WO2005038095A2 - Elektrolytisches verfahren zum phosphatieren von metalloberflächen und damit phosphatierte metallschicht - Google Patents

Elektrolytisches verfahren zum phosphatieren von metalloberflächen und damit phosphatierte metallschicht Download PDF

Info

Publication number
WO2005038095A2
WO2005038095A2 PCT/EP2004/052269 EP2004052269W WO2005038095A2 WO 2005038095 A2 WO2005038095 A2 WO 2005038095A2 EP 2004052269 W EP2004052269 W EP 2004052269W WO 2005038095 A2 WO2005038095 A2 WO 2005038095A2
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
ions
electrolyte
range
layer
Prior art date
Application number
PCT/EP2004/052269
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2005038095A3 (de
Inventor
Juergen Hackenberg
Dirk Zimmermann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2006534745A priority Critical patent/JP2007508457A/ja
Priority to BRPI0415520-3A priority patent/BRPI0415520A/pt
Priority to EP04787187A priority patent/EP1675975A2/de
Priority to US10/575,907 priority patent/US20070295608A1/en
Priority to CN200480030171.3A priority patent/CN1867704B/zh
Publication of WO2005038095A2 publication Critical patent/WO2005038095A2/de
Publication of WO2005038095A3 publication Critical patent/WO2005038095A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/36Phosphatising

Definitions

  • the invention relates generally to an electrolytic method for phosphating metal surfaces according to the preamble of claim 1. It also relates to a phosphated metal layer produced using this method.
  • Zinc phosphating is a widely used process for the corrosion protection of low-alloy steels.
  • zinc phosphate crystals Hopeit
  • Hopeit zinc phosphate crystals
  • the solubility product of the zinc phosphate must be exceeded. This is done by attacking (pickling) the base metal (eg Fe -> Fe 2+ +2 e " ). The electrons released in the process serve to reduce protons. The pH is shifted towards neutral to basic and the solubility product is exceeded. They form Usually layers with a thickness of 2-3 ⁇ m are formed, which have a degree of coverage of approximately 90 to 95% The corrosion protection is limited by the thin and porous layer that forms and is therefore usually combined with other coatings, for example corrosion protection oil or KTL Further developments aim to increase corrosion protection without such additional coatings.
  • JP-A-85/211080 relates to a method for producing corrosion protection layers Metal surfaces with the help of zinc phosphating solutions with temporary use of a cathodic current.
  • a corrosion-resistant protective layer is also produced on the edges of the metal surfaces to be treated.
  • DE-41 11 186 AI discloses a method for phosphating metal surfaces, preferably electrolytically or hot-dip galvanized steel strip surfaces, by treating in immersion or spray-immersion with acidic, aqueous phosphating solutions, the workpieces being simultaneously treated cathodically with a direct current.
  • phosphating solutions which contain the following components: Zn 2+ cations in the range from 0.1 to 5 g / 1; PO 3 " anions in the range from 5 to 50 g / 1; NO 3 ⁇ anions in the range from 0.1 to 50 g / 1; and Ni 2+ cations in the range from 0.1 to 5 g / 1, and / or Co 2+ cations in the range from 0.1 to 5 g 1.
  • the pH of the phosphating solutions is in the range from 1.5 to 4.5, and the temperature of the phosphating solutions is in the range from 10 to 80 ° C.
  • the current density of the direct current with which the workpieces are treated cathodically during phosphating is between 0.01 and 100 mA / cm 2 .
  • a disadvantage of the conventional phosphating processes is that they are limited to low-alloy steels, as well as Zn and Al, and that the layers produced do not have cathodic corrosion protection due to the fact that they consist of zinc phosphate crystals. In addition, an upstream activation is necessary in most cases.
  • the method according to the invention for phosphating metal surfaces has the advantage over the prior art that compact layers are formed whose thicknesses can be adjusted almost as desired.
  • Another advantage is that the layers produced have a significantly higher corrosion resistance.
  • the phosphating can be carried out without activation.
  • the electrolysis can be carried out either potentiostatically or galvanostatically, or with a mixture of the two.
  • FIG. 1 An exemplary embodiment of the invention is shown in the drawing and explained in more detail in the following description.
  • the figure shows a schematic diagram of the manufacturing method according to the invention.
  • the aim of the present invention is to develop an electrolytic coating method for phosphating metal surfaces, in which the pores in the phosphate layer are filled with metallic zinc or zinc alloys.
  • the electrolytic zinc or zinc alloy deposition takes place simultaneously with the zinc phosphate crystal formation in the same electrolyte.
  • the process according to the invention comes in contrast to conventional phosphating, in which after cleaning or pickling the workpiece was immersed in a titanium phosphate suspension (approx. 60 s at pH ⁇ 9) without an upstream activation process.
  • the described process can also be used to directly coat stainless steels and other noble and base materials such as Al, Al alloys, Cu, Cu alloys, Ni, Ni alloys, etc.
  • deposition can only be carried out on materials which permit a corrosive pickling attack, since otherwise the required pH shift described above cannot occur.
  • the electrolysis can be controlled both potentiostatically and galvanostatically, or can be carried out with a mixture of the two parts.
  • compact layers are formed, which are distinguished in that the spaces between the zinc phosphate crystals are filled up by a network of metallically deposited zinc or zinc alloy. Due to the simultaneous formation of the electrically conductive zinc or the zinc alloy, a pH shift induced by electrolysis can take place, i.e. the electrons are supplied from the outside, and an almost arbitrary layer thickness increase
  • Zinc (zinc alloy) / zinc phosphate layer can be achieved by reducing H * on the zinc surface.
  • the figure shows a schematic diagram of the coating method according to the invention.
  • the zinc / zinc phosphate layer 14 is deposited on the base metal 11 in a conventional electrolysis cell 10 with a working electrode 11 made of the corresponding base metal and a counter electrode 12 through the electrolyte 13.
  • the electrons required for pH shifting do not come from iron corrosion from the low-alloy steels (pickling attack on the base metal), but from an external power source 15. This protective current ensures, among other things, that the Base metal 11 is not attacked.
  • the coating method according to the present invention can be carried out in commonly used electrolytic cells.
  • the counter electrode can consist of noble sheets such as platinum, Pt / Ti or gold, as well as less noble sacrificial anodes such as Zn, Ni, Fe, which ensure continuous transport of metal ions.
  • the electrolyte is essentially an electrolyte of the kind used in phosphating without external current.
  • the electrolyte contains, for example: Zn 2+ : 5-50 g / 1 H 2 PO 4 " : 5-80 g / 1
  • the electrolyte can contain ions from elements which can form an alloy with zinc, so that when the phosphating layer is deposited, zinc alloys are deposited simultaneously.
  • ions from elements which can form an alloy with zinc so that when the phosphating layer is deposited, zinc alloys are deposited simultaneously.
  • the addition of nanoparticles and organic molecules is also conceivable.
  • Other possible bath additives for modifying the layers are polyphosphates, borates, organic polyhydroxy compounds, glycerophosphates and fluorides.
  • the additional ions can be, for example, ions of a divalent metal M, the further divalent metal M being selected from the group consisting of Ni, Fe, Co, Cu, Mn and the like.
  • the reaction can be carried out with or without the addition of an accelerator.
  • Suitable accelerators are urea, nitrates, nitrites, chlorates, bromates, hydrogen peroxide, ozone, organic nitro bodies, peroxy compounds, hydroxylamine or mixtures thereof.
  • Nitrate ions in the range of 0-20 g / l are advantageous as accelerators.
  • the pH of the bath is between 1.5 and 4, preferably between 2.5 and 3.5.
  • Binary, ternary or even higher alloys can be deposited by adding Zn, Ni, Co, Fe or Mn salts.
  • the metal ions can also be supplied to the electrolyte by anodic dissolution.
  • the electrolyte can either rest or be moved during the process.
  • Current densities in the range from -5 to -50 A / dm 2 are particularly preferred.
  • the temperature of the electrolyte is> 40 ° C and is preferably in the range between 40 and 80 ° C, particularly preferably between 60 and 70 ° C.
  • the electrolysis process can be controlled both potentiostatically and galvanostatically, whereby either direct current or pulsed direct current can be used.
  • the layer thickness distribution can be regulated by controlling the local current density, i.e. by shaping and / or current orifices between the anode and the workpiece. In this way, geometrically more demanding parts can also be coated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
PCT/EP2004/052269 2003-10-16 2004-09-22 Elektrolytisches verfahren zum phosphatieren von metalloberflächen und damit phosphatierte metallschicht WO2005038095A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006534745A JP2007508457A (ja) 2003-10-16 2004-09-22 金属表面をリン酸塩処理するための電解法及びそれによりリン酸塩処理された金属層
BRPI0415520-3A BRPI0415520A (pt) 2003-10-16 2004-09-22 processo eletrolìtico para fosfatação de superfìcies metálicas e camada metálica fosfatada com o mesmo
EP04787187A EP1675975A2 (de) 2003-10-16 2004-09-22 ELEKTROLYTISCHES VERFAHREN ZUM PHOSPHATIEREN VON METALLOBERFLÄCHEN UND DAMIT PHOSPHATIERTE METALLSCHICHT
US10/575,907 US20070295608A1 (en) 2003-10-16 2004-09-22 Electrolytic Method For Phosphating Metallic Surfaces And Metall Layer Phosphated Thereby
CN200480030171.3A CN1867704B (zh) 2003-10-16 2004-09-22 用于磷酸盐化金属表面的电解方法和由此磷酸盐化的金属层

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10348251.2 2003-10-16
DE10348251A DE10348251A1 (de) 2003-10-16 2003-10-16 Elektrolytisches Verfahren zum Phosphatieren von Metalloberflächen und damit phosphatierte Metallschicht

Publications (2)

Publication Number Publication Date
WO2005038095A2 true WO2005038095A2 (de) 2005-04-28
WO2005038095A3 WO2005038095A3 (de) 2005-07-14

Family

ID=34428451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052269 WO2005038095A2 (de) 2003-10-16 2004-09-22 Elektrolytisches verfahren zum phosphatieren von metalloberflächen und damit phosphatierte metallschicht

Country Status (8)

Country Link
US (1) US20070295608A1 (zh)
EP (1) EP1675975A2 (zh)
JP (1) JP2007508457A (zh)
CN (1) CN1867704B (zh)
BR (1) BRPI0415520A (zh)
DE (1) DE10348251A1 (zh)
TR (1) TR200601814T1 (zh)
WO (1) WO2005038095A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152732A1 (de) * 2011-05-09 2012-11-15 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Schienenrad und verfahren zur herstellung eines schienenrades
CN114883560A (zh) * 2021-02-05 2022-08-09 中南大学 一种三维集流体/Zn/Zn-E复合负极及其制备和在水系锌离子电池中的应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006035974A1 (de) * 2006-08-02 2008-02-07 Robert Bosch Gmbh Verfahren zur Phosphatierung einer Metallschicht
EP2315862A2 (en) * 2008-06-18 2011-05-04 Massachusetts Institute of Technology Catalytic materials, electrodes, and systems for water electrolysis and other electrochemical techniques
CN101643928B (zh) * 2009-09-09 2011-01-05 重庆科技学院 镁合金表面阴极电沉积磷酸盐/金属复合膜的方法
DE102010030465B4 (de) 2010-06-24 2023-12-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen eines Blechformteils aus einem höherfesten Stahlblechmaterial mit einer elektrolytisch aufgebrachten Zink-Nickel-Beschichtung
CN102212864A (zh) * 2011-06-10 2011-10-12 沈阳理工大学 修饰电解磷化膜的方法
US9393759B2 (en) * 2013-10-24 2016-07-19 General Electric Company Metal laminate structures with systems and methods for treating
DE102016100245A1 (de) 2016-01-08 2017-07-13 Staku Anlagenbau Gmbh Selbstschmierende elektrolytisch abgeschiedene Phosphatierungsbeschichtung
CN105951155B (zh) * 2016-06-01 2017-12-29 中钢集团郑州金属制品研究院有限公司 一种钢丝在线双磷化方法及其连续生产设备
CN107630243B (zh) * 2017-10-16 2019-07-02 浙江五源科技股份有限公司 一种复合磷化膜的电解制备方法
CN114824263B (zh) * 2021-01-29 2024-03-19 中南大学 一种Zn@Zn-E复合负极及其制备和在水系锌离子电池中的应用
CN114737179B (zh) * 2022-05-05 2024-05-24 东南大学 一种高温合金耐热磷化膜、其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449222A (en) * 1964-08-13 1969-06-10 Hooker Chemical Corp Metal coating process
WO1991019836A1 (en) * 1990-06-01 1991-12-26 Henkel Corporation Method for treating the surface of steel
WO2000015879A1 (en) * 1998-09-11 2000-03-23 Henkel Corporation Method for forming a lubricative film for cold working
JP2000160394A (ja) * 1998-12-01 2000-06-13 Nippon Parkerizing Co Ltd 鉄系金属材料の短時間りん酸塩処理方法
US20030089564A1 (en) * 2001-02-23 2003-05-15 Hiroshi Uehara Rotating brake member of braking device for vehicle and method for antirust treatment thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2540314A (en) * 1947-07-24 1951-02-06 Parker Rust Proof Co Process and compositions for applying phosphate coatings
US3449229A (en) * 1966-08-08 1969-06-10 Hooker Chemical Corp Electrophoretic deposition on zinc enriched metal surface
JP2534280B2 (ja) * 1987-02-05 1996-09-11 日本パーカライジング株式会社 亜鉛系複合めっき金属材料およびめっき方法
US5232523A (en) * 1989-03-02 1993-08-03 Nippon Paint Co., Ltd. Phosphate coatings for metal surfaces
JPH0336296A (ja) * 1989-06-29 1991-02-15 Nippon Parkerizing Co Ltd ステンレス鋼の表面処理方法
US5645706A (en) * 1992-04-30 1997-07-08 Nippondenso Co., Ltd. Phosphate chemical treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449222A (en) * 1964-08-13 1969-06-10 Hooker Chemical Corp Metal coating process
WO1991019836A1 (en) * 1990-06-01 1991-12-26 Henkel Corporation Method for treating the surface of steel
WO2000015879A1 (en) * 1998-09-11 2000-03-23 Henkel Corporation Method for forming a lubricative film for cold working
JP2000160394A (ja) * 1998-12-01 2000-06-13 Nippon Parkerizing Co Ltd 鉄系金属材料の短時間りん酸塩処理方法
US20030089564A1 (en) * 2001-02-23 2003-05-15 Hiroshi Uehara Rotating brake member of braking device for vehicle and method for antirust treatment thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 015, Nr. 167 (C-0827), 26. April 1991 (1991-04-26) & JP 03 036296 A (NIPPON PARKERIZING CO LTD), 15. Februar 1991 (1991-02-15) & JP 03 036296 A (NIPPON PARKERIZING CO LTD) 15. Februar 1991 (1991-02-15) *
PATENT ABSTRACTS OF JAPAN Bd. 2000, Nr. 09, 13. Oktober 2000 (2000-10-13) & JP 2000 160394 A (NIPPON PARKERIZING CO LTD), 13. Juni 2000 (2000-06-13) & JP 2000 160394 A (NIPPON PARKERIZING CO LTD) 13. Juni 2000 (2000-06-13) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152732A1 (de) * 2011-05-09 2012-11-15 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Schienenrad und verfahren zur herstellung eines schienenrades
RU2595129C2 (ru) * 2011-05-09 2016-08-20 Кнорр-Бремзе Зюстеме Фюр Шиненфарцойге Гмбх Колесо рельсового подвижного состава и способ его изготовления
CN114883560A (zh) * 2021-02-05 2022-08-09 中南大学 一种三维集流体/Zn/Zn-E复合负极及其制备和在水系锌离子电池中的应用
CN114883560B (zh) * 2021-02-05 2024-03-19 中南大学 一种三维集流体/Zn/Zn-E复合负极及其制备和在水系锌离子电池中的应用

Also Published As

Publication number Publication date
JP2007508457A (ja) 2007-04-05
EP1675975A2 (de) 2006-07-05
BRPI0415520A (pt) 2006-12-26
CN1867704B (zh) 2012-03-14
WO2005038095A3 (de) 2005-07-14
CN1867704A (zh) 2006-11-22
US20070295608A1 (en) 2007-12-27
TR200601814T1 (tr) 2007-01-22
DE10348251A1 (de) 2005-05-12

Similar Documents

Publication Publication Date Title
DE69737195T2 (de) Lösung und Verfahren zur Herstellung von Schutzschichten auf Metallen
DE102006035871B3 (de) Verfahren zur Abscheidung von Chromschichten als Hartverchromung, Galvanisierungsbad sowie hartverchromte Oberflächen und deren Verwendung
DE3816265C2 (zh)
EP0633950B1 (de) Nickelfreie phosphatierverfahren
WO2005038095A2 (de) Elektrolytisches verfahren zum phosphatieren von metalloberflächen und damit phosphatierte metallschicht
EP0287133B1 (de) Verfahren zur Phosphatierung vor der Elektrotauchlackierung
EP0478648B1 (de) Verfahren zur herstellung von mangan- und magnesiumhaltigen zinkphosphatüberzügen
EP0717787B1 (de) Nickelfreies phosphatierverfahren
DE3932006A1 (de) Verfahren zum aufbringen von phosphatueberzuegen
DE3011991C2 (de) Verfahren zur Elektroplattierung eines Stahlbandes mit einer glänzenden Zn-Ni-Legierung
EP0134895B1 (de) Verfahren und Mittel zum beschleunigten und schichtverfeinernden Aufbringen von Phosphatüberzügen auf Metalloberflächen
WO2004101850A1 (de) Vorbehandlung von metallloberflächen vor einer lackierung
EP2635724B1 (de) Verfahren zur abscheidung von hartchrom aus cr(vi)-freien elektrolyten
EP0219779A2 (de) Verfahren zur Phosphatierung elektrolytisch verzinkter Metallwaren
EP0662164B1 (de) Verfahren zum phosphatieren von verzinkten stahloberflächen
DE102006035974A1 (de) Verfahren zur Phosphatierung einer Metallschicht
EP0215041B1 (de) Verfahren zum phosphatieren von metalloberflächen
DE3300543A1 (de) Waessrig-saure chromatierloesung und verfahren zur herstellung gefaerbter chromatueberzuege auf elektrochemisch abgeschiedenen zink-nickel-legierungen
EP1019564A1 (de) Verfahren zur phosphatierung von stahlband
EP3415665B1 (de) Verfahren zur galvanischen abscheidung von zink-nickel-legierungsüberzügen aus einem alkalischen zink-nickel-legierungsbad mit reduziertem abbau von additiven
EP0866888B1 (de) Verfahren zur phosphatierung von metalloberflächen
DE4341041A1 (de) Nickelfreies Phosphatierverfahren mit m-Nitrobenzolsulfonat
EP1090160A1 (de) Schichtgewichtsteuerung bei bandphosphatierung
EP1433879B1 (de) Verfahren zur Beschichtung von Metalloberflächen mit einer Alkaliphosphatierungslösung, wässeriges Konzentrat und Verwendung der derart beschichteten Metalloberflächen
EP1574601B1 (de) Verfahren zur galvanischen Abscheidung von Zinkphosphat oder Zink-Calcium-Phosphat

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030171.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004787187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004787187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006/01814

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 2006534745

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004787187

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0415520

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 10575907

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10575907

Country of ref document: US