WO2005055371A1 - Verfahren zum herstellen einer elektrischen verbindung zwischen einem aluminiumleiter und einem kontaktelement - Google Patents

Verfahren zum herstellen einer elektrischen verbindung zwischen einem aluminiumleiter und einem kontaktelement Download PDF

Info

Publication number
WO2005055371A1
WO2005055371A1 PCT/EP2004/013366 EP2004013366W WO2005055371A1 WO 2005055371 A1 WO2005055371 A1 WO 2005055371A1 EP 2004013366 W EP2004013366 W EP 2004013366W WO 2005055371 A1 WO2005055371 A1 WO 2005055371A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact element
contacting
aluminum conductor
heated
electrical
Prior art date
Application number
PCT/EP2004/013366
Other languages
English (en)
French (fr)
Inventor
Frank Beuscher
Matthias Ebert
Original Assignee
Leoni Bordnetz-Systeme Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leoni Bordnetz-Systeme Gmbh & Co. Kg filed Critical Leoni Bordnetz-Systeme Gmbh & Co. Kg
Priority to BRPI0407953-1A priority Critical patent/BRPI0407953A/pt
Priority to EP04819620A priority patent/EP1817819B1/de
Priority to JP2006541848A priority patent/JP2007513475A/ja
Priority to DE502004008930T priority patent/DE502004008930D1/de
Publication of WO2005055371A1 publication Critical patent/WO2005055371A1/de
Priority to US11/417,687 priority patent/US20060208838A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/62Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
    • H01R4/625Soldered or welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/20Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve
    • H01R4/203Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve having an uneven wire-receiving surface to improve the contact

Definitions

  • the invention relates to a method for producing an electrical connection between an aluminum conductor and a contact element, in which an stripped end of the aluminum conductor is inserted into the contact element and electrically contacted with it, and in which a mechanical strain relief of the aluminum conductor is formed by reshaping the contact element in the latter is clamped.
  • Such a method can be found in each case from DE 199 02 405 A1 and DE 33 16 563 A1. It is provided here that an aluminum conductor consisting of several tinned stranded wires is first mechanically clamped in a crimp sleeve. After the mechanical clamping, which is done by reshaping the crimp sleeve, the crimp sleeve is soldered or welded to the tinned aluminum conductor.
  • Aluminum conductors instead of the otherwise usually provided copper conductors. Insofar as aluminum or copper conductors are referred to here, this means that the conductors largely consist of aluminum / copper or an aluminum / copper alloy. Due to the significantly lower specific weight of aluminum, weight savings can be achieved.
  • the invention has for its object to allow easy to manufacture and safe and long-term contact between an aluminum conductor and a contact element with low contact resistance.
  • the object is achieved according to the invention by the method according to claim 1. Then a stripped end piece of the aluminum conductor is inserted into the contact element and electrically contacted with it.
  • a supply of a contacting means is provided to form the electrical contact, the contacting means being heated at least up to the range of its melting temperature, so that it is preferably in molten form.
  • the contacting agent in particular tin or a tin alloy, a material connection is established between the aluminum conductor and the contact element.
  • the aluminum conductor is therefore immersed, in particular, in a molten bath of the contacting agent accommodated in the contact element.
  • the contacting agent is heated, for example, by irradiation of a high-frequency field, by irradiation of high-energy light (laser light) or directly by a flame or by another heating element.
  • the contact element is mechanically deformed during or after the formation of the electrical contact, so that the aluminum conductor is clamped in the contact element in order to form a mechanical strain relief.
  • the provision of the liquefied contacting agent and the “immersion” of the usually tinned stranded wires of the aluminum conductor result in good electrical contact between the aluminum conductor and the contact element with low contact resistance.
  • the contact element is usually also tinned on its inner surface
  • the amount of contacting agent is advantageously the depth of penetration of the contacting agent between the individual stranded wires and thus the contact area to the stranded wires.
  • Another decisive advantage is the simultaneous or subsequent reshaping of the contact element.
  • the contact element is also heated due to the heated contacting agent, so that reliable forming without material damage and in particular without
  • the contact element is formed in a forming zone which is spaced apart from a contacting zone in which the electrical contacting takes place.
  • This measure in turn serves to separate the mechanical from the electrical function.
  • this has the advantage that the contacting formed before the forming, in particular via tin or a tin alloy, is not impaired by the application of the pressure required for the forming.
  • the contacting zone is not exposed to pressure, so that there is no risk of the contacting agent subsequently flowing, as a result of which the electrical contacting could deteriorate.
  • the contact element is preferably additionally heated in the forming zone in order to enable a material-saving forming with improved flow behavior compared to a cold forming without crack formation.
  • the contacting agent is expediently heated to a maximum of about 280 ° C. This measure prevents damage to the insulation of the aluminum conductor. In addition, the insulation can be protected by special clamps or other protective mechanisms.
  • melting is guaranteed at a temperature of 280 ° C, since the melting temperature of tin is around 232 ° C and the melting temperature of a tin alloy with 10% zinc is 198 ° C.
  • soldering paste can also be used as the contacting agent, which is in molten form at 280 ° C.
  • the solder paste has halogen-free, non-corrosive flux in order to avoid subsequent corrosion of the solder connection.
  • the portion to be tinned is shock-heated and then immersed in a tin bath.
  • the section is preferably heated to about 400 ° C or more. It is advantageous here if the section is shock-heated in a time of ⁇ 1 second. This rapid heating can be done inductively by irradiation of a high-frequency field or by using a high-energy laser light. The shock heating leads to a different expansion behavior of the aluminum and the oxide layer.
  • a protective gas atmosphere is preferably provided.
  • the tinning of the section is carried out by ultrasonic tinning in a tin bath.
  • ultrasonic tinning takes advantage of the fact that small cavities, so-called cavitations, are created by the irradiation of ultrasound in the tin bath, which collapse explosively. This creates considerable local compressive forces, which lead to damage and chipping of the oxide layer, so that the pure aluminum is in turn largely wetted by the tin.
  • the aluminum conductor is immersed in a tin bath and part of the aluminum conductor is cut off or cut off in the tin bath.
  • a "fresh" separating or cutting surface is formed by the separation in the tin bath, which is wetted with tin directly and without contact with atmospheric oxygen. This measure ensures that the cutting surface is tin-plated over the entire surface for the longitudinal spreading of the individual stranded wires, the separating surface corresponds to the cross-section, so that there is no reduction in the cross-sectional area in the contacting area with regard to the electrical contact surface is the cross-sectional area.
  • the reshaping process takes place within a very short reshaping time, which in the ⁇ s range is in particular in the range up to about 10 ⁇ s.
  • the decisive advantage with such rapid forming is that the individual stranded wires of the aluminum conductor behave less like a solid stranded wire than more like a liquid, so that the individual stranded wires bake or fuse together. This effect is comparable to a projectile that pierces a metal plate at high speed. The metal plate does not appear as a solid in the reference system of the projectile. Rather, the projectile penetrates the metal plate like a liquid.
  • the inner surface of the contact element is roughened or structured.
  • This roughening or structuring additionally deforms and penetrates the oxidation layer of the aluminum conductor during the forming and clamping, so that contact is made in the forming area between the contact element and the aluminum conductor.
  • the inner surface of the contact element is provided, for example, with grooves or with threads that are preferably sharp-edged. When forming, these grooves or threads virtually cut into the individual stranded wires. By cutting, an additional mechanical strain relief is formed at the same time. This contacting can take place in addition to the contacting via the contacting means or as an independent contacting.
  • the sudden reshaping and the simultaneous formation of the electrical and mechanical connection mean that an automated method, that is to say an automated striking of the contact element on the aluminum conductor, can be implemented at very high clock rates.
  • the reshaping takes place by magnetocompression rapid magnetic reshaping.
  • magnetocompression are to be reshaped
  • Contact element generates very high magnetic fields, so that high currents are induced in the contact element, which in turn form a magnetic field, so that the contact element is repelled and thereby deformed due to the Lorenz force.
  • the contact element is preformed, for example, in the manner of a sleeve or slotted sleeve into which the aluminum conductor is inserted.
  • the external magnetic field leads to a radially inward deformation of the sleeve, so that the inserted aluminum conductor is clamped.
  • the magnetocompression can achieve pressures in the range of, for example, 2000 bar. Since no mechanical forming elements are required, the contact element is not damaged despite these high pressures.
  • the sudden reshaping takes place with the aid of a reshaping element by mechanical impact pressing.
  • the shaping element expediently strikes the contact element at a speed> 5 m / sec, in particular> 10 m / sec.
  • Conventional hydraulic presses do not reach these speeds and are therefore not suitable for sudden forming.
  • the speeds for the forming element are in this case preferably generated solely by the weight, that is to say the forming element, for example designed as a mandrel or claw, strikes the contact element to be formed in the manner of a guillotine.
  • connection between the aluminum conductor and the contact element is preferably insulated against moisture.
  • a shrink tube is drawn on or the connection is coated with an insulating varnish or insulating adhesive.
  • FIG. 1 shows a connection between a contact element and an aluminum conductor
  • FIG. 2 shows a detail of the contact element with the aluminum conductor to illustrate the magnetocompression
  • Fig. 3 is a partial representation of the contact element and the aluminum conductor to illustrate the forming by means of impact pressing and
  • Fig. 1 an already finished connection between a contact element consisting in particular of copper and designed as a cable lug and an aluminum conductor 4 is shown.
  • the contact element 2 is designed in the manner of a sleeve and has a receiving space into which an stripped end piece 6 of the aluminum conductor 4 is inserted. In the end piece 6, individual stranded wires of the aluminum conductor 4 are exposed. The stranded wires are tinned at least on their end portion.
  • a supply or reservoir of a contacting means 8 is provided between the front end of the stranded wires and the rear wall or the base of the contact element 2.
  • tin or a tin alloy is provided. The electrical contact is made between the aluminum conductor 4 and the contact element 2 via the tin alloy.
  • the inner surface of the contact element 2 is preferably likewise pre-tinned.
  • the tin alloy is introduced into the contact element 2 and melted. Subsequently or even before melting, the aluminum conductor 4 with the stripped end piece 6 is inserted into the contact element 2. In particular, the front ends of the stranded wires are immersed in the melted tin alloy 8. After cooling, there is therefore a material connection between the contact element 2 and the individual stranded wires of the aluminum conductor 4. A contacting zone 10 is formed in the region of the contacting means 8 and the front ends of the stranded wires.
  • a forming zone 12 is provided spaced apart from the contacting zone 10, within which the contact element 2 is shaped. 1 already shows the deformed state in which a deformed section 14 of the Contact element 2 has penetrated into the stripped end piece 6.
  • the aluminum conductor 4 is clamped in the contact element 2, whereby an effective mechanical strain relief is formed.
  • the connection region in the exemplary embodiment is still surrounded by a shrink tube 16 as insulation against moisture.
  • the contact element 2 is heated at least in the forming zone 12.
  • a heating element 18 is provided, which is constructed in two parts in the exemplary embodiment and at the same time also serves to heat the contacting means 8 up to the region of its melting temperature.
  • the heating element 18 is subdivided into two functional zones which are designed for the different requirements, namely the heating of the reservoir 8 and the heating of the contact element 2.
  • only one heating element 18 can be provided for heating the contacting means 8.
  • the contact element 2 is also necessarily heated.
  • an ultrasound generator 20 is also provided.
  • the contact element is in this case suitably mechanically fixed to an ultrasound sonodrote or acoustically coupled by a transmission medium for the transmission of the required ultrasound energies.
  • the shaping process can be carried out in a conventional manner by mechanical or hydraulic pressing of shaping elements against the contact element 2.
  • reshaping by means of magnetocompression is provided in the exemplary embodiment according to FIG. 2.
  • a very strong magnetic field is generated by magnetic coils 22 in the immediate outer region of the contact element 2, so that currents are induced in the conductive contact element 2 and the Lorenz force is formed. This acts in the direction of the arrows shown in FIG. 2 on the contact element 2 and thereby causes the contact element 2 to be deformed.
  • a so-called mechanical impact pressing is provided for reshaping according to the exemplary embodiment according to FIG. 3.
  • a forming element 24 is struck against the contact element at a very high speed.
  • the shaping element 24 is designed in the form of a spike.
  • a counter element 26 is arranged, which in particular can also give shape to the forming process.
  • the high speed of the shaping element 24 in the direction of the arrow direction shown in FIG. 3 is preferably achieved solely by acceleration due to gravity.
  • a very rapid forming takes place with a duration in the ⁇ s range. Due to the sudden reshaping, the special effect is achieved that the individual stranded wires connect to one another in a materially integral manner.
  • the sudden forming processes according to FIGS. 2 and 3 can therefore take place in addition to the mechanical connection for electrical contacting additionally or alternatively to the electrical contacting via the contacting means 8.
  • the inner surface of the contacting element 2 is roughened or structured at least in the forming zone 12.
  • a thread 28 is cut into the sleeve-like contact element 2. 2 and 3 show the situation before the forming process. After the shaping, the particularly sharp-edged threads of the thread 28 cut into the stranded wires and, in particular, penetrate the oxide layer.
  • Process step "I: tinning of aluminum conductor 4" can alternatively be carried out by one of the following sub-processes:
  • A conventional tinning or using an aluminum conductor with pre-tinned stranded wires
  • Process step "III: Forming the strain relief” is carried out by one of the following sub-processes:
  • i conventional forming
  • ii Forming by magnetocompression
  • iii Forming by impact press.
  • the aluminum conductor 4 is first pre-tinned in the stripped section 6 by one of the sub-processes A, B, C or D.
  • the sub-processes B, C and D are distinguished by a very good tinning result, so that these sub-processes can also be used as independent tinning processes independently of the electrical contact between the aluminum conductor 4 and the contact element 2.
  • the electrical contacting as described for FIG. 1 takes place subsequently to the tinning.
  • the individual stranded wires are immersed in a melted reservoir of tin or tin alloy, so that a solid bond between the individual stranded wires and the contact element 2 is formed via the tin after solidification.
  • the shaping takes place, in particular according to one of the methods (ii, iii) described for FIGS. 2 or 3.
  • process steps II and III can also take place simultaneously, that is to say that the forming does not necessarily have to take place after the melt has cooled.
  • the only decisive factor is that the melting does not take place after the forming process.
  • process steps I and II are combined with one another in a common work step, that is to say take place simultaneously. Specifically, it is provided that the tinning of the stranded wires takes place with the aid of ultrasonic tinning according to sub-method C, as was described for FIG. 1.
  • the process sequence according to FIG. 6 is characterized overall by a one-step process in which process step I, namely tinning of the stranded wires, can be dispensed with.
  • process step I namely tinning of the stranded wires
  • the electrical contact (II) and the mechanical connection (III) take place within a single process step according to sub-procedure ii or iii.
  • This one-stage method for producing the electrical and mechanical connection illustrated with reference to FIG. 6 is particularly suitable for automation with a high clock rate.

Abstract

Um eine sichere und dauerhafte elektrische sowie mechanische Verbindung zwischen einem Aluminiumleiter (4) und einem Kontaktelement (2) zu erzielen, ist vorgesehen, dass ein Vorrat eines Kontaktierungsmittels (8) aufgeschmolzen wird und dass durch das anschliessende Erstarren zur Ausbildung der elektrischen Verbindung eine stoffschlüssige Verbindung zwischen dem Aluminiumleiter (4) und dem Kontaktelement (2) ausgebildet wird. Um zu gewährleisten, dass die Funktionen elektrisches Kontaktieren und Ausbildung einer Zugentlastung sich nicht in nachteiliger Weise wechselseitig beeinflussen, erfolgt im Anschluss an die Ausbildung der elektrischen Kontaktierung ein Umformen des Kontaktelements (2) zur Ausbildung der mechanischen Zugentlastung.

Description

Beschreibung
Verfahren zum Herstellen einer elektrischen Verbindung zwischen einem Aluminiumleiter und einem Kontaktelement
Die Erfindung betrifft ein Verfahren zum Herstellen einer elektrischen Verbindung zwischen einem Aluminiumleiter und einem Kontaktelement, bei dem ein abisoliertes Ende des Aluminiumleiters in das Kontaktelement eingelegt und mit diesem elektrisch kontaktiert wird und bei dem zur Ausbildung einer mechanischen Zugentlastung der Aluminiumleiter durch Umformen des Kontaktelements in diesem geklemmt wird.
Aus der DE 199 02 405 A1 sowie der DE 33 16 563 A1 ist ein derartiges Verfahren jeweils zu entnehmen. Hierbei ist vorgesehen, dass ein aus mehreren verzinnten Litzendrähten bestehender Aluminiumleiter zunächst in einer Crimphülse mechanisch geklemmt wird. Nach dem mechanischen Klemmen, welches durch Umformen der Crimphülse erfolgt, wird die Crimphülse mit dem verzinnten Aluminiumleiter verlötet oder verschweißt.
Insbesondere im Automobilbereich werden erhebliche Anstrengungen zur Gewichtseinsparung unternommen. Ein Mittel hierzu ist die Verwendung von
Aluminiumleitern anstelle der ansonsten üblicherweise vorgesehenen Kupferleiter. Soweit hier von Aluminium- oder Kupferleitern gesprochen wird, wird hierunter verstanden, dass die Leiter zu einem großen Teil aus Aluminium/Kupfer oder einer Aluminium-/Kupferlegierung bestehen. Aufgrund des deutlich geringeren spezifischen Gewichts von Aluminium lässt sich eine Gewichtseinsparung erzielen.
Da Aluminium in Verbindung mit dem Luftsauerstoff eine Oxidschicht ausbildet, die den Aluminiumleiter überzieht und die eine nur geringe Leitfähigkeit aufweist, ist die Kontaktierung eines Aluminiumleiters problematisch. Beim Kontaktieren des Aluminiumleiters mit einem Kontaktelement muss für einen möglichst geringen
Kontaktwiderstand sichergestellt sein, dass im Bereich der Kontaktfläche zwischen dem Aluminiumleiter und dem Kontaktelement die Oxidschicht zumindest weitgehend entfernt ist. Der Erfindung liegt die Aufgabe zugrunde, eine einfach herzustellende und sichere sowie langzeitbeständige Kontaktierung zwischen einem Aluminiumleiter und einem Kontaktelement mit geringem Kontaktwiderstand zu ermöglichen.
Die Aufgabe wird gemäß der Erfindung gelöst durch das Verfahren nach Anspruch 1. Danach wird ein abisoliertes Endstück des Aluminiumleiters in das Kontaktelement eingelegt und mit diesem elektrisch kontaktiert. Zur Ausbildung der elektrischen Kontaktierung ist ein Vorrat eines Kontaktierungsmittels vorgesehen, wobei das Kontaktierungsmittel zumindest bis zum Bereich seiner Schmelztemperatur erwärmt wird, so dass es vorzugsweise in schmelzflüssiger Form vorliegt. Mit dem anschließenden Erkalten und Aushärten des Kontaktierungsmittels, insbesondere Zinn oder eine Zinnlegierung, wird eine stoffliche Verbindung zwischen dem Aluminiumleiter und dem Kontaktelement hergestellt. Zur Ausbildung der elektrischen Kontaktierung wird daher der Alumiumleiter insbesondere in ein im Kontaktelement aufgenommenes Schmelzbad des Kontaktierungsmittels eingetaucht. Die Erwärmung des Kontaktierungsmittels geschieht hierbei beispielsweise durch Einstrahlung eines Hochfrequenzfeldes, durch Einstrahlung von hochenergetischem Licht (Laserlicht) oder auch direkt durch eine Flamme oder durch ein sonstiges Heizelement.
Weiterhin wird während oder im Anschluss an die Ausbildung der elektrischen Kontaktierung das Kontaktelement mechanisch umgeformt, so dass zur Ausbildung einer mechanischen Zugentlastung der Aluminiumleiter im Kontaktelement geklemmt wird.
Durch die Bereitstellung des Vorrats an verflüssigtem Kontaktierungsmittel und das „Eintauchen" der üblicherweise verzinnten Litzendrähte des Aluminiumleiters wird ein guter elektrischer Kontakt zwischen dem Aluminiumleiter und dem Kontaktelement mit geringem Kontaktwiderstand hergestellt. Das Kontaktelement ist hierbei üblicherweise ebenfalls an seiner Innenoberfläche verzinnt. Durch die Wahl der Menge an Kontaktierungsmittel wird dabei in vorteilhafter Weise die Eindringtiefe des Kontaktierungsmittels zwischen die einzelnen Litzendrähte und somit die Kontaktfläche zu den Litzendrähten eingestellt. Ein weiterer entscheidender Vorteil ist in der gleichzeitigen oder anschließenden Umformung des Kontaktelements zu sehen. Denn zum einen ist aufgrund des erwärmten Kontaktierungsmittels auch das Kontaktelement erwärmt, so dass ein prozesssicheres Umformen ohne Materialschädigung und insbesondere ohne
Rissbildung erfolgen kann. Auch ist ein besonderer Vorteil darin zu sehen, dass das Kontaktieren über die Ausbildung der stofflichen Verbindung, die das Erwärmen des Kontaktierungsmittels erfordert, nicht nach dem Umformen stattfindet. Denn die zur Verflüssigung des Kontaktierungsmittels benötigte Wärme würde in diesem Fall beim bereits umgeformten Kontaktelement möglicherweise zu Relaxationen im Materialgefüge des umgeformten Bereiches führen, so dass die mechanische Klemmkraft geschwächt wird. Dadurch wäre insbesondere die Langzeitbeständigkeit der Zugentlastung gefährdet. Bei dem hier beschriebenen Verfahren sind demnach die Funktionen der Ausbildung der mechanischen Zugentlastung einerseits und der Ausbildung der elektrischen Kontaktierung andererseits voneinander getrennt und beeinflussen sich nicht in nachteiliger Weise.
Gemäß einer zweckdienlichen Weiterbildung wird das Kontaktelement in einer Umformzone umgeformt, die von einer Kontaktierungszone, in der die elektrische Kontaktierung erfolgt, beabstandet ist. Diese Maßnahme dient wiederum zum Trennen der mechanischen von der elektrischen Funktion. Insbesondere ist damit der Vorteil verbunden, dass die vor dem Umformen ausgebildete Kontaktierung, insbesondere über Zinn oder eine Zinnlegierung, nicht durch die Ausübung des für die Umformung notwendigen Drucks beeinträchtigt wird. Die Kontaktierungszone ist keiner Druckeinwirkung ausgesetzt, so dass keine Gefahr eines nachträglichen Fließens des Kontaktierungsmittels besteht, wodurch sich die elektrische Kontaktierung verschlechtern könnte.
Bevorzugt wird das Kontaktelement in der Umformzone zusätzlich erwärmt, um eine Material schonende Umformung mit im Vergleich zu einer Kaltumformung verbessertem Fließverhalten ohne Rissbildung zu ermöglichen. Zweckdienlicherweise wird das Kontaktierungsmittel maximal auf etwa 280°C erwärmt. Durch diese Maßnahme wird eine Schädigung einer Isolation des Aluminiumleiters vermieden. Zusätzlich kann die Isolation durch besondere Klemmen oder sonstige Schutzmechanismen geschützt werden. Bei einer Temperatur von 280° ist bei der Verwendung von Zinn oder einer Zinnlegierung ein Aufschmelzen sicher gewährleistet, da die Schmelztemperatur von Zinn bei etwa 232°C liegt und die Schmelztemperatur einer Zinnlegierung mit 10% Zink bei 198°C liegt.
Alternativ zu der Verwendung einer Zinnlegierung kann als Kontaktierungsmittel prinzipiell auch eine Lötpaste verwendet werden, die bei 280°C in schmelzflüssiger Form vorliegt. Allerdings besteht hierbei die Anforderung, dass die Lötpaste halogenfreie, nicht korrosive Flussmittel aufweist, um eine anschließende Korrosion der Lötverbindung zu vermeiden.
Gemäß einer zweckdienlichen Weiterbildung wird zumindest ein Teilbereich des abisolierten Endstück des Aluminiumleiters insbesondere vor der Ausbildung der elektrischen Kontaktierung verzinnt. Gemäß einer ersten vorteilhaften Ausgestaltung wird hierzu der zu verzinnende Teilbereich schockerwärmt und anschließend in ein Zinnbad eingetaucht. Bevorzugt wird dabei das Teilstück auf etwa 400°C oder mehr erwärmt. Von Vorteil ist hierbei, wenn das Teilstück in einer Zeit < 1 Sekunde schockerwärmt wird. Dieses schnelle Erwärmen kann induktiv durch Einstrahlung eines Hochfrequenzfeldes oder auch durch die Verwendung eines hochenergetischen Laserlichts erfolgen. Die Schockerwärmung führt zu einem unterschiedlichen Dehnungsverhalten des Aluminiums und der Oxidschicht. Hierdurch bilden sich in der Oxidschicht zumindest Mikrorisse, in die beim anschließenden Eintauchen in das Bad Zinn eindringt und die Oxidschicht unterwandert, so dass diese abplatzt und das reine Aluminium weitgehend vollflächig mit dem Kontaktierungsmittel überzogen ist. Um die Ausbildung einer erneuten Oxidschicht nach der Schockerwärmung und bis zum Eintauchen in das Bad zu verhindern, ist vorzugsweise ein Schutzgasatmosphäre vorgesehen.
Gemäß einer bevorzugten zweiten Ausgestaltung erfolgt das Verzinnen des Teilstücks durch ein Ultraschallverzinnen in einem Zinnbad. Hierunter wird verstanden, dass das Teilstück in ein Zinnbad eingetaucht ist und dass geeignete Ultraschallwellen, die insbesondere eine Amplitude > 10 μm aufweisen, eingekoppelt werden. Hierfür sind geeignet ausgebildete Ultraschallerzeuger eingesetzt. Diese Art der Verzinnung nutzt die Tatsache aus, dass durch die Einstrahlung von Ultraschall im Zinnbad kleine Hohlräume, so genannte Kavitationen, entstehen, die explosionsartig in sich zusammenfallen. Dabei entstehen lokal erhebliche Druckkräfte, die zu einer Beschädigung und zu einem Abplatzen der Oxidschicht führen, so dass das reine Aluminium wiederum weitgehend vollflächig vom Zinn benetzt wird.
Gemäß einer dritten bevorzugten Ausgestaltung zum Verzinnen wird der Aluminiumleiter in ein Zinnbad eingetaucht und ein Teil des Aluminiumleiters wird im Zinnbad abgetrennt oder abgeschnitten. Entscheidend hierbei ist, dass durch das Abtrennen im Zinnbad eine „frische" Trenn- oder Schneidfläche gebildet wird, die unmittelbar und ohne Kontakt mit Luftsauerstoff mit Zinn benetzt wird. Durch diese Maßnahme ist gewährleistet, dass die Schnittfläche vollflächig verzinnt wird. Bei einer Trennrichtung senkrecht zur Längsausbreitung der einzelnen Litzendrähte entspricht die Trennfläche dem Querschnitt, so dass im Kontaktierungsbereich im Hinblick auf die elektrische Kontaktfläche keine Reduzierung der Querschnittsfläche erfolgt. Zweckdienlicherweise kann hierbei vorgesehen sein, dass die einzelnen Litzen schräg zu ihrer Längsausrichtung geschnitten werden, so dass die Schnittfläche größer als die Querschnittsfläche ist.
Im Hinblick auf das Umformen des Kontaktelements ist in einer bevorzugten Weiterbildung vorgesehen, dass der Umformprozess innerhalb einer sehr kurzen Umformzeit erfolgt, die im μs -Bereich insbesondere im Bereich, bis etwa 10 μs liegt. Der entscheidende Vorteil bei einem derartig schnellen Umformen ist darin zu sehen, dass die einzelnen Litzendrähte des Aluminiumleiters sich weniger wie feste Litzendrähte als vielmehr wie eine Flüssigkeit verhalten, so dass die einzelnen Litzendrähte miteinander verbacken oder verschmelzen. Dieser Effekt ist vergleichbar mit einem Projektil, welches mit hoher Geschwindigkeit eine Metallplatte durchstößt. Im Bezugssystem des Projektils erscheint die Metallplatte nicht als Feststoff. Vielmehr durchdringt das Projektil die Metallplatte wie eine Flüssigkeit.
Mit dem schlagartigen Umformen des Kontaktelements besteht die besonders vorteilhafte Möglichkeit, gleichzeitig mit der Ausbildung der mechanischen Zugentlastung auch die elektrische Kontaktierung herbeizuführen. Hierbei wird vorteilhafterweise sogar auf die Verwendung des Kontaktierungsmittels als auch auf das Verzinnen des Aluminiumleiters verzichtet. Maßgebend hierfür ist wiederum die hohe Geschwindigkeit beim Umformprozess und die damit verbundenen sehr hohen Drücke, die dazu führen, dass die Oxidschicht aufplatzt und eine sowohl kraftschlüssige Verbindung als auch eine unmittelbare elektrische Kontaktverbindung zwischen dem Kontaktelement und dem Aluminiumleiter erfolgt. Dieses schlagartige Umformen kann an Stelle eines langsamen, herkömmlichen in Kombination mit dem Kontaktierungsmittel eingesetzt werden. Unabhängig hiervon kann dieses schlagartige Umformen aber auch als eigenständige Möglichkeit zur Ausgestaltung der Verbindung zwischen dem Kontaktelement und dem Aluminiumleiter mit der gleichzeitigen Ausbildung einer mechanischen und elektrischen Verbindung eingesetzt werden.
Zur Ausbildung einer guten elektrischen Kontaktverbindung ist zweckdienlicherweise vorgesehen, dass die Innenoberfläche des Kontaktelements aufgeraut oder strukturiert ist. Durch diese Aufrauung oder Strukturierung wird beim Umformen und Klemmen des Aluminiumleiters dessen Oxidationsschicht zusätzlich verletzt und durchdrungen, so dass eine Kontaktierung im Umformbereich zwischen dem Kontaktelement und dem Aluminiumleiter erfolgt. Die Innenoberfläche des Kontaktelements ist hierbei beispielsweise mit Rillen oder mit Gewindegängen, die vorzugsweise scharfkantig sind, versehen. Beim Umformen schneiden daher diese Rillen oder Gewindegänge quasi in die einzelnen Litzendrähte ein. Durch das Einschneiden wird zugleich eine zusätzliche mechanische Zugentlastung ausgebildet. Diese Kontaktierung kann zusätzlich zu der Kontaktierung über das Kontaktierungsmittel oder auch als eigenständige Kontaktierung erfolgen. Insbesondere bei der eigenständigen Ausgestaltung ohne Verwendung des Kontaktierungsmittels lässt sich durch das schlagartige Umformen und der gleichzeitigen Ausbildung der elektrischen und der mechanischen Verbindung problemlos ein automatisiertes Verfahren, also ein automatisiertes Anschlagen des Kontaktelements am Aluminiumleiter mit sehr hohen Taktraten verwirklichen.
Für das schlagartige Umformen ist gemäß einer bevorzugten ersten Ausführung vorgesehen, dass das Umformen durch Magnetokompression schnelle magnetische Umformung erfolgt. Bei der Magnetokompression werden am umzuformenden Kontaktelement sehr hohe Magnetfelder erzeugt, so dass im Kontaktelement hohe Ströme induziert werden, die wiederum ein Magnetfeld ausbilden, so dass aufgrund der Lorenzkraft das Kontaktelement abgestoßen und dadurch umgeformt wird. Das Kontaktelement ist hierzu beispielsweise nach Art einer Hülse oder geschlitzten Hülse vorgeformt, in die der Aluminiumleiter eingelegt wird. Das außen angelegte Magnetfeld führt hierbei zu einem radial nach innen gerichteten Umformen der Hülse, so dass der einliegende Aluminiumleiter geklemmt wird. Durch die Magnetokompression können bei der Wahl geeigneter Magnetfelder Drücke bis in den Bereich von beispielsweise 2000 bar erreicht werden. Da hierbei keine mechanischen Umformelemente notwendig sind, wird das Kontaktelement trotz dieser hohen Drücke nicht beschädigt.
In einer vorteilhaften zweiten Ausführungsvariante erfolgt das schlagartige Umformen mithilfe eines Umformelements durch mechanisches Schlagpressen. Zweckdienlicherweise trifft hierbei das Umformelement mit einer Geschwindigkeit > 5m/sec, insbesondere > 10m/sec, auf das Kontaktelement auf. Herkömmliche hydraulische Pressen erreichen diese Geschwindigkeiten nicht und sind daher nicht für das schlagartige Umformen geeignet. Die Geschwindigkeiten für das Umformelement werden hierbei vorzugsweise allein durch die Gewichtskraft erzeugt, das heißt, das beispielsweise als Dorn oder Klaue ausgebildete Umformelement trifft nach Art eines Fallbeils auf das umzuformende Kontaktelement auf.
Bevorzugt wird weiterhin die Verbindung zwischen dem Aluminiumleiter und dem Kontaktelement gegen Feuchtigkeit isoliert. Hierbei wird insbesondere ein Schrumpfschlauch aufgezogen oder die Verbindung wird mit einem Isolationslack oder Isolationskleber überzogen.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand der Figuren näher erläutert. Es zeigen jeweils in schematischen und stark vereinfachten Darstellungen:
Fig. 1 eine Verbindung zwischen einem Kontaktelement und einem Aluminiumleiter, Fig. 2 eine ausschnittsweise Darstellung des Kontaktelements mit dem Aluminiumleiter zur Illustration der Magnetokompression, Fig. 3 eine ausschnittsweise Darstellung des Kontaktelements und des Aluminiumleiters zur Illustration des Umformens mittels Schlagpressens und
Fig. 4 bis 6 beispielhafte Flussdiagramme für unterschiedliche Verfahrensabläufe.
In den Figuren sind gleich wirkende Teile mit den gleichen Bezugszeichen versehen.
In Fig. 1 ist eine bereits fertige Verbindung zwischen einem insbesondere aus Kupfer bestehenden und als Kabelschuh ausgebildeten Kontaktelement und einem Aluminiumleiter 4 dargestellt. Das Kontaktelement 2 ist hierbei nach Art einer Hülse ausgebildet und weist einen Aufnahmeraum auf, in den ein abisoliertes Endstück 6 des Aluminiumleiters 4 eingeführt ist. Im Endstück 6 liegen einzelne Litzendrähte des Aluminiumleiters 4 frei. Die Litzendrähte sind zumindest an ihrem stirnseitigen Teilbereich verzinnt. Zwischen dem stirnseitigen Ende der Litzendrähte und der Rückwand oder dem Grund des Kontaktelements 2 ist ein Vorrat oder Reservoir eines Kontaktierungsmittels 8 vorgesehen. Insbesondere ist hierbei Zinn oder eine Zinnlegierung vorgesehen. Über die Zinnlegierung erfolgt die elektrische Kontaktierung zwischen dem Aluminiumleiter 4 und dem Kontaktelement 2. Die Innenoberfläche des Kontaktelements 2 ist hierbei vorzugsweise ebenfalls vorverzinnt.
Zur Ausbildung der Kontaktierung wird die Zinnlegierung in das Kontaktelement 2 eingebracht und aufgeschmolzen. Anschließend oder auch bereits vor dem Aufschmelzen wird der Aluminiumleiter 4 mit dem abisolierten Endstück 6 in das Kontaktelement 2 eingeführt. Insbesondere werden die stirnseitigen Enden der Litzendrähte in die aufgeschmolzene Zinnlegierung 8 eingetaucht. Nach dem Erkalten besteht daher eine stoffschlüssige Materialverbindung zwischen dem Kontaktelement 2 und den einzelnen Litzendrähten des Aluminiumleiters 4. Es ist im Bereich des Kontaktierungsmittels 8 und der stirnseitigen Enden der Litzendrähte eine Kontaktierungszone 10 gebildet.
Beabstandet von der Kontaktierungszone 10 ist eine Umformzone 12 vorgesehen, innerhalb derer eine Umformung des Kontaktelements 2 erfolgt. Die Fig. 1 zeigt hierbei bereits den umgeformten Zustand, bei dem ein umgeformtes Teilstück 14 des Kontaktelements 2 in das abisolierte Endstück 6 eingedrungen ist. Durch diese Maßnahme wird der Aluminiumleiter 4 im Kontaktelement 2 geklemmt, wodurch eine wirksame mechanische Zugentlastung ausgebildet ist. Nach Ausbildung der elektrischen sowie der mechanischen Verbindung zwischen dem Kontaktelement 2 und dem Aluminiumleiter 4 wird der Verbindungsbereich im Ausführungsbeispiel noch von einem Schrumpfschlauch 16 als Isolierung gegen Feuchtigkeit umgeben.
Für den Umformprozess ist vorgesehen, dass das Kontaktelement 2 zumindest in der Umformzone 12 erwärmt wird. Hierzu ist ein Heizelement 18 vorgesehen, das im Ausführungsbeispiel zweiteilig aufgebaut ist und zugleich auch zur Erwärmung des Kontaktierungsmittels 8 bis in den Bereich seiner Schmelztemperatur dient. Das Heizelement 18 ist im Ausführungsbeispiel in zwei Funktionszonen unterteilt, die für die unterschiedlichen Anforderungen, nämlich der Erwärmung des Vorrats 8 und der Erwärmung des Kontaktelements 2 ausgebildet sind. Alternativ hierzu kann auch lediglich ein Heizelement 18 für die Erwärmung des Kontaktierungsmittels 8 vorgesehen sein. Hierbei erfolgt zwangsläufig auch eine Erwärmung des Kontaktelements 2. Im Ausführungsbeispiel der Fig. 1 ist weiterhin ein Ultraschallerzeuger 20 vorgesehen. Dieser dient zur Ausbildung der elektrischen Funktion durch die Verzinnung von unverzinnten Litzendrähten mittels der Einstrahlung von Ultraschall, wenn die Litzendrähte im schmelzflüssigen Vorrat eingetaucht sind. Das Kotaktelement ist hierbei geeignet an eine Ultraschallsonodrote mechanisch fixiert oder durch ein Übertragungsmedium schalltechnisch angekoppelt zur Übertragung der erforderlichen Ultraschallenergien.
Durch die insbesondere in zeitlicher Abfolge stattfindende elektrische Kontaktierung und das Umformen des Kontaktelements 2 sowie weiterhin durch die räumliche Trennung der Kontaktierungszone 10 von der Umformzone 12 werden die Funktionen des elektrisches Kontaktierens einerseits und der Bereitstellung einer mechanischen Zugentlastung andererseits in wirksamer Weise voneinander getrennt. Hierdurch beeinflussen sich diese beiden Funktionen nicht in nachteiliger Weise. Denn durch die nach dem Erwärmen des Kontaktierungsmittels 8 erfolgende Umformung ist die Gefahr ausgeschlossen, dass der umgeformte Bereich des Kontaktelements 2 durch einen Wärmeeintrag relaxiert und geschwächt wird. Durch die räumliche Trennung der Umformzone ist weiterhin sichergestellt, dass das erkaltete Zinn durch die beim Umformprozess erfolgende Druckeinwirkung nicht fließt, was zu einer unerwünschten Schwächung der elektrischen Kontaktierung und zu einer Erhöhung des Kontaktwiderstands führen kann.
Der Umformprozess kann in herkömmlicher Art und Weise durch mechanisches oder hydraulisches Pressen von Umformelementen gegen das Kontaktelement 2 erfolgen. Alternativ zu diesem herkömmlichen Umformen ist im Ausführungsbeispiel nach Fig. 2 ein Umformen mittels Magnetokompression vorgesehen. Und zwar wird hierbei durch Magnetspulen 22 im unmittelbaren Außenbereich des Kontaktelements 2 ein sehr starkes Magnetfeld erzeugt, so dass in dem leitfähigen Kontaktelement 2 Ströme induziert werden und sich die Lorenzkraft ausbildet. Diese wirkt in Richtung der in der Fig. 2 dargestellten Pfeile auf das Kontaktelement 2 und ruft dadurch das Umformen des Kontaktelements 2 hervor.
Alternativ hierzu ist gemäß dem Ausführungsbeispiel nach Fig. 3 zum Umformen ein so genanntes mechanisches Schlagpressen vorgesehen. Bei diesem wird ein Umformelement 24 mit sehr hoher Geschwindigkeit gegen das Kontaktelement geschlagen. Im Ausführungsbeispiel ist das Umformelement 24 dornförmig ausgebildet. An der gegenüberliegenden Seite des Kontaktelements 2 ist ein Gegenelement 26 angeordnet, das insbesondere auch Form gebend für den Umformprozess wirken kann. Die hohe Geschwindigkeit des Umformelements 24 in Richtung der in der Fig. 3 gezeigten Pfeilrichtung wird vorzugsweise allein durch Beschleunigung aufgrund der Gravitation erreicht. Alternativ hierzu besteht die Möglichkeit, das Umformelement 24 druckluftgetrieben mit Hilfe eines Hammerschlagwerks oder pyrotechnisch zu beschleunigen.
Bei den in den Fig. 2 und 3 dargestellten Umformprozessen erfolgt eine sehr schnelle Umformung mit einer Zeitdauer im μs-Bereich. Durch die schlagartige Umformung wird der besondere Effekt erzielt, dass die einzelnen Litzendrähte sich miteinander stoffschlüssig verbinden. Die schlagartigen Umformprozesse entsprechend den Fig. 2 und 3 können daher neben der mechanischen Verbindung auch zur elektrischen Kontaktierung zusätzlich oder alternativ zu der elektrischen Kontaktierung über das Kontaktierungsmittel 8 erfolgen. Hierzu ist die Innenoberfläche des Kontaktierungselements 2 zumindest in der Umformzone 12 aufgeraut oder strukturiert ausgebildet. Im Ausführungsbeispiel ist in das hülsenartig ausgebildete Kontaktelement 2 ein Gewinde 28 eingeschnitten. Die Fig. 2 und 3 zeigen die Situation vor dem Umformvorgang. Nach dem Umformen schneiden die insbesondere scharfkantig ausgebildeten Gewindegänge des Gewindes 28 in die Litzendrähte ein und durchstoßen hierbei insbesondere die Oxidschicht.
Anhand der in den Fig. 4 bis 6 dargestellten Flussdiagramme werden nachfolgend unterschiedliche Verfahrensvarianten zur Ausbildung der sowohl elektrischen als auch mechanischen Verbindung zwischen dem Kontaktelement 2 und dem Aluminiumleiter 4 erläutert. Dabei sind die einzelnen Verfahrensschritte wie folgt gekennzeichnet:
I: Verzinnen der Litzendrähte des Aluminiumleiters 4,
II: Elektrisches Kontaktieren zwischen dem Aluminiumleiter 4 und dem Kontaktelement 2, III: Ausbildung der mechanischen Verbindung / der Zugentlastung.
Der Verfahrensschritt "I: Verzinnen des Aluminiumleiters 4" kann alternativ durch eines der folgenden Teilverfahren erfolgen:
A: herkömmliches Verzinnen oder Verwenden eines Aluminiumleiters mit vorverzinnten Litzendrähten,
B: Verzinnen durch Schockerwärmung und Eintauchen in ein Zinnbad,
C: Verzinnen durch Ultraschallbehandlung in einem Zinnbad und
D: Trennen oder Schneiden der Litzendrähte in einem Zinnbad.
Der Verfahrensschritt "III: Ausbildung der Zugentlastung" wird durch eines der folgenden Teilverfahren vorgenommen:
i: herkömmliches Umformen, ii: Umformung durch Magnetokompression iii: Umformung durch Schlagpressen.
Gemäß dem Verfahrensablauf nach Fig. 4 wird zunächst der Aluminiumleiter 4 im abisolierten Teilbereich 6 durch eines der Teilverfahren A, B, C oder D vorverzinnt.
Insbesondere die Teilverfahren B, C und D zeichnen sich durch ein sehr gutes Verzinnungsergebnis aus, so dass diese Teilverfahren auch unabhängig von der elektrischen Kontaktierung des Aluminiumleiters 4 mit dem Kontaktelement 2 als eigenständige Verzinnungsverfahren eingesetzt werden können. Nachfolgend zum Verzinnen erfolgt die elektrische Kontaktierung, wie sie zu Fig. 1 beschrieben wurde. Die einzelnen Litzendrähte werden hierbei in ein aufgeschmolzenes Reservoir des Zinns oder der Zinnlegierung eingetaucht, so dass über das Zinn nach dem Erstarren eine stoffschlüssige Verbindung zwischen den einzelnen Litzendrähten und dem Kontaktelement 2 ausgebildet ist. Anschließend erfolgt im Verfahrensschritt III das Umformen, insbesondere nach einem der zu den Fig. 2 oder 3 beschriebenen Verfahren (ii, iii).
In Abwandlung zu dem Verfahrensablauf gemäß Fig. 4 können die Verfahrensschritte II und III auch gleichzeitig erfolgen, das heißt, die Umformung muss nicht zwingend nach dem Erkalten der Schmelze erfolgen. Entscheidend ist lediglich, dass das Aufschmelzen nicht nach dem Umformvorgang erfolgt.
Gemäß dem Verfahrensablauf nach Fig. 5 sind die Verfahrensschritte I und II in einem gemeinsamen Arbeitsgang miteinander kombiniert, erfolgen also gleichzeitig. Und zwar ist hierbei vorgesehen, dass die Verzinnung der Litzendrähte mithilfe des Ultraschallverzinnens nach dem Teilverfahren C erfolgt, wie dies zu Fig. 1 beschrieben wurde.
Der Verfahrensablauf gemäß Fig. 6 ist insgesamt durch einen einstufigen Vorgang gekennzeichnet, bei dem auf den Verfahrensschritt I, nämlich das Verzinnen der Litzendrähte verzichtet werden kann. Die elektrische Kontaktierung (II) sowie die mechanische Verbindung (III) erfolgen innerhalb eines einzigen Prozessschrittes gemäß den Teilverfahren ii oder iii. Dieses anhand der Fig. 6 illustrierte einstufige Verfahren zur Herstellung der elektrischen sowie mechanischen Verbindung bietet sich insbesondere für eine Automatisierung mit hoher Taktrate an.
Bezugszeichenliste
Kontaktelement
Aluminiumleiter
Endstück
Kontaktierungsmittel
Kontaktierungszone
Umformzone umgeformtes Teilstück
Schrumpfschlauch
Heizelement
Ultraschallerzeuger
Magnetspulen
Umformelement
Gegenelement
Gewinde

Claims

Ansprüche
1. Verfahren zum Herstellen einer elektrischen Verbindung zwischen einem Aluminiumleiter (4) und einem Kontaktelement (2), bei dem ein abisoliertes Endstück (6) des Aluminiumleiters (4) in das Kontaktelement (2) eingelegt und mit diesem elektrisch kontaktiert wird und bei dem zur Ausbildung einer mechanischen Zugentlastung der Aluminiumleiter (4) durch Umformen des Kontaktelements (2) in diesem geklemmt wird, dadurch gekennzeichnet, dass ein Vorrat eines Kontaktierungsmittels (8) vorgesehen ist und das Kontaktierungsmittel (8) zumindest bis in den Bereich seiner Schmelztemperatur erwärmt wird, so dass über das Kontaktierungsmittel (8) zur Ausbildung der elektrischen Kontaktierung eine stoffliche Verbindung zwischen dem abisolierten Endstück (6) und dem Kontaktelement (2) hergestellt wird, und dass gleichzeitig oder anschließend das Kontaktelment (2) umgeformt wird. 1
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass das Kontaktelement (2) in einer Umformzone (12) umgeformt wird, die von einer Kontaktierungszone (12), in der die elektrische Kontaktierung erfolgt, beabstandet ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Kontaktelement (2) in der Umformzone (12) erwärmt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kontaktierungsmittel (8) maximal auf etwa 280°C erwärmt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Kontaktierungsmittel (8) Zinn oder eine Zinnlegierung verwendet wird.
6. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass zumindest ein Teilbereich des abisolierten Endstücks (6) des Alumini-umleiters (4) verzinnt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der zu verzinnende Teilbereich schockerwärmt wird und anschließend in ein Zinnbad eingetaucht wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Teilbereich auf etwa 400 °C oder mehr erwärmt wird.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Teilbereich in einer Zeit < 1s schockerwärmt wird.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Schockerwärmung und das anschließende Eintauchen unter Schutzgasatmosphäre vorgenommen wird.
11. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Verzinnen des Teilbereichs durch Ultraschall-Verzinnen in einem Zinnbad erfolgt.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass das Ultraschall-Verzinnen und das Kontaktieren des Aluminiumleiters (4) mit dem Kontaktelement (2) in einem Arbeitsgang erfolgen.
13. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass zum Verzinnen ein Teil des in einem Zinnbad eingetauchten Alumini-umleiters abgetrennt wird.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Umformen des Kontaktelements (2) innerhalb einer Umformzeit im μs-Bereich erfolgt.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Innenoberfläche des Kontaktelements (2) aufgeraut oder struktu-riert ist.
16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass das Umformen durch Magnetokompression erfolgt.
17. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass das Umformen mit Hilfe eines Umformelements (24) durch mechani-sches Schlagpressen erfolgt.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Umformelement (24) mit einer Geschwindigkeit >5m/s, insbeson-dere >10 m/s, auf das Kontaktelement (2) auftrifft.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verbindung zwischen dem Aluminiumleiter (4) und dem Kontakt-element (2) gegen Feuchtigkeit isoliert wird.
PCT/EP2004/013366 2003-12-04 2004-11-25 Verfahren zum herstellen einer elektrischen verbindung zwischen einem aluminiumleiter und einem kontaktelement WO2005055371A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0407953-1A BRPI0407953A (pt) 2003-12-04 2004-11-25 processo para produzir uma conexão elétrica entre um condutor de alumìnio de um elemento de contato
EP04819620A EP1817819B1 (de) 2003-12-04 2004-11-25 Verfahren zum herstellen einer elektrischen verbindung zwischen einem aluminiumleiter und einem kontaktelement
JP2006541848A JP2007513475A (ja) 2003-12-04 2004-11-25 アルミニウム導体と接触エレメントとの間に電気的な接続部を製造するための方法
DE502004008930T DE502004008930D1 (de) 2003-12-04 2004-11-25 Verfahren zum herstellen einer elektrischen verbindung zwischen einem aluminiumleiter und einem kontaktelement
US11/417,687 US20060208838A1 (en) 2003-12-04 2006-05-04 Method for producing an electrical connection between an aluminum conductor and a contact element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10357048.9 2003-12-04
DE10357048A DE10357048A1 (de) 2003-12-04 2003-12-04 Verfahren zum Herstellen einer elektrischen Verbindung zwischen einem Aluminiumleiter und einem Kontaktelement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/417,687 Continuation US20060208838A1 (en) 2003-12-04 2006-05-04 Method for producing an electrical connection between an aluminum conductor and a contact element

Publications (1)

Publication Number Publication Date
WO2005055371A1 true WO2005055371A1 (de) 2005-06-16

Family

ID=34638430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/013366 WO2005055371A1 (de) 2003-12-04 2004-11-25 Verfahren zum herstellen einer elektrischen verbindung zwischen einem aluminiumleiter und einem kontaktelement

Country Status (10)

Country Link
US (1) US20060208838A1 (de)
EP (1) EP1817819B1 (de)
JP (1) JP2007513475A (de)
CN (1) CN100405663C (de)
AT (1) ATE421784T1 (de)
BR (1) BRPI0407953A (de)
DE (2) DE10357048A1 (de)
ES (1) ES2318369T3 (de)
PT (1) PT1817819E (de)
WO (1) WO2005055371A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936745A2 (de) * 2006-12-22 2008-06-25 Thales Verfahren zum Anschliessen und Verbinden von Kabeladern durch magnetostriktion und Inrichtung zur Magnetostriktionerzeugung
FR2912000A1 (fr) * 2007-01-31 2008-08-01 Powerconn Cable de raccordement de poles de batterie
EP2224556A1 (de) * 2007-12-20 2010-09-01 Yazaki Corporation Verfahren zum crimpen eines anschlusses auf ein aluminiumkabel
WO2012175440A1 (de) * 2011-06-21 2012-12-27 Lisa Dräxlmaier GmbH Leitung und verfahren zur konfektionierung einer solchen leitung
US8726500B2 (en) 2009-03-23 2014-05-20 Autonetworks Technologies, Ltd. Method for manufacturing electric wire with terminal
US8900021B2 (en) 2010-04-12 2014-12-02 Delphi International Operations Luxembourg S.A.R.L. Electrical contact terminal with improved connection portion
EP2705996A3 (de) * 2012-09-05 2014-12-24 Siemens Aktiengesellschaft Erdungslasche
EP2996200A1 (de) * 2014-09-10 2016-03-16 Gebauer & Griller Kabelwerke Gesellschaft m.b.H. Verbindungselement
EP3783740A1 (de) * 2019-08-22 2021-02-24 Auto-Kabel Management GmbH Verbindung eines crimpkontakts mit einem leiter sowie verfahren zur herstellung eines crimpkontaktes

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010622B3 (de) * 2006-03-08 2007-08-02 Schulte & Co. Gmbh Verfahren zur Verbindung eines aus Kupfer oder einer Kupferlegierung bestehenden Anschlusselementes, insbesondere eines Kabelschuhs, mit einem elektrischen Kabel sowie nach diesem Verfahren hergestellter Kabelschuh
DE102006021422B8 (de) * 2006-05-05 2008-06-26 Schunk Ultraschalltechnik Gmbh Verfahren zur Herstellung eines Durchgangs- oder Endknotens sowie Durchgangs- oder Endknoten
DE102008051323A1 (de) * 2008-09-03 2010-03-04 Adensis Gmbh Verbindung eines Aluminiumteils mit einem Kupferteil
DE102008061186B4 (de) * 2008-12-09 2010-07-29 Leoni Bordnetz-Systeme Gmbh Elektronische Kontaktverbindung und Verfahren zur Herstellung einer elektrischen Kontaktverbindung
JP5242475B2 (ja) * 2009-03-25 2013-07-24 矢崎総業株式会社 金属接合方法及び金属接合装置
EP2339196B1 (de) * 2009-12-22 2015-11-04 Halla Visteon Climate Control Corporation Feldspulenanordnung einer elektromagnetischen Kupplung für eine Leistungsübertragungsvorrichtung und Herstellungsverfahren dafür
DE102010053919A1 (de) 2010-12-09 2012-06-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kontaktierung eines isolierten Kabels und elektrische Kontaktverbindung
DE102011077886B4 (de) * 2011-06-21 2016-10-13 Lisa Dräxlmaier GmbH Verfahren zur Leitungskonfektionierung
JP5741502B2 (ja) 2011-07-26 2015-07-01 株式会社オートネットワーク技術研究所 端子付き電線およびその製造方法
DE202011104677U1 (de) 2011-08-22 2012-01-24 Leoni Bordnetz-Systeme Gmbh Kontaktierungsvorrichtung sowie Kontaktverbindung
DE102011119699A1 (de) 2011-11-29 2013-05-29 Leoni Bordnetz-Systeme Gmbh Kabel, insbesondere Aluminiumkabel
DE102011089206B4 (de) 2011-12-20 2023-10-05 Lisa Dräxlmaier GmbH Verfahren zum Kontaktieren einer Litzenleitung mit einem Kontakt
EP2735397B1 (de) 2012-11-23 2018-01-17 Nexans Verfahren zum elektrisch leitenden Verbinden eines Kontaktteils mit einem elektrischen Leiter
US9937583B2 (en) 2013-12-24 2018-04-10 Innovative Weld Solutions Ltd. Welding assembly and method
US9649717B2 (en) 2013-12-24 2017-05-16 Innovative Weld Solutions, Ltd. Welding assembly and method
DE102014206283B3 (de) * 2014-04-02 2015-07-02 Leoni Bordnetz-Systeme Gmbh Elektrische Kontaktverbindung sowie Verfahren zur Herstellung einer Kontaktverbindung
DE102014108347A1 (de) 2014-06-13 2015-12-17 Leoni Bordnetz-Systeme Gmbh Elektrischer Litzenleiter sowie Verfahren zur Herstellung eines elektrischen Litzenleiters
MX2017004178A (es) 2014-10-03 2017-07-19 General Cable Tech Corp Cable y metodos para preparar un cable para recibir un elemento de contacto.
EP3109944B1 (de) 2015-06-23 2021-12-08 Nexans Verfahren zur herstellung einer elektrisch wirksamen kontaktstelle am ende eines elektrischen leiters
ES2732905T3 (es) 2016-12-22 2019-11-26 Nexans Procedimiento para la fijación de un elemento de contacto en el extremo de un conductor eléctrico
DE102017112947A1 (de) * 2017-06-13 2018-12-13 Te Connectivity Germany Gmbh Elektrischer Hochstromverbinder sowie Verfahren zum Herstellen eines elektrischen Hochstromverbinders
DE102017114994B3 (de) * 2017-07-05 2018-05-09 Lisa Dräxlmaier GmbH Verfahren zum herstellen einer elektrischen leitungsanordnung
CN109742640B (zh) * 2019-01-02 2020-10-09 武汉船用机械有限责任公司 一种电缆和接线端子的连接方法
EP4216371A1 (de) * 2022-01-20 2023-07-26 komax Holding AG Verfahren zum verbinden eines elektrischen kabels mit einem kontaktstück

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1329634A (en) * 1972-03-21 1973-09-12 Pirelli General Cable Works Electrical connections
GB1389316A (en) * 1971-10-18 1975-04-03 Essex International Inc Terminating of electrical conductors
DE19902405A1 (de) * 1999-01-22 2000-08-17 Edelhoff Adolf Feindrahtwerk Verfahren zur Herstellung einer korrosionsresistenten, elektrischen Verbindung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE720629C (de) * 1938-05-28 1942-05-11 Siemens Ag Verfahren und Vorrichtung zum Verloeten von Gegenstaenden aus Aluminium untereinander oder mit Gegenstaenden aus anderen Metallen
US2970068A (en) * 1955-03-07 1961-01-31 Union Carbide Corp Method of making a composite stock
DE1959958U (de) * 1966-12-12 1967-05-11 Ver Draht & Kabelwerke Ag Presskabelschuh oder pressverbindungshuelse.
US3852517A (en) * 1972-06-12 1974-12-03 Raychem Corp Conductive insert for heat recoverable electrical connector
FR2236254A1 (en) * 1973-07-04 1975-01-31 Kh Polt I Im V I Lenina Removable magnetic concentrator - in 2 parts and having bore containing workpiece
DD140601A1 (de) * 1978-12-08 1980-03-12 Petre Iancu Verfahren zur herstellung elektrisch leitender verbindungen oder anschluesse
DE3316563A1 (de) * 1983-05-06 1984-12-06 SWF Auto-Electric GmbH, 7120 Bietigheim-Bissingen Elektrischer verbinder und verfahren zu seiner herstellung
CN2079813U (zh) * 1990-11-16 1991-06-26 武汉电缆附件厂 合金焊接法堵油式铜铝接线端子
GB9118841D0 (en) * 1991-09-03 1991-10-16 Raychem Sa Nv Electrical connector
DE9209482U1 (de) * 1992-07-15 1992-09-17 Geller, Carl F., 2120 Lueneburg, De
DE4426790A1 (de) * 1994-07-28 1996-02-08 Pfisterer Elektrotech Karl Preßhülse
CN2215771Y (zh) * 1995-01-03 1995-12-20 杭州电力设备厂 一种铜铝连接线
ES2177818T3 (es) * 1995-12-20 2002-12-16 Pulsar Welding Ltd Union o soldadura electromagnetica de objetos metalicos.
DE19602951C2 (de) * 1996-01-27 2000-12-07 Steingroever Magnet Physik Verfahren und Vorrichtung zum Aufweiten von Rohren oder rohrförmigen Teilen durch das Magnetfeld eines Strom-Impulses
JPH10177867A (ja) * 1996-12-18 1998-06-30 Hitachi Cable Ltd 配電機器用口出し線
DE19829761C2 (de) * 1998-07-03 2000-10-26 Sachsenwerk Gmbh Verfahren und Leitungsverbinder zum Verbinden von warmfest lackisolierten Drähten
FR2780986B1 (fr) * 1998-07-10 2000-09-29 Electrolyse L Procede de transformation de structures chimiques dans un fluide sous pression et en temperature et dispositif pour sa mise en oeuvre
US6666732B1 (en) * 2001-05-21 2003-12-23 John E. Endacott Terminal connector
DE10223397B4 (de) * 2003-10-04 2004-05-06 Feindrahtwerk Adolf Edelhoff Gmbh & Co Verfahren und Verbindung zur Kontaktierung eines Aluminiumkabels mit einer metallischen, verzinnten Kontaktklemme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1389316A (en) * 1971-10-18 1975-04-03 Essex International Inc Terminating of electrical conductors
GB1329634A (en) * 1972-03-21 1973-09-12 Pirelli General Cable Works Electrical connections
DE19902405A1 (de) * 1999-01-22 2000-08-17 Edelhoff Adolf Feindrahtwerk Verfahren zur Herstellung einer korrosionsresistenten, elektrischen Verbindung

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910728A1 (fr) * 2006-12-22 2008-06-27 Thales Sa Procede de raccordement de conducteurs electriques par magnetostriction et dispositif generateur de magnetostriction.
EP1936745A3 (de) * 2006-12-22 2008-07-02 Thales Verfahren zum Anschliessen und Verbinden von Kabeladern durch magnetostriktion und Inrichtung zur Magnetostriktionerzeugung
EP1936745A2 (de) * 2006-12-22 2008-06-25 Thales Verfahren zum Anschliessen und Verbinden von Kabeladern durch magnetostriktion und Inrichtung zur Magnetostriktionerzeugung
FR2912000A1 (fr) * 2007-01-31 2008-08-01 Powerconn Cable de raccordement de poles de batterie
WO2008104668A1 (fr) * 2007-01-31 2008-09-04 Powerconn Procede de fabrication d'un cable de raccordement de poles de batterie, l'installation de mise en oeuvre et le cable obtenu
EP2224556A1 (de) * 2007-12-20 2010-09-01 Yazaki Corporation Verfahren zum crimpen eines anschlusses auf ein aluminiumkabel
EP2224556A4 (de) * 2007-12-20 2013-04-17 Yazaki Corp Verfahren zum crimpen eines anschlusses auf ein aluminiumkabel
US8726500B2 (en) 2009-03-23 2014-05-20 Autonetworks Technologies, Ltd. Method for manufacturing electric wire with terminal
US8900021B2 (en) 2010-04-12 2014-12-02 Delphi International Operations Luxembourg S.A.R.L. Electrical contact terminal with improved connection portion
WO2012175440A1 (de) * 2011-06-21 2012-12-27 Lisa Dräxlmaier GmbH Leitung und verfahren zur konfektionierung einer solchen leitung
EP2705996A3 (de) * 2012-09-05 2014-12-24 Siemens Aktiengesellschaft Erdungslasche
EP3330153A1 (de) 2012-09-05 2018-06-06 Siemens Aktiengesellschaft Schienenfahrzeug mit erdungslaschen
EP2996200A1 (de) * 2014-09-10 2016-03-16 Gebauer & Griller Kabelwerke Gesellschaft m.b.H. Verbindungselement
EP3783740A1 (de) * 2019-08-22 2021-02-24 Auto-Kabel Management GmbH Verbindung eines crimpkontakts mit einem leiter sowie verfahren zur herstellung eines crimpkontaktes

Also Published As

Publication number Publication date
PT1817819E (pt) 2009-03-24
EP1817819B1 (de) 2009-01-21
US20060208838A1 (en) 2006-09-21
BRPI0407953A (pt) 2006-03-07
CN100405663C (zh) 2008-07-23
EP1817819A1 (de) 2007-08-15
ATE421784T1 (de) 2009-02-15
CN1748343A (zh) 2006-03-15
DE10357048A1 (de) 2005-07-21
DE502004008930D1 (de) 2009-03-12
JP2007513475A (ja) 2007-05-24
ES2318369T3 (es) 2009-05-01

Similar Documents

Publication Publication Date Title
EP1817819B1 (de) Verfahren zum herstellen einer elektrischen verbindung zwischen einem aluminiumleiter und einem kontaktelement
EP2962369B1 (de) Verfahren zum stoffschlüssigen fügen an einem kabelende sowie konfiguriertes kabel
DE10358686B4 (de) Crimpkontaktelement
EP3189561B1 (de) Crimpkontakt
EP2141771A1 (de) Kontaktierung von Leichtmetallleitungen
DE1057193B (de) Elektrischer Presshuelsenverbinder
DE19902405B4 (de) Verfahren zur Herstellung einer korrosionsresistenten, elektrischen Verbindung
EP2131448B1 (de) Verfahren zum Verbinden eines elektrisch leitenden Bauteils mit einem flexiblen elektrischen Leiter
DE102014109604B4 (de) Kontaktierung eines Litzenleiters
DE202007013957U1 (de) Leiter mit Kontaktteil
DE102010027033A1 (de) Leiter mit Kontaktteil
DE102011011409B4 (de) Anschlussteil und Verbindung für elektrische Anlagen
DE102010044241A1 (de) Verbindung und Verfahren zum Verbinden eines Aluminiumkabels mit Anschlussteilen
DE3047684C2 (de) Elektrischer Steckverbinder, Verfahren zu seinem Anschluß und Vorrichtung zur Durchführung des Verfahrens
EP3454420B1 (de) Verfahren zum verbinden einer elektrischen aluminiumleitung mit einem aluminiumrohr
EP3771042B1 (de) Herstellung einer flächigen verbindung zwischen einem elektrischen leiter und einem kontaktstück
DE102018100020B4 (de) Verfahren und Vorrichtung zur Herstellung einer Verbindung zwischen einem Crimpkontakt und einem Litzenleiter
DE102014004127B4 (de) Verfahren zum Verbinden einer elektrischen Leitung mit einem metallischen Kontaktelement, Verbindungselement sowie Sonotrode
EP3451455B1 (de) Verfahren zur herstellung einer elektrischen verbindung und eine elektrische leitung
EP3513466A1 (de) Elektrischer rotor und verfahren zur bereitstellung eines elektrischen kontakts zwischen einer rotorwicklung und einer kontaktfahne
DE102011089206B4 (de) Verfahren zum Kontaktieren einer Litzenleitung mit einem Kontakt
DE19829761C2 (de) Verfahren und Leitungsverbinder zum Verbinden von warmfest lackisolierten Drähten
DE102010053768B4 (de) Verfahren zum Verbinden eines Aluminiumkabels mit einem Anschlussteil
EP2416457B1 (de) Verfahren zur elektrischen Kontaktierung von Drähten
EP3109944B1 (de) Verfahren zur herstellung einer elektrisch wirksamen kontaktstelle am ende eines elektrischen leiters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004819620

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048038094

Country of ref document: CN

ENP Entry into the national phase

Ref document number: PI0407953

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 11417687

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006541848

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 11417687

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004819620

Country of ref document: EP