generated in the spray port with the solvent is measured by monitoring the pressure of the carrier gas with the high-precision pressure gauge 17.
  • the present invention is not limited to this, and after a predetermined time has elapsed, it is also possible to wash and remove by flowing a solvent and a carrier gas.
  • the spray port can be returned to the original state again. Therefore, by inserting a cleaning step while using the vaporizer for CVD, it is possible to use the vaporizer for CVD for an extremely long time. It takes about 10 hours to disassemble, clean and reassemble the clogged vaporizer for CVD, but the above-mentioned cleaning process is completed in a few minutes. It is possible to greatly reduce
  • the first and second raw material solution pipes 1 and 2 are arranged adjacent to each other in parallel, and a carrier gas pipe 3 is provided outside these pipes 1 and 2.
  • a carrier gas pipe 3 is provided outside these pipes 1 and 2.
  • each of the first and second raw material solution pipes 1 and 2 is wrapped with a larger-diameter carrier gas pipe 3, and the raw material solution pipes 1 and 2 and the carrier gas A structure is used in which a carrier gas flows through the gap with the supply pipe 3, and a vaporization pipe for adiabatic expansion is provided downstream of the pipe. That is, a pressurized carrier is inserted into the gap outside the raw material solution pipes 1 and 2. Since the carrier gas flows at a high speed, it is possible to suppress the temperature rise in the first and second raw material solution pipes 1 and 2, the carrier gas pipe 3 and the dispersion section 14.
  • the dispersion is performed by dispersing the carrier gas in the form of fine particles or mist immediately after mixing the first and second raw material solutions with the carrier gas in the dispersing section 14 (within 1 second). Since only the solvent in the raw material solution can be suppressed from evaporating in the part 14, the raw material solution can be prevented from causing a chemical reaction in the dispersing part 14, and clogging in the dispersing part 14 and the pores can be suppressed. it can. Therefore, the continuous use time of the vaporizer for CVD can be extended.
  • the first and second raw material solutions are dispersed in the dispersing section 14, and the dispersed fine particle or mist raw material solution is heated in the vaporization pipe 13 to instantaneously. Can be vaporized. Therefore, since only the solvent in the raw material solution can be suppressed from evaporating in the vaporization tube 13 near the pores and the fine holes, the chemical reaction of the raw material solution can be suppressed in the vaporization tube near the fine holes and the fine holes. It is possible to suppress clogging of the pores and the vaporization tubes near the pores. Therefore, the continuous use time of the vaporizer for CVD can be extended.
  • the vaporizer for CVD can be used stably and continuously for a long time. Therefore, thin films of ferroelectric materials PZT, SBT and the like can be formed with good reproducibility and controllability, and high performance of a CVD vaporizer and a solution vaporization type CVD apparatus can be realized.
  • Solution vaporization type CVD equipment that performs long-term continuous deposition while sequentially cleaning and cleaning a plurality of such vaporizers for CVD uses, for example, a superconducting oxide thin film YBCO on a very long tape-shaped substrate. This is particularly effective when forming a film with a thickness of about 10 ⁇ m.
  • FIG. 2A is a configuration diagram schematically showing a solution supply system of a vaporizer for CVD according to Embodiment 2 of the present invention, and the same parts as those in FIG. Only the part will be explained.
  • the vaporizer for CVD shown in FIG. 2 (0L) has three pipes 1, 2, and 15 for supplying three raw material solutions to the dispersion section. That is, the first raw material solution pipe 1, the second raw material solution pipe 2, and the third raw material solution pipe 15 are arranged adjacent to and parallel to each other.
  • a carrier gas pipe 3 is disposed outside the first to third raw material solution pipes 1, 2, and 15. That is, the first to third raw material solution pipes 1, 2, and 15 are inserted into the carrier gas pipe 3 so as to surround the first to third raw material solution pipes 1, 2, and 15.
  • Carrier gas piping 3 is formed.
  • the base end of the third raw material solution pipe 15 is connected to a third supply mechanism (not shown) for supplying the chemical 3 and the solvent.
  • the third supply mechanism has a supply source for supplying Chemical 3 and a supply source for supplying the solvent.
  • a valve (not shown) and a mass flow controller (not shown) are provided between the supply source of the chemical 3 and the third raw material solution pipe 15.
  • a norbu (not shown) and a mass flow controller (not shown) are provided between the supply source of the solvent and the third raw material solution pipe 15. Further, the solvent and the chemical 3 are merged (mixed) between the supply source of the solvent and the third raw material solution pipe 15.
  • the tips of the first to third raw material solution pipes 1, 2, and 15 are separated by a pore force. That is, a dispersion portion is provided between the tip of each of the first to third raw material solution pipes 1, 2, and 15 in the carrier gas pipe 3 and the pores.
  • This dispersing section is composed of a first raw material solution (a mixture of chemical 1 and a solvent) flowing out from the end of the first raw material solution pipe 1 and a second raw material solution flowing out of the second raw material solution pipe 2 Solution (Chemical 2 and Solvent), the third raw material solution (a mixture of chemical 3 and solvent) flowing out from the tip of the third raw material solution pipe 15, and the argon gas or nitrogen gas flowing out of the carrier gas pipe 3
  • the first to third raw material solutions are mixed and dispersed in an argon gas or a nitrogen gas in the form of fine particles or mist.
  • FIG. 2 (b) is a configuration diagram schematically showing a solution supply system of a vaporizer for CVD according to Embodiment 3 of the present invention, wherein the same parts as those in FIG. Only the part will be explained.
  • the vaporizer for CVD shown in FIG. 2 (b) has four pipes 1, 2, 15, and 16 for supplying four raw material solutions to the dispersion section.
  • the first raw material solution piping 1, the second raw material solution piping 2, the third raw material solution piping 15, and the fourth raw material solution piping 16 are alternate! They are arranged in parallel next to /.
  • a carrier gas pipe 3 is arranged outside the first to fourth raw material solution pipes 1, 2, 15, and 16. That is, the first to fourth raw material solution pipes are inserted into the carrier gas pipes 3, and the carrier gas pipes 3 are formed so as to surround the first to fourth raw material solution pipes. .
  • the tomb end of the fourth raw material solution pipe 16 is connected to a fourth supply mechanism (not shown) that supplies the chemical 4 and the solvent.
  • the fourth supply mechanism has a supply source for supplying Chemical 4 and a supply source for supplying the solvent.
  • a valve (not shown) and a mass flow controller (not shown) are provided between the chemical 4 supply source and the fourth raw material solution pipe 16.
  • a pulp (not shown) and a mass flow controller (not shown) are provided between the supply source of the solvent and the fourth raw material solution pipe 16.
  • the solvent and the chemical 4 are merged (mixed) between the supply source of the solvent and the fourth raw material solution pipe 16.
  • the tips of the first to fourth raw material solution pipes 1, 2, 15, and 16 are separated from the pores. That is, a dispersion portion is provided between the tip of each of the first to fourth raw material solution pipes in the carrier gas pipe 3 and the pores. This dispersing part is the first raw material solution flowing out of the first raw material solution pipe 1 (the mixture of chemical 1 and solvent
  • the second raw material solution flowing out of the tip of the second raw material solution pipe 2 (a mixture of chemical 2 and the solvent), and the third raw material solution (the third raw material solution also flows out of the third raw solution pipe 15).
  • the mixture of Chemical 3 and solvent), the force of the tip of the fourth raw material solution pipe 16 The fourth raw material solution (mixture of Chemical 4 and solvent) flowing out, and the argon gas flowing out of the carrier gas pipe 3 or
  • the first to third raw material solutions are dispersed in an argon gas or a nitrogen gas in the form of fine particles or mist by mixing a nitrogen gas.
  • the present invention is not limited to the above-described embodiment, and can be implemented with various modifications without departing from the spirit of the present invention.
  • the application range of the vaporizer for CVD, the vaporization method for CVD, and the solution vaporization type CVD apparatus of the present invention is a high-speed non-volatile memory, which is a high-speed nonvolatile memory.
  • various chemicals for example, substances with low vapor pressure, YBCO (Super Conductive Oxide), Thick PZT / PLZT / SBT (Filter, MEMS, Optical Interconnect, HD), Metal (Ir, Pt, Cu), Barrier Metal (TiN, TaN), High k (HfOx, Al O, BST etc)
  • YBCO Super Conductive Oxide
  • Thick PZT / PLZT / SBT Finter, MEMS, Optical Interconnect, HD
  • Metal Ir, Pt, Cu
  • Barrier Metal TiN, TaN
  • High k HfOx, Al O, BST etc
  • the first solution obtained by dissolving Sr [Ta (OEt) (OCHOME)] in a solvent is used.
  • the raw material solution is not limited to the raw material solution described above, and a raw material solution prepared by dissolving another solid material in a solvent can also be used. Furthermore, liquids such as Sr [Ta ( ⁇ Et) (OC H OMe)]
  • raw material itself as a raw material solution, or to use a liquid raw material mixed with a solvent as a raw material solution.
  • the present invention is not limited to this. It is also possible to form a film selectively.
  • the raw material solution and the carrier gas are passed through a vaporizer for CVD to the reaction chamber (the first CVD chamber) for an appropriate time to form a first thin film on the substrate to be processed.
  • the valve is switched to the exhaust side, and a new raw material solution is supplied at a predetermined flow rate to the reaction chamber via the vaporizer for CVD, and the sum (volume) of the flow rate of the new raw material solution is supplied from the valve to the CVD chamber.
  • the new raw material solution and carrier gas flow through the vaporizer for CVD into the reaction chamber for an appropriate time to form a second thin film on the substrate to be processed, resulting in a different composition. It is possible to form two types of thin films successively. By repeating this operation, three or more types of thin films can be formed continuously.
  • the temperature of the substrate to be processed and the reaction pressure of the reaction chamber may be changed.
  • FIGS 3 to 8 show the results of monitoring the carrier gas pressure.
  • the pressure of the carrier gas gradually increases, and at the point 420, the carrier gas pressure of the BiMMP becomes 220 kPa (about 2.2 atm.). Gauge pressure). At this point, stop the BiMMP (0.2 ccm) and run the wash solution IJECH (0.5 ccm). Then, the pressure of the carrier gas drops sharply, reaches 120 kPa at 440 points, and stabilizes. This drop in carrier gas pressure indicates that BiMMP adhering to the tip (pores) of the atomizer has been washed away.
  • Fig. 4 to Fig. 6 are the same, and it can be seen that the phenomenon of adhesion to the tip of the nebulizer occurs with good reproducibility. This phenomenon was observed not only in SBTCVD using Sr [Ta (OEt) ( ⁇ CHOMe)] and Bi (MMP) but also in PZTCVD using the following chemicals. Chemicals for PZTCVD are Pb (DPM) / ECH (0.15 mol / L), Zr (DIBM) I ECH (0.15 mol / L), Ti (Oi-Pr) (DPM) I ECH (0.30 mol / L) is there.
  • FIGS. 9 and 10 show the results of a reproducibility test of SBTCVD performed with this vaporizer.
  • FIG. 9 shows the reproducibility of the deposition rate.
  • FIG. 10 shows the reproducibility of the film forming composition.
  • FIG. 1 (a) is a configuration diagram schematically showing a solution supply system of a vaporizer for CVD according to Embodiment 1 of the present invention
  • FIG. 1 (b) is a diagram of a vaporizer for CVD
  • FIG. 3 is a cross-sectional view schematically showing a solution supply system, a dispersion section, and a vaporization section.
  • FIG. 2 ( ⁇ ) is a schematic diagram showing a solution supply system of a vaporizer for CVD according to Embodiment 2 of the present invention
  • FIG. 2 (b) is a diagram showing a solution supply system according to Embodiment 3 of the present invention.
  • FIG. 2 is a configuration diagram schematically showing a solution supply system of a vaporizer for CVD.
  • FIG. 3 is a view showing the results of a cold test in which the pressure of a carrier gas was monitored.
  • FIG. 4 is a view showing the results of an experiment in which the pressure of a carrier gas was monitored.
  • FIG. 5 is a diagram showing the results of an experiment in which the pressure of a carrier gas was monitored.
  • FIG. 6 is a view showing the results of an experiment in which the pressure of a carrier gas was monitored.
  • FIG. 7 is a view showing the results of an experiment in which the pressure of a carrier gas was monitored.
  • FIG. 8 is a diagram showing the results of an experiment in which the pressure of a carrier gas was monitored.
  • FIG. 9 is a view showing an experimental result of performing a reproducibility test of SBTCVD with the vaporizer for CVD according to the first embodiment. .
  • FIG. 10 is a view showing an experimental result of performing a reproducibility test of SBTCVD with the vaporizer for CVD according to the first embodiment.
  • FIG. 11 shows a TG CHART (Ar 760/10 Torr, O) of Sr [Ta (OEt) ( ⁇ C H OMe)].
  • FIG. 12 is a diagram showing a TG CHART (Ar 760/10 Torr, O2 760 Torr) of Bi (OtAm).
  • FIG. 13 is a diagram showing the TG CHART (Ar 760/1 OTorr, 02 760 Torr) of Bi (MMP).
  • FIG. 14 shows a TG CHART (Ar 760/10 Torr, O2) mixture of Bi (OtAm) / Sr [Ta (OEt)] mixture.
  • FIG. 15 is a diagram showing NMR (nuclear magnetic resonance of H) characteristics.
  • FIG. 16 shows TG CHART (Ar) of a mixture of Bi (MMP) / Sr [Ta (OEt) (OCHOME)].
  • FIG. 17 is a diagram showing TG CHART (Ar 760/10 Torr, O2760 Torr) of BiPh.
  • FIG. 18 is a diagram showing a TG CHART (Ar 760,0 760 Torr) of a mixture of BiPh / Sr [Ta (OEt)].
  • FIG. 19 is a diagram showing Mixing Stability of BiPh3 & Sr [Ta (OEt) 6] 2 (NMR) characteristics.
  • FIG. 20 is a diagram showing BiPh TG-DTA CHART (O 760 Torr).

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】 本発明は、溶液配管等における目詰まりを抑制して連続使用時間を長くしたCVD用気化器、溶液気化式CVD装置及びCVD用気化方法に関する。 【解決手段】 本発明に係るCVD用気化器は、複数の原料溶液を互いに分離して供給する複数の原料溶液用配管1,2と、複数の原料溶液用配管1,2の外側を包むように配置され、加圧されたキャリアガスが複数の原料溶液用配管1,2それぞれの外側に流されるキャリアガス用配管3と、キャリアガス用配管3の先端に設けられ、原料溶液用配管1,2の先端から離隔された細孔と、キャリアガス用配管3の先端に接続され、前記細孔によってキャリアガス用配管3の内部に繋げられた気化管13と、キャリアガス用配管3の先端、前記細孔及び前記気化部13のうち少なくとも一つを洗浄する洗浄機構と、気化管13を加熱する加熱手段であるヒーターと、を具備する。                                                                                 

Description

明 細 書
CVD用気化器、溶液気化式 CVD装置及び CVD用気化方法
技術分野
[0001] 本発明は、 CVD用気化器、溶液気化式 CVD装置及び CVD用気化方法に係わり 、特に、溶液配管等における目詰まりを抑制して連続使用時間を長くした CVD用気 化器、 CVD用気化方法及び前記 CVD用気化器を用レ、た溶液気化式 CVD装置に 関する。
背景技術
[0002] 1970年頃から半導体産業に導入採用された CVD(chemical vapor d印 osition)技 術においては、薄膜材料を形成する場合、ガス状態の反応材料をリアクタに流して、 化学反応を起こし、シリコン等半導体基板上に様々な組成の薄膜材料を形成する。 しかし、ガス状の反応材料が用意できなければ、 CVD法によって、薄膜を形成する 事ができなレ、、という CVD技術の限界があった。
[0003] 1987年の IEDMにおレヽて、 W丄 KINNEY etalが、強誘電体材料(PZT, SBT等)の 分極現象を用いて、高速不揮発性メモリ FeRAMを作成する技術を発表した。当時は 、 Zr,Sr,Biを含有するガス状ケミカルを作製できなかったので、強誘電体材料 PZT, S ΒΤ等の薄膜を CVD法によって作成する事が出来なかった。このため、フォトレジスト 薄膜形成と同様のプロセスである、溶液塗布法がその作成に採用されてきた。溶液 塗布法によって作製された強誘電体材料薄膜 (膜厚 400-300nm)は、段差被覆性が 悪ぐ薄膜化(膜厚 150_40nm)するとピンホールが増加して電気絶縁性が低下する等 の問題があった。段差が多ぐ強誘電体材料の薄膜化 (膜厚 100_50nm)が必須であ る FeRAM— LSIの実用化を図るには、高品質強誘電体薄膜を CVD法でもって作製 する技術が必須である。
[0004] 1992年になって京都大学 '工学部の塩崎助教授は、世界で初めて、強誘電体薄 膜 PZTを CVD法でもって作製し、学会に発表した。この時、塩崎助教授が採用した CVD装置は、固体ケミカルを昇華させてガス化する方法を採用している。
[0005] しかし、固体ケミカルを昇華させてガス化する方法には次のような問題がある。固体 ケミカルを昇華させる際の昇華速度が遅いため、反応物質の流量を増加させることが 困難であり、また反応物質の流量制御が困難であるから、薄膜の堆積速度が小さぐ 再現性が悪かった。また昇華させたケミカルを約 250°Cに加熱した配管を用いて、反 応炉まで運ぶ事が困難であった。
[0006] 本発明者は、塩崎助教授の発表技術を追試するため塩崎助教授の支援を受けて 、塩崎助教授が採用した装置を、塩崎助教授と同じ装置メーカー力 購入し、成膜 試験を行った。しかし、運転開始直後に高温配管が目詰まりした。これの修理直後、 今度は高温配管部が異常に過熱されてしまった。このような経験から、配管途中に複 数のバルブが設置してある細く長レ、(1/4インチ外形、長さ lm X数本)ステンレス配管 を、 250 ± 5。C程度の高温に均一に加熱する事は、極めて困難な技術であると結論 した。
[0007] 本発明者は、上記の経験から昇華式 CVD装置を実用化する事は困難と結論した 。そこで、溶液気化式 CVD法 (所謂 Flash CVD法)を採用することによって、強誘電 体材料 SBTの高品質薄膜を成膜することに世界で初めて成功した。これを国際学会 ISIF 96 Performance of SrBi2Ta209 Thin Films Grown byし hemical Vapor Deposition for Nonvolatile Memory Applications". C.Isobe,H.Yamoto,H.yagi et al,9th Internatinal Symposium on Integrated Ferroelectrics.Mar.1996)に発表して、 t¾速不 揮発性メモリ FeRAM— LSIの商品化の可能性を世界で初めて実証した。
[0008] 固体材料を溶媒に溶解して溶液を作製し、この溶液を高温でガス化して、 SBT薄 膜合成反応に必要な反応ガスを作製する気化器は、当初、アメリカ ATMI製を採用 した。しかし、この気化器は、十数時間で、 目詰まりするため、量産用 CVD装置の気 化器には採用出来なかった。そのため、本発明者は、 1996年に、島津製作所 '吉岡 氏や山形大学 ·工学部 ·物質工学科 ·都田教授に対して、高品質 SBT薄膜を安定し て成膜するために必要な、高性能溶液供給制御系と高性能気化器の開発と製造を、 注文した。しかし開発納入された装置 (溶液供給制御装置と気化器)には以下のよう な問題があり、 SBT薄膜を安定して成膜する事ができなかった。尚、この装置 (溶液 供給制御装置と気化器)は特許文献 1 (特開 2000 - 216150号公報)及び特許文献 2 (特開 2002—105646号公報)に開示されている。 [0009] SBT薄膜を合成するための反応物質は、 Sr(DPM) ,BiPh ,Ta(OEt) ,Sr[Ta(OEt)
2 3 5 5
(OC H OMe)] ,Bi(OtAm) ,Bi(MMP)等が採用されるが、特に Sr[Ta(OEt) (OC H
2 4 2 3 3 5 2 4
OMe)] +Bi(MMP)を用いると、 320— 420°Cの低温で高速堆積(5_100nm/min)が
2 3
可能であり、優れた段差被覆性と優れた電気特性を示す高品質の SBT薄膜を形成 する事ができる。しかし、上記装置 (溶液供給制御系と気化器)では、反応ガスに Sr[Ta(OEt) (OC H OMe)] +Bi(MMP)を用いると、装置が短時間で目詰まりしてしま
5 2 4 2 3
う。その原因を調查 '考察してみたところ、原因は、 Sr[Ta(OEt) (OC H OMe)] +
5 2 4 2
Bi(MMP)の溶液を室温で混合すると Sr[Ta(OEt)5(〇C H OMe)]と Bi(MMP)が反応し
3 2 4 2 3 て、溶解度が小さぐかつ昇華し難い物質が合成されるために溶液を流す流路ゃ気 化管先端が目詰まりする事であると判明した。以下、これらについて詳細に説明する
[0010] 図 11は、 Sr[Ta(OEt) (OC H OMe)]の TG CHART(Ar 760/10Torr,O 760Torr)を
5 2 4 2 2
示す図である。この図は、圧力が 760Torr、流量が 100ml/分のアルゴン雰囲気で Sr[Ta(OEt) (OC H OMe)]の試料を 30°Cから 600°Cまで 10°C/分の昇温速度で昇
5 2 4 2
温させた場合の試料重量の変化を示すグラフ 101と、圧力が 10Torr、流量が 50ml /分のアルゴン雰囲気で前記試料を 30°Cから 600°Cまで 10°C/分の昇温速度で 昇温させた場合の試料重量の変化を示すグラフ 102と、圧力が 760Torr、流量が 10 Oml/分の酸素雰囲気で前記試料を 30°Cから 600°Cまで 10°C/分の昇温速度で 昇温させた場合の試料重量の変化を示すグラフ 103を示している。この図から、 Sr[Ta(OEt) (OC H OMe)]は、アルゴン雰囲気で lOTorrの圧力下において、約 220
5 2 4 2
°cで完全に昇華する事が分かる。
[0011] 図 12は、 Bi(〇tAm)の TG CHART (Ar 760/10Torr,O2 760Torr)を示す図である。こ
3
の図は、圧力が 760Torr、流量が lOOmlZ分のアルゴン雰囲気で Bi(OtAm)の試料
3 を 30°Cから 600°Cまで 10°CZ分の昇温速度で昇温させた場合の試料重量の変化 を示すグラフ 111と、圧力が 10Torr、流量が 50ml/分のアルゴン雰囲気で前記試 料を 30°Cから 600°Cまで 10°CZ分の昇温速度で昇温させた場合の試料重量の変 化を示すグラフ 112と、圧力力 S760Torr、流量が lOOmlZ分の酸素雰囲気で前記 試料を 30°Cから 600°Cまで 10°CZ分の昇温速度で昇温させた場合の試料重量の 変化を示すグラフ 113を示している。この図から、 Bi(OtAm)は、アルゴン雰囲気で 10
Torrの圧力下において、約 130°Cで約 98%程度昇華する事がわかる。
[0012] 図 13は、 Bi(MMP)の TG CHART (Ar 760/10Torr,O2 760Torr)を示す図である。こ の図は、圧力が 760Torr、流量が lOOmlZ分のアルゴン雰囲気で Bi(MMP)の試料 を 30°Cから 600°Cまで 10°CZ分の昇温速度で昇温させた場合の試料重量の変化 を示すグラフ 121と、圧力が 10Torr、流量が 50ml/分のアルゴン雰囲気で前記試 料を 30°Cから 600°Cまで 10°CZ分の昇温速度で昇温させた場合の試料重量の変 化を示すグラフ 122と、圧力力 S760Torr、流量が lOOmlZ分の酸素雰囲気で前記 試料を 30°Cから 600°Cまで 10°CZ分の昇温速度で昇温させた場合の試料重量の 変化を示すグラフ 123を示している。この図から、 Bi(MMP)は、アルゴン雰囲気で 10
Torrの圧力下において、約 150°Cで、完全に昇華する事が分かる。
[0013] 図 14は、 Bi(〇tAm) /Sr[Ta(OEt) ]混合体の TG CHART (Ar 760/10Torr,O2
760Torr)を示す図である。この図は、圧力が 760Torr、流量が 100ml/分のアルゴ ン雰囲気で Bi(OtAm) /Sr[Ta(OEt) ]混合体の試料を 30°C力も 600°Cまで 10°C/分 の昇温速度で昇温させた場合の試料重量の変化を示すグラフ 131と、圧力が 760T orr、流量が 100ml/分の酸素雰囲気で前記試料を 30°Cから 600°Cまで 10°C/分 の昇温速度で昇温させた場合の試料重量の変化を示すグラフ 133を示している。こ の図から Bi(OtAm) /Sr[Ta(OEt) ]混合体は、アルゴン雰囲気下で 300°C以上まで加 熱しても 80%程度しか昇華しない事が分かる。
[0014] 以上のことから、 Sr[Ta(OEt) (OC H OMe)]と、 Bi(OtAm)は、単体ではほぼ 100% 昇華するが、混合すると、昇華しない部分が生じている。この悪化した昇華特性が、 気化器の目詰まりを招くと考えられる。
[0015] 昇華特性悪化の原因は、図 15に示す NMR (Hの核磁気共鳴)特性から分かる。
Bi(OtAm)と Sr[Ta(OEt) ]を混合すると、新たな NMR特性が観察されるようになり、 これは新たな化合物が形成され存在する事を示す。
[0016] 図 16は、 Bi(MMP) /Sr[Ta(OEt) (OC H OMe)]混合体の TG CHART (Ar 760Torr) を示す図である。この図は、圧力が 760Torr、流量が 100ml/分のアルゴン雰囲気 で Bi(MMP) /Sr[Ta(OEt) (OC H OMe)]混合体の試料を 30°Cから 600°Cまで 10°C/ 分の昇温速度で昇温させた場合の試料重量の変化を示すグラフである。この図から 、 Bi(MMP) /Sr[Ta(OEt) (OC H OMe)]混合体も、アルゴン雰囲気下で 80%程度しか 昇華しなくなる事が分かる。
[0017] 図 17は、 BiPhの TG CHART (Ar 760/10Torr,O2 760Torr)を示す図である。この図 は、圧力が 760Torr、流量が 100ml/分のアルゴン雰囲気で BiPhの試料を 30°Cか ら 600°Cまで 10°CZ分の昇温速度で昇温させた場合の試料重量の変化を示すダラ フ 141と、圧力が 10Torr、流量が 50ml/分のアルゴン雰囲気で前記試料を 30°Cか ら 600°Cまで 10°CZ分の昇温速度で昇温させた場合の試料重量の変化を示すダラ フ 142と、圧力が 760Torr、流量が 100ml/分の酸素雰囲気で前記試料を 30°Cか ら 600°Cまで 10°CZ分の昇温速度で昇温させた場合の試料重量の変化を示すダラ フ 143を示している。この図力も BiPhは、約 200°Cで 100%昇華する事が分かる。
[0018] 図 18は、 BiPh /Sr[Ta(OEt) ]混合体の TG CHART (Ar 760,0 760Torr)を示す図 である。この図は、圧力が 760Torr、流量が 100ml/分のアルゴン雰囲気で BiPh
/Sr[Ta(OEt) ]混合体の試料を 30°Cから 600°Cまで 10°C/分の昇温速度で昇温さ せた場合の試料重量の変化を示すグラフ 151と、圧力が 760Torr、流量が 100ml/ 分の酸素雰囲気で前記試料を 30°Cから 600°Cまで 10°C/分の昇温速度で昇温さ せた場合の試料重量の変化を示すグラフ 153を示している。この図から BiPh
/Sr[Ta(OEt) ]混合体は、約 280°Cでほぼ 100%昇華する事が分かる。
[0019] 図 19は、 Mixing Stability of BiPh3 & Sr[Ta(OEt)6]2 (NMR)特性を示す図である。こ の図からは、 BiPh /Sr[Ta(OEt) ]混合体には、新たな物質の合成が見られない。 図 20は、 BiPh TG-DTA CHART (〇 760Torr)を示す図である。この図に示すよう に、 BiPhの酸化反応は、 465°Cで起きる。これは、 Sr[Ta(〇Et) (OC H OMe)]の 259
°C、 Bi(MMP)の 209°C、 Bi(OtAm)の 205°Cに比べて、酸化温度が高すぎるので、採 用が困難である事が分かる。
[0020] Bi(OtAm)は、僅か 180ppmの水分によって、加水分解反応が起きる。これは、
Sr[Ta(OEt) (OC H OMe)]力 Sl650ppmの水分によって、 Bi(MMP)力 Sl l 70ppmの水 分によって加水分解反応が起きるのに比べて、桁違いに水分に敏感であり、
Bi(OtAm)の取り扱いが難しい事を示している。水分は必ず存在するので、水分と Bi(OtAm)が反応し、作製された Bi酸化物が配管や流量計を目詰まりさせる可能性
3
が高くなる。
[0021] 特許文献 1 :特開 2000-216150号公報(第 76—第 78段落、第 145—第 167段落、 図 3、図 8)
特許文献 2 :特開 2002 - 105646号公報 (第 13—第 14段落、図 2)
発明の開示
発明が解決しょうとする課題
[0022] 前述した従来技術の問題点を纏めると下記のようになる。
室温で固体のケミカルを昇華させてガス化し、これを CVD用反応ガスに用いる技 術は、薄膜堆積速度が遅ぐばらつく等の問題があり、実用化は困難と考えられる。 また、室温で固体のケミカルを用いて、これを溶媒に溶解させ、霧化して、次に高温 で気化させる技術である溶液気化式 CVD法は、堆積速度が速いが、溶液状態で化 学反応が生じる現象があり、溶液配管等を目詰まりさせる問題がある。溶液配管等が 目詰まりすると CVD装置を短時間でしか連続使用することができなレ、。従って、溶液 供給系に工夫を施す必要がある。
[0023] 本発明は上記のような事情を考慮してなされたものであり、その目的は、溶液配管 等における目詰まりを抑制して連続使用時間を長くした CVD用気化器、溶液気化式
CVD装置及び CVD用気化方法を提供することにある。
課題を解決するための手段
[0024] 上記課題を解決するため、本発明に係る CVD用気化器は、キャリアガス中に複数 の原料溶液を微粒子状又は霧状に分散させる分散部と、
前記分散部に前記複数の原料溶液を互いに分離して供給する複数の原料溶液通 路と、
前記分散部に前記キャリアガスを前記複数の原料溶液それぞれと互いに分離して 供給するキャリアガス通路と、
前記分散部で分散された前記原料溶液を気化する気化部と、
前記気化部と前記分散部が繋げられ、前記分散部で分散された前記原料溶液が 前記気化部に導入される細孔と、 前記分散部、前記細孔及び前記気化部のうち少なくとも一つを洗浄する洗浄機構 と、
を具備することを特徴とする。
[0025] 上記 CVD用気化器によれば、洗浄機構を有するため、分散部、細孔及び気化部 のうち少なくとも一つを洗浄することができる。原料溶液の気化を連続的に行っていく と、分散部、細孔及び気化管の少なくともいずれかに徐々に原料溶液中の溶質が析 出し、次第に細孔を目詰まりさせていくが、洗浄機構を用いて分散部、細孔及び気化 部のうち少なくとも一つを洗浄することにより、 目詰まりを解消することができる。
[0026] また、本発明に係る CVD用気化器においては、前記キャリアガスの圧力をモニター する機構をさらに具備することが好ましい。この機構を用いてキャリアガスの圧力をモ 二ターすることにより、細孔の目詰まりの状態を知ることができる。このため、分散部、 細孔及び気化部のうち少なくとも一つを洗浄機構により洗浄する適切なタイミングを 失口ること力 Sできる。
[0027] 本発明に係る CVD用気化器は、キャリアガス中に複数の原料溶液を微粒子状又 は霧状に分散させる分散部と、
前記分散部に前記複数の原料溶液を互いに分離して供給する複数の原料溶液通 路と、
前記分散部に前記キャリアガスを前記複数の原料溶液それぞれと互いに分離して 供給するキャリアガス通路と、
前記キャリアガスの圧力をモニターする機構と、
前記分散部で分散された前記原料溶液を気化する気化部と、
前記気化部と前記分散部が繋げられ、前記分散部で分散された前記原料溶液が 前記気化部に導入される細孔と、
を具備することを特徴とする。
[0028] また、本発明に係る CVD用気化器において、前記分散部は前記細孔と前記複数 の原料溶液通路それぞれの先端との間に配置され、前記細孔は前記複数の原料溶 液通路及び前記キャリアガス通路それぞれに比べて径が小さいことが好ましい。
[0029] また、本発明に係る CVD用気化器において、前記原料溶液を気化する時、前記気 化部は減圧状態となり、前記分散部は加圧状態となることが好ましい。
[0030] 本発明に係る CVD用気化器は、複数の原料溶液を互いに分離して供給する複数 の原料溶液用配管と、
前記複数の原料溶液用配管の外側を包むように配置され、加圧されたキャリアガス が前記複数の原料溶液用配管それぞれの外側に流されるキャリアガス用配管と、 前記キャリアガス用配管の先端に設けられ、前記原料溶液用配管の先端から離隔 された細孔と、
前記キャリアガス用配管の先端に接続され、前記細孔によって該キャリアガス用配 管の内部に繋げられた気化管と、
前記キャリアガス用配管の先端、前記細孔及び前記気化部のうち少なくとも一つを 洗浄する洗浄機構と、
前記気化管を加熱する加熱手段と、
を具備することを特徴とする。
[0031] 上記 CVD用気化器によれば、洗浄機構を有するため、キャリアガス用配管の先端 、細孔及び気化部のうち少なくとも一つを洗浄することができる。原料溶液の気化を 連続的に行っていくと、キャリアガス用配管の先端、細孔及び気化管の少なくともい ずれかに徐々に原料溶液中の溶質が析出し、次第に細孔を目詰まりさせていくが、 洗浄機構を用いてキャリアガス用配管の先端、細孔及び気化部のうち少なくとも一つ を洗浄することにより、 目詰まりを解消することができる。
[0032] また、本発明に係る CVD用気化器においては、前記キャリアガス用配管内のキヤリ ァガスの圧力をモニターする機構をさらに具備することが好ましい。この機構を用い てキャリアガスの圧力をモニターすることにより、細孔の目詰まりの状態を知ることがで きる。このため、洗浄機構により洗浄する適切なタイミングを知ることができる。
[0033] また、本発明に係る CVD用気化器において、前記洗浄機構は、キャリアガス用配 管の先端及び細孔に溶剤を供給することにより洗浄するものであることも可能である
[0034] また、本発明に係る CVD用気化器においては、前記キャリアガス用配管内におけ る前記細孔と前記複数の原料溶液用配管それぞれの先端との間において、前記キ ャリアガスと前記複数の原料溶液を混合して、該キャリアガス中に該複数の原料溶液 を微粒子状又は霧状に分散させ、この分散させた微粒子状又は霧状の原料溶液が 、前記細孔を通って前記気化管に導入され、前記加熱手段によって加熱されて気化 されるものである。これにより、細孔や細孔付近の気化管において原料溶液中の溶 剤のみが気化することを抑制できるため、原料溶液が化学反応を起こすことを抑制で き、 目詰まりすることを抑制できる。
[0035] また、本発明に係る CVD用気化器において、前記細孔は前記複数の原料溶液用 配管及び前記キャリアガス用配管それぞれの口径に比べて小さいことが好ましい。
[0036] また、本発明に係る CVD用気化器において、前記複数の原料溶液は、 Sr[Ta (OE t) (OC H OMe) ] を溶剤に混合したものと、 Bi (MMP) を溶剤に混合したもので あり、前記キャリアガスはアルゴンガス又は窒素ガスであることも可能である。
[0037] 本発明に係る溶液気化式 CVD装置は、前記の CVD用気化器のいずれかを具備 することを特徴とする。
[0038] 本発明に係る溶液気化式 CVD装置は、前記のいずれかの CVD用気化器と、 前記気化管に接続された反応室と、
を具備し、
前記気化管で気化された原料溶液を用いて成膜することを特徴とする。
[0039] また、本発明に係る溶液気化式 CVD装置においては、前記 CVD用気化器を複数 備え、該 CVD用気化器の一部を前記洗浄機構により洗浄する状態とし、その他の該 CVD用気化器を使用状態とし、前記使用状態の CVD用気化器を時間の経過ととも 洗浄状態の CVD用気化器と変更することにより、気化された原料溶液を前記反応室 に連続して供給するものであっても良レ、。これにより、溶液気化式 CVD装置の連続 運転時間をさらに長くすることができる。
[0040] 本発明に係る CVD用気化方法は、複数の原料溶液及びキャリアガスそれぞれを互 レ、に分離して分散部に供給し、該分散部で混合して前記キャリアガス中に前記複数 の原料溶液を微粒子状又は霧状に分散させ、その直後に前記原料溶液を断熱膨張 させて気化する工程と、
前記分散部及び前記原料溶液を気化する領域の少なくともいずれか一方を洗浄 する工程と、
を具備することを特徴とする。
[0041] 本発明に係る CVD用気化方法は、複数の原料溶液及びキャリアガスそれぞれを互 レ、に分離して分散部に供給し、該分散部で混合して前記キャリアガス中に前記複数 の原料溶液を微粒子状又は霧状に分散させ、その直後に前記原料溶液を断熱膨張 させて気化する工程と、
前記気化する工程中に前記キャリアガスの圧力をモニターしておき、前記キャリア ガスが所定の圧力を超えた場合に、前記複数の原料溶液を分散部に供給するのを 停止し、前記分散部及び前記原料溶液を気化する領域の少なくともいずれか一方を 洗浄する工程と、
を具備することを特徴とする。
[0042] また、本発明に係る CVD用気化方法においては、前記洗浄する工程は、前記分 散部及び前記原料溶液を気化する領域の少なくともレ、ずれか一方に溶剤及びキヤリ ァガスを流して洗浄する工程であり、前記洗浄する工程中に前記キャリアガスの圧力 をモニターしておき、前記キャリアガスが所定の圧力以下になったときに前記溶剤を 流すのを停止して洗浄を終了することも可能である。
[0043] また、本発明に係る CVD用気化方法において、前記溶剤は、前記原料溶液に含 まれる溶剤と同質であることも可能である。
[0044] また、本発明に係る CVD用気化方法において、前記溶剤は、ェチルシクロへキサ ン、 n-へキサン、ベンゼン、トルエン、オクタン、デカンからなる群力 選ばれた 1種又 は複数の混合物であることも可能である。
発明の効果
[0045] 以上説明したように本発明によれば、溶液配管等における目詰まりを抑制して連続 使用時間を長くした CVD用気化器、溶液気化式 CVD装置及び CVD用気化方法を 提供すること力 Sできる。
発明を実施するための最良の形態
[0046] 以下、図面を参照して本発明の実施の形態について説明する。
(実施の形態 1) 図 1 (a)は、本発明の実施の形態 1による CVD用気化器の溶液供給系を模式的に示 す構成図であり、図 1 (b)は、 CVD用気化器の溶液供給系、分散部及び気化部を模 式的に示す断面図である。
[0047] 図 l (a), (b)に示すように、 CVD用気化器は第 1及び第 2の原料溶液用配管 1 , 2 を有している。第 1の原料溶液用配管 1は第 2の原料溶液用配管 2に隣接して平行に 配置されている。第 1及び第 2の原料溶液用配管 1 , 2の外側にはキャリアガス用配管 3が配置されている。キャリアガス用配管 3の内径は第 1の原料溶液用配管 1の外径と 第 2の原料溶液用配管 2の外径との和より大きく形成されている。つまり、第 1及び第 2の原料溶液用配管 1, 2はキャリアガス用配管 3の内部に揷入されており、第 1及び 第 2の原料溶液用配管 1, 2を包むようにキャリアガス用配管 3が形成されている。
[0048] 第 1の原料溶液用配管 1の基端側はケミカル 1及び溶剤を供給する第 1の供給機構 4 に接続されている。第 1の供給機構 4はケミカノレ (例えば Sr[Ta (OEt) (OC H OMe
) ] ) 1を供給する供給源と溶剤を供給する供給源を有している。ケミカル 1の供給源 と第 1の原料溶液用配管 1との間にはバルブ 6及びマスフローコントローラー(図示せ ず)が設けられている。前記溶剤の供給源と第 1の原料溶液用配管 1との間にはバル ブ 7及びマスフローコントローラー(図示せず)が設けられている。また、前記溶剤の 供給源と第 1の原料溶液用配管 1との間で溶剤とケミカル 1が合流 (混合)するように なっている。
[0049] 第 2の原料溶液用配管 2の基端側はケミカル 2及び溶剤を供給する第 2の供給機構 5 に接続されている。第 2の供給機構 5はケミカル (例えば Bi (MMP) ) 2を供給する供 給源と溶剤を供給する供給源を有している。ケミカル 2の供給源と第 2の原料溶液用 配管 2との間にはバルブ 8及びマスフローコントローラー(図示せず)が設けられてい る。前記溶剤の供給源と第 2の原料溶液用配管 2との間にはバルブ 9及びマスフロー コントローラー(図示せず)が設けられている。また、前記溶剤の供給源と第 2の原料 溶液用配管 2との間で溶剤とケミカル 2が合流(混合)するようになってレ、る。
[0050] キャリアガス用配管 3の基端側はアルゴンガス及び窒素ガスを供給する第 3の供給機 構 12に接続されている。第 3の供給機構 12はアルゴンガス (Ar)を供給する供給源と 窒素ガス (N )を供給する供給源を有している。アルゴンガスの供給源とキャリアガス 用配管 3との間にはバルブ 10及びマスフローコントローラー(図示せず)が設けられ てレ、る。窒素ガスの供給源とキヤリァガス用配管 3との間にはバルブ 11及びマスフ口 一コントローラー(図示せず)が設けられている。また、第 3の供給機構 12とキャリアガ ス用配管 3との間には高精度圧力計 17が配置されており、この高精度圧力計 17はキ ャリアガス用配管 3内のキャリアガスの圧力を常時モニターするものである。この高精 度圧力計 17は図示せぬ制御部に出力信号を送ることができる。これにより、制御画 面にキャリアガスの圧力を表示して監視することが可能となる。
[0051] キャリアガス用配管 3の先端には気化管 13の一端が接続されている。キャリアガス 用配管 3の先端には細孔が設けられており、この細孔によってキャリアガス用配管 3 の内部と気化管 13の内部が繋げられている。また、気化管 13の周囲にはヒーターが 設けられており、このヒーターによって気化管 13を例えば 270°C程度に加熱するよう になっている。また、気化管 13の他端は図示せぬ反応室に接続されている。
[0052] 第 1及び第 2の原料溶液用配管 1, 2それぞれの先端は前記細孔から離間されている 。即ち、キャリアガス用配管 3内における第 1及び第 2の原料溶液用配管 1, 2それぞ れの先端と前記細孔との間には分散部 14が設けられている。この分散部 14は、第 1 の原料溶液用配管 1の先端力 流れ出る第 1の原料溶液 (ケミカル 1と溶剤を混合し たもの)、第 2の原料溶液用配管 2の先端から流れ出る第 2の原料溶液 (ケミカル 2と 溶剤を混合したもの)、及びキャリアガス用配管 3から流れ出るアルゴンガス又は窒素 ガスを混合して、アルゴンガス中又は窒素ガス中に第 1及び第 2の原料溶液それぞ れを微粒子状又は霧状に分散させるものである。
[0053] 次に、上記 CVD用気化器の動作について説明する。
まず、バルブ 6を開けて第 1の供給機構 4から第 1の原料溶液を所定の流量及び所 定の圧力で第 1の原料溶液用配管 1に供給する。第 1の原料溶液は例えば Sr [Ta (O Et) (〇C H OMe) ] と溶剤を混合したものである。また、バルブ 8を開けて第 2の供 給機構 5から第 2の原料溶液を所定の流量及び所定の圧力で第 2の原料溶液用配 管 2に供給する。第 2の原料溶液は例えば Bi (MMP) と溶剤を混合したものである。 また、バルブ 10, 11を開けて第 3の供給機構 12からキャリアガスを所定の流量及び 圧力でキャリアガス用配管 3に供給する。キャリアガスは例えばアルゴンガス又は窒 素ガスである。
[0054] 次いで、第 1の原料溶液は第 1の原料溶液用配管 1を通って分散部 14に供給され 、第 2の原料溶液は第 2の原料溶液用配管 2を通って分散部 14に供給され、加圧さ れたキャリアガスはキャリアガス用配管 3を通って分散部 14に供給される。そして分散 部 14において、第 1及び第 2の原料溶液とキャリアガスが混合され、キャリアガス中に 第 1及び第 2の原料溶液それぞれが微粒子状又は霧状に分散される。第 1及び第 2 の原料溶液が分散部 14で混合された時力 微粒子状又は霧状に分散されるまでは 1秒以内であることが好ましい。
[0055] 次いで、分散部 14でキャリアガス中に分散された第 1及び第 2の原料溶液は細孔を 通って気化管 13に導入される。気化管 13において、分散され霧化した第 1及び第 2 の原料溶液は、ヒーターによって瞬時に約 270°Cに加熱される。
このとき分散部 14内の圧力と気化管 13内の圧力とは大きな差がある。気化管 13内 は減圧下であり、分散部 14内は加圧下である。気化管 13内の圧力は例えば 5— 30 Torrであるのに対し、分散部 14内の圧力は例えば 1500— 2200Torrである。この ような圧力差を設けることにより、キャリアガスは、超高速で気化管に噴出し、圧力差 に基づいて膨張 (例えば断熱膨張)する。これにより第 1及び第 2の原料溶液に含ま れるケミカルの昇華温度は低下するため、ヒーターからの熱で原料溶液 (ケミカルも 含む)は気化する。また第 1及び第 2の原料溶液は、高速のキャリアガス流によって、 分散部 14で分散させた直後 微細な霧になるために瞬時に気化管 13内で気化しや すくなる。
[0056] このようにして CVD用気化器で第 1及び第 2の原料溶液を気化して原料ガスを形 成する。この原料ガスは気化管 13を通って反応室に送られ、この反応室で CVD法 によって被処理基板に薄膜が成膜される。
[0057] 前述したように原料溶液を気化しているときに、高精度圧力計 17によって常にキヤ リアガスの圧力をリアルタイムでモニターする。前記 CVD用気化器を連続して使用し ていくと、分散部 14、細孔の少なくともいずれかに徐々に原料溶液中の溶質が析出 し、次第に細孔(噴霧口)を目詰まりさせていく。この現象は次のようなものである。
[0058] 減圧雰囲気下(約 5_30Torr)の高温の気化管 13の上部に、 Sr[Ta(OEt) (OC H OMe)]と Bi(MMP)および溶剤(例えば、ェチルシクロへキサン ECH)とキャリアガス( 例えば、アルゴン、窒素等)を噴霧し霧化するが、この時、霧の一部が噴霧口に付着 し液化する。そしてこの噴霧口に付着した溶液は、減圧雰囲気と高温状態の気化管
13からの輻射熱によって、蒸気圧が大きな溶媒 (例えば、ェチルシクロへキサン EC H)だけが蒸発するため、溶質が析出し、噴霧口を目詰まりさせる。
[0059] 前記目詰まりが進むにつれてキャリアガス用配管 3内のキャリアガスの圧力が高くなつ ていく。そしてキャリアガスの圧力が所定圧力(例えば 200KPa)を超えたという高精度 圧力計 17からの出力信号を制御部で受信した後に、バルブ 6, 8を閉じて Sr[Ta (〇 Et) (OC H OMe) ] の溶液及び Bi (MMP) の溶液の供給を停止し、バルブ 7, 9を 開いて、溶剤のみを流す。又は前記高温気化管の出口をリアクタから排気側(図示 せず)に切り替え、溶剤及びキャリアガスのみを原料溶液用配管 1, 2及びキャリアガ ス用配管 3に供給し、洗浄を行う。この時、溶剤の流量は、ケミカル溶液流量の 2倍乃 至 10倍以上に増加させ、洗浄効果を高める事ができる。これにより、噴霧ロカ 溶剤 を噴霧し、析出してレ、た原料溶液中の溶質を溶剤によって再び溶かして洗浄除去す ること力 Sできる。尚、本実施の形態では、洗浄工程で用いる溶剤を第 1及び第 2の供 給機構 4, 5から供給しているが、これに限定されるものではなぐ洗浄工程用の溶剤 供給機構を別に設けておき、この溶剤供給機構から洗浄用の溶剤を供給することも 可能である。また、洗浄除去する前に、反応室内の被処理基板を取り出しておき、洗 浄除去が終了した後に反応室内に新たな被処理基板を投入することが好ましい。原 料溶液中の溶質が析出し、分散部 14他に付着すると、 CVD薄膜の堆積速度の低下 や組成の変動が観測され、これは CVD薄膜堆積工程の再現性の低下と品質低下 · 歩留まり低下を意味する。これを避けるため、実際の製造工程では、気化器の目詰ま りが観測される前に洗浄を行う事が望ましぐ例えば 1枚製造し、次のゥエーハをチヤ ンバーに入れて CVD薄膜堆積を開始する数分間の待ち時間中に気化管等の洗浄 処理を行えば、再現性の向上を図る事ができる。
[0060] 前記洗浄工程中においても高精度圧力計 17によってキャリアガス用配管 3内のキヤ リアガスの圧力をモニターする。これにより細孔の目詰まり状況をモニターする。前記 洗浄工程を続けていくと、析出していた溶質を溶力、していくので、次第に細孔(噴霧 口)の目詰まりを解消していく。このため、キャリアガスの圧力が低下していく。そして キャリアガスの圧力が所定圧力(例えば lOOKpa)以下となったという高精度圧力計 17 からの出力信号を制御部で受信した後に、再びバルブ 6, 8を開いて溶液の供給を 開始し、原料溶液の気化を行う。
[0061] 尚、バルブ 6 9から第 1及び第 2の原料溶液用配管 1, 2の先端までの配管容量は 、 CVD時に流す溶液の流量を Xcc/分とした場合、 8Xcc以下が好ましぐより好まし くは 2Xcc以下であり、さらに好ましくは Xcc以下である。
[0062] また、上記実施の形態 1では、噴霧口に生じた目詰まりを溶剤によって洗浄除去す るタイミングを、高精度圧力計 17でキャリアガスの圧力をモニターすることにより計つ ているが、これに限定されるものではなぐ所定の時間が経過した後に、溶剤とキヤリ ァガスを流して洗浄除去することも可能である。
[0063] 上記実施の形態 1によれば、細孔(噴霧口)が完全に目詰まりする前に、噴霧口を 溶剤によって洗浄することにより、再び噴霧口を元の状態に戻すことができる。従って 、 CVD用気化器を使用する間に洗浄工程を入れることにより、極めて長時間の CVD 用気化器の使用が可能となる。 目詰まりした CVD用気化器を分解して洗浄し、再度 組み立てる工数は 10時間程度かかるが、上記洗浄工程は数分の時間で終了するた め、装置稼動時間を大幅に増加させ、製造コストを大幅に低減することが可能となる
[0064] また、本実施の形態では、第 1及び第 2の原料溶液用配管 1 , 2を互いに隣接して平 行に配置し、これらの配管 1 , 2の外側にキャリアガス用配管 3を配置することにより、 第 1の原料溶液(Sr[Ta (〇Et) (OEtOMe) ] )と第 2の原料溶液 (Bi (MMP) )を互
5 2 3 いに分離して分散部 14に供給することができる。これにより、第 1の原料溶液と第 2の 原料溶液が溶液状態で化学反応を起こすことを防止でき、配管内部で目詰まりする ことを防止できる。よって、 CVD用気化器の連続使用時間を長くすることができる。
[0065] また、本実施の形態では、第 1及び第 2の原料溶液用配管 1, 2それぞれの外部を より大口径のキャリアガス用配管 3で包み、原料溶液用配管 1 , 2とキャリアガス用配 管 3との隙間にキャリアガスを流す構造を採用し、その下流側に断熱膨張させる気化 管を設けている。つまり、原料溶液用配管 1, 2の外側の前記隙間に加圧されたキヤリ ァガスを高速で流すため、第 1及び第 2の原料溶液用配管 1 , 2、キャリアガス用配管 3及び分散部 14において温度上昇を抑制することができる。従って、分散部 14にお レ、て原料溶液中の溶剤のみが気化することを抑制できるため、分散部 14で原料溶 液が化学反応を起こすことを抑制でき、分散部 14や細孔で目詰まりすることを抑制で きる。よって、 CVD用気化器の連続使用時間を長くすることができる。
[0066] また、本実施の形態では、分散部 14でキャリアガスに第 1及び第 2の原料溶液を混 合させた直後(1秒以内)に微粒子状又は霧状に分散させることにより、分散部 14に おいて原料溶液中の溶剤のみが気化することを抑制できるため、分散部 14で原料 溶液が化学反応を起こすことを抑制でき、分散部 14や細孔で目詰まりすることを抑 制できる。よって、 CVD用気化器の連続使用時間を長くすることができる。
[0067] また、本実施の形態では、第 1及び第 2の原料溶液を分散部 14で分散させ、この分 散させた微粒子状又は霧状の原料溶液を気化管 13内で加熱して瞬時に気化 (ガス ィ匕)させることができる。従って、細孔や細孔付近の気化管 13において原料溶液中 の溶剤のみが気化することを抑制できるため、細孔や細孔付近の気化管で原料溶液 が化学反応を起こすことを抑制でき、細孔や細孔付近の気化管で目詰まりすることを 抑制できる。よって、 CVD用気化器の連続使用時間を長くすることができる。
[0068] 上述したように本実施の形態では、配管 1一 3、分散部 14、細孔及び気化管で目 詰まりすることを抑制すると共に目詰まりしても洗浄工程を施して元の状態に戻すこと により、 CVD用気化器を安定して長時間連続使用することが可能となる。従って、強 誘電体材料 PZT、 SBT等の薄膜を再現性及び制御性良く成膜することができ、 CV D用気化器及び溶液気化式 CVD装置の高性能化を実現できる。
[0069] 上述したとおり、 目詰まりを監視するモニターとしての高精度圧力計 17を設置して も、洗浄工程を行う必要があるため、 CVD用気化器を完全に連続使用することはで きない。そこで、 1台の反応室に対して、複数の洗浄機構付き CVD用気化器を設置 すれば、数百時間以上の連続堆積ができる溶液気化式 CVD装置を実現することが 可能となる。具体的には、例えば 12台の洗浄機構付き CVD用気化器を設置し、そ のうち 2台は常に洗浄状態にし、他の 10台の CVD用気化器を常に連続使用する。こ うすれば溶液気化式 CVD装置の数百時間以上もの連続運転が可能となるだけでな ぐ薄膜の堆積速度も格段に向上することが期待できる。このような複数の CVD用気 化器を順次洗'浄しながら長時間の連続堆積を行う溶液気化式 CVD装置は、例えば 非常に長いテープ状の基板上に超伝導酸化物薄膜である YBCOを 10 μ m程度の 厚さで成膜する場合に特に有効である。
[0070] (実施の 態 2)
図 2 (a)は、本発明の実施の形態 2による CVD用気化器の溶液供給系を模式的に 示す構成図であり、図 1 (a)と同一部分には同一符号を付し、異なる部分についての み説明する。
[0071] 図 2 (0L)に示す CVD用気化器は、 3つの原料溶液を分散部に供給する 3つの配管 1, 2, 15を有している。つまり、第 1の原料溶液用配管 1と第 2の原料溶液用配管 2と 第 3の原料溶液用配管 15は互いに隣接して平行に配置されている。第 1乃至第 3の 原料溶液用配管 1, 2, 15の外側にはキャリアガス用配管 3が配置されている。即ち、 第 1乃至第 3の原料溶液用配管 1, 2, 15はキャリアガス用配管 3の内部に揷入され ており、第 1乃至第 3の原料溶液用配管 1, 2, 15を包むようにキャリアガス用配管 3が 形成されている。
[0072] 第 3の原料溶液用配管 15の基端側はケミカル 3及び溶剤を供給する第 3の供給機 構(図示せず)に接続されている。第 3の供給機構はケミカル 3を供給する供給源と溶 剤を供給する供給源を有している。ケミカル 3の供給源と第 3の原料溶液用配管 15と の間にはバルブ(図示せず)及びマスフローコントローラー( 示せず)が設けられて いる。前記溶剤の供給源と第 3の原料溶液用配管 15との間にはノルブ (図示せず) 及ぴマスフローコントローラー(図示せず)が設けられている。また、前記溶剤の供給 源と第 3の原料溶液用配管 15との間で溶剤とケミカル 3が合流 (混合)するようになつ ている。
[0073] 第 1乃至第 3の原料溶液用配管 1, 2, 15それぞれの先端は細孔力 離間されてい る。即ち、キャリアガス用配管 3内における第 1乃至第 3の原料溶液用配管 1, 2, 15 それぞれの先端と前記細孔との間には分散部が設けられている。この分散部は、第 1 の原料溶液用配管 1の先端から流れ出る第 1の原料溶液 (ケミカル 1と溶剤を混合し たもの)、第 2の原料溶液用配管 2の先端から流れ出る第 2の原料溶液 (ケミカル 2と 溶剤を混合したもの)、第 3の原料溶液用配管 15の先端から流れ出る第 3の原料溶 液 (ケミカル 3と溶剤を混合したもの)、及びキャリアガス用配管 3から流れ出るァルゴ ンガス又は窒素ガスを混合して、アルゴンガス中又は窒素ガス中に第 1乃至第 3の原 料溶液それぞれを微粒子状又は霧状に分散させるものである。
[0074] 上記実施の形態 2においても実施の形態 1と同様の効果を得ることができる。
[0075] (実施の形態 3)
図 2 (b)は、本発明の実施の形態 3による CVD用気化器の溶液供給系を模式的に 示す構成図であり、図 2 (a)と同一部分には同一符号を付し、異なる部分についての み説明する。
[0076] 図 2 (b)に示す CVD用気化器は、 4つの原料溶液を分散部に供給する 4つの配管 1, 2, 15, 16を有している。つまり、第 1の原料溶液用配管 1と第 2の原料溶液用配 管 2と第 3の原料溶液用配管 15と第 4の原料溶液用配管 16は互!/、に隣接して平行 に配置されている。第 1乃至第 4の原料溶液用配管 1, 2, 15, 16の外側にはキャリア ガス用配管 3が配置されている。即ち、第 1乃至第 4の原料溶液用配管はキャリアガ ス用配管 3の内部に挿入されており、第 1乃至第 4の原料溶液用配管を包むようにキ ャリアガス用配管 3が形成されている。
[0077] 第 4の原料溶液用配管 16の墓端側はケミカル 4及び溶剤を供給する第 4の供給機 構(図示せず)に接続されている。第 4の供給機構はケミカル 4を供給する供給源と溶 剤を供給する供給源を有している。ケミカル 4の供給源と第 4の原料溶液用配管 16と の間にはバルブ(図示せず)及ぴマスフローコントロー ー(図示せず)が設けられて いる。前記溶剤の供給源と第 4の原料溶液用配管 16との間にはパルプ (図示せず) 及びマスフローコントローラー(図示せず)が設けられている。また、前記溶剤の供給 源と第 4の原料溶液用配管 16との間で溶剤とケミカル 4が合流 (混合)するようになつ ている。
[0078] 第 1乃至第 4の原料溶液用配管 1, 2, 15, 16それぞれの先端は細孔から離間され ている。即ち、キャリアガス用配管 3内における第 1乃至第 4の原料溶液用配管それ ぞれの先端と前記細孔との間には分散部が設けられている。この分散部は、第 1の 原料溶液用配管 1の先端力 流れ出る第 1の原料溶液 (ケミカル 1と溶剤を混合した
差替え用紙 (規則 26) もの)、第 2の原料溶液用配管 2の先端から流れ出る第 2の原料溶液 (ケミカル 2と溶 剤を混合したもの)、第 3の原料溶液用配管 15の先端力も流れ出る第 3の原料溶液( ケミカル 3と溶剤を混合したもの)、第 4の原料溶液用配管 16の先端力 流れ出る第 4 の原料溶液 (ケミカル 4と溶剤を混合したもの)、及びキャリアガス用配管 3から流れ出 るアルゴンガス又は窒素ガスを混合して、アルゴンガス中又は窒素ガス中に第 1乃至 第 3の原料溶液それぞれを微粒子状又は霧状に分散させるものである。
[0079] 上記実施の形態 3においても実施の形態 2と同様の効果を得ることができる。
[0080] 尚、本発明は上述した実施の形態に限定されるものではなぐ本発明の主旨を逸 脱しない範囲内で種々変更して実施することが可能である。例えば、本発明の CVD 用気化器、 CVD用気化方法及び溶液気化式 CVD装置の応用範囲は広ぐ高速不 揮発性メモリである FeRAM— LSI用の高品質の強誘電体薄膜 (例えば SBT、 PZT 薄膜)の成膜に限られず、様々なケミカル、例えば蒸気圧が低い物質、 YBCO(Super Conductive Oxide), Thick PZT/PLZT/SBT(Filter,MEMS, Optical Interconnect, HD) 、 Metal (Ir, Pt, Cu)、 Barrier Metal(TiN,TaN)、 High k(HfOx,Al O,BST etc) 等を用
2 3
レ、ることが可能である。
[0081] また、上記実施の形態では、 Sr[Ta (OEt) (OC H OMe) ] を溶剤に溶解した第 1
5 2 4 2
の原料溶液と Bi (MMP) を溶剤に溶解した第 2の原料溶液を用いている力 S、これら
3
の原料溶液に限定されるものではなぐ他の固体材料を溶媒に溶解して作製した原 料溶液を用いることも可能である。さらには、 Sr[Ta (〇Et) (OC H OMe) ] 等の液
5 2 4 2 体原料そのものを原料溶液として用いてもょレ、し、液体原料を溶媒に混ぜたものを原 料溶液として用いることも可能である。
[0082] また、上記実施の形態では、 1種類の薄膜を被処理基板に成膜する場合について 説明しているが、これに限定されるものではなぐ複数種類の薄膜を被処理基板に連 続的に成膜することも可能である。詳細には、原料溶液とキャリアガスを、 CVD用気 化器を経由して反応室(CVDチャンバ一)に適当な時間流して被処理基板上に第 1 の薄膜を成膜した後、原料溶液のバルブを排気側に切り替え、新たな原料溶液を所 定の流量で CVD用気化器を経由して反応室に供給し、この新たな原料溶液の流量 の和(容積)が前記バルブから CVD用気化器にいたるまでの配管容量の 1倍ないし 5倍を越えたら、新たな原料溶液とキャリアガスを、 CVD用気化器を経由して反応室 に適当な時間流して被処理基板上に第 2の薄膜を成膜することにより、組成が異なる 2種類の薄膜を連続して成膜することが可能である。また、この動作を繰り返すことに より 3種類以上の薄膜を連続して成膜することも可能となる。また、新たな原料溶液を 反応室に供給する際、被処理基板の温度及び反応室の反応圧力を変更しても良い 実施例
[0083] 以下、実施例について説明する。
キャリアガスの圧力をモニターした結果を図 3—図 8に示す。
図 3に示すように、モニタポイント 80において、気化管 13にケミカルを流し始めると 、キャリアガスの圧力は次第に上昇し、ポイント 420においては、 BiMMPのキャリア ガス圧力は、 220kPa (約 2. 2気圧 ゲージ圧)まで上昇する。この時点で、 BiMMP (0.2ccm)を止めて、洗浄溶斉 IJECHを流す(0.5ccm)。するとキャリアガスの圧力は、急 激に低下し、 440ポイントでは 120kPaに達して安定する。このキャリアガスの圧力低 下は、噴霧器先端 (細孔)に付着した BiMMPが洗浄除去された事を示している。
[0084] 図 4一図 6も同様であり、噴霧器先端への付着現象は、再現性良く発生している事 が分かる。この現象は、 Sr[Ta(OEt) (〇C H OMe)]と Bi(MMP)を用いた SBTCVDに 限る現象ではなぐ下記ケミカルを用いる PZTCVDにおいても同様に観察された。 P ZTCVD用ケミカルは、 Pb(DPM) / ECH (0.15 mol/L) , Zr(DIBM) I ECH (0.15 mol/L) ,Ti(Oi-Pr) (DPM) I ECH (0.30 mol/L)である。
[0085] 図 8において、キャリアガスの変動は小さレ、。 Sr[Ta(OEt) (OC H OMe)]と Bi(MMP) の溶液の濃度を 1/2に低下させたため、噴霧器先端 (細孔)の目詰まり進行が減少し ている事が分かる。図 8においては、約 40分間の SBT薄膜堆積中 キャリアガスの圧 力の上昇は観察されず、さらに 1回毎に洗浄操作を行うことによって、 目詰まりが全く 無い状態で、 SBTCVDを行う事が出来た。
[0086] この気化器で、 SBTCVDの再現性試験を行った結果を図 9及び図 10に示した。
図 9は、成膜速度の再現性を示す。 100バッチの成膜速度試験を行い、平均成膜 速度は、 7.29nm/min. σ =0.148nm/min.と、優れた連続成膜と優れた再現性が得ら れた。
[0087] 図 10は、成膜組成の再現性を示す。 100パッチの成膜速度試験を行い、 Bi/Sr組成 比は、平均 3.08 σ =0.065と優れた再現性が得られた。 Ta/Sr組成比は、平均 2.07 σ =0.0166と、連続^膜と優れた再現性が得られた。
図面の簡単な説明
[0088] [図 1]図 1 (a)は本発明の実施の形態 1による CVD用気化器の溶液供給系を模式的 に示す構成図であり、図 1 (b)は CVD用気化器の溶液供給系、分散部及び気化部 を模式的に示す断面図である。
[図 2]図 2 (α)は本発明の実施の形態 2による CVD用気化器の溶液供給系を模式的 に示す構成図であり、図 2 (b)は本発明の実施の形態 3による CVD用気化器の溶液 供給系を模式的に示す構成図である。
[図 3]図 3は、キヤリァガスの圧力をモニターした寒験結果を示す図である。
[図 4]図 4は、キャリアガスの圧力をモニターした実験結果を示す図である。
[図 5]図 5は、キャリアガスの圧力をモニターした実験結果を示す図である。
[図 6]図 6は、キャリアガスの圧力をモニターした実験結果を示す図である。
[図 7]図 7は、キャリアガスの圧力をモニターした実験結果を示す図である。
[図 8]図 8は、キャリアガスの圧力をモニターした実験結果を示す図である。
[図 9]図 9は、実施の形態 1による CVD用気化器で SBTCVDの再現性試験を行った 実験結果を示す図である。 .
[図 10]図 10は、実施の形態 1による CVD用気化器で SBTCVDの再現性試験を行 つた実験結果を示す図である。
[図 11]図 11は、 Sr[Ta(OEt) (〇C H OMe)]の TG CHART(Ar 760/10Torr,O
5 2 4 2 2
760Torr) 示す図である。
[図 12]図 12は、 Bi(OtAm)の TG CHART (Ar 760/10Torr,O2 760Torr)を示す図であ
3
る。
[図 131図 13は、 Bi(MMP)の TG CHART (Ar 760/1 OTorr, 02 760Torr)を示す図であ
3
る。
[図 14]図 14は、 Bi(OtAm) /Sr[Ta(OEt) ]混合体の TG CHART (Ar 760/10Torr,O2
差替え用紙 (規則 26) 760Torr)を示す図である。
[図 15]図 15は、 NMR(Hの核磁気共鳴)特性を示す図である。
[図 16]図 16は、 Bi(MMP) /Sr[Ta(OEt) (OC H OMe)]混合体の TG CHART (Ar
760Torr)を示す図である。
[図 17]図 17は、 BiPhの TG CHART (Ar 760/10Torr,O2760Torr)を示す図である。
[図 18]図 18は、 BiPh /Sr[Ta(OEt) ]混合体の TG CHART (Ar 760,0 760Torr)を示 す図である。
[図 19]図 19は、 Mixing Stability of BiPh3 & Sr[Ta(OEt)6]2 (NMR)特性を示す図であ る。
[図 20]図 20は、 BiPh TG-DTA CHART (O 760Torr)を示す図である。
符号の説明
1· ··第 1の原料溶液用配管
2· ··第 2の原料溶液用配管
3· '·キャリアガス用配管
4. '·第 1の供給機構
5· ■·第 2の供給機構
6- — 11···ノ ノレブ
12-· '-第 3の供給機構
13-·気化管
14-· •分散部
15-· '-第 3の原料溶液用配管
16-· '-第 4の原料溶液用配管

Claims

請求の範囲
[1] キャリアガス中に複数の原料溶液を微粒子状又は霧状に分散させる分散部と、 前記分散部に前記複数の原料溶液を互いに分離して供給する複数の原料溶液通 路と、
前記分散部に前記キャリアガスを前記複数の原料溶液それぞれと互いに分離して 供給するキャリアガス通路と、
前記分散部で分散された前記原料溶液を気化する気化部と、
前記気化部と前記分散部が繋げられ、前記分散部で分散された前記原料溶液が 前記気化部に導入される細孔と、
前記分散部、前記細孔及び前記気化部のうち少なくとも一つを洗浄する洗浄機構 と、
を具備することを特徴とする CVD用気化器。
[2] 前記キャリアガスの圧力をモニターする機構をさらに具備することを特徴とする請求 の範囲 1に記載の CVD用気化器。
[3] キャリアガス中に複数の原料溶液を微粒子状又は霧状に分散させる分散部と、 前記分散部に前記複数の原料溶液を互いに分離して供給する複数の原料溶液通 路と、
前記分散部に前記キャリアガスを前記複数の原料溶液それぞれと互いに分離して 供給するキャリアガス通路と、
前記キャリアガスの圧力をモニターする機構と、
前記分散部で分散された前記原料溶液を気化する気化部と、
前記気化部と前記分散部が繋げられ、前記分散部で分散された前記原料溶液が 前記気化部に導入される細孔と、
を具備することを特徴とする CVD用気化器。
[4] 複数の原料溶液を互いに分離して供給する複数の原料溶液用配管と、
前記複数の原料溶液用配管の外側を包むように配置され、加圧されたキャリアガス が前記複数の原料溶液用配管それぞれの外側に流されるキャリアガス用配管と、 前記キャリアガス用配管の先端に設けられ、前記原料溶液用配管の先端から離隔 された細孔と、
前記キヤリァガス用配管の先端に接続され、前記細孔によつて該キヤリァガス用配 管の内部に繋げられた気化管と、
前記キャリアガス用配管の先端、前記細孔及び前記気化部のうち少なくとも一つを 洗浄する洗浄機構と、
前記気化管を加熱する加熱手段と、
を具備することを特徴とする CVD用気化器。
[5] 前記キャリアガス用配管内のキヤリァガスの圧力をモニターする機構をさらに具備す ることを特徴とする請求の範囲 4に記載の CVD用気化器。
[6] 前記洗浄機構は、キャリアガス用配管の先端及び細孔に溶剤を供給することにより洗 浄するものである請求の範囲 4又は 5に記載の CVD用気化器。
[7] 請求の範囲 1乃至 6のいずれか一項に記載の CVD用気化器を具備することを特徴と する溶液気化式 CVD装置。
[8] 請求の範囲 4乃至 6のいずれか一項に記載の CVD用気化器と、
前記気化管に接続された反応室と、
を具備し、
前記気化管で気化された原料溶液を用いて成膜することを特徴とする溶液気化式 CVD装置。
[9] 前記 CVD用気化器を複数備え、該 CVD用気化器の一部を前記洗浄機構により洗 浄する状態とし、その他の該 CVD用気化器を使用状態とし、前記使用状態の CVD 用気化器を時間の経過ととも洗浄状態の CVD用気化器と変更することにより、気化 された原料溶液を前記反応室に連続して供給することを特徴とする請求の範囲 8に 記載の溶液気化式 CVD装置。
[10] 複数の原料溶液及びキャリアガスそれぞれを互いに分離して分散部に供給し、該分 散部で混合して前記キャリアガス中に前記複数の原料溶液を微粒子状又は霧状に 分散させ、その直後に前記原料溶液を断熱膨張させて気化する工程と、
前記分散部及び前記原料溶液を気化する領域の少なくともいずれか一方を洗浄 する工程と、 を具備することを特徴とする CVD用気化方法。
[11] 複数の原料溶液及びキャリアガスそれぞれを互いに分離して分散部に供給し、該分 散部で混合して前記キャリアガス中に前記複数の原料溶液を微粒子状又は霧状に 分散させ、その直後に前記原料溶液を断熱膨張させて気化する工程と、
前記気化する工程中に前記キャリアガスの圧力をモニターしておき、前記キャリア ガスが所定の圧力を超えた場合に、前記複数の原料溶液を分散部に供給するのを 停止し、前記分散部及び前記原料溶液を気化する領域の少なくともいずれか一方を 洗浄する工程と、
を具備することを特徴とする CVD用気化方法。
[12] 前記洗浄する工程は、前記分散部及び前記原料溶液を気化する領域の少なくとも いずれか一方に溶剤及びキャリアガスを流して洗浄する工程であり、前記洗浄する 工程中に前記キャリアガスの圧力をモニターしておき、前記キャリアガスが所定の圧 力以下になったときに前記溶剤を流すのを停止して洗浄を終了することを特徴とする 請求の範囲 11に記載の CVD用気化方法。
[13] 前記溶剤は、前記原料溶液に含まれる溶剤と同質であることを特徴とする請求の範 囲 11又は 12に記載の CVD用気化方法。
[14] 前記溶剤は、ェチルシクロへキサン、 n-へキサン、ベンゼン、トルエン、オクタン、デカ ンからなる群から選ばれた 1種又は複数の混合物であることを特徴とする請求の範囲
11乃至 13に記載の CVD用気化方法。
PCT/JP2004/006635 2003-12-26 2004-05-17 Cvd用気化器、溶液気化式cvd装置及びcvd用気化方法 WO2005067017A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/526,786 US20060154480A1 (en) 2003-12-26 2004-05-17 Vaporizer for cvd, solution voporizing cvd system and voporization method for cvd
JP2005516786A JP4019430B2 (ja) 2003-12-26 2004-05-17 Cvd用気化器及び溶液気化式cvd装置
TW093140494A TW200524046A (en) 2003-12-26 2004-12-24 Vaporizer for CVD, solution voporizing CVD system and voporization method for CVD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-432600 2003-12-26
JP2003432600 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005067017A1 true WO2005067017A1 (ja) 2005-07-21

Family

ID=34746867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006635 WO2005067017A1 (ja) 2003-12-26 2004-05-17 Cvd用気化器、溶液気化式cvd装置及びcvd用気化方法

Country Status (6)

Country Link
US (1) US20060154480A1 (ja)
JP (1) JP4019430B2 (ja)
KR (1) KR100693396B1 (ja)
CN (1) CN100411102C (ja)
TW (1) TW200524046A (ja)
WO (1) WO2005067017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603580B2 (en) * 2005-11-28 2013-12-10 Msp Corporation High stability and high capacity precursor vapor generation for thin film deposition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2409540A (en) * 2003-12-23 2005-06-29 Ibm Searching multimedia tracks to generate a multimedia stream
KR20090044285A (ko) * 2007-10-31 2009-05-07 삼성전자주식회사 Ald 설비 및 그 ald 설비의 세정방법
WO2009133699A1 (ja) * 2008-04-30 2009-11-05 株式会社フィルテック 加熱装置、膜形成装置、膜形成方法およびデバイス
JP6008682B2 (ja) * 2012-10-05 2016-10-19 大陽日酸株式会社 気相成長装置用配管のクリーニング方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026974A (ja) * 1998-07-08 2000-01-25 Fujitsu Ltd 薄膜形成方法及び薄膜形成装置
JP2003273030A (ja) * 2002-03-18 2003-09-26 Watanabe Shoko:Kk Cvd薄膜堆積の方法
JP2003309114A (ja) * 2002-04-17 2003-10-31 Japan Pionics Co Ltd 気化供給方法及び気化供給装置
JP2003318170A (ja) * 2002-04-26 2003-11-07 Japan Pionics Co Ltd 気化器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409839B1 (en) * 1997-06-02 2002-06-25 Msp Corporation Method and apparatus for vapor generation and film deposition
US6098964A (en) * 1997-09-12 2000-08-08 Applied Materials, Inc. Method and apparatus for monitoring the condition of a vaporizer for generating liquid chemical vapor
US6216708B1 (en) * 1998-07-23 2001-04-17 Micron Technology, Inc. On-line cleaning method for CVD vaporizers
JP3470055B2 (ja) * 1999-01-22 2003-11-25 株式会社渡邊商行 Mocvd用気化器及び原料溶液の気化方法
US6500487B1 (en) * 1999-10-18 2002-12-31 Advanced Technology Materials, Inc Abatement of effluent from chemical vapor deposition processes using ligand exchange resistant metal-organic precursor solutions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026974A (ja) * 1998-07-08 2000-01-25 Fujitsu Ltd 薄膜形成方法及び薄膜形成装置
JP2003273030A (ja) * 2002-03-18 2003-09-26 Watanabe Shoko:Kk Cvd薄膜堆積の方法
JP2003309114A (ja) * 2002-04-17 2003-10-31 Japan Pionics Co Ltd 気化供給方法及び気化供給装置
JP2003318170A (ja) * 2002-04-26 2003-11-07 Japan Pionics Co Ltd 気化器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603580B2 (en) * 2005-11-28 2013-12-10 Msp Corporation High stability and high capacity precursor vapor generation for thin film deposition

Also Published As

Publication number Publication date
CN100411102C (zh) 2008-08-13
KR20060035570A (ko) 2006-04-26
US20060154480A1 (en) 2006-07-13
JPWO2005067017A1 (ja) 2007-07-26
KR100693396B1 (ko) 2007-03-12
CN1717782A (zh) 2006-01-04
TW200524046A (en) 2005-07-16
TWI305381B (ja) 2009-01-11
JP4019430B2 (ja) 2007-12-12

Similar Documents

Publication Publication Date Title
KR100654400B1 (ko) 용액 기화식 cvd 장치
US6282368B1 (en) Liquid feed vaporization system and gas injection device
TWI644359B (zh) 用於低溫原子層沉積膜之腔室底塗層準備方法
JP3588334B2 (ja) 組成勾配を有する金属メタロイド酸化物および窒化物の堆積方法
WO2011070945A1 (ja) 薄膜製造装置、薄膜の製造方法、及び半導体装置の製造方法
JP2004273766A (ja) 気化装置及びそれを用いた成膜装置並びに気化方法及び成膜方法
JP2005511894A (ja) 化学蒸着用ベーパライザ
JPH07268634A (ja) 液体原料用cvd装置、および液体原料を用いたcvdプロセスと、その液体原料
JP2004536218A (ja) 高電流被覆高温超伝導テープの製造方法
CN101542017A (zh) 用于将钽金属膜沉积到表面和底材上的方法和设备
WO2005067017A1 (ja) Cvd用気化器、溶液気化式cvd装置及びcvd用気化方法
JP4590881B2 (ja) Cvd用気化器、溶液気化式cvd装置
JP4110576B2 (ja) Cvd用気化器、溶液気化式cvd装置及びcvd用気化方法
JP2019212776A5 (ja) 半導体装置の製造方法、成膜用組成物および成膜装置
JP4019429B2 (ja) Cvd用気化器及び溶液気化式cvd装置
JP4421119B2 (ja) 半導体装置の製造方法
JPH11335845A (ja) 液体原料気化装置
JP2001295050A (ja) 気化器、気化器の使用方法および液体原料の気化方法
US20120071001A1 (en) Vaporizing and feed apparatus and vaporizing and feed method
JP2001073146A (ja) 薄膜製造装置および薄膜製造方法
KR20040007439A (ko) 강유전체 박막, 금속 박막 또는 산화물 박막 및 그제조방법, 제조장치 그리고 상기 박막을 사용한전자·전기 디바이스
JPH10280149A (ja) ガス噴射装置
JP2000034572A (ja) 蒸着薄膜作製装置
JP2000331958A (ja) 半導体製造装置及びこの装置を利用したバリアメタル膜の形成方法
JP2004055998A (ja) 半導体装置の製造方法及び半導体製造装置及びこれを用いた半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005516786

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057003645

Country of ref document: KR

Ref document number: 20048007630

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006154480

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526786

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020057003645

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase