WO2007023673A1 - 液晶パネルおよびそれを用いた液晶表示装置 - Google Patents

液晶パネルおよびそれを用いた液晶表示装置 Download PDF

Info

Publication number
WO2007023673A1
WO2007023673A1 PCT/JP2006/315712 JP2006315712W WO2007023673A1 WO 2007023673 A1 WO2007023673 A1 WO 2007023673A1 JP 2006315712 W JP2006315712 W JP 2006315712W WO 2007023673 A1 WO2007023673 A1 WO 2007023673A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optical compensation
compensation layer
group
layer
Prior art date
Application number
PCT/JP2006/315712
Other languages
English (en)
French (fr)
Inventor
Takeharu Kitagawa
Kentarou Takeda
Yoshiyuki Kiya
Nao Murakami
Shuusaku Nakano
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US12/064,777 priority Critical patent/US20090279031A1/en
Publication of WO2007023673A1 publication Critical patent/WO2007023673A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a liquid crystal panel and a liquid crystal display device using the same. More specifically
  • the present invention relates to a liquid crystal panel having a very small color shift and a liquid crystal display device using the same.
  • the liquid crystal molecules are aligned in the vertical direction, when the liquid crystal panel is observed from a direction deviated from the normal direction, the liquid crystal molecules are apparently oblique. It becomes a state oriented in the direction. As a result, there is a problem that light leakage occurs under the influence of the birefringence of the liquid crystal molecules and the viewing angle becomes narrow.
  • a biaxial optical compensator having a refractive index distribution of nx> ny> nz is used to prevent light leakage due to birefringence of liquid crystal molecules and axial misalignment of the polarizing plate.
  • Techniques for compensating for the effects have been proposed (see, for example, Patent Documents 1 to 3). However, these technologies are V, and even the shift cannot sufficiently reduce the color shift.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-926
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-27488
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-38734
  • the present invention has been made to solve the above-described conventional problems, and an object thereof is to provide a liquid crystal panel having a very small color shift and a liquid crystal display device using the same. .
  • the liquid crystal panel of the present invention has a first polarizer, a first optical compensation layer, a liquid crystal cell, a second optical compensation layer, and a second polarizer in this order,
  • Each of the first optical compensation layer and the second optical compensation layer includes at least one polymer selected from the group force of polyimide, polyamide, polyester, polyetherketone, polyamideimide, and polyesterimide, and nx> ny> nz, where nx is the refractive index in the slow axis direction of the optical compensation layer, ny is the refractive index in the fast axis direction of the optical compensation layer, and nz is the light This is the refractive index in the thickness direction of the optical compensation layer.
  • the first optical compensation layer and the second optical compensation layer each have a thickness of 0.5 to 10 ⁇ m.
  • each of the first optical compensation layer and the second optical compensation layer has an Nz coefficient of 2 ⁇ Nz ⁇ 20.
  • the liquid crystal panel includes a first protective layer between the first optical compensation layer and the first polarizer, and the second optical A second protective layer is further provided between the compensation layer and the second polarizer.
  • the first protective layer and the second protective layer each contain a cellulosic polymer, and the thickness of at least one of the first protective layer and the second protective layer
  • the liquid crystal cell is in a VA mode or an OCB mode.
  • a liquid crystal display device includes the liquid crystal panel.
  • the present invention it is possible to significantly reduce the color shift by disposing the specific optical compensation layer on both sides of the liquid crystal cell as compared with the case where it is disposed on one side. .
  • the optical compensation layers disposed on both sides of the liquid crystal cell are the same.
  • One characteristic for example, constituent material, optical characteristic, thickness.
  • the color shift can be further reduced.
  • the color shift can be further reduced by disposing a protective layer having a small thickness direction retardation between the optical compensation layer and the polarizer.
  • the liquid crystal cell according to the present invention has a positive chromatic dispersion characteristic in which the phase difference decreases as the force wavelength increases mainly with respect to the VA mode or the OCB mode, and the inclination thereof is large.
  • the non-liquid crystal material such as polyimide in the present invention similarly has a positive wavelength dispersion characteristic, and is arranged on both sides of the liquid crystal cell having a large inclination, thereby matching the wavelength dispersion characteristic of the liquid crystal cell and optical characteristics. Will improve.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal panel according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating the alignment state of liquid crystal molecules in a liquid crystal layer when the liquid crystal display device of the present invention employs a VA mode liquid crystal cell.
  • FIG. 3 is a schematic cross-sectional view for explaining the alignment state of liquid crystal molecules in a liquid crystal layer when the liquid crystal display device of the present invention employs an OCB mode liquid crystal cell.
  • FIG. 4 is a graph showing the relationship between the X value and y value of the liquid crystal panel of Example 1 and the azimuth angle.
  • FIG. 5 is an xy chromaticity diagram of the liquid crystal panel of Example 1.
  • FIG. 6 is a graph showing the relationship between the X value and y value of the liquid crystal panel of Example 2 and the azimuth angle.
  • FIG. 7 is a graph showing the relationship between the X value and y value of the liquid crystal panel of Comparative Example 1 and the azimuth angle.
  • FIG. 8 is an xy chromaticity diagram of the liquid crystal panel of Comparative Example 1.
  • FIG. 9 is a graph showing the relationship between the X value and y value of the liquid crystal panel of Comparative Example 2 and the azimuth angle.
  • FIG. 10 is a graph showing the relationship between the X value and y value of the liquid crystal panel of Comparative Example 3 and the azimuth angle. Explanation of symbols
  • Second optical compensation layer 50 Second polarizer
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal panel according to a preferred embodiment of the present invention.
  • the liquid crystal panel 100 includes, in order from the viewing side, the first polarizer 10, the first optical compensation layer 20, the liquid crystal cell 30, the second optical compensation layer 40, and the second polarization. Has 50 children in this order.
  • the first polarizer 10 and the second polarizer 50 are typically arranged such that their absorption axes are orthogonal to each other.
  • the liquid crystal cell 30 includes a pair of glass substrates 31 and 32 and a liquid crystal layer 33 as a display medium disposed between the substrates.
  • One substrate (active matrix substrate) 32 includes a switching element (typically TFT) for controlling the electro-optical characteristics of the liquid crystal, and a scanning line for supplying a gate signal to the switching element and a signal line for supplying a source signal. It is provided (V, deviation not shown).
  • the other glass substrate (color filter substrate) 31 is provided with a color filter (not shown).
  • the color filter may be provided on the active matrix substrate 32.
  • the distance between the substrates 31 and 32 (cell gap) is controlled by a spacer 34.
  • An alignment film (not shown) made of polyimide, for example, is provided on the side of the substrates 31 and 32 in contact with the liquid crystal layer 33.
  • a first protective layer (not shown) is provided between the first optical compensation layer 20 and the first polarizer 10, and the second optical compensation layer 40 and the second polarization are provided.
  • a second protective layer (not shown) is provided between the child 50.
  • another protective layer (not shown) is provided on the opposite side of the first polarizer 10 from the first optical compensation layer 20 (outside of the first polarizer 10, the viewing side in the illustrated example).
  • a further protective layer (not shown) on the opposite side of the second polarizer 50 from the second optical compensation layer 40 (outside of the second polarizer 50, in the illustrated example, the backlight side). ) Is provided.
  • any appropriate driving mode can be adopted as long as the effect of the present invention is obtained.
  • Specific examples of drive modes include STN (Super Twisted Nematic) mode, TN (Twisted Nematic) mode, IPS (In- Plane Switting) mode, VA (Vertical Aligned) mode, OCB (Optically Aligned Bir efringence) mode, HAN (Hybrid Aligned Nematic) mode and ASM (Axi ally Symmetric Aligned Microcell) mode.
  • STN Super Twisted Nematic
  • TN Transmission Nematic
  • IPS In- Plane Switting
  • VA Very Aligned
  • OCB Optically Aligned Bir efringence
  • HAN Hybrid Aligned Nematic
  • ASM Ad Aligned Microcell
  • FIGS. 2A and 2B are schematic cross-sectional views illustrating the alignment state of liquid crystal molecules in the VA mode.
  • Fig. 2 (a) when no voltage is applied, the liquid crystal molecules are aligned perpendicular to the substrates 31 and 32.
  • Such vertical alignment can be realized by arranging a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film (not shown) is formed.
  • a vertical alignment film not shown
  • Light that passes through the liquid crystal layer when a predetermined maximum voltage is applied becomes, for example, linearly polarized light whose polarization direction is rotated by 90 °, so that a bright display can be obtained through the polarizer 10.
  • the display can be returned to the dark state by the orientation regulating force.
  • gradation display is possible by changing the intensity of transmitted light from the polarizer 10 by changing the applied voltage to control the tilt of the liquid crystal molecules.
  • FIGS. 3A to 3D are schematic cross-sectional views illustrating the alignment state of liquid crystal molecules in the OCB mode.
  • the OCB mode is a display mode in which the liquid crystal layer 33 is configured by so-called bend alignment.
  • the bend orientation has a substantially parallel angle (orientation angle) when the nematic liquid crystal molecules are in the vicinity of the substrate, and the orientation angle increases toward the center of the liquid crystal layer. Therefore, the liquid crystal layer has an angle perpendicular to the plane of the substrate, gradually changes so as to be aligned with the opposite substrate surface as it is away from the center of the liquid crystal layer, and has no twisted structure throughout the liquid crystal layer.
  • the orientation state is changed.
  • Such a bend orientation is formed as follows.
  • Fig. 3 (a) no electric field is applied.
  • the liquid crystal molecules are substantially homogeneously aligned.
  • the liquid crystal molecules have a pretilt angle, and the pretilt angle near the substrate is different from the pretilt angle near the opposite substrate.
  • a predetermined noise voltage typically 1.5 V to 1.9 V
  • the splay orientation shown in Fig. 3 (b) is applied, and Fig. 3 (c)
  • a transition to bend orientation as shown can be achieved.
  • a display voltage typically 5V to 7V
  • the liquid crystal molecules rise almost perpendicular to the substrate surface as shown in Fig.
  • Liquid crystal display devices equipped with OCB mode liquid crystal cells can switch the splay alignment state force to the bend alignment state at a very high speed, so liquid crystal display devices in other drive modes such as TN mode and IPS mode. Compared to the above, it has a feature of excellent moving image display characteristics.
  • the in-plane retardation (front retardation) And of the first optical compensation layer 20 can be optimized in accordance with the driving mode of the liquid crystal cell.
  • the in-plane retardation A nd of the second optical compensation layer 40 is also
  • a nd and A nd may be the same or different.
  • a nd and A nd may be the same or different.
  • each optical compensation layer is the same. There is also a remarkable power to improve the color shift.
  • the lower limits of A nd and A nd are each preferably 5 nm or more.
  • a nd and A nd are each preferably 400 nm or less, more preferably 300 nm or less,
  • the viewing angle is often small. More specifically, when the liquid crystal cell adopts the VA mode, And and And are preferably 5 to: LOOnm, more preferably
  • liquid crystal cell 10 to 70 nm, most preferably 30 to 50 nm.
  • And and And are each preferably 5 to 400 nm, more preferably
  • nx is the refractive index in the slow axis direction of the optical compensation layer
  • ny is the refractive index in the fast axis direction of the optical compensation layer
  • d (nm) is the thickness of the optical compensation layer.
  • the slow axis refers to the direction in which the in-plane refractive index is maximized
  • the fast axis refers to the direction perpendicular to the slow axis in the plane.
  • the thickness direction retardation Rth of the first optical compensation layer 20 can also be optimized in accordance with the drive mode of the liquid crystal cell. Furthermore, the thickness direction retardation Rth of the second optical compensation layer 40 is
  • Rth and Rth may be the same or different.
  • Rth and Rth may be the same or different.
  • each optical compensation layer is the same. This is because the effect of improving the color shift is remarkable.
  • the lower limits of Rth and Rth are each preferably lOnm or more
  • Rth and Rth are each preferably lOOOnm or less, more preferably 500 nm or less.
  • Rth or Rth force exceeds ⁇ OOOnm
  • Rth and Rth are preferably 10 to 300 nm, more preferably 20 to 250 nm, most preferably
  • Rth and Rth are preferably 10 to: L000 nm, more preferably 20 to 500 nm,
  • nz is the refractive index in the thickness direction of the film (optical compensation layer).
  • Rth is also typically measured using light with a wavelength of 590 nm.
  • the Nz coefficient of each of the first optical compensation layer 20 and the second optical compensation layer 40 is preferably 2 to 20, more preferably 2 to 10, especially preferably 2 to 8, and most preferably 2 to 6.
  • the Nz coefficient of the first optical compensation layer 20 and the second optical compensation layer 40 is preferably 2 to 10, more preferably 2 respectively. ⁇ 8, most preferably 2-6.
  • the Nz coefficient of the first optical compensation layer 20 and the second optical compensation layer 40 is preferably 2 to 20, more preferably 2 to 10, and most preferably 2.
  • each of the first optical compensation layer 20 and the second optical compensation layer 40 has a refractive index distribution of nx> ny> nz.
  • optical compensation layers having such optical characteristics (ie, And, Rth, refractive index distribution and Nz coefficient) on both sides of the liquid crystal cell (more preferably, the same optical compensation layer is symmetrical) By arranging it, a liquid crystal panel with a very small color shift can be obtained.
  • each of the first optical compensation layer 20 and the second optical compensation layer 40 may have any appropriate thickness as long as the effects of the present invention are exhibited.
  • the thickness of each of the first optical compensation layer 20 and the second optical compensation layer 40 is preferably 0.1 to 50 / ⁇ ⁇ , and more preferably 0.5 to 30 111. Particularly preferred is 0.5 to: LO / zm, particularly preferred is 1 to: LO / zm, and most preferred is 1.5 to 5 / ⁇ ⁇ . This is because an optical compensation layer that can contribute to thinning of the liquid crystal display device and has excellent viewing angle compensation performance and a uniform phase difference can be obtained.
  • the thicknesses of the first optical compensation layer 20 and the second optical compensation layer 40 may be the same or different.
  • each optical compensation layer 20 and the second optical compensation layer 40 may be a single layer or a laminate of two or more layers. In the case of a laminate, the material constituting each layer and the thickness of each layer can be appropriately set as long as the entire laminate has the optical characteristics as described above.
  • the first optical compensation layer 20 and the second optical compensation layer 40 may be made of the same material or different materials.
  • the constituent material of the optical compensation layer includes a non-liquid crystalline material. Particularly preferred is a non-liquid crystalline polymer.
  • a non-liquid crystalline material unlike a liquid crystalline material, can form a film exhibiting optical uniaxial properties of nx> nz and ny> nz due to its own properties that are related to the orientation of the substrate.
  • an oriented substrate can be used.
  • the step of applying an alignment film on the surface, the step of laminating the alignment film, and the like can be omitted.
  • non-liquid crystalline material examples include polymers such as polyamide, polyimide, polyester, polyetherketone, polyamideimide, and polyesterimide because of excellent heat resistance, chemical resistance, transparency, and high rigidity. Is preferred. Any one of these polymers may be used alone, or, for example, a mixture of two or more kinds having different functional groups, such as a mixture of polyaryletherketone and polyamide. .
  • polyimide is particularly preferred because of its high transparency, high orientation, and high stretchability.
  • Polyimide is preferable because it has a positive chromatic dispersion characteristic in which the phase difference decreases as the wavelength increases, and its slope matches optimally with the chromatic dispersion characteristics of VA mode and OCB mode liquid crystal cells.
  • the molecular weight of the polymer is not particularly limited.
  • the weight average molecular weight (Mw) force i is in the range of 1,000 to 1,000,000 force S, more preferably 2,000 to 500, The range is 000.
  • polyimide for example, polyimide soluble in an organic solvent having high in-plane orientation is used. preferable. Specifically, for example, it includes a condensation polymerization product of 9,9-bis (aminoaryl) fluorene and an aromatic tetracarboxylic dianhydride disclosed in JP 2000-511296 A, and has the following formula: A polymer containing one or more repeating units shown in (1) can be used.
  • R 3 to R 6 are each independently a hydrogen, halogen, phenyl group, a phenyl group substituted with 1 to 4 halogen atoms or a c to alkyl group, And C ⁇
  • 1 10 1 10 Alkyl group power Group power is at least one selected substituent.
  • R 3 to R 6 are each independently selected from the group consisting of halogen, a phenol group, a fluorine group substituted with 1 to 4 halogen atoms or a C to alkyl group, and a C to alkyl group.
  • Z is, for example, a C to tetravalent aromatic group, preferably pyromellitic.
  • Z ′ is, for example, a covalent bond, C (R 7 ) group, CO group, O atom, S atom, SO group, Si (CH 3) group, or NR 8 group, Each may be the same May be different.
  • W is an integer from 1 to 10.
  • Each R 7 is independently hydrogen or C (R 9 ).
  • R 8 is hydrogen, an alkyl group having 1 to about 20 carbon atoms, or
  • C ⁇ aryl group and in the case of multiple groups, they may be the same or different.
  • Each R 9 is independently hydrogen, fluorine, or chlorine.
  • Examples of the polycyclic aromatic group include naphthalene, fluorene, benzofluorene, and an anthracene-induced tetravalent group.
  • Examples of the substituted derivatives of the polycyclic aromatic group include C to C alkyl groups, fluorinated derivatives thereof, and
  • the group power consisting of halogen powers such as F and C1 The above polycyclic aromatic groups substituted with at least one selected group are exemplified.
  • the polyimide etc. which are shown are mentioned.
  • the polyimide of the following formula (5) is a preferred form of the homopolymer of the following formula (3).
  • G and G ′ each independently represent, for example, a covalent bond, a CH group, a C (CH 3) group, a C (CF 3) group, C (CX 2) A group (where X is a halogen), C
  • the groups selected from the above may be the same or different.
  • L is a substituent
  • d and e represent the number of substitutions.
  • L is, for example, halogen, C alkyl group, C halogenated alkyl group, phenyl group,
  • substituted phenol group is a substituted phenol group, and when there are a plurality of them, they may be the same or different.
  • substituted phenol group include halogen, C alkyl group, and
  • Rogeny ⁇ ⁇ has at least one substituent that can be selected as a group force.
  • halogen examples include fluorine, chlorine, bromine and iodine.
  • d is an integer from 0 to 2
  • e is an integer from 0 to 3.
  • Q is a substituent, and f represents the number of substitutions.
  • Q include hydrogen, halogen, alkyl group, substituted alkyl group, nitro group, cyano group, thioalkyl group, alkoxy group, aryl group, substituted aryl group, alkyl ester group, and substituted alkyl ester group.
  • the halogen include fluorine, chlorine, bromine and iodine.
  • the substituted alkyl group include a halogenated alkyl group.
  • the substituted aryl group include a halogenated aryl group.
  • f is an integer from 0 to 4
  • g is an integer from 0 to 3
  • h is an integer from 1 to 3. In addition, g and h are greater than 1 and force S is preferable.
  • R 1G and R 11 are each independently hydrogen, halogen, a phenol group, It is a group selected from the group consisting of a substituted phenyl group, an alkyl group, and a substituted alkyl group. Among them, R 1G and R 11 are preferably each independently a halogenated alkyl group.
  • M 1 and M 2 are each independently, for example, halogen, C alkyl
  • halogen examples include fluorine, chlorine, bromine and iodine.
  • substituted phenol group examples include halogen, C alkyl group, and C halogen.
  • Examples thereof include a substituted phenyl group having at least one type of substituent selected from the group consisting of a 1-3-1 alkylated group.
  • polyimide represented by the above formula (3) include, for example, those represented by the following formula (6).
  • examples of the polyimide include a copolymer obtained by appropriately copolymerizing acid dianhydride and diamine other than the skeleton (repeating unit) as described above.
  • Examples of the acid dianhydride include aromatic tetracarboxylic dianhydrides.
  • Examples of the aromatic tetracarboxylic dianhydride include pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, and bicyclic aromatic tetracarboxylic dianhydride. And 2, 2'-substituted biphenyltetracarboxylic dianhydrides.
  • Examples of the pyromellitic dianhydride include pyromellitic dianhydride, 3,6-diphenyl-pyromellitic dianhydride, 3,6-bis (trifluoromethyl) pyromellitic acid. Dianhydrides, 3,6-dibromopyromellitic dianhydride, 3,6-dichloropyromellitic dianhydride, and the like.
  • benzophenone tetracarboxylic dianhydride examples include 3, 3 ′, 4, 4 'monobenzophenone tetracarboxylic dianhydride, 2, 3, 3', 4 'monobenzophenone tetracarboxylic dianhydride, 2, 2', 3, 3'-benzophenone tetra
  • examples thereof include carboxylic dianhydrides.
  • naphthalenetetracarboxylic dianhydride examples include 2, 3, 6, 7 naphthalene-tetracarboxylic dianhydride, 1, 2, 5, 6 naphthalene-tetracarboxylic dianhydride, 2, 6 dichloro- And naphthalene 1, 4, 5, 8-tetracarboxylic dianhydride.
  • heterocyclic aromatic tetracarboxylic dianhydride include thiophene 2, 3, 4, 5-tetracarboxylic dianhydride, pyrazine 2, 3, 5, 6-tetracarboxylic dianhydride, pyridine. 2, 3, 5, 6-tetracarboxylic dianhydride and the like.
  • Examples of the 2,2′-substituted biphenyltetracarboxylic dianhydride include, for example, 2,2, 1-dib-mouthed 4,4,5,5, -biphenyltetracarboxylic dianhydride, 2,2, -Dichloromethane-4, 4 ,, 5, 5,-Biphenyl tetracarboxylic dianhydride, 2, 2,-Bis (trifluoromethyl)-4, 4 ', 5, 5'-Biphenyl tetracarboxylic acid A dianhydride etc. are mentioned.
  • aromatic tetracarboxylic dianhydride examples include 3, 3 ', 4, 4, -biphenyl tetracarboxylic dianhydride, bis (2, 3 dicarboxyphenol) ) Methane dianhydride, bis (2, 5, 6 trifluoro-3,4 dicarboxyphenyl) Methane dianhydride, 2, 2 bis (3,4 dicarboxyphenyl) — 1, 1, 1, 3, 3, 3 Hexafluoropropyl Mouth Panni Anhydride, 4, 4 '-Bis (3,4 Dicarboxyl Phenolic)-2, 2 Diphenol Mouth Panni Anhydride, Bis (3, 4-Dicarboxy Phenyl- ) Ether dianhydride, 4, 4, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenol) sulfonic dianhydride, 3, 3, 4, 4, 4, diphenylsulfone Tetracarboxylic dianhydride, 4, 4, 1 [4,
  • aromatic tetracarboxylic dianhydride 2,2'-substituted biphenyltetracarboxylic dianhydride is more preferable, and 2,2'-bis (trihalomethyl) is more preferable.
  • diamine include aromatic diamines, and specific examples include benzendiamine, diaminobenzophenone, naphthalenediamine, heterocyclic aromatic diamine, and other aromatic diamines. It is done.
  • Examples of the benzenediamine include o-, m- and p-phenylenediamine, 2,4 diaminotoluene, 1,4 diamino1-2-methoxybenzene, 1,4 diamino1-2 phenolbenzene and 1, 3 Diamino 4 A group force consisting of benzene diamines such as black benzene.
  • Examples of the above-mentioned diaminobenzophenone include 2,2, -diaminobenzofenone and 3,3-diaminobenzophenone.
  • Examples of the naphthalenediamine include 1,8 diaminonaphthalene and 1,5-diaminonaphthalene.
  • Examples of the heterocyclic aromatic diamine include 2,6 diaminopyridine, 2,4-diaminopyridine, 2,4 diamino-S triazine and the like.
  • aromatic diamines include 4, 4, diaminobiphenyl, 4, 4, diaminodimethane, 4, 4,-(9 fluoroureidene) monodiyne, 2 , 2, 1 bis (trifluoromethyl) 4, 4'-diaminobiphenyl, 3, 3, 1 dichloro 1, 4, 4'-diaminodiphenyl methane, 2, 2'-dichloro-4, 4'-diaminobiphenyl, 2 , 2 ', 5, 5' —tetrachlorobenzidine, 2, 2 bis (4 aminophenoxyphenol) propane, 2, 2 bis (4 —aminophenol) pronone, 2, 2 (4 aminophenol) 1, 1, 1, 3, 3, 3 hexafluoropropane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,3 bis ( 3 aminophenoxy) benzene, 1,3 bis (4 aminophenoxy) benzen
  • polyether ketone examples include polyaryl ether ketones represented by the following general formula (7) described in JP-A-2001-49110.
  • X represents a substituent, and q represents the number of substitutions.
  • X is, for example, a halogen atom, a lower alkyl group, a halogenated alkyl group, a lower alkoxy group, or a halogeno-alkoxy group. When there are a plurality of Xs, they may be the same or different.
  • halogen atom examples include a fluorine atom, a bromine atom, a chlorine atom, and an iodine atom, and among these, a fluorine atom is preferable.
  • the lower alkyl group for example, an alkyl group having a linear or branched chain of C to C is more preferable.
  • a methyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group are preferred, and a methyl group and an ethyl group are particularly preferred.
  • the halogenoalkyl group include halogenated compounds of the above lower alkyl groups such as a trifluoromethyl group.
  • Examples of the lower alkoxy group include C to C
  • the halogenated alkoxy group include halogenated compounds of the above lower alkoxy groups such as a trifluoromethoxy group.
  • the carbocycle group bonded to both ends of the benzene ring and the oxygen atom of the ether exist in the para position with respect to each other.
  • R 1 is a group represented by the following formula (8), and m is an integer of 0 or 1.
  • X ′ represents a substituent, and is the same as, for example, X in the above formula (7).
  • R 2 represents a divalent aromatic group.
  • the divalent aromatic group include o-, m- or p-phenylene diene group, or naphthalene, biphenyl, anthracene, o mono, m- or p-terphenyl, phenanthrene, dibenzofuran, biphenol.
  • -Diethyl or bivalent sulfone force induced divalent groups may be substituted with a hydrogen-powered halogen atom, lower alkyl group or lower alkoxy group directly bonded to the aromatic group.
  • the following formulas (9) to (15) are preferable aromatic groups in which the group force is selected.
  • R 1 is preferably a group represented by the following formula (16).
  • R 2 and p are as defined in the above formula (8). It is.
  • n represents the degree of polymerization and is, for example, in the range of 2 to 5000, and preferably in the range of 5 to 500.
  • the polymerization may be a repeating unit force having the same structure or a repeating unit force having a different structure. In the latter case, the polymerization mode of the repeating unit may be block polymerization or random polymerization.
  • the end of the polyaryletherketone represented by the above formula (7) is fluorine on the p-tetrafluorobenzobenzoylene group side and a hydrogen atom on the oxyalkylene group side.
  • Such polyaryletherketone can be represented, for example, by the following general formula (17). In the formula below, n represents the same degree of polymerization as in formula (7) above. [0068] [Chemical 11]
  • polyaryletherketone represented by the above formula (7) include those represented by the following formulas (18) to (21). In each of the following formulas, n represents the above formula. Degree of polymerization similar to (7).
  • examples of the above-mentioned polyamide or polyester include polyamides and polyesters described in JP-T-10-508048, and the repeating unit thereof is, for example, the following general unit It can be represented by formula (22).
  • Y is O or NH.
  • E is, for example, a covalent bond, C al
  • R represents a C alkyl group and a C halogenated alkyl.
  • A is, for example, hydrogen, halogen, C alkyl group, C halogenated alkyl group
  • a ′ is, for example, a halogen, a C alkyl group, a C halogenated alkyl group, a phenol group, and a substituted phenol.
  • the t is an integer from 0 to 4, and the z is an integer from 0 to 3.
  • repeating units of polyamide or polyester represented by the above formula (22) those represented by the following general formula (23) are preferred.
  • a A ′ and Y are as defined in the above formula (22), and v is an integer from 0 to 3, preferably an integer from 0 to 2.
  • X and y are 0 or 1, respectively.
  • a typical forming method includes a step of applying a solution of the non-liquid crystalline polymer to the base film and a step of forming a non-liquid crystalline polymer layer by removing the solvent in the solution.
  • the base film finally becomes the first or second protective layer. Therefore, a film (typically a cellulose film) constituting the first and second protective layers is used as the base film. Details of the cellulosic film are described in Section D below.
  • the solvent of the coating solution is not particularly limited, and examples thereof include black mouth honoreme, dichloromethane, carbon tetrachloride, dichloroethane, tetrachloro mouth ethane, and trichloroethane.
  • Chlorogenic hydrocarbons such as ethylene, tetrachloroethylene, black-opened benzene and onolesic-dichloro-opened benzene; phenols such as phenol and barachlorophenol; benzene and toluene
  • Aromatic hydrocarbons such as xylene, methoxybenzene, 1,2-dimethoxybenzene; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-pyrrolidone, N-methyl-2- Ketone solvents such as pyrrolidone; ester solvents such as ethyl acetate and butyl acetate; t-butyl alcohol, glycerin, ethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, diethylene glycol dimethyl ether, propylene glycol, dipropylene glycol, 2- Alcohol solvents such as methyl-2,4-pentanediol; Amides solvents such as dimethylformamide and dimethylacetamide; -Tolyl solvents such as acetonitrile, buthiguchi-tolyl; Jetyl ether, dibutyl ether, Ether solvents such
  • the concentration of the non-liquid crystalline polymer in the coating solution may be any appropriate concentration as long as the optical compensation layer as described above is obtained and coating is possible.
  • the solution preferably contains 5 to 50 parts by weight, more preferably 10 to 40 parts by weight of the non-liquid crystalline polymer with respect to 100 parts by weight of the solvent.
  • a solution having such a concentration range has a viscosity that is easy to apply.
  • the coating solution may further contain various additives such as a stabilizer, a plasticizer, and metals as necessary.
  • the coating solution may further contain other different fats as necessary.
  • other resins include various general-purpose resins, engineering plastics, thermoplastic resins, and thermosetting resins. By using such a resin together, it is possible to form an optical compensation layer having appropriate mechanical strength and durability depending on the purpose.
  • Examples of the general-purpose resin include polyethylene (PE), polypropylene (PP), polystyrene (PS), polymethyl methacrylate (PMMA), ABS resin, and AS resin. It is done.
  • Examples of the engineering plastic include polyacetate (POM), polycarbonate (PC), polyamide (PA: nylon), polyethylene terephthalate (PET), and polybutylene terephthalate (PBT).
  • Examples of the thermoplastic resin include polyphenylene sulfide (PPS), polyether sulfone (PES), polyketone (PK), polyimide (PI), polycyclohexane dimethanol terephthalate (PCT), polyarylate (PAR). ), And liquid crystal polymer (LCP).
  • Examples of the thermosetting resin include epoxy resin and phenol novolac resin.
  • the type and amount of the different rosin added to the coating solution can be appropriately set according to the purpose.
  • a resin can be added in a proportion of preferably 0 to 50% by mass, more preferably 0 to 30% by mass with respect to the non-liquid crystalline polymer.
  • Examples of the coating method for the solution include spin coating, roll coating, flow coating, printing, dip coating, casting film formation, bar coating, and gravure printing. It is done.
  • a polymer layer superimposing method may be employed as necessary.
  • the solvent in the solution is evaporated and removed by natural drying, air drying, heat drying (for example, 60 to 250 ° C), and the base film (finally the first or second film).
  • An optical compensation layer is formed thereon.
  • a process for imparting optical biaxiality (nx>ny> nz) may be performed.
  • a difference in refractive index (nx> ny) can be reliably imparted in the surface, and an optical compensation layer having optical biaxiality (nx>ny> nz) is obtained. It is done.
  • a typical example of a method for imparting a difference in refractive index in the plane is a method in which the base film and the optical compensation layer formed on the base film are integrally stretched or shrunk. . In a preferred embodiment, the film is stretched or contracted by heating to a predetermined temperature.
  • the heating temperature is, for example, 120 to 180 ° C.
  • the stretching ratio is, for example, 1.1 to 1.5 times, preferably 1.1 to 1.3 times.
  • an optical compensation layer is formed (in other words, a laminate of the optical compensation layer and the protective layer is obtained).
  • the base film any appropriate film that does not constitute a protective layer may be used.
  • the formed optical compensation layer is a base material film. Ilm forces can also be transferred to the protective layer or polarizer.
  • any appropriate polarizer can be adopted as the first polarizer 10 and the second polarizer 50 depending on the purpose.
  • a dichroic substance such as iodine or a dichroic dye is added to a hydrophilic polymer film such as a polybulal alcohol film, a partially formalized polyalcohol film, or an ethylene butyl acetate copolymer partially saponified film.
  • Polyethylene-based oriented films such as those adsorbed and uniaxially stretched, polyvinyl alcohol dehydrated products, and polyvinyl chloride dehydrochlorinated products.
  • a polarizer obtained by adsorbing a dichroic substance such as iodine on a polybulal alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio.
  • the thickness of these polarizers is not particularly limited, but is generally about 5 to 80 / ⁇ ⁇ .
  • the first polarizer 10 and the second polarizer 50 may be the same or different.
  • a polarizer uniaxially stretched by adsorbing iodine to a polybulualcohol-based film is dyed by immersing polyvinyl alcohol in an aqueous solution of iodine and stretched to 3 to 7 times the original length.
  • it may contain boric acid, zinc sulfate, zinc chloride or the like, or may be immersed in an aqueous solution of potassium iodide or the like.
  • the polybulal alcohol film may be immersed in water and washed before dyeing. By washing the polybulal alcohol film with water, it is possible not only to clean the surface of the polybulal alcohol film but also the anti-blocking agent.
  • Stretching may be performed after dyeing with iodine, or may be performed while dyeing, or may be stretched and dyed with iodine.
  • the film can be stretched in an aqueous solution such as boric acid or potassium iodide or in a water bath.
  • the liquid crystal panel of the present invention includes the first protective layer (not shown) between the first optical compensation layer 20 and the first polarizer 10, and the second optical compensation.
  • a second protective layer is further provided between the layer 40 and the second polarizer 50.
  • the liquid crystal panel of the present invention further includes a first protective layer between the first optical compensation layer 20 and the first polarizer 10, and
  • a second protective layer is further provided between the second optical compensation layer 40 and the second polarizer 50.
  • the first optical compensation layer 20 and the first protective layer, and the second optical compensation layer 40 and the second protective layer are directly laminated.
  • the protective layer and the optical compensation layer can be directly laminated by applying and drying the material forming the optical compensation layer on the film constituting the protective layer.
  • the first polarizer 10 and the first protective layer, and the second polarizer 50 and the second protective layer are stacked via any appropriate adhesive layer. Yes.
  • the first protective layer and the second protective layer may have the same characteristics (for example, optical characteristics, mechanical characteristics, thermal characteristics) or different characteristics.
  • the first protective layer and the second protective layer are the same. The improvement in color shift is a significant force.
  • the first and second protective layers are preferably optimized for their optical properties. Specifically, the in-plane retardation A nd of the first and second protective layers
  • l and A nd are each preferably 15 nm or less, more preferably lOnm or less, particularly preferably
  • each of A nd and A nd is preferably Onm or more, more preferably 0.
  • the protective layer (protective layer inside the polarizer) having the in-plane retardation And in the above range is combined with the specific optical compensation layer as described above and incorporated into the liquid crystal panel. As a result, the color shift can be made very small.
  • a nd may be the same or different.
  • a nd is the same. This is because the color shift is remarkably improved.
  • the thickness direction retardations Rth and Rth of the first and second protective layers are respectively preferable.
  • Rth and Rth are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers that are integers or less.
  • Each of l 2 is preferably greater than or equal to Onm, and more preferably greater than Onm.
  • the thickness direction retardations Rth and Rth of the first and second protective layers are preferably greater than or equal to Onm, and more preferably greater than Onm.
  • At least one of l 2 is 30 nm or less. According to the present invention, the thickness within the above range
  • a protective layer having a retardation Rth a protective layer inside the polarizer
  • the specific optical compensation layer as described above into a liquid crystal panel, the color shift can be made extremely small.
  • Rth and Rth may be the same or different
  • Rth and Rth are the same. Because the color shift has improved significantly.
  • any appropriate material can be adopted as the material of the first and second protective layers.
  • a cellulose material and a norbornene material can be used.
  • One of the preferred specific examples is composed of a film (cellulosic film) in which the first and second protective layers have a cellulosic material strength.
  • the cellulose film any appropriate cellulose film is used as long as the effects of the present invention are obtained.
  • the first and second protective layers may be made of the same cellulose film or different cellulose films.
  • the first and second protective layers are preferably composed of the same cellulose film. This is because the color shift is remarkably improved.
  • Specific examples of the cellulose material constituting the film include fatty acid-substituted cellulose polymers such as diacetyl cellulose and triacetyl cellulose.
  • a cellulose-based film generally used as a transparent protective film for example, Fuji Photo Film Co., Ltd., trade name TF80UL
  • a cellulose film subjected to appropriate processing for example, processing for reducing the thickness direction retardation (Rth)
  • a commercially available cellulose film for example, trade name ZRF80S manufactured by Fuji Photo Film Co., Ltd.
  • the thickness direction retardation (Rth) is controlled to be small may be used.
  • any appropriate treatment method can be adopted as the treatment for reducing the thickness direction retardation (Rth).
  • a base material such as polyethylene terephthalate, polypropylene, or stainless steel coated with a solvent such as cyclopentanone or methyl ethyl ketone is bonded to a general cellulose film and dried by heating (for example, about 80 to 150). 3 to 10 minutes), and then the base film is peeled off; a solution obtained by dissolving norbornene resin, acrylic resin, etc. in a solvent such as cyclopentanone, methyl ethyl ketone, etc.
  • the fatty acid-substituted cellulose polymer is preferably a fatty acid-substituted cellulose polymer with a controlled degree of fatty acid substitution.
  • the thickness direction phase difference (Rth) can be controlled to be small.
  • a retardation in the thickness direction is added by adding a plasticizer such as dibutyl phthalate, p-toluenesulfonylide, and acetylacetyl thionate to the fatty acid-substituted cellulose polymer.
  • a plasticizer such as dibutyl phthalate, p-toluenesulfonylide, and acetylacetyl thionate
  • Rth can be controlled small.
  • the amount of the plasticizer added is preferably 40 parts by weight or less, more preferably 1 to 20 parts by weight, and most preferably 1 to 15 parts by weight with respect to 100 parts by weight of the fatty acid-substituted cellulose polymer.
  • first and second protective layers are acrylic resin films. Both the first and second protective layers may be acrylic resin films, or only one of them may be an acrylic resin film. When both the first and second protective layers are acrylic resin films, they may be the same acrylic resin film or different acrylic resin films.
  • an acrylic resin containing an acrylic resin (A) containing a dartaric anhydride unit represented by the following structural formula (24) described in JP-A-2005-314534 as a main component is preferable. It is a fat film. Heat resistance can be improved by containing a dartal anhydride unit represented by the following structural formula (24).
  • R ⁇ R 2 represents a same or different hydrogen atom or an alkyl group having a carbon number of 1-5, preferably a hydrogen atom or a methyl group, more preferably in methylation group .
  • the content of the dartaric anhydride unit represented by the structural formula (24) is preferably 20 to 40 wt%, more preferably 25 to 35 wt%. is there.
  • the acrylic resin (A) may contain one or more arbitrary monomer units in addition to the dartaric anhydride unit represented by the structural formula (24).
  • a monomer unit a carboxylic acid alkyl ester unit is preferable.
  • the content ratio of vinyl carboxylic acid alkyl ester unit is preferably 60 to 80 weight 0/0, more preferably 65 to 75 weight 0/0.
  • berylcarboxylic acid alkyl ester units include units represented by the following general formula (25).
  • R 3 represents a hydrogen atom or an aliphatic or alicyclic hydrocarbon having 1 to 5 carbon atoms
  • R 4 represents an aliphatic hydrocarbon having 1 to 5 carbon atoms.
  • the acrylic resin (A) preferably has a weight average molecular weight of 80000 to 150000.
  • the content of the acrylic resin (A) in the acrylic resin film is preferably 60 to 90% by weight.
  • the acrylic resin film may contain one or more arbitrary suitable components.
  • a component any appropriate component can be adopted as long as the object of the present invention is not impaired.
  • a resin other than the above acrylic resin (A) an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, a coloring inhibitor, a flame retardant, a nucleating agent, an antistatic agent, a pigment, a coloring agent, etc.
  • the thickness of the first and second protective layers is arbitrary as long as a desired thickness direction retardation (Rth) is obtained and the mechanical strength as the protective layer (protective film) is maintained. Any suitable thickness may be employed.
  • the thickness of each of the first and second protective layers is preferably 1 to 500 m, more preferably 5 to 200 m, particularly preferably 20 to 200 ⁇ m, and particularly preferably 30 to: LOO ⁇ m, most preferably 35 to 95 ⁇ m.
  • the thicknesses of the first and second protective layers may be the same or different.
  • the thickness of the first and second protective layers is the same. This is because the color shift is remarkably improved.
  • another protective layer (not shown) is provided outside the first polarizer 10 (viewing side in the example shown), and outside the second polarizer 50 (backlight side in the example shown).
  • another protective layer (not shown) is provided. Since these outer protective layers do not affect the optical compensation, it is not necessary to optimize the optical properties. Therefore, any appropriate protective layer can be adopted as the outer protective layer depending on the purpose.
  • the outer protective layer also has a plastic film force that is excellent in transparency, mechanical strength, thermal stability, moisture barrier properties, isotropic properties, and the like.
  • the resin constituting the plastic film include acetate resin such as triacetyl cellulose (TAC), polyester resin, polyether sulfone resin, polysulfone resin, polycarbonate resin, polyamide resin, and polyimide resin.
  • TAC triacetyl cellulose
  • Polyolefin resin acrylic resin, polynorbornene resin, cellulose resin, polyarylate resin, polystyrene resin, polybutyl alcohol resin, polyacrylic resin, and mixtures thereof.
  • thermosetting resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone, or ultraviolet curable resins may be used. From the viewpoint of polarization characteristics and durability, a TAC film whose surface is subjected to a ken treatment with alkali or the like is preferable.
  • a polymer film having a resin composition force as described in JP-A-2001-343529 can be used for the outer protective layer. More specifically, a mixture of a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a cyan group in the side chain. It is. Specific examples include isobutene and N-methylenemaleimide. Examples of the resin composition include an alternating copolymer and an acrylonitrile / styrene copolymer. For example, an extruded product of such a resin composition can be used.
  • the outer protective layer is preferably transparent and uncolored.
  • the thickness direction retardation Rth force of the outer protective layer is preferably 90 nm to +75 nm, more preferably 80 nm to +60 nm, and most preferably 1 nm to +45 nm.
  • the retardation Rth force in the thickness direction of the outer protective layer In such a range, the optical coloring of the polarizer caused by the outer protective layer can be eliminated.
  • the thickness of the outer protective layer may be appropriately set according to the purpose.
  • the thickness of the outer protective layer is typically 500 ⁇ m or less, preferably 5 to 300 ⁇ m, more preferably 5 to 150 ⁇ m.
  • any appropriate surface treatment can be applied to the surface of the outer protective layer to which the polarizer is not adhered.
  • Specific examples of the surface treatment include hard coat treatment, antireflection treatment, sticking prevention treatment, and diffusion treatment (also referred to as antiglare treatment).
  • the above hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate.
  • a cured film excellent in hardness, sliding properties, etc. by an appropriate ultraviolet curable resin such as acrylic or silicone is used. It can be formed on the surface of the protective layer.
  • the antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate.
  • the anti-sticking process is performed for the purpose of preventing adhesion with an adjacent layer.
  • the anti-glare treatment is applied for the purpose of preventing the external light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate.
  • a roughening method using a sandblasting method or an embossing method can be formed by imparting a fine concavo-convex structure to the surface of the protective layer by an appropriate method such as a compounding method of transparent fine particles.
  • the anti-damper layer formed by the anti-glare may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.
  • a liquid crystal display device includes the liquid crystal panel of the present invention.
  • Arbitrary appropriate components are adopted for the components other than the liquid crystal panel.
  • the liquid crystal display device of the present invention includes the liquid crystal panel of the present invention and the liquid.
  • a treatment layer subjected to the above hard coat treatment, antireflection treatment, antisticking treatment, diffusion treatment (antiglare treatment) or the like is used as the surface treatment layer.
  • the surface treatment layer may be formed by subjecting the outer protective layer to a surface treatment.
  • the refractive indices nx , ny and nz of the sample film are measured with an automatic birefringence measuring device (manufactured by Oji Scientific Instruments Co., Ltd., automatic birefringence meter KOBRA21—ADH), and the in-plane retardation ⁇ nd and thickness direction position are measured.
  • the phase difference Rth was calculated. Measurement temperature was 23 ° C, measurement wavelength was 590nm
  • ELDIM's product name ⁇ EZ Contrastl60D '' measure the color tone of the liquid crystal display device by changing the polar angle from 0 ° to 80 ° at azimuth angles of 30 °, 45 ° and 60 °. Plotted on a chromaticity diagram. Furthermore, in the polar angle 60 ° direction, the azimuth was changed from 0 ° to 60 °, the X and y values were measured, and the relationship between the azimuth and the X and y values was plotted.
  • This polyimide solution is applied to a triacetyl cellulose (TAC) film (trade name: ZRF80S, manufactured by Fuji Photo Film Co., Ltd., trade name: 80 ⁇ m) with a small retardation at a thickness of 22 ⁇ m, and dried at 120 ° C for 5 minutes.
  • TAC film triacetyl cellulose
  • the film was stretched laterally.
  • the in-plane retardation of the laminate obtained by stretching was 43 nm, and the thickness direction retardation was 192 nm.
  • the in-plane retardation was 4 nm and the thickness direction retardation was 20 nm.
  • the retardation of the optical compensation layer was calculated from the difference between the retardation of the laminate and the retardation of the substrate.
  • the in-plane retardation of the optical compensation layer was 39 nm, and the thickness direction retardation was 172 nm.
  • the Nz coefficient of the optical compensation layer was 4.4.
  • a polarizer was produced by uniaxially stretching 6 times between rolls having different speed ratios in an aqueous solution containing boric acid.
  • This polarizer and the laminate were bonded together with an adhesive.
  • the substrate (protective layer) and the polarizer were bonded so as to be adjacent to each other.
  • the polarizer was bonded so that the absorption axis (stretching axis) of the polarizer and the slow axis (stretching axis) of the optical compensation layer were orthogonal to each other.
  • the laminated body was bonded, and a commonly used TAC film (manufactured by Fuji Photo Film Co., Ltd., trade name: TF80UL, thickness 80 m) was bonded to the surface of the polarizer via an adhesive.
  • a commonly used TAC film manufactured by Fuji Photo Film Co., Ltd., trade name: TF80UL, thickness 80 m
  • an outer protective layer generally TAC film
  • inner protective layer small retardation TAC film
  • Z polarizing plate integrated laminate having the structure of an optical compensation layer (polyimide layer) Got. Two sheets of this polarizing plate integrated laminate were produced.
  • a liquid crystal panel (trade name BenQ DV3250, 32 inches, VA mode, manufactured by AUO) was used to remove the liquid crystal cell.
  • the two polarizing plate-integrated laminates were bonded to both sides of the liquid crystal cell with an adhesive so that the outer protective layer was the outermost layer.
  • the polarizers were bonded so that the absorption axes of the respective polarizers were orthogonal to each other. In this way, a liquid crystal panel was obtained.
  • the color shift of this liquid crystal panel was measured.
  • Fig. 4 shows the relationship between the X and y values and the azimuth
  • Fig. 5 shows the xy chromaticity diagram.
  • (X, Y Table 1 shows the M straight, (Xi, Yi) value, ⁇ value, (u,, v,) value, (u 'i, v, i) value, ⁇ ⁇ ' v, value.
  • the ⁇ value is expressed by the following formula (A), which is the most distant from the chromaticity (X, Y) when viewed from the normal direction of the liquid crystal cell, and (X, Y) on the chromaticity diagram. The distance to the point (Xi, Yi) is shown. The larger this value, the greater the color shift.
  • the ⁇ ⁇ ' ⁇ 'value is expressed by the following formula ( ⁇ ), and the chromaticity (u', ⁇ ') when observed from the normal direction of the liquid crystal cell, and (u', The distance to the point (u 'i, v' i) farthest from V) is shown. The larger this value, the greater the color shift.
  • ⁇ ⁇ V ⁇ (u, -u 'i) 2 + (v, -v' i) 2 ⁇ 1/2 ⁇ ⁇ ⁇ (B)
  • a polyimide solution similar to that in Example 1 was applied to a commonly used TAC film (manufactured by Fuji Photo Film Co., Ltd., trade name: TF80UL, thickness: 80 ⁇ m) at a thickness of 32 ⁇ m, 120. It was dried at C for 5 minutes to obtain a laminate having a base material (TAC film: finally becomes a protective layer) and an optical compensation layer (thickness 3.2 m). This laminate was stretched transversely at 165 ° C by 1.27 times. The in-plane retardation of the laminate obtained by stretching was 38 nm, and the thickness direction retardation was 144 nm.
  • the in-plane retardation was lOnm and the thickness direction retardation was 60 nm.
  • the phase difference of the optical compensation layer was calculated based on the difference between the phase difference of the laminate and the phase difference of the base material.
  • the in-plane retardation of the optical compensation layer was 28 nm, and the thickness direction retardation was 84 nm.
  • the Nz coefficient of the optical compensation layer was 3.
  • a polarizer was produced in the same manner as in Example 1. This polarizer and the laminate were bonded together with an adhesive.
  • the substrate (protective layer) and the polarizer were bonded so as to be adjacent to each other. Further, the polarizer was bonded so that the absorption axis (stretching axis) of the polarizer and the slow axis (stretching axis) of the optical compensation layer were perpendicular to each other. Further, a commonly used TAC film (manufactured by Fuji Photo Film Co., Ltd., trade name: TF80UL, thickness 80 m) was bonded to the surface of the polarizer to which the laminate was not bonded via an adhesive.
  • TAC film manufactured by Fuji Photo Film Co., Ltd., trade name: TF80UL, thickness 80 m
  • a polarizing plate integrated laminate having the structure of the outer protective layer (general TAC film) Z polarizer Z inner protective layer (general TAC film) Z optical compensation layer (polyimide layer) is obtained. It was. Two sheets of this polarizing plate integrated laminate were produced.
  • the liquid crystal cell was taken out from the liquid crystal panel (manufactured by Sharp Corporation, trade name: ATAOS, 32 inches, VA mode).
  • the two polarizing plate-integrated laminates were bonded to both sides of the liquid crystal cell via an adhesive. At this time, the polarizers were bonded so that the absorption axes of the polarizers were orthogonal to each other. In this way, a liquid crystal panel was obtained. The power error shift was measured for this liquid crystal panel.
  • Figure 6 shows the relationship between the X and y values and the azimuth. Furthermore, (X, ⁇ ) value, (Xi, Yi) value, ⁇ value, (u, v,) value, (u, i, v, i) value, ⁇ ⁇ ' ⁇ ' Values are shown in Table 1 above.
  • Example 2 Apply the same polyimide solution as in Example 1 to a commonly used TAC film (Fuji Photo Film, trade name: TF80UL, thickness: 80 ⁇ m) to a thickness of 31 ⁇ m, 120.
  • the laminate was dried at C for 5 minutes to obtain a laminate having a substrate (TAC film: finally becomes a protective layer) and an optical compensation layer (thickness 3.1 m).
  • This laminate was stretched 1.160 times at 160 ° C.
  • the in-plane retardation of the laminate obtained by stretching was 55 nm, and the thickness direction retardation was 260 nm.
  • the in-plane retardation was 10 nm and the thickness direction retardation was 60 nm.
  • the phase difference of the optical compensation layer was calculated based on the difference between the phase difference of the laminate and the phase difference of the base material.
  • the in-plane retardation of the optical compensation layer was 45 nm, and the thickness direction retardation was 200 nm. Furthermore, the Nz coefficient of the optical compensation layer was 4.4.
  • a liquid crystal panel (trade name BenQ DV3250, 32 inches, VA mode, manufactured by AUO) was removed from the liquid crystal cell.
  • the above polarizing plate integrated laminate is provided on one side of the liquid crystal cell, and a commercially available polarizing plate (product name: SEG1224, manufactured by Nitto Denko Corporation) having a TACZ polarizer ZTAC structure is provided on the other side. Pasted through. At this time, they were bonded so that the absorption axes of the respective polarizers were orthogonal to each other. In this way, a liquid crystal panel was obtained. The color shift of this liquid crystal panel was measured.
  • Fig. 7 shows the relationship between the X and y values and the azimuth
  • Example 120 Apply the same polyimide solution as in Example 1 to a TAC film (Fuji Photo Film, trade name: ZRF80S, thickness: 80 ⁇ m) with a small retardation of 42 ⁇ m.
  • the laminate was dried at C for 5 minutes to obtain a laminate having a substrate (TAC film: finally becomes a protective layer) and an optical compensation layer (thickness 4.2 ⁇ ).
  • This laminate was stretched by 1.2 times at 155 ° C.
  • the in-plane retardation of the laminate obtained by stretching was 55 nm, and the thickness direction retardation was 245 nm.
  • the in-plane phase difference was 4 nm and the thickness direction phase difference was 20 nm.
  • the phase difference of the optical compensation layer was calculated based on the difference between the phase difference of the laminate and the phase difference of the substrate.
  • the in-plane retardation of the optical compensation layer was 51 nm, and the thickness direction retardation was 225 nm.
  • the Nz coefficient of the optical compensation layer was 4.4.
  • a liquid crystal panel (trade name BenQ DV3250, 32 inches, VA mode, manufactured by AUO) and a liquid crystal cell were taken out.
  • the above polarizing plate integrated laminate is provided on one side of the liquid crystal cell, and a commercially available polarizing plate (product name: SEG1224, manufactured by Nitto Denko Corporation) having a TACZ polarizer ZTAC structure is provided on the other side. Pasted through. At this time, Bonding was performed so that the absorption axes of the photons were orthogonal. In this way, a liquid crystal panel was obtained.
  • Example 2 Apply the same polyimide solution as in Example 1 to a commonly used TAC film (Fuji Photo Film, trade name: TF80UL, thickness: 80 ⁇ m) to a thickness of 31 ⁇ m, 120.
  • the laminate was dried at C for 5 minutes to obtain a laminate having a substrate (TAC film: finally becomes a protective layer) and an optical compensation layer (thickness 3.1 m).
  • This laminate was stretched 1.160 times at 160 ° C.
  • the in-plane retardation of the laminate obtained by stretching was 50 nm, and the thickness direction retardation was 270 nm.
  • the in-plane retardation was 10 nm and the thickness direction retardation was 60 nm.
  • the phase difference of the optical compensation layer was calculated based on the difference between the phase difference of the laminate and the phase difference of the base material.
  • the in-plane retardation of the optical compensation layer was 40 nm, and the thickness direction retardation was 210 nm. Furthermore, the Nz coefficient of the optical compensation layer was 5.3.
  • the liquid crystal cell was taken out of the liquid crystal panel (manufactured by Sharp Corporation, trade name: ATAOS, 32 inches, VA mode).
  • the above polarizing plate integrated laminate is provided on one side of the liquid crystal cell, and a commercially available polarizing plate (product name: SEG1224, manufactured by Nitto Denko, Inc.) having a TACZ polarizer ZTAC structure is provided on the other side. Pasted through.
  • the polarizers were bonded so that the absorption axes of the polarizers were orthogonal to each other. In this way, a liquid crystal panel was obtained. The color shift was measured with this liquid crystal panel.
  • Figure 10 shows the relationship between the X and y values and the azimuth.
  • the (X, Y) value, (Xi, Yi) value, ⁇ value, (u ,, ⁇ ') value, (u'i, v, i) value, ⁇ ' ⁇ , value It is shown in Table 1 above.
  • the liquid crystal panel of Example 1 has a substantially constant color change tendency with respect to the polar angle regardless of the azimuth, whereas the liquid crystal panel of Comparative Example 1 The tendency of the color change with respect to the polar angle varies greatly depending on the azimuth angle. From this, it can be seen that the change in the color tone depending on the viewing direction is significantly smaller in the liquid crystal panel of Example 1 than in the liquid crystal panel of Comparative Example 1. Further, as is clear from FIGS. 4, 6, 7, 9, and 10, the liquid crystal panel of the example of the present invention has a curve of the X value with respect to the azimuth angle compared to the liquid crystal panel of the comparative example. The degree to which the y-value curve intersects is remarkably small!
  • the liquid crystal panel and liquid crystal display device of the present invention include, for example, OA equipment such as a personal computer monitor, notebook computer, and copy machine; portable equipment such as a mobile phone, a clock, a digital camera, a personal digital assistant (PDA), and a portable game machine; Household electrical equipment such as video cameras, LCD TVs, and microwave ovens; Back monitors, car navigation system monitors, car-mounted equipment such as cardio; display equipment such as commercial store information monitors; Equipment: Used suitably for nursing care medical equipment such as nursing care monitors and medical monitors.
  • OA equipment such as a personal computer monitor, notebook computer, and copy machine
  • portable equipment such as a mobile phone, a clock, a digital camera, a personal digital assistant (PDA), and a portable game machine
  • Household electrical equipment such as video cameras, LCD TVs, and microwave ovens
  • Back monitors car navigation system monitors, car-mounted equipment such as cardio
  • display equipment such as commercial store information monitors
  • Equipment Used suitably for nursing care medical equipment such as nursing care

Abstract

 優れた視野角補償が行われ、斜め方向のコントラストにきわめて優れ、かつ、薄型化可能な液晶表示装置を提供する。  本発明の液晶パネルは、第1の偏光子と、第1の光学補償層と、液晶セルと、第2の光学補償層と、第2の偏光子とをこの順に有する。第1の光学補償層および第2の光学補償層は、それぞれ、ポリイミド、ポリアミド、ポリエステル、ポリエーテルケトン、ポリアミドイミドおよびポリエステルイミドからなる群から選択される少なくとも1つのポリマーを含み、かつ、nx>ny>nzの屈折率分布を有する。

Description

明 細 書
液晶パネルおよびそれを用いた液晶表示装置
技術分野
[0001] 本発明は、液晶パネルおよびそれを用いた液晶表示装置に関する。より詳細には
、本発明は、カラーシフトが非常に小さい液晶パネルおよびそれを用いた液晶表示 装置に関する。
背景技術
[0002] 例えば VAモードの液晶セルにおいては、液晶分子が垂直方向に配向しているの で、液晶パネルを法線方向からずれた方向から観察した場合には、液晶分子が見か け上斜め方向に配向した状態となる。その結果、液晶分子の有する複屈折の影響を 受けて光漏れが発生し、視野角が狭くなると 、う問題がある。
[0003] また、吸収軸を直交させて液晶セルの両側に配置した偏光板を液晶パネルの法線 方向から観察した場合、光漏れは生じない。しかし、吸収軸方向とずれた方位にお いて観察角度を法線方向力 変化させると、この偏光板の吸収軸が見かけ上非直交 状態となって、光漏れが発生する。
[0004] このような問題を解決するために、 nx>ny>nzの屈折率分布を有する 2軸光学補 償板を用いて、液晶分子の複屈折と偏光板の軸ズレによる光漏れへの影響を補償 する技術が提案されている(例えば、特許文献 1〜3参照)。しかし、これらの技術は V、ずれも、カラーシフトを十分に低減することはできな 、。
特許文献 1:特開 2003— 926号公報
特許文献 2:特開 2003 - 27488号公報
特許文献 3:特開 2003 - 38734号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は上記従来の課題を解決するためになされたものであり、その目的とすると ころは、カラーシフトが非常に小さい液晶パネルおよびそれを用いた液晶表示装置 を提供することにある。 課題を解決するための手段
[0006] 本発明の液晶パネルは、第 1の偏光子と、第 1の光学補償層と、液晶セルと、第 2の 光学補償層と、第 2の偏光子とをこの順に有し、該第 1の光学補償層および該第 2の 光学補償層は、それぞれ、ポリイミド、ポリアミド、ポリエステル、ポリエーテルケトン、ポ リアミドイミドおよびポリエステルイミドカ なる群力 選択される少なくとも 1つのポリマ 一を含み、かつ、 nx>ny>nzの屈折率分布を有する:ここで、 nxは光学補償層の遅 相軸方向の屈折率であり、 nyは光学補償層の進相軸方向の屈折率であり、 nzは光 学補償層の厚み方向の屈折率である。
[0007] 好ましい実施形態においては、上記第 1の光学補償層および上記第 2の光学補償 層は、それぞれ、 0. 5〜10 μ mの厚みを有する。
[0008] 好ましい実施形態においては、上記第 1の光学補償層および上記第 2の光学補償 層は、それぞれ、 2≤Nz≤20のNz係数を有する。
[0009] 好ま 、実施形態にぉ 、ては、上記液晶パネルは、上記第 1の光学補償層と上記 第 1の偏光子との間に第 1の保護層を、および、上記第 2の光学補償層と上記第 2の 偏光子との間に第 2の保護層をさらに有する。さらに好ましい実施形態においては、 上記第 1の保護層および上記第 2の保護層は、それぞれセルロース系ポリマーを含 み、かつ、該第 1の保護層および該第 2の保護層の少なくとも一方の厚み方向位相 差 Rthが 30nm以下である:ここで、厚み方向位相差 Rthは、式: Rth= (nx— nz) X dで表され; nxは光学補償層の遅相軸方向の屈折率であり、 nzは光学補償層の厚 み方向の屈折率であり、 dは光学補償層の厚みである。
[0010] 好ましい実施形態においては、上記液晶セルは VAモードまたは OCBモードであ る。
[0011] 本発明の別の局面によれば、液晶表示装置が提供される。この液晶表示装置は、 上記液晶パネルを含む。
発明の効果
[0012] 以上のように、本発明によれば、特定の光学補償層を液晶セルの両側に配置する ことにより、片側に配置する場合に比べてカラーシフトを顕著に低減することが可能と なる。好ましい実施形態においては、液晶セルの両側に配置される光学補償層は同 一の特性 (例えば、構成材料、光学特性、厚み)を有する。このような対称配置を行う ことにより、カラーシフトがさらに低減され得る。好ましい実施形態においては、上記 光学補償層と偏光子との間に厚み方向位相差が小さい保護層を配置することにより 、カラーシフトがさらに低減され得る。上記特定の光学補償層を液晶セルの両側に配 置することによる効果は理論的には明らかではないが、以下のように推測できる。本 発明における液晶セルは主として VAモードまたは OCBモードに関する力 波長が 大きくなるに従い位相差が小さくなる正の波長分散特性を有し、その傾きは大きい。 本発明におけるポリイミド等の非液晶材料は同様に正の波長分散特性を有し、その 傾きも大きぐ液晶セルの両側に配置することで、液晶セルの波長分散特性とよりマツ チし、光学特性が向上する。
図面の簡単な説明
[0013] [図 1]本発明の好ましい実施形態による液晶パネルの概略断面図である。
[図 2]本発明の液晶表示装置が VAモードの液晶セルを採用する場合に、液晶層の 液晶分子の配向状態を説明する概略断面図である。
[図 3]本発明の液晶表示装置が OCBモードの液晶セルを採用する場合に、液晶層 の液晶分子の配向状態を説明する概略断面図である。
[図 4]実施例 1の液晶パネルの X値および y値と方位角との関係を示すグラフである。
[図 5]実施例 1の液晶パネルの xy色度図である。
[図 6]実施例 2の液晶パネルの X値および y値と方位角との関係を示すグラフである。
[図 7]比較例 1の液晶パネルの X値および y値と方位角との関係を示すグラフである。
[図 8]比較例 1の液晶パネルの xy色度図である。
[図 9]比較例 2の液晶パネルの X値および y値と方位角との関係を示すグラフである。
[図 10]比較例 3の液晶パネルの X値および y値と方位角との関係を示すグラフである。 符号の説明
[0014] 10 第 1の偏光子
20 第 1の光学補償層
30 液晶セル
40 第 2の光学補償層 50 第 2の偏光子
100 液晶表示装置
発明を実施するための最良の形態
[0015] A.液晶パネルの全体構成
図 1は、本発明の好ましい実施形態による液晶パネルの概略断面図である。図示 例においては、液晶パネル 100は、視認側から順に、第 1の偏光子 10と、第 1の光学 補償層 20と、液晶セル 30と、第 2の光学補償層 40と、第 2の偏光子 50とをこの順に 有する。第 1の偏光子 10および第 2の偏光子 50は、代表的には、その吸収軸が互い に直交するようにして配置されている。液晶セル 30は、一対のガラス基板 31、 32と、 該基板間に配された表示媒体としての液晶層 33とを有する。一方の基板 (アクティブ マトリクス基板) 32には、液晶の電気光学特性を制御するスイッチング素子 (代表的 には TFT)と、このスイッチング素子にゲート信号を与える走査線およびソース信号を 与える信号線とが設けられて ヽる (V、ずれも図示せず)。他方のガラス基板 (カラーフ ィルター基板) 31には、カラーフィルター(図示せず)が設けられる。なお、カラーフィ ルターは、アクティブマトリクス基板 32に設けてもよい。基板 31、 32の間隔 (セルギヤ ップ)は、スぺーサー 34によって制御されている。基板 31、 32の液晶層 33と接する 側には、例えばポリイミドからなる配向膜 (図示せず)が設けられている。
[0016] 好ましくは、第 1の光学補償層 20と第 1の偏光子 10との間に第 1の保護層(図示せ ず)が設けられ、第 2の光学補償層 40と第 2の偏光子 50との間に第 2の保護層(図示 せず)が設けられる。さら〖こ、実用的には、第 1の偏光子 10の第 1の光学補償層 20と 反対側 (第 1の偏光子 10の外側、図示例では視認側)に別の保護層(図示せず)が 設けられ、第 2の偏光子 50の第 2の光学補償層 40と反対側 (第 2の偏光子 50の外側 、図示例ではバックライト側)にさらに別の保護層(図示せず)が設けられる。
[0017] 液晶セル 30の駆動モードとしては、本発明の効果が得られる限りにおいて任意の 適切な駆動モードが採用され得る。駆動モードの具体例としては、 STN (Super T wisted Nematic)モード、 TN (Twisted Nematic)モード、 IPS (In— Plane Sw itching)モード、 VA (Vertical Aligned)モード、 OCB (Optically Aligned Bir efringence)モード、 HAN (Hybrid Aligned Nematic)モードおよび ASM (Axi ally Symmetric Aligned Microcell)モードが挙げられる。 VAモードおよび OC Bモードが好ましい。第 1の光学補償層 20および第 2の光学補償層 40と組み合わせ ると、カラーシフトの改善が著しいからである。
[0018] 図 2 (a)および (b)は、 VAモードにおける液晶分子の配向状態を説明する概略断 面図である。図 2 (a)に示すように、電圧無印加時には、液晶分子は基板 31、 32面 に垂直に配向する。このような垂直配向は、垂直配向膜 (図示せず)を形成した基板 間に負の誘電率異方性を有するネマティック液晶を配することにより実現され得る。こ のような状態で、偏光子 50を通過した直線偏光の光を一方の基板 32の面力も液晶 層 33に入射させると、当該入射光は、垂直配向している液晶分子の長軸の方向に 沿って進む。液晶分子の長軸方向には複屈折が生じないため入射光は偏光方位を 変えずに進み、偏光子 50と直交する吸収軸を有する偏光子 10で吸収される。これに より電圧無印加時において暗状態の表示が得られる(ノーマリブラックモード)。図 2 ( b)に示すように、電極間に電圧が印加されると、液晶分子の長軸が基板面に平行に 配向する。この状態の液晶層 33に入射した直線偏光の光に対して液晶分子は複屈 折性を示し、入射光の偏光状態は液晶分子の傾きに応じて変化する。所定の最大 電圧印加時において液晶層を通過する光は、例えばその偏光方位が 90° 回転させ られた直線偏光となるので、偏光子 10を透過して明状態の表示が得られる。再び電 圧無印加状態にすると配向規制力により暗状態の表示に戻すことができる。また、印 加電圧を変化させて液晶分子の傾きを制御して偏光子 10からの透過光強度を変化 させることにより階調表示が可能となる。
[0019] 図 3 (a)〜(d)は、 OCBモードにおける液晶分子の配向状態を説明する概略断面 図である。 OCBモードは、液晶層 33をいわゆるベンド配向といわれる配向によって 構成する表示モードである。ベンド配向とは、図 3 (c)に示すように、ネマチック液晶 分子の配向が基板近傍においては、ほぼ平行の角度 (配向角)を有し、配向角は液 晶層の中心に向かうに従つて基板平面に対して垂直な角度を呈し、液晶層の中心か ら離れるに従って対向する基板表面と配向になるように漸次連続的に変化し、かつ、 液晶層全体にわたってねじれ構造を有しな ヽ配向状態を 、う。このようなベンド配向 は、以下のようにして形成される。図 3 (a)に示すように、何ら電界等を付与していな い状態 (初期状態)では、液晶分子は実質的にホモジニァス配向をとつている。ただ し、液晶分子は、プレチルト角を有し、かつ、基板近傍のプレチルト角とそれに対向 する基板近傍のプレチルト角とが異なって 、る。ここに所定のノィァス電圧 (代表的 には、 1. 5V〜1. 9V)を印加すると (低電圧印加時)、図 3 (b)に示すようなスプレイ 配向を経て、図 3 (c)に示すようなベンド配向への転移が実現され得る。ベンド配向 状態からさらに表示電圧 (代表的には、 5V〜7V)を印加すると (高電圧印加時)、液 晶分子は図 3 (d)に示すように基板表面に対してほぼ垂直に立ち上がる。ノーマリー ホワイトの表示モードにおいては、偏光子 50を通過して、高電圧印加時に図 3 (d)の 状態にある液晶層 33に入射した光(直線偏光)は、偏光方位を変えずに進み、偏光 子 10で吸収される。したがって、暗状態の表示となる。表示電圧を下げると、ラビング 処理の配向規制力により、ベンド配向に戻り、明状態の表示に戻すことができる。ま た、表示電圧を変化させて液晶分子の傾きを制御して偏光板からの透過光強度を変 化させることにより、階調表示が可能となる。なお、 OCBモードの液晶セルを備えた 液晶表示装置は、スプレイ配向状態力 ベンド配向状態への相転移を非常に高速 でスイッチングできるため、 TNモードや IPSモード等の他駆動モードの液晶表示装 置に比べ、動画表示特性に優れるという特徴を有する。
B.光学補償層
B- 1.光学補償層の特性
第 1の光学補償層 20の面内位相差 (正面位相差) A ndは、液晶セルの駆動モー ドに対応して最適化され得る。第 2の光学補償層 40の面内位相差 A ndもまた、液
2 晶セルの駆動モードに対応して最適化され得る。本発明の効果が得られる限りにお いて、 A ndおよび A ndは、同一であってもよぐ異なっていてもよい。好ましくは、そ
1 2
れぞれの光学補償層の面内位相差は同一である。カラーシフトの改善効果が著しい 力もである。例えば、 A ndおよび A ndの下限はそれぞれ、好ましくは 5nm以上、さ
1 2
らに好ましくは lOnm以上、最も好ましくは 15nm以上である。 A ndまたは A nd力
1 2 nm未満の場合には、斜め方向のコントラストが低下する場合が多い。一方、 A ndお よび A ndの上限はそれぞれ、好ましくは 400nm以下、より好ましくは 300nm以下、
2
さらに好ましくは 200nm以下、特に好ましくは 150nm以下、とりわけ好ましくは 100η m以下、最も好ましくは 80nm以下である。 A ndまたは A nd力 OOnmを超えると、
1 2
視野角が小さくなる場合が多い。より具体的には、液晶セルが VAモードを採用する 場合には、 A ndおよび A ndはそれぞれ、好ましくは 5〜: LOOnm、さらに好ましくは
1 2
10〜70nm、最も好ましくは 30〜50nmである。液晶セルが OCBモードを採用する 場合には、 A ndおよび A ndはそれぞれ、好ましくは 5〜400nm、さらに好ましくは
1 2
10〜300nm、最も好ましくは 15〜200nmである。なお、面内位相差 A ndは、式: Δ ηά= (nx-ny) X dで求められる。ここで、 nxは光学補償層の遅相軸方向の屈折 率であり、 nyは光学補償層の進相軸方向の屈折率であり、 d (nm)は光学補償層の 厚みである。代表的には、 A ndは、波長 590nmの光を用いて測定される。遅相軸は 、フィルム面内の屈折率が最大になる方向をいい、進相軸は、面内で遅相軸に垂直 な方向をいう。
第 1の光学補償層 20の厚み方向位相差 Rthもまた、液晶セルの駆動モードに対 応して最適化され得る。さら〖こ、第 2の光学補償層 40の厚み方向位相差 Rthも、
2 液 晶セルの駆動モードに対応して最適化され得る。本発明の効果が得られる限りにお いて、 Rthおよび Rthは、同一であってもよぐ異なっていてもよい。好ましくは、そ
1 2
れぞれの光学補償層の厚み方向位相差は同一である。カラーシフトの改善効果が著 しいからである。例えば、 Rthおよび Rthの下限はそれぞれ、好ましくは lOnm以上
1 2
、さらに好ましくは 20nm以上、最も好ましくは 50nm以上である。 Rthまたは Rthが
1 2 lOnm未満の場合には、斜め方向のコントラストが低下する場合が多い。一方、 Rth および Rthの上限はそれぞれ、好ましくは lOOOnm以下、より好ましくは 500nm以
2
下、さらに好ましくは 400nm以下、特に好ましくは 300nm以下、とりわけ好ましくは 2 80nm以下、最も好ましくは 260nm以下である。 Rthまたは Rth力 ^OOOnmを超え
1 2
ると、光学補償が大きくなりすぎて結果的に斜め方向のコントラストが低下してしまう 可能性がある。より具体的には、液晶セルが VAモードを採用する場合には、 Rthお よび Rthはそれぞれ、好ましくは 10〜300nm、さらに好ましくは 20〜250nm、最も
2
好ましくは 50〜200nmである。液晶セルが OCBモードを採用する場合には、 Rth および Rthはそれぞれ、好ましくは 10〜: L000nm、さらに好ましくは 20〜500nm、
2
最も好ましくは 50〜400nmである。なお、厚み方向位相差 Rthは、式: Rth= (nx— nz) X dで求められる。ここで、 nzは、フィルム(光学補償層)の厚み方向の屈折率で ある。 Rthもまた、代表的には波長 590nmの光を用いて測定される。
[0022] 第 1の光学補償層 20の Nz係数(=RthZ A nd)もまた、液晶セルの駆動モードに 対応して最適化され得る。さらに、第 2の光学補償層 40の Nz係数も、液晶セルの駆 動モードに対応して最適化され得る。本発明の効果が得られる限りにおいて、第 1の 光学補償層 20および第 2の光学補償層 40の Nz係数は、同一であってもよぐ異なつ ていてもよい。好ましくは、それぞれの光学補償層の Nz係数は同一である。カラーシ フトの改善効果が著しいからである。例えば、第 1の光学補償層 20および第 2の光学 補償層 40の Nz係数はそれぞれ、好ましくは 2〜20、さらに好ましくは 2〜10、とりわ け好ましくは 2〜8、最も好ましくは 2〜6である。より具体的には、液晶セルが VAモー ドを採用する場合には、第 1の光学補償層 20および第 2の光学補償層 40の Nz係数 はそれぞれ、好ましくは 2〜10、さらに好ましくは 2〜8、最も好ましくは 2〜6である。 液晶セル力 SOCBモードを採用する場合には、第 1の光学補償層 20および第 2の光 学補償層 40の Nz係数は、好ましくは 2〜20、さらに好ましくは 2〜 10、最も好ましく は 2〜8である。また、第 1の光学補償層 20および第 2の光学補償層 40はそれぞれ、 nx>ny>nzの屈折率分布を有する。このような光学特性(すなわち、 A nd、 Rth、屈 折率分布および Nz係数)を有する光学補償層を液晶セルの両側に配置することによ り(さらに好ましくは、同一の光学補償層を対称配置することにより)、カラーシフトが 非常に小さ ヽ液晶パネルが得られる。
[0023] 第 1の光学補償層 20および第 2の光学補償層 40はそれぞれ、本発明の効果を奏 する限りにおいて任意の適切な厚みを有し得る。具体的には、第 1の光学補償層 20 および第 2の光学補償層 40の厚みはそれぞれ、好ましくは 0. 1〜50 /ζ πιであり、さら に好ましくは 0. 5〜30 111でぁり、特に好ましくは0. 5〜: LO /z mであり、とりわけ好ま しくは 1〜: LO /z mであり、最も好ましくは 1. 5〜5 /ζ πιである。液晶表示装置の薄型化 に寄与し得るとともに、視野角補償性能に優れ、かつ位相差が均一な光学補償層が 得られ得るからである。第 1の光学補償層 20および第 2の光学補償層 40の厚みは、 同一であってもよぐ異なっていてもよい。好ましくは、それぞれの光学補償層の厚み は同一である。カラーシフトの改善効果が著しいからである。 [0024] 第 1の光学補償層 20および第 2の光学補償層 40はそれぞれ、単層であってもよく 、 2層以上の積層体であってもよい。積層体の場合には、積層体全体として上記のよ うな光学特性を有する限り、各層を構成する材料および各層の厚みは適宜設定され 得る。
[0025] B- 2.光学補償層の構成材料
第 1の光学補償層 20および第 2の光学補償層 40を構成する材料としては、上記の ような光学特性が得られる限りにおいて任意の適切な材料が採用され得る。本発明 の効果が得られる限りにおいて、第 1の光学補償層 20および第 2の光学補償層 40は 、同一の材料で構成されてもよぐ異なる材料で構成されてもよい。例えば、光学補 償層の構成材料としては、非液晶性材料が挙げられる。特に好ましくは、非液晶性ポ リマーである。このような非液晶性材料は、液晶性材料とは異なり、基板の配向性に 関係なぐそれ自身の性質により nx>nz、 ny>nzという光学的一軸性を示す膜を形 成し得る。その結果、配向基板のみならず未配向基板も使用され得る。さらに、未配 向基板を用いる場合であっても、その表面に配向膜を塗布する工程や配向膜を積層 する工程等を省略することができる。
[0026] 上記非液晶性材料としては、例えば、耐熱性、耐薬品性、透明性に優れ、剛性にも 富むことから、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアミドイミド 、ポリエステルイミド等のポリマーが好ましい。これらのポリマーは、いずれか一種類を 単独で使用してもよいし、例えば、ポリアリールエーテルケトンとポリアミドとの混合物 のように、異なる官能基を持つ 2種以上の混合物として使用してもよい。このようなポリ マーの中でも、高透明性、高配向性、高延伸性であることから、ポリイミドが特に好ま しい。ポリイミドは、波長が大きくなるに従い位相差が小さくなる正の波長分散特性を 有し、その傾きが、 VAモードや OCBモードの液晶セルの波長分散特性と最適にマ ツチするので好ましい。
[0027] 上記ポリマーの分子量は、特に制限されないが、例えば、重量平均分子量 (Mw) 力 i, 000〜1, 000, 000の範囲であること力 S好ましく、より好ましくは 2, 000〜500 , 000の範囲である。
[0028] 上記ポリイミドとしては、例えば、面内配向性が高ぐ有機溶剤に可溶なポリイミドが 好ましい。具体的には、例えば、特表 2000— 511296号公報に開示された、 9, 9— ビス (アミノアリール)フルオレンと芳香族テトラカルボン酸二無水物との縮合重合生 成物を含み、下記式(1)に示す繰り返し単位を 1つ以上含むポリマーが使用できる。
[0029] [化 1]
Figure imgf000012_0001
[0030] 上記式(1)中、 R3〜R6は、それぞれ独立して、水素、ハロゲン、フエニル基、 1〜4 個のハロゲン原子または c〜 アルキル基で置換されたフエ-ル基、および C〜
1 10 1 10 アルキル基力 なる群力 選択される少なくとも一種類の置換基である。好ましくは、
R3〜R6は、それぞれ独立して、ハロゲン、フエ-ル基、 1〜4個のハロゲン原子または C〜 アルキル基で置換されたフ -ル基、および C〜 アルキル基からなる群から
1 10 1 10
選択される少なくとも一種類の置換基である。
[0031] 上記式(1)中、 Zは、例えば、 C〜 の 4価芳香族基であり、好ましくは、ピロメリット
6 20
基、多環式芳香族基、多環式芳香族基の誘導体、または、下記式 (2)で表される基 である。
[0032] [化 2]
Figure imgf000012_0002
上記式(2)中、 Z'は、例えば、共有結合、 C (R7) 基、 CO基、 O原子、 S原子、 SO 基、 Si (C H ) 基、または、 NR8基であり、複数の場合、それぞれ同一であってもよく 異なっていてもよい。また、 wは、 1から 10までの整数を表す。 R7は、それぞれ独立し て、水素または C (R9)である。 R8は、水素、炭素原子数 1〜約 20のアルキル基、ま
3
たは C〜 ァリール基であり、複数の場合、それぞれ同一であってもよく異なってい
6 20
てもよい。 R9は、それぞれ独立して、水素、フッ素、または塩素である。
[0034] 上記多環式芳香族基としては、例えば、ナフタレン、フルオレン、ベンゾフルオレン またはアントラセン力 誘導される 4価の基が挙げられる。また、上記多環式芳香族基 の置換誘導体としては、例えば、 C〜 のアルキル基、そのフッ素化誘導体、および
1 10
Fや C1等のハロゲン力 なる群力 選択される少なくとも一つの基で置換された上記 多環式芳香族基が挙げられる。
[0035] この他にも、例えば、特表平 8— 511812号公報に記載された、繰り返し単位が下 記一般式(3)または (4)で示されるホモポリマーや、繰り返し単位が下記一般式(5) で示されるポリイミド等が挙げられる。なお、下記式(5)のポリイミドは、下記式(3)の ホモポリマーの好まし 、形態である。
[0036] [化 3]
[0037] [化 4]
Figure imgf000013_0001
[0038] [化 5]
Figure imgf000014_0001
[0039] 上記一般式(3)〜(5)中、 Gおよび G'は、それぞれ独立して、例えば、共有結合、 CH基、 C (CH ) 基、 C (CF ) 基、 C (CX ) 基(ここで、 Xは、ハロゲンである。)、 C
2 3 2 3 2 3 2
O基、 O原子、 S原子、 SO基、 Si (CH CH ) 基、および、 N (CH )基からなる群か
2 2 3 2 3
ら選択される基であり、それぞれ同一であってもよく異なって 、てもよ 、。
[0040] 上記式(3)および式(5)中、 Lは、置換基であり、 dおよび eは、その置換数を表す。
Lは、例えば、ハロゲン、 C アルキル基、 C ハロゲン化アルキル基、フエニル基、
1-3 1 -3
または、置換フエ-ル基であり、複数の場合、それぞれ同一であってもよく異なってい てもよい。上記置換フエ-ル基としては、例えば、ハロゲン、 C アルキル基、および
1-3
C ノ、ロゲンィ匕アルキル基力もなる群力も選択される少なくとも一種類の置換基を有
1 -3
する置換フエニル基が挙げられる。また、上記ハロゲンとしては、例えば、フッ素、塩 素、臭素またはヨウ素が挙げられる。 dは、 0から 2までの整数であり、 eは、 0から 3まで の整数である。
[0041] 上記式(3)〜(5)中、 Qは置換基であり、 fはその置換数を表す。 Qとしては、例え ば、水素、ハロゲン、アルキル基、置換アルキル基、ニトロ基、シァノ基、チオアルキ ル基、アルコキシ基、ァリール基、置換ァリール基、アルキルエステル基、および置換 アルキルエステル基力 なる群力 選択される原子または基であって、 Qが複数の場 合、それぞれ同一であってもよく異なっていてもよい。上記ハロゲンとしては、例えば 、フッ素、塩素、臭素およびヨウ素が挙げられる。上記置換アルキル基としては、例え ば、ハロゲン化アルキル基が挙げられる。また上記置換ァリール基としては、例えば、 ハロゲン化ァリール基が挙げられる。 fは、 0から 4までの整数であり、 gは、 0から 3まで の整数であり、 hは、 1から 3までの整数である。また、 gおよび hは、 1より大きいこと力 S 好ましい。
[0042] 上記式 (4)中、 R1Gおよび R11は、それぞれ独立して、水素、ハロゲン、フエ-ル基、 置換フ ニル基、アルキル基、および置換アルキル基からなる群から選択される基で ある。その中でも、 R1Gおよび R11は、それぞれ独立に、ハロゲンィ匕アルキル基である ことが好ましい。
[0043] 上記式(5)中、 M1および M2は、それぞれ独立して、例えば、ハロゲン、 C アルキ
1 -3 ル基、 C ハロゲン化アルキル基、フヱ -ル基、または、置換フヱ-ル基である。上 1 -3
記ハロゲンとしては、例えば、フッ素、塩素、臭素およびヨウ素が挙げられる。また、上 記置換フエ-ル基としては、例えば、ハロゲン、 C アルキル基、および C ハロゲ
1 -3 1 -3 ン化アルキル基カゝらなる群カゝら選択される少なくとも一種類の置換基を有する置換フ ェニル基が挙げられる。
[0044] 上記式(3)に示すポリイミドの具体例としては、例えば、下記式 (6)で表されるもの 等が挙げられる。
[0045] [化 6]
Figure imgf000015_0001
[0046] さらに、上記ポリイミドとしては、例えば、前述のような骨格 (繰り返し単位)以外の酸 二無水物ゃジァミンを、適宜共重合させたコポリマーが挙げられる。
[0047] 上記酸二無水物としては、例えば、芳香族テトラカルボン酸二無水物が挙げられ る。上記芳香族テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、 ベンゾフエノンテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、複 素環式芳香族テトラカルボン酸二無水物、 2, 2'—置換ビフエ-ルテトラカルボン酸 二無水物等が挙げられる。
[0048] 上記ピロメリット酸二無水物としては、例えば、ピロメリット酸二無水物、 3, 6—ジフエ -ルピロメリット酸二無水物、 3, 6—ビス(トリフルォロメチル)ピロメリット酸二無水物、 3, 6—ジブロモピロメリット酸二無水物、 3, 6—ジクロ口ピロメリット酸二無水物等が挙 げられる。上記べンゾフエノンテトラカルボン酸二無水物としては、例えば、 3, 3' , 4, 4'一べンゾフエノンテトラカルボン酸二無水物、 2, 3, 3' , 4'一べンゾフエノンテトラ カルボン酸二無水物、 2, 2' , 3, 3'—べンゾフエノンテトラカルボン酸二無水物等が 挙げられる。上記ナフタレンテトラカルボン酸二無水物としては、例えば、 2, 3, 6, 7 ナフタレンーテトラカルボン酸二無水物、 1, 2, 5, 6 ナフタレンーテトラカルボン 酸二無水物、 2, 6 ジクロローナフタレン 1, 4, 5, 8—テトラカルボン酸二無水物 等が挙げられる。上記複素環式芳香族テトラカルボン酸二無水物としては、例えば、 チォフェン 2, 3, 4, 5—テトラカルボン酸二無水物、ピラジン 2, 3, 5, 6—テトラ カルボン酸二無水物、ピリジン 2, 3, 5, 6—テトラカルボン酸二無水物等が挙げら れる。上記 2, 2' 置換ビフエニルテトラカルボン酸二無水物としては、例えば、 2, 2 ,一ジブ口モー 4, 4,, 5, 5,ービフエ-ルテトラカルボン酸二無水物、 2, 2,ージクロ 口— 4, 4,, 5, 5,—ビフエ-ルテトラカルボン酸二無水物、 2, 2,—ビス(トリフルォロ メチル)ー4, 4' , 5, 5'—ビフエ-ルテトラカルボン酸二無水物等が挙げられる。
[0049] また、上記芳香族テトラカルボン酸二無水物のその他の例としては、 3, 3' , 4, 4, ービフエ-ルテトラカルボン酸二無水物、ビス(2, 3 ジカルボキシフエ-ル)メタン二 無水物、ビス(2, 5, 6 トリフルオロー 3, 4 ジカルボキシフエ-ル)メタン二無水物 、 2, 2 ビス(3, 4 ジカルボキシフエ-ル)— 1, 1, 1, 3, 3, 3 へキサフルォロプ 口パンニ無水物、 4, 4 '—ビス(3, 4 ジカルボキシフエ-ル)ー 2, 2 ジフエ-ルプ 口パンニ無水物、ビス(3, 4—ジカルボキシフエ-ル)エーテル二無水物、 4, 4,ーォ キシジフタル酸ニ無水物、ビス(3, 4—ジカルボキシフエ-ル)スルホン酸二無水物、 3, 3,, 4, 4,ージフエ-ルスルホンテトラカルボン酸二無水物、 4, 4,一 [4, 4,一イソ プロピリデン—ジ(p フエ-レンォキシ)]ビス(フタル酸無水物)、 N, N— (3, 4—ジ カルボキシフエ-ル)—N—メチルァミン二無水物、ビス(3, 4—ジカルボキシフエ- ル)ジェチルシラン二無水物等が挙げられる。
[0050] これらの中でも、上記芳香族テトラカルボン酸二無水物としては、 2, 2' 置換ビフ ェニルテトラカルボン酸二無水物が好ましぐより好ましくは、 2, 2'—ビス(トリハロメチ ル) 4, 4' , 5, 5'—ビフエ-ルテトラカルボン酸二無水物であり、さらに好ましくは、 2, 2,一ビス(トリフルォロメチル) 4, 4,, 5, 5,一ビフエ-ルテトラカルボン酸二無 水物である。 [0051] 上記ジァミンとしては、例えば、芳香族ジァミンが挙げられ、具体例としては、ベンゼ ンジァミン、ジァミノべンゾフエノン、ナフタレンジァミン、複素環式芳香族ジァミン、お よびその他の芳香族ジァミンが挙げられる。
[0052] 上記ベンゼンジァミンとしては、例えば、 o—、 m—および p—フエ-レンジァミン、 2 , 4 ジァミノトルエン、 1, 4 ジァミノ一 2—メトキシベンゼン、 1, 4 ジァミノ一 2 フ ェ-ルベンゼンおよび 1 , 3 ジァミノ 4 クロ口ベンゼンのようなベンゼンジァミンか らなる群力 選択されるジァミン等が挙げられる。上記ジァミノべンゾフエノンの例とし ては、 2, 2,ージァミノべンゾフエノン、および 3, 3,ージァミノべンゾフエノン等が挙げ られる。上記ナフタレンジァミンとしては、例えば、 1, 8 ジァミノナフタレン、および 1 , 5—ジァミノナフタレン等が挙げられる。上記複素環式芳香族ジァミンの例としては 、 2, 6 ジァミノピリジン、 2, 4ージァミノピリジン、および 2, 4 ジアミノー S トリアジ ン等が挙げられる。
[0053] また、芳香族ジァミンとしては、上記の他に、 4, 4,ージアミノビフエ-ル、 4, 4,ージ アミノジフエ-ルメタン、 4, 4, - (9 フルォレユリデン)一ジァ二リン、 2, 2,一ビス(ト リフルォロメチル) 4, 4'—ジアミノビフエニル、 3, 3,一ジクロ口一 4, 4'—ジアミノジ フエニルメタン、 2, 2'—ジクロロー 4, 4'ージアミノビフエニル、 2, 2' , 5, 5 '—テトラ クロ口べンジジン、 2, 2 ビス(4 ァミノフエノキシフエ-ル)プロパン、 2, 2 ビス(4 —ァミノフエ二ノレ)プロノ ン、 2, 2 ヒ、、ス(4 ァミノフエ二ノレ)一 1, 1, 1 , 3, 3, 3 へ キサフルォロプロパン、 4, 4'ージアミノジフエニルエーテル、 3, 4'ージアミノジフエ -ルエーテル、 1, 3 ビス(3 アミノフエノキシ)ベンゼン、 1, 3 ビス(4 ァミノフエ ノキシ)ベンゼン、 1, 4 ビス(4 アミノフエノキシ)ベンゼン、 4, 4,一ビス(4 ァミノ フエノキシ)ビフエ-ル、 4, 4,一ビス(3 アミノフエノキシ)ビフエ-ル、 2, 2 ビス [4 — (4 アミノフエノキシ)フエ-ル]プロパン、 2, 2 ビス [4— (4 アミノフエノキシ)フ ェニル] 1, 1 , 1, 3, 3, 3 へキサフルォロプロパン、 4, 4,ージアミノジフエニルチ ォエーテル、 4, 4,ージアミノジフエ-ルスルホン等が挙げられる。
[0054] 上記ポリエーテルケトンとしては、例えば、特開 2001— 49110号公報に記載され た、下記一般式(7)で表されるポリアリールエーテルケトンが挙げられる。
[0055] [化 7]
Figure imgf000018_0001
[0056] 上記式(7)中、 Xは、置換基を表し、 qは、その置換数を表す。 Xは、例えば、ハロゲ ン原子、低級アルキル基、ハロゲン化アルキル基、低級アルコキシ基、または、ハロ ゲンィ匕アルコキシ基であり、 Xが複数の場合、それぞれ同一であっても異なっていて ちょい。
[0057] 上記ハロゲン原子としては、例えば、フッ素原子、臭素原子、塩素原子およびヨウ 素原子が挙げられ、これらの中でも、フッ素原子が好ましい。上記低級アルキル基と しては、例えば、 C〜の直鎖または分岐鎖を有するアルキル基が好ましぐより好ま
1 6
しくは C〜の直鎖または分岐鎖のアルキル基である。具体的には、メチル基、ェチ
1 4
ル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 sec—ブチル基、およ び、 tert—ブチル基が好ましぐ特に好ましくは、メチル基およびェチル基である。上 記ハロゲンィ匕アルキル基としては、例えば、トリフルォロメチル基等の上記低級アルキ ル基のハロゲンィ匕物が挙げられる。上記低級アルコキシ基としては、例えば、 C〜
1 6 の直鎖または分岐鎖のアルコキシ基が好ましぐより好ましくは C〜の直鎖または分
1 4
岐鎖のアルコキシ基である。具体的には、メトキシ基、エトキシ基、プロポキシ基、イソ プロポキシ基、ブトキシ基、イソブトキシ基、 sec—ブトキシ基、および、 tert—ブトキシ 基力 さらに好ましぐ特に好ましくはメトキシ基およびエトキシ基である。上記ハロゲ ン化アルコキシ基としては、例えば、トリフルォロメトキシ基等の上記低級アルコキシ 基のハロゲンィ匕物が挙げられる。
[0058] 上記式(7)中、 qは、 0から 4までの整数である。上記式(7)においては、 q = 0であり
、かつ、ベンゼン環の両端に結合したカルボ-ル基とエーテルの酸素原子とが互い にパラ位に存在することが好ま 、。
[0059] また、上記式(7)中、 R1は、下記式(8)で表される基であり、 mは、 0または 1の整数 である。 [0060] [化 8]
Figure imgf000019_0001
[0061] 上記式 (8)中、 X'は置換基を表し、例えば、上記式(7)における Xと同様である。
上記式 (8)において、 X'が複数の場合、それぞれ同一であっても異なっていてもよ い。 q,は、上記 X,の置換数を表し、 0力も 4までの整数であって、 q, =0が好ましい。 また、 pは、 0または 1の整数である。
[0062] 上記式 (8)中、 R2は、 2価の芳香族基を表す。この 2価の芳香族基としては、例えば 、 o—、 m—もしくは p—フエ二レン基、または、ナフタレン、ビフエニル、アントラセン、 o 一、 m—もしくは p—テルフエ-ル、フエナントレン、ジベンゾフラン、ビフエ-ルエーテ ル、もしくは、ビフ -ルスルホン力 誘導される 2価の基等が挙げられる。これらの 2 価の芳香族基において、芳香族に直接結合している水素力 ハロゲン原子、低級ァ ルキル基または低級アルコキシ基で置換されてもよい。これらの中でも、上記 R2とし ては、下記式 (9)〜(15)力もなる群力も選択される芳香族基が好ま 、。
[0063] [化 9]
Figure imgf000020_0001
[0064] 上記式(7)中、 R1としては、下記式(16)で表される基が好ましぐ下記式(16)にお いて、 R2および pは上記式(8)と同義である。
[0065] [化 10]
Figure imgf000020_0002
[0066] さらに、上記式(7)中、 nは重合度を表し、例えば、 2〜5000の範囲であり、好ましく は、 5〜500の範囲である。また、その重合は、同じ構造の繰り返し単位力もなるもの であってもよぐ異なる構造の繰り返し単位力もなるものであってもよい。後者の場合 には、繰り返し単位の重合形態は、ブロック重合であってもよいし、ランダム重合であ つてもよい。
[0067] さら〖こ、上記式(7)で示されるポリアリールエーテルケトンの末端は、 p—テトラフル ォ口べンゾィレン基側がフッ素であり、ォキシアルキレン基側が水素原子であることが 好ましぐこのようなポリアリールエーテルケトンは、例えば、下記一般式(17)で表す ことができる。なお、下記式において、 nは上記式(7)と同様の重合度を表す。 [0068] [化 11]
Figure imgf000021_0001
[0069] 上記式(7)で示されるポリアリールエーテルケトンの具体例としては、下記式(18) 〜(21)で表されるもの等が挙げられ、下記各式において、 nは、上記式(7)と同様の 重合度を表す。
[0070] [化 12]
[0071] [化 13]
[0072] [化 14]
Figure imgf000021_0002
[0073] [化 15]
Figure imgf000022_0001
[0074] また、これらの他に、上記ポリアミドまたはポリエステルとしては、例えば、特表平 10 — 508048号公報に記載されるポリアミドやポリエステルが挙げられ、それらの繰り返 し単位は、例えば、下記一般式(22)で表すことができる。
[0075] [化 16]
Figure imgf000022_0002
[0076] 上記式(22)中、 Yは、 Oまたは NHである。また、 Eは、例えば、共有結合、 Cアル
2 キレン基、ハロゲン化 Cアルキレン基、 CH基、 C (CX ) 基(ここで、 Xはハロゲンま
2 2 3 2
たは水素である。)、 CO基、 O原子、 S原子、 SO基、 Si (R) 基、および、 N (R)基か
2 2
らなる群力 選ばれる少なくとも一種類の基であり、それぞれ同一であってもよく異な つていてもよい。上記 Eにおいて、 Rは、 C アルキル基および C ハロゲン化アル
1-3 1-3
キル基の少なくとも一種類であり、カルボ-ル官能基または Y基に対してメタ位または ノ ラ こめる。
[0077] また、上記式(22)中、 Aおよび A'は、置換基であり、 tおよび zは、それぞれの置換 数を表す。また、 ρは、 0から 3までの整数であり、 qは、 1から 3までの整数であり、 rは、 0から 3までの整数である。
[0078] 上記 Aは、例えば、水素、ハロゲン、 C アルキル基、 C ハロゲン化アルキル基
1-3 1-3
、 OR (ここで、 Rは、上記で定義したとおりである。)で表されるアルコキシ基、ァリー ル基、ハロゲン化等による置換ァリール基、 C アルコキシカルボ-ル基、 C アル
1-9 1-9 キルカルボ-ルォキシ基、 C ァリールォキシカルボ-ル基、 C ァリールカルボ
1— 12 1— 12
-ルォキシ基およびその置換誘導体、 C ァリール力ルバモイル基、ならびに、 C ァリールカルボニルァミノ基およびその置換誘導体力 なる群力 選択され、複数
- 12
の場合、それぞれ同一であってもよく異なっていてもよい。上記 A'は、例えば、ハロ ゲン、 C アルキル基、 C ハロゲン化アルキル基、フエ-ル基および置換フエ-ル
1 -3 1 -3
基からなる群から選択され、複数の場合、それぞれ同一であってもよく異なっていて もよい。上記置換フエ-ル基のフエ-ル環上の置換基としては、例えば、ハロゲン、 C アルキル基、 c ハロゲン化アルキル基およびこれらの組み合わせが挙げられる
1 -3 1 -3
。上記 tは、 0から 4までの整数であり、上記 zは、 0から 3までの整数である。
[0079] 上記式(22)で表されるポリアミドまたはポリエステルの繰り返し単位の中でも、下記 一般式(23)で表されるものが好まし 、。
[0080] [化 17]
Figure imgf000023_0001
[0081] 上記式(23)中、 A A'および Yは、上記式(22)で定義したとおりであり、 vは 0から 3の整数、好ましくは、 0から 2の整数である。 Xおよび yは、それぞれ 0または 1である 力 共に 0であることはない。
[0082] B- 3.光学補償層の形成方法
次に、光学補償層の形成方法について説明する。光学補償層の形成方法としては 、上記のような光学特性を有する光学補償層が得られる限りにおいて任意の適切な 方法が採用され得る。代表的な形成方法は、基材フィルムに上記非液晶性ポリマー の溶液を塗工する工程と、当該溶液中の溶媒を除去して非液晶性ポリマーの層を形 成する工程とを含む。代表的には、当該基材フィルムは、最終的に上記第 1または第 2の保護層となる。したがって、第 1および第 2の保護層を構成するフィルム (代表的 には、セルロース系フィルム)が基材フィルムとして用いられる。セルロース系フィルム の詳細については、後述の D項で説明する。
[0083] 上記塗工溶液 (非液晶性ポリマー溶液)の溶媒は、特に制限されず、例えば、クロ口 ホノレム、ジクロロメタン、四塩化炭素、ジクロロェタン、テトラクロ口エタン、トリクロロェ チレン、テトラクロロエチレン、クロ口ベンゼン、オノレソジクロ口ベンゼン等のノヽロゲンィ匕 炭化水素類;フエノール、バラクロロフエノール等のフエノール類;ベンゼン、トルエン
、キシレン、メトキシベンゼン、 1,2-ジメトキシベンゼン等の芳香族炭化水素類;ァセト ン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン、シクロペンタノン、 2-ピロリドン、 N-メチル -2-ピロリドン等のケトン系溶媒;酢酸ェチル、酢酸ブチル等 のエステル系溶媒; t—ブチルアルコール、グリセリン、エチレングリコール、トリエチレ ングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチル エーテル、プロピレングリコール、ジプロピレングリコール、 2-メチル -2,4-ペンタンジ オールのようなアルコール系溶媒;ジメチルホルムアミド、ジメチルァセトアミドのような アミド系溶媒;ァセトニトリル、ブチ口-トリルのような-トリル系溶媒;ジェチルエーテ ル、ジブチルエーテル、テトラヒドロフランのようなエーテル系溶媒;あるいは二硫ィ匕 炭素、ェチルセルソルブ、ブチルセルソルブ等が挙げられる。中でも、メチルイソブチ ルケトンが好ましい。非液晶材料に対して高い溶解性を示し、かつ、基材フィルムを 侵食しないからである。これらの溶媒は、単独で、または、 2種以上を組み合わせて 用いられ得る。
[0084] 上記塗工溶液における上記非液晶性ポリマーの濃度は、上記のような光学補償層 が得られ、かつ塗工可能であれば、任意の適切な濃度が採用され得る。例えば、当 該溶液は、溶媒 100重量部に対して、非液晶性ポリマーを好ましくは 5〜50重量部、 さらに好ましくは 10〜40重量部含む。このような濃度範囲の溶液は、塗工容易な粘 度を有する。
[0085] 上記塗工溶液は、必要に応じて、安定剤、可塑剤、金属類等の種々の添加剤をさ らに含有し得る。
[0086] 上記塗工溶液は、必要に応じて、異なる他の榭脂をさらに含有し得る。このような他 の榭脂としては、例えば、各種汎用榭脂、エンジニアリングプラスチック、熱可塑性榭 脂、熱硬化性榭脂等が挙げられる。このような榭脂を併用することにより、 目的に応じ て適切な機械的強度や耐久性を有する光学補償層を形成することが可能となる。
[0087] 上記汎用榭脂としては、例えば、ポリエチレン (PE)、ポリプロピレン (PP)、ポリスチ レン (PS)、ポリメチルメタタリレート(PMMA)、 ABS榭脂、および AS榭脂等が挙げ られる。上記エンジニアリングプラスチックとしては、例えば、ポリアセテート(POM)、 ポリカーボネート(PC)、ポリアミド(PA:ナイロン)、ポリエチレンテレフタレート(PET) 、およびポリブチレンテレフタレート (PBT)等が挙げられる。上記熱可塑性榭脂とし ては、例えば、ポリフエ-レンスルフイド(PPS)、ポリエーテルスルホン(PES)、ポリケ トン(PK)、ポリイミド(PI)、ポリシクロへキサンジメタノールテレフタレート(PCT)、ポリ ァリレート (PAR)、および液晶ポリマー (LCP)等が挙げられる。上記熱硬化性榭脂 としては、例えば、エポキシ榭脂、フエノールノボラック榭脂等が挙げられる。
[0088] 上記塗工溶液に添加される上記異なる榭脂の種類および量は、 目的に応じて適宜 設定され得る。例えば、このような榭脂は、上記非液晶性ポリマーに対して、好ましく は 0〜50質量%、さらに好ましくは 0〜30質量%の割合で添加され得る。
[0089] 上記溶液の塗工方法としては、例えば、スピンコート法、ロールコート法、フローコ ート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等 が挙げられる。また、塗工に際しては、必要に応じて、ポリマー層の重畳方式も採用 され得る。
[0090] 塗工後、例えば、自然乾燥、風乾、加熱乾燥 (例えば、 60〜250°C)により、上記溶 液中の溶媒を蒸発除去させ、基材フィルム (最終的に第 1または第 2の保護層となる) 上に光学補償層を形成する。
[0091] 好ましくは、上記の光学補償層の形成方法においては、光学的二軸性 (nx>ny> nz)を付与するための処理が行われ得る。このような処理を行うことにより、面内に屈 折率の差 (nx > ny)を確実に付与することができ、光学的二軸性 (nx >ny> nz)を 有する光学補償層が得られる。面内に屈折率の差を付与する方法としては、代表的 には、上記基材フィルムと該基材フィルム上に形成された上記光学補償層とを一体 的に延伸または収縮させる方法が挙げられる。好ましい実施形態においては、所定 の温度に加熱して延伸または収縮が行われる。加熱温度 (延伸温度)は、例えば 12 0〜180°Cであり、延伸倍率は、例えば 1. 1〜1. 5倍であり、好ましくは 1. 1〜1. 3 倍である。このようにして、光学補償層が形成される (言い換えれば、光学補償層と保 護層との積層体が得られる)。なお、基材フィルムとしては、保護層を構成しない任意 の適切なフィルムを用いてもよい。この場合には、形成された光学補償層は、基材フ イルム力も保護層または偏光子に転写され得る。
[0092] C.偏光子
第 1の偏光子 10および第 2の偏光子 50としては、 目的に応じて任意の適切な偏光 子が採用され得る。例えば、ポリビュルアルコール系フィルム、部分ホルマール化ポリ ビュルアルコール系フィルム、エチレン '酢酸ビュル共重合体系部分ケン化フィルム 等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一 軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処 理物等ポリェン系配向フィルム等が挙げられる。これらのなかでも、ポリビュルアルコ ール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏 光二色比が高く特に好ましい。これら偏光子の厚さは特に制限されないが、一般的 に、 5〜80 /ζ πι程度である。第 1の偏光子 10および第 2の偏光子 50は、同一であつ てもよく、異なっていてもよい。
[0093] ポリビュルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、例 えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の 3〜7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩 化亜鉛等を含んでいても良いし、ヨウ化カリウムなどの水溶液に浸漬することもできる 。さらに必要に応じて染色の前にポリビュルアルコール系フィルムを水に浸漬して水 洗しても良 、。ポリビュルアルコール系フィルムを水洗することでポリビュルアルコー ル系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなぐポ リビュルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止す る効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても 良いし、また延伸して力もヨウ素で染色しても良い。ホウ酸やヨウ化カリウムなどの水 溶液中や水浴中でも延伸することができる。
[0094] D.第 1および第 2の保護層
上記の通り、本発明の液晶パネルは、第 1の光学補償層 20と第 1の偏光子 10との 間に第 1の保護層(図示せず)を、および Ζまたは、第 2の光学補償層 40と第 2の偏 光子 50との間に第 2の保護層をさらに有する。さらに好ましくは、本発明の液晶パネ ルは、第 1の光学補償層 20と第 1の偏光子 10との間に第 1の保護層をさらに有し、か つ、第 2の光学補償層 40と第 2の偏光子 50との間に第 2の保護層をさらに有する。光 学補償層と偏光子との間に保護層を設けることにより、偏光子の劣化が防止され、か つ、偏光子と光学補償層との接着性 (結果として、耐久性)が改善され得る。代表的 には、第 1の光学補償層 20と第 1の保護層、および、第 2の光学補償層 40と第 2の保 護層は、直接積層されている。例えば、上記 B— 3項に記載のように、保護層を構成 するフィルム上に光学補償層を形成する材料を塗布 ·乾燥すること〖こより、保護層と 光学補償層とが直接積層され得る。また、代表的には、第 1の偏光子 10と第 1の保護 層、および、第 2の偏光子 50と第 2の保護層は、任意の適切な接着剤層を介して積 層されている。第 1の保護層および第 2の保護層は、同一の特性 (例えば、光学特性 、機械的特性、熱的特性)を有していてもよぐ異なる特性を有していてもよい。好まし くは、第 1の保護層および第 2の保護層は同一である。カラーシフトの改善が著しい 力 である。
[0095] 第 1および第 2の保護層 (偏光子の液晶セル側の保護層)は、その光学特性を最適 化することが好ましい。具体的には、第 1および第 2の保護層の面内位相差 A nd お
l よび A nd はそれぞれ、好ましくは 15nm以下、さらに好ましくは lOnm以下、特に好
p2
ましくは 6nm以下、とりわけ好ましくは 4nm以下、最も好ましくは2 nm以下である。一 方、 A nd および A nd はそれぞれ、好ましくは Onm以上であり、さらに好ましくは 0
l 2
nmより大きい。本発明によれば、上記のような範囲の面内位相差 A ndを有する保護 層 (偏光子の内側の保護層)と上記のような特定の光学補償層とを組み合わせて液 晶パネルに組み込むことにより、カラーシフトを非常に小さくすることができる。 A nd
l および A nd は、同一であってもよぐ異なっていてもよい。好ましくは、 A nd および
p2 l
A nd は同一である。カラーシフトの改善が著しいからである。
p2
[0096] 第 1および第 2の保護層の厚み方向の位相差 Rth および Rth はそれぞれ、好ま
l 2
しくは 70nm以下、さらに好ましくは 60nm以下、特に好ましくは 30nm以下、とりわけ 好ましくは 20nm以下、最も好ましくは lOnm以下である。一方、 Rth および Rth は
l 2 それぞれ、好ましくは Onm以上であり、さらに好ましくは Onmより大きい。 1つの実施 形態においては、第 1および第 2の保護層の厚み方向位相差 Rth および Rth のう
l 2 ち少なくとも一方は 30nm以下である。本発明によれば、上記のような範囲の厚み方 向位相差 Rthを有する保護層 (偏光子の内側の保護層)と上記のような特定の光学 補償層とを組み合わせて液晶パネルに組み込むことにより、カラーシフトを非常に小 さくすることができる。 Rth および Rth は、同一であってもよぐ異なっていてもよい
i 2
。好ましくは、 Rth および Rth は同一である。カラーシフトの改善が著しいからであ
i 2
る。
[0097] 第 1および第 2の保護層の材料としては、任意の適切な材料を採用できる。例えば 、セルロース系材料、ノルボルネン系材料が挙げられる。好ましい具体例の 1つは、 第 1および第 2の保護層がセルロース系材料力 得られるフィルム(セルロース系フィ ルム)で構成される。セルロース系フィルムとしては、本発明の効果が得られる限りに おいて、任意の適切なセルロース系フィルムが用いられる。第 1および第 2の保護層 は、同一のセルロース系フィルムで構成されてもよぐ異なるセルロース系フィルムで 構成されてもよい。第 1および第 2の保護層は、同一のセルロース系フィルムで構成さ れるのが好ましい。カラーシフトの改善が著しいからである。当該フィルムを構成する セルロース系材料の具体例としては、ジァセチルセルロースゃトリアセチルセルロー スなどの脂肪酸置換セルロース系ポリマーが挙げられる。
[0098] 上記のような光学特性の最適化が行われている限り、本発明における第 1および第 2の保護層としては、一般的に透明保護フィルムとして用いられているセルロース系 フィルム (例えば、富士写真フィルム社製、商品名 TF80UL)をそのまま用いてもよく 、適切な処理 (例えば、厚み方向位相差 (Rth)を小さくするための処理)を施したセ ルロース系フィルムを用いてもよい。また、厚み方向位相差 (Rth)を小さく制御した巿 販のセルロース系フィルム(例えば、富士写真フィルム社製、商品名 ZRF80S)を用 いてもよい。
[0099] 厚み方向位相差 (Rth)を小さくするための上記処理としては、任意の適切な処理 方法を採用できる。例えば、シクロペンタノン、メチルェチルケトン等の溶剤を塗布し たポリエチレンテレフタレート、ポリプロピレン、ステンレス等の基材を、一般的なセル ロース系フィルムに貼り合わせ、加熱乾燥 (例えば、 80〜150で程度で3〜10分程 度)した後、基材フィルムを剥離する方法;ノルボルネン系榭脂、アクリル系榭脂等を シクロペンタノン、メチルェチルケトン等の溶剤に溶解した溶液を、一般的なセルロー ス系フィルムに塗布し、加熱乾燥 (例えば、 80〜150°C程度で 3〜: LO分程度)した後 、塗布フィルムを剥離する方法;などが挙げられる。
[0100] 上記脂肪酸置換セルロース系ポリマーとしては、脂肪酸置換度を制御した脂肪酸 置換セルロース系ポリマーが好ましい。例えば、一般的に用いられているトリァセチ ルセルロースでは、酢酸置換度が 2. 8程度である力 好ましくは酢酸置換度を 1. 8 〜2. 7、さらに好ましくはプロピオン酸置換度を 0. 1〜1に制御することによって、厚 み方向位相差 (Rth)を小さく制御することができる。
[0101] 1つの実施形態においては、上記脂肪酸置換セルロース系ポリマーに、ジブチルフ タレート、 p—トルエンスルホンァ-リド、タエン酸ァセチルトリェチル等の可塑剤を添 加することにより、厚み方向位相差 (Rth)を小さく制御することができる。可塑剤の添 加量は、脂肪酸置換セルロース系ポリマー 100重量部に対して、好ましくは 40重量 部以下、さらに好ましくは 1〜20重量部、最も好ましくは 1〜 15重量部である。
[0102] 上述したような厚み方向位相差 (Rth)を小さく制御するための技術は、適宜組み合 わせて用いてもよい。
[0103] 第 1および第 2の保護層の別の好ましい具体例として、アクリル榭脂フィルムも挙げ られる。第 1および第 2の保護層の両方がアクリル榭脂フィルムであってもよいし、一 方のみがアクリル榭脂フィルムであってもよい。第 1および第 2の保護層の両方がァク リル榭脂フィルムの場合は、同一のアクリル榭脂フィルムであってもよいし、異なるァク リル榭脂フィルムであってもよい。アクリル榭脂フィルムとして好ましくは、特開 2005 — 314534号公報に記載の、下記構造式(24)で表されるダルタル酸無水物単位を 含有するアクリル榭脂 (A)を主成分として含むアクリル榭脂フィルムである。下記構造 式(24)で表されるダルタル酸無水物単位を含有することにより、耐熱性が向上し得 る。下記構造式 (24)中、 R\ R2は、同一または相異なる水素原子または炭素数 1〜 5のアルキル基を表し、好ましくは水素原子またはメチル基であり、より好ましくはメチ ル基である。
[化 18]
Figure imgf000030_0001
[0104] 上記アクリル榭脂 (A)中、上記構造式(24)で表されるダルタル酸無水物単位の含 有割合は、好ましくは 20〜40重量%、より好ましくは 25〜35重量%である。
[0105] 上記アクリル榭脂 (A)は、上記構造式(24)で表されるダルタル酸無水物単位の他 に、任意の適切なモノマー単位を 1種または 2種以上含んでいても良い。このようなモ ノマー単位として、好ましくは、ビュルカルボン酸アルキルエステル単位が挙げられる 。上記アクリル榭脂 (A)中、ビニルカルボン酸アルキルエステル単位の含有割合は、 好ましくは 60〜80重量0 /0、より好ましくは 65〜75重量0 /0である。
[0106] 上記ビ-ルカルボン酸アルキルエステル単位としては、例えば、下記一般式(25) で表される単位が挙げられる。下記一般式 (25)中、 R3は水素原子または炭素数 1〜 5の脂肪族もしくは脂環式炭化水素、 R4は炭素数 1〜5の脂肪族炭化水素を表す。
[化 19]
Figure imgf000030_0002
[0107] 上記アクリル榭脂(A)の重量平均分子量は、好ましくは 80000〜 150000である。
[0108] 上記アクリル榭脂フィルム中の上記アクリル榭脂 (A)の含有割合は、好ましくは 60 〜90重量%である。
[0109] 上記アクリル榭脂フィルム中には、上記アクリル榭脂 (A)の他に、任意の適切な成 分が 1種または 2種以上含まれていても良い。このような成分としては、本発明の目的 を損なわない範囲で任意の適切な成分を採用し得る。例えば、上記アクリル榭脂 (A )以外の榭脂、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、 難燃剤、核剤、帯電防止剤、顔料、着色剤などが挙げられる。 [0110] 第 1および第 2の保護層の厚みとしては、所望の厚み方向位相差 (Rth)が得られ、 かつ、保護層 (保護フィルム)としての機械的強度が維持される限りにおいて、任意の 適切な厚みが採用され得る。具体的には、第 1および第 2の保護層の厚みはそれぞ れ、好ましくは 1〜500 m、さらに好ましくは 5〜200 m、特に好ましくは 20〜200 μ m、とりわけ好ましくは 30〜: LOO μ m、最も好ましくは 35〜95 μ mである。第 1およ び第 2の保護層の厚みは、同一であってもよぐ異なっていてもよい。好ましくは、第 1 および第 2の保護層の厚みは同一である。カラーシフトの改善が著しいからである。
[0111] E.別の保護層 (外側の保護層)
実用的には、第 1の偏光子 10の外側(図示例では視認側)に別の保護層(図示せ ず)が設けられ、第 2の偏光子 50の外側(図示例ではバックライト側)にさらに別の保 護層(図示せず)が設けられる。これらの外側の保護層は光学補償に影響を与えな いので、光学特性を最適化する必要はない。したがって、これらの外側の保護層とし ては、 目的に応じて任意の適切な保護層が採用され得る。外側の保護層は、例えば 、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるプラスチックフ イルム力も構成される。プラスチックフィルムを構成する榭脂の具体例としては、トリア セチルセルロース (TAC)等のアセテート榭脂、ポリエステル榭脂、ポリエーテルスル ホン榭脂、ポリスルホン樹脂、ポリカーボネート榭脂、ポリアミド榭脂、ポリイミド榭脂、 ポリオレフイン榭脂、アクリル榭脂、ポリノルボルネン榭脂、セルロース榭脂、ポリアリレ ート榭脂、ポリスチレン榭脂、ポリビュルアルコール榭脂、ポリアクリル榭脂、およびこ れらの混合物が挙げられる。また、アクリル系、ウレタン系、アクリルウレタン系、ェポ キシ系、シリコーン系等の熱硬化性榭脂または紫外線硬化型榭脂も用いられ得る。 偏光特性および耐久性の観点から、表面をアルカリ等でケンィ匕処理した TACフィル ムが好ましい。
[0112] さらに、例えば、特開 2001— 343529号公報 (WO 01/37007号)に記載され て ヽるような榭脂組成物力も形成されるポリマーフィルムも外側の保護層に使用可能 である。より詳細には、側鎖に置換イミド基または非置換イミド基を有する熱可塑性榭 脂と、側鎖に置換フ ニル基または非置換フ ニル基とシァノ基とを有する熱可塑性 榭脂との混合物である。具体例としては、イソブテンと N—メチレンマレイミドカもなる 交互共重合体と、アクリロニトリル 'スチレン共重合体とを有する榭脂組成物が挙げら れる。例えば、このような榭脂組成物の押出成形物が用いられ得る。
[0113] 上記外側の保護層は、透明で色付が無いことが好ましい。具体的には、外側の保 護層の厚み方向の位相差 Rth力 好ましくは 90nm〜 + 75nm、さらに好ましくは 80nm〜 + 60nm、最も好ましくは一 70nm〜+45nmである。外側の保護層の厚 み方向の位相差 Rth力このような範囲であれば、外側の保護層に起因する偏光子の 光学的着色を解消し得る。
[0114] 上記外側の保護層の厚みは、目的に応じて適宜設定され得る。外側の保護層の厚 みは、代表的〖こは 500 μ m以下、好ましくは 5〜300 μ m、さら〖こ好ましくは 5〜150 μ mであ 。
[0115] 上記外側の保護層の偏光子を接着させない面には、任意の適切な表面処理を施 すことができる。表面処理の具体例としては、ハードコート処理、反射防止処理、ステ イツキング防止処理や、拡散処理 (アンチグレア処理ともいう)が挙げられる。上記ハ ードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えば アクリル系、シリコーン系などの適宜な紫外線硬化型榭脂による硬度や滑り特性等に 優れる硬化皮膜を上記保護層表面に形成することができる。上記反射防止処理は偏 光板表面での外光の反射防止を目的に施される。また、上記ステイツキング防止処 理は隣接層との密着防止を目的に施される。上記アンチグレア処理は偏光板の表面 で外光が反射して偏光板透過光の視認を阻害することの防止等を目的に施されるも のであり、例えばサンドブラスト方式やエンボス加工方式による粗面化方式や透明微 粒子の配合方式などの適宜な方式にて保護層の表面に微細凹凸構造を付与するこ とにより形成することができる。また、上記アンチグレアによって形成されるアンチダレ ァ層は、偏光板透過光を拡散して視角などを拡大するための拡散層 (視角拡大機能 など)を兼ねるものであってもよ 、。
[0116] F.液晶表示装置
本発明の好ま ヽ実施形態による液晶表示装置は、上記本発明の液晶パネルを 含んで構成される。液晶パネル以外の構成部材については、任意の適切な構成部 材が採用される。例えば、本発明の液晶表示装置は、本発明の液晶パネルと、該液 晶パネルの両側に配置された表面処理層と、バックライト側の表面処理層の外側 (バ ックライト側)に配置された輝度向上フィルム、プリズムシート、導光板およびバックラ イトとを備える。表面処理層としては、上記のハードコート処理、反射防止処理、ステ イツキング防止処理、拡散処理 (アンチグレア処理)などを施した処理層が用いられる 。表面処理層は、上記外側の保護層に表面処理を施すことにより形成してもよい。
[0117] 以下、実施例によって本発明を具体的に説明する力 本発明はこれら実施例によ つて限定されるものではない。実施例における各特性の測定方法は以下の通りであ る。
[0118] (1)位相差の測定
試料フィルムの屈折率 nxnyおよび nzを、自動複屈折測定装置 (王子計測機器株 式会社製, 自動複屈折計 KOBRA21— ADH)により計測し、面内位相差 Δ ndおよ び厚み方向位相差 Rthを算出した。測定温度は 23°C、測定波長は 590nmであった
(2)カラーシフトの測定
ELDIM社製 商品名 「EZ Contrastl60D」を用いて、方位角 30° 、45° およ び 60° 方向で、極角を 0° 〜80° に変化させて液晶表示装置の色調を測定し、 XY 色度図上にプロットした。さらに、極角 60° 方向で、方位角を 0° 〜60° に変化させ て X値および y値を測定し、方位角と X値および y値との関係をプロットした。
実施例 1
[0119] 2, 2—ビス(3, 4—ジカルボキシフエ-ル)へキサフルォロプロパン二無水物(6FD A)と、 2, 2,一ビス(トリフルォロメチル)ー 4, 4,ージアミノビフエ-ル (TFMB)とから 合成された下記式 (6)で表される重量平均分子量 (Mw) 70, 000のポリイミドを、メ チルイソプチルケトンに溶解して、 10質量%のポリイミド溶液を調製した。なお、ポリイ ミドの調製等は、文献(F. Li et al. Polymer40 (1999) 4571— 4583)の 方法を参照した。このポリイミド溶液を、位相差の小さいトリァセチルセルロース (TAC )フィルム(富士写真フィルム社製、商品名 ZRF80S、厚み 80 μ m)に 22 μ mの厚み で塗布し、 120°Cで 5分間乾燥して、基材 (TACフィルム:最終的に保護層となる)と 光学補償層 (厚み 2. 2 m)とを有する積層体を得た。この積層体を 150°Cで 1. 2倍 に横延伸した。延伸して得られた積層体の面内位相差は 43nmであり、厚み方向位 相差は 192nmであった。一方、基材 (TACフィルム)のみを同様に延伸して位相差 を測定したところ、面内位相差は 4nmであり、厚み方向位相差は 20nmであった。積 層体の位相差と基材の位相差との差から光学補償層(ポリイミド層)の位相差を算出 した。光学補償層(ポリイミド層)の面内位相差は 39nmであり、厚み方向位相差は 17 2nmであった。さらに、光学補償層の Nz係数は 4. 4であった。
[化 20]
Figure imgf000034_0001
[0120] 一方、ポリビュルアルコールフィルムを、ヨウ素を含む水溶液中で染色した後、ホウ 酸を含む水溶液中で速比の異なるロール間にて 6倍に一軸延伸して偏光子を作製し た。この偏光子と上記積層体とを接着剤を介して貼り合わせた。このとき、基材 (保護 層)と偏光子とが隣接するようにして貼り合わせた。また、偏光子の吸収軸 (延伸軸)と 光学補償層の遅相軸 (延伸軸)とが直交するようにして貼り合わせた。さらに、積層体 が貼り合わされて 、な 、偏光子の面に接着剤を介して、一般的に用いられる TACフ イルム(富士写真フィルム社製、商品名 TF80UL、厚み 80 m)を貼り合わせた。こ のようにして、外側保護層(一般的な TACフィルム) Z偏光子 Z内側保護層 (位相差 の小さ ヽ TACフィルム) Z光学補償層(ポリイミド層)の構造を有する偏光板一体型 積層体を得た。この偏光板一体型積層体を 2枚作製した。
[0121] 液晶パネル (AUO社製、商品名 BenQ DV3250、 32インチ、 VAモード)力ら液 晶セルを取り出した。この液晶セルの両側に、接着剤を介して上記 2枚の偏光板一 体型積層体をそれぞれ外側保護層が最外層となるようにして貼り合わせた。このとき 、それぞれの偏光子の吸収軸が直交するようにして貼り合わせた。このようにして、液 晶パネルを得た。この液晶パネルについてカラーシフトを測定した。 X値および y値と 方位角との関係を図 4に、 xy色度図を図 5に示す。さらに、この液晶パネルの、 (X, Y M直、(Xi, Yi)値、 ΔΧΥ値、(u, , v,)値、 (u' i, v,i)値、 Δ ιι' v,値を、表 1に示す。 ΔΧΥ値は、下記の式 (A)で表され、液晶セルの法線方向から観察した場合の色度( X, Y)と、色度図上で (X, Y)カゝら最も離れた点 (Xi, Yi)との距離を示し、この値が大 きいほどカラーシフトが大きいことを示す。 Δ ιι'ν'値は、下記の式 (Β)で表され、液 晶セルの法線方向から観察した場合の色度 (u', ν' )と、色度図上で (u', V )から最 も離れた点 (u' i, v' i)との距離を示し、この値が大きいほどカラーシフトが大きいこと を示す。
ΔΧΥ= { (Χ-Χί) 2+ (Υ-Υί) 2}1/2 · · · (A)
Δ ιι V = { (u, -u' i) 2+ (v, -v' i) 2}1/2 · · · (B)
[0122] [表 1]
Figure imgf000035_0001
実施例 2
[0123] 実施例 1と同様のポリイミド溶液を、一般的に用いられる TACフィルム(富士写真フ イルム社製、商品名 TF80UL、厚み 80 μ m)に 32 μ mの厚みで塗布し、 120。Cで 5 分間乾燥して、基材 (TACフィルム:最終的に保護層となる)と光学補償層 (厚み 3. 2 m)とを有する積層体を得た。この積層体を 165°Cで 1. 27倍に横延伸した。延伸 して得られた積層体の面内位相差は 38nmであり、厚み方向位相差は 144nmであ つた。一方、基材 (TACフィルム)のみを同様に延伸して位相差を測定したところ、面 内位相差は lOnmであり、厚み方向位相差は 60nmであった。積層体の位相差と基 材の位相差との差カゝら光学補償層 (ポリイミド層)の位相差を算出した。光学補償層 ( ポリイミド層)の面内位相差は 28nmであり、厚み方向位相差は 84nmであった。さら に、光学補償層の Nz係数は 3であった。 [0124] 一方、実施例 1と同様にして偏光子を作製した。この偏光子と上記積層体とを接着 剤を介して貼り合わせた。このとき、基材 (保護層)と偏光子とが隣接するようにして貼 り合わせた。また、偏光子の吸収軸 (延伸軸)と光学補償層の遅相軸 (延伸軸)とが直 交するようにして貼り合わせた。さらに、積層体が貼り合わされていない偏光子の面 に接着剤を介して、一般的に用いられる TACフィルム(富士写真フィルム社製、商品 名 TF80UL、厚み 80 m)を貼り合わせた。このようにして、外側保護層(一般的な TACフィルム) Z偏光子 Z内側保護層(一般的な TACフィルム) Z光学補償層 (ポリ イミド層)の構造を有する偏光板一体型積層体を得た。この偏光板一体型積層体を 2 枚作製した。
[0125] 液晶パネル(シャープ社製、商品名ァタオス、 32インチ、 VAモード)から液晶セル を取り出した。この液晶セルの両側に、接着剤を介して上記 2枚の偏光板一体型積 層体をそれぞれ貼り合わせた。このとき、それぞれの偏光子の吸収軸が直交するよう にして貼り合わせた。このようにして、液晶パネルを得た。この液晶パネルについて力 ラーシフトを測定した。 X値および y値と方位角との関係を図 6に示す。さらに、この液 晶パネルの、(X, γ)値、(Xi, Yi)値、 ΔΧΥ値、(u,, v,)値、(u,i, v,i)値、 Δ ιι'ν' 値を、上記表 1に示す。
[0126] (比較例 1)
実施例 1と同様のポリイミド溶液を、一般的に用 、られる TACフィルム(富士写真フ イルム社製、商品名 TF80UL、厚み 80 μ m)に 31 μ mの厚みで塗布し、 120。Cで 5 分間乾燥して、基材 (TACフィルム:最終的に保護層となる)と光学補償層 (厚み 3. 1 m)とを有する積層体を得た。この積層体を 160°Cで 1. 168倍に横延伸した。延伸 して得られた積層体の面内位相差は 55nmであり、厚み方向位相差は 260nmであ つた。一方、基材 (TACフィルム)のみを同様に延伸して位相差を測定したところ、面 内位相差は 10nmであり、厚み方向位相差は 60nmであった。積層体の位相差と基 材の位相差との差カゝら光学補償層 (ポリイミド層)の位相差を算出した。光学補償層 ( ポリイミド層)の面内位相差は 45nmであり、厚み方向位相差は 200nmであった。さ らに、光学補償層の Nz係数は 4. 4であった。
[0127] 後の手順は実施例 1と同様にして、外側保護層(一般的な TACフィルム) Z偏光子 Z内側保護層(一般的な TACフィルム) Z光学補償層 (ポリイミド層)の構造を有する 偏光板一体型積層体を得た。
[0128] 液晶パネル (AUO社製、商品名 BenQ DV3250、 32インチ、 VAモード)力ら液 晶セルを取り出した。この液晶セルの一方の側に上記の偏光板一体型積層体を、も う一方の側に TACZ偏光子 ZTACの構造を有する市販の偏光板(日東電工製、商 品名 SEG1224)を、それぞれ接着剤を介して貼り合わせた。このとき、それぞれの偏 光子の吸収軸が直交するようにして貼り合わせた。このようにして、液晶パネルを得た 。この液晶パネルについてカラーシフトを測定した。 X値および y値と方位角との関係 を図 7に、 xy色度図を図 8に示す。さらに、この液晶パネルの、 (X, Y)値、(Xi, Yi) 値、 Δ ΧΥ値、(u, , ν' )値、 (u' i, v' i)値、 Δ ιι' ν'値を、上記表 1に示す。
[0129] (比較例 2)
実施例 1と同様のポリイミド溶液を、位相差の小さ ヽ TACフィルム(富士写真フィル ム社製、商品名 ZRF80S、厚み 80 μ m)に 42 μ mの厚みで塗布し、 120。Cで 5分間 乾燥して、基材 (TACフィルム:最終的に保護層となる)と光学補償層 (厚み 4. 2 μ ηι )とを有する積層体を得た。この積層体を 155°Cで 1. 2倍に横延伸した。延伸して得 られた積層体の面内位相差は 55nmであり、厚み方向位相差は 245nmであった。 一方、基材 (TACフィルム)のみを同様に延伸して位相差を測定したところ、面内位 相差は 4nmであり、厚み方向位相差は 20nmであった。積層体の位相差と基材の位 相差との差カゝら光学補償層 (ポリイミド層)の位相差を算出した。光学補償層 (ポリイミ ド層)の面内位相差は 51nmであり、厚み方向位相差は 225nmであった。さらに、光 学補償層の Nz係数は 4. 4であった。
[0130] 後の手順は実施例 1と同様にして、外側保護層(一般的な TACフィルム) Z偏光子 Z内側保護層 (位相差の小さ ヽ TACフィルム) Z光学補償層(ポリイミド層)の構造を 有する偏光板一体型積層体を得た。
[0131] 液晶パネル (AUO社製、商品名 BenQ DV3250、 32インチ、 VAモード)力ら液 晶セルを取り出した。この液晶セルの一方の側に上記の偏光板一体型積層体を、も う一方の側に TACZ偏光子 ZTACの構造を有する市販の偏光板(日東電工製、商 品名 SEG1224)を、それぞれ接着剤を介して貼り合わせた。このとき、それぞれの偏 光子の吸収軸が直交するようにして貼り合わせた。このようにして、液晶パネルを得た
。この液晶パネルについてカラーシフトを測定した。 X値および y値と方位角との関係 を図 9に示す。
[0132] (比較例 3)
実施例 1と同様のポリイミド溶液を、一般的に用 、られる TACフィルム(富士写真フ イルム社製、商品名 TF80UL、厚み 80 μ m)に 31 μ mの厚みで塗布し、 120。Cで 5 分間乾燥して、基材 (TACフィルム:最終的に保護層となる)と光学補償層 (厚み 3. 1 m)とを有する積層体を得た。この積層体を 160°Cで 1. 168倍に横延伸した。延伸 して得られた積層体の面内位相差は 50nmであり、厚み方向位相差は 270nmであ つた。一方、基材 (TACフィルム)のみを同様に延伸して位相差を測定したところ、面 内位相差は 10nmであり、厚み方向位相差は 60nmであった。積層体の位相差と基 材の位相差との差カゝら光学補償層 (ポリイミド層)の位相差を算出した。光学補償層 ( ポリイミド層)の面内位相差は 40nmであり、厚み方向位相差は 210nmであった。さ らに、光学補償層の Nz係数は 5. 3であった。
[0133] 後の手順は実施例 1と同様にして、外側保護層(一般的な TACフィルム) Z偏光子 Z内側保護層(一般的な TACフィルム) Z光学補償層 (ポリイミド層)の構造を有する 偏光板一体型積層体を得た。
[0134] 液晶パネル(シャープ社製、商品名ァタオス、 32インチ、 VAモード)から液晶セル を取り出した。この液晶セルの一方の側に上記の偏光板一体型積層体を、もう一方 の側に TACZ偏光子 ZTACの構造を有する市販の偏光板(日東電工製、商品名 S EG1224)を、それぞれ接着剤を介して貼り合わせた。このとき、それぞれの偏光子 の吸収軸が直交するようにして貼り合わせた。このようにして、液晶パネルを得た。こ の液晶パネルにっ 、てカラーシフトを測定した。 X値および y値と方位角との関係を図 10に示す。さらに、この液晶パネルの、 (X, Y)値、(Xi, Yi)値、 ΔΧΥ値、(u,, ν' ) 値、 (u'i, v,i)値、 Διι'ν,値を、上記表 1に示す。
[0135] (評価)
図 5と図 8とを比較すると明らかなように、実施例 1の液晶パネルは、極角に対する 色変化の傾向が方位角によらずほぼ一定であるのに対し、比較例 1の液晶パネルは 、極角に対する色変化の傾向が方位角によって大きく変化している。このことから、実 施例 1の液晶パネルは比較例 1の液晶パネルに比べて、観察方向に依存した色調の 変化が顕著に小さいことがわかる。さらに、図 4、図 6、図 7、図 9および図 10から明ら かなように、本発明の実施例の液晶パネルは、比較例の液晶パネルに比べて、方位 角に対する X値のカーブと y値のカーブとが交差する度合 、が顕著に小さ!/、。このこと もまた、実施例の液晶パネルは比較例の液晶パネルに比べて、観察方向に依存した 色調の変化が顕著に小さいことを示している。カロえて、表 1から明らかなように、実施 例 1の液晶パネルの ΔΧΥ値および Δ ιι'ν,値は、比較例 1の液晶パネルの ΔΧΥ値 および Δ ιι'ν値に比べて、それぞれ実用上有意に小さい。また、実施例 2の液晶パ ネルの Δ ΧΥ値および Δ u, ν,値は、比較例 3の液晶パネルの Δ XY値および Δ u, v, 値に比べて、それぞれ実用上有意に小さい。これらの結果から、所定の光学補償層 を液晶セルの両側に配置することにより、片側に配置する場合に比べてカラーシフト が顕著に小さくなることがわかる。
産業上の利用可能性
本発明の液晶パネルおよび液晶表示装置は、例えば、パソコンモニター,ノートパ ソコン,コピー機などの OA機器;携帯電話,時計,デジタルカメラ,携帯情報端末 (P DA) ,携帯ゲーム機などの携帯機器;ビデオカメラ,液晶テレビ,電子レンジなどの 家庭用電気機器;バックモニター,カーナビゲーシヨンシステム用モニター,カーォー ディォなどの車載用機器;商業店舗用インフォメーション用モニターなどの展示機器; 監視用モニターなどの警備機器;介護用モニター,医療用モニターなどの介護'医療 機器に好適に用いられる。

Claims

請求の範囲
[1] 第 1の偏光子と、第 1の光学補償層と、液晶セルと、第 2の光学補償層と、第 2の偏 光子とをこの順に有し、
該第 1の光学補償層および該第 2の光学補償層が、それぞれ、ポリイミド、ポリアミド 、ポリエステル、ポリエーテノレケトン、ポリアミドイミドおよびポリエステルイミドカもなる 群から選択される少なくとも 1つのポリマーを含み、かつ、 nx>ny>nzの屈折率分布 を有する、液晶パネル:
ここで、 nxは光学補償層の遅相軸方向の屈折率であり、 nyは光学補償層の進相 軸方向の屈折率であり、 nzは光学補償層の厚み方向の屈折率である。
[2] 前記第 1の光学補償層および前記第 2の光学補償層が、それぞれ、 0. 5〜10 m の厚みを有する、請求項 1に記載の液晶パネル。
[3] 前記第 1の光学補償層および前記第 2の光学補償層が、それぞれ、 2≤Nz≤20の
Nz係数を有する、請求項 1または 2に記載の液晶パネル。
[4] 前記第 1の光学補償層と前記第 1の偏光子との間に第 1の保護層を、および、前記 第 2の光学補償層と前記第 2の偏光子との間に第 2の保護層をさらに有する、請求項
1から 3のいずれかに記載の液晶パネル。
[5] 前記第 1の保護層および前記第 2の保護層が、それぞれセルロース系ポリマーを含 み、かつ、該第 1の保護層および該第 2の保護層の少なくとも一方の厚み方向位相 差 Rthが 30nm以下である、請求項 4に記載の液晶パネル:
ここで、厚み方向位相差 Rthは、式: Rth= (nx— nz) X dで表され; nxは光学補償 層の遅相軸方向の屈折率であり、 nzは光学補償層の厚み方向の屈折率であり、 dは 光学補償層の厚みである。
[6] 前記液晶セルが VAモードまたは OCBモードである、請求項 1から 5のいずれかに 記載の液晶パネル。
[7] 請求項 1から 6のいずれかに記載の液晶パネルを含む、液晶表示装置。
PCT/JP2006/315712 2005-08-23 2006-08-09 液晶パネルおよびそれを用いた液晶表示装置 WO2007023673A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/064,777 US20090279031A1 (en) 2005-08-23 2006-08-09 Liquid crystal panel and liquid crystal display apparatus using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-240587 2005-08-23
JP2005240587 2005-08-23
JP2006-056700 2006-03-02
JP2006056700 2006-03-02

Publications (1)

Publication Number Publication Date
WO2007023673A1 true WO2007023673A1 (ja) 2007-03-01

Family

ID=37771424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315712 WO2007023673A1 (ja) 2005-08-23 2006-08-09 液晶パネルおよびそれを用いた液晶表示装置

Country Status (4)

Country Link
US (1) US20090279031A1 (ja)
KR (1) KR20080023751A (ja)
TW (1) TW200712695A (ja)
WO (1) WO2007023673A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081534A1 (ja) * 2007-12-21 2009-07-02 Sharp Kabushiki Kaisha 液晶表示パネル、液晶表示装置、及び液晶表示パネルの製造方法
JP5546766B2 (ja) * 2009-01-07 2014-07-09 日東電工株式会社 液晶パネルおよび液晶表示装置
JP2010243858A (ja) * 2009-04-07 2010-10-28 Nitto Denko Corp 偏光板、液晶パネルおよび液晶表示装置
CN105659122B (zh) * 2013-10-28 2018-11-16 日本瑞翁株式会社 多层膜、光学各向异性叠层体、圆偏振片、有机场致发光显示装置、以及制造方法
JP6839594B2 (ja) * 2016-04-27 2021-03-10 日鉄ケミカル&マテリアル株式会社 ポリイミドフィルム及び銅張積層板
JP6454756B2 (ja) * 2017-06-02 2019-01-16 日東電工株式会社 液晶表示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004046065A (ja) * 2002-01-23 2004-02-12 Nitto Denko Corp 光学フィルム、積層偏光板、それらを用いた液晶表示装置および自発光型表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038744B2 (en) * 2002-01-09 2006-05-02 Konica Corporation Polarizing plate having a stretched film on a side thereof and liquid crystal display employing the same
KR100591056B1 (ko) * 2002-01-23 2006-06-22 닛토덴코 가부시키가이샤 광학 필름, 적층 편광판, 이들을 사용한 액정 표시 장치및 자발광형 표시 장치 및 광학필름의 제조방법
TW200305505A (en) * 2002-02-19 2003-11-01 Nitto Denko Corp Stacked phase shift sheet, stacked polarizing plate including the same and image display
JP4076454B2 (ja) * 2002-04-19 2008-04-16 富士フイルム株式会社 光学補償シート、偏光板および画像表示装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004046065A (ja) * 2002-01-23 2004-02-12 Nitto Denko Corp 光学フィルム、積層偏光板、それらを用いた液晶表示装置および自発光型表示装置

Also Published As

Publication number Publication date
KR20080023751A (ko) 2008-03-14
TW200712695A (en) 2007-04-01
US20090279031A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP4044485B2 (ja) 光学フィルム、その製造方法、およびそれを用いた偏光板
JP3974631B2 (ja) 光学フィルムおよびその製造方法、ならびに該光学フィルムを用いた画像表示装置
JP3883134B2 (ja) 液晶表示装置
KR100822248B1 (ko) 액정 패널 및 액정 표시 장치
JP4236098B2 (ja) 複屈折性光学フィルム
JP4388023B2 (ja) 光学補償層付偏光板、光学補償層付偏光板を用いた液晶パネル、液晶表示装置、および画像表示装置
US7833457B2 (en) Method for producing birefringent film, optical film and image display device using the same
JP2008242463A (ja) 複屈折性光学フィルム、それを用いた楕円偏光板、および、それらを用いた液晶表示装置
JP4025699B2 (ja) 液晶パネルおよびそれを用いた液晶表示装置
WO2007057998A1 (ja) 液晶表示装置
WO2007023673A1 (ja) 液晶パネルおよびそれを用いた液晶表示装置
JP2004046097A (ja) 積層位相差板、それを用いた積層偏光板、ならびに画像表示装置
JP3950468B2 (ja) 液晶表示装置
KR100916738B1 (ko) 액정패널 및 액정표시장치
JP3929046B2 (ja) 複屈折性フィルムの製造方法、複屈折フィルム、それを用いた光学補償層付き偏光板、垂直配向モード液晶表示装置用液晶パネル、および垂直配向モード液晶表示装置
JP3967764B2 (ja) 液晶パネルおよび液晶表示装置
JP2009163210A (ja) 光学フィルム、それを用いた液晶パネルおよび液晶表示装置
JP2007264588A (ja) 液晶パネルおよびそれを用いた液晶表示装置
JP4274842B2 (ja) Vaモードの液晶表示装置用の光学補償機能付き偏光板、及びそれを用いたvaモードの液晶表示装置
JP3746050B2 (ja) 光学補償フィルム、それを用いた光学補償層付偏光板、および、それらを用いた液晶表示装置
JP3976328B2 (ja) Vaモード液晶表示装置用光学フィルムの製造方法
US20070013844A1 (en) Liquid crystal panel and liquid crystal display using the same
JP2007178984A (ja) 液晶パネルおよび液晶表示装置
KR20070106401A (ko) 액정패널 및 액정표시장치
JP4155917B2 (ja) 複屈折性光学フィルム、それを用いた楕円偏光板、および、それらを用いた液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680030748.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087001746

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12064777

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP