WO2005059609A1 - 複屈折フィルムの製造方法、それを用いた光学フィルムおよび画像表示装置 - Google Patents

複屈折フィルムの製造方法、それを用いた光学フィルムおよび画像表示装置 Download PDF

Info

Publication number
WO2005059609A1
WO2005059609A1 PCT/JP2004/014479 JP2004014479W WO2005059609A1 WO 2005059609 A1 WO2005059609 A1 WO 2005059609A1 JP 2004014479 W JP2004014479 W JP 2004014479W WO 2005059609 A1 WO2005059609 A1 WO 2005059609A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stretching
group
polymer film
smd
Prior art date
Application number
PCT/JP2004/014479
Other languages
English (en)
French (fr)
Inventor
Kuniaki Ishibashi
Kazuki Tsuchimoto
Hiroyuki Yoshimi
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US10/554,224 priority Critical patent/US7833457B2/en
Publication of WO2005059609A1 publication Critical patent/WO2005059609A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/031Polarizer or dye

Definitions

  • the present invention relates to a method for producing a birefringent film, an optical film using the same, and various image display devices.
  • a birefringent film is usually used for the purpose of improving display characteristics, for example, for the purpose of eliminating coloring, expanding the viewing angle, and the like.
  • Such a birefringent film is generally produced by subjecting a polymer film to uniaxial stretching or biaxial stretching to adjust its birefringence and phase difference.
  • the two films are usually set so that the slow axis of the birefringent film is parallel to the transmission axis of the polarizing film. Need to be placed.
  • the slow axis of the birefringent film matches the stretching direction
  • the transmission axis of the polarizing film matches the direction perpendicular to the stretching direction.
  • the arrangement of the birefringent film and the polarizing film in this manner while applying force has the following manufacturing problems. That is, when a polymer film is stretched industrially, it is common to simultaneously stretch the film in the longitudinal direction and wind it on a roll while stretching the film. Then, when bonding the birefringent film wound on the roll and the polarizing film wound on the roll in this way, if the films are aligned in the longitudinal direction, they are wound on the roll again while being bonded together. Continuous bonding can be achieved.
  • the polarizing film is stretched in the longitudinal direction, whereas the polarizing film is stretched in the longitudinal direction.
  • the refractive film needs to be stretched in the width direction.
  • the birefringent film is oriented in the width direction. Stretch to It is necessary.
  • the uniformity of the slow axis in the width direction is improved by performing relaxation treatment for stretching the polymer film in the width direction and then returning to the original width position.
  • the method of letting it be adopted is adopted.
  • a polymer film is generally formed directly on a base material and then stretched together with the base material, this method may be affected by variations in the physical properties of the base material, or depending on the polymer film. Because some materials have a small relaxation effect, it is difficult to produce an industrially stable and uniform birefringent film. There are also attempts to reduce the bowing phenomenon by cooling after stretching, but it is not possible to completely avoid the phenomenon (for example, see Non-Patent Documents).
  • Patent Document 1 a method of loosening the base on which the polymer film is formed between the chucks of the tenter stretching machine and thermally shrinking the base is disclosed (for example, Patent Document 1). If the substrate is limited to a heat-shrinkable substrate or if the thickness of the substrate is too large, it is difficult to loosen the substrate stably when loosening the substrate. There is also a problem.
  • Non-Patent Document l T. Yamada et al. Intn.Polym.Process., Vo.X, Issue 4, 334-340 (1995)
  • Patent Document 1 JP-A-6-51116
  • Patent Document 2 JP-A-3-23405
  • Patent Document 3 JP-A-2-191904
  • Patent Document 4 JP-A-5-249316
  • an object of the present invention is to provide a birefringent film by stretching a polymer film in the width direction, to have excellent appearance and to suppress variations in birefringence, retardation, and orientation axis angle. And a method for producing a birefringent film having excellent uniformity of optical characteristics.
  • the polymer film in the stretching step, is stretched in the width direction and simultaneously in the longitudinal direction (the direction perpendicular to the width direction). ), And when the length in the width direction and the length in the width direction of the polymer film before stretching are respectively set to 1, the change ratio (STD) of the length in the width direction due to the stretching and the shrinkage
  • STD change ratio
  • the polymer film is stretched in the width direction and simultaneously contracted in the longitudinal direction, and the degree of stretching in the width direction and the degree of contraction in the longitudinal direction are set in the condition of the above formula (1).
  • the appearance is excellent, the refractive index in the plane and in the thickness direction can be controlled to a high degree, and the birefringence, retardation and alignment axis, particularly the alignment axis accuracy in the width direction, in particular, are uniform.
  • the obtained birefringent film can be obtained efficiently.
  • the birefringent film obtained by such a manufacturing method can improve the display characteristics of various image display devices such as a liquid crystal display device from the characteristics thereof, and can also be used in combination with the polarizing film as described above. It can be said that it is extremely industrially useful because it is possible to perform a natural bonding.
  • Table 1 is a table showing the change ratio in three dimensions (longitudinal direction, width direction, and thickness direction) of the polymer film.
  • the change ratio is defined by the width, length, and thickness of the unstretched polymer film as “1”.
  • the magnification in the width direction is STD
  • the magnification in the longitudinal direction is SMD.
  • the polymer film is stretched in the width direction and, at the same time, contracted in the longitudinal direction, so that the width of the polymer film before stretching is increased.
  • the length in the direction and the length in the longitudinal direction are each set to 1
  • the magnification in the width direction due to the stretching (STD) and the magnification in the longitudinal direction due to the shrinkage (SMD) Satisfy the following expression (1).
  • the longitudinal direction indicates a direction in which the distance between both ends is long when the polymer film is rectangular
  • the width direction indicates a direction perpendicular to the longitudinal direction.
  • any direction may be used as long as both directions are perpendicular.
  • SMD (1ZSTD) 1/2 .
  • the SMD is specifically preferably less than 0.99, more preferably 0.85-0.95, and particularly preferably 0.85-0.93.
  • the value of (1 / STD) 1/2 is preferably less than 0.99, more preferably less than 0.99, more preferably 0.85 to 0.95, particularly preferably 0. 88-0.93, that is, the STD is preferably less than 1.5, more preferably 1.01 or more and less than 1.5, and particularly preferably Kuma 1. 1-1.
  • the SMD force is preferably 9) -0.92.
  • the SMD is 0.86-0.90.
  • the stretching treatment and the shrinking treatment performed simultaneously as described above can be directly applied to the polymer film.
  • the polymer film may be indirectly applied to the polymer film by disposing the polymer film on a substrate and simultaneously subjecting the substrate to stretching and shrinking, or laminating the substrate and the polymer film. It may be applied to the body at the same time.
  • the polymer film is not particularly limited, and a conventionally known polymer film used as a material for forming a birefringent film can be used.
  • the polymer include: polycarbonate; polyarylate; polysulfone; polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate; polyether sulfone; polyvinyl alcohol; polyolefins such as polyethylene and polypropylene; Polystyrene, polymethacrylate, polychlorinated vinyl; polychlorinated vinylidene; polyamide; norbornane-based polymer; alternating copolymer of isobutene and N-methylmaleimidoca; And a mixture containing a copolymer.
  • the polymer film preferably has a light transmittance, for example, and more preferably has a light transmittance of 85% or more, more preferably 90%. Further, it is preferable that uneven alignment is small.
  • a non-liquid crystalline polymer As shown below.
  • the non-liquid crystalline polymer for example, only application is performed in relation to the orientation of the base material, and optically negative uniaxiality (nx> nz) and (ny> nz) are caused by its own property.
  • the birefringent polymer film shown can be formed, and the optical property can be changed to negative biaxiality (nx>ny> nz) by further performing a stretching treatment. For this reason, the birefringence and the phase difference can be more easily adjusted, and the base material is not limited to the alignment base material.
  • nx, ny, and nz indicate the refractive indices of the polymer film in the X-axis (slow axis), Y-axis, and Z-axis directions, respectively.
  • An axial direction showing the maximum refractive index in the plane of the polymer film a Y-axis direction is an axial direction perpendicular to the X-axis in the plane, and a ⁇ -axis is the X-axis and ⁇ ⁇ Indicates the thickness direction perpendicular to the axis.
  • non-liquid crystalline polymer examples include polyamide, polyimide, polyester, polyetherketone, polyaryletherketone, polyamideimide, and polyester, because they have excellent heat resistance, chemical resistance, transparency, and high rigidity.
  • Polymers such as imides are preferred. Any one of these polymers may be used alone, or may be used as a mixture of two or more kinds having different functional groups, for example, a mixture of a polyaryletherketone and a polyamide. Good.
  • polyimide and the like are preferable because high birefringence can be obtained.
  • the molecular weight of the polymer is not particularly limited.
  • the weight average molecular weight (Mw) force is preferably i, 000 to 1,000,000, and more preferably 2,000 to 500,000. .
  • polyimide for example, a polyimide soluble in an organic solvent having high in-plane orientation is preferable.
  • R—R represents hydrogen, halogen, a phenyl group, a phenyl group substituted with 114 halogen atoms or a C-alkyl group, and Alkyl group
  • the forces are also at least one independently selected substituent.
  • R 3 —R 6 are substituted with halogen, phenyl, 1-4 halogen atoms or C 3 -alkyl.
  • Z is, for example, C.
  • Z ′ is, for example, a covalent bond, a C (R 7 ) group, a CO group, an O atom, a S atom,
  • W represents an integer from 1 to 10.
  • R 7 is each independently hydrogen or C (R 9 ).
  • R 8 is hydrogen, an alkyl group having 1 to about 20 carbon atoms, or C
  • R 9 is each independently hydrogen, fluorine, or chlorine.
  • Examples of the polycyclic aromatic group include naphthalene, fluorene, benzofluorene and a tetravalent group induced by anthracene force.
  • Examples of the derivative of the polycyclic aromatic group include C 1 alkyl groups, fluorinated derivatives thereof, and F and C
  • Halogen force such as 1
  • the above-mentioned polycyclic aromatic group substituted with at least one selected group is exemplified.
  • G and G ′ are, for example, a covalent bond, a CH group, a C (CH 2) group
  • C (CF) group C (CX) group (where X is a halogen), CO group, O atom, S atom, S
  • L is a substituent
  • d and e represent the number of the substituents.
  • L represents, for example, a halogen, a C
  • substituted fuel group examples include halogen, C 2
  • the halogen include fluorine, chlorine, bromine and iodine.
  • d is an integer from 0 to 2
  • e is an integer from 0 to 3.
  • Q represents a substituent
  • f represents the number of substitutions.
  • Q is, for example, a group consisting of hydrogen, halogen, an alkyl group, a substituted alkyl group, a nitro group, a cyano group, a thioalkyl group, an alkoxy group, an aryl group, a substituted aryl group, an alkyl ester group, and a substituted alkyl ester group.
  • the halogen include fluorine, chlorine, bromine and iodine.
  • Examples of the substituted alkyl group include a halogenated alkyl group.
  • Examples of the substituted aryl group include a halogenated aryl group.
  • f is an integer from 0 to 4
  • g and h are integers from 0 to 3 and 1 to 3, respectively. Further, g and h are preferably larger than 1.
  • R 1Q and R 11 are each independently selected from the group consisting of hydrogen, halogen, a phenyl group, a substituted phenyl group, an alkyl group, and a substituted alkyl group. Group. Among them, R 1Q and R 11 are preferably each independently a halogenated alkyl group.
  • M 1 and M 2 are the same or different, for example, halogen, C 1 alkyl group, C 1
  • halogen examples include fluorine, chlorine, bromine and iodine.
  • substituted phenyl group examples include halogen, C
  • examples of the polyimide include copolymers obtained by appropriately copolymerizing diamine acid dianhydride other than the skeleton (repeating unit) as described above.
  • Examples of the acid dianhydride include aromatic tetracarboxylic dianhydrides.
  • Examples of the aromatic tetracarboxylic dianhydride include pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, and heterocyclic aromatic tetracarboxylic dianhydride And 2,2'-substituted biphenyltetracarboxylic dianhydrides.
  • pyromellitic dianhydride examples include pyromellitic dianhydride, 3,6-difluoropyromellitic dianhydride, 3,6-bis (trifluoromethyl) pyromellitic dianhydride, Examples thereof include 3,6-dibromopyromellitic dianhydride and 3,6-dichloropyromellitic dianhydride.
  • benzophenonetetracarboxylic dianhydride examples include, for example, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4 ′ And benzophenonetetracarboxylic dianhydride and 2,2 ′, 3,3′benzophenonetetracarboxylic dianhydride.
  • naphthalenetetracarboxylic dianhydride include 2,3,6,7 naphthalene-tetracarboxylic dianhydride, 1,2,5,6 naphthalene-tetracarboxylic dianhydride, and 2,6-dichloromethane.
  • Lonaphthalene-1,4,5,8-tetracarboxylic dianhydride and the like.
  • Examples of the bicyclic aromatic tetracarboxylic dianhydride include thiophene 2,3,4,5-tetracarboxylic dianhydride, pyrazine 2,3,5,6-tetracarboxylic dianhydride, And pyridin-2,3,5,6-tetracarboxylic dianhydride.
  • the 2,2′-substituted biphenyltetracarboxylic dianhydride includes, for example, 2,2,1-dibutene 4,4,5,5, -biphenyltetracarboxylic dianhydride, 2 , 2, Dichloro-4,4,5,5, -biphenyltetracarboxylic dianhydride, 2,2,1-bis (trifluoromethyl) 4,4,5,5, -biphenyl And tracarboxylic dianhydride.
  • aromatic tetracarboxylic dianhydride examples include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and bis (2,3-dicarboxyphenyl).
  • aromatic tetracarboxylic dianhydride 2,2′-substituted biphenyltetracarboxylic dianhydride is more preferable, and 2,2′-bis (trihalomethyl dianhydride is more preferable.
  • aromatic tetracarboxylic dianhydride 2,2′-substituted biphenyltetracarboxylic dianhydride is more preferable, and 2,2′-bis (trihalomethyl dianhydride is more preferable.
  • diamine examples include aromatic diamines, and specific examples thereof include benzene diamine, diamino benzophenone, naphthalenediamine, heterocyclic aromatic diamine, and other aromatic diamines.
  • the benzenediamine includes, for example, o-, m- and p-phenylenediamine, 2,4-diaminotoluene, 1,4-diamino-2-methoxybenzene, 1,4-diamino-2-phenylbenzene and Diamine which is also selected from a group consisting of benzenediamine such as 1,3-diamino-4-chlorobenzene is mentioned.
  • Examples of the diaminobenzophenone include 2,2, diaminobenzophenone and 3,3, diaminobenzophenone.
  • Examples of the naphthalenediamine include 1,8-diaminonaphthalene and 1,5-diaminonaphthalene.
  • Examples of the heterocyclic aromatic diamine include 2,6-diaminopyridine, 2,4-diaminopyridine, and 2,4-diamino-S-triazine. 5 c
  • the aromatic diamines include, in addition to the above, 4,4, diaminobiphenyl, 4,4, -diaminodiphenylmethane, 4,4,1- (9-fluorenylidene) -dialine, 2,2'bis (trifluoromethyl) 4,4'diaminobiphenyl, 3,3'-dichloro-4,4'diaminodiphenylmethane, 2,2'-dichloro-4,4'diaminobiphenyl, 2,2 ' , 5,5'-Tetraclo mouth benzidine, 2,2-bis (4-aminophenoxyphenyl) propane, 2,2bis (4-aminophenyl) propane, 2,2-bis (4-aminophenol) Le) — 1, 1, 1, 3, 3, 3-hexafluoropropane, 4,4, diaminodiphenyl ether, 3,4, diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene , 1,3-
  • Examples of the polyether ketone as a material for forming the birefringent layer include a polyaryl ether ketone represented by the following general formula (7) described in JP-A-201-49110. Can be
  • X represents a substituent
  • q represents the number of the substituents.
  • X is, for example, a halogen atom, a lower alkyl group, a halogenated alkyl group, a lower alkoxy group, or a halogenated alkoxy group.
  • a plurality of Xs are present, the same or different forces are used.
  • halogen atom examples include a fluorine atom, a bromine atom, a chlorine atom and an iodine atom, and among these, a fluorine atom is preferable.
  • the lower alkyl group and Thus, for example, a lower alkyl group having a C linear or branched chain is more preferable.
  • it is a C linear or branched alkyl group. Specifically, a methyl group,
  • ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group are preferred, and a methyl group and an ethyl group are particularly preferred.
  • the halogenated alkyl group include halogenated products of the lower alkyl group such as a trifluoromethyl group.
  • the lower alkoxy group include, for example,
  • the halogenated alkoxy group include halogenated compounds of the lower alkoxy group such as a trifluoromethoxy group.
  • the carboxy group bonded to both ends of the benzene ring and the oxygen atom of the ether are present at the para position with respect to each other.
  • R 1 is a group represented by the following formula (8), m is an integer of 0 or 1.
  • X ′ represents a substituent, for example, the same as X in the above formula (7).
  • P is an integer of 0 or 1.
  • R 2 represents a divalent aromatic group.
  • the divalent aromatic group for example, O-, m- or p-phenylene group, or naphthalene, biphenyl, anthracene, o-, m- or p-terphenyl, phenanthrene, dibenzofuran, biphenyl ether, or biphenyl sulfone force Derived divalent groups and the like can be mentioned.
  • the hydrogen directly bonded to the aromatic may be replaced by a halogen atom, a lower alkyl group or a lower alkoxy group.
  • an aromatic group selected from the following formulas (9) to (15) is preferred.
  • R 1 is preferably a group represented by the following formula (16).
  • R 2 and p have the same meanings as in the above formula (8). is there.
  • n represents a degree of polymerization, and is, for example, in a range of 2-5000, and preferably in a range of 5-500.
  • the polymerization may have a repeating unit force of the same structure or may have a repeating unit force of a different structure. In the latter case, the polymerization form of the repeating unit may be block polymerization or random polymerization.
  • the terminal of the polyaryletherketone represented by the above formula (7) is preferably such that the p-tetrafluorobenzoylene group side is fluorine and the oxyalkylene group side is hydrogen atom.
  • the polyaryl ether ketone can be represented by the following general formula (17). In the following formula, n represents the same degree of polymerization as in the above formula (7).
  • polyaryl ether ketone represented by the formula (7) include those represented by the following formulas (18) and (21).
  • n represents the above formula Represents the same degree of polymerization as in (7).
  • examples of the polyamide or polyester that is a material for forming the birefringent layer include polyamides and polyesters described in JP-A-10-508048. Can be represented, for example, by the following general formula (22).
  • Y is O or NH.
  • E is, for example, a covalent bond
  • Group strength is also at least one type of group selected and may be the same or different. Yes.
  • R is a C-alkyl group and C
  • It is at least one kind and is located at the meta or para position with respect to the carboxyl functional group or the Y group.
  • the above A is, for example, hydrogen, halogen, C monoalkyl group, C
  • a ′ is, for example, halogen
  • substituent on the ring of the substituted fuel group include halogen, a C-alkyl group,
  • polyamide or polyester repeating units represented by the formula (22) those represented by the following general formula (23) are preferable.
  • A, A ′ and Y are as defined in the above formula (22), and V is an integer having a zero force of 3, preferably an integer of 0 to 2.
  • X and V are each 0 or 1, but , Are never zero.
  • the base material a translucent polymer film that can be stretched and shrunk is preferable.
  • a substrate that does not generate a phase difference even by stretching is preferable.
  • a polymer film having excellent transparency is preferable because, for example, the base material and the birefringent film formed on the base material can be used as an optical film as a laminate.
  • the base material is preferably a stretched material or a heat-shrinkable film or the like, which is preferable in order to smoothly perform the above-described longitudinal shrinkage. Is preferably, for example, a thermoplastic resin.
  • Examples of the material for forming the base material include, for example, polyolefins such as polyethylene, polypropylene, and poly (4-methylpentin-1), polyimide, polyamideimide, polyamide, polyetherimide, and polyetherether. Ketone, polyketone sulfide, polyether sulfone, polysulfone, polyphenylene sulfide, polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polybutyl alcohol, polypropylene, polypropylene, Cellulose-based glass tex, epoxy resin, phenol resin, etc., acetate resin such as triacetyl cellulose (TAC), polyester resin, acrylic resin, polynor Examples thereof include renene resin, cellulose resin, polystyrene resin, polyvinyl alcohol resin, polychlorinated vinyl resin, polychlorinated vinylidene resin,
  • Polymers and the like can also be used.
  • polypropylene, polyethylene terephthalate, polyethylene naphthalate and the like are preferable, for example, solvent resistance and heat resistance.
  • a thermoplastic resin having an imido group or a non-imido group in a side chain as described in JP-A-2001-343529 (WO 01/37007), Further, a mixture of a substituted or unsubstituted phenyl group and a thermoplastic resin having a -tolyl group can also be used.
  • a resin composition having an alternating copolymer of isobutene and N-methylmaleimideca and an acrylonitrile-styrene copolymer is used.
  • these forming materials for example, the aforementioned thermoplastic resin having a substituted imide group or an unsubstituted imide group in the side chain, and a substituted phenyl group or an unsubstituted phenyl group and a -tolyl group in the side chain.
  • the thickness of the polymer film is not particularly limited, and can be appropriately determined according to the desired retardation of the birefringent film to be produced, the material of the polymer film, and the like. Generally, for example, it is in the range of 5-500 / zm, preferably in the range of 10-350 ⁇ m, more preferably in the range of 20-200 ⁇ m. Within the above range, sufficient strength is exhibited in the stretching / shrinking treatment, for example, without cutting. Further, the lengths in the longitudinal direction and the width direction are not particularly limited, and can be appropriately determined according to, for example, the size of a stretching machine or the like to be used.
  • This polymer film is simultaneously subjected to a stretching treatment in the width direction and a shrinking treatment in the longitudinal direction so as to satisfy the condition of the above formula (1).
  • the stretching in the width direction and the shrinking in the longitudinal direction can be performed, for example, using a biaxial stretching machine. Specifically, the stretching and shrinking can be automatically performed.
  • the shrinkage ratio in the (longitudinal direction) can be set arbitrarily, stretching and shrinkage can be performed simultaneously under predetermined conditions.
  • the stretching ratio in the width direction is controlled, and the film edge is controlled.
  • a biaxial stretching machine or the like in which the length in the longitudinal direction is controlled by changing the interval between the clips holding the clip.
  • the temperature in the stretching and shrinking treatment is not particularly limited, and is preferably set according to a force that can be appropriately determined according to the type of the polymer film, for example, the glass transition temperature of the polymer film.
  • the glass transition temperature is preferably in the range of ⁇ 30 ° C, more preferably in the range of ⁇ 20 ° C, and particularly preferably in the range of ⁇ 10 ° C.
  • the birefringent film of the present invention can be obtained, and the birefringent film has properties such as birefringence, retardation, and orientation axis, particularly those in the width direction.
  • the characteristics are excellent in uniformity.
  • the birefringence of the birefringent film The values of the refraction and the phase difference differ depending on, for example, the material of the polymer film used and the stretching ratio. However, if the polymer film is manufactured based on the conditions represented by the above formula (1), the magnitude of the birefringence and the phase difference will be large. Regardless, the uniformity is excellent.
  • the birefringent film preferably has an in-plane retardation value of “(: nx-ny) ⁇ dj accuracy, that is, a variation in retardation of, for example, a range of ⁇ 9 to + 9%. It is preferably 8— + 8%, more preferably —7— + 7%, and the accuracy of the phase difference value “(nx-nz) 'd” in the thickness direction is, for example, -7— A range of + 7% is preferably 6— + 6%, more preferably 5— + 5%.
  • the accuracy of each phase difference can be measured as follows.
  • the in-plane retardation and the thickness direction retardation at seven points excluding the ends. Is measured. Then, when the average value is set to 100%, the difference between each measured value and the average value is calculated as the accuracy (%) of the in-plane retardation and the thickness direction retardation.
  • the variation of the orientation axis angle in the X-axis direction is preferably 5 ° or less, more preferably 4 ° or less.
  • the variation in the axial angle can be controlled in such a range, so that the uniformity of the refractive index can be improved.
  • the orientation axis angle refers to the variation of the slow axis, and can be automatically calculated using, for example, an automatic birefringence meter (trade name: KOBRA-21ADH; manufactured by Oji Scientific Instruments).
  • the orientation axis angle when the orientation axis angle is measured at a plurality of points (seven points) in the same manner as the above-described phase difference, it can be represented by the difference between the maximum value and the minimum value.
  • the width direction in which the change magnification is large is the slow axis direction.
  • the thickness of the obtained birefringent film varies depending on the thickness of the polymer film to be used and the stretching ratio, but is generally in the range of 5 to 500 ⁇ m, preferably in the range of 10 to 350 ⁇ m. And more preferably in the range of 20-200 ⁇ m.
  • a polymer film serving as the above-mentioned non-liquid crystalline polymarker may be formed on a substrate, and the laminate may be simultaneously subjected to stretching and shrinking treatments.
  • the base material and the polymer film may be stretched and shrunk together as described later, or the polymer film may be indirectly stretched and shrunk by stretching and shrinking only the base material of the laminate. May be processed.
  • the base material also peeled the polymer film Thereafter, only the polymer film may be treated.
  • a coating liquid is prepared by dispersing or dissolving a polymer film forming material in a solvent.
  • concentration of the forming material in the coating liquid is not particularly limited, but for example, it is preferably 0.5 to 50% by weight because the coating material has a viscosity that facilitates coating. It is preferably 1 to 40% by weight, particularly preferably 2 to 30% by weight.
  • the amount of the polymer is preferably, for example, 5 to 50 parts by weight based on 100 parts by weight of the solvent, and more preferably 5 to 50 parts by weight. It is 10-40 weight parts.
  • the solvent is not particularly limited and can be appropriately selected depending on the forming material.
  • a solvent which can dissolve the forming material and does not easily erode the substrate is preferable.
  • halogenated hydrocarbons such as chloroform, dichloromethane, carbon tetrachloride, dichloroethane, tetrachloroethane, trichloroethylene, tetrachloroethylene, chlorobenzene, onolesodichloromethane, phenol, parachlorobenzene, etc.
  • Phenols such as phenol, aromatic hydrocarbons such as benzene, toluene, xylene, methoxybenzene and 1,2-dimethoxybenzene, acetone, methylethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, 2- Ketone solvents such as pyrrolidone and N-methyl-2-pyrrolidone, ester solvents such as ethyl acetate and butyl acetate, t-butyl alcohol, glycerin, ethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, Alcoholic solvents such as ethylene glycol dimethinol ether, propylene glycol, dipropylene glycol, and 2-methyl-2,4-pentanediol; amide solvents such as dimethylformamide and dimethylacetamide; and acetonitrile and butymouth-tolyl.
  • ether solvents such as diethyl ether, dibutyl ether, tetrahydrofuran, carbon disulfide, ethylcellosolve, butylcellosolve, sulfuric acid and the like can be used. These solvents may be used alone or in combination of two or more.
  • additives such as a surfactant, a stabilizer, a plasticizer, and a metal may be further added to the coating liquid, if necessary.
  • the coating liquid may be used, for example, in a range where the orientation and the like of the forming material are not significantly reduced.
  • another different resin may be contained.
  • the other resin include various general-purpose resins, engineering plastics, thermoplastic resins, and thermosetting resins.
  • Examples of the general-purpose resin include polyethylene (PE), polypropylene (PP), polystyrene (PS), polymethyl methacrylate (PMMA), ABS resin, and AS resin.
  • Examples of the engineering plastic include polyacetate (POM), polycarbonate (PC), polyamide (PA: nylon), polyethylene terephthalate (PET), and polybutylene terephthalate (PBT).
  • Examples of the thermoplastic resin include polyphenylene sulfide (PPS), polyether sulfone (PES), polyketone (PK), polyimide (PI), polycyclohexane dimethanol terephthalate (PCT), and polyarylate (PAR). And liquid crystal polymer (LCP).
  • thermosetting resin examples include an epoxy resin and a phenol novolak resin.
  • the blending amount is, for example, 0 to 50% by weight based on the forming material, and preferably 0 to 30% by weight. % By weight.
  • the prepared coating liquid is applied to the surface of a base material to form a coating film of the forming material.
  • the coating method include a spin coating method, a roll coating method, a printing method, a dipping and pulling method, a curtain coating method, a wire bar coating method, a doctor blade method, a knife coating method, a tie coating method, and a gravure method. Coating method, microgravure coating method, offset gravure coating method, lip coating method, spray coating method and the like can be mentioned. In the case of coating, a superposition method of a polymer layer can be adopted as necessary.
  • the thickness of the base material is not particularly limited, but is usually 10 ⁇ m or more, preferably 10 to 200 ⁇ m, more preferably 20 to 150 / zm, and particularly preferably. Is in the range of 30-100 m.
  • the length is 10 m or more, sufficient strength is exhibited in the stretching and shrinking treatment described later, so that the occurrence of unevenness and the like in the stretching and shrinking treatment can be sufficiently suppressed.
  • stretching can be performed with an appropriate tension, which is preferable.
  • the coating film formed on the base material is dried.
  • the forming material is fixed on the base material, and a polymer film can be directly formed on the base material.
  • the method for drying is not particularly limited, and examples thereof include natural drying and heat drying.
  • the drying of the coating film may be performed, for example, at a constant temperature, or may be performed while increasing or decreasing the temperature stepwise.
  • the drying time is not particularly limited, it is, for example, 10 seconds to 60 minutes, preferably 30 seconds to 30 minutes.
  • the solvent of the polymer liquid remaining in the polymer film may change its optical characteristics with time in proportion to the amount thereof.
  • the thickness of the polymer film formed on the base material is not particularly limited, but is, for example, usually preferably set to 0.5 to 10 m, more preferably 18 to 18 m, and particularly preferably. Or one.
  • the polymer film formed on the base material is simultaneously subjected to a stretching and shrinking treatment under the above-mentioned conditions.
  • a stretching and shrinking treatment under the above-mentioned conditions.
  • only the polymer film may be directly stretched and shrunk, or the laminate of the base material and the polymer film may be stretched and shrunk together.
  • the substrate can be uniformly stretched and shrunk, and accordingly, the polymer film on the substrate can be uniformly stretched and shrunk.
  • the polymer film on the substrate can be uniformly stretched and shrunk.
  • only the polymer film can be treated as described above.
  • the birefringent film of the present invention When the birefringent film of the present invention is formed on a substrate as described above, it may be used, for example, as a laminate with the substrate, or as a monolayer separated from the substrate. Can also be used. After peeling from the base material (hereinafter, referred to as “first base material”), for example, an adhesive layer is applied to a base material that does not interfere with its optical characteristics (hereinafter, referred to as “second base material”). It can also be used by laminating (transferring) again.
  • the second base material is not particularly limited as long as it has an appropriate flatness, and examples thereof include glass and a transparent polymer film having optical isotropy.
  • polymer film examples include polymethacrylate, polystyrene, polycarbonate, polyether sulfone, polyphenylene sulfide, polyarylate, amorphous polyolefin, TAC, epoxy resin, and isobutene / N-methylmaleimide copolymer as described above.
  • film examples include a resin composition formed by combining the acrylonitrile / styrene copolymer with a resin composition.
  • polymethyl methacrylate, polycarbonate, polyarylate, TAC, polyether sulfone, a resin composition of an isobutene / N-methylmaleimide copolymer and an Atari port-tolyl / styrene copolymer, and the like are preferable.
  • a substrate having optical anisotropy can be used according to the purpose. Examples of such a substrate having optical anisotropy include a retardation film obtained by stretching a polymer film such as polycarbonate polystyrene and norbornene resin, and a polarizing film.
  • an acrylic or epoxy-based or urethane-based adhesive or pressure-sensitive adhesive can be used as long as it can be used for optical purposes.
  • the configuration of the optical film of the present invention is not limited as long as it includes the above-described birefringent film of the present invention, for example, including the above-described base material.
  • the optical film of the present invention preferably further has an adhesive layer in the outermost layer. This is because, for example, the optical film of the present invention can be easily attached to another member such as another optical layer or a liquid crystal cell, and peeling of the optical film of the present invention can be prevented. Further, the pressure-sensitive adhesive layer may be provided on one side or both sides of the optical film of the present invention.
  • the material of the pressure-sensitive adhesive layer is not particularly limited.
  • an acrylic, silicone, polyester, rubber-based pressure-sensitive adhesive can be used. Further, these materials may contain fine particles to form a layer exhibiting light diffusivity.
  • a material having excellent hygroscopicity and heat resistance is preferable. With such properties, for example, when used in a liquid crystal display device, it is possible to prevent deterioration of optical characteristics due to foaming and peeling due to moisture absorption, a difference in thermal expansion, and warpage of a liquid crystal cell, thereby achieving high quality and durability. It becomes a display device which is excellent in performance.
  • the optical film of the present invention may be the birefringent film of the present invention alone, or Alternatively, a laminate may be combined with another optical member as needed.
  • the other optical member is not particularly limited, and includes, for example, other birefringent films, other retardation films, liquid crystal films, light scattering films, lens sheets, diffraction films, polarizing plates, and the like.
  • the polarizing plate may be a polarizer alone, or a transparent protective layer may be laminated on one or both surfaces of the polarizer.
  • the optical film of the present invention is preferably used for forming various devices such as a liquid crystal display device.
  • the optical film may be disposed on one or both sides of a liquid crystal cell to form a liquid crystal panel, and used for the liquid crystal display device.
  • the method of arranging the optical film is not particularly limited, and is the same as that of a conventional optical film including a birefringent film.
  • the type of the liquid crystal cell forming the liquid crystal display device can be arbitrarily selected.
  • an active matrix drive type such as a thin film transistor or MIM
  • an IPS drive type such as a plasma addressing drive type, a twisted nematic type
  • Various types of liquid crystal cells such as a simple matrix drive type represented by a twisted nematic type, can be used.
  • S TN Super Twisted Nematic
  • TN Transmission Nematic
  • IPS In-Plan Switching
  • VA Very Nematic
  • OCB Optically Controlled
  • Birefringence Senor, HAN (Hybrid Aligned Nematic): Senor, ASM (Axially Symmetric Aligned Microcell) cell, ferroelectric 'antiferroelectric cell, and those with regular orientation division, random orientation division, etc. Is raised.
  • the liquid crystal display device provided with such an optical film of the present invention may be, for example, a transmission type provided with a knock rim system, a reflection type provided with a reflector, a projection type, or the like.
  • the optical film of the present invention is not limited to the liquid crystal display device as described above, and may be used for a self-luminous display device such as an organic electroluminescent (EL) display, PDP, and FED. it can. In this case, the configuration is not limited except that the optical film of the present invention is used instead of the conventional optical film.
  • EL organic electroluminescent
  • the value at a wavelength of 590 ⁇ m was measured using an automatic birefringence meter (trade name: KOBRA-21ADH; manufactured by Oji Scientific Instruments).
  • the thickness of the birefringent layer was measured using an instantaneous multi-photometry system (trade name: MCPD-2000; manufactured by Otsuka Electronics Co., Ltd.).
  • the axis direction indicating the maximum refractive index is an axis direction perpendicular to the X axis in the plane, and the Z axis is a thickness direction perpendicular to the X axis and the Y axis.
  • d show the thickness of the birefringent film.
  • a birefringent film was produced in the same manner as in Example 1 except that the film was uniaxially stretched so that the STD in the width direction was 1.2 times and the longitudinal direction was not shrunk, and the characteristics were examined. The results are shown in Table 2 below.
  • the SMD was 1.
  • This polyimide was dissolved in MIBK to a concentration of 20% by weight to prepare a polyimide solution, which was continuously coated on a TAC film (trade name: TF80UL; manufactured by Fuji Photo Film Co., Ltd.) (400 mm wide, 40 ⁇ m thick) by blade coating. Coated. The coated film was dried at 120 ° C. for 2 minutes to form a polyimide film having a thickness of 6.0 m.
  • the laminate of the substrate and the polyimide film was continuously stretched in the width direction and simultaneously contracted in the longitudinal direction to form a birefringent film.
  • the processing temperature was 160 ° C
  • the STD in the width direction was 1.1 times
  • the SMD in the longitudinal direction was 0.97 times.
  • (1ZSTD) 1/2 is 0.953, which satisfies the condition of the above equation (1).
  • the substrate did not have a substantial phase difference due to stretching in the width direction and contraction in the longitudinal direction.
  • the characteristics of the birefringent film were examined in the same manner as in Example 1. The results are shown in Table 2 below.
  • a birefringent film was produced in the same manner as in Example 2 except that the STD in the width direction was 1.1 times, the SMD in the longitudinal direction was 0.9 times, and (lZSTD) 1/2 was 0.913, and the characteristics were the same. I checked. The results are shown in Table 2 below. (1ZSTD) 1/2 > SMD
  • Example 1 3.6 218.6 ⁇ 10,5 284.8 ⁇ 12.1 No abnormality Comparative example 1 20.6 173.7 ⁇ 18.2 394.1 ⁇ 22.5 No abnormality Comparative example 2 8.1 235.1 ⁇ 15.3 301.4 ⁇ 17.2 Sea occurrence Example 2 2.3 49.7 ⁇ 3.2 250.7 ⁇ 3.0 Abnormal None Comparative Example 3 11.3 50.9 ⁇ 10.4 309.2 ⁇ 25.5 No abnormality Comparative Example 4 4.3 63.0 ⁇ 10.1 261.4 ⁇ 8.5
  • Example 1 performed stretching and shrinkage satisfying the condition of the above-mentioned formula (1), so that the orientation axis angle was smaller than that of Comparative Example 1 in which stretching was performed only in the width direction. , And and Rth were extremely suppressed. Further, the stretching and shrinkage were performed simultaneously, but the condition satisfied the above-mentioned formula (1). In Comparative Example 2, the shear occurred in the width direction, whereas in Example 1, the orientation axis was reduced. The corners, And, and Rth were not only able to suppress the variation, but also excellent in appearance.
  • Example 2 using a laminate of a base material and a polyimide film, since stretching and shrinkage were performed to satisfy the condition of the above formula (1), Comparative Example 3 in which stretching was performed only in the width direction was performed. In comparison, variations in the orientation axis angle, And, and Rth were significantly suppressed. In addition, stretching and shrinking are performed simultaneously, but the condition satisfies the above expression (1). On the other hand, in Comparative Example 4, a shrinkage occurred in the width direction, whereas in Example 2, only variations in the orientation axis angle, And and Rth could be suppressed, and the appearance was further improved.
  • a birefringent film having excellent optical properties can be obtained.
  • Such a birefringent film having excellent optical characteristics is useful for, for example, various optical films, and can realize excellent display characteristics when applied to various image display devices such as a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

 面内位相差、厚み方向位相差、配向軸の均一性に優れる複屈折フィルムを提供する。ポリマーフィルムを延伸する工程において、前記ポリマーフィルムを幅方向に延伸すると同時に、その長手方向に収縮させ、延伸前のポリマーフィルムの幅方向の長さおよび長手方向の長さをそれぞれ1とした場合における、前記延伸による幅方向の長さの変化倍率(STD)と、前記収縮による長手方向の長さの変化倍率(SMD)とが下記式(1)を満たすことによって複屈折フィルムを製造する。       (1/STD)1/2 ≦ SMD <1   ・・・(1)                                                                                 

Description

明 細 書
複屈折フィルムの製造方法、それを用いた光学フィルムおよび画像表示 技術分野
[0001] 本発明は、複屈折フィルムの製造方法、それを用いた光学フィルムおよび各種画 像表示装置に関する。
背景技術
[0002] 液晶表示装置等の各種画像表示装置には、表示特性を向上するために、例えば、 着色の解消や視野角拡大等を目的として、通常、複屈折性のフィルムが使用されて いる。このような複屈折フィルムは、一般に、ポリマーフィルムに一軸延伸や二軸延伸 を施すことによってその複屈折や位相差を調整して製造されている。
[0003] このような複屈折フィルムを偏光フィルムと共に液晶表示装置に使用する際には、 通常、前記複屈折フィルムの遅相軸と偏光フィルムの透過軸とが平行になるように、 前記両フィルムを配置する必要がある。なお、一般に、複屈折フィルムの遅相軸は、 その延伸方向と一致し、偏光フィルムの透過軸は、その延伸方向に対して垂直方向 と一致する。
[0004] し力しながら、複屈折フィルムと偏光フィルムとをこのように配置するには、製造上以 下のような問題がある。すなわち、工業的にポリマーフィルムを延伸する場合、フィル ムに延伸処理を施しながら、同時にそのフィルムを長手方向に移動させてロールに 巻き取ることが一般的である。そして、このようにロールに巻き取った複屈折フィルムと ロールに巻き取った偏光フィルムとを貼り合せる場合、各フィルムの長手方向を揃え た状態で、両者を貼り合せながら再度ロールで巻き取れば、連続的な貼り合せを実 現できる。このため、前記両フィルムを、前記透過軸と前記遅相軸とを平行に配置し、 且つ、連続的に張り合わせるには、前記偏光フィルムは長手方向に延伸するのに対 して、前記複屈折フィルムは幅方向に延伸する必要がある。つまり、偏光フィルムの 透過軸 (延伸方向と垂直方向)の方向と複屈折フィルムの遅相軸 (延伸方向)の方向 を、各フィルムの幅方向に設定するには、前記複屈折フィルムを幅方向に延伸する 必要があるということである。しかし、前記複屈折フィルムの製造において、ポリマーフ イルムを幅方向に連続的に延伸すると、例えば、面内の配向軸が扇状になる、いわ ゆるボーイング現象が生じるため、幅方向の延伸によって均一な配向軸ゃ複屈折、 位相差を発生させることは困難であった。
そこで、ポリマーフィルムを幅方向に延伸する方法として、ー且幅方向に延伸した 後、元の幅位置に戻す緩和処理を施すことによって、幅方向(延伸方向)の遅相軸の 均一性を向上させるという方法が採用されている。しかし、一般にポリマーフィルムは 、基材上に直接形成された後、前記基材と共に延伸されるため、この方法では前記 基材の物性値のバラツキ等の影響を受けたり、また、ポリマーフィルムによっては緩 和効果が小さいものがあるため、工業的に安定して均一な複屈折フィルムを生産す ることは困難である。また、延伸後に冷却を行うことによってボーイング現象を減少さ せる試みもあるが、完全に前記現象を回避することはできない(例えば、非特許文献
D oさらに、テンター延伸機のチャック間において、ポリマーフィルムが形成された基 材を緩ませ、前記基材を熱収縮する方法も開示されているが (例えば、特許文献 1)、 前記基材が熱収縮性を有する基材に限定されることや、基材の厚みが厚すぎると、 前記基材を弛める際に、シヮが発生して安定して基材を弛めることが困難であるとい う問題もある。また、これらの他にも延伸条件を設定する方法、例えば、延伸フィルム の幅を延伸倍率の平方根とする方法 (例えば、特許文献 2)、縦延伸に伴う収縮の幅 を規定する方法 (例えば、特許文献 3)、延伸後に熱緩和させる方法 (例えば、特許 文献 4)等が開示されているが、工業的な見地力 安定な生産は困難である。
非特許文献 l : T.Yamada et al. Intn. Polym. Process., Vo.X, Issue 4, 334-340 (1995)
特許文献 1:特開平 6 - 51116号公報
特許文献 2:特開平 3— 23405号公報
特許文献 3:特開平 2 - 191904号公報
特許文献 4 :特開平 5— 249316号公報
発明の開示
発明が解決しょうとする課題 [0006] そこで、本発明の目的は、ポリマーフィルムを幅方向に延伸して複屈折フィルムを 製造する際に、外観に優れ、また、複屈折や位相差、配向軸角のバラツキが抑制さ れた光学特性の均一性に優れる複屈折フィルムの製造方法の提供である。
課題を解決するための手段
[0007] 前記目的を達成するために、本発明の複屈折フィルムの製造方法は、前記延伸ェ 程において、ポリマーフィルムを幅方向に延伸すると同時に、その長手方向(前記幅 方向に対して垂直方向)に収縮させ、延伸前のポリマーフィルムの幅方向の長さおよ び長手方向の長さをそれぞれ 1とした場合における、前記延伸による幅方向の長さの 変化倍率 (STD)と、前記収縮による長手方向の長さの変化倍率 (SMD)との関係が 、下記式(1)を満たすことを特徴とする。
[0008] (1/STD)1 2 ≤ SMD < 1 · · · (1)
発明の効果
[0009] このように、ポリマーフィルムを幅方向に延伸すると同時に長手方向に収縮させ、か つ、前記幅方向の延伸程度と長手方向の収縮程度とを前記式(1)の条件に設定す ることによって、外観に優れ、また、面内および厚み方向の屈折率を高度に制御でき 、かつ、複屈折、位相差ならびに配向軸、特に幅方向の配向軸精度が均一である、 光学特性に優れた複屈折フィルムを効率良く得ることができる。このような製造方法 により得られた複屈折フィルムは、その特性から、例えば、液晶表示装置等の各種画 像表示装置の表示特性の向上を実現でき、また、前述のような偏光フィルムとの連続 的な貼り合せが可能であることから、極めて工業的に有用であるといえる。
[0010] 前述のように幅方向の延伸と長手方向の収縮を同時に行い、その条件を前記式(1
)に設定することは、本発明者らが鋭意研究の結果、初めて見出したものである。す なわち、本発明者らは、従来の幅方向延伸によるポリマーフィルムの変形と、従来の 長手方向延伸によるポリマーフィルムの変形とを比較し、それらの変形力 下記表 1 に示すような挙動を示すことに着目した。なお、下記表 1はポリマーフィルムの 3次元( 長手方向、幅方向、厚み方向)における変化倍率を示す表であり、前記変化倍率は 、未延伸ポリマーフィルムの幅、長さ、厚みをそれぞれ「1」とした場合の倍率であり、 幅方向の変化倍率を STD、長手方向の変化倍率を SMDとする。つまり、下記表 1に 示すように、従来の幅方向延伸では、長手方向に変形が生じないため、これが原因 の一つとなってボーイング現象が発生すると考えられ、一方、従来の長手方向延伸 では、幅方向および厚み方向を一般的に自由に変形させ易いことに着目したのであ る。そして、鋭意研究の結果、本発明に想到したのである。
[0011] [表 1]
長手方向の変形 幅方向の栾形 厚み方向の変形 従来 方向延伸 1 STD 1/STD
従来 長手方向延伸 ∞ STD= (1/SMD) 1/2 一 (1/SMD) ' 本発明 延伸 +収縮 (1/STD) 1 2 ≤SMD STD (1/さ TD) 1 発明を実施するための最良の形態
[0012] 本発明の複屈折フィルムの製造方法は、前述のように、前記延伸工程において、ポ リマーフィルムを幅方向に延伸すると同時に、その長手方向に収縮させ、延伸前のポ リマーフィルムの幅方向の長さおよび長手方向の長さをそれぞれ 1とした場合におけ る、前記延伸による幅方向の長さの変化倍率 (STD)と、前記収縮による長手方向の 長さの変化倍率 (SMD)とが下記式(1)を満たすことを特徴とする。なお、本発明に おいて長手方向とは、ポリマーフィルムが長方形である場合に両端の距離が長い方 向を示し、幅方向とは、前記長手方向と垂直な方向を示す。また、ポリマーフィルムが 正方形の場合には両方向が垂直となる方向であればよい。
[0013] (1/STD)1 2≤ SMD < 1 · · · (1)
「SMD= 1」、すなわち長手方向の寸法が変化しない場合、ボーイング現象の発生 という問題が解決できず、「(1ZSTD)1/2 > SMD」となると、幅方向にシヮが発生す るという外観上の問題がある。
[0014] 前記式(1)において、 SMD= (1ZSTD) 1/2が好ましい。また、 SMDは、具体的に 、 0. 99未満であることが好ましぐより好ましくは 0. 85-0. 95であり、特に好ましく ίま 0. 88-0. 93である。また、前記式(1)にお!/、て (1/STD)1/2 ίま、好ましく ίま 0. 9 9未満であり、より好ましくは 0. 85-0. 95、特に好ましくは 0. 88-0. 93であり、す なわち、 STDは 1. 5未満が好ましぐより好ましくは 1. 01以上 1. 5未満、特に好まし く ίま 1. 1-1. 3である。具体的に ίま、 STD力 i. 2の場合に、 SMD力^). 9-0. 92で あることが好ましぐ STDが 1. 3の場合に、 SMDが 0. 86-0. 90であることが好まし い。本発明の好ましい条件として、前記式(1)において SMD = (1/STD)1/2の場合、ポ リマーフィルムの三次元の変化倍率は、例えば、長手方向が SMD = (1/STD)1/2、幅 方向が STD、厚み方向が (1/STD)1/2になると推測される。
[0015] 前述のように同時に行う延伸処理と収縮処理は、前記ポリマーフィルムに直接施す ことができる。また、前記ポリマーフィルムを基材上に配置し、前記基材に延伸処理 および収縮処理を同時に施すことによって、前記ポリマーフィルムに間接的に施して もよいし、前記基材とポリマーフィルムとの積層体に同時に施してもよい。
[0016] 前記ポリマーフィルムとしては、特に制限されず、複屈折フィルムの形成材料として 使用される従来公知のポリマー製フィルムが使用できる。前記ポリマーとしては、例え ば、ポリカーボネート;ポリアリレート;ポリスルホン;ポリエチレンテレフタレート(PET) 、ポリエチレンナフタレート等のポリエステル;ポリエーテルスルホン;ポリビニルアルコ ール;ポリエチレン、ポリプロピレン等のポリ才レフィン;セノレロース系ポリマー;ポリス チレン、ポリメタタリレート;ポリ塩ィ匕ビニル;ポリ塩ィ匕ビ二リデン;ポリアミド;ノルボルネ ン系ポリマー;イソブテンと N—メチルマレイミドカもなる交互共重合体と、アタリ口-トリ ル 'スチレン共重合体とを含む混合物等があげられる。
[0017] 前記ポリマーフィルムは、例えば、光透過性であることが好ましぐ例えば、その光 透過率が 85%以上であることが好ましぐより好ましくは 90%である。また、配向ムラ が少ないことが好ましい。
[0018] 基材上に直接ポリマーフィルムを形成する場合には、例えば、以下に示すような非 液晶性ポリマーを使用することも好ましい。前記非液晶性ポリマーを用いれば、例え ば、基材の配向性に関係なぐ塗工するのみで、それ自身の性質により光学的に負 の一軸性 (nx>nz)、 (ny>nz)を示す複屈折性のポリマーフィルムを形成でき、さら に延伸処理を施すことによって、光学特性を負の二軸性 (nx>ny>nz)に変化させ ることができる。このため、複屈折や位相差をより一層調整し易ぐまた、前記基材が 配向基材に限定されることもない。なお、 nx、 nyおよび nzは、それぞれ前記ポリマー フィルムの X軸 (遅相軸)、 Y軸および Z軸方向の屈折率を示し、前記 X軸方向とは、 前記ポリマーフィルムの面内において最大の屈折率を示す軸方向であり、 Y軸方向 は、前記面内において前記 X軸に対して垂直な軸方向であり、 Ζ軸は、前記 X軸およ ひ Ύ軸に垂直な厚み方向を示す。
[0019] 前記非液晶性ポリマーとしては、例えば、耐熱性、耐薬品性、透明性に優れ、剛性 にも富むことから、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアリー ルエーテルケトン、ポリアミドイミド、ポリエステルイミド等のポリマーが好ましい。これら のポリマーは、いずれか一種類を単独で使用してもよいし、例えば、ポリアリールエー テルケトンとポリアミドとの混合物のように、異なる官能基を持つ 2種以上の混合物とし て使用してもよい。このようなポリマーの中でも、高い複屈折性が得られることから、ポ リイミド等が好ましい。
[0020] 前記ポリマーの分子量は、特に制限されないが、例えば、重量平均分子量 (Mw) 力 i, 000— 1,000,000の範囲であること力 S好ましく、より好ましくは 2,000— 500,00 0の範囲である。
[0021] 前記ポリイミドとしては、例えば、面内配向性が高ぐ有機溶剤に可溶なポリイミドが 好ましい。具体的には、例えば、特表 2000— 511296号公報に開示された、 9, 9-ビ ス (アミノアリール)フルオレンと芳香族テトラカルボン酸二無水物との縮合重合生成物 、具体的には、下記式(1)に示す繰り返し単位を 1つ以上含むポリマーが使用できる
[0022] [化 1]
Figure imgf000007_0001
[0023] 前記式(1)中、 R— Rは、水素、ハロゲン、フエ-ル基、 1一 4個のハロゲン原子ま たは C一アルキル基で置換されたフエ-ル基、および C一アルキル基力 なる群 力もそれぞれ独立に選択される少なくとも一種類の置換基である。好ましくは、 R3— R 6は、ハロゲン、フエ-ル基、 1一 4個のハロゲン原子または C キル基で置換さ
1一アル
10
れたフエ-ル基、および C一アルキル基からなる群からそれぞれ独立に選択される
1 10
少なくとも一種類の置換基である。
[0024] 前記式(1)中、 Zは、例えば、 C 好ましくは、ピロメリット
6一 の 4価芳香族基であり、
20
基、多環式芳香族基、多環式芳香族基の誘導体、または、下記式 (2)で表される基 である。
[0025] [化 2]
Figure imgf000008_0001
[0026] 前記式(2)中、 Z'は、例えば、共有結合、 C(R7)基、 CO基、 O原子、 S原子、 SO
2 2 基、 Si(C H )基、または、 NR8基であり、複数の場合、それぞれ同一である力または
2 5 2
異なる。また、 wは、 1から 10までの整数を表す。 R7は、それぞれ独立に、水素または C (R9)である。 R8は、水素、炭素原子数 1一約 20のアルキル基、または C一ァリー
3 6 20 ル基であり、複数の場合、それぞれ同一である力または異なる。 R9は、それぞれ独立 に、水素、フッ素、または塩素である。
[0027] 前記多環式芳香族基としては、例えば、ナフタレン、フルオレン、ベンゾフルオレン またはアントラセン力 誘導される 4価の基があげられる。また、前記多環式芳香族基 の誘導体としては、例えば、 C一 のアルキル基、そのフッ素化誘導体、および Fや C
1 10
1等のハロゲン力 なる群力 選択される少なくとも一つの基で置換された前記多環 式芳香族基があげられる。
[0028] この他にも、例えば、特表平 8— 511812号公報に記載された、繰り返し単位が下記 一般式 (3)または (4)で示されるホモポリマーや、繰り返し単位が下記一般式 (5)で 示されるポリイミド等があげられる。なお、下記式(5)のポリイミドは、下記式(3)のホモ ポリマーの好まし 、形態である。 [0029] [化 3]
Figure imgf000009_0001
Figure imgf000009_0004
[0030] [化 4]
Figure imgf000009_0002
Figure imgf000009_0005
[0031] [化 5]
Figure imgf000009_0006
Figure imgf000009_0003
[0032] 前記一般式(3)— (5)中、 Gおよび G'は、例えば、共有結合、 CH基、 C(CH )基
2 3 2
、 C(CF )基、 C(CX )基(ここで、 Xは、ハロゲンである。 )、 CO基、 O原子、 S原子、 S
3 2 3 2
O基、 Si(CH CH )基、および、 N(CH )基力 なる群から、それぞれ独立して選択
2 2 3 2 3
される基を表し、それぞれ同一でも異なってもよい。
[0033] 前記式(3)および式(5)中、 Lは、置換基であり、 dおよび eは、その置換数を表す。
Lは、例えば、ハロゲン、 C ル基、 C ニル基
1一アルキ
3 1一ハロゲン化アルキル基、フエ
3
、または、置換フエ-ル基であり、複数の場合、それぞれ同一であるかまたは異なる。 前記置換フエ-ル基としては、例えば、ハロゲン、 C キル基、および C
1一アル
3 1一ノヽ
3 ロゲン化アルキル基カゝらなる群カゝら選択される少なくとも一種類の置換基を有する置 換フヱニル基があげられる。また、前記ハロゲンとしては、例えば、フッ素、塩素、臭 素またはヨウ素があげられる。 dは、 0から 2までの整数であり、 eは、 0から 3までの整 数である。
[0034] 前記式(3)—(5)中、 Qは置換基であり、 fはその置換数を表す。 Qとしては、例え ば、水素、ハロゲン、アルキル基、置換アルキル基、ニトロ基、シァノ基、チオアルキ ル基、アルコキシ基、ァリール基、置換ァリール基、アルキルエステル基、および置換 アルキルエステル基力 なる群力 選択される原子または基であって、 Qが複数の場 合、それぞれ同一である力または異なる。前記ハロゲンとしては、例えば、フッ素、塩 素、臭素およびヨウ素があげられる。前記置換アルキル基としては、例えば、ハロゲン 化アルキル基があげられる。また前記置換ァリール基としては、例えば、ハロゲンィ匕 ァリール基があげられる。 fは、 0から 4までの整数であり、 gおよび hは、それぞれ 0か ら 3および 1から 3までの整数である。また、 gおよび hは、 1より大きいことが好ましい。
[0035] 前記式 (4)中、 R1Qおよび R11は、水素、ハロゲン、フエ-ル基、置換フエ二ル基、ァ ルキル基、および置換アルキル基力 なる群から、それぞれ独立に選択される基であ る。その中でも、 R1Qおよび R11は、それぞれ独立に、ハロゲンィ匕アルキル基であること が好ましい。
[0036] 前記式(5)中、 M1および M2は、同一である力または異なり、例えば、ハロゲン、 C 一アルキル基、 C
3 1一ハロゲン化アルキル基、フヱ -ル基、または、置換フヱ -ル基
3
である。前記ハロゲンとしては、例えば、フッ素、塩素、臭素およびヨウ素があげられる
。また、前記置換フエニル基としては、例えば、ハロゲン、 C
1一アルキル基、および C 3
一ハロゲン化アルキル基力 なる群力 選択される少なくとも一種類の置換基を有
1 3
する置換フ ニル基があげられる。
[0037] 前記式(3)に示すポリイミドの具体例としては、例えば、下記式 (6)で表されるもの 等があげられる。 [0038] [化 6]
Figure imgf000011_0001
[0039] さらに、前記ポリイミドとしては、例えば、前述のような骨格 (繰り返し単位)以外の酸 二無水物ゃジァミンを、適宜共重合させたコポリマーがあげられる。
[0040] 前記酸二無水物としては、例えば、芳香族テトラカルボン酸二無水物があげられる 。前記芳香族テトラカルボン酸二無水物としては、例えば、ピロメリト酸ニ無水物、ベ ンゾフエノンテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、複素 環式芳香族テトラカルボン酸二無水物、 2, 2'—置換ビフエ-ルテトラカルボン酸二無 水物等があげられる。
[0041] 前記ピロメリト酸ニ無水物としては、例えば、ピロメリト酸ニ無水物、 3, 6—ジフヱ-ル ピロメリト酸ニ無水物、 3, 6—ビス(トリフルォロメチル)ピロメリト酸ニ無水物、 3, 6—ジ ブロモピロメリト酸ニ無水物、 3, 6—ジクロロピロメリト酸ニ無水物等があげられる。前 記べンゾフエノンテトラカルボン酸二無水物としては、例えば、 3, 3' , 4, 4'一べンゾ フエノンテトラカルボン酸二無水物、 2, 3, 3' , 4'一べンゾフエノンテトラカルボン酸二 無水物、 2, 2' , 3, 3' ベンゾフヱノンテトラカルボン酸二無水物等があげられる。前 記ナフタレンテトラカルボン酸二無水物としては、例えば、 2, 3, 6, 7 ナフタレンーテ トラカルボン酸二無水物、 1, 2, 5, 6 ナフタレンーテトラカルボン酸二無水物、 2, 6— ジクロローナフタレン—1, 4, 5, 8—テトラカルボン酸二無水物等があげられる。前記複 素環式芳香族テトラカルボン酸二無水物としては、例えば、チォフェン 2, 3, 4, 5— テトラカルボン酸二無水物、ピラジン 2, 3, 5, 6—テトラカルボン酸二無水物、ピリジ ンー 2, 3, 5, 6—テトラカルボン酸二無水物等があげられる。前記 2, 2' 置換ビフエ -ルテトラカルボン酸二無水物としては、例えば、 2, 2,一ジブ口モー 4, 4,, 5, 5,ービ フエ-ルテトラカルボン酸二無水物、 2, 2,ージクロロー 4, 4,, 5, 5,ービフエ-ルテトラ カルボン酸二無水物、 2, 2,一ビス(トリフルォロメチル) 4, 4,, 5, 5,ービフエ-ルテ トラカルボン酸二無水物等があげられる。
[0042] また、前記芳香族テトラカルボン酸二無水物のその他の例としては、 3, 3' , 4, 4 '— ビフエ-ルテトラカルボン酸二無水物、ビス(2, 3—ジカルボキシフエ-ル)メタン二無 水物、ビス(2, 5, 6 トリフルオロー 3, 4—ジカルボキシフエ-ル)メタン二無水物、 2, 2 ビス(3, 4—ジカルボキシフエ二ル)— 1, 1, 1, 3, 3, 3—へキサフルォロプロパン二 無水物、 4, 4,一ビス(3, 4—ジカルボキシフエ-ル)—2, 2—ジフエ-ルプロパン二無 水物、ビス(3, 4—ジカルボキシフエ-ル)エーテル二無水物、 4, 4'ーォキシジフタル 酸二無水物、ビス(3, 4—ジカルボキシフエ-ル)スルホン酸二無水物、 3, 3' , 4, 4, ージフエ-ルスルホンテトラカルボン酸二無水物、 4, 4 '—[4, 4' イソプロピリデンー ジ(p—フエ-レンォキシ)]ビス(フタル酸無水物)、 N, N—(3, 4—ジカルボキシフエ- ル) N—メチルァミン二無水物、ビス(3, 4—ジカルボキシフエ-ル)ジェチルシラン二 無水物等があげられる。
[0043] これらの中でも、前記芳香族テトラカルボン酸二無水物としては、 2, 2' 置換ビフエ -ルテトラカルボン酸二無水物が好ましぐより好ましくは、 2, 2'—ビス(トリハロメチル )一 4, 4' , 5, 5'—ビフエ-ルテトラカルボン酸二無水物であり、さらに好ましくは、 2, 2,一ビス(トリフルォロメチル) 4, 4,, 5, 5,ービフエ-ルテトラカルボン酸二無水物で める。
[0044] 前記ジァミンとしては、例えば、芳香族ジァミンがあげられ、具体例としては、ベンゼ ンジァミン、ジァミノべンゾフエノン、ナフタレンジァミン、複素環式芳香族ジァミン、お よびその他の芳香族ジァミンがあげられる。
[0045] 前記ベンゼンジァミンとしては、例えば、 o—、 m—および p フエ-レンジァミン、 2, 4 —ジァミノトルエン、 1, 4—ジァミノ— 2—メトキシベンゼン、 1, 4ージァミノ— 2—フエ-ル ベンゼンおよび 1, 3—ジアミノー 4 クロ口ベンゼンのようなベンゼンジァミンから成る群 力も選択されるジァミン等があげられる。前記ジァミノべンゾフエノンの例としては、 2, 2,ージァミノべンゾフエノン、および 3, 3,ージァミノべンゾフエノン等があげられる。前 記ナフタレンジァミンとしては、例えば、 1, 8—ジァミノナフタレン、および 1, 5—ジアミ ノナフタレン等があげられる。前記複素環式芳香族ジァミンの例としては、 2, 6—ジァ ミノピリジン、 2, 4—ジァミノピリジン、および 2, 4—ジァミノ一 S—トリァジン等があげられ 5 c
[0046] また、前記芳香族ジァミンとしては、これらの他に、 4, 4,ージアミノビフエ-ル、 4, 4 ,—ジアミノジフエ-ルメタン、 4, 4,一(9—フルォレニリデン)-ジァ-リン、 2, 2' ビス (ト リフルォロメチル) 4, 4'ージアミノビフエニル、 3, 3'—ジクロロー 4, 4'ージアミノジフエ -ルメタン、 2, 2'—ジクロロー 4, 4'ージアミノビフエ-ル、 2, 2', 5, 5'—テトラクロ口ベン ジジン、 2, 2—ビス(4—ァミノフエノキシフエ-ル)プロパン、 2, 2 ビス(4ーァミノフエ- ル)プロパン、 2, 2—ビス(4ーァミノフエ-ル)— 1, 1, 1, 3, 3, 3—へキサフルォロプロ パン、 4, 4,ージアミノジフエニルエーテル、 3, 4,ージアミノジフエニルエーテル、 1, 3 —ビス(3—アミノフエノキシ)ベンゼン、 1, 3 ビス(4 アミノフエノキシ)ベンゼン、 1, 4 —ビス(4—アミノフエノキシ)ベンゼン、 4, 4' ビス(4 アミノフエノキシ)ビフエ-ル、 4 , 4,一ビス(3 アミノフエノキシ)ビフエ-ル、 2, 2 ビス [4— (4—アミノフエノキシ)フエ -ル]プロパン、 2, 2 ビス [4— (4 アミノフエノキシ)フエ-ル]— 1, 1, 1, 3, 3, 3—へ キサフルォロプロパン、 4, 4'ージアミノジフエ二ルチオエーテル、 4, 4'ージアミノジフ ヱ-ルスルホン等があげられる。
[0047] 前記複屈折層の形成材料である前記ポリエーテルケトンとしては、例えば、特開 20 01— 49110号公報に記載された、下記一般式(7)で表されるポリアリールエーテル ケトンがあげられる。
[0048] [化 7]
Figure imgf000013_0001
[0049] 前記式(7)中、 Xは、置換基を表し、 qは、その置換数を表す。 Xは、例えば、ハロゲ ン原子、低級アルキル基、ハロゲン化アルキル基、低級アルコキシ基、または、ハロ ゲンィ匕アルコキシ基であり、 Xが複数の場合、それぞれ同一である力または異なる。
[0050] 前記ハロゲン原子としては、例えば、フッ素原子、臭素原子、塩素原子およびヨウ 素原子があげられ、これらの中でも、フッ素原子が好ましい。前記低級アルキル基と しては、例えば、 C一の直鎖または分岐鎖を有する低級アルキル基が好ましぐより
1 6
好ましくは C一の直鎖または分岐鎖のアルキル基である。具体的には、メチル基、
1 4
ェチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 sec-ブチル基、お よび、 tert-ブチル基が好ましぐ特に好ましくは、メチル基およびェチル基である。前 記ハロゲンィ匕アルキル基としては、例えば、トリフルォロメチル基等の前記低級アルキ ル基のハロゲンィ匕物があげられる。前記低級アルコキシ基としては、例えば、 C一の
1 6 直鎖または分岐鎖のアルコキシ基が好ましぐより好ましくは C たは分岐
1一の直鎖ま
4
鎖のアルコキシ基である。具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプ 口ポキシ基、ブトキシ基、イソブトキシ基、 sec-ブトキシ基、および、 tert-ブトキシ基が、 さらに好ましぐ特に好ましくはメトキシ基およびエトキシ基である。前記ハロゲン化ァ ルコキシ基としては、例えば、トリフルォロメトキシ基等の前記低級アルコキシ基のハ ロゲン化物があげられる。
[0051] 前記式(7)中、 qは、 0から 4までの整数である。前記式(7)においては、 q = 0であり
、かつ、ベンゼン環の両端に結合したカルボ-ル基とエーテルの酸素原子とが互い にパラ位に存在することが好ま 、。
[0052] また、前記式(7)中、 R1は、下記式(8)で表される基であり、 mは、 0または 1の整数 である。
[0053] [化 8]
Figure imgf000014_0001
[0054] 前記式 (8)中、 X'は置換基を表し、例えば、前記式(7)における Xと同様である。
前記式 (8)において、 X,が複数の場合、それぞれ同一である力または異なる。 q'は 、前記 X'の置換数を表し、 0力も 4までの整数であって、 q' =0が好ましい。また、 pは 、 0または 1の整数である。
[0055] 前記式 (8)中、 R2は、 2価の芳香族基を表す。この 2価の芳香族基としては、例えば 、 o—、 m—もしくは p—フエ-レン基、または、ナフタレン、ビフエ-ル、アントラセン、 o— 、 m—もしくは p—テルフエ-ル、フエナントレン、ジベンゾフラン、ビフエ-ルエーテル、 もしくは、ビフ -ルスルホン力 誘導される 2価の基等があげられる。これらの 2価の 芳香族基において、芳香族に直接結合している水素が、ハロゲン原子、低級アルキ ル基または低級アルコキシ基で置換されてもよい。これらの中でも、前記 R2としては、 下記式 (9)一( 15)力 なる群力 選択される芳香族基が好ま 、。
[0056] [化 9]
Figure imgf000015_0001
[0057] 前記式(7)中、前記 R1としては、下記式(16)で表される基が好ましぐ下記式(16) において、 R2および pは前記式(8)と同義である。
[0058] [化 10]
(16)
Figure imgf000015_0002
[0059] さらに、前記式(7)中、 nは重合度を表し、例えば、 2— 5000の範囲であり、好ましく は、 5— 500の範囲である。また、その重合は、同じ構造の繰り返し単位力もなるもの であってもよぐ異なる構造の繰り返し単位力もなるものであってもよい。後者の場合 には、繰り返し単位の重合形態は、ブロック重合であってもよいし、ランダム重合でも よい。
[0060] さらに、前記式(7)で示されるポリアリールエーテルケトンの末端は、 p—テトラフルォ 口べンゾィレン基側がフッ素であり、ォキシアルキレン基側が水素原子であることが好 ましぐこのようなポリアリールエーテルケトンは、下記一般式(17)で表すことができる 。なお、下記式において、 nは前記式(7)と同様の重合度を表す。
[0061] [化 11]
Figure imgf000016_0001
[0062] 前記式(7)で示されるポリアリールエーテルケトンの具体例としては、下記式(18) 一(21)で表されるもの等があげられ、下記各式において、 nは、前記式(7)と同様の 重合度を表す。
[0063] [化 12]
Figure imgf000016_0002
[0064] [化 13]
Figure imgf000016_0003
[0065] [化 14]
Figure imgf000017_0001
[0066] [化 15]
Figure imgf000017_0002
[0067] また、これらの他に、前記複屈折層の形成材料である前記ポリアミドまたはポリエス テルとしては、例えば、特表平 10— 508048号公報に記載されるポリアミドやポリエス テルがあげられ、それらの繰り返し単位は、例えば、下記一般式(22)で表すことがで きる。
[0068] [化 16]
Figure imgf000017_0003
[0069] 前記式(22)中、 Yは、 Oまたは NHである。また、 Eは、例えば、共有結合、 Cアル
2 キレン基、ハロゲン化 Cアルキレン基、 CH基、 C(CX )基(ここで、 Xはハロゲンまた
2 2 3 2
は水素である。 )、 CO基、 O原子、 S原子、 SO基、 Si(R)基、および、 N(R)基からな
2 2
る群力も選ばれる少なくとも一種類の基であり、それぞれ同一でもよいし異なってもよ い。前記 Eにおいて、 Rは、 C一アルキル基および C
1一ハロゲン化アルキル基の少
1 3 3
なくとも一種類であり、カルボ-ル官能基または Y基に対してメタ位またはパラ位にあ る。
[0070] また、前記(22)中、 Aおよび A'は、置換基であり、 tおよび zは、それぞれの置換数 を表す。また、 pは、 0から 3までの整数であり、 qは、 1から 3までの整数であり、 rは、 0 力 3までの整数である。
[0071] 前記 Aは、例えば、水素、ハロゲン、 C一アルキル基、 C
1一ハロゲン化アルキル基
1 3 3
、 OR (ここで、 Rは、前記定義のものである。)で表されるアルコキシ基、ァリール基、 ハロゲン化等による置換ァリール基、 C一アルコキシカルボ-ル基、 C
1 9 1一アルキル
9 カルボ-ルォキシ基、 C一ァリールォキシカルボ-ル基、 C一ァリールカルボ-
1 12 1 12
ルォキシ基およびその置換誘導体、 C 、ならびに、 C
1一 ァリール力ルバモイル基
12 1一 ァリールカルボニルァミノ基およびその置換誘導体力 なる群力 選択され、複数
12
の場合、それぞれ同一である力または異なる。前記 A'は、例えば、ハロゲン、 C
1一 3 アルキル基、 C一ハロゲン化アルキル基、フエニル基および置換フエニル基からな
1 3
る群から選択され、複数の場合、それぞれ同一である力または異なる。前記置換フエ -ル基のフエ-ル環上の置換基としては、例えば、ハロゲン、 C一アルキル基、 C
1 3 1一 ハロゲン化アルキル基およびこれらの組み合わせがあげられる。前記 tは、 0力 4ま
3
での整数であり、前記 zは、 0から 3までの整数である。
[0072] 前記式(22)で表されるポリアミドまたはポリエステルの繰り返し単位の中でも、下記 一般式(23)で表されるものが好まし 、。
[0073] [化 17]
Figure imgf000018_0001
[0074] 前記式(23)中、 A、 A'および Yは、前記式(22)で定義したものであり、 Vは 0力も 3 の整数、好ましくは、 0から 2の整数である。 Xおよび Vは、それぞれ 0または 1であるが 、共に 0であることはない。
[0075] 一方、前記基材としては、延伸および収縮が可能な透光性のポリマーフィルムが好 ましぐ特に、実用の面から、延伸によっても位相差を発生しないものが好ましい。特 に透明性に優れるポリマーフィルムであれば、例えば、前記基材と前記基材上に形 成された複屈折フィルムとを、積層体のまま光学フィルムとして使用することもできる ため好ましい。また、前記基材は、前述のような長手方向の収縮を円滑に行うために 、予め延伸されているものや、熱収縮性のフィルム等も好ましぐこのような基材の形 成材料としては、例えば、熱可塑性榭脂が好ましい。
[0076] 前記基材の形成材料としては、具体的には、例えば、ポリエチレン、ポリプロピレン 、ポリ(4-メチルペンチン- 1)などのポリオレフイン、ポリイミド、ポリアミドイミド、ポリアミ ド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリケトンサルファイド、ポリエー テルスルホン、ポリスルホン、ポリフエ-レンサルファイド、ポリフエ-レンオキサイド、ポ リエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ ァセタール、ポリカーボネート、ポリアリレート、アクリル榭脂、ポリビュルアルコール、 ポリプロピレン、セルロース系グラステックス、エポキシ榭脂、フエノール榭脂等、トリア セチルセルロース (TAC)等のアセテート榭脂、ポリエステル榭脂、アクリル榭脂、ポリ ノルボルネン榭脂、セルロース榭脂、ポリスチレン榭脂、ポリビニルアルコール榭脂、 ポリ塩ィ匕ビニル榭脂、ポリ塩ィ匕ビニリデン榭脂、ポリアクリル榭脂や、これらの混合物 等があげられ、また、液晶ポリマー等も使用できる。これらの中でも、例えば、耐溶剤 性や耐熱性の点力 ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタ レート等が好ましい。さらに、例えば、特開平 2001— 343529号公報 (WO 01/37 007号)に記載されているような、側鎖に置^ミド基または非置^ミド基を有する 熱可塑性榭脂と、側鎖に置換フ ニル基または非置換フ ニル基と-トリル基とを有 する熱可塑性榭脂との混合物等も使用できる。具体的には、例えば、イソブテンと N メチルマレイミドカもなる交互共重合体と、アクリロニトリル 'スチレン共重合体とを有 する榭脂組成物等である。これらの形成材料の中でも、例えば、前述の側鎖に置換 イミド基または非置換イミド基を有する熱可塑性榭脂と、側鎖に置換フエニル基また は非置換フエ-ル基と-トリル基とを有する熱可塑性榭脂との混合物が好ましい。 [0077] つぎに、本発明の複屈折フィルムの製造方法の一例を説明する。
[0078] まず、延伸 ·収縮処理を施すポリマーフィルムを準備する。前記ポリマーフィルムの 厚みは、特に制限されず、製造する複屈折フィルムの所望の位相差や、前記ポリマ 一フィルムの材料等に応じて適宜決定できる。一般的には、例えば、 5— 500 /z mの 範囲であり、好ましくは 10— 350 μ mの範囲、より好ましくは 20— 200 μ mの範囲で ある。前記範囲であれば、延伸 ·収縮処理において、例えば、切断されることなく十分 な強度を示す。また、その長手方向および幅方向の長さは、特に制限されず、例え ば、使用する延伸機等の大きさに応じて適宜決定できる。
[0079] このポリマーフィルムに前記式(1)の条件を満たすように、幅方向に延伸処理、長 手方向に収縮処理を同時に施す。このように幅方向の延伸と長手方向の収縮は、例 えば、二軸延伸機を用いて行うことができ、具体的には、前記延伸と収縮とを自動的 に行うことができる巿金工業社製の高機能薄膜装置 (商品名 FITZ)等が使用できる 。この装置は、縦方向(フィルムの長手方向 =フイルムの進行方向)の延伸倍率と横 方向(幅方向 =フイルムの進行方向と垂直方向)の延伸倍率とを任意に設定でき、さ らに縦方向(長手方向)の収縮倍率も任意に設定可能であるため、延伸および収縮 を同時に所定の条件で行うことができる。また、例えば、一般的に知られているレー ル幅制御方式、パンダグラフ方式、リニアモーターによる走行速度を制御する方式等 を適宜組み合わせることによって、幅方向の延伸倍率を制御するとともに、フィルム端 部を挟時したクリップの間隔を変化させて長手方向の長さを制御するようにした二軸 延伸機等も使用できる。
[0080] 前記延伸'収縮処理における温度は、特に限定されず、前記ポリマーフィルムの種 類に応じて適宜決定できる力 例えば、前記ポリマーフィルムのガラス転移温度に応 じて設定することが好ましい。例えば、ガラス転移温度 ±30°Cの範囲であることが好 ましぐより好ましくはガラス転移温度 ±20°Cの範囲、特に好ましくは前記ガラス転移 温度 ± 10°Cの範囲である。
[0081] このような製造方法によって、前記ポリマーフィルム力 本発明の複屈折フィルムを 得ることができ、この複屈折フィルムは、複屈折、位相差、配向軸等の特性、特に幅 方向におけるこれらの特性が均一性に優れたものとなる。なお、複屈折フィルムの複 屈折や位相差の値は、例えば、使用するポリマーフィルムの材料や延伸倍率等によ つて異なるが、前記式(1)に表される条件に基づいて製造すれば、複屈折や位相差 の大きさに関わらず、その均一性に優れたものとなる。
[0082] 前記複屈折フィルムは、面内の位相差値「(: nx-ny) · djの精度、すなわち位相差のバ ラツキが、例えば、—9一 + 9%の範囲が好ましぐより好ましくは 8— + 8%であり、さ らに好ましくは— 7— + 7%である。また、厚み方向の位相差値「(nx-nz)'d」の精度は 、例えば、ー7— + 7%の範囲が好ましぐより好ましくは 6— + 6%であり、さらに好ま しくは 5— + 5%である。なお、各位相差の精度は、以下のようにして測定できる。ま ず、複屈折フィルムの長手方向の中間点であり、且つ、その幅方向において、等間 隔で八等分した際、末端を除く 7点において、面内の位相差および厚み方向の位相 差を測定する。そしてこれらの平均値を 100%とした際の、各測定値と平均値との差 を面内の位相差および厚み方向の位相差の精度(%)として算出する。
[0083] 本発明の複屈折フィルムは、 X軸方向(遅相軸方向)における配向軸角度のバラッ キが、 5° 以下であることが好ましぐより好ましくは 4° 以下である。前述の方法によ れば、軸角度のバラツキをこのような範囲に制御できるため、屈折率の均一化が向上 できる。前記配向軸角度とは、遅相軸のバラツキを意味し、例えば、自動複屈折計( 商品名 KOBRA-21ADH;王子計測機器社製)を用いて自動計算することができ、前 記バラツキは、例えば、前述の位相差と同様にして複数点(7点)において配向軸角 度を測定した際に、最大値と最小値との差で表すことができる。なお、本発明におい ては、変化倍率の大きい幅方向が遅相軸方向となる。
[0084] 得られる複屈折フィルムの厚みは、使用するポリマーフィルムの厚みや延伸倍率等 に応じて異なるが、一般に、 5— 500 μ mの範囲であり、好ましくは 10— 350 μ mの 範囲であり、より好ましくは 20— 200 μ mの範囲である。
[0085] また、このような製造方法には限定されず、例えば、基材上に前述の非液晶性ポリ マーカ なるポリマーフィルムを形成し、この積層体に延伸'収縮処理を同時に施し てもよい。この場合、後述するように基材と前記ポリマーフィルムとを共に延伸'収縮し てもよいし、前記積層体のうち、前記基材のみを延伸 ·収縮することによって、間接的 に前記ポリマーフィルムを処理してもよい。また、基材カもポリマーフィルムを剥離した 後、前記ポリマーフィルムのみに処理を施すこともできる。
[0086] このように基材上にポリマーフィルムを直接形成した場合の一例を以下に示す。ま ず、ポリマーフィルムの形成材料を溶剤に分散または溶解して塗工液を調製する。前 記塗工液における形成材料の濃度は、特に制限されないが、例えば、塗工が容易な 粘度となることから、前記形成材料 0. 5— 50重量%であることが好ましぐより好まし くは 1一 40重量%、特に好ましくは 2— 30重量%である。具体的に、前記形成材料 が非液晶性ポリマーの場合、前記ポリマーの添加量は、溶剤 100重量部に対して、 例えば、前記形成材料 5— 50重量部であることが好ましぐより好ましくは 10— 40重 量部である。
[0087] 前記溶剤は、特に制限されず、形成材料に応じて適宜選択できるが、例えば、前 記形成材料を溶解でき、基材を侵食し難いものが好ましい。具体的には、例えば、ク ロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、テトラクロロェタン、トリクロ口 エチレン、テトラクロロエチレン、クロ口ベンゼン、オノレソジクロ口ベンゼンなどのノヽロゲ ン化炭化水素類、フエノール、パラクロロフエノールなどのフエノール類、ベンゼン、ト ルェン、キシレン、メトキシベンゼン、 1, 2-ジメトキシベンゼンなどの芳香族炭化水素 類、アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン、シクロ ペンタノン、 2-ピロリドン、 N-メチル -2-ピロリドンのようなケトン系溶剤、酢酸ェチル、 酢酸ブチル等のエステル系溶剤、 t-ブチルアルコール、グリセリン、エチレングリコー ル、トリエチレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコ ールジメチノレエーテル、プロピレングリコール、ジプロピレングリコール、 2-メチル -2, 4-ペンタンジオール等のアルコール系溶剤、ジメチルホルムアミド、ジメチルァセトァ ミド等のアミド系溶剤、ァセトニトリル、ブチ口-トリル等の-トリル系溶剤、ジェチルェ 一テル、ジブチルエーテル、テトラヒドロフランのようなエーテル系溶剤、二硫化炭素 、ェチルセルソルブ、ブチルセルソルブ、硫酸等が使用できる。また、これらの溶剤は 単独でもよいし、二種類以上を混合して使用することもできる。
[0088] 前記塗工液には、例えば、必要に応じて、さらに界面活性剤、安定剤、可塑剤、金 属類等の種々の添加剤を配合してもよ 、。
[0089] また、前記塗工液は、例えば、前記形成材料の配向性等が著しく低下しな 、範囲 で、異なる他の榭脂を含有してもよい。前記他の榭脂としては、例えば、各種汎用榭 脂、エンジニアリングプラスチック、熱可塑性榭脂、熱硬化性榭脂等があげられる。
[0090] 前記汎用榭脂としては、例えば、ポリエチレン (PE)、ポリプロピレン (PP)、ポリスチ レン (PS)、ポリメチルメタタリレート(PMMA)、 ABS榭脂、および AS榭脂等があげ られる。前記エンジニアリングプラスチックとしては、例えば、ポリアセテート(POM)、 ポリカーボネート(PC)、ポリアミド(PA:ナイロン)、ポリエチレンテレフタレート(PET) 、およびポリブチレンテレフタレート (PBT)等があげられる。前記熱可塑性榭脂として は、例えば、ポリフエ-レンスルフイド(PPS)、ポリエーテルスルホン(PES)、ポリケト ン(PK)、ポリイミド(PI)、ポリシクロへキサンジメタノールテレフタレート(PCT)、ポリ ァリレート (PAR)、および液晶ポリマー (LCP)等があげられる。前記熱硬化性榭脂と しては、例えば、エポキシ榭脂、フエノールノボラック榭脂等があげられる。このように 、前記他の榭脂等を前記塗工液に配合する場合、その配合量は、例えば、前記形成 材料に対して、例えば、 0— 50重量%であり、好ましくは、 0— 30重量%である。
[0091] つぎに、調製した前記塗工液を基材表面に塗工して、前記形成材料の塗工膜を形 成する。前記塗工の塗工方法としては、例えば、スピンコート法、ロールコート法、プリ ント法、浸漬引き上げ法、カーテンコート法、ワイヤーバーコート法、ドクターブレード 法、ナイフコート法、タイコート法、グラビアコート法、マイクログラビアコート法、オフセ ットグラビアコート法、リップコート法、スプレーコート法等があげられる。また、塗工に 際しては、必要に応じて、ポリマー層の重畳方式も採用できる。
[0092] 前記基材の厚みは、特に制限されないが、通常、 10 μ m以上であり、 10— 200 μ mの範囲が好ましぐより好ましくは 20— 150 /z mの範囲であり、特に好ましくは 30— 100 mの範囲である。 10 m以上であれば、後述する延伸.収縮処理において、 十分な強度を示すため、延伸'収縮処理におけるムラの発生等を十分に抑制できる 。また、 200 m以下であれば、適度な張力で延伸処理が可能であるため好ましい。
[0093] そして、前記基材上に形成された塗工膜を乾燥する。この乾燥によって、前記形成 材料が前記基材上で固定化され、前記基材上にポリマーフィルムを直接形成できる
[0094] 前記乾燥の方法としては、特に制限されず、例えば、 自然乾燥や加熱乾燥があげ られる。その条件も、例えば、前記形成材料の種類や、前記溶剤の種類等に応じて 適宜決定できる力 温度は、例えば、 40°C— 250°Cであり、好ましくは 50°C— 200°C である。なお、塗工膜の乾燥は、例えば、一定温度で行っても良いし、段階的に温度 を上昇または下降させながら行っても良い。乾燥時間も特に制限されないが、例えば 、 10秒一 60分、好ましくは 30秒一 30分である。
[0095] 前記乾燥処理後において、前記ポリマーフィルム中に残存する前記ポリマー液の 溶剤は、その量に比例して光学特性を経時的に変化させるおそれがあるため、その 残存量は、例えば、 5%以下が好ましぐより好ましくは 2%以下であり、さらに好ましく は 0. 2%以下である。
[0096] 前記基材上に形成されるポリマーフィルムの厚みは、特に制限されないが、例えば 、通常、 0. 5— 10 mに設定することが好ましぐより好ましくは 1一 8 m、特に好ま しくは 1一 である。
[0097] 続いて、前記基材上に形成されたポリマーフィルムについて、前述のような条件に より、延伸'収縮処理を同時に施す。この場合、例えば、前記ポリマーフィルムのみを 直接延伸'収縮させてよいし、前記基材と前記ポリマーフィルムとの積層体を共に延 伸 ·収縮させてもよい。特に、以下の理由から、前記基材のみを処理することが好まし い。すなわち、前記基材のみを延伸 '収縮した場合、前記基材の延伸 '収縮にともな つて、間接的に、前記基材上のポリマーフィルムが延伸'収縮される。通常、積層体を 処理するよりも、単層体を処理する方が、均一な処理が行い易い。したがって、前述 のように基材のみを処理すれば、前記基材を均一に延伸'収縮でき、これに伴って、 前記基材上の前記ポリマーフィルムについても均一に延伸'収縮できるためである。 なお、前記基材カもポリマーフィルムを剥離した後に、前述のように前記ポリマーフィ ルムのみを処理することもできる。
[0098] 本発明の複屈折フィルムは、前述のように基材上に形成した場合、例えば、前記基 材との積層体として使用してもよいし、前記基材から剥離した単層体として使用する こともできる。また、前記基材 (以下、「第 1の基材」という)から剥離した後、例えば、そ の光学特性を妨害しない基材 (以下、「第 2の基材」という)に、接着層を介して再度 積層 (転写)して使用することもできる。 [0099] 前記第 2の基材としては、適度な平面性を有するものであれば特に限定されず、例 えば、ガラスや、透明で光学的等方性を有するポリマーフィルム等が好ましい。前記 ポリマーフィルムとしては、例えば、ポリメタタリレート、ポリスチレン、ポリカーボネート 、ポリエーテルスルホン、ポリフエ-レンサルファイド、ポリアリレート、アモルファスポリ ォレフィン、 TAC、エポキシ榭脂、前述のようなイソブテン/ N—メチルマレイミド共重 合体とアクリロニトリル/スチレン共重合体との榭脂組成物等力 形成されたフィルム があげられる。これらの中でも、ポリメチルメタタリレート、ポリカーボネート、ポリアリレ ート、 TAC、ポリエーテルスルホン、イソブテン/ N—メチルマレイミド共重合体とアタリ 口-トリル/スチレン共重合体との榭脂組成物等が好ましい。また、光学的に異方性を 示す基材であっても、 目的に応じて使用することができる。このような光学的異方性 の基材としては、例えば、ポリカーボネートポリスチレン、ノルボルネン系榭脂等のポリ マーフィルムを延伸した位相差フィルムや、偏光フィルム等があげられる。
[0100] 前述のような転写における接着層としては、光学的用途に使用できればよぐ例え ば、アクリル系,エポキシ系,ウレタン系等の接着剤や粘着剤が使用できる。
[0101] 次に、本発明の光学フィルムは、前述のような本発明の複屈折フィルムを含んでい ればよぐ例えば、前述のような基材を備える等、その構成は制限されない。
[0102] 本発明の光学フィルムは、最外層に、さらに粘着剤層を有することが好ましい。これ によって、例えば、本発明の光学フィルムを他の光学層や液晶セル等の他部材と接 着することが容易になり、本発明の光学フィルムの剥離を防止することができるからで ある。また、前記粘着剤層は、本発明の光学フィルムの一方の面でもよいし、両面に 配置されてもよい。
[0103] 前記粘着層の材料としては、特に制限されないが、例えば、アクリル系、シリコーン 系、ポリエステル系、ゴム系等の粘着剤が使用できる。また、これらの材料に、微粒子 を含有させて光拡散性を示す層としてもよい。これらの中でも、例えば、吸湿性ゃ耐 熱性に優れる材料が好ましい。このような性質であれば、例えば、液晶表示装置に使 用した場合に、吸湿による発泡や剥離、熱膨張差等による光学特性の低下や、液晶 セルの反り等を防止でき、高品質で耐久性にも優れる表示装置となる。
[0104] 本発明の光学フィルムは、前述のように本発明の複屈折フィルム単独でもよいし、ま たは、必要に応じて他の光学部材と組み合わせた積層体であってもよい。前記他の 光学部材としては、特に制限されず、例えば、他の複屈折フィルム、他の位相差フィ ルム、液晶フィルム、光散乱フィルム、レンズシート、回折フィルム、偏光板等があげら れる。
[0105] 本発明の光学フィルムが、前記偏光板を含む場合、前記偏光板は、偏光子のみで もよいし、前記偏光子の片面または両面に透明保護層が積層されてもよい。
[0106] 本発明の光学フィルムは、液晶表示装置等の各種装置の形成に使用することが好 ましぐ例えば、液晶セルの片側または両側に配置して液晶パネルとし、液晶表示装 置に用いることができる。なお、光学フィルムの配置方法は特に制限されず、従来の 複屈折フィルムを含む光学フィルムと同様である。
[0107] 液晶表示装置を形成する前記液晶セルの種類は、任意で選択でき、例えば、薄膜 トランジスタや MIM等のアクティブマトリクス駆動型、 IPS駆動型、プラズマアドレツシ ング駆動型、ツイストネマチック型やスーパーツイストネマチック型に代表される単純 マトリクス駆動型等、種々のタイプの液晶セルが使用できる。具体的には、例えば、 S TN (Super Twisted Nematic)セル、 TN (Twisted Nematic)セル、 IPS (In— Plan Switching)セノレ、 VA (Vertical Nematic)セノレ、 OCB (Optically Controlled
Birefringence)セノレ、 HAN (Hybrid Aligned Nematic)セノレ、 ASM (Axially Symmetric Aligned Microcell)セル、強誘電'反強誘電セル、およびこれらに規則正しい配向分 割を行ったもの、ランダムな配向分割を行ったもの等があげられる。
[0108] このような本発明の光学フィルムを備える液晶表示装置としては、例えば、ノ ックラ ィムシステムを備えた透過型、反射板を備えた反射型、投射型等の形態であってもよ い。
[0109] なお、本発明の光学フィルムは、前述のような液晶表示装置には限定されず、例え ば、有機エレクト口ルミネッセンス (EL)ディスプレイ、 PDP、 FED等の自発光型表示 装置にも使用できる。この場合、従来の光学フィルムに代えて本発明の光学フィルム を使用する以外、その構成は制限されない。
[0110] 以下、実施例および比較例を用いて本発明を更に具体的に説明するが、本発明は 、以下の実施例に限定されるものではない。なお、各種特性については以下の方法 によって測定を行った。
[0111] (複屈折率 ·位相差'軸角度分布の測定)
自動複屈折計 (商品名 KOBRA-21ADH;王子計測機器社製)を用いて、波長 590η mにおける値を測定した。
[0112] (膜厚測定)
瞬間マルチ測光システム (商品名 MCPD-2000;大塚電子社製)を用いて、複屈折 層の膜厚を測定した。
実施例 1
[0113] 高機能薄膜装置 (商品名 FITZ :巿金工業社製)を用いて、厚み 68 ;ζ ΐη、幅 330m mの未延伸ポリカーボネートフィルム (鐘淵化学工業社製)を、連続的に、幅方向に 延伸し、同時に長手方向に収縮させ、複屈折フィルムを形成した。なお、処理温度は 160°C、幅方向の STDを 1. 2倍、前記長手方向の SMDを 0. 93倍とした。(lZST D)1 2は 0. 913となるため、前記式(1)の条件を満たしている。この複屈折フィルムに ついて、幅方向の配向軸角度のバラツキ、面内位相差(A nd=(nx-ny)'d)およびその バラツキ、厚み方向位相差 (Rth=(nx-nz) · d)およびそのバラツキを前述の方法で測 定し、シヮゃ割れの発生を目視で観察した。これらの結果を下記表 2に示す。表 2に おける配向軸角度のバラツキとは、 7点測定したうちの最大測定値と最小測定値との 差を示す。なお、 nx、 nyおよび nzは、それぞれ前記複屈折フィルムの X軸 (遅相軸) 、 Y軸および Z軸方向の屈折率を示し、前記 X軸方向とは、前記複屈折フィルムの面 内において最大の屈折率を示す軸方向であり、 Y軸方向は、前記面内において前記 X軸に対して垂直な軸方向であり、 Z軸は、前記 X軸および Y軸に垂直な厚み方向を 示し、 dは、複屈折フィルムの厚みを示す。
[0114] (比較例 1)
幅方向の STDを 1. 2倍となるように一軸延伸を行い、長手方向を収縮させない以 外は、前記実施例 1と同様にして複屈折フィルムを製造し、その特性を調べた。これ らの結果を下記表 2に示す。なお、 SMD= 1であった。
[0115] (比較例 2)
幅方向の STDを 1. 2倍、長手方向の SMDを 0. 9倍として、(lZSTD)1/2を 0. 913 とした以外は、前記実施例 1と同様にして複屈折フィルムを製造し、その特性を同様 にして調べた。これらの結果を下記表 2に示す。なお、(1ZSTD)1/2>SMDであった 実施例 2
[0116] ポリマーフィルムの形成材料として、 2,2'-ビス(3,4-ジカルボキシフエ-ル)へキサフ ルォロプロパン酸二無水物(6FDA)および 2,2'-ビス(トリフルォロメチル) -4,4'-ジアミ ノビフエ-ル (PFMB)を用いて、下記一般式 (6)で表される繰り返し単位力 構成さ れるポリイミド(Mw=120000)を合成した。このポリイミドを 20重量%となるように MIBK に溶解してポリイミド溶液を調製し、ブレードコート法によって、 TACフィルム(商品名 TF80UL;富士写真フィルム社製)(幅 400mm、厚み 40 μ m)に連続的に塗工した。 この塗工膜を 120°Cで 2分間乾燥することによって、厚み 6. 0 mのポリイミドフィル ムを形成した。このポリイミドフィルムは、光学的一軸性 (nx=ny>nz)の複屈折を示 し、面内位相差 0. 4nm、厚み方向位相差 248nmであった。さら〖こ、基材とポリイミド フィルムとの積層体を、連続的に、幅方向に延伸し、同時に長手方向に収縮させ、複 屈折フィルムを形成した。処理温度は 160°C、幅方向の STDを 1. 1倍、長手方向の SMDを 0. 97倍とした。(1ZSTD)1/2は 0. 953となるため、前記式(1)の条件を満た している。なお、前記基材は、幅方向の延伸および長手方向の収縮によっては実質 的な位相差は生じていな力つた。この複屈折フィルムについて、前記実施例 1と同様 に各特性を調べた。これらの結果を下記表 2にあわせて示す。
[0117] [化 18]
Figure imgf000028_0001
[0118] (比較例 3)
幅方向の STDを 1. 1倍となるように一軸延伸を行い、長手方向を収縮させない以 外は、前記実施例 2と同様にして複屈折フィルムを製造し、その特性を同様にして調 ベた。これらの結果を下記表 2に示す。なお、 SMD=1であった。
[0119] (比較例 4)
幅方向の STDを 1.1倍、長手方向の SMDを 0.9倍として、(lZSTD)1/2を 0.913 とした以外は、前記実施例 2と同様にして複屈折フィルムを製造し、その特性を同様 にして調べた。これらの結果を下記表 2に示す。なお、(1ZSTD)1/2>SMDであった
[0120] [表 2] 配向軸角バラツキ And Andノ ラツキ Rth Rthバラツキ 外観
(。 ) nm) (%) ) (%)
実施例 1 3.6 218.6 ±10,5 284.8 ±12.1 異常なし 比較例 1 20.6 173.7 ±18.2 394.1 ±22.5 異常なし 比較例 2 8.1 235.1 ±15.3 301.4 ±17.2 シヮ発生 実施例 2 2.3 49.7 ± 3.2 250.7 ± 3.0 異常なし 比較例 3 11.3 50.9 ±10.4 309.2 ±25.5 異常なし 比較例 4 4.3 63.0 ±10.1 261.4 ± 8.5 シヮ発生
[0121] 前記表 2に示すように、実施例 1は前記式(1)の条件を満たす延伸および収縮を行 つたため、幅方向のみの延伸を行った比較例 1に比べて、配向軸角、 Andおよび Rth のそれぞれのバラツキを極めて抑制できた。また、延伸および収縮を同時に行ってい るがその条件が前記式(1)を満たしてレ、な 、比較例 2は、幅方向にシヮが発生したの に対し、実施例 1は、配向軸角、 Andおよび Rthのそれぞれのバラツキを抑制できた だけでなぐさらに外観においても優れていた。一方、基材とポリイミドフィルムとの積 層体を用いた実施例 2においても、前記式(1)の条件を満たす延伸および収縮を行 つたため、幅方向のみの延伸を行った比較例 3に比べて、配向軸角、 Andおよび Rth のそれぞれのバラツキを極めて抑制できた。また、延伸および収縮を同時に行ってい るがその条件が前記式(1)を満たしてレ、な!、比較例 4は幅方向にシヮが発生したの に対し、実施例 2は、配向軸角、 Andおよび Rthのそれぞれのバラツキを抑制できた だけでなぐさらに外観においても優れていた。このような結果から、本発明の製造方 法により製造された複屈折フィルムであれば、優れた外観に加えて、さらに配向軸角 、面内位相差、厚み方向位相差等のバラツキが抑制された光学特性の均一性に優 れるため、液晶表示装置をはじめとする各種画像表示装置の表示特性の向上に寄 与できるといえる。また、このように幅方向に延伸を行っても、外観および光学特性に 優れるため、例えば、前述のように複屈折フィルムの透過軸と偏光フィルムの遅相軸 とを平行の状態で連続的に貼り合せする際に特に有用である。
産業上の利用可能性
以上のように、幅方向の延伸および長手方向の収縮を前記式( 1 )の条件で行うこと によって、外観に優れ、複屈折率や面内方向および厚み方向における位相差が均 一である、光学特性に優れた複屈折フィルムを得ることができる。このように光学特性 に優れた複屈折フィルムは、例えば、各種光学フィルムに有用であり、液晶表示装置 等の各種画像表示装置に適用すれば、優れた表示特性を実現できる。

Claims

請求の範囲
[I] ポリマーフィルムを延伸する工程を含む複屈折フィルムの製造方法であって、 前記延伸工程において、ポリマーフィルムを幅方向に延伸すると同時に、その長手 方向に収縮させ、
延伸前のポリマーフィルムの幅方向の長さおよび長手方向の長さをそれぞれ 1とし た場合における、前記延伸による幅方向の長さの変化倍率 (STD)と、前記収縮によ る長手方向の長さの変化倍率 (SMD)との関係が、下記式(1)を満たすことを特徴と する複屈折フィルムの製造方法。
(1/STD)1 2 ≤ SMD < 1 · · · (1)
[2] STDと SMDとの関係力 下記式を満たす請求項 1記載の製造方法。
(1/STD)1 2 = SMD
[3] SMDが、 0. 99未満である請求項 1または 2記載の製造方法。
[4] (1ZSTD)1/2力 0. 99未満である請求項 1一 3のいずれか一項に記載の製造方法
[5] STDが 1. 2の場合に、 SMDが 0. 9— 0. 92の範囲である請求項 1記載の製造方 法。
[6] STDが 1. 3の場合に、 SMDが 0. 86-0. 90の範囲である請求項 1記載の製造方 法。
[7] 基材上にポリマーフィルムを直接形成した後、前記ポリマーフィルムに延伸処理お よび収縮処理を同時に施す請求項 1一 6のいずれか一項に記載の製造方法。
[8] 前記基材に延伸処理および収縮処理を同時に施すことによって、前記基材上のポ リマーフィルムを延伸および収縮させる請求項 1一 6のいずれか一項に記載の製造 方法。
[9] 請求項 1一 8のいずれか一項に記載の製造方法により得られた複屈折フィルム。
[10] 請求項 9記載の複屈折フィルムを含む光学フィルム。
[II] さらに、偏光子を含む請求項 10記載の光学フィルム。
[12] さらに透明保護フィルムを含み、前記偏光子の少なくとも一方の表面に前記透明保 護フィルムが配置されて 、る請求項 11記載の光学フィルム。
[13] 液晶セルの少なくとも一方の表面に請求項 10— 12のいずれか一項に記載の光学フ イルムが配置された液晶パネル。
[14] 請求項 13記載の液晶パネルを含む液晶表示装置。
[15] 請求項 10— 12のいずれか一項に記載の光学フィルムを含む画像表示装置。
PCT/JP2004/014479 2003-12-16 2004-10-01 複屈折フィルムの製造方法、それを用いた光学フィルムおよび画像表示装置 WO2005059609A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/554,224 US7833457B2 (en) 2003-12-16 2004-10-01 Method for producing birefringent film, optical film and image display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-418558 2003-12-16
JP2003418558A JP2005181450A (ja) 2003-12-16 2003-12-16 複屈折フィルムの製造方法、およびそれを用いた光学フィルムおよび画像表示装置

Publications (1)

Publication Number Publication Date
WO2005059609A1 true WO2005059609A1 (ja) 2005-06-30

Family

ID=34697106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014479 WO2005059609A1 (ja) 2003-12-16 2004-10-01 複屈折フィルムの製造方法、それを用いた光学フィルムおよび画像表示装置

Country Status (6)

Country Link
US (1) US7833457B2 (ja)
JP (1) JP2005181450A (ja)
KR (1) KR100718860B1 (ja)
CN (1) CN100419474C (ja)
TW (1) TW200523646A (ja)
WO (1) WO2005059609A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012044189A1 (en) 2010-09-29 2012-04-05 Instituto Superior Técnico A new hydrated crystalline form of perindopril erbumine, methods for its preparation and its use in pharmaceutical preparations
JP2012128145A (ja) * 2010-12-15 2012-07-05 Nitto Denko Corp 光学フィルムの製造方法
JP2012128144A (ja) * 2010-12-15 2012-07-05 Nitto Denko Corp 光学フィルムの製造方法
US8900656B2 (en) 2009-06-19 2014-12-02 Nitto Denko Corporation Method for producing optical film, optical film, and image display
US9581747B2 (en) 2009-06-19 2017-02-28 Nitto Denko Corporation Method for producing optical film, optical film, laminated polarizing plate, and image display

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888931B2 (ja) * 2003-08-08 2012-02-29 日東電工株式会社 液晶表示装置用重畳フィルムの製造方法、液晶表示装置用重畳フィルム及び液晶表示装置
JP2005181450A (ja) 2003-12-16 2005-07-07 Nitto Denko Corp 複屈折フィルムの製造方法、およびそれを用いた光学フィルムおよび画像表示装置
JP2006133720A (ja) * 2004-10-07 2006-05-25 Nitto Denko Corp 複屈折フィルムの製造方法、およびそれを用いた光学フィルム、液晶パネル、液晶表示装置、画像表示装置
JP2007108529A (ja) * 2005-10-14 2007-04-26 Jsr Corp 位相差フィルムの製造方法、位相差フィルムおよびその用途
JP4989984B2 (ja) * 2006-02-16 2012-08-01 富士フイルム株式会社 光学フィルムとその製造方法、光学フィルムを用いた偏光板および液晶表示装置
JP4931531B2 (ja) * 2006-09-25 2012-05-16 富士フイルム株式会社 光学補償フィルム、及びその製造方法、偏光板、並びに液晶表示装置
JP2008221782A (ja) * 2007-03-15 2008-09-25 Sony Corp 延伸シートの製造方法および異方性光学シートの製造方法
JP5186187B2 (ja) * 2007-11-16 2013-04-17 富士フイルム株式会社 熱可塑性樹脂フィルムおよびその製造方法、並びに、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
FR2924048B1 (fr) * 2007-11-28 2013-03-08 Darlet Marchante Technologie Procede d'etirage d'un film en matiere synthetique
JP4888853B2 (ja) 2009-11-12 2012-02-29 学校法人慶應義塾 液晶表示装置の視認性改善方法、及びそれを用いた液晶表示装置
EP2824506B1 (en) 2010-06-22 2020-05-20 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
KR101833582B1 (ko) 2011-05-18 2018-02-28 도요보 가부시키가이샤 3차원 화상표시 대응 액정표시장치에 적합한 편광판 및 액정표시장치
CN103547961B (zh) 2011-05-18 2017-07-14 东洋纺株式会社 液晶显示装置、偏光板和偏振片保护膜
US10539717B2 (en) 2012-12-20 2020-01-21 Samsung Sdi Co., Ltd. Polarizing plates and optical display apparatuses including the polarizing plates
KR101460477B1 (ko) * 2013-06-18 2014-11-10 주식회사 엘지화학 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
JP2015111206A (ja) * 2013-12-06 2015-06-18 東洋紡株式会社 偏光子保護フィルム、偏光板及び液晶表示装置
JP5900571B1 (ja) * 2014-09-30 2016-04-06 ウシオ電機株式会社 紫外線用吸収型グリッド偏光素子及び光配向装置
JP2020003781A (ja) * 2018-06-22 2020-01-09 住友化学株式会社 樹脂フィルム及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191904A (ja) * 1988-09-26 1990-07-27 Fuji Photo Film Co Ltd 位相差フィルム及び位相差フィルムの製造法
JPH0323405A (ja) * 1989-06-20 1991-01-31 Kuraray Co Ltd 位相差板の製造法
JP2002103093A (ja) * 2000-09-27 2002-04-09 Max Co Ltd ペットボトル用圧縮処理装置
JP2003315554A (ja) * 2002-02-19 2003-11-06 Nitto Denko Corp 積層偏光板、およびそれを用いた画像表示装置

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229175A (en) 1963-06-10 1966-01-11 Strandberg Eng Lab Inc Stretch-shrink indicating and tension motor control apparatus
KR910000870B1 (ko) 1987-11-30 1991-02-11 삼원프레이어공업 주식회사 엔 진
GB8914703D0 (en) 1989-06-27 1989-08-16 Dow Europ Sa Bioriented film
EP0482620B1 (en) 1990-10-24 1997-03-05 Nitto Denko Corporation Birefringent film, process for producing the same, retardation film, elliptically polarizing plate, and liquid crystal display
JPH0511114A (ja) 1991-07-08 1993-01-19 Sekisui Chem Co Ltd 位相差板の製造方法
JP2916331B2 (ja) 1991-11-08 1999-07-05 株式会社日立製作所 液晶表示装置
JP3309452B2 (ja) 1991-12-09 2002-07-29 住友化学工業株式会社 位相差フィルムの製造方法
SG54990A1 (en) 1991-12-09 1998-12-21 Sumitomo Chemical Co Process for producing phase retarder from a thermoplastic resin film or sheet
US5430565A (en) 1992-06-02 1995-07-04 Fuji Photo Film Co., Ltd. Uniaxially stretched negative birefringent film and liquid crystal display having the same
JPH0651119A (ja) 1992-07-28 1994-02-25 Sekisui Chem Co Ltd 位相差板の製造方法
JPH0651116A (ja) 1992-07-31 1994-02-25 Sekisui Chem Co Ltd 位相差フィルムの製造方法
DE4241213C2 (de) 1992-12-08 1999-04-08 Dornier Gmbh Lindauer Vorrichtung zur simultanen, biaxialen Behandlung von Folienbahnen
WO1994024191A1 (en) 1993-04-21 1994-10-27 The University Of Akron Negative birefringent polyimide films
US5580950A (en) 1993-04-21 1996-12-03 The University Of Akron Negative birefringent rigid rod polymer films
US5344916A (en) 1993-04-21 1994-09-06 The University Of Akron Negative birefringent polyimide films
US5750641A (en) 1996-05-23 1998-05-12 Minnesota Mining And Manufacturing Company Polyimide angularity enhancement layer
JPH11133412A (ja) 1997-10-29 1999-05-21 Nitto Denko Corp 液晶素子、光学素子及び偏光素子
JP4107741B2 (ja) 1998-12-28 2008-06-25 新日本石油株式会社 光学フィルムの製造法、光学フィルム及び液晶表示装置
JP3539897B2 (ja) 1999-08-10 2004-07-07 株式会社日本触媒 低誘電性樹脂組成物
EP1160591A1 (en) 1999-11-12 2001-12-05 Kaneka Corporation Transparent film
KR100752090B1 (ko) 1999-11-22 2007-08-28 후지필름 가부시키가이샤 시이트 편광체, 광학 필름, 액정 디스플레이 및 시이트편광체의 제조방법
JP2001343529A (ja) 2000-03-30 2001-12-14 Kanegafuchi Chem Ind Co Ltd 偏光子保護フィルムおよびその製造方法
JP2002086554A (ja) * 2000-07-10 2002-03-26 Fuji Photo Film Co Ltd ポリマーフィルムの延伸方法、偏光膜、偏光板および位相差膜の製造方法、および液晶表示装置
JP2002090530A (ja) 2000-09-13 2002-03-27 Nitto Denko Corp 複合位相差板、光学補償偏光板及び液晶表示装置
JP4566385B2 (ja) 2000-10-30 2010-10-20 日東電工株式会社 偏光板
JP2002148434A (ja) 2000-11-08 2002-05-22 Nitto Denko Corp 偏光板
JP2002277633A (ja) 2001-03-15 2002-09-25 Nitto Denko Corp 光学フィルム、偏光板及び液晶表示装置
JP4617593B2 (ja) 2001-04-02 2011-01-26 コニカミノルタホールディングス株式会社 位相差フィルムの製造方法
TWI295963B (ja) 2001-05-11 2008-04-21 Toray Industries
US6814914B2 (en) 2001-05-30 2004-11-09 Konica Corporation Cellulose ester film, its manufacturing method, optical retardation film, optical compensation sheet, elliptic polarizing plate, and image display
US6916440B2 (en) 2001-05-31 2005-07-12 3M Innovative Properties Company Processes and apparatus for making transversely drawn films with substantially uniaxial character
US7099082B2 (en) 2001-08-29 2006-08-29 Fuji Photo Film Co., Ltd. Method for producing optical compensating film, optical compensating film, circularly polarizing plate, and liquid crystal display
CN1304891C (zh) 2002-02-19 2007-03-14 日东电工株式会社 层压延迟片、使用该层压延迟片的层压偏振片及图像显示器
KR100822247B1 (ko) 2002-04-01 2008-04-16 닛토덴코 가부시키가이샤 광학 필름 및 화상 표시 시스템
JP3561262B2 (ja) * 2002-06-19 2004-09-02 株式会社三共 遊技機
JP3918694B2 (ja) * 2002-09-17 2007-05-23 富士フイルム株式会社 フィルム製造方法
JP4231269B2 (ja) 2002-10-23 2009-02-25 積水化学工業株式会社 位相差補償フィルムの製造方法
US6949212B2 (en) 2002-11-27 2005-09-27 3M Innovative Properties Company Methods and devices for stretching polymer films
JP2004184809A (ja) * 2002-12-05 2004-07-02 Nitto Denko Corp 偏光板の製造方法、偏光板およびそれを用いた画像表示装置
US6939449B2 (en) * 2002-12-24 2005-09-06 General Atomics Water electrolyzer and system
JP4233431B2 (ja) * 2003-04-01 2009-03-04 日東電工株式会社 光学素子、偏光素子、照明装置および液晶表示装置
JP2005031621A (ja) 2003-06-16 2005-02-03 Nitto Denko Corp 光学フィルム、偏光光学フィルムおよび画像表示装置
JP2005181450A (ja) 2003-12-16 2005-07-07 Nitto Denko Corp 複屈折フィルムの製造方法、およびそれを用いた光学フィルムおよび画像表示装置
TWI268372B (en) 2004-03-26 2006-12-11 Nitto Denko Corp IPS mode liquid crystal display to realize a high contrast ratio over a wide range by laminating a polarizing plate and a retardation film to form an optical film
JP2006133719A (ja) 2004-10-07 2006-05-25 Nitto Denko Corp 位相差フィルム一体型偏光板及び位相差フィルム一体型偏光板の製造方法
JP2006133720A (ja) * 2004-10-07 2006-05-25 Nitto Denko Corp 複屈折フィルムの製造方法、およびそれを用いた光学フィルム、液晶パネル、液晶表示装置、画像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191904A (ja) * 1988-09-26 1990-07-27 Fuji Photo Film Co Ltd 位相差フィルム及び位相差フィルムの製造法
JPH0323405A (ja) * 1989-06-20 1991-01-31 Kuraray Co Ltd 位相差板の製造法
JP2002103093A (ja) * 2000-09-27 2002-04-09 Max Co Ltd ペットボトル用圧縮処理装置
JP2003315554A (ja) * 2002-02-19 2003-11-06 Nitto Denko Corp 積層偏光板、およびそれを用いた画像表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8900656B2 (en) 2009-06-19 2014-12-02 Nitto Denko Corporation Method for producing optical film, optical film, and image display
US9581747B2 (en) 2009-06-19 2017-02-28 Nitto Denko Corporation Method for producing optical film, optical film, laminated polarizing plate, and image display
WO2012044189A1 (en) 2010-09-29 2012-04-05 Instituto Superior Técnico A new hydrated crystalline form of perindopril erbumine, methods for its preparation and its use in pharmaceutical preparations
JP2012128145A (ja) * 2010-12-15 2012-07-05 Nitto Denko Corp 光学フィルムの製造方法
JP2012128144A (ja) * 2010-12-15 2012-07-05 Nitto Denko Corp 光学フィルムの製造方法

Also Published As

Publication number Publication date
CN100419474C (zh) 2008-09-17
KR20060004666A (ko) 2006-01-12
KR100718860B1 (ko) 2007-05-16
TWI355543B (ja) 2012-01-01
JP2005181450A (ja) 2005-07-07
CN1791817A (zh) 2006-06-21
US20060275559A1 (en) 2006-12-07
US7833457B2 (en) 2010-11-16
TW200523646A (en) 2005-07-16

Similar Documents

Publication Publication Date Title
WO2005059609A1 (ja) 複屈折フィルムの製造方法、それを用いた光学フィルムおよび画像表示装置
JP4044485B2 (ja) 光学フィルム、その製造方法、およびそれを用いた偏光板
KR100618366B1 (ko) 광학 필름, 적층 편광판, 액정패널, 액정표시장치, 자발광형 표시장치, 및 광학필름의 제조방법
WO2003062875A1 (fr) Film optique, plaque de polarisation multicouche, affichage a cristaux liquides les comprenant, et affichage a emission spontanee
WO2003071319A1 (fr) Feuille a couches de dephasage empilees, plaque a couches de polarisation empilees comprenant celle-ci et affichage d&#39;image
JP2004046065A (ja) 光学フィルム、積層偏光板、それらを用いた液晶表示装置および自発光型表示装置
JP2004195875A (ja) 複屈折性光学フィルムの製造方法、前記製造方法により得られたフィルム、それを用いた楕円偏光板およびそれらを用いた液晶表示装置
KR100801911B1 (ko) 위상차 필름, 위상차 필름의 제조 방법, 적층 위상차필름의 제조 방법, 광학 필름 및 화상 표시 장치
JP2007041576A (ja) 光学機能フィルムの製造方法、光学機能フィルム、偏光板、光学素子および画像表示装置
WO2003071318A1 (fr) Couche de compensation optique progressive, procede permettant de produire cette couche et ecran a cristaux liquides comprenant cette couche
JP2004078203A (ja) 光学フィルムおよびその製造方法
WO2007023673A1 (ja) 液晶パネルおよびそれを用いた液晶表示装置
JP3929046B2 (ja) 複屈折性フィルムの製造方法、複屈折フィルム、それを用いた光学補償層付き偏光板、垂直配向モード液晶表示装置用液晶パネル、および垂直配向モード液晶表示装置
KR20040054550A (ko) 복굴절성 광학 필름, 이것을 사용한 타원 편광판, 및이들을 사용한 액정표시장치
JP2004046068A (ja) 複屈折層の製造方法、および前記複屈折層を含む光学フィルム
JP3747210B2 (ja) 光学フィルムの製造方法、光学フィルム、液晶表示装置および画像表示装置
JP3976328B2 (ja) Vaモード液晶表示装置用光学フィルムの製造方法
JP4224390B2 (ja) 複屈折フィルムの製造方法
JP2007264588A (ja) 液晶パネルおよびそれを用いた液晶表示装置
JP3962034B2 (ja) 位相差フィルムの製造方法
JP4260571B2 (ja) 複屈折層の製造方法、複屈折層、およびそれを用いた偏光板
KR100831192B1 (ko) 복굴절 필름의 제조 방법, 그것을 사용한 광학 필름 및화상 표시 장치
JP2005292727A (ja) 積層位相差フィルム、その製造方法、およびこれを用いた光学フィルム
JP2006113601A5 (ja)
JP2005292732A (ja) 積層位相差フィルムの製造方法、積層位相差フィルム、およびそれを用いた光学フィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057019368

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006275559

Country of ref document: US

Ref document number: 10554224

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048137136

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057019368

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10554224

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020057019368

Country of ref document: KR