WO2005028661A1 - カロテノイド化合物の製造方法 - Google Patents

カロテノイド化合物の製造方法 Download PDF

Info

Publication number
WO2005028661A1
WO2005028661A1 PCT/JP2004/013033 JP2004013033W WO2005028661A1 WO 2005028661 A1 WO2005028661 A1 WO 2005028661A1 JP 2004013033 W JP2004013033 W JP 2004013033W WO 2005028661 A1 WO2005028661 A1 WO 2005028661A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeaxanthin
strain
carotenoid
ratio
mass
Prior art date
Application number
PCT/JP2004/013033
Other languages
English (en)
French (fr)
Inventor
Akira Tsubokura
Hisashi Yoneda
Kazuaki Hirasawa
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003325144A external-priority patent/JP2005087100A/ja
Priority claimed from JP2003325130A external-priority patent/JP2005087099A/ja
Priority claimed from JP2003325104A external-priority patent/JP4557244B2/ja
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to AT04787716T priority Critical patent/ATE557097T1/de
Priority to ES04787716T priority patent/ES2387674T3/es
Priority to AU2004274750A priority patent/AU2004274750B2/en
Priority to EP04787716A priority patent/EP1676925B1/en
Priority to US10/571,902 priority patent/US7745170B2/en
Priority to CA002539069A priority patent/CA2539069C/en
Priority to DK04787716.2T priority patent/DK1676925T3/da
Publication of WO2005028661A1 publication Critical patent/WO2005028661A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/43Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives
    • A23L5/44Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives using carotenoids or xanthophylls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B61/00Dyes of natural origin prepared from natural sources, e.g. vegetable sources
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to zeaxanthin, ⁇ -carotene, lycopene, and the like, which are useful as natural yellow pigments, natural red pigments, and antioxidants for feed, food, cosmetics, pharmaceuticals, and the like.
  • the present invention relates to a microbial production method of a carotenoid mixture containing
  • Zeaxanthin is contained in various plants such as corn and is added to feeds as a natural yellow pigment, and is used for improving the color tone of egg yolk, meat and epidermis of poultry such as -Petori and as a coloring agent for foods. known. It also has a strong antioxidant effect (Fisheries Science, 62 (1), 134-137, 1996), and has been reported to have an antitumor cancer effect ⁇ ! Pull (Biol. Pharm. Bui 1., 18 (2 ), 227-233, 1995). Zeaxanthin, together with rutin, is known to be present in the retina and lens, and is involved in maintaining eye health (FOOD Style 21, 3 (3), 50-53, 1999).
  • Zeaxanthin is also useful as a material for health foods, cosmetics and pharmaceuticals.
  • ⁇ cryptoxanthin is contained in citrus fruits and is known to have an antitumor effect (Biol. Pharm. Bull., 18 (2), 227-233, 1995), and is used as a food material and feed compound .
  • 8-Carotene has provitamin A action and antioxidant action, and is widely used as feed additive, food additive, natural colorant, etc.
  • Zeaxanthin is produced by a chemical synthesis method using an optically active hydroxyketone obtained by asymmetric reduction of oxoisophorone as a raw material (Pure Appl. Chem., 63 (1), 45, 1991), and corn seeds.
  • a method of extracting force biological dye, 1974, Asakura Shoten
  • a method of extracting marigold power is also known (JP-A-8-092205), but the main component of the carotenoid derived from marigold is rutin and the content of zeaxanthin is low.
  • microorganisms produced include Spirulina algae (Japanese Patent Application Laid-Open No.
  • Nannochloris microalgae Japanese Patent Application Laid-Open No. 7-59558
  • Bacteria of the genus Flexipactor Japanese Patent Application Laid-Open No. 5-228978
  • Kaihei 5-49497 Bacteria belonging to the genus Flavata (Carote) noids, in Microbial Technology, 2nd edn, Vol. 1, 529—544, New
  • ⁇ -Ikkiriten is a natural yellow carotenoid contained in green-yellow vegetables such as carrots and is widely used as a coloring agent for foods such as butter and margarine. Also provitamins
  • ⁇ It is active and is an important nutrient for humans. It is known to have an antioxidant effect (Fisheries Science, 62 (1), 134-137, 1996), and antitumor and anticancer effects have been reported (Biol. Pharm. Bull., 18 (2), 227-233, 1995). These physiological effects j8-carotene is useful not only as a coloring agent but also as a functional material for feed, food, cosmetics and pharmaceuticals.
  • yeast Phaffia rhodozyma Japanese Patent Laid-Open No. 5-168465
  • yeast of the genus Rhodotorula Japanese Patent Laid-Open No. 6-22748
  • bacteria Agrobacterium aurantiacum Agrobacterium aurantiacum.
  • FERM BP-4283 a new genus of bacteria strain E-396 (FERM BP-4283) (JP-A-7-79796, JP-A-8-9964, U.S. Pat. No. 5,607,839; U.S. Pat. No. 5,858,761) Known!
  • Lycopene is a natural red carotenoid contained in tomato and is useful as a food coloring. It also has a strong antioxidant action (Arch. Biochem. Biophys., 271, 532, 1989) and is known to inhibit the low-density lipoprotein oxidase associated with arteriosclerosis (Nutr. Metab. Cordiovasc., Dis 7, 433, 1997), and has been reported to suppress the growth of cancer cells (J. Natl. Cancer Inst. 91, 313, 1999). These physiological effects Lycopene is useful as a feed, food, cosmetic and pharmaceutical ingredient.
  • a method for producing lycopene a method of chemically synthesizing linalool or gera-ol as a raw material (JP-A-2001-39943) and a method of separating and purifying from tomato (JP-A-2002-193850) are known.
  • microorganisms producing lycopene include Donariella algae (JP-A-2001-161391), chlorella algae (JP-A-2000-152778), and bacteria belonging to the genus Rhodopactor (JP-A-8-239658).
  • E-396 strain known as a carotenoid compound-producing bacterium
  • a method has been established to produce a carotenoid-containing compound containing astaxanthin at a high concentration on an industrial scale.
  • the ratio of zeaxanthin, j8-Rikuten and lycopene in the total rotenoid produced is low! ,.
  • the present invention provides the following inventions.
  • Mutagenesis is induced in an astaxanthin-producing microorganism in which the nucleotide sequence of DNA corresponding to 16S ribosomal RNA is substantially homologous to the nucleotide sequence of SEQ ID NO: 1,
  • the ratio (% by mass) of the zeaxanthin to the total amount of rotenoid production is higher than that of the parent strain
  • the mutant strain is selected to obtain a zeaxanthin-producing microorganism
  • the culture power obtained by culturing the zeaxanthin-producing microorganism is zeaxanthin or zeaxanthin.
  • a method for producing zeaxanthin or a zeaxanthin-containing carotenoid mixture comprising collecting a carotenoid mixture containing zeaxanthin.
  • a mutant strain in which the ratio (mass%) of ⁇ -Ichiguchi ten to total power rotenoid production is higher than that of the parent strain was selected to obtain j8-Rikiguchi ten producing microorganisms, and the j8-Rikiguchi ten producing microorganisms were isolated.
  • Contains ⁇ -Ichi-Rokuten or ⁇ -IchiRoku-Ten from the culture obtained by culturing A method for producing a carotenoid mixture comprising a ⁇ -strengthene or a ⁇ -strength, comprising collecting a carotenoid mixture to be treated.
  • Echinenone, j8-cryptoxanthin, 3-hydroxyechinenone, asteroidenone, canthaxanthin, zeaxanthin, adonirubin, adonixanthin, and astaxanthin produced by an 8-carotene-producing microorganism The method according to any one of the above (7) to (11), wherein the ratio of each to the total amount of rotenoid production is! / ⁇ deviation of less than 20% by mass.
  • the carotenoid-producing microorganism is selected from E-396 strain (FERM BP-4283) and its mutant strain, and A-581-1 strain (FERM BP-4671) and its mutant strain (7) — (12) The method described in any of the above.
  • the nucleotide sequence of the DNA corresponding to the 16S ribosomal RNA is substantially homologous to the nucleotide sequence of SEQ ID NO: 1, and ⁇ -ryokuten, echinenone,
  • the ratio of lycopene produced by inducing mutations to total rotenoid production (% by mass) Is higher than that of the parent strain, obtaining a lycopene-producing microorganism by selecting a mutant strain, and collecting a lycopene or a lycopene-containing carotenoid mixture from a culture obtained by culturing the lycopene-producing microorganism.
  • lycopene or a carotenoid mixture containing lycopene.
  • Specific examples of the astaxanthin or carotenoid-producing microorganism having a sequence substantially homologous to the above sequence include E-396 strain (FERM BP-4283) and A-581-1 strain (FERM). BP-4671), and various mutants obtained by mutating the E-396 strain or the A-581-1 strain, and two closely related species thereof.
  • SEQ ID NO: 1 D The NA nucleotide sequence corresponds to the ribosomal RNA of E-396 strain, and the DNA nucleotide sequence of SEQ ID NO: 2 corresponds to the ribosomal RNA of A-581-1 strain.
  • the nucleotide sequence homology of the 16S ribosomal RNA of the E-396 strain and the A-581-1 strain was 99.4%, which proved to be extremely closely related. Therefore, these strains form a group as carotenoid-producing bacteria.
  • the parent strain of the mutation used in the method of the present invention includes E-396 strain and A-581-1 strain, a mutant strain of E-396 strain or A-581-1 strain, and closely related species of these strains.
  • the DNA base sequence corresponding to 16S ribosomal RNA is defined as a astaxanthin or carotenoid-producing bacterium having 98% or more homology with the base sequence of SEQ ID NO: 1.
  • the method for mutating an astaxanthin-producing microorganism is not particularly limited as long as it induces the mutation.
  • chemical methods using a mutagen such as N-methyl-N'-two-trough N-nitrosogazine (NTG), ethyl methanesulfonate (EMS), physical methods such as ultraviolet irradiation, X-ray irradiation, etc.
  • Biological methods such as gene recombination and transposons can be used.
  • This mutation treatment may be performed once or, for example, by obtaining a mutant of an astaxanthin-producing microorganism by this mutation treatment and further mutating the mutant, two or more mutation treatments are performed as described above.
  • the mutant strain can be cultured, for example, by culturing it in a medium containing a component necessary for growth of a producing bacterium and producing a carotenoid compound.
  • the culture method may be any method such as shaking culture of a test tube or a flask, or aeration and agitation culture.
  • the carotenoid compound can be analyzed by any method capable of separating and detecting the carotenoid compound. For example, high-performance liquid chromatography, thin-layer chromatography, paper chromatography and the like can be used.
  • the zeaxanthin-producing microorganism is obtained by selecting a mutant having a high zeaxanthin production ratio with respect to the total amount of rotenoid, and the total amount of rotenoid referred to in the present specification is defined as astaxanthin.
  • Taxanthin Canthaxanthin, adonixanthin, -Rikokuten, echinenone, zeaxanthin, j8-cryptoxanthin, 3-hydroxyecenone, asteroidenone, ad-rubin and the like.
  • Astaxanthin-producing microorganisms such as strain E-396 include astaxanthin, canthaxanthin, adonixanthin, j8-ryokuten, echinenone, zeaxanthin, j8-cryptoxanthin, 3-hydroxyexeninone, and axyxanthin. It produces various carotenoid compounds such as steroidenone and ad-rubin simultaneously. Therefore, the ratio of zeaxanthin production to the total amount of rotenoids is low, usually about 0-10% by mass.
  • mutations are induced in an astaxanthin-producing microorganism, and a mutant strain in which the ratio of zeaxanthin to the total amount of rotenoid produced is particularly high is selected.
  • the criteria for selection are zeaxane It is necessary that the production ratio of tin is at least higher than the production ratio of zeaxanthin in the parent strain before mutation, and the production ratio of zeaxanthin is preferably 20% by mass or more, more preferably 20% by mass or more, based on the total amount of rotenoid produced.
  • a mutant strain of 40% by mass or more, more preferably 60% by mass or more, is selected.
  • the parent strain for the mutation used in the present invention is that the DNA base sequence corresponding to 16S ribosomal RNA has 98% or more homology with the base sequence shown in SEQ ID NO: 1, and echinenone, j8-cryptoxanthin , 3-hydroxyechinenone, asteroidenone, canthaxanthin, zeaxanthin, adironrubin, adonixanthin, and astaxanthin, a power defined as a carotenoid-producing microorganism that produces at least one carotenoid compound, preferably production Total power of the total amount of canthaxanthin and echinenone to be produced A carotenoid-producing microorganism whose ratio to the amount of rotenoid production is 50% by mass or more, or the total power of the total amount of zeaxanthin and ⁇ cryptoxanthin produced to produce rotenoid A carotenoid-producing microorganism having a ratio of at least 50% by mass is used.
  • the ratio of the total amount of canthaxanthin and echinenone to the total amount of rotenoid production is 70% by mass or more, or the total amount of rotenoid production of the total amount of zeaxanthin and j8-cryptoxanthin to be produced.
  • a carotenoid-producing microorganism having a ratio to 70% by mass or more is used.
  • the total amount of rotenoid referred to in the present specification refers to ⁇ -carotene, echinenone, j8-cryptoxanthin, 3-hydroxyechinenone, asteroidenone, canthaxanthin, zeaxanthin, adilrubin, adonixanthin, astaxanthin and the like. 1 shows the total amount of carotenoid conjugate.
  • both ends of lycopene are cyclized to form ⁇ -lactate, and j8-carotene is further modified with a ketoenzyme and a hydroxylase at the 6-membered ring at each end. It is estimated that this results in the production of canthaxanthin, zeaxanthin, and astaxanthin (see Figure 1).
  • the present inventors have compared the use of a microorganism producing a high ratio of astaxanthin as a parent strain of a mutant with a microorganism producing a high ratio of canthaxanthin and echinenone, or zeaxanthin and j8-crypto.
  • a microorganism that produces a high ratio of xanthine as a parent strain, we found that the probability of obtaining a j8-ryokuten-producing microorganism was dramatically improved. This phenomenon can be explained as follows.
  • a carotenoid-producing microorganism that produces a high ratio of astaxanthin has both an enzyme for hydroxylating ⁇ -lactate and an enzyme for keto-formation.
  • the ability to delete both enzymes The microorganism with a high ratio of the total amount of canthaxanthin and echinenone is a microorganism lacking hydroxylase, so it is sufficient to delete only the ketoenzyme by mutation.
  • a microorganism having a high ratio of the total amount of zeaxanthin and ⁇ -cryptoxanthin is a microorganism deficient in ketoenzyme, so that only the hydroxylase needs to be eliminated.
  • Microorganisms and microorganisms with a high ratio of the total amount of zeaxanthin and j8-cryptoxanthin may be those that have the properties of a wild strain originally, but those that have the ability to produce astaxanthin by mutation, etc. Good.
  • the method for mutating a carotenoid-producing microorganism there is no particular limitation as long as it does.
  • a chemical method using a mutagen such as N-methyl-N, one-two-row N-nitrosguanidine (NTG), ethyl methanesulfonate (EMS), a physical method such as ultraviolet irradiation, X-ray irradiation, and a gene.
  • Biological methods such as recombination and transposons can be used.
  • This mutation treatment may be performed once or, for example, if a mutant of a carotenoid-producing microorganism is obtained by this mutation treatment, and this is further suddenly mutagenized! / Let's go.
  • the ratio (% by mass) of ⁇ -carotene to the total amount of rotenoids produced was higher than that of the parent strain.
  • Select mutant strains to obtain j8-carotene-producing microorganisms For this purpose, a colony may be formed on a solid medium after the mutagenesis treatment, and a colony may be obtained at random. However, a colony of a ⁇ -carotene-producing microorganism often exhibits a yellow-orange color. By selecting a colony exhibiting such a color, j8-carotene-producing microorganisms (mutants) can be efficiently selected. By including this step, the probability of obtaining a mutant having a high ratio of j8-ryokuten to the total amount of rotenoid produced is greatly improved.
  • each mutant colony selected as described above is cultured by a conventional method, and after completion of the culture, the carotenoid-conjugated product contained in the culture solution of each mutant is analyzed, and ⁇ ⁇ Mutants with a high production ratio of lipstick can be selected.
  • the cultivation of the mutant strain can be performed, for example, by culturing it in a medium containing a component necessary for growth of a producing bacterium and producing a carotenoid compound.
  • the culture method may be any method such as shaking culture of a test tube or a flask, or aeration and agitation culture.
  • the carotenoid compound can be analyzed by any method capable of separating and detecting the carotenoid compound. For example, high-performance liquid chromatography, thin-layer chromatography, paper chromatography and the like can be used.
  • the third / 3-strength ten-producing microorganism is obtained by selecting a mutant strain having a high ratio of j8-carotene to the total amount of rotenoid.
  • Carotenoid-producing microorganisms such as E-396 strains include astaxanthin, canthaxanthin, adonixanthin, ⁇ -carotene, echinenone, zeaxanthin, j8-cryptoxanthin, and 3-hydroxyechineno.
  • the ratio of j8-force mouth ten to the total amount of rotenoid is low, usually about 0 to 20% by mass.
  • a mutation is induced in a carotenoid-producing microorganism, and a mutant having a particularly high ratio of j8-ryokuten to the total amount of rotenoid produced is selected.
  • a mutant strain in which the ratio of ⁇ -Ichiguchi ten is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more is selected.
  • carotenoid biosynthesis is performed by modifying the 6-membered ring at both ends of the j8-ryokuten with a ketoenzyme and a hydroxylase, as described above, so that canthaxanthin, zeaxanthin, and astaxanthin. It is presumed that these are generated (see Figure 1).
  • the ketoenzyme and hydroxylase are incompletely deficient, the production ratio of j8-ryokuten will increase, and echinenone, j8-cryptoxanthin, 3-hydroxyechinenone, asteroidenone, canthaxane It is estimated that the ratio of carcinoid, zeaxanthin, adonolinevin, adonixanthin and astaxanthin to the total carotenoid production is reduced.
  • Another effective means for selecting j8-Rikiten ten-producing microorganisms from mutant strains is echinenone, j8-cryptoxanthin, 3-hydroxyechinenone, asteroidenone, cantaxanthin,
  • a method of selecting based on the fact that the ratio of zeaxanthin, addirubin, adonixanthin, and astaxanthin to the total amount of rotenoids is low can be used. Selection can be made on the basis that the ratio of each of the aforementioned compounds to the total power rotenoid is less than 20% by mass, more preferably less than 10% by mass, and even more preferably less than 5% by mass.
  • the parent strain of the mutation used in the present invention has a DNA base sequence corresponding to 16S ribosomal RNA having 98% or more homology with the base sequence set forth in SEQ ID NO: 1 and
  • a carotenoid-producing microorganism that produces at least one selected carotenoid compound Is defined as Ability to use a wild-type strain that produces at least one of the above carotenoids as a parent strain of a mutant
  • By artificial mutagenesis for example, a mutant strain with improved astaxanthin productivity or a mutant with improved canthaxanthin productivity Strains, mutants with improved zeax
  • each mutant colony selected as described above is cultured by a conventional method, and after completion of the culture, the carotenoid-conjugated product contained in the culture solution of each mutant is analyzed, and lycobe If the production ratio of the protein is high, a mutant strain can be selected.
  • the mutant strain can be cultured, for example, by culturing it in a medium containing a component required for growing a producing bacterium and producing a carotenoid compound.
  • the culture method may be any method such as shaking culture of a test tube or a flask, or aeration and agitation culture.
  • the carotenoid compound can be analyzed by any method capable of separating and detecting the carotenoid compound. For example, high-performance liquid chromatography, thin-layer chromatography, paper chromatography and the like can be used.
  • the lycopene-producing microorganism is obtained by selecting a mutant strain having a high ratio to the total amount of lycopene rotenoid, and the total amount of lycopene as referred to in the present specification is lycopene, j8- It indicates the total amount of carotenoid compounds such as Rikokuten, echinenone, j8-cryptoxanthin, 3-hydroxyecenone, asteroidenone, canthaxanthin, zeaxanthin, adilrubin, adnixanthin, and astaxanthin.
  • carotenoid compounds such as Rikokuten, echinenone, j8-cryptoxanthin, 3-hydroxyecenone, asteroidenone, canthaxanthin, zeaxanthin, adilrubin, adnixanthin, and astaxanthin.
  • Carotenoid-producing microorganisms such as E-396 strain include astaxanthin, canthaxanthin, adonixanthin, —Rikakuten, echinenone, zeaxanthin, j8-cryptoxanthin, 3-hydroxyxynenone, and asteroy. Since various carotenoid compounds such as denone and ad-rubin are produced simultaneously, the ratio of lycopene to the total amount of rotenoids is low, usually about 0-5% by mass.
  • mutants are selected in which the ratio of produced lycopene to the total amount of rotenoids is particularly high.
  • the lycopene production ratio is at least higher than the lycopene production ratio of the parent strain before mutation, but the lycopene production ratio is preferably based on the total amount of rotenoid produced.
  • both ends of lycopene are cyclized to form j8-ryokuten, and the j8-ryokuten is further modified with a ketoenzyme and hydroxylase at the six-membered ring at each end.
  • canthaxanthin, zeaxanthin, and astaxanthin are generated (see Fig. 1).
  • Another effective means for selecting neutral lycopene producing microorganisms of the mutant strains is as follows: / 3 power roten, echinenone, j8-cryptoxanthin, 3-hydroxyechinenone, asteroidenone,
  • a method can be used in which selection is made based on the low ratio of each of the taxontaxin, zeaxanthin, adironrubin, adonixanthin, and astaxanthin to the total amount of rotenoids. Selection can be made on the basis that the ratio of each of the aforementioned compounds to the total power rotenoid is less than 20% by mass, more preferably less than 10% by mass, and even more preferably less than 5% by mass.
  • the zeaxanthin-producing mutant, the j8-ryokuten-producing mutant or the lycopene-producing mutant selected as described above are cultured as described below, and the target carotenoid compound is collected.
  • each of the above mutant microorganisms is cultured to collect zeaxanthin, j8-ryokuten, lycopene, or a carotenoid mixture containing them.
  • the method of culturing the mutant microorganism may be any method as long as it produces the target carotenoid compound.
  • the following method can be employed. That is, a medium containing a carbon source, a nitrogen source, an inorganic salt and, if necessary, special required substances (eg, vitamins, amino acids, nucleic acids, etc.) necessary for growth of the producing bacterium is used.
  • the carbon source examples include sugars such as glucose, sucrose, funolectose, trenoperose, mannose, mannitol, and manoletose, organic acids such as acetic acid, fumaric acid, cunic acid, propionic acid, malic acid, and malonic acid, ethanol, propanol, butanol, Alcohols such as pentanole, hexanol and isobutanol are exemplified.
  • the addition ratio varies depending on the type of carbon source, but is usually 100 g / L, preferably 2-50 g / L of the medium.
  • the nitrogen source for example, nitric acid Lium, ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium phosphate
  • the proportion of added calories varies depending on the type of nitrogen source, but is usually 0.1 to 20 g, preferably 1 to 10 g per liter of medium.
  • inorganic salts potassium dihydrogen phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, magnesium sulfate, magnesium chloride, iron sulfate, iron chloride, manganese sulfate, manganese salt, zinc sulfate, zinc chloride, copper sulfate , Calcium carbonate, calcium carbonate, sodium carbonate and the like.
  • the addition ratio varies depending on the type of inorganic salt. Usually, it is 0.1 to 10 g per liter of medium.
  • Specially required substances include vitamins, nucleic acids, yeast extract, peptone, meat extract, malt extract, corn steep liquor, dried yeast, soybean meal, soybean oil, olive oil, corn oil, flax oil, etc. Species or two or more are used. The addition ratio varies depending on the type of special required substance, but it is usually 0.1 Olmg to 100 g per 1 L of medium.
  • the pH of the medium is adjusted to 2-12, preferably 6-9.
  • the culture condition is a temperature of 10-70 ° C, preferably 20-35 ° C, and shaking culture or aeration-agitation culture is usually performed for 1 to 20 days, preferably 2 to 9 days.
  • the operation of removing the water from the culture solution obtained by the above method is performed.
  • the amount of water required to remove the culture solution depends on the state of the pigment content of the culture solution, etc.
  • the filtration can be performed by a usual filtration method, a centrifugation method or the like. If it is necessary to further remove water, a method of drying the precipitate can be used. Examples of the drying method include ordinary spray drying, drum drying, freeze drying and the like.
  • the content of the target carotenoid compound can be increased by extraction.
  • the culture solution itself may be used, or a precipitate after filtration or a dried product thereof may be used.
  • the extraction method include solvent extraction and supercritical carbon dioxide extraction.
  • the organic solvent used for solvent extraction is not particularly limited, and may be a water-soluble organic solvent or a water-insoluble organic solvent.
  • water-soluble organic solvents include tetrahydrofuran, pyridine, dioxane, cyclohexanone, cyclohexanol, methanol, Examples include ethanol, isopropanol, acetone, ethyl methyl ketone, dimethylformamide, and dimethyl sulfoxide.
  • the extraction solvent may be used as a mixture of two or more kinds, or may be used as a mixture with water.
  • the obtained extract can be used as a product by removing the solvent by concentration under reduced pressure or the like. If necessary, it may be deodorized or suspended in vegetable oil.
  • the carotenoid compound is purified by a conventional purification means such as liquid-liquid extraction using a combination of two or more solvents, column chromatography, and the like.
  • the carotenoid conjugate may be precipitated by concentrating or cooling the extract or eluate containing the compound, or by adding a poor solvent.
  • Cultured precipitates, dried sediments, extracts, purified extracts, etc. containing zeaxanthin, j8-ryokuten or lycopene obtained by the above method are used as feed ingredients, food materials, cosmetic materials, and pharmaceutical materials. Etc. can be used.
  • FIG. 1 is a diagram showing a biosynthetic pathway of a carotenoid compound.
  • E-396 strain (FERM BP-4283) was mutagenized with 200 mg ZL of NTG (N-methyl-N, 1-toro-N-nitrosogazine) at 28 ° C for 30 minutes. . 6 ml of the medium having the composition shown in Table 1 was placed in a test tube having an inner diameter of 18 mm, and sterilized with steam at 121 ° C for 15 minutes to prepare a test tube medium. 200 yellow-orange mutant colonies were selected, and each was inoculated with one platinum loop in a test tube medium and subjected to reciprocal shaking culture at 330 rpm for 4 days at 28 ° C. It was.
  • the E-396 strain (FERM BP-4283) was mutagenized with 200 mg ZL of NTG (N-methyl-N-tro-N-trosoguanidine) at a temperature of 28 ° C for 30 minutes. 6 ml of the medium having the composition shown in Table 1 was placed in a test tube having an inner diameter of 18 mm, and sterilized with steam at 121 ° C for 15 minutes to prepare a test tube medium. 1,500 mutant colonies were randomly selected, and one platinum loop was inoculated in a test tube medium and reciprocally shaken at 330 rpm for 4 days at 28 ° C. Next, this culture was centrifuged, and the obtained carotenoid conjugate of the cells was analyzed by high performance liquid chromatography.
  • One strain in which the ratio of adonirubin, adonixanthin and astaxanthin to the total carotenoid production was less than 10% by mass was obtained.
  • Table 4 shows the results of analysis of the carotenoid conjugate of this strain.
  • the E-396 strain (FERM BP-4283) was subjected to mutation treatment with NTG, and a red-colored dark mouth was selected to obtain a mutant Y-559 strain having improved astaxanthin productivity.
  • This Y-559 strain was further mutated with 150 mg ZL of NTG.
  • 6 ml of a medium having the composition shown in Table 1 was placed in a test tube having an inner diameter of 18 mm, and sterilized with steam at 121 ° C for 15 minutes to prepare a test tube medium.
  • 350 mutant colonies exhibiting yellow-orange color were selected, and one platinum loop was inoculated into a test tube medium, and reciprocating shaking culture at 330 rpm was performed at 28 ° C for 5 days.
  • A—581—1 strain (FERM BP—4671) was mutated by irradiating it with a UV lamp. 6 ml of a medium having the composition shown in Table 1 was placed in a test tube having an inner diameter of 18 mm, and sterilized by steam at 121 ° C for 15 minutes to prepare a test tube medium. 280 mutant colonies exhibiting yellow-orange color were selected, and one platinum loop was inoculated into each test tube medium, and cultured at 28 ° C for 4 days with reciprocating shaking at 330 rpm. Next, this culture was centrifuged, and the resulting cells were analyzed for carotenoid compounds by high performance liquid chromatography.
  • the E-396 strain (FERM BP-4283) was mutated with NTG, and orange colonies were selected to obtain a mutant CA-22 strain with improved canthaxanthin productivity.
  • This CA-22 strain was further mutated with 200 mg ZL of NTG.
  • 6 ml of a medium having the composition shown in Table 9 was placed in a test tube having an inner diameter of 18 mm, and sterilized with steam at 121 ° C. for 15 minutes to prepare a test tube medium. Eighty-one orange-colored mutant colonies were selected, and one platinum loop was inoculated in a test tube medium and reciprocally shaken at 330 rpm for 5 days at 28 ° C.
  • the E-396 strain (FERM BP-4283) was mutated with NTG, and a yellow colony was selected to obtain a mutant ZE-7 strain having improved zeaxanthin productivity.
  • the ZE-7 strain was further mutated with 150 mg ZL of NTG.
  • 6 ml of the medium having the composition shown in Table 9 was placed in a test tube having an inner diameter of 18 mm, and sterilized with steam at 121 ° C for 15 minutes to prepare a test tube medium.
  • Sixty yellow-orange mutant colonies were selected, and each was inoculated with one platinum loop in a test tube medium and reciprocally shaken at 330 rpm for 5 days at 28 ° C.
  • A—581—1 strain (FERM BP—4671) was mutated by irradiating it with a UV lamp. 6 ml of a medium having the composition shown in Table 9 was placed in a test tube having an inner diameter of 18 mm, and sterilized by steam at 121 ° C for 15 minutes to prepare a test tube medium. 3,000 mutant colonies showing yellow color were selected, and one platinum loop was inoculated in each test tube medium, and reciprocating shaking culture at 330 rpm was performed at 28 ° C for 4 days. Next, the culture was centrifuged and the resulting cells were analyzed for carotenoid compounds by high performance liquid chromatography.
  • Echinenone, j8-cryptoxanthin, 3-hydroxyechinenone, asteroidenone, canthaxanthin , Zeaxanthin, adironrubin, adonixanthin, and astaxanthin have a ratio to the total amount of rotenoid production!
  • One strain having a deviation of less than 20% by mass was obtained.
  • Table 16 shows the results of carotenoid compound analysis of this strain.
  • Table 17 shows the results of analysis of carotenoid compounds in the culture of 581-1 strain.
  • E-396 strain (FERM BP-4283) was mutagenized with lOOmgZL of NTG (N-methyl-N, 1-toro-N-ditrosogazine) at 28 ° C for 30 minutes. . 6 ml of the medium having the composition shown in Table 18 was placed in a test tube having an inner diameter of 18 mm, and sterilized with steam at 121 ° C. for 15 minutes to prepare a test tube medium. Sixty pink and reddish purple mutant colonies were selected, and each was inoculated with one platinum loop in a test tube medium and reciprocated with shaking at 330 rpm at 28 ° C for 4 days.
  • composition amount g / L yeast extract 20 Pepubokun 5 Sucrose 50 KH 2 P0 4 1. 5 N a 2 HP 0 4 ⁇ 1 o 3. 8 Mg 50 4 ⁇ 7 H 2 0. 5 F e 3 O 4 ⁇ 7 H 2 0. 0 1 C a C 1 2 ⁇ 2 H 2 ooo 2 0. 0 1
  • the E-396 strain (FERM BP-4283) was subjected to mutation treatment with NTG, and a red-colored dark mouth was selected to obtain a mutant Y-559 strain having improved astaxanthin productivity.
  • This Y-559 strain was further mutated with 150 mg ZL of NTG.
  • 6 ml of a medium having the composition shown in Table 18 was placed in a test tube having an inner diameter of 18 mm, and steam-sterilized at 121 ° C for 15 minutes to prepare a test tube medium.
  • Eighty pink-reddish purple mutant colonies were selected, and each was inoculated with one platinum loop in a test tube medium and reciprocally shaken at 330 rpm for 5 days at 28 ° C.
  • the E-396 strain (FERM BP-4283) was mutated with NTG, and orange colonies were selected to obtain a mutant CA-22 strain with improved canthaxanthin productivity.
  • This CA-22 strain was further mutated with 200 mg ZL of NTG.
  • 6 ml of the medium having the composition shown in Table 18 was placed in a test tube having an inner diameter of 18 mm, and sterilized with steam at 121 ° C for 15 minutes to prepare a test tube medium. Sixty pink-reddish purple mutant colonies were selected, and one platinum loop was inoculated in a test tube medium and reciprocally shaken at 330i: pm for 5 days at 28 ° C.
  • the culture is then centrifuged Then, the carotenoid-conjugated product of the obtained cells was analyzed by high performance liquid chromatography. As a result, one strain showing the ratio of lycopene to total rotenoid production of 0% by mass or more was obtained.
  • the results of analysis of the carotenoid ligated product of this strain are shown in Table 24, and the results of analysis of the carotenoid compounds of the CA-22 strain cultured under the same conditions as described above are shown in Table 25 for comparison.
  • the E-396 strain (FERM BP-4283) was mutated with NTG, and a yellow colony was selected to obtain a mutant ZE-7 strain having improved zeaxanthin productivity.
  • the ZE-7 strain was further mutated with 150 mg ZL of NTG. 6 ml of the medium having the composition shown in Table 18 was placed in a test tube having an inner diameter of 18 mm, and sterilized with steam at 121 ° C for 15 minutes to prepare a test tube medium. Pink-reddish purple Eighty mutant colonies showing color were selected, and each was inoculated with one platinum loop in a test tube medium and reciprocally shaken at 330 rpm for 5 days at 28 ° C.
  • A—581—1 strain (FERM BP—4671) was mutated by irradiating it with a UV lamp. 6 ml of a medium having the composition shown in Table 18 was placed in a test tube having an inner diameter of 18 mm, and steam-sterilized at 121 ° C for 15 minutes to prepare a test tube medium. 100 mutant pink colonies were selected and One platinum loop was inoculated into each test tube medium, and reciprocal shaking culture at 330 rpm was performed at 28 ° C for 4 days. Next, the culture was centrifuged, and the resulting carotenoid conjugate was analyzed by high-performance liquid chromatography.
  • the method of the present invention is useful for the production of zeaxanthin, j8-ryokuten and lycopene, which are useful as dyes and antioxidants, and carotenoid mixtures containing them as a main component.
  • the present invention provides a method for producing zeaxanthin, ⁇ -one-strengthene, or lycopene, which is inexpensive, can be stably supplied, and has high safety.
  • some of the zeaxanthin, / 3 Ichirokuten or lycopene-producing mutant strains contain zeaxanthin, j8-rihokuten or lycopene as a main product and a by-product as a byproduct.
  • zeaxanthin, j8-rihokuten or lycopene as a main product and a by-product as a byproduct.
  • other carotenoid compounds such as j8-cryptoxanthin and ⁇ or j8-carotene may be produced at the same time, and the present invention is also useful as a method for efficiently producing a mixture of these carotenoids.

Abstract

 本発明は、16SリボソームRNAに対応するDNAの塩基配列が配列番号1に記載の塩基配列と実質的に相同であるカロテノイド生産微生物に突然変異を誘発し、総カロテノイド生産量中のゼアキサンチン、β−カロテン又はリコペンの比率が高い変異株を選抜してゼアキサンチン、β−カロテン又はリコペン生産微生物を取得し、前記変異微生物を培養することにより得た培養物からゼアキサンチン、β−カロテン、リコペン又はそれらを含有するカロテノイド混合物を採取することを含むゼアキサンチン、β−カロテン又はリコペンの製造方法に関する。

Description

明 細 書
カロテノイド化合物の製造方法
技術分野
[0001] 本発明は、飼料用、食品用、化粧品用、医薬品用等の天然黄色色素、天然赤色色 素及び抗酸ィ匕作用物質として有用な、ゼアキサンチン、 β—カロテン、リコペン及びそ れらを含有するカロテノイド混合物の微生物的製造法に関する。
背景技術
[0002] ゼアキサンチンはトウモロコシなど種々の植物に含まれ天然の黄色色素として飼料 に添加され、 -ヮトリなどの家禽類の卵黄、肉、表皮の色調を改善する用途及び食品 の着色料としての用途が知られる。また強力な抗酸化作用を有し (Fisheries Scien ce, 62 (1) , 134-137, 1996)、抗腫癌効果力 ^報告されて!ヽる(Biol. Pharm. Bui 1. , 18 (2) , 227-233, 1995)。ゼアキサンチンはルティンとともに網膜及び水晶体 に存在し眼の健康維持に関与していることが知られている(FOOD Style 21, 3 ( 3) , 50-53, 1999)。これらの生理的効果カもゼアキサンチンは健康食品素材、ィ匕 粧品素材及び医薬品素材として有用である。 β クリプトキサンチンは柑橘類に含ま れ、抗腫瘍効果を有することが知られ(Biol. Pharm. Bull. , 18 (2) , 227-233, 1 995)、食品素材及び飼料配合剤としての用途がある。 |8—カロテンはプロビタミン A 作用、抗酸化作用を有し、飼料添加物、食品添加物、天然着色料等として広く使用 されている。
[0003] ゼアキサンチンの製造法としてはォキソイソホロンの不斉還元により得た光学活性 なヒドロキシケトンを原料として用いる化学合成法(Pure Appl. Chem. , 63 (1) , 4 5, 1991)、トウモロコシの種子力も抽出する方法 (生体色素, 1974,朝倉書店)が知 られている。またマリーゴールド力も抽出する方法も知られるが(特開平 8— 092205) 、マリーゴールド由来カロテノイドの主成分はルティンでありゼアキサンチンの含量は 低い。また微生物が生産する例としてはスピルリナ藻類 (特開平 10— 155430)、ナン ノクロリス属微細藻類 (特開平 7— 59558)、フレキシパクター属細菌(特開平 5— 3289 78)、アルテロモナス属細菌(特開平 5— 49497)、フラボバタテリゥム属細菌(Carote noids, in Microbial Technology, 2nd edn, Vol. 1, 529—544, New
York: Academic Press)、細菌ァグロバクテリウム'ォウランティアクム(FEMS
Microbiology Letters, 128, 139—144, 1995)、新属の細菌 E— 396株(FER
M BP— 4283) (特開平 7— 79796,特開平 8— 9964,米国特許第 5, 607, 839号
,米国特許第 5, 858, 761号)力知られて!/ヽる o
[0004] β一力口テンはニンジン等の緑黄色野菜に含まれる天然の黄色カロテノイドでありバ ターやマーガリンといった食品の着色料として広く使用されている。また、プロビタミン
Α活性を有し、人間にとって重要な栄養素である。抗酸化作用を有することが知られ( Fisheries Science, 62 (1) , 134— 137, 1996)、抗腫瘍.抗癌作用が報告されて ヽる(Biol. Pharm. Bull. , 18 (2) , 227—233, 1995)。これら生理的効果力ら j8— カロテンは着色料としてのみならず、飼料用、食品用、化粧品用及び医薬品用の機 能性素材として有用である。
[0005] j8—力口テンの製造法としては j8—ョノンからの化学合成(Pure Appl. Chem. , 6 3 (1) , 45, 1979)、ニンジン、サツマィモ、カボチヤ等緑黄色野菜からの抽出(天然 着色料ハンドブック,光琳, 1979,天然着色料ハンドブック編集委員会編)が知られ ている。また微生物が j8 -カロテンを生産する例としては、ドナリエラ藻類 (Dunaliell a) (J. Phycol, 23, 176, 1987)、糸状菌ブラケスレア'トリスポラ(Blakeslea trisp ora) (Appl. Environ. Microbiol. 36, 639—642, 1979)、酵母ファフィァ ·ロドチ 一マ(Phaffia rhodozyma) (特開平 5—168465)、ロドトルラ(Rhodotorula)属酵 母(特開平 6—22748)、細菌ァグロバクテリウム'ォウランティアクム(Agrobacteriu m aurantiacum) (FEMS Microbiology Letters, 128, 139—144, 1995)、 新属の細菌 E—396株(FERM BP— 4283) (特開平 7— 79796,特開平 8—9964, 米国特許第 5, 607, 839号,米国特許第 5, 858, 761号)力 ^知られて!/ヽる。
[0006] リコペンはトマトに含まれる天然の赤色カロテノイドであり食品の着色料として有用 である。また、強力な抗酸化作用を有し (Arch. Biochem. Biophys. , 271, 532, 1989)、動脈硬化に関係する低密度リポタンパク質の酸ィ匕を阻害することが知られ( Nutr. Metab. Cordiovasc. , Dis 7, 433, 1997)、癌細胞の増殖を抑制するこ とが報告されている (J. Natl. Cancer Inst. 91, 313, 1999)。これら生理的効果 力 リコペンは飼料用、食品用、化粧品用及び医薬品用の素材として有用である。
[0007] リコペンの製造法としてはリナロールやゲラ-オールを原料に化学合成する方法( 特開 2001— 39943)、トマトから分離精製する方法 (特開 2002— 193850)が知られ ている。また微生物がリコペンを生産する例としてはドナリエラ藻類 (特開 2001— 161 391)、クロレラ藻類 (特開 2000— 152778)、ロドパクター属細菌(特開平 8— 23965 8)が知られている。また、新属の細菌 E—396株(FERM BP— 4283) (特開平 7— 7 9796,特開平 8— 9964,米国特許第 5, 607, 839号,米国特許第 5, 858, 761号 )はカロテノイドィ匕合物を高濃度で生産することが知られている力 リコペンの生産量 は極わずかである。
[0008] しかしながら、前述のゼアキサンチン、 j8—力口テン及びリコペンの化学合成法は有 機溶剤を使用するので安全性及び近年の天然物指向の面で問題がある。また従来 の微生物による培養では生産性が低いので実用的でなぐ植物(例えば、トウモロコ シ、ニンジン、トマト等)からの抽出では目的とするカロテノイドィ匕合物の含量が低いた めにコストがかかりすぎるうえに天候に左右されるので安定供給が困難であるという欠 点を有する。カロテノイド化合物生産菌として知られる E— 396株は各種試験により既 にその安全性が確認されァスタキサンチンを含有するカロテノイドィ匕合物を工業的規 模で高濃度に生産する方法が確立されているものの、生産される総力ロテノイド中の ゼアキサンチン、 j8—力口テン及びリコペンの比率は低!、。
[0009] このためゼアキサンチン、 j8—力口テン及びリコペンの安価で、安定供給可能な、安 全性の高!、製造方法が求められて!/ヽる。
発明の開示
[0010] 上記課題を解決するため本発明者らは鋭意検討した結果、ァスタキサンチン等の カロテノイドィ匕合物を生産する微生物を変異処理することにより、生産される総力ロテ ノイド量に占めるゼアキサンチン、 j8—力口テン又はリコペンの生産比率が高 、微生 物が容易に得られることを見出し、本発明を完成させるに至った。
[0011] 即ち、本発明は以下の発明を提供する。
[0012] (1) 16Sリボソーム RNAに対応する DNAの塩基配列が配列番号 1に記載の塩基配 列と実質的に相同であるァスタキサンチン生産微生物に突然変異を誘発し、生産さ れるゼアキサンチンの総力ロテノイド生産量に対する比率 (質量%)が親株のそれより も高 、変異株を選抜してゼアキサンチン生産微生物を取得し、前記ゼアキサンチン 生産微生物を培養することにより得た培養物力 ゼアキサンチン又はゼアキサンチン を含有するカロテノイド混合物を採取することを含むゼアキサンチン又はゼアキサン チンを含有するカロテノイド混合物の製造方法。
[0013] (2)生産されるゼアキサンチンの総力ロテノイド生産量に対する比率 (質量%)が親株 のそれより高い変異株の選抜が、固体培地上で黄色一橙色を呈するコロニーを選択 することを含む工程により行われる前記(1)記載の方法。
[0014] (3)前記ゼアキサンチン生産微生物により生産されるゼアキサンチンの総力ロテノイド 生産量に対する比率が 20質量%以上であることを特徴とする前記(1)又は(2)記載 の方法。
[0015] (4)前記ゼアキサンチン生産微生物により生産されるェキネノン、 3—ヒドロキシェキネ ノン、ァステロイデノン、カンタキサンチン、アド二ルビン、アド-キサンチン及びァスタ キサンチンのそれぞれの総力ロテノイド生産量に対する比率カ^、ずれも 10質量%未 満であることを特徴とする前記(1)一 (3)の 、ずれかに記載の方法。
[0016] (5)ゼアキサンチンを含有するカロテノイド混合物が j8—クリプトキサンチン及び Z又 は β一力口テンを含むことを特徴とする前記(1)一(4)の 、ずれかに記載の方法。
[0017] (6)ァスタキサンチン生産微生物が Ε— 396株(FERM BP— 4283)及びその変異 株、並びに A— 581—l株(FERM BP— 4671)及びその変異株力も選ばれる前記( 1)一 (5)の 、ずれかに記載の方法。
[0018] (7) 16Sリボソーム RNAに対応する DNAの塩基配列が配列番号 1に記載の塩基配 列と実質的に相同であり、かつェキネノン、 |8—クリプトキサンチン、 3—ヒドロキシェキ ネノン、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二ルビン、アドニキ サンチン及びァスタキサンチン力 選ばれる少なくとも一つのカロテノイド化合物を生 産するカロテノイド生産微生物を変異のための親株としてこれに突然変異を誘発し、 生産される β一力口テンの総力ロテノイド生産量に対する比率 (質量%)が親株のそれ よりも高い変異株を選抜して j8—力口テン生産微生物を取得し、前記 j8—力口テン生 産微生物を培養することにより得た培養物から β一力口テン又は β一力口テンを含有 するカロテノイド混合物を採取することを含む β一力口テン又は β一力口テンを含有す るカロテノイド混合物の製造方法。
[0019] (8)生産されるカンタキサンチン及びェキネノンの合計量の総力ロテノイド生産量に 対する比率が 50質量%以上であるカロテノイド生産微生物を変異の親株として用い る前記(7)記載の方法。
[0020] (9)生産されるゼアキサンチン及び β クリプトキサンチンの合計量の総力ロテノイド 生産量に対する比率が 50質量%以上であるカロテノイド生産微生物を変異の親株と して用いる前記(7)又は(8)記載の方法。
[0021] (10)生産される β一力口テンの総力ロテノイド生産量に対する比率 (質量%)が親株 のそれより高い変異株の選抜が、固体培地上で黄色一橙色を呈するコロニーを選択 することを含む工程により行われる前記(7)—(9)のいずれかに記載の方法。
[0022] (11) j8—力口テン生産微生物により生産される j8—力口テンの総力ロテノイド生産量 に対する比率が 50質量%以上であることを特徴とする前記(7)—(10)のいずれか に記載の方法。
[0023] (12) |8 -カロテン生産微生物により生産されるェキネノン、 j8 -クリプトキサンチン、 3 ーヒドロキシェキネノン、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二 ルビン、アドニキサンチン及びァスタキサンチンのそれぞれの総力ロテノイド生産量に 対する比率が!/ヽずれも 20質量%未満であることを特徴とする前記(7)—( 11)のいず れかに記載の方法。
[0024] (13)カロテノイド生産微生物が E— 396株(FERM BP— 4283)及びその変異株、 並びに A— 581— 1株(FERM BP— 4671)及びその変異株から選ばれる前記(7)— ( 12)の 、ずれかに記載の方法。
[0025] (14) 16Sリボソーム RNAに対応する DNAの塩基配列が配列番号 1に記載の塩基 配列と実質的に相同であり、かつ β—力口テン、ェキネノン、 |8—クリプトキサンチン、 3 ーヒドロキシェキネノン、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二 ルビン、アドニキサンチン及びァスタキサンチン力も選ばれる少なくとも一つのカロテ ノイド化合物を生産するカロテノイド生産微生物を変異のための親株としてこれに突 然変異を誘発し、生産されるリコペンの総力ロテノイド生産量に対する比率 (質量%) が親株のそれよりも高 、変異株を選抜してリコペン生産微生物を取得し、前記リ: ン生産微生物を培養することにより得た培養物からリコペン又はリコペンを含有する カロテノイド混合物を採取することを含むリコペン又はリコペンを含有するカロテノイド 混合物の製造方法。
[0026] (15)生産されるリコペンの総力ロテノイド生産量に対する比率 (質量%)が親株のそ れより高い変異株の選抜が、固体培地上で桃色一赤紫色を呈するコロニーを選択す ることを含む工程により行われる前記(14)記載の方法。
[0027] (16)前記リコペン生産微生物により生産されるリコペンの総力ロテノイド生産量に対 する比率が 40質量%以上であることを特徴とする前記(14)又は(15)記載の方法。
[0028] (17)前記リコペン生産微生物により生産される |8 -カロテン、ェキネノン、 |8 -タリブト キサンチン、 3—ヒドロキシェキネノン、ァステロイデノン、カンタキサンチン、ゼアキサ ンチン、アド二ルビン、アドニキサンチン及びァスタキサンチンのそれぞれの総力ロテ ノイド生産量に対する比率がいずれも 20質量%未満であることを特徴とする前記(1 4)一(16)のいずれかに記載の方法。
[0029] (18)カロテノイド生産微生物が E— 396株(FERM BP— 4283)及びその変異株、 並びに A— 581— 1株(FERM BP— 4671)及びその変異株から選ばれる前記(14) 一( 17)の 、ずれかに記載の方法。
[0030] 以下、本発明を詳細に説明する。
[0031] 本発明の方法においては変異の親株としてァスタキサンチン又はカロテノイドを生 産する微生物が用いられる力 このような微生物としては、その 16Sリボソーム RNA に対応する DNAの塩基配列が配列番号 1に記載の塩基配列と実質的に相同である ァスタキサンチン又はカロテノイド生産細菌が挙げられる。ここで言う実質的に相同で あるとは DNAの塩基配列決定の際のエラー頻度等を考慮し 98%以上の相同性で あることを意味する。
[0032] 上記配列と実質的に相同な配列を有するァスタキサンチン又はカロテノイド生産微 生物としては、具体的には、 E— 396株(FERM BP— 4283)及び A— 581—1株(FE RM BP— 4671)、ならびに E— 396株あるいは A— 581— 1株を変異改良することで 得られる各種変異株及びこれら 2種の近縁種を挙げることができる。配列番号 1の D NA塩基配列は、 E— 396株のリボソーム RNAに対応するものであり、また配列番号 2 の DNA塩基配列は、 A— 581—1株のリボソーム RNAに対応するものである。 E— 39 6株と A— 581—1株の 16Sリボソーム RNAの塩基配列の相同性は 99. 4%であり、極 めて近縁な株であることが判明した。よって、これらの菌株はカロテノイドを生産する 細菌として一つのグループを形成して 、る。本発明の方法にぉ 、て用いられる変異 の親株は、 E— 396株及び A— 581— 1株ならびに E— 396株あるいは A— 581— 1株の 変異株及びこれらの菌株の近縁種として、 16Sリボソーム RNAに対応する DNA塩 基配列が配列番号 1に記載の塩基配列と 98%以上の相同性を有するァスタキサン チン又はカロテノイド生産細菌として定義される。
[0033] 本発明に使用するァスタキサンチン又はカロテノイド生産微生物として挙げられる E —396株について説明する。この株は、本発明者らが新しく単離したものであり、独立 行政法人産業技術総合研究所 特許生物寄託センター (茨城県つくば巿東 1丁目 1 番地 1 中央第 6)に 1993年 4月 27日に FERM BP— 4283として寄託された。さら に具体的な他の微生物としては A— 581—1株を挙げることができる。この株は、発明 者らが新しく単離したものであり、独立行政法人産業技術総合研究所 特許生物寄 託センター (茨城県つくば巿東 1丁目 1番地 1 中央第 6)に 1994年 5月 20日に FER M BP-4671として寄託された。
[0034] ァスタキサンチン生産微生物の突然変異処理及びゼアキサンチン生産変異株の選 抜
本発明にお 、てァスタキサンチン生産微生物を変異処理する方法は、突然変異を 誘発するものであれば特に限定されない。たとえば、 N—メチルー N'—二トロー N—二ト ロソグァ-ジン(NTG)、ェチルメタンスルホネート(EMS)、などの変異剤による化学 的方法、紫外線照射、 X線照射等の物理的方法、遺伝子組換え、トランスポゾン等に よる生物学的方法などを用いることができる。この変異処理は 1回でもよいし、また、 例えばこの突然変異処理によりァスタキサンチン生産微生物の変異体を得て、これを さらに突然変異処理すると 、うように 2回以上の変異処理を行ってもょ 、。
[0035] 次に、上記のようにして得られるァスタキサンチン生産微生物の突然変異体の中か ら、生産されるゼアキサンチンの総力ロテノイド量に対する比率 (質量%)が親株のそ れよりも高くなつて 、る変異株を選抜してゼアキサンチン生産微生物を取得する。こ の目的のために、変異処理後に固体培地上にコロニーを形成させ、ランダムにコ口- 一を取得してもよ 、が、ゼアキサンチン生産微生物のコロニーは黄色一橙色を呈す る場合が多いので、親株の赤色一赤橙色のコロニーに比較して黄色一橙色を呈する コロニーを選択することにより、効率的にゼアキサンチン生産微生物 (変異株)を選抜 することが好ま U、。この工程を含むことにより総力ロテノイド量に対するゼアキサンチ ンの生産比率の高い変異株を取得できる確率は飛躍的に向上する。
[0036] 次いで、上述のようにして選択された各変異株コロニーを慣用の方法により培養し、 培養終了後に各変異株の培溶液中に含まれるカロテノイドィ匕合物を分析して、ゼァ キサンチンの生産比率が高 1、変異株を選抜する。
[0037] 変異株の培養は、例えば、生産菌の生育に必要で、カロテノイド化合物を生成する 成分を含む培地で培養することにより行うことができる。培養方法は試験管、フラスコ などの振とう培養、通気撹拌培養などいずれの方法でもよい。カロテノイド化合物の 分析方法は、カロテノイド化合物を分離検出できる方法なら何でも良いが、たとえば、 高速液体クロマトグラフィー、薄層クロマトグラフィー、ペーパークロマトグラフィーなど を用いることができる。
[0038] 本発明においてゼアキサンチン生産微生物の取得は、総力ロテノイド量に対するゼ アキサンチンの生産比率の高い変異株を選抜することにより行われるが、本明細書 で言う総力ロテノイド量とは、ァスタキサンチン、カンタキサンチン、アドニキサンチン、 —力口テン、ェキネノン、ゼアキサンチン、 j8—クリプトキサンチン、 3—ヒドロキシェキ ネノン、ァステロイデノン、アド-ルビンなどのカロテノイド化合物の総量をいう。
[0039] E— 396株のごときァスタキサンチン生産微生物は、ァスタキサンチン、カンタキサン チン、アドニキサンチン、 j8—力口テン、ェキネノン、ゼアキサンチン、 j8—クリプトキサ ンチン、 3—ヒドロキシェキネノン、ァステロイデノン、アド-ルビンなど多種のカロテノィ ド化合物を同時に生成する。そのため、総力ロテノイド量に対するゼアキサンチンの 生産比率は低ぐ通常は 0— 10質量%程度である。本発明においては、ァスタキサ ンチン生産微生物に突然変異を誘発し、生産する総力ロテノイド量に対するゼアキサ ンチンの比率が特に高い変異株を選抜する。その選抜の基準としては、ゼアキサン チンの生産比率が変異前の親株のゼアキサンチンの生産比率より高いことが少なく とも必要であり、生産される総力ロテノイド量に対してゼアキサンチンの生産比率が好 ましくは 20質量%以上、より好ましくは 40質量%以上、さらに好ましくは 60質量%以 上である変異株を選抜する。
[0040] ァスタキサンチンの生合成は j8—力口テンを上流とし、ケト化酵素及び水酸化酵素 によりそれぞれ両端の 6員環が修飾されて行われると推定されている(図 1参照)。こ のケト化酵素が完全に欠損すれば、 β—力口テン、 |8—クリプトキサンチン及びゼアキ サンチンだけが生産され、ケトイ匕酵素を必要とするェキネノン、カンタキサンチン、 3— ヒドロキシェキネノン、ァステロイデノン、アドニノレビン、アドニキサンチン及びァスタキ サンチンは生産されな 、ことが推定される。またこのケト化酵素が不完全に欠損すれ ば、ェキネノン、カンタキサンチン、 3—ヒドロキシェキネノン、ァステロイデノン、アド- ルビン、アドニキサンチン及びァスタキサンチンの総力ロテノイド量に対する比率が低 くなることが推定される。したがって、変異株の中からゼアキサンチン生産微生物を選 抜するためのもう一つの有効な手段としては、ェキネノン、カンタキサンチン、 3—ヒド 口キシェキネノン、ァステロイデノン、アド二ルビン、アドニキサンチン及びァスタキサ ンチンの総力ロテノイド量に対するそれぞれの比率が低いことを基準に選抜する方法 を用いることができる。総力ロテノイドに対する前述の化合物のそれぞれの比率カ^ヽ ずれも、 10質量%未満、より好ましくは 5質量%未満、さらに好ましくは 1質量%未満 であることを基準に選抜することができる。
[0041] カロテノイド生産微生物の突然変異処理及び j8—力口テン生産変異株の選抜
本発明に使用される変異のための親株は、 16Sリボソーム RNAに対応する DNA 塩基配列が配列番号 1に記載の塩基配列と 98%以上の相同性を有し、かつェキネ ノン、 j8—クリプトキサンチン、 3—ヒドロキシェキネノン、ァステロイデノン、カンタキサン チン、ゼアキサンチン、アド二ルビン、アドニキサンチン及びァスタキサンチンから選 ばれる少なくとも一つのカロテノイド化合物を生産するカロテノイド生産微生物として 定義される力 好ましくは生産するカンタキサンチン及びェキネノンの合計量の総力 ロテノイド生産量に対する比率が 50質量%以上であるカロテノイド生産微生物、又は 生産するゼアキサンチン及び β クリプトキサンチンの合計量の総力ロテノイド生産量 に対する比率が 50質量%以上であるカロテノイド生産微生物が用いられる。より好ま しくは生産するカンタキサンチン及びェキネノンの合計量の総力ロテノイド生産量に 対する比率が 70質量%以上であるカロテノイド生産微生物、又は生産するゼアキサ ンチン及び j8—クリプトキサンチンの合計量の総力ロテノイド生産量に対する比率が 7 0質量%以上であるカロテノイド生産微生物が用いられる。本明細書で言う総力ロテノ イド量とは、 β—カロテン、ェキネノン、 j8—クリプトキサンチン、 3—ヒドロキシェキネノン 、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二ルビン、アドニキサンチ ン、ァスタキサンチン等のカロテノイドィ匕合物の総量を示す。
[0042] カロテノイドの生合成では、リコペンの両末端が環化して β一力口テンを生成し、 j8 - カロテンがさらにケト化酵素及び水酸ィ匕酵素によりそれぞれ両端の 6員環が修飾され ることによりカンタキサンチン、ゼアキサンチン、ァスタキサンチン等が生成すると推定 されている(図 1参照)。
[0043] 本発明者らは、ァスタキサンチンを高比率で生産する微生物を変異の親株に用い るのに比較して、カンタキサンチン及びェキネノンを高比率で生産する微生物、又は ゼアキサンチン及び j8—クリプトキサンチンを高比率で生産する微生物を変異の親株 として用いることにより j8—力口テン生産微生物の取得確率が飛躍的に向上すること を見出した。この現象は以下のように説明することができる。すなわちァスタキサンチ ンを高比率で生産するカロテノイド生産微生物は、 β一力口テンを水酸ィ匕する酵素と ケト化する酵素の両方を合わせ持つので、 J8—力口テンを蓄積させるためには両酵素 をともに欠損させる必要がある力 カンタキサンチン及びェキネノンの合計量の比率 が高い微生物は水酸ィ匕酵素が欠損している微生物であるので、ケト化酵素のみを変 異で欠損させればよぐゼアキサンチン及び β クリプトキサンチンの合計量の比率 が高い微生物はケト化酵素が欠損している微生物であるので水酸ィ匕酵素のみを欠 損させればよ 、ことになる。カンタキサンチンとェキネノンとの合計量の比率が高!ヽ微 生物、及びゼアキサンチンと j8—クリプトキサンチンとの合計量の比率が高い微生物 はもともと野生株としてその性質をもつものでもよ 、が、ァスタキサンチン生産微生物 等力も突然変異により取得されたものでもよい。
[0044] 本発明にお 、てカロテノイド生産微生物を変異処理する方法は、突然変異を誘発 するものであれば特に限定されない。たとえば、 N—メチルー N,一二トロー N—二トロソグ ァニジン (NTG)、ェチルメタンスルホネート(EMS)、などの変異剤による化学的方 法、紫外線照射、 X線照射等の物理的方法、遺伝子組換え、トランスポゾン等による 生物学的方法などを用いることができる。この変異処理は 1回でもよいし、また、例え ばこの突然変異処理によりカロテノイド生産微生物の変異体を得て、これをさらに突 然変異処理すると!/、うように 2回以上の変異処理を行ってもょ 、。
[0045] 次に、上記のようにして得られるカロテノイド生産微生物の突然変異体の中から、生 産される総力ロテノイド量に対する β -カロテンの比率 (質量%)が親株のそれよりも高 くなつている変異株を選抜して j8 -カロテン生産微生物を取得する。この目的のため に、変異処理後に固体培地上にコロニーを形成させ、ランダムにコロニーを取得して もよ 、が、 β -カロテン生産微生物のコロニーは黄色一橙色を呈する場合が多 、ので 、このような色を呈するコロニーを選択することにより、効率的に j8 -カロテン生産微生 物(変異株)を選抜することができる。この工程を含むことにより生産される総力ロテノ イド量に対する j8—力口テンの比率の高い変異株を取得できる確率は飛躍的に向上 する。
[0046] 次いで、上述のようにして選択された各変異株コロニーを慣用の方法により培養し、 培養終了後に各変異株の培溶液中に含まれるカロテノイドィ匕合物を分析して、 β -力 口テンの生産比率が高い変異株を選抜することができる。
[0047] 変異株の培養は、例えば、生産菌の生育に必要で、カロテノイド化合物を生成する 成分を含む培地で培養することにより行うことができる。培養方法は試験管、フラスコ などの振とう培養、通気撹拌培養などいずれの方法でもよい。カロテノイド化合物の 分析方法は、カロテノイド化合物を分離検出できる方法なら何でも良いが、たとえば、 高速液体クロマトグラフィー、薄層クロマトグラフィー、ペーパークロマトグラフィーなど を用いることができる。
[0048] 本発明にお 、て /3一力口テン生産微生物の取得は、総力ロテノイド量に対する j8— カロテンの比率の高い変異株を選抜することにより行われる。 E— 396株のごときカロ テノイド生産微生物は、ァスタキサンチン、カンタキサンチン、アドニキサンチン、 β— カロテン、ェキネノン、ゼアキサンチン、 j8—クリプトキサンチン、 3—ヒドロキシェキネノ ン、ァステロイデノン、アド二ルビンなど多種のカロテノイドィ匕合物を同時に生成する ので、総力ロテノイド量に対する j8—力口テンの比率は低ぐ通常は 0— 20質量%程 度である。
[0049] 本発明においては、カロテノイド生産微生物に突然変異を誘発し、生産される総力 ロテノイド量に対する j8—力口テンの比率が特に高い変異株を選抜する。その選抜の 基準としては、変異株の j8—力口テンの生産比率が変異前の親株の j8—力口テンの生 産比率よりも高いことが少なくとも必要であり、生産される総力ロテノイド量に対して β 一力口テンの比率が好ましくは 50質量%以上、より好ましくは 70質量%以上、さらに 好ましくは 90質量%以上である変異株を選抜する。
[0050] カロテノイドの生合成は、前述のように j8—力口テンがケト化酵素及び水酸ィ匕酵素に よりそれぞれ両端の 6員環が修飾されることによりカンタキサンチン、ゼアキサンチン、 ァスタキサンチンなどが生成して行われると推定されている(図 1参照)。このケト化酵 素及び水酸化酵素の両方が完全に欠損すれば、 β一力口テンまでの化合物だけが 生産され、 j8—力口テン以降のェキネノン、 j8—クリプトキサンチン、 3—ヒドロキシェキ ネノン、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二ルビン、アドニキ サンチン及びァスタキサンチンは生産されな 、ことが推定される。またこのケト化酵素 及び水酸化酵素が不完全に欠損すれば、 j8—力口テンの生産比率が高くなり、ェキ ネノン、 j8—クリプトキサンチン、 3—ヒドロキシェキネノン、ァステロイデノン、カンタキサ ンチン、ゼアキサンチン、アドニノレビン、アドニキサンチン及びァスタキサンチンの総 カロテノイド生産量に対する比率が低くなることが推定される。したがって、変異株の 中から j8—力口テン生産微生物を選抜するためのもう一つの有効な手段としては、ェ キネノン、 j8—クリプトキサンチン、 3—ヒドロキシェキネノン、ァステロイデノン、カンタキ サンチン、ゼアキサンチン、アド二ルビン、アドニキサンチン及びァスタキサンチンの 総力ロテノイド量に対するそれぞれの比率が低 、ことを基準に選抜する方法を用いる ことができる。前述化合物それぞれの総力ロテノイドに対する比率がいずれも、 20質 量%未満、より好ましくは 10質量%未満、さらに好ましくは 5質量%未満であることを 基準に選抜することができる。
[0051] カロテノイド生産微生物の突然変異処理及びリコペン生産変異株の選抜 本発明に使用される変異の親株は、 16Sリボソーム RNAに対応する DNA塩基配 列が配列番号 1に記載の塩基配列と 98%以上の相同性を有し、かつ |8—力口テン、 ェキネノン、 j8—クリプトキサンチン、 3—ヒドロキシェキネノン、ァステロイデノン、カンタ キサンチン、ゼアキサンチン、アド二ルビン、アドニキサンチン及びァスタキサンチン 力 選ばれる少なくとも一つのカロテノイドィ匕合物を生産するカロテノイド生産微生物 として定義される。上記カロテノイドの少なくとも一つを生産する野生株を変異の親株 に用いることができる力 人工的な突然変異処理により、例えばァスタキサンチン生 産性が向上した変異株やカンタキサンチン生産性が向上した変異株、ゼアキサンチ ン生産性が向上した変異株、 β一力口テンの生産性が向上した変異株等を親株とし て使用することも可能である。
[0052] 本発明にお 、てカロテノイド生産微生物を変異処理する方法は、突然変異を誘発 するものであれば特に限定されない。たとえば、 Ν—メチルー Ν,一二トロー Ν—二トロソグ ァニジン (NTG)、ェチルメタンスルホネート(EMS)、などの変異剤による化学的方 法、紫外線照射、 X線照射などの物理的方法、遺伝子組換え、トランスポゾンなどに よる生物学的方法などを用いることができる。この変異処理は 1回でもよいし、また、 例えばこの突然変異処理によりカロテノイド生産微生物の変異体を得て、これをさら に突然変異処理すると 、うように 2回以上の変異処理を行ってもょ 、。
[0053] 次に、上記のようにして得られるカロテノイド生産微生物の突然変異体の中から、総 カロテノイド生産量に対する生産されるリコペンの比率 (質量%)が親株のそれよりも 高くなつている変異株を選抜してリコペン生産微生物を取得する。この目的のために 、変異処理後に固体培地上にコロニーを形成させ、ランダムにコロニーを取得しても ょ 、が、リコペン生産微生物のコロニーは桃色一赤紫色を呈する場合が多 、ので、 親株の赤色一赤橙色のコロニーに比較して桃色一赤紫色を呈するコロニーを選択 することにより、効率的にリコペン生産微生物 (変異株)を選抜することができる。この 工程を含むことによりリコペンの総力ロテノイド量に対する比率の高い変異株を取得 できる確率は飛躍的に向上する。
[0054] 次いで、上述のようにして選択された各変異株コロニーを慣用の方法により培養し、 培養終了後に各変異株の培溶液中に含まれるカロテノイドィ匕合物を分析して、リコべ ンの生産比率が高 、変異株を選抜することができる。
[0055] 変異株の培養は、例えば、生産菌の生育に必要で、カロテノイド化合物を生成する 成分を含む培地で培養することにより行うことができる。培養方法は試験管、フラスコ などの振とう培養、通気撹拌培養などいずれの方法でもよい。カロテノイド化合物の 分析方法は、カロテノイド化合物を分離検出できる方法なら何でも良いが、たとえば、 高速液体クロマトグラフィー、薄層クロマトグラフィー、ペーパークロマトグラフィーなど を用いることができる。
[0056] 本発明においてリコペン生産微生物の取得は、リコペンの総力ロテノイド量に対す る比率の高い変異株を選抜することにより行われるが、本明細書で言う総力ロテノイド 量とは、リコペン、 j8—力口テン、ェキネノン、 j8—クリプトキサンチン、 3—ヒドロキシェキ ネノン、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二ルビン、アドニキ サンチン、ァスタキサンチンなどのカロテノイド化合物の総量を示す。
[0057] E— 396株のごときカロテノイド生産微生物は、ァスタキサンチン、カンタキサンチン 、アドニキサンチン、 —力口テン、ェキネノン、ゼアキサンチン、 j8—クリプトキサンチ ン、 3—ヒドロキシェキネノン、ァステロイデノン、アド-ルビン等の多種のカロテノイド 化合物を同時に生成するので、総力ロテノイド量に対するリコペンの比率は低ぐ通 常は 0— 5質量%程度である。
[0058] 本発明においては、カロテノイド生産微生物に突然変異を誘発し、生産するリコべ ンの総力ロテノイド量に対する比率が特に高 、変異株を選抜する。その選抜の基準 としては、リコペンの生産比率が変異前の親株のリコペン生産比率より高 、ことが少 なくとも必要であるが、生産される総力ロテノイド量に対してリコペンの生産比率が好 ましくは 40質量%以上、より好ましくは 65質量%以上、さらに好ましくは 90質量%以 上である変異株を選抜する。
[0059] カロテノイドの生合成は、リコペンの両末端が環化し j8—力口テンを生成し、 j8—力口 テンがさらにケト化酵素及び水酸ィ匕酵素によりそれぞれ両端の 6員環が修飾されるこ とによりカンタキサンチン、ゼアキサンチン、ァスタキサンチンなどが生成して行われる と推定されている(図 1参照)。この環化酵素が完全に欠損すれば、リコペンだけが生 産され、リコペン以降の —力口テン、ェキネノン、 j8—クリプトキサンチン、 3—ヒドロキ シェキネノン、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二ルビン、ァ ドニキサンチン及びァスタキサンチンは生産されな 、ことが推定される。またこの環化 酵素が不完全に欠損すれば、リコペンの生産比率が高くなり、 j8—力口テン、ェキネノ ン、 j8—クリプトキサンチン、 3—ヒドロキシェキネノン、ァステロイデノン、カンタキサン チン、ゼアキサンチン、アド二ルビン、アドニキサンチン及びァスタキサンチンの総力 ロテノイド生産量に対する比率が低くなることが推定される。したがって、変異株の中 力 リコペン生産微生物を選抜するためのもう一つの有効な手段としては、 /3一力ロテ ン、ェキネノン、 j8—クリプトキサンチン、 3—ヒドロキシェキネノン、ァステロイデノン、力 ンタキサンチン、ゼアキサンチン、アド二ルビン、アドニキサンチン及びァスタキサンチ ンの総力ロテノイド量に対するそれぞれの比率が低いことを基準に選抜する方法を用 いることができる。前述化合物それぞれの総力ロテノイドに対する比率がいずれも、 2 0質量%未満、より好ましくは 10質量%未満、さらに好ましくは 5質量%未満であるこ とを基準に選抜することができる。
[0060] 選抜した変異株の培養とカロテノイド化合物の採取
次いで、上述のようにして選抜されたゼアキサンチン生産変異株、 j8—力口テン生 産変異株又はリコペン生産変異株を以下のようにして培養し、目的とするカロテノイド 化合物を採取する。
[0061] 本発明においてゼアキサンチン、 j8—力口テン、リコペン又はそれらを含有するカロ テノイド混合物を採取するために上述の各変異微生物を培養する。変異微生物を培 養する方法は、目的とするカロテノイド化合物を生成する条件であればいずれの方 法でもよいが、例えば、以下のような方法を採用できる。すなわち、培地としては生産 菌が生育に必要な炭素源、窒素源、無機塩及び必要であれば特殊な要求物質 (例 えば、ビタミン、アミノ酸、核酸等)を含むものを使用する。炭素源としてはグルコース 、シユークロース、フノレクトース、トレノヽロース、マンノース、マンニトーノレ、マノレトース等 の糖類、酢酸、フマル酸、クェン酸、プロピオン酸、リンゴ酸、マロン酸等の有機酸、 エタノーノレ、プロパノーノレ、ブタノーノレ、ペンタノ一ノレ、へキサノーノレ、イソブタノーノレ 等のアルコール類等が挙げられる。添加割合は炭素源の種類により異なるが、通常 培地 1L当たり 1一 100g、好ましくは 2— 50gである。窒素源としては、例えば、硝酸力 リウム、硝酸アンモ-ゥム、塩化アンモ-ゥム、硫酸アンモ-ゥム、リン酸アンモ-ゥム
、アンモニア、尿素、グルタミン酸ソーダ等の 1種または 2種以上が用いられる。添カロ 割合は窒素源の種類により異なるが、通常培地 1Lに対し 0. 1— 20g、好ましくは 1一 10gである。無機塩としてはリン酸二水素カリウム、リン酸水素二カリウム、リン酸水素 ニナトリウム、硫酸マグネシウム、塩化マグネシウム、硫酸鉄、塩化鉄、硫酸マンガン 、塩ィ匕マンガン、硫酸亜鉛、塩化亜鉛、硫酸銅、塩ィ匕カルシウム、炭酸カルシウム、 炭酸ナトリウム等の 1種または 2種以上が用いられる。添加割合は無機塩の種類によ り異なる力 通常、培地 1Lに対し 0. lmg— 10gである。特殊な要求物質としてはビタ ミン類、核酸類、酵母エキス、ペプトン、肉エキス、麦芽エキス、コーンスティープリカ 一、乾燥酵母、大豆粕、大豆油、ォリーブ油、トウモロコシ油、アマ-油等の 1種また は 2種以上が用いられる。添加割合は特殊な要求物質の種類により異なるが、通常、 培地 1Lに対し 0. Olmg— 100gである。培地の pHは 2— 12、好ましくは 6— 9に調 整する。培養条件は 10— 70°C、好ましくは 20— 35°Cの温度であり、通常 1日一 20 日間、好ましくは 2— 9日間振とう培養あるいは通気撹拌培養を行う。
[0062] 次に、以上の方法により得られた培養液力も水分を除去する作業を行う。ゼァキサ ンチン、 /3—カロテン、リコペン又はそれらを含有するカロテノイド混合物を得るために 、培養液力 どの程度の水分除去が必要かは培養液の色素含有量等の状態により 異なるが、一般にまずろ過の作業を行いさらに水分の除去が必要であれば沈殿物の 乾燥を行う。ろ過の方法は、通常のろ過法、遠心分離法などにより行うことができる。 さらに水分を除去する必要がある場合には、沈殿物を乾燥する方法をとることが可能 である。乾燥の方法としては、通常の噴霧乾燥、ドラム乾燥、凍結乾燥などが挙げら れる。
[0063] 必要に応じ抽出により目的とするカロテノイドィ匕合物の含量を高くすることもできる。
抽出原料としては培養液そのものを用 ヽても、ろ過後の沈殿物またはそれを乾燥し たものを用いてもよい。抽出の方法としては、例えば、溶媒抽出や超臨界二酸化炭 素抽出が挙げられる。溶媒抽出に用いる有機溶媒は特に限定されず、水溶性有機 溶媒、非水溶性有機溶媒のいずれでもよい。水溶性有機溶媒の例としては、テトラヒ ドロフラン、ピリジン、ジォキサン、シクロへキサノン、シクロへキサノール、メタノール、 エタノール、イソプロパノール、アセトン、ェチルメチルケトン、ジメチルホルムアミド、 ジメチルスルホキシドが挙げられる。抽出溶媒は 2種以上を混合して用いてもょ 、し、 あるいは水とを混合して用いてもょ 、。得られた抽出液は減圧濃縮などにより溶媒を 除去し製品とすることができる。必要により脱臭処理を行うことや植物油に懸濁しても よい。
[0064] また、目的とするカロテノイド化合物の含量をさらに高くする必要がある場合には、 2 種以上の溶媒の組み合わせによる液液抽出、カラムクロマトグラフィ等の慣用の精製 手段により精製し、次いで、カロテノイド化合物を含む抽出液又は溶出液等を濃縮若 しくは冷却したり、又は貧溶媒を添加することによりカロテノイドィ匕合物を析出させると よい。
[0065] 以上の方法で得られるゼアキサンチン、 j8—力口テン又はリコペンを含む培養沈殿 物、沈殿乾燥物、抽出物、抽出精製物等は、飼料配合剤、食品素材、化粧品素材及 び医薬品素材等に用いることができる。
[0066] 本明細書は本願の優先権の基礎である特願 2003— 325104号、特願 2003— 325 130号及び特願 2003— 325144号の明細書に記載される内容を包含する。
図面の簡単な説明
[0067] [図 1]図 1は、カロテノイド化合物の生合成経路を示す図である。
発明を実施するための最良の形態
[0068]
実施例
[0069] 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例のみ に限定されるものではない。
[0070] 〔実施例 1〕
E— 396株 (FERM BP— 4283)を濃度 200mgZLの NTG (N—メチル—N,一-トロ N—二トロソグァ二ジン)で、温度 28°C、 30分間静置して変異処理を行った。表 1の 組成力 なる培地 6mlを内径 18mmの試験管に入れ 121°C、 15分間蒸気殺菌し、 試験管培地を作製した。黄色一橙色を呈する変異株コロニー 200株を選抜し、それ ぞれ試験管培地に 1白金耳植菌、 28°Cで 4日間、 330rpmの往復振とう培養を行つ た。次にこの培養物を遠心分離し、得られた菌体のカロテノイドィ匕合物の分析を高速 液体クロマトグラフィーにより行ったところ、総力ロテノイド生産量に対するゼアキサン チンの比率が 60質量%以上を示す菌株を 1株得た。この菌株のカロテノイドィ匕合物 の分析結果を表 2に示した。比較のために上記と同じ条件で培養した E— 396株培養 液のカロテノイドィ匕合物の分析結果を表 3に示した。
[表 1] 組成 添加量 g
酵母エキス 20
ペプトン 5
しょ糖 50
KH2 P04 1+ 5
N a2HP04 , 1 2 H, O 3. 8
Mg S04 · 7 H: O 0. 5
F e S 04 · 7H: O 0. 0 1
C a C 12 , 2 H. O 0. 0 1
N a C O , ' 培地が pH 7となる量
[表 2]
Figure imgf000019_0001
[表 3] 力□亍ノィ 1 ド 1 ^ ι 培養液当たり生成濃度 it ( hf- ΐ¾
mg/L /ό
β—カロテン 1 6 6. 6
ェキネノン 1 8 7. 4
3 ヒドロキシェキネノン 0 4 1. 6
カンタキサンチン 1 6 6. 6
ァドニルビン 1 0 4. 1
jS—クリプ卜キサンチン
ァス夕キサンチン 6 4 2 6. 3
ァステロイデノン 1 5 6. 2
ァドニキサンチン 8 6 3 5. 4
ゼアキサンチン 1 4 5. 8
は検出限界 (0. lmg/L) 未満であることを示す 〔実施例 2〕
E— 396株 (FERM BP— 4283)を濃度 200mgZLの NTG (N—メチル—N -トロ N トロソグァ二ジン)で、温度 28°C 30分間静置して変異処理を行った。表 1の 組成力 なる培地 6mlを内径 18mmの試験管に入れ 121°C 15分間蒸気殺菌し、 試験管培地を作製した。変異株コロニーをランダムに 1, 500株選抜し、それぞれ試 験管培地に 1白金耳植菌、 28°Cで 4日間、 330rpmの往復振とう培養を行った。次に この培養物を遠心分離し、得られた菌体のカロテノイドィ匕合物の分析を高速液体クロ マトグラフィ一により行ったところ、ェキネノン、カンタキサンチン、 3—ヒドロキシェキネ ノン、ァステロイデノン、アド二ルビン、アドニキサンチンおよびァスタキサンチンの総 カロテノイド生産量に対する比率がいずれも 10質量%未満である菌株を 1株得た。こ の菌株のカロテノイドィ匕合物の分析結果を表 4に示した。
[表 4] カロテノィド化合物 培養液当たり生成濃度 生成比率
m /L 質量%
カロテン 4. 4 3 1. 9
ェキネノン
力ンタキサンチン
ァドニルビン 0. 2 1. 4
クリプトキサンチン 3. 1 2 2. 5
ァスタキサンチン 0. 5 3. 6
ァステロイデノン
ァドニキサンチン 1. 1 8. 0
ゼアキサンチン 4. 5 3 2. 6
- は検出限界 (0. l mgZL) 未満であることを示す 〔実施例 3〕
E— 396株(FERM BP— 4283)を NTGで変異処理し、赤色の色調が濃いコ口- 一を選抜してァスタキサンチンの生産性が向上した変異株 Y— 559株を取得した。こ の Y— 559株をさらに 150mgZLの NTGで変異処理した。表 1の組成からなる培地 6 mlを内径 18mmの試験管に入れ 121°C、 15分間蒸気殺菌し、試験管培地を作製し た。黄色一橙色を呈する変異株コロニー 350株を選抜し、それぞれ試験管培地に 1 白金耳植菌、 28°Cで 5日間、 330rpmの往復振とう培養を行った。次にこの培養物を 遠心分離し、得られた菌体のカロテノイドィ匕合物の分析を高速液体クロマトグラフィー により行ったところ、ェキネノン、カンタキサンチン、 3—ヒドロキシェキネノン、ァステロ イデノン、アド二ルビン、アドニキサンチンおよびァスタキサンチンの総力ロテノイド生 産量に対する比率がいずれも 1%未満である菌株を 1株得た。この菌株のカロテノィ ド化合物の分析結果を表 5に示した。比較のために上記と同じ条件で培養した Y— 5 59株培養液のカロテノイド化合物の分析結果を表 6に示した。
[表 5]
Figure imgf000021_0001
[表 6] カロテノィド化合物 培 ¾液当たり生成濃度 生成比率
mg. /L 質量%
13—カロテン 26. 2 1 3. 6
ェキネノン 7. 9 4. 1
3—ヒドロキシェキネノン 0. 9 0. o
カン夕キサンチン 1 2. 0 6. 3
ァドニルビン 2 0 · 3 1 0. 6
/3—クリプトキサンチン
ァスタキサンチン 67. 7 3 5 · 3
ァステロイデノン
ァドニキサンチン 56. 4 2 9. 4
ゼアキサンチン 0. 6 0. 3
は検出限界 (0. lmg/L) 未満であることを示す 〔実施例 4〕
A— 581— 1株 (FERM BP— 4671)に UVランプで紫外線を照射し変異処理を行 つた。表 1の組成からなる培地 6mlを内径 18mmの試験管に入れ 121°C、 15分間蒸 気殺菌し、試験管培地を作製した。黄色一橙色を呈する変異コロニー 280株を選抜 し、それぞれ試験管培地に 1白金耳植菌し、 28°Cで 4日間、 330rpmの往復振とう培 養を行った。次にこの培養物を遠心分離し、得られた菌体のカロテノイド化合物の分 析を高速液体クロマトグラフィーにより行ったところ、総力ロテノイド量に対するゼアキ サンチンの比率が 20質量%以上を示す菌株を 1株得た。この菌株のカロテノイドィ匕 合物の分析結果を表 7に示した。比較のために上記と同じ条件で培養した A— 581— 1株培養液のカロテノイド化合物の分析結果を表 8に示した。
[表 7] カロテノィド化合物 培養液当たり生成濃度 生成比率
m g /L 質量%
3—カロテン 3. 9 48. 1
ェキネノン
3—ヒドロキシェキネノン
カン夕キサンチン
ァドニルビン
j3—クリプトキサンチン 2. 2 27. 2
ァスタキサンチン
ァステロイデノン
ァドニキサンチン
2. 0 24. 7
は検出限界 (0 mg/L) 未満であることを示す
[表 8] カロテノィド化合物 培桊液当たり生成濃度 生成比率
m g , /L 質量%
一力口テン 0. 6 7. 8
ェキネノン 0. 6 7. 8
3—ヒドロキシェキネノン
カン夕キサンチン 0. 7 9. 1
ァドニルビン 0. 4 5. 2
Ϊ クリプトキサンチン
ァスタキサンチン 1. 8 2 3. 4
ァステロイデノン 0. 4 5. 2
ァドニキサンチン 2. 7 3 5. 1
0. 5 6. 5
は検出限界 (0. Img/L) 未満であることを示す 〔実施例 5〕
E— 396株 (FERM BP— 4283)を濃度 lOOmgZLの NTG (N—メチル—N,一-トロ N—二トロソグァ二ジン)で、温度 28°C、 30分間静置して変異処理を行った。表 9の 組成力 なる培地 6mlを内径 18mmの試験管に入れ 121°C、 15分間蒸気殺菌し、 試験管培地を作製した。黄色一橙色を呈する変異株コロニー 4, 000株を選抜し、そ れぞれ試験管培地に 1白金耳植菌、 28°Cで 4日間、 330rpmの往復振とう培養を行 つた。次にこの培養物を遠心分離し、得られた菌体のカロテノイドィ匕合物の分析を高 速液体クロマトグラフィーにより行ったところ、総力ロテノイド生産量に対する —力口 テンの比率が 50質量%以上を示す菌株を 1株得た。この菌株のカロテノイドィ匕合物 の分析結果を表 10に示した。比較のために上記と同条件で培養した Ε— 396株培養 液のカロテノイドィ匕合物の分析結果を表 11に示した。
[表 9] 組成 添加量 g
酵母エキス 2 0
ペプトン 5
しょ糖 h 0
KH2 P04 1. 5
N a 2HP04 · 1 2 H, O 3. 8
Mg S 04 · 7H20 0. 5
F e S O 4 · 7II20 0. 0 1
C a C 1 2 · 2H20 0. 0 1
N a,CO, 培地が pH 7となる量
[表 10] カロテノィド化合物 培養液当たり生成濃度 生成比率
m g /L 質量%
β一力 Πテン 1 1. 9 8 5 - 0
ェキネノン 0. 2 1. 4
3—ヒドロキシェキネノン
カンタキサンチン 0. 3 2. 1
アドニルピン 0. 4 2. 9
—クリプトキサンチン
ァスタキサンチン 0. 7 5. 0
ァステロイ: rノン
アドニキサンチン 0. 5 3. 6
ゼアキサンチン
は検出限界 (0. Img 未満であることを示す
[表 11] カロテノィド化合物 培養液当たり生成濃度 生成比率
m g /し 質量%
ίί一力口テン 1. 6 6. 6
ェキネノン 1. 8 7. 4
;3 ヒドロキシェキネノン 0. 4 1. 6
カンタキサンチン 1. 6 6. 6
ァドニルビン 1 - 0 4. 1
/3—クリプトキサンチン
6. 4 26. 3
ァステロイデノン 1. 5 6 - 2
アドニキサンチン 8. 6 3 5. 4
ゼアキサンチン 1. 4 5. 8
は検出限界 (0. lmg/L) 未満であることを示す 〔実施例 6〕
E— 396株(FERM BP— 4283)を NTGで変異処理し、橙色のコロニーを選抜して カンタキサンチンの生産性が向上した変異株 CA— 22株を取得した。この CA— 22株 をさらに 200mgZLの NTGで変異処理した。表 9の組成からなる培地 6mlを内径 18 mmの試験管に入れ 121°C、 15分間蒸気殺菌し、試験管培地を作製した。黄色一 橙色を呈する変異株コロニー 80株を選抜し、それぞれ試験管培地に 1白金耳植菌、 28°Cで 5日間、 330rpmの往復振とう培養を行った。次にこの培養物を遠心分離し、 得られた菌体のカロテノイドィ匕合物の分析を高速液体クロマトグラフィーにより行った ところ、総力ロテノイド生産量に対する j8-カロテンの比率が 50質量%以上を示す菌 株を 1株得た。この菌株のカロテノイドィ匕合物の分析結果を表 12に、比較のために上 記と同じ条件で培養した CA— 22株のカロテノイド化合物の分析結果を表 13に示した [表 12] カロテノィド化合物 培養液当たり生成濃度 生成比率
m g /L 質量%
(3—カロテン 17. 4 96. 1
ェキネノン 0. 4 2. 2
3—ヒドロキシェキネノン
カンタキサンチン 0. 3 丄 . 7
ァドニルビン
β クリプトキサンチン
ァスタキサンチン
ァステ πイデノン
ァドニキサンチン
ゼアキサンチン
は検出限界 (0. lmgZL) 未満であることを示す
[表 13] カロテノィド化合物 培養液当たり生成濃度 生成比率
m g/L 質量%
β—力口テン 1. 2 5. 7
ェキネノン 2. 5 1 1 9
3—ヒドロキシェキネノン
カンタキサンチン 16. 1 76 7
ァドニルビン 0. 9 4. 3
β—クリプトキサンチン
ァスタキサンチン 0. 3 1. 4
ァステロイデノン
ァドニキサンチン
ゼアキサンチン
は検出限界 (0. ImgZL) 満であることを; す 〔実施例 7〕
E— 396株(FERM BP— 4283)を NTGで変異処理し、黄色のコロニーを選抜して ゼアキサンチンの生産性が向上した変異株 ZE— 7株を取得した。この ZE— 7株をさら に 150mgZLの NTGで変異処理した。表 9の組成からなる培地 6mlを内径 18mm の試験管に入れ 121°C、 15分間蒸気殺菌し、試験管培地を作製した。黄色一橙色 を呈する変異株コロニー 60株を選抜し、それぞれ試験管培地に 1白金耳植菌、 28 °Cで 5日間、 330rpmの往復振とう培養を行った。次にこの培養物を遠心分離し、得 られた菌体のカロテノイドィ匕合物の分析を高速液体クロマトグラフィーにより行ったとこ ろ、総力ロテノイド生産量に対する j8-カロテンの比率が 50質量%以上を示す菌株 を 1株得た。この菌株のカロテノイドィ匕合物の分析結果を表 14に、比較のために上記 と同じ条件で培養した ZE— 7株のカロテノイドィ匕合物分析結果を表 15に示した。 [表 14] カロテノィド化合物 培養液当たり生成濃度 生成比率
ms/L 質景%
β—カロテン 16. 0 100
ェキネノン
3 -ヒドロキシェキネノン
カンタキサンチン
ァドニルビン
0—クリプトキサンチン
ァスタキサンチン
ァステロイデノン
ァドニキサンチン
ゼアキサンチン
は検出限界 (0- lmg/L) 未満であることを示す
[表 15] カロテノィ ド化合物 培養液当たり生成濃度 生成比率
m g/ 質量%
β一力口テン 4. 0 23. 5
ェキネノン
3—ヒドロキシェキネノン
カンタキサンチン
ァドニルビン
/3 _クリプトキサンチン 2. 4 14. 1
ァスタキサンチン
ァステロイデノン
アドニキサンチン
ゼアキサンチン 10. 6 62. 4
は検出限界 (0. lmgZL) 未満であることを示す 〔実施例 8〕
A— 581— 1株 (FERM BP— 4671)に UVランプで紫外線を照射し変異処理を行 つた。表 9の組成からなる培地 6mlを内径 18mmの試験管に入れ 121°C、 15分間蒸 気殺菌し、試験管培地を作製した。黄色を呈する変異コロニー 3, 000株を選抜し、 それぞれ試験管培地に 1白金耳植菌し、 28°Cで 4日間、 330rpmの往復振とう培養 を行った。次にこの培養物を遠心分離し、得られた菌体のカロテノイド化合物の分析 を高速液体クロマトグラフィーにより行ったところ、ェキネノン、 j8-クリプトキサンチン、 3—ヒドロキシェキネノン、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二 ルビン、アドニキサンチン及びァスタキサンチンのそれぞれの総力ロテノイド生産量に 対する比率が!/ヽずれも 20質量%未満を示す菌株を 1株得た。この菌株のカロテノィ ド化合物の分析結果を表 16に示した。比較のために上記と同じ条件で培養した A— 581— 1株培養液のカロテノイド化合物の分析結果を表 17に示した
[表 16] カロテノィド化合物 培養液当たり生成濃度 生成比率
m /L 質量%
β—カロテン 2. 9 64. 4
ェキネノン 0. 5 1 1. 1
3—ヒドロキシェキネノン
カンタキサンチン 0. 2 4. 4
ァドニルビン 0. 2 4. 4
Ρ クリプ卜キサンチン 0. 3 6. 7
ァスタキサンチン 0. 2 4. 4
ァドニキサンチン 0. 2 4. 4
ゼアキサンチン
は検出限界 (0. 1 mg/L) 未満であることをポす
[表 17] カロテノィド化合物 培養液当たり生成濃度 生成比率
/L 質量%
β一力口テン 0. 6 7. 8
ェキネノン 0. 6 7. 8
3 …ヒド πキシェキネノン
力ン夕キサンチン 0. 7 9 - 1
ァドニルビン 0. 4 5. 2
ァスタキサンチン 1. 8 23. 4
ァステロイデノン 0. 4 5. 2
ァドニキサンチン 2. 7 35. 1
ゼアキサンチン 0. 5 6. 5
は検出限界 (0. ltngZL) 未満であることを示す 〔実施例 9〕
E— 396株 (FERM BP— 4283)を濃度 lOOmgZLの NTG (N—メチル—N,一-トロ N—二トロソグァ二ジン)で、温度 28°C、 30分間静置して変異処理を行った。表 18 の組成力 なる培地 6mlを内径 18mmの試験管に入れ 121°C、 15分間蒸気殺菌し 、試験管培地を作製した。桃色一赤紫色を呈する変異株コロニー 60株を選抜し、そ れぞれ試験管培地に 1白金耳植菌、 28°Cで 4日間、 330rpmの往復振とう培養を行 つた。次にこの培養物を遠心分離し、得られた菌体のカロテノイドィ匕合物の分析を高 速液体クロマトグラフィーにより行ったところ、総力ロテノイド生産量に対するリコペン の比率が 40質量%以上を示す菌株を 1株得た。この菌株のカロテノイド化合物の分 析結果を表 19に示した。比較のために上記と同じ条件で培養した E— 396株培養液 のカロテノイドィ匕合物の分析結果を表 20に示した
[表 18] 組成 添加量 g/L 酵母エキス 20 ぺプ卜ン 5 しょ糖 50 KH2P04 1. 5 N a 2HP 04 · 1 o 3. 8 Mg 504 · 7 H2 0. 5 F e 3 O 4 · 7 H2 0. 0 1 C a C 1 2 · 2 H2 o o o 2 0. 0 1
N a, CO, 培地が p H 7となる量
[表 19] カロテノィド化合物 培養液 たり生成濃度 生成比率 mg/L 質量%
15. 5 96. 3 β—カロテン
ェキネノン
3—ヒドロキシェキネノン
カンタキサンチン
ァドニルビン
β クリプトキサンチン
ァスタキサンチン 0. 3 1 - 9 ァステロイデノン
ァドニキサンチン 0. 3 丄. 9 ゼアキサンチン
は検出限界 (0. ImgZL) 未満であることを示す
[表 20] カロテノィド化合物 培養液当たり生成濃度 生成比率
mg/L 質量; ¾ リコペン
β—カロテン 1. 6 6. 6 ェキネノン 1. 8 7. 4
3■ 'ヒド口キシェキネノン 0. 4 1. 6 力ン夕キサンチン 1. 6 6. 6 ァドニルビン 1. 0 4. 1 —クリプトキサンチン
ァスタキサンチン 6. 4 2 6. 3
1. 5 6. 2 ァドニキサンチン 8. 6 3 5. 4 ゼアキサンチン 1. 4 5. 8 は検出限界 (0- lmg/L) 未満であることを示す 〔実施例 10〕 E— 396株 (FERM BP— 4283)を濃度 lOOmgZLの NTG (N—メチル—N,一-トロ N—二トロソグァ二ジン)で、温度 28°C、 30分間静置して変異処理を行った。表 18 の組成力 なる培地 6mlを内径 18mmの試験管に入れ 121°C、 15分間蒸気殺菌し 、試験管培地を作製した。変異株コロニーをランダムに 800株拾い、それぞれ試験管 培地に 1白金耳植菌、 28°Cで 4日間、 330rpmの往復振とう培養を行った。次にこの 培養物を遠心分離し、得られた菌体のカロテノイド化合物の分析を高速液体クロマト グラフィ一により行ったところ、総力ロテノイド生産量に対するリコペンの比率が 40質 量%以上を示す菌株を 1株得た。この菌株のカロテノイド化合物の分析結果を表 21 に示した。比較のために上記と同じ条件で培養した E— 396株培養液のカロテノイド 化合物の分析結果を表 20に示した。
[表 21] カロテノィド化合物 培養液当たり生成濃度 生成比率
m g , 質量%
リコペン 1 0 . 1 7 4 . 3
β —力 Ώテン 0 . 2 1 . 5
ェキネノン 0 . 5 3 . 7
3—ヒドロキシェキネノン
カンタキサンチン 0 . 3 2 . 2
ァドニルビン 0 . 4 2 . 9
/3—クリプトキサンチン
1 . 2 8 . 8
ァステロイデノン
ァドニキサンチン 0 . 9 6 . 6
ゼアキサンチン
は検出限界 (0 . l m g Z L ) 未満であることを示す 〔実施例 11〕
E— 396株(FERM BP— 4283)を NTGで変異処理し、赤色の色調が濃いコ口- 一を選抜してァスタキサンチンの生産性が向上した変異株 Y— 559株を取得した。こ の Y— 559株をさらに 150mgZLの NTGで変異処理した。表 18の組成からなる培地 6mlを内径 18mmの試験管に入れ 121°C、 15分間蒸気殺菌し、試験管培地を作製 した。桃色一赤紫色を呈する変異株コロニー 80株を選抜し、それぞれ試験管培地に 1白金耳植菌、 28°Cで 5日間、 330rpmの往復振とう培養を行った。次にこの培養物 を遠心分離し、得られた菌体のカロテノイドィ匕合物の分析を高速液体クロマトグラフィ 一により行ったところ、総力ロテノイド生産量に対するリコペンの比率が 40質量%以 上を示す菌株を 1株得た。この菌株のカロテノイド化合物の分析結果を表 22に示し た。比較のために上記と同じ条件で培養した Y— 559株培養液のカロテノイド化合物 の分析結果を表 23に示した。
[表 22] 力 Uテノィド化合物 培養液当たり生成濃度 生成比率
mg/L 質量%
リコペン 1 6 3. 9 99. 6
β—カロテン
ェキネノン
3—ヒドロキシェキネノン
カンタキサンチン
ァドニルピン
/3—クリブトキサンチン
ァスタキサンチン 0. 7 [). 4
ァステロイデノン
ァドニキサンチン
ゼアキサンチン
は検出限界 (0. lmg/L) 未満であることを示す
[表 23] カロテノィド化合物 培養液当たり生成濃度 生成比率
m /L 質量%
リコペン
β—カロテン 26. 2 1 3. 6
ェキネノン 7. 9 4. 1
3ーヒドロキシェキネノン 0. 9 0. 5
カンタキサンチン 12. 0 6. 3
ァドニルビン 20. 3 1 0. 6
β—クリプトキサンチン
ァスタキサンチン 67. 7 3 5. 3
ァステロイデノン
ァドニキサンチン 56. 4 2 9. 4
ゼアキサンチン 0. 6 0. 3
- は検出限界 (0. lmg/IJ 未満であることを示す 〔実施例 12〕
E— 396株(FERM BP— 4283)を NTGで変異処理し、橙色のコロニーを選抜して カンタキサンチンの生産性が向上した変異株 CA— 22株を取得した。この CA— 22株 をさらに 200mgZLの NTGで変異処理した。表 18の組成力 なる培地 6mlを内径 1 8mmの試験管に入れ 121°C、 15分間蒸気殺菌し、試験管培地を作製した。桃色一 赤紫色を呈する変異株コロニー 60株を選抜し、それぞれ試験管培地に 1白金耳植 菌、 28°Cで 5日間、 330i:pmの往復振とう培養を行った。次にこの培養物を遠心分離 し、得られた菌体のカロテノイドィ匕合物の分析を高速液体クロマトグラフィーにより行 つたところ、総力ロテノイド生産量に対するリコペンの比率力 0質量%以上を示す菌 株を 1株得た。この菌株のカロテノイドィ匕合物の分析結果を表 24に、比較のために上 記と同じ条件で培養した CA— 22株のカロテノイド化合物の分析結果を表 25に示した
[表 24] カロテノィ ド化合物 培養液当たり生成濃度 生成比率
mg/L 質暈%
リコペン 1 9. 3 9 8. 0 β一力口テン
ェキネノン
3—ヒド口キシェキネノン
カンタキサンチン 0 - 4 2. 0
ァドニルビン
jS—クリプトキサンチン
ァスタキサンチン
ァステロイデノン
ァドニキサンチン
ゼアキサンチン
は検出限界 (0. lmg/L) 未満であることを示す
[表 25] カロテノィド化合物 培蓥液当たり生成濃度 生成比率
mg/L 質量? ί
リコペン
)3—カロテン 1. 2 5. 7
ェキネノン 2. 5 1 1. 9
3—ヒドロキシェキネノン
力ンタキサンチン 16. 1 7 6. 7
ァドニルビン 0. 9 4. 3
ークリプトキサンチン
ァスタキサンチン 0. 3 1. 4
ァステロイデノン
ァドニキサンチン
ゼアキサンチン
- は検出限界 (0. lmgZL) 未満であることを示す 〔実施例 13〕
E— 396株(FERM BP— 4283)を NTGで変異処理し、黄色のコロニーを選抜して ゼアキサンチンの生産性が向上した変異株 ZE— 7株を取得した。この ZE— 7株をさら に 150mgZLの NTGで変異処理した。表 18の組成からなる培地 6mlを内径 18mm の試験管に入れ 121°C、 15分間蒸気殺菌し、試験管培地を作製した。桃色一赤紫 色を呈する変異株コロニー 80株を選抜し、それぞれ試験管培地に 1白金耳植菌、 2 8°Cで 5日間、 330rpmの往復振とう培養を行った。次にこの培養物を遠心分離し、 得られた菌体のカロテノイドィ匕合物の分析を高速液体クロマトグラフィーにより行った ところ、総力ロテノイド生産量に対するリコペンの比率力 0質量%以上を示す菌株を 1株得た。この菌株のカロテノイドィ匕合物の分析結果を表 26に、比較のために上記と 同じ条件で培養した ZE— 7株のカロテノイド化合物分析結果を表 27に示した。
[表 26] カロテノィド化合物 培養液当たり牛成濃度 生成比率
mg/L 質暈%
リコペン 1 7. 1 9 6. 1
/3—カロテン
ェキネノン
カンタキサンチン
ァドニルビン
βークリブトキサンチン 0. 2 1. 1
ァステロイデノン
ァドニキサンチン
0. 5 2. 8
- は検出限界 (0. I mg/L) 未満であることを示す
[表 27] カロテノィド化合物 培養液当たり生成濃度 成比率
m g /L 質量%
)3—力口テン 4. 0 2 3. ,
ェキネノン
3—ヒドロキシェキネノン
カンタキサンチン
ァドニルビン
3—クリプトキサンチン 2. 4 1 4 1
ァスタキサンチン
ァステロイデノン
ァドニキサンチン
ゼアキサンチン 1 0. 6 6 2. 4
は検出限界 (0. l mgZL) 未満であることを示す 〔実施例 14〕
A— 581— 1株 (FERM BP— 4671)に UVランプで紫外線を照射し変異処理を行 つた。表 18の組成からなる培地 6mlを内径 18mmの試験管に入れ 121°C、 15分間 蒸気殺菌し、試験管培地を作製した。桃色を呈する変異コロニー 100株を選抜し、そ れぞれ試験管培地に 1白金耳植菌し、 28°Cで 4日間、 330rpmの往復振とう培養を 行った。次にこの培養物を遠心分離し、得られた菌体のカロテノイドィ匕合物の分析を 高速液体クロマトグラフィーにより行ったところ、 β—力口テン、ェキネノン、 j8-タリブト キサンチン、 3—ヒドロキシェキネノン、ァステロイデノン、カンタキサンチン、ゼアキサ ンチン、アド二ルビン、アドニキサンチン及びァスタキサンチンのそれぞれの総力ロテ ノイド生産量に対する比率がいずれも 20質量%未満を示す菌株を 1株得た。この菌 株のカロテノイドィ匕合物の分析結果を表 28に示した。比較のために上記と同じ条件 で培養した A— 581— 1株培養液のカロテノイド化合物の分析結果を表 29に示した。
[表 28] カロテノィド化合物 培養液当たり生成濃度 生成比率
mg/L 質量%
リコペン 3. 3 54. 1 β一力口テン
ェキネノン 0. 4 6. 6
3—ヒドロキシェキネノン
カンタキサンチン 0. 3 4. 9
ァドニルビン 0. 3 4. 9
/3—クリプトキサンチン
ァスタキサンチン 1. 1 1 8. 0 ァステロイデノン
ァドニキサンチン 0. 7 1 1. 5 ゼアキサンチン
は検出限界 (0. lmg/L) 未満であることを示す
[表 29] カロテノィド化合物 培養液当たり生成濃度 生成比率
m g /L 質量%
リコペン
j3一力口テン 0 6 7. 8
ェキネノン 0 6 7. 8
3—ヒド πキシェキネノン
0 7 9. 1
ァドニルビン 0 4 5. 2
ァスタキサンチン 1 8 23. 4
ァステロイデノン 0 4 5. 2
ァドニキサンチン 2 7 35. 1
ゼアキサンチン 0 5 6. 5
は検出限界 (ϋ. lmgZL) 未満であることを示す [0084] 本明細書で引用した全ての刊行物をそのまま参考として本明細書中にとり入れるも のとする。
産業上の利用の可能性
[0085] 本発明の方法は、色素ゃ抗酸化剤等に有用なゼアキサンチン、 j8—力口テン及びリ コペン並びにそれらを主成分として含有するカロテノイド混合物の製造に有用である
[0086] 本発明により、安価で、安定供給可能な、安全性の高!、ゼアキサンチン、 β一力口 テン又はリコペンの製造方法が提供される。
[0087] また、本発明の方法によれば、ゼアキサンチン、 /3一力口テン又はリコペン生産変異 株の中には、主生成物としてゼアキサンチン、 j8—力口テン又はリコペンとともに、副 生成物として、例えば、 j8 -クリプトキサンチン及び Ζ又は j8 -カロテン等の他のカロテ ノイド化合物を同時に生産する場合もあり、本発明はこれらのカロテノイド混合物を効 率的に製造する方法としても有用である。

Claims

請求の範囲
[1] 16Sリボソーム RNAに対応する DNAの塩基配列が配列番号 1に記載の塩基配列 と実質的に相同であるァスタキサンチン生産微生物に突然変異を誘発し、生産され るゼアキサンチンの総力ロテノイド生産量に対する比率 (質量%)が親株のそれよりも 高 、変異株を選抜してゼアキサンチン生産微生物を取得し、前記ゼアキサンチン生 産微生物を培養することにより得た培養物力 ゼアキサンチン又はゼアキサンチンを 含有するカロテノイド混合物を採取することを含むゼアキサンチン又はゼアキサンチ ンを含有するカロテノイド混合物の製造方法。
[2] 生産されるゼアキサンチンの総力ロテノイド生産量に対する比率 (質量%)が親株の それより高い変異株の選抜が、固体培地上で黄色一橙色を呈するコロニーを選択す ることを含む工程により行われる請求の範囲第 1項記載の方法。
[3] 前記ゼアキサンチン生産微生物により生産されるゼアキサンチンの総力ロテノイド 生産量に対する比率が 20質量%以上であることを特徴とする請求の範囲第 1項記載 の方法。
[4] 前記ゼアキサンチン生産微生物により生産されるェキネノン、 3—ヒドロキシェキネノ ン、ァステロイデノン、カンタキサンチン、アド二ルビン、アドニキサンチン及びァスタキ サンチンのそれぞれの総力ロテノイド生産量に対する比率がいずれも 10質量%未満 であることを特徴とする請求の範囲第 1項記載の方法。
[5] ゼアキサンチンを含有するカロテノイド混合物が j8—クリプトキサンチン及び Z又は —力口テンを含むことを特徴とする請求の範囲第 1項記載の方法。
[6] ァスタキサンチン生産微生物が Ε— 396株(FERM BP— 4283)及びその変異株、 並びに A— 581—l株(FERM BP— 4671)及びその変異株力 選ばれる請求の範 囲第 1項一第 5項のいずれか 1項に記載の方法。
[7] 16Sリボソーム RNAに対応する DNAの塩基配列が配列番号 1に記載の塩基配列 と実質的に相同であり、かつェキネノン、 |8 -クリプトキサンチン、 3-ヒドロキシェキネ ノン、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二ルビン、アドニキサ ンチン及びァスタキサンチン力も選ばれる少なくとも一つのカロテノイドィ匕合物を生産 するカロテノイド生産微生物を変異のための親株としてこれに突然変異を誘発し、生 産される β一力口テンの総力ロテノイド生産量に対する比率 (質量%)が親株のそれよ りも高 、変異株を選抜して β一力口テン生産微生物を取得し、前記 β一力口テン生産 微生物を培養することにより得た培養物から β一力口テン又は β一力口テンを含有する カロテノイド混合物を採取することを含む β一力口テン又は β一力口テンを含有する力 ロテノイド混合物の製造方法。
[8] 生産されるカンタキサンチン及びェキネノンの合計量の総力ロテノイド生産量に対 する比率が 50質量%以上であるカロテノイド生産微生物を変異の親株として用いる 請求の範囲第 7項記載の方法。
[9] 生産されるゼアキサンチン及び j8—クリプトキサンチンの合計量の総力ロテノイド生 産量に対する比率が 50質量%以上であるカロテノイド生産微生物を変異の親株とし て用いる請求の範囲第 7項記載の方法。
[10] 生産される β一力口テンの総力ロテノイド生産量に対する比率 (質量%)が親株のそ れより高い変異株の選抜が、固体培地上で黄色一橙色を呈するコロニーを選択する ことを含む工程により行われる請求の範囲第 7項記載の方法。
[11] j8—力口テン生産微生物により生産される j8—力口テンの総力ロテノイド生産量に対 する比率が 50質量%以上であることを特徴とする請求の範囲第 7項記載の方法。
[12] j8 -カロテン生産微生物により生産されるェキネノン、 j8 -クリプトキサンチン、 3-ヒ ドロキシェキネノン、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二ルビ ン、アドニキサンチン及びァスタキサンチンのそれぞれの総力ロテノイド生産量に対 する比率がいずれも 20質量%未満であることを特徴とする請求の範囲第 7項記載の 方法。
[13] カロテノイド生産微生物が E— 396株(FERM BP— 4283)及びその変異株、並び に A— 581—l株(FERM BP— 4671)及びその変異株力も選ばれる請求の範囲第 7 項一第 12項のいずれか 1項に記載の方法。
[14] 16Sリボソーム RNAに対応する DNAの塩基配列が配列番号 1に記載の塩基配列 と実質的に相同であり、かつ β—力口テン、ェキネノン、 |8—クリプトキサンチン、 3—ヒド 口キシェキネノン、ァステロイデノン、カンタキサンチン、ゼアキサンチン、アド二ルビン 、アドニキサンチン及びァスタキサンチン力も選ばれる少なくとも一つのカロテノイドィ匕 合物を生産するカロテノイド生産微生物を変異のための親株としてこれに突然変異を 誘発し、生産されるリコペンの総力ロテノイド生産量に対する比率 (質量%)が親株の それよりも高 、変異株を選抜してリコペン生産微生物を取得し、前記リコペン生産微 生物を培養することにより得た培養物力 リコペン又はリコペンを含有するカロテノィ ド混合物を採取することを含むリコペン又はリコペンを含有するカロテノイド混合物の 製造方法。
[15] 生産されるリコペンの総力ロテノイド生産量に対する比率 (質量%)が親株のそれよ り高い変異株の選抜が、固体培地上で桃色一赤紫色を呈するコロニーを選択するこ とを含む工程により行われる請求の範囲第 14項記載の方法。
[16] 前記リコペン生産微生物により生産されるリコペンの総力ロテノイド生産量に対する 比率が 40質量%以上であることを特徴とする請求の範囲第 14項記載の方法。
[17] 前記リコペン生産微生物により生産される j8—力口テン、ェキネノン、 β クリプトキサ ンチン、 3—ヒドロキシェキネノン、ァステロイデノン、カンタキサンチン、ゼアキサンチ ン、アド二ルビン、アドニキサンチン及びァスタキサンチンのそれぞれの総力ロテノイド 生産量に対する比率がいずれも 20質量%未満であることを特徴とする請求の範囲 第 14項記載の方法。
[18] カロテノイド生産微生物が Ε— 396株(FERM BP— 4283)及びその変異株、並び に A— 581—l株(FERM BP— 4671)及びその変異株力も選ばれる請求の範囲第 1 4項一第 17項のいずれか 1項に記載の方法。
PCT/JP2004/013033 2003-09-17 2004-09-08 カロテノイド化合物の製造方法 WO2005028661A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT04787716T ATE557097T1 (de) 2003-09-17 2004-09-08 Verfahren zur herstellung von zeaxanthin und beta-cryptoxanthin
ES04787716T ES2387674T3 (es) 2003-09-17 2004-09-08 Proceso para producir zeaxantina y beta-criptoxantina
AU2004274750A AU2004274750B2 (en) 2003-09-17 2004-09-08 Process for producing carotenoid compound
EP04787716A EP1676925B1 (en) 2003-09-17 2004-09-08 Process for producing zeaxanthin and beta-cryptoxanthin
US10/571,902 US7745170B2 (en) 2003-09-17 2004-09-08 Process for producing carotenoid compound
CA002539069A CA2539069C (en) 2003-09-17 2004-09-08 Process for producing carotenoid compound
DK04787716.2T DK1676925T3 (da) 2003-09-17 2004-09-08 Fremgangsmåde til produktion af zeaxanthin og beta-cryptoxanthin

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003325144A JP2005087100A (ja) 2003-09-17 2003-09-17 リコペンの製造方法
JP2003-325130 2003-09-17
JP2003325130A JP2005087099A (ja) 2003-09-17 2003-09-17 β−カロテンの製造方法
JP2003-325104 2003-09-17
JP2003325104A JP4557244B2 (ja) 2003-09-17 2003-09-17 ゼアキサンチンの製造方法
JP2003-325144 2003-09-17

Publications (1)

Publication Number Publication Date
WO2005028661A1 true WO2005028661A1 (ja) 2005-03-31

Family

ID=34381772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013033 WO2005028661A1 (ja) 2003-09-17 2004-09-08 カロテノイド化合物の製造方法

Country Status (9)

Country Link
US (1) US7745170B2 (ja)
EP (1) EP1676925B1 (ja)
KR (1) KR20060060039A (ja)
AT (1) ATE557097T1 (ja)
AU (1) AU2004274750B2 (ja)
CA (1) CA2539069C (ja)
DK (1) DK1676925T3 (ja)
ES (1) ES2387674T3 (ja)
WO (1) WO2005028661A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304875A (ja) * 2002-04-15 2003-10-28 Nippon Oil Corp カンタキサンチンの製造方法
EP1676888B1 (en) 2004-11-05 2012-10-24 Conservas Vegetales de Extremadura, S.A. Method of obtaining lycopene from tomato skins and seeds
WO2008108674A1 (en) 2007-03-08 2008-09-12 Biotrend - Inovação E Engenharia Em Biotecnologia, Sa Production op high- purity carotenoids by fermenting selected bacterial strains
ES2330602B1 (es) * 2008-03-19 2010-09-30 Vitatene, S.A Metodo de produccion de fitoeno y/o fitoflueno, o mezclas de carotenoides con alto contenido en los mismos.
KR101392066B1 (ko) * 2008-10-17 2014-05-07 제이엑스 닛코닛세키에너지주식회사 카로테노이드의 발효법
JP5155898B2 (ja) 2009-01-30 2013-03-06 Jx日鉱日石エネルギー株式会社 カロテノイドの分離法
JP5149837B2 (ja) 2009-02-27 2013-02-20 Jx日鉱日石エネルギー株式会社 カロテノイドの製造方法
CN103038358B (zh) * 2010-03-30 2016-01-20 吉坤日矿日石能源株式会社 通过发酵制造玉米黄质的方法
JP2012025712A (ja) * 2010-07-27 2012-02-09 Jx Nippon Oil & Energy Corp 抗不安組成物
JP2012170425A (ja) 2011-02-23 2012-09-10 Jx Nippon Oil & Energy Corp ゼアキサンチン強化家禽卵
KR101901608B1 (ko) * 2016-06-01 2018-09-28 한양대학교 산학협력단 두나리엘라 변이주 및 이를 이용한 색소 생산 방법
CN108913746A (zh) * 2018-07-19 2018-11-30 威海利达生物科技有限公司 通过提高红法夫酵母生物量合成虾青素及测定的方法
JPWO2020095881A1 (ja) * 2018-11-05 2021-10-07 Eneos株式会社 カロテノイドの血中滞留増加用組成物
KR102600520B1 (ko) 2021-06-09 2023-11-09 씨제이제일제당 주식회사 제라닐제라닐 피로포스페이트 신타아제 변이체 및 이를 이용한 테트라테르펜, 이의 전구체, 및 테트라테르펜을 전구체로 하는 물질의 생산방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779796A (ja) * 1993-07-22 1995-03-28 Nippon Oil Co Ltd カロチノイド色素の製造方法
JPH089964A (ja) * 1994-07-04 1996-01-16 Nippon Oil Co Ltd 新規微生物
JPH0892205A (ja) 1994-03-17 1996-04-09 Univ America Catholic ケン化したマリゴールドの含油樹脂からのルテインの単離、精製および再結晶法、およびその使用
JPH09308481A (ja) * 1996-05-23 1997-12-02 Nippon Oil Co Ltd 色調改善剤
JP2001095500A (ja) * 1999-09-30 2001-04-10 Nippon Mitsubishi Oil Corp 飼料添加用色素含有物
JP2001512030A (ja) * 1997-07-29 2001-08-21 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブライ ユニバーシティ オブ エルサレム 新規カロテノイド産生細菌種とそれを用いたカロテノイドの生産方法
WO2001096591A1 (fr) * 2000-06-12 2001-12-20 Nippon Mitsubishi Oil Corporation Procede pour produire des pigments carotenoides
JP2003304875A (ja) * 2002-04-15 2003-10-28 Nippon Oil Corp カンタキサンチンの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790289A (fr) 1971-10-27 1973-02-15 Nestle Sa Procede de fabrication de zeaxanthine
US5360730A (en) 1987-06-05 1994-11-01 Universal Foods Corporation Zeaxanthin producing strains of Neospongiococcum Excentricum
US5607839A (en) * 1993-07-22 1997-03-04 Nippon Oil Company, Ltd. Bacteria belonging to new genus process for production of carotenoids using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779796A (ja) * 1993-07-22 1995-03-28 Nippon Oil Co Ltd カロチノイド色素の製造方法
JPH0892205A (ja) 1994-03-17 1996-04-09 Univ America Catholic ケン化したマリゴールドの含油樹脂からのルテインの単離、精製および再結晶法、およびその使用
JPH089964A (ja) * 1994-07-04 1996-01-16 Nippon Oil Co Ltd 新規微生物
JPH09308481A (ja) * 1996-05-23 1997-12-02 Nippon Oil Co Ltd 色調改善剤
JP2001512030A (ja) * 1997-07-29 2001-08-21 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブライ ユニバーシティ オブ エルサレム 新規カロテノイド産生細菌種とそれを用いたカロテノイドの生産方法
JP2001095500A (ja) * 1999-09-30 2001-04-10 Nippon Mitsubishi Oil Corp 飼料添加用色素含有物
WO2001096591A1 (fr) * 2000-06-12 2001-12-20 Nippon Mitsubishi Oil Corporation Procede pour produire des pigments carotenoides
JP2003304875A (ja) * 2002-04-15 2003-10-28 Nippon Oil Corp カンタキサンチンの製造方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BIOL. PHAIM. BULL., vol. 18, no. 2, 1995, pages 227 - 233
BIOL. PHARM. BULL., vol. 18, no. 2, 1995, pages 227 - 233
FISHERIES, SCIENCE, vol. 62, no. 1, 1996, pages 134 - 137
FOOD STYLE 21, vol. 3, no. 3, 1999, pages 50 - 53
HARKER, M. ET AL.: "Paracoccus marcusii sp. nov., an orange gram-negative coccus", INT. J SYST. BACTERIOL., vol. 48, no. 2, 1998, pages 543 - 548, XP002983667 *
PURE APPL. CHEM., vol. 63, no. 1, 1991, pages 45
TRIPATHI, U. ET AL.: "Studies on Haematococcus pluvialis for improved production of astaxanthin by mutagenesis", WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, vol. 17, no. 2, 2001, pages 143 - 148, XP002983668 *
TSUBOKURA, A. ET AL.: "Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium", INT. J SYST. BACTERIOL., vol. 49, no. 1, 1999, pages 277 - 282, XP002962170 *

Also Published As

Publication number Publication date
KR20060060039A (ko) 2006-06-02
US7745170B2 (en) 2010-06-29
CA2539069C (en) 2008-07-22
CA2539069A1 (en) 2005-03-31
EP1676925B1 (en) 2012-05-09
US20070105189A1 (en) 2007-05-10
AU2004274750B2 (en) 2007-05-17
ES2387674T3 (es) 2012-09-28
DK1676925T3 (da) 2012-08-27
EP1676925A1 (en) 2006-07-05
ATE557097T1 (de) 2012-05-15
AU2004274750A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
US5935808A (en) Carotenoid-producing bacterial species and process for production of carotenoids using same
JP4427167B2 (ja) カロテノイド色素の製法
JP4463347B2 (ja) 飼料添加用色素含有物
WO2005028661A1 (ja) カロテノイド化合物の製造方法
EP1893769B1 (en) Biological production of zeaxanthin
JP3278574B2 (ja) 色調改善剤
US20050124032A1 (en) Method of production of astaxanthin by fermenting selected strains of <I>xanthophyllomyces dendrorhous
JP4290559B2 (ja) ブラケスレアトリスポラ(Blakesleatrispora)の(+)株及び(−)株を使用する混合培養物の発酵によるβ−カロテンの生産方法
JP4557244B2 (ja) ゼアキサンチンの製造方法
Dufossé Current carotenoid production using microorganisms
EP1496115B1 (en) Process for obtaining canthaxanthin-producing microorganisms and for producing canthaxanthin
JP2005087099A (ja) β−カロテンの製造方法
JP2005087100A (ja) リコペンの製造方法
JP4486883B2 (ja) カロテノイドを作製する方法
KR100249731B1 (ko) 아스타산틴 생산 효모 돌연변이주 및 이의 제조방법
JP2023016382A (ja) トランス型カロテノイドをシス型カロテノイドに異性化する方法
Agroalimentaire et al. CURRENT CAROTENOID PRODUCTION USING M| CROORGANISMS
JPH05219983A (ja) ゼアキサンチンの生産方法
KR20050046868A (ko) 신규한 지아잔틴 생성 세균 플라보코커스 제주엔시스 및이를 사용한 지아잔틴 생산 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032678.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007105189

Country of ref document: US

Ref document number: 2539069

Country of ref document: CA

Ref document number: 10571902

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067005252

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004274750

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004274750

Country of ref document: AU

Date of ref document: 20040908

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004274750

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004787716

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067005252

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004787716

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10571902

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004274750

Country of ref document: AU