WO2005003852A1 - 干渉計型光スイッチおよび可変光アッテネータ - Google Patents

干渉計型光スイッチおよび可変光アッテネータ Download PDF

Info

Publication number
WO2005003852A1
WO2005003852A1 PCT/JP2004/009773 JP2004009773W WO2005003852A1 WO 2005003852 A1 WO2005003852 A1 WO 2005003852A1 JP 2004009773 W JP2004009773 W JP 2004009773W WO 2005003852 A1 WO2005003852 A1 WO 2005003852A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
path length
output
demultiplexing means
phase difference
Prior art date
Application number
PCT/JP2004/009773
Other languages
English (en)
French (fr)
Inventor
Takayuki Mizuno
Hiroshi Takahashi
Tsutomu Kitoh
Manabu Oguma
Shunichi Souma
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to CA2506387A priority Critical patent/CA2506387C/en
Priority to EP04747241.0A priority patent/EP1643302B1/en
Priority to JP2005511424A priority patent/JP4105724B2/ja
Priority to US10/536,649 priority patent/US7590312B2/en
Publication of WO2005003852A1 publication Critical patent/WO2005003852A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • G02B6/266Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3136Digital deflection, i.e. optical switching in an optical waveguide structure of interferometric switch type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/04Function characteristic wavelength independent

Definitions

  • the present invention relates to an interferometer type optical switch and a variable optical attenuator used in an optical communication system and optical signal processing, and more particularly, to a waveguide type optical switch capable of performing a switching operation in a wide wavelength band. Circuit. Background art
  • WDM wavelength division multiplexing
  • An optical cross-connect system is a system that switches the transmission line at a node such as a telephone office.
  • An optical add-drop multiplex system extracts a specific wavelength from the multiplexed signal light, This is a system that divides the signal into transmission lines or adds a new signal to a specific wavelength and sends it out. Therefore, these systems require a space division type optical switch that enables the optical path switching function without changing the optical signal, in addition to the signal light multiplexing / demultiplexing function. It is one of the important parts to play.
  • Optical switches used in such commercial communication systems are small, low-cost, and low-power. Characteristics such as power consumption and high-speed controllability are required.
  • Waveguide-type optical components based on optical waveguides on a substrate are attracting attention as optical components with excellent mass productivity, integration, and reliability.
  • Waveguide type optical switches can be mass-produced with high accuracy and reproducibility below the optical wavelength by photolithography technology and microfabrication technology.Furthermore, the basic elements that compose the switches are small and suitable for large-scale optical switches. It is considered a promising form of optical switch.
  • quartz-based optical waveguides formed on silicon substrates have low loss, high reliability, and high expandability, and are expected to be used as components in future optical communication systems.
  • a Mach-Zehnder interferometer is used as a basic component of a conventional waveguide optical switch.
  • the Mach-Zehnder interferometer consists of two force bras and an arm waveguide sandwiched between the two couplers.
  • the optical path can be switched by driving the thin film heater on the arm waveguide.
  • An optical switch in a conventional waveguide type optical component is an interferometer type optical switch including an optical multiplexing / demultiplexing unit and an optical path length difference providing unit.
  • a typical interferometer type optical switch is a two-input two-output Mach-Zehnder interferometer, which is widely used as a basic element of an optical switch (Reference 1: M. Okuno et al., "Low-loss and high ext. inc ion rat io sil ica-based IxN thermo-optic switches, "OECC / IOOC 2001 Conference Incorporating AC0FT, pp. 39-41, 5 July 2001).
  • FIG. 37 is a plan view of a conventional Mach-Zehnder interferometer type optical switch.
  • This Mach-Zeng interferometer type optical switch is composed of two directional couplers 15 1 and 15 2, and an optical path length difference providing unit 1 sandwiched between these two directional couplers 15 1 and 15 2. 31, a phase shifter 141 formed in the optical path length difference providing unit, input waveguides 101 and 102, and output waveguides 103 and 104.
  • the optical path length difference providing section in FIG. 37 is the relative optical path length difference of the upper waveguide with respect to the lower waveguide, and is the optical path length difference including the effective refractive index of the waveguide. is there.
  • an element in which L is set to 0.5 ⁇ s in the initial state is called an asymmetric Mach-Zehnder interferometer optical switch, and is used as a leave switch in the evening.
  • an element in which is set to 0 is called a symmetric Mach-Zehnder interferometer optical switch, and is used as a two-branch switch.
  • FIG. 38 is a cross-sectional view of the Mach-Zehnder interferometer type optical switch shown in FIG.
  • clad glass layers 164 and .167 formed of quartz glass are provided on a silicon substrate 161.
  • a core glass part 165 made of quartz glass is provided in the middle layer of the clad glass layers 164 and 167, and an optical waveguide is formed.
  • a phase shifter (thin film) 141 is formed on the surface of the upper clad glass layer 167. That is, the waveguide type optical component is formed by the optical waveguide, the thin film heater, and the like.
  • the switch is in the par state.
  • the input signal light is output from the output waveguide 103, and the signal light input from the input waveguide 102 is output from the output waveguide 104.
  • the switch When the phase shifter (thin film heater) 141 is in the ON state, the switch is in the cross state, the signal light input from the input waveguide 101 is output from the output waveguide 10.4, and the signal input from the input waveguide 102. Light is output from the output waveguide 103.
  • the optical path can be switched by changing the optical path length of the optical path length difference providing unit 131 depending on whether or not heating is performed by the thin film heater.
  • phase shifter (thin film switch) 141 When the phase shifter (thin film switch) 141 is in the OFF state, the switch is in the cross state, and the signal light is output from the cross port (101 ⁇ 104 or 102 ⁇ 103).
  • a two-branch switch using a symmetric type assuming that light is input from the input waveguide 101, the signal light is output from the cross port (output waveguide 104) in the OFF state, and the through port (output waveguide 103) is output. ) Is not output. Conversely, in the ON state, the signal light is output from the through port (output waveguide 103) and not output from the cross port (output waveguide 104).
  • the two-branch switch is configured to output from the cross port in the initial OFF state, and the output is switched to the through port by heating the thin film heater overnight.
  • the tap switch using the asymmetric type performs the switching operation opposite to that of the two-branch switch, and outputs from the through port in the initial OFF state. The output is switched to the cross port by heating over the membrane.
  • the gate switch using the asymmetric type uses only the crossport of the tap switch. In the initial OFF state, no signal is output from the cross port. When the thin film heater is turned ON, the signal light is output from the cross port.
  • Both symmetric and asymmetric types are used as fundamental quotients for optical switches. However, especially in the case of an asymmetric type, if the branch ratio of the first and second directional couplers 151 and 152 is equal, a high extinction ratio can be maintained. It has the advantage of being strong.
  • interferometer type optical switches are used as 1 ⁇ 1 type switches and 1 ⁇ 2 type switches used for switching from the working system to the standby system when a failure occurs in the optical communication system.
  • Mach-Zehnder interferometer type optical switch with one output, it has been reported that the Mach-Zehnder interferometer type optical switch is connected to one output so as to increase the extinction ratio in addition to being used alone.
  • Pr. Yunnan 2 T. Goh et al., "High-extinction ratio and low-loss silica-based 8x8 thermooptic matrix switch, IEEE Photonics technology Letters 1998, Vol., 10, pp.358-360)
  • the above-mentioned Mach-Zehnder interferometer type optical switch is used as a basic constituent element, and a plurality of them are combined to form an NXN matrix optical switch (Ref. 4: T. Gohet al., Low-loss and high-extinction-ratio silica-based strictly discussion blocking).
  • NXN matrix optical switch (Ref. 4: T. Gohet al., Low-loss and high-extinction-ratio silica-based strictly discussion blocking).
  • 16x16 thermooptic matrix switch "IEEE Photonics Technology Letters 1998, Vol. 10, No. 6, pp. 810-812)
  • 1 XN tap type optical switch Reference 1
  • 1 XN tree type optical switch Reference 5: T.
  • FI G.39 shows a conventional wavelength-independent optical switch (WINS).
  • WINS has a configuration in which a first basic circuit 190 is connected to a second basic circuit that is point-symmetric with respect to the first basic circuit 190.
  • the first basic circuit 190 is a wavelength-independent coupler composed of two directional couplers 151 and 152 and an optical path length difference providing unit 134 sandwiched between the two directional couplers 151 and 152.
  • WINC Wavelength Insensitive Coupler
  • the optical path length difference represents the relative optical path length difference between one optical waveguide (the lower optical path in the figure) and the other optical waveguide.
  • a phase shifter (thin film heater) 142 is formed on the optical waveguide of the optical path length difference providing unit 135, and a switching operation can be performed by energizing the thin film heater.
  • This circuit can be regarded as a circuit in which the directional couplers 151 and 152 of the conventional symmetric Mach-Zehnder interferometer switch (FIG. 37) are replaced with WINCs, respectively. Since the branching ratio of a conventional directional coupler has wavelength dependence, the wavelength range that functions as a 3 dB power bra, that is, a power bra with a branching ratio of 0.5 is limited. ing. Since the extinction ratio of the symmetric Mach-Zehng interferometer switch becomes high when the sum of the directional couplers 151 and 152 becomes a perfect coupling length, the branching ratio of the directional couplers 151 and 152 is respectively If it is smaller or larger than 0.5, the extinction ratio deteriorates.
  • the branch 1 ⁇ 2 can be set to approximately 0.5 regardless of the wavelength. Since WINS uses WINC, which has a small wavelength dependence of the branching ratio of the optical coupler, switching can be performed in a wider wavelength band than a conventional symmetric Mach-Zeng interferometer switch. However, in practice, it is difficult to keep the WINC branching ratio at 0.5 over a wide wavelength band due to manufacturing errors and the like, and the wavelength characteristics deteriorate due to the deviation of the branching ratio.
  • fine adjustment phase shifters (thin film heaters) 141 and 143 are formed in the optical path length difference providing units 134 and 136 of the WI NC so that the branching ratio of the two WI NCs constituting the WI NS can be adjusted (FIG. 40). Since the WINS is symmetric, in the initial state where the thin film heater is not driven, the WINS is in a cross state, and the signal light input from the input waveguide 101 is output from the output waveguide 104. Here, the thin-film heaters 141, 142 and 143 of the optical path length difference providing section are energized, and the optical optical path length is changed by (5 IL 6Ah ⁇ (5 L 3) by the thermo-optic effect.
  • the signal light input from the input waveguide 101 was output from the output waveguide 103, and the output to the output waveguide 104 was blocked, and as a result of measuring the wavelength dependence of the transmittance, 1
  • An extinction ratio of more than 20 dB was obtained in a wide wavelength range of 2 to 1.7 im.
  • the interferometer type optical switch performs the switching operation by setting the output intensity to 0 and 1, but by setting the output intensity between 0 and 1 as a variable optical attenuator that attenuates the optical signal intensity.
  • the wavelength characteristics of a conventional asymmetric Mach-Zehnder interferometer are shown.
  • Explain the differences between Tennessee and I. FI G. 41A shows the wavelength dependence of the transmittance of the asymmetric Mach-Zehnder interferometer switch described in the first example of the prior art.
  • the ON state corresponds to output intensity 1 and the OFF state corresponds to output intensity 0.
  • the smaller the transmittance in the OFF state the higher the extinction ratio.
  • the optical path length providing unit 131 (FIG. 37)
  • the optical path length difference is + 5 ⁇ !
  • 0.5 ⁇ s-0.5 ⁇ s 0.
  • FI G. 41 B shows the wavelength dependence of the transmittance when the light transmittance at the center wavelength ⁇ c is set to -30 dB, -20 dB, and -10 dB in the conventional variable optical attenuator.
  • the optical intensity difference can be arbitrarily attenuated by changing the optical path length difference of the optical path length difference providing unit 131 by using a phase shifter (thin film heater) and setting the transmittance to an appropriate value.
  • the Mach-Zehnder interferometer switch it was necessary to set the optical path length difference of the optical path length difference providing unit to 0.5 ⁇ c ⁇ ). If the optical path length difference is set to a finite value, wavelength dependence occurs in principle, and the transmittance changes with wavelength.
  • the asymmetric type has the advantage that the optical coupler has a high tolerance to the manufacturing error and the wavelength dependence, but it is impossible with the conventional technology to set the optical path length difference to a finite value without wavelength dependence. Therefore, no matter which Mach-Zehnder interferometer type optical switch is used, it has wavelength dependence as shown in FIG. 41 41.
  • FI G. 41 A shows a wavelength band of 1.45 to 1.65 when the signal light wavelength ⁇ s is set to 1.5 / m, but the extinction ratio is good at ⁇ s, but the wavelength As the distance increases from the signal light wavelength, the extinction ratio, which is the difference in transmittance between the ⁇ state and the OFF state, deteriorates.
  • the conventional Mach-Zehnder interferometer type optical switch can achieve the target value only at most around 60 nm centering on the signal light wavelength ⁇ s. You. Therefore, for example, at a center wavelength of 1.55 m, the extinction ratio deteriorates to about 25 dB.
  • the conventional Mach-Zehnder interferometer type optical switch has a limited wavelength band in which a sufficient extinction ratio can be ensured, and cannot be applied to a wavelength division multiplexing transmission system using a wide wavelength band.
  • the WINS described in the second example of the prior art can reduce the wavelength dependence of the branching ratio of the optical coupler, the wavelength dependence can be reduced as compared with the optical switch of the first example of the prior art.
  • the splitting ratio between the two WINCs must be 0.5 in order to obtain a high extinction ratio.
  • Bunnan 6 K. Jinguj i et al., 'Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations., Journal of Lightwave Technology 1996, Vol.14, o.10, pp.2301 -2310.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and is capable of performing switching in a wide band, has a high extinction ratio, and has a large manufacturing tolerance, and an optical switch and a variable optical attenuator.
  • the purpose is to provide.
  • a phase generating power bra having an output phase difference having wavelength dependence is used as at least one of the power bras (optical multiplexing / demultiplexing means) constituting the Mach-Zehnder interferometer. .
  • the output intensity of the Matsuhatsu Panda interferometer is made wavelength independent. It was realized.
  • the phase difference of the output of the optical multiplexer / demultiplexer means that light is input to at least one of the input ports of the optical multiplexer / demultiplexer and light is output from at least two of the output ports of the optical multiplexer / demultiplexer.
  • T is the phase difference of the output light generated between the two output ports when the light is input.At the same time, light is input to at least two of the input ports of the optical multiplexer / demultiplexer, and at least one of the output ports of the optical multiplexer / demultiplexer is output.
  • a light phase difference occurs even at the same output port due to differences in input ports.
  • a light power bra that can generate a different phase difference for each wavelength between ports when light is input or output to different input ports or output ports is a phase generation power blur.
  • the interferometer type optical switch and the variable optical antenna include an optical path length comprising a first optical multiplexing / demultiplexing means and two optical waveguides connected to the first optical multiplexing / demultiplexing means.
  • a difference providing unit a second optical multiplexing / demultiplexing unit connected to the optical path length difference providing unit, One or more input waveguides connected to the first optical multiplexing / demultiplexing means, one or more output waveguides connected to the second optical multiplexing / demultiplexing means, provided in the optical path length difference providing section
  • at least one of the first optical multiplexing / demultiplexing means and the second optical multiplexing / demultiplexing means has a phase difference having a wavelength-dependent output phase difference.
  • the phase generating power blur is configured by connecting the optical coupler and the optical path length difference providing unit, the output ⁇ : optical multiplexing / demultiplexing whose phase difference has wavelength dependence Means may be realized. Furthermore, an appropriate phase difference can be generated by appropriately setting the branching ratio of the optical coupler and the optical path length difference of the optical path length difference providing unit.
  • the phase generation power blur is characterized by comprising N + 1 optical couplers (N is a natural number) and N optical path length difference providing units sandwiched between adjacent optical couplers.
  • N is a natural number
  • N optical path length difference providing units sandwiched between adjacent optical couplers.
  • the wavelength of the light is ⁇
  • the phase difference of the light output by the first optical multiplexing / demultiplexing means is 2 ⁇
  • (e) the phase difference caused by the optical ⁇ L ( ⁇ )
  • the phase difference of the light output by the second optical multiplexing / demultiplexing means is 2 ⁇ 2 ( ⁇ )
  • optical path length difference of the optical path length difference providing section may be effectively set to an arbitrary value regardless of the wavelength.
  • optical components such as an interferometer type optical switch and a variable optical attenuator that can be used in a wide band can be provided.
  • the sum of the three phase differences ⁇ ⁇ ⁇ ( ⁇ ) + ⁇ ⁇ ( ⁇ ) + 2 ( ⁇ ) ⁇ is set to (2m ′ + 1) ⁇ 7 ⁇ (m 'is an integer), and the first
  • the branching ratio between the optical multiplexing / demultiplexing means and the second optical multiplexing / demultiplexing means may be set to be substantially equal over the entire wavelength region.
  • a wavelength-independent asymmetric Matsuhazenda interferometer switch which was impossible in principle in the past.
  • it can also be used as a wavelength-independent variable light beam.
  • the sum of the three phase differences 27 ⁇ ⁇ ( ⁇ ( ⁇ ) + ⁇ i> l L ( ⁇ ) + ⁇ 2 ( ⁇ ) ⁇ is set to 2m '-% (m' is an integer), and the first
  • the sum of the branching ratios of the optical multiplexing / demultiplexing means and the second optical multiplexing / demultiplexing means can be set to be approximately 1.
  • a wavelength-independent symmetric Mach-Zehnder interferometer It may be operated as a switch.
  • the sum of the phase difference of the output of the first optical multiplexing / demultiplexing means and the phase difference of the output of the second optical multiplexing / demultiplexing means is / ⁇ + m / 2 (m is an integer). can do.
  • the wavelength of the light is obtained, the phase difference of the light output by the first optical multiplexing / demultiplexing means is 2 ⁇ 1 ( ⁇ ), and the phase difference caused by the optical path length difference L of the optical path length difference providing section is 2 ⁇ A (E) If the phase difference of the light output by the second optical multiplexing / demultiplexing means is 2 ⁇ 2 ( ⁇ ), the three types are set so that the output intensity of the waveguide type optical circuit becomes constant with respect to the wavelength. Phase difference sum 2 ⁇ ⁇ , ( ⁇ ) + ⁇ ⁇ ( ⁇ ) + ⁇ 2 ( ⁇ ) ⁇ It can be. By doing so, it is possible to provide an interferometer type optical switch and a variable optical attenuator having a constant output intensity over a wide band.
  • One of the first optical multiplexing / demultiplexing means and the second optical multiplexing / demultiplexing means has a phase difference of 2 ⁇ .
  • Power bra
  • the branching ratio of the two optical couplers constituting the optical multiplexing / demultiplexing means and the optical path length difference of one optical path length difference providing section are set so as to satisfy Thus, an interferometer type optical switch capable of performing a switching operation can be provided.
  • first optical multiplexing / demultiplexing means and the second optical multiplexing / demultiplexing means each include two optical couplers and a phase generating power blur composed of one optical path length difference providing unit sandwiched between the two optical couplers.
  • the branch ⁇ of the two optical couplers constituting the first optical multiplexing / demultiplexing means and the second optical multiplexing / demultiplexing means and the optical path length difference of one optical path length difference providing unit are set so as to satisfy With this feature, it is possible to provide an interferometer type optical switch capable of performing a switching operation in a wide wavelength band.
  • the first optical multiplexing / demultiplexing means and the second optical multiplexing / demultiplexing means are respectively sandwiched between N + 1 optical couplers ( ⁇ is a natural number) and adjacent optical couplers, It is a phase generation power blur composed of ⁇ optical path length difference providing sections composed of two optical waveguides (delay lines), and constitutes ⁇ optical path length providing sections of the first optical multiplexing / demultiplexing means.
  • the sum of the optical path length differences of the first optical waveguide and the sum of the optical path length differences of the second optical waveguide ⁇ 1 , and the sum of the optical path length differences of the first optical waveguides constituting the N optical path length difference providing sections of the second optical multiplexing / demultiplexing means is ⁇ 2 , and the sum of the optical path length differences of the second optical waveguides
  • first optical multiplexing / demultiplexing means and the second optical multiplexing / demultiplexing means include N + 1 optical couplers (N is a natural number) and N optical path length differences sandwiched between adjacent optical couplers.
  • the first and second optical multiplexing / demultiplexing means have the same branching ratio of N + 1 optical couplers (N is a natural number). It may be characterized by being set. If the optical coupler can be easily manufactured, the yield can be improved.
  • the coupling length of the two optical waveguides, the spacing between the waveguides, etc. can be set appropriately to achieve optical coupling.
  • the branching ratio of the vessel can be easily set to an arbitrary value.
  • the phase shifter by using a thin film transistor provided on the optical waveguide as the phase shifter, the phase can be shifted with high accuracy.
  • a waveguide type optical circuit comprising a silica-based glass optical waveguide, it is possible to provide a low-loss waveguide type optical circuit having excellent integration, reliability and stability. Can be.
  • interferometer type optical switches By using a plurality of interferometer type optical switches connected in multiple stages, it is possible to provide an interferometer type optical switch having a higher extinction ratio and a high-performance interferometer type optical switch. Furthermore, NX N matrix switch, 1 XN tree switch, 1 XN tap switch, M Large-scale interferometer-type optical switches such as XN DC switches and RO ADM switches can be configured.
  • one of the two output waveguides of the first interferometer type optical switch is connected to the input waveguide of the second interferometer type optical switch, and the input waveguide of the first interferometer type optical switch is connected.
  • Interferometer type optical switch Used as the 0 input port, the output waveguide of the second interferometer type optical switch as the first output port of the interferometer type optical switch, and the two outputs of the first interferometer type optical switch By using the other of the waveguides as the second output port of the interferometer type optical switch, an IX 2 interferometer type optical switch with constant power consumption may be realized.
  • One of the two output waveguides of the first interferometer type optical switch is connected to the input waveguide of the second interferometer type optical switch, and the other is the input of the third interferometer type optical switch.
  • the input waveguide of the first interferometer-type optical switch is connected to the waveguide, and the output waveguide of the second interferometer-type optical switch is used as the input port of the interferometer-type optical switch.
  • the output waveguide of the third interferometer-type optical switch as the second output port of the interferometer-type optical switch as the first output port, PI-LOSS (path independent) IX 2 interferometer type optical switch with loss) may be realized.
  • At least one interferometer type optical switch and configuring an optical switch of M (M: natural number) input N (N: natural number) output, NXN matrix switch, 1 XN tree switch, 1 Large-scale optical switches such as XN tap switches, MXN DC switches, and ROADM switches can be provided.
  • a birefringence index adjusting means is provided on the optical waveguide of the interferometer type optical switch, or polarization independent, characterized in that the birefringence index is adjusted, or a polarization beam switch.
  • An interferometer type optical switch switches between the state where the output intensity of the waveguide type optical circuit is maximum and the state where the output intensity is minimum. By setting it to a value, it can function as a variable optical attenuator. In this case, it is possible to provide a wide-band variable optical antenna in which the output intensity is constant in a wide wavelength band.
  • an optical cross section is provided.
  • optical modules for waveguide-type optical circuits that can be used in optical communication systems such as connect (OXC) systems and optical add-drop multiplex (OADM) systems.
  • a phase generating power bra whose output phase difference has wavelength dependence is used for at least one of the first optical multiplexing / demultiplexing means and the second optical multiplexing / demultiplexing means of the Mach-Zehnder interferometer.
  • the light intensity P c of the cross port (101 ⁇ 104) is expressed by the following equation.
  • ( ⁇ ) is the phase difference due to the optical path length difference of the optical path length difference providing unit of the Mach-Zehnder interferometer
  • ⁇ ( ⁇ ) is the phase difference of the output generated by the phase generating force blur.
  • the first and second optical multiplexing / demultiplexing means have the same branching ratio and R ( ⁇ ).
  • 27 0 ⁇ ( ⁇ ) + ⁇ ( ⁇ ) ⁇ should be an odd multiple of ⁇ .
  • L is set to a finite value
  • the optical path length difference physically has wavelength dependence, so that 2 ⁇ ⁇ ( ⁇ ) ⁇ is constant regardless of wavelength.
  • an appropriate phase difference is generated by using a phase generation power blur, and thus the phase difference is not obtained for the first time. ;! ⁇ ⁇ Square + input; ⁇ can be set to any constant value regardless of wavelength.
  • an interferometer type optical switch circuit capable of performing a switching operation in a wide wavelength band can be realized. If this circuit is introduced as a basic element of the optical switch, a light operating in an arbitrary wavelength band can be realized.
  • a switch for cross-connect system ⁇ optical add-drop multiplex system can be realized. As a result, parts can be shared, and the system can be constructed at low cost.
  • the optical path length difference can be generated without generating wavelength dependency for the first time.
  • an interferometer type optical switch having a high extinction ratio in a wide band and a large tolerance for a manufacturing error, and a variable optical antenna capable of operating in a wide band, which cannot be realized by the conventional technology, have been realized.
  • FIG. 1 is a schematic diagram showing a configuration of an interferometer type optical switch according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing the wavelength dependence of the amount of phase correction in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch in the OFF state according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a phase generating force bra used in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing the wavelength dependence of the phase difference of the phase generating power blur used in the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the wavelength dependence of the branching ratio of the phase generating power blur used in the first embodiment of the present invention. .
  • FIG. 7 is a schematic diagram showing a configuration of an interferometer type optical switch according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch according to the first embodiment of the present invention.
  • FIG. 9 is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch in the first modification of the first embodiment of the present invention.
  • FIG. 10 is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch in the second modification of the first embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing a configuration of an interferometer type optical switch according to the second embodiment of the present invention.
  • FIG. 12 is a diagram showing the wavelength dependence of the amount of phase correction in the second embodiment of the present invention. ⁇
  • FIG. 13 is a schematic diagram showing a configuration of an interferometer type optical switch according to the second embodiment of the present invention.
  • FIG. 14 is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch according to the second embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing a configuration of an interferometer type optical switch according to the third embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of an interferometer type optical switch according to the third embodiment of the present invention.
  • FIG. 17 is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch according to the third embodiment of the present invention.
  • FIG. 18 is a schematic diagram showing a configuration of an interferometer type optical switch according to a fourth embodiment of the present invention.
  • FIG. 19 is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch according to the fourth embodiment of the present invention.
  • FIG. 20 is a schematic diagram showing a configuration of an interferometer-type optical switch according to a first modification of the fourth embodiment of the present invention.
  • FIG. 21 is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch in the first modification of the fourth embodiment of the present invention.
  • FIG. 22 is a schematic diagram showing a configuration of an interferometer type optical switch according to a fifth embodiment of the present invention.
  • FIG. 23 is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch according to the fifth embodiment of the present invention.
  • FIG. 24 is a schematic diagram showing a configuration of an interferometer type optical switch according to a sixth embodiment of the present invention.
  • FIG. 25 is a schematic diagram of a phase generating force bra used in the sixth embodiment of the present invention.
  • FIG. 26 is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch according to the sixth embodiment of the present invention.
  • FIG. 27 is a schematic diagram showing a configuration of an interferometer type optical switch according to a seventh embodiment of the present invention.
  • FIG. 28A is a diagram showing the wavelength dependence of the transmittance in the OFF state of the interferometer type optical switch according to the seventh embodiment of the present invention. '
  • FI G. 28 B is the ON state of the interferometer type optical switch in the seventh embodiment of the present invention. It is a figure which shows the wavelength dependence of the transmittance
  • FIG. 29 is a schematic diagram showing a configuration of an interferometer type optical switch according to an eighth embodiment of the present invention.
  • FIG. 30A is a diagram showing the wavelength dependence of the transmittance of the OFF state of the interferometer type optical switch according to the eighth embodiment of the present invention.
  • FIG. 30B is a diagram showing the wavelength dependence of the transmittance of the interferometer type optical switch in the ON state in the eighth embodiment of the present invention.
  • FIG. 31 is a schematic diagram showing a configuration of an interferometer type optical switch according to a ninth embodiment of the present invention.
  • FIG. 32A is a diagram showing the wavelength dependence of the transmittance of the TE mode in the OFF state of the interferometer type optical switch according to the ninth embodiment of the present invention.
  • FIG. 32B is a diagram showing the wavelength dependence of the transmittance of the TM mode in the OFF state of the interferometer type optical switch according to the ninth embodiment of the present invention.
  • FIG. 33A is a diagram showing the wavelength dependence of the transmittance of the TE mode in the ON state of the interferometer type optical switch according to the ninth embodiment of the present invention.
  • FIG. 33B is a diagram showing the wavelength dependence of the transmittance of the TM mode in the ON state of the interferometer type optical switch according to the ninth embodiment of the present invention.
  • FIG. 34A is a schematic diagram showing a configuration example of an NXN switch using the interferometer type optical switch of the present invention.
  • FIG. 34B is a schematic diagram showing a configuration example of a 1 XN switch using the interferometer type optical switch of the present invention.
  • FIGs. 35A-35E are schematic diagrams illustrating the steps of producing a waveguide-type optical circuit.
  • FIG. 36 is a schematic view of an optical switch module using the interferometer type optical switch of the present invention.
  • FIG. 37 is a schematic diagram showing the configuration of a conventional Mach-Zehnder interferometer type optical switch.
  • FIG. 38 is a cross-sectional view of a conventional Mach-Zeng interferometer type optical switch.
  • FIG. 39 is a schematic diagram showing a configuration of a conventional wavelength-independent switch (WINS).
  • WINS wavelength-independent switch
  • FIG. 40 is a schematic diagram showing a configuration of a conventional wavelength-independent switch (WINS).
  • FIG. 41A is a diagram showing the wavelength dependence of the transmittance of the asymmetric Mach-Zehnder interferometer switch of the first example of the related art.
  • FI G. 41 B shows the wavelength dependence of the transmittance when the light transmittance at the center wavelength ⁇ c is set to -30 dB, -20 dB, and -10 dB in the conventional variable optical athens.
  • FIG. 1 shows the configuration of an interferometer type optical switch according to the first embodiment of the present invention. .
  • the interferometer type optical switch includes an optical multiplexing / demultiplexing device (phase generation power blur) 111 whose output phase difference has wavelength dependence, an optical multiplexing / demultiplexing device 122, and an optical multiplexing / demultiplexing device 1.
  • the transmission characteristics of the Mach-Zeng interferometer have a high extinction ratio at the signal light wavelength ⁇ s, and the extinction ratio deteriorates as the distance from the signal light wavelength increases.
  • the entire wavelength region can be set to the signal light wavelength, a high extinction ratio can be maintained over the entire wavelength region.
  • the signal light wavelength can be changed by giving a phase difference to the optical path length difference providing unit, and the amount of the given phase difference determines the signal light wavelength. Therefore, if an appropriate phase difference can be given to the optical path length difference providing section according to each wavelength, the entire wavelength region can be used as the signal light wavelength.
  • the signal light is input from the input waveguide 101 of the Mach-Zeng interferometer (see FIG. 37), and the light intensity P c output from the output waveguide 104 is calculated by the optical path length difference adding unit 13 If the phase difference due to the optical path length difference L of 1 is ⁇ i) ⁇ ! T (e) and ⁇ is the wavelength,
  • phase difference generated in the optical path length difference providing unit 131 can be set to be constant with respect to the wavelength, the Mach; // ender interferometer can be made wavelength-independent. Therefore, phase compensation is performed using the phase difference of the light output from the optical multiplexing / demultiplexing means 111.
  • the light is input to the first optical multiplexing / demultiplexing means 111 of the Mach-Zehnder interferometer, and the phase difference of the light output from the two optical waveguides connected to the optical multiplexing / demultiplexing means 111 is input to the Mach-Zender.
  • the output intensity can be wavelength-dependent.
  • the above is the principle of wavelength independence used in the present invention.
  • the output intensity should be 0 in the OFF state and 1 in the ON state. Therefore, if the sum of the phase differences 2 ⁇ ⁇ , ( ⁇ ) + L ( ⁇ ) + 2 ( ⁇ ) ⁇ is set to m. ⁇ (m is an integer), when m is an odd number, When it is in the OFF state and m is an even number, it is in the ⁇ N state, and switching operation is possible.
  • FIG. 3 shows the wavelength dependence of the transmission characteristics of the Mach-Zehnder interferometer type optical switch when such a phase correction amount is made to contribute to the optical path length difference providing unit 131. It can be seen that the wavelength dependence of the phase difference due to the optical path length difference of the optical path length difference providing unit 131 is compensated, and a high extinction ratio can be obtained in a wide wavelength region.
  • phase-generating coupler PLC
  • Various methods are conceivable as a method of realizing an optical multiplexing / demultiplexing device in which the phase difference of the output has wavelength dependence.For example, by connecting an optical coupler and an optical path length difference providing unit, the optical coupler functions as a phase generating power blur. be able to.
  • the optical multiplexing / demultiplexing means composed of N + 1 optical couplers (N is a natural number) and N optical path length difference providing units sandwiched between adjacent optical couplers is used as a phase generating power blur. Used as It is possible to arbitrarily set the branching ratio and output phase difference of this optical multiplexing / demultiplexing means by adjusting the branching ratio of N + 1 optical couplers and the optical path length difference of N optical path length difference providing units. Because you can do it. Also, as N is increased, the degree of freedom in setting the parameters is increased, and the degree of approximation to the desired characteristics can be increased. Further, this configuration has a feature that there is no principle loss.
  • the interferometer type optical switch according to the present embodiment shown in FIG. Light is input to the phase generation coupler 111, and the phase difference between the lights output from the two optical waveguides connected to the phase generation power blur 11 1 is ⁇ ( ⁇ ), and the two light guides connected to the Light is input to the wave path and this optical multiplexing / demultiplexing means If the phase difference of light output from 1 2 1 is ⁇ c (constant),
  • Fig. 4 shows an example of the phase generation power bracket 111.
  • Optical multiplexing / demultiplexing means shown in FI G. 4 1 1 1 connects two directional couplers 1 5 1 1 5 2 and these 2 directional couplers 1 5 1 1 5 2 And a small optical path length difference providing unit 13 2. composed of two optical waveguides, an input waveguide 101, and an output waveguide 103.
  • the branching ratio of one directional coupler 1 5 1 1 5 2 and the optical path length difference of one micro optical path length difference providing section 1 52 were obtained by multiple regression approximation.
  • the branching ratio of the first and second optical multiplexing / demultiplexing means is derived as a constant value of 0.5 for simplicity. This is an ideal case, but in practice, the branching ratio of the optical multiplexing / demultiplexing means has wavelength dependence, which must be taken into account.
  • the Mach-Zehnder interferometer type optical switch is used in the cross output OFF state, if the splitting ratio of the first and second optical multiplexing / demultiplexing means is equal, the high extinction ratio can be increased by performing the phase compensation described above. Obtainable. Therefore, the optical multiplexing / demultiplexing means was set such that the wavelength dependence of the branching ratio of the first and second optical multiplexing / demultiplexing means substantially matched.
  • phase correction amount ( ⁇ ) to be corrected by the phase generating force blur in FIG. 5 is expressed by the right side of the above equation (8).
  • the desired function is drawn at the same time.
  • m is set to 1
  • ⁇ c is set to 1 Z4 as numerical examples.
  • phase generating power blur functions as a 3 dB optical multiplexing / demultiplexing means with a branching ratio of approximately 0.5, and the phase difference ⁇ ( ⁇ ) of its output is approximately the amount of phase correction ⁇ ( ⁇ ) required for wavelength independence. It turns out that they match. .
  • FIG. 7 shows a plan view of an interferometer-type optical switch manufactured using the phase generating force bra 111.
  • the optical path length difference represents the relative optical path length of one optical waveguide (the lower optical path in the figure) to the other optical waveguide.
  • the distance between the two optical waveguides connecting the optical multiplexing / demultiplexing means 11 1 of the interferometer type optical switch and the directional coupler 153 was set to 250.
  • a thin film heater was used as the phase shifter 141, and the width was set to 40 m and the length to 4 mm.
  • a quartz-based optical waveguide circuit was fabricated using flame deposition, photo-lithography, and reactive ion etching.
  • the optical waveguide was manufactured so that the relative refractive index was 0.75% and the core cross section of the optical waveguide was 6 ⁇ 6 m 2 .
  • the chip on which the interferometer type optical switch was manufactured was cut out by dicing, and the switching characteristics were evaluated.
  • the switching operation when the fabricated optical waveguide circuit is used as a gate switch as a basic constituent element will be described.
  • the switch When the phase shifter (thin film heater) 141 is in the OFF state, the switch is in the closed state, so that when the signal light is input from the input waveguide 101, the signal light is output. The signal is output from the waveguide 103 and is not output from the output waveguide 104.
  • the phase shifter 141 is in the ON state and the switch is in the cross state, and the signal light input from the input waveguide 101 is output from the output waveguide 104. That is, when the input port was set to 101 and the output port was set to 104, no signal light was output when the phase shifter was OFF, and signal light was output when the phase shifter was ON, functioning as a gate switch. The same switching operation was confirmed when the input port was set to 102.
  • FIG. 8 shows the wavelength characteristics of the measured transmittance.
  • the wavelength dependence of the transmittance of the conventional Mach-Zeng interferometer type optical switch shown in FIG. 37 is also shown.
  • the interferometer type optical switch of this embodiment When the phase shifter (thin film switch) 141 is in the OFF state, the interferometer type optical switch of this embodiment has a high extinction ratio of -40 dB or less in a wide wavelength band of 1.45 to 1.6 m. .
  • the phase shifter was in the ⁇ N state:-The interferometer type optical switch of the present embodiment obtained good insertion loss over a wide wavelength band.
  • the interferometer type optical switch of the present embodiment realizes a high extinction ratio over a wide band by using a completely different principle from the conventional one, is compact, and can perform a wide-band switching operation with only one phase shifter. confirmed.
  • the tolerance for the branching ratio error of the optical multiplexing / demultiplexing means and the optical path length difference error of the optical path length difference providing unit is large.
  • An interferometer type optical switch capable of maintaining the extinction ratio was realized.
  • the interferometer type optical switch described in the present embodiment is designed so that a high extinction ratio can be obtained in a wavelength band of 1.45 to 1.65 m.
  • N + 1 (N is an integer of 1 or more) optical multiplexing / demultiplexing means as optical multiplexing / demultiplexing means having a wavelength-dependent output phase difference, and N optical paths sandwiched between adjacent optical multiplexing / demultiplexing means.
  • the optical multiplexing / demultiplexing means constituted by the length difference providing section is used, other optical multiplexing / demultiplexing means may be used.
  • the present invention is not limited to the configuration described in the present embodiment.
  • the optical multiplexing / demultiplexing means is not limited to the directional coupler used in the present embodiment, but may be another type such as a multi-mode interference power bra.
  • a plurality of types of optical multiplexing / demultiplexing means may be used, such as using a directional coupler for one of the demultiplexing means and a multi-mode interferometer for the other.
  • the phase characteristics may be set in consideration of the wavelength dependence of the branching ratio of the optical multiplexing / demultiplexing means to be used. It is also possible to locally change the refractive index of the optical waveguide to adjust the optical path length difference and the coupling characteristics and phase characteristics of the optical multiplexing / demultiplexing means.
  • the input waveguides are 101 and 102, but 103 and 104 are used as input waveguides, and 101 and 102 are used as output waveguides. The same effect was obtained.
  • m is designed to be ⁇ 1, m may be +1 or another integer may be used.
  • the present invention is not limited to the configuration described here.
  • the present invention relates to the phase difference of the output of the optical multiplexing / demultiplexing unit configuring the circuit in the set wavelength band and the entire frequency band. If the sum of the phase differences caused by the optical path length difference in the optical path length difference providing unit is set so as to be wavelength independent, the type of waveguide, the shape of the waveguide, the waveguide material, the wavelength band, the optical multiplexing / demultiplexing means, etc.
  • An interferometer-type optical switch that can maintain a high extinction ratio over a wide band regardless of the type can be configured.
  • the optical path length difference represents the relative optical path length of one optical waveguide (the lower optical path in the figure) with respect to the other optical waveguide.
  • the phase shifter 141 a thin film heater was used, and its width was set to 40 mm and its length was set to 4 mm.
  • a quartz optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching.
  • the optical waveguide was fabricated such that the relative refractive index was 1.5%, and the core cross section of the optical waveguide was 4.5 ⁇ 4.5 m 2 .
  • a waveguide having a higher relative refractive index than a conventional waveguide was used. This is because if the relative refractive index of the waveguide is increased, excess loss such as fiber coupling loss increases, but the minimum radius of curvature of the waveguide can be reduced, and the circuit becomes smaller.
  • a chip on which the interferometer type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and a single mode fiber (shown in FIG. Do not connect) —In the evening 141, a power supply lead (not shown) was connected to make a two-input two-output optical switch module.
  • the switching characteristics of the fabricated interferometer-type optical switch module were evaluated.
  • a switching operation in the case where the manufactured optical waveguide circuit is used as a gate switch having a basic constituent element will be described.
  • the phase shifter (thin film heater) 141 is in the OFF state, the switch is in the open state, so that when the signal light is input from the input waveguide 101, the signal light is output from the output waveguide 103 and output. The output from the waveguide 104 is prevented.
  • the thin film heater formed on the upper optical waveguide (first optical waveguide) is connected to the thin film heater.
  • the phase shifter (thin film heater) 141 is in the ⁇ N state, the switch is in the cross state, and the signal light input from the input waveguide 101 is output from the output waveguide 104 and functions as a gate switch. confirmed.
  • the value of k is set to +1. Of course, k may be another value.
  • Fig. 9 shows the measured wavelength characteristics of transmittance.
  • the wavelength characteristics of the transmittance of the conventional Matsuhachienda interferometer type optical switch shown in FIG. 37 are also shown.
  • the interferometer type optical switch of the present embodiment has a higher extinction ratio in a wider wavelength band than the conventional type optical switch.
  • the phase shifter was turned on, the interferometer-type optical switch of the present embodiment achieved good insertion loss over a wide wavelength band.
  • a thin film heater was used as the phase shifter, with a width of 40 mm and a length of 8 mm.
  • the optical path length is the optical path length of the waveguide including the refractive index of the waveguide, and the optical path length including the wavelength dependence of the refractive index. Therefore, even after forming the waveguide, the optical path length can be changed by changing the refractive index of the waveguide. Therefore, an interferometer type optical switch with an optical path length difference of 0 (zero) must be manufactured, and the optical path length difference should be adjusted to the design value by changing the refractive index of the waveguide in the manufacturing process. Can be.
  • the thin film transistor is used in the present embodiment.
  • the thin film transistor is already formed as a phase shifter on the optical waveguide.
  • the thin film heater is mounted on the optical waveguide, the refractive index can be easily and accurately adjusted.
  • the method of adjusting the refractive index is not limited to the thin film heater, and other means such as irradiation with light such as a laser may be used.
  • the thin film heater for the phase shifter is used together with the local heating process.
  • a permanent thin film heater dedicated to the local heating process may be provided to adjust the refractive index. Further, by adjusting the refractive index of the optical waveguides of the directional couplers' 151 and 152 and the minute optical path length difference providing unit 13 and 2 constituting the optical multiplexing / demultiplexing means 111, The characteristics of 1 1 1 can also be corrected.
  • a quartz-based optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching.
  • the optical waveguide was manufactured such that the relative refractive index was 0.75%, and the core cut surface of the optical waveguide was 6 ⁇ 6 m 2 .
  • a chip on which the interferometer type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and the input / output waveguides 101 to 104 are dispersed.
  • a shift fiber (not shown) was connected, and a feed lead (not shown) was connected to the thin film transistor 141 to provide a two-input, two-output optical switch module.
  • the switching characteristics of the interferometer type optical switch module manufactured as described above were evaluated.
  • the switching operation when the manufactured optical waveguide circuit is used as a gate switch as a basic constituent element will be described.
  • the phase shifter (thin film heater) 14 1 is in the OFF state, the switch is in the bar state, and when the signal light is input from the input waveguide 101, the signal light is transmitted from the output waveguide 103. It is output and is not output from the output waveguide 104.
  • the thin-film heater 141 is energized, the optical path length is changed by the thermo-optic effect by an amount corresponding to a half wavelength of the signal light ⁇ 0.5 ⁇ c ⁇ k (k is an integer other than 0) ⁇ .
  • phase shifter (thin film heater) 141 is in the ON state and the switch is in the cross state, and that the signal light input from the input waveguide 101 is output from the output waveguide 104 and functions as a gate switch. did.
  • FIG. 10 shows the wavelength characteristics of the measured transmittance.
  • the wavelength characteristics of the transmittance of the conventional Mach-Zehnder interferometer type optical switch shown in FIG. 37 are also shown.
  • the phase shifter was in the OFF state, the interferometer type optical switch of this embodiment was able to maintain an extinction ratio of less than 130 dB in a wide wavelength band of 1.45 to 1.63 m.
  • the phase shifter was turned on, the interferometer-type optical switch of the present embodiment obtained good insertion loss over a wide wavelength band.
  • the branching ratio (0, 45) of the first optical multiplexing / demultiplexing means (phase generation power 111) and the branching ratio (0.45) of the second optical multiplexing / demultiplexing means (directional coupler 153) are used.
  • 5) was designed to be different, a higher extinction ratio was obtained in a wider wavelength band than the conventional optical switch.
  • the first and second optical multiplexing / demultiplexing means may have different branching ratios, or the wavelength dependence of the branching ratios may be different.
  • FIG. 11 shows the configuration of an interferometer type optical switch according to the second embodiment of the present invention.
  • the circuit of this interferometer type optical switch is sandwiched between a pair of optical multiplexing / demultiplexing means (phase generating power) 111 and 112 whose output phase difference has wavelength dependence, and these optical multiplexing / demultiplexing means 111 and 112
  • An optical path length difference providing unit 131, a phase shifter (a thin film transistor) 141 formed in the optical path length difference providing unit 131, input waveguides 101 and 102, and output waveguides 103 and 104 are provided. ing.
  • phase difference between the light output from the two optical waveguides connected to this phase generation power blur 111 is ( ⁇ ( ⁇ )
  • Light is input to the two optical waveguides connected to the phase generation power blur 112.
  • the optical multiplexing / demultiplexing means (phase generating power blur) shown in FIG. 4 was used as the phase generating power blurs 111 and 112, respectively.
  • the optical multiplexing / demultiplexing means (phase generation power blur) shown in Fig. 4 consists of two directional couplers 151 and 152 and two optical waveguides connecting these two directional couplers 151 and 152. It comprises a minute optical path length difference providing section 132, input waveguides 101 and 102, and output waveguides 103 and 104.
  • the branch ratio of the two directional couplers 151 and 152 constituting the bra and the optical path length difference of one minute optical path length difference providing unit 132 were determined by least squares curve approximation.
  • FIG. 12 shows the total value of the phase differences of the phase generating force brushes 111 and 112 designed in this way.
  • the phase correction amount to be corrected by the phase generating power ⁇ (E) that is, the desired function represented by the right side of Equation 9 above was simultaneously drawn.
  • the two phase generators function as 3 dB optical multiplexing / demultiplexing means with a branching ratio of approximately 0.5, and the total phase difference ( ⁇ ) + ⁇ 2 ( ⁇ ) is the phase required for wavelength independence. It can be seen that the correction amount substantially matches the correction amount ⁇ ( ⁇ ).
  • Fig. 13 shows a plan view of the interferometer type optical switch actually manufactured.
  • R directional coupler 151 constituting the phase raw Naruryoku bra 111, 152 of the branching ratio, respectively, 0. 4
  • r 2 a 0.1, micro-optical path length difference imparting portion 132 and the first optical waveguide second
  • two phase generating force bras are used, and the optical delay line having the longer total sum of the optical path length differences is unevenly distributed on one side (upper side of FIG. 13) in the optical path length difference providing unit.
  • the phase shifter 141 a thin film heater was used, with a width of 40 mm and a length of 4 mm.
  • a quartz optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching.
  • the optical waveguide was fabricated so that the relative refractive index was 1.5% and the core cross section of the optical waveguide was 4.5 ⁇ 4.5 m 2 .
  • a chip on which the interferometer type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and a single mode fiber (not shown) is provided in the input / output waveguides 101 to 104.
  • a power supply lead (not shown) connected to the thin film heater 141 to provide a two-input two-output optical switch. Module. The switching characteristics of this interferometer type optical switch module were evaluated.
  • phase shifter (thin film heater) 141 When the phase shifter (thin film heater) 141 is in the OFF state, the switch is in the bar state, so that when the signal light is input from the input waveguide 101, the signal light is output from the output waveguide 103, and the output waveguide is output. It is not output from 104.
  • the phase shifter (thin film heater) 141 is in the ⁇ N state and the switch is in the cross state, and the signal light input from the input waveguide 101 is output from the output waveguide 104.
  • FIG. 14 shows the wavelength characteristic of the transmittance measured by the interferometer-type switch of the present embodiment.
  • the wavelength dependence of the transmittance of the conventional Mach-Zehnder interferometer type optical switch shown in FIG. 37 is also shown.
  • the phase shifter 141 is in the OFF state, the interferometer type optical switch of the present embodiment has a high extinction ratio of 140 dB or less in a wide wavelength band of 1.45 to 1.6 m.
  • the phase shifter was set to the ON state, the interferometer type optical switch of the present embodiment was able to obtain good input loss over a wide wavelength band.
  • the interferometer type optical switch according to the present embodiment realizes a high extinction ratio over a wide band by using a completely different principle from the conventional one, and uses only a single phase shifter for a wide band switch. It was confirmed that the ching operation was possible. In addition, since the switching operation in a wide wavelength band is supported, the tolerance for the branching ratio error of the optical multiplexing / demultiplexing means and the optical path length difference error of the optical path length difference providing unit is large. As a result, an interferometer type optical switch capable of maintaining a high extinction ratio was realized.
  • the degree of approximation of the amount of phase compensation and the branching ratio of the optical multiplexing / demultiplexing means is increased, and better characteristics are obtained as compared with the first embodiment.
  • the most ideal Mach-Zeng interferometer type optical switch is when the branching ratio of the first and second optical multiplexing / demultiplexing means is 0.5 regardless of the wavelength. Since the present embodiment has a configuration in which both the phase difference and the branching ratio of the first and second optical multiplexing / demultiplexing means can be freely set, it is possible to realize an infinitely ideal interferometer type switch.
  • the interferometer type optical switch described in the present embodiment is designed so that a high extinction ratio can be obtained in a wavelength band of 1.45 to 1.65 m, but the present invention is not limited to this. Instead, by optimally designing the amount of phase correction, a high extinction ratio can be obtained in an arbitrary wavelength band such as 1 m to 2 m.
  • N + 1 (N is an integer of 1 or more) directional couplers and N between adjacent directional couplers are used as optical multiplexing / demultiplexing means whose output phase difference has wavelength dependence.
  • optical multiplexing / demultiplexing means constituted by the small optical path length difference providing sections
  • an optical multiplexing / demultiplexing means having another configuration may be used.
  • the present invention is not limited to the configuration described in the present embodiment.
  • the phase generating power blur may be configured by combining different optical multiplexing / demultiplexing means.
  • the optical multiplexing / demultiplexing means is not limited to the directional coupler used in the present embodiment, and other types may be used. Then, the phase characteristics may be set in consideration of the wavelength dependence of the branching ratio of the optical multiplexing / demultiplexing means to be used.
  • the input waveguides are 101 and 102, but 103 and 104 are used as input waveguides, and 101 and 102 are used as output waveguides.
  • the! ⁇ was designed to be -1, but m may be +1 or an arbitrary integer.
  • the present invention is not limited to the configuration described here, and when viewed as a whole circuit, the output level of the optical multiplexing / demultiplexing means constituting the circuit in the entire set wavelength band and frequency band. If the sum of the phase difference and the phase difference caused by the optical path length difference of the optical path length difference providing unit is made constant with respect to the wavelength, the type of the waveguide, the shape of the waveguide, the material of the waveguide, the wavelength band, An interferometer-type optical switch capable of maintaining a high extinction ratio over a wide band can be configured irrespective of the type of optical multiplexing / demultiplexing means.
  • FIG. 15 shows the configuration of an interferometer type optical switch according to the third embodiment of the present invention.
  • the circuit of the interferometer type optical switch of the present embodiment is composed of an optical multiplexing / demultiplexing means (phase generation power blur) 111 whose output phase difference has a wavelength dependence, a directional coupler 15 3, Optical path length difference providing section 13 1 sandwiched between wave means 1 1 1 and directional coupler 15 3, phase shifter 14 1 formed in optical path length difference providing section 13 1 1, input waveguide 1 It is composed of 01, 102 and output waveguides 103, 104.
  • phase generating power blur 111 it is composed of two directional couplers 151, 152 and two optical waveguides connecting the two directional couplers 151, 152.
  • An optical multiplexing / demultiplexing means composed of a minute optical path length difference providing unit 132 is used.
  • three adiabatic grooves 168 are formed on the substrate near the sides of the pair of phase shifters 14 1 ( FIG. 16 is an interferometer type optical fiber shown in FIG. 15).
  • This figure shows the structure of the switch taken along line A--A of the switch. Glass layers 164 and 167 are laminated.
  • a core glass portion 165 made of quartz glass is disposed in the middle layer of the clad glass layers 164 and 167, thereby forming an optical waveguide.
  • phase shifter (thin film) 141 is formed on the surface of the upper clad glass layer 167, and heat insulating grooves 168 are formed on both sides of the phase shifter 141. Further, the structure of the heat insulating groove 168 is arranged at a position where the stress in the vicinity of the peripheral core becomes uniform.
  • the branching ratio of the couplers 151 and 152 and the optical path length difference of one small optical path length difference providing unit 132 were obtained by nonlinear polynomial approximation.
  • the optical path length difference represents the relative optical path length of one optical waveguide (the lower optical path in the figure) with respect to the other optical waveguide.
  • the phase shifter 141 a thin film heater was used, and the width was set to 40 m and the length to 2 mm.
  • a quartz optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching.
  • the optical waveguide was fabricated so that the relative refractive index was 0.75%, the core cross section of the optical waveguide was 6 ⁇ 6 / m 2 , the width of the heat insulating groove 168 was 70 m, and the depth was 35 m.
  • a chip on which the interferometer-type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and a single mode fin (not shown) is provided on the input / output waveguides 101 to 104. ) Connect the thin film — In the evening 141, a power supply lead (not shown) was connected to make a two-input, two-output optical switch module. The switching characteristics of this interferometer type optical switch module were evaluated.
  • the switching operation when the fabricated optical waveguide circuit is used as a gate switch having a basic component will be described.
  • the phase shifter (thin film heater) 141 When the phase shifter (thin film heater) 141 is in the OFF state, the switch is in the closed state, so that when the signal light is input from the input waveguide 101, the signal light is output from the output waveguide 103 and is output. The signal is not output from the wave path 104.
  • the thin-film heater 141 is energized, and the optical path length is changed by a thermo-optic effect by ⁇ 0.5 ⁇ c ⁇ k (k is an integer other than 0) ⁇ corresponding to a half wavelength of the signal light.
  • the phase shifter (thin film heater) 141 is in the ⁇ N state and the switch is in the cross state, and the signal light input from the input waveguide 101 is output from the output waveguide 104. That is, when the input port is set to 101 and the output port is set to 104, no signal light is output when the phase shifter 141 is in the OF state, and signal light is output when the phase shifter 141 is in the ON state. Functioned as The same switching operation was confirmed when the input port was set to 102. Further, in the present embodiment, the input waveguides are 101 and 102. However, the same effect can be obtained by using 103 and 104 as input waveguides and using 101 and 102 as output waveguides. Furthermore, since the adiabatic groove structure is formed in the optical switch of the present embodiment, the power consumption of the phase shift required for switching can be suppressed to 1/10 of the conventional one.
  • FIG. 17 shows the wavelength dependence of the transmittance measured by the circuit of the present embodiment. Also in the optical switch of the present embodiment, when the phase shifter was in the OFF state, a high extinction ratio of less than 130 dB was obtained in a wide wavelength band of 1.3 to 1.6; m.
  • the interferometer type optical switch of the present embodiment uses a completely different principle from the conventional one. It has been confirmed that a high extinction ratio over a wide band is realized, the size is small, and a wide band switching operation can be performed with only one phase shifter. In addition, since the switching operation in a wide wavelength band is supported, the tolerance for the branching ratio error of the optical multiplexing / demultiplexing means and the optical path length difference error of the optical path length difference providing unit is large. An interferometer type optical switch that can maintain the extinction ratio was realized. Further, the interferometer type optical switch of the present embodiment has a heat insulating groove structure on the substrate, so that the switching power can be extremely suppressed. Of course, the shape and position of the groove are arbitrary, and the groove may contain any material other than air. As shown in this embodiment, the structure other than the optical circuit is formed on the flat substrate. Is also good.
  • FIG. 18 shows the configuration of an interferometer type optical switch according to the fourth embodiment of the present invention.
  • the circuit of the interferometer type optical switch of the present embodiment is an optical switch having a multi-interferometer configuration using a plurality of interferometer type optical switches. With such a multi-interferometer configuration, a plurality of basic components can prevent leakage light when the switch is in the OFF state, so that a higher extinction ratio can be obtained as compared to a single basic component.
  • two interferometer type optical switches of the first embodiment shown in FIG. 7 are connected.
  • One output (corresponding to L 04 of FIG. 7) of the interferometer type optical switch 170 at the front (input side) is connected to the output of the interferometer type optical switch 17 1 at the rear (output side). It is connected to one input (corresponding to 102 of FIG. 7), and the other output (corresponding to 103 of FIG. 7) of the preceding interferometer type optical switch 170 is output conducting. Used as Waveguide 103.
  • the other input (corresponding to 101 in FIG. 7) of the interferometer-type optical switch 17 1 in the subsequent stage is used as the input waveguide 101, and the input waveguide 101 and the output waveguide are used.
  • the circuit can be laid out so that the input waveguide and the output waveguide do not cross each other.
  • the interferometer type optical switch 1 7 One input of 0 (corresponding to 101 of FIG. 7) is used as an input waveguide 102, and one output of an interferometer type optical switch 17 1 (1 of FIG. (Corresponding to 03) is used as the output waveguide 104.
  • the branching ratio of the couplers 15 1 and 152 and the optical path length difference of one minute optical path length difference providing unit 132 were determined by the conjugate gradient method.
  • the optical path length difference represents the relative optical path length of one optical waveguide (the lower optical path in the figure) with respect to the other optical waveguide.
  • the phase shifter 141 a thin film heater was used, its width was set to 40 111 and its length was set to 4 mm.
  • two thin film heaters 141 are formed on each of two sets of optical waveguides constituting the optical path length difference providing unit 13 1, one of which is used for local heat treatment, and the other is used for switching operation. However, both of them may be used for the local heating treatment, or both may be used for the switching operation. Of course, three or more thin film heaters may be formed. Further, the shape of the thin film heater 141 is arbitrary, and the shapes of the plurality of thin film heaters may be different from each other. Furthermore, the local heating treatment and the thin film heaters 141 of the two sets of optical waveguides constituting the optical path length difference providing unit 13 1 1 are simultaneously used. A switching operation may be performed.
  • a quartz-based optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching.
  • the relative refractive index of the optical waveguide was 1.5%
  • the core section of the optical waveguide was 4.5 ⁇ 4.5 m 2
  • the width of the insulating groove was 70 ⁇ m
  • the depth was 50 m.
  • a chip on which the interferometer type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and dispersion shift fibers (not shown) are provided in the input / output waveguides 101 to 104.
  • a power supply lead (not shown) was connected to the thin film transistor 141 to form a two-input, two-output optical switch module. The switching characteristics of this interferometer-type optical switch module were evaluated.
  • the switch When the phase shifter (thin film heater) 141 is in the OFF state, the switch is in the bar state, so that when the signal light is input from the input waveguide 102, the signal light is output from the output waveguide 103 and the output waveguide 104 From the output. At this time, a high extinction ratio was obtained because the light leaking to the output waveguide 104 was blocked by the two basic constituent elements 170 and 171.
  • the thin-film heaters 141 of the interferometer type optical switches 170 and 171 are energized, and the optical path length is increased by the thermo-optic effect by an amount equivalent to a half wavelength of the signal light (0.5 ⁇ c k (k is a value other than 0).
  • the phase shifter (thin film heater) 141 was in the ON state and the switch was in the cross state, and the signal light input from the input waveguide 102 was output from the output waveguide 104.
  • the input waveguides are 101 and 102.
  • the same effect can be obtained by using 103 and 104 as input waveguides and using 101 and 102 as output waveguides.
  • the power consumption of the phase shifter required for switching is reduced. The force was reduced to the conventional 1Z10.
  • FIG. 19 shows the wavelength characteristic of the measured transmittance of the interferometer type optical switch of the present embodiment.
  • the wavelength dependence of the transmittance of the conventional Mach-Zehnder interferometer type optical switch shown in FIG. 37 is also shown.
  • the phase shifter 14 1 is in the OFF state, the interferometer type optical switch of the present embodiment has a multi-interferometer configuration, which is less than ⁇ 60 dB in a wide wavelength band of 1.45 to 1.63 m. High extinction ratio was obtained.
  • the phase shifter 1441 was turned on, the interferometer type optical switch of the present embodiment achieved good insertion loss over a wide wavelength band.
  • a double interferometer structure is configured by combining two identical interferometer type optical switches.
  • different design values may be used for the two interferometer type optical switches.
  • the present invention is not limited to the double interferometer configuration shown in the present embodiment, but may take other configurations.
  • arbitrary optical waveguides may be connected to each other, and arbitrary optical waveguides may be used as input waveguides and output waveguides. May be used.
  • three or more interferometer optical switches having the same structure may be combined, or a plurality of interferometer optical switches having different structures may be combined.
  • the switching operation can be performed in a wide wavelength band by using the interferometer type optical switch of the present embodiment.
  • the interferometer type optical switch of the present embodiment is compatible with a switching operation in a wide wavelength band.
  • An interferometer-type optical switch that can maintain a high extinction ratio even when the capacitance is large and a fabrication error occurs is realized.
  • FIG. 20 shows an interferometer type optical switch according to a first modification of the fourth embodiment of the present invention.
  • Fig. 3 shows a configuration of a switch.
  • the circuit of this modified example is an optical switch having a multi-interferometer configuration using two interferometer type optical switches described in the second embodiment shown in FIG. With such a multi-interferometer configuration, a plurality of basic components 170 and 171 can prevent light leakage when the switch is in the FF state, so that a higher extinction ratio can be obtained compared to a single basic component.
  • two basic components of FIG. 13 are arranged so as to be line-symmetric with respect to the center of the circuit.
  • One output (corresponding to 104 of FIG. 13) of the first interferometer type optical switch 170 is connected to one input (corresponding to 102 of FIG. 13) of the second interferometer type optical switch 171.
  • the other output (corresponding to 103 of FIG. 13) of the interferometer type optical switch 170 in the preceding stage is used as the output waveguide 103.
  • the other input (corresponding to 101 of FIG. 13) of the interferometer-type optical switch 171 at the subsequent stage is used as the input waveguide 101, and the input waveguide 101 and the output waveguide 103 intersect each other in the middle.
  • optical switch 171 (corresponding to 103 of FIG. 13) is used as output waveguide 104.
  • two basic components 170 and 171 may be arranged in the same direction as in the above-described fourth embodiment. Further, the circuit layout is arbitrary, and the two basic constituent elements 170 and 171 may be arranged horizontally or vertically as shown in FIG. The same design values were used for the interferometer type optical switches 170 and 171 constituting the multiple interferometer of this example.
  • the branching ratios of the phase generation power blurs 111 and 112 see FIG.
  • the optical path length difference indicates the relative optical path length of one optical waveguide (the lower optical path in the figure) with respect to the other optical waveguide.
  • a thin film heater was used as the phase shifter 141, and its width was set to 40 m and its length was set to 4 mm.
  • a quartz optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching.
  • the relative refractive index of the optical waveguide was 1.5%
  • the core cross section of the optical waveguide was 4.5 ⁇ 4.5 m 2
  • the width of the heat insulating groove 168 was 70 m
  • the depth was 50 m.
  • a chip on which the interferometer-type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and a single-mode filter (not shown) is provided on the input / output waveguides 101 to 104. ) was connected, and a power lead (not shown) was connected to the thin film heater 141 to make a two-input, two-output optical switch module. The switching characteristics of this interferometer type optical switch module were evaluated.
  • the switch When the phase shifter (thin film heater) 141 is in the OFF state, the switch is in the bar state, so that when the signal light is input from the input waveguide 102, the signal light is output from the output waveguide 103 and is output from the output waveguide 104. Should not be output Yes. At this time, light leakage to the output waveguide 104 is prevented by the two basic components 170 and 171, so that a high extinction ratio can be obtained.
  • the phase shifter (thin film heater) 141 was in the ON state and the switch was in the cross state, and the signal light input from the input waveguide 102 was output from the output waveguide 104.
  • the input waveguides are 101 and 102.
  • the same effect can be obtained by using 103 and 104 as input waveguides and using 101 and 102 as output waveguides.
  • the optical switch in this example has a heat insulating groove.
  • FIG. 21 shows the wavelength characteristics of the measured transmittance of the interferometer type optical switch of this example.
  • the wavelength dependence of the transmittance of the conventional Mach-Zehnder interferometer type optical switch shown in FIG. 37 is also shown.
  • the interferometer type optical switch of this example When the phase shifter is in the 0 FF state, the interferometer type optical switch of this example has a multi-interferometer configuration, and has a wavelength band of 1.45 to 1.65 m and a wavelength band of less than 160 dB and 1.45 to 1.63 m. A high extinction ratio of less than 80 dB was obtained in a wide wavelength band. When the phase shifter was turned on, the interferometer-type optical switch of this example achieved good insertion loss over a wide wavelength band.
  • a double interferometer structure is configured by combining two of the same interferometer type optical switches.
  • different design values may be used for the two interferometer type optical switches.
  • the present invention is not limited to the double interferometer configuration shown in this example, but may be, for example, an interferometer type optical system according to the first embodiment.
  • Other configurations such as configuring a double interferometer by combining the switch and the interferometer type optical switch of the second embodiment, can be adopted.
  • the method of connecting a plurality of interferometer-type optical switches is not limited to this example, and arbitrary optical waveguides may be connected to each other, and any optical waveguide may be used as an input waveguide and an output waveguide. Is also good. Further, three or more interferometer switches can be combined.
  • the branching ratio of the directional couplers 15 1 to 15 4 that compose the two phase generating powers 1 1 1 and 1 1 2 (see FIG. 13) in order to increase the tolerance for manufacturing errors
  • the design was made so that the optical path length differences between the optical path length difference providing sections 132 and 133 were the same.
  • only two types of branching ratios of the directional couplers 151 to 154 are used, so that two types of branching ratios can be produced to achieve the designed characteristics.
  • the second embodiment since four types of directional couplers having different design values are used, it is necessary to produce four types of branching ratios in order to achieve the designed characteristics.
  • the first and second optical multiplexing / demultiplexing means 111 and 112 have different design values as in the second embodiment, the degree of freedom in designing the wavelength dependence of the phase difference and the branching ratio increases, so that There is a feature that the degree of approximation increases. Therefore, depending on the application, it is sufficient to select whether to emphasize the tolerance against manufacturing errors or the degree of freedom in design.
  • the present example has an advantage that the number of types of design values is small, while the circuit size is larger than that of the fourth embodiment. That is, in the fourth embodiment, three types of directional couplers having different branching ratios are used. However, in this example, since only two types of branching ratios are used, the directional coupler can be manufactured more easily. Furthermore, in this example, two symmetrical interferometer type optical switches are arranged symmetrically to form a multiplex interferometer. This example is very symmetric Due to the high configuration, for example, a half-wave plate or the like can be easily inserted.
  • the two interferometer type optical switches 170 and 171 have the same design value, but may have different design values.
  • the maximum extinction wavelength of both interferometer type optical switches is set near 1.55 / xm, so that the maximum extinction wavelength of 1.52 to 1.57 m is centered at 1.55 tm.
  • the maximum extinction ratio with an extremely large absolute value of over 140 dB in the extinction wavelength range is realized.
  • the maximum extinction wavelength of the interferometer type optical switch 170 is set to, for example, around 1.5 / m, and the maximum extinction wavelength of the interferometer type optical switch 171 is set to, for example, around 1.6 im, the absolute value of the maximum extinction ratio becomes Is smaller, but the wavelength range in which the maximum extinction wavelength can be maintained can be extended.
  • the description here is only an example, and each basic constituent element of the multiplex interferometer can be set to have any characteristic.
  • FIG. 22 shows the configuration of an interferometer type optical switch according to the fifth embodiment of the present invention.
  • the circuit of the interferometer type optical switch according to the present embodiment includes a phase generation power blur 111, a directional coupler 153, an optical path length difference providing unit 131 interposed between the optical multiplexing / demultiplexing means 111 and the directional coupler 15'3.
  • a phase shifter 141 formed in the optical path length difference providing unit 131, input waveguides 101 and 102, and output waveguides 103 and 104. ,
  • the optical switch of the present invention has a total phase difference of 27T ⁇ , ( ⁇ ) + ⁇ ! _ ( ⁇ ).
  • the total phase difference ( ⁇ , ( ⁇ ) +, ( ⁇ ) + ⁇ 2 ) by the optical multiplexing / demultiplexing means 1 1 1 and the optical path length difference providing unit 13 1 ( ⁇ ) ⁇ is set to 1-1.00, 1-0.60, 1-0.53, 1-0.51, and 1-0.50, respectively, so that the output transmittance is 0 d d,- It can be used as a broadband optical intensity variable switch of 10 dB, -20 dB, and --30 dB.
  • the optical path length difference indicates the relative optical path length of one optical waveguide (the lower optical path in the figure) with respect to the other optical waveguide.
  • the distance between the two optical waveguides connecting the optical multiplexing / demultiplexing means 111 of the interferometer type optical switch and the directional coupler 153 was set to 200 m.
  • As the phase shifter 141 a thin film heater was used, and its width was set to 4001 and its length was set to 4 mm.
  • a quartz optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching.
  • the optical waveguide was fabricated such that the relative refractive index was 1.5%, and the core cross section of the optical waveguide was 4.5 ⁇ 4.5 m 2 .
  • a chip on which the interferometer-type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and a single module is provided for the input / output waveguides 101 to 104. Fiber (not shown).
  • a power supply lead (not shown) was connected to make a two-input, two-output optical switch module. The switching characteristics of this interferometer type optical switch module were evaluated.
  • Fig. 23 shows the wavelength dependence of the transmittance with the wavelength dependence of the transmittance in this state as the maximum extinction.
  • the thin-film heater 141 is energized, the power is changed, and the optical path length difference is changed by the thermo-optic effect.
  • variable optical athens shown in FIG. 41B.
  • light could only be attenuated at one specific wavelength, but according to the present invention, light can be attenuated collectively over a wide wavelength band. In this way, the switching operation as a wide-band optical switch with variable light intensity (variable optical attenuator) was confirmed.
  • the ideal case where the branching ratio of the first and second optical multiplexing / demultiplexing means 11 1 and 153 is 0.5 has been described, but wavelength dependency and manufacturing error actually occur.
  • Strictly flattening can be achieved by setting the phase difference in consideration of the branching ratio of the first and second optical multiplexing / demultiplexing means 111, 153 as follows. If the branching ratios of the first and second optical multiplexing / demultiplexing means 1 1 1 and 153 are respectively R 1 ( ⁇ ) and R 2 ( ⁇ ), the output intensity P c ( ⁇ ) becomes constant with respect to the wavelength. If the sum of the phase differences is set, the output intensity will be Be dependent. Specifically, the sum of the phase differences is ten (s) +
  • an optical signal was input to the input waveguide 101 and an optical signal was extracted from the output waveguide 104.
  • an optical signal may be extracted from the output waveguide 103 and the input
  • An optical signal may be input to the wave path 102.
  • an optical signal may be input to the output waveguides 103 and 104, and an optical signal may be extracted from the input waveguides 100 and 102.
  • a phase shifter is also provided for the lower optical waveguide (second optical waveguide) of the two delay lines constituting the optical path length difference providing unit 13 1.
  • An arbitrary optical attenuation may be set by forming and changing the optical path length difference.
  • the characteristic configuration described in each embodiment can be incorporated into the variable light intensity interferometer type optical switch of the present embodiment.
  • the first and second optical multiplexing / demultiplexing means 1 1 1, 1 1 2 of FIG. 3 may be phase generation power blurs
  • the heat-insulating groove structure of FIG. 15 may be formed as described, or the multi-interferometer structure of FIG. 18 may be used as described in the fourth embodiment, and each basic constituent element may have different conditions. May be adjusted so that the overall output intensity is constant with respect to the wavelength.
  • the interferometer type optical switch of the present embodiment can realize a light intensity variable optical switch having a constant transmittance over a wide band using a completely different principle from the conventional one.
  • a wideband switching operation using only one phase shifter is possible. And confirmed.
  • FIG. 24 shows the configuration of an interferometer type optical switch according to the sixth embodiment of the present invention.
  • the circuit of the interferometer type optical switch of the present embodiment is composed of a pair of optical multiplexing / demultiplexing means whose output phase difference has a wavelength dependence.
  • Means 1 11 1 and 1 1 2 Optical path length difference providing section 1 3 1 sandwiched between 1 1 2, Optical path length difference providing section 13 1 Phase shifter 14 1 formed in section 1 31, Input waveguides 10 1, 10 2 and output waveguides 103 and 104.
  • the optical multiplexing / demultiplexing means 111 and 112 are constituted by the N optical path length difference providing units, respectively.
  • N is a natural number
  • FIG. 25 shows the configuration of the phase generating power blur (optical multiplexing / demultiplexing means) used in the sixth embodiment of the present invention.
  • the optical multiplexing / demultiplexing means of FIG. 25 consists of three optical couplers 1 2 3, 1 2 4, 1 2 5, and two optical path difference providing sections 1 sandwiched between adjacent optical couplers. 3 2 and 1 3 3
  • the first to fifth embodiments described above also realize a phase generation power blur.
  • the optical multiplexing / demultiplexing means having this configuration was used as the means because, in principle, the desired output phase difference and branching ratio can be provided without loss.
  • the effect of the present invention can be obtained by giving the output phase difference wavelength dependency.
  • an optical coupler and an optical path length difference providing unit may be combined to form an optical life demultiplexing unit, which includes a transva- mon type FIR (Finite Impulse Response) filter and a ring type.
  • FIR Finite Impulse Response
  • phase difference 2 ⁇ ⁇ ( ⁇ ) caused by the optical path length difference of the optical path length difference providing unit of the Mach-Zehnder interferometer and the output phase difference are generated by the wavelength-dependent phase generating powers 111 and 112.
  • ( ⁇ ) and 2 ⁇ 2 ( ⁇ ) have a total phase of ⁇ ⁇ ⁇ (m is an integer), and when m is an odd number, the switch becomes an asymmetric switch.
  • the optical path length difference providing unit has wavelength dependence.
  • the phase could be set to m ⁇ ' ⁇ (m: odd number) only at a certain wavelength, so that the usable wavelength band was limited.
  • the phase is constant irrespective of the wavelength band by using the optical multiplexing / demultiplexing means (phase generation power blur) 11 1 and 112 whose output phase difference has wavelength dependence. It can be set to the value m * ⁇ (m: odd).
  • the branching ratio of the first and second optical multiplexing / demultiplexing means 111 and 112 takes a constant value 0.5 over the entire wavelength band.
  • Equation 6 described above was obtained.
  • the branching ratios of the first and second optical multiplexing / demultiplexing means 1 1 1, 1 1 2 are equal and R ( ⁇ ), input from the input waveguide 101 and output from the output waveguide 104.
  • the output light intensity P c is
  • Equation 10 2R () ⁇ [l-R (A) J- [l + ( ⁇ ) + ⁇ ( ⁇ ) ⁇ ] (Equation 10).
  • ⁇ ( ⁇ ) is the phase due to the phase difference between the outputs of the first and second optical multiplexing / demultiplexing means 1 1 1 and 1 1 2.
  • an optical multiplexing / demultiplexing means including N + 1 optical couplers and ⁇ minute optical path length difference providing units sandwiched between adjacent optical couplers is used.
  • the second Phase generation under the constraint that all the N + 1 optical couplers constituting the first and second optical multiplexing / demultiplexing means 1 1 1 and 1 1 2 have the same branching ratio and further reduce the value as much as possible
  • the design parameters have been optimized so that the branching ratio of the power bra is approximately 0.5 over the entire wavelength band used, and the output phase difference ⁇ ( ⁇ ) matches the phase correction amount ( ⁇ ).
  • the optimized design parameters are as follows: The branching ratio of the optical couplers 151, 152, 153, 251, 252, and 253 that constitute the phase generation power blur, and the small optical path length difference These are the optical path length difference of the application sections 1 3 2, 1 3 3, 2 32, 2 3 3, and the optical path length difference L of the optical path length application section 1 31 of the Mach-Zehnder interferometer. Whereas the optical path length difference of the optical path length difference providing section of the conventional Mach-Zehnder interferometer type optical switch is set to 0 ⁇ c or 0.5 ⁇ c, the present invention
  • One of the features is that the phase difference of the output of the phase generating force bra, including the length difference 1L, has been optimized so that it becomes the proper phase.
  • the applicable wavelength range is set to 1.25 to 1.6, and in consideration of use at 1.3 m and 1.55 m, especially 1.3 ⁇ m and 1.
  • the distance between the two optical waveguides was set to 500 m.
  • the phase shifter 141 a thin film heater was used, and its width was set to 80 ⁇ m and its length was set to 3 mm.
  • a quartz optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching. The optical waveguide was fabricated so that the relative refractive index was 0.75%, and the core cross section of the optical waveguide was 6 ⁇ 6 m 2 .
  • a chip on which the interferometer type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and single-mode finos (not shown) are provided on the human output waveguides 101 to 104. And a power supply lead (not shown) was connected to the thin film heater 141 to form a two-input two-output optical switch module.
  • phase shifter (thin film heater) 141 When the phase shifter (thin film heater) 141 was off, the switch was in the bar state, and no signal light was output from the cross port.
  • FIG. 26 shows the wavelength characteristic of the transmittance measured by the interferometer type optical switch of the present embodiment.
  • the interferometer type optical switch of the present embodiment has a high extinction ratio of 130 dB or less in a wide wavelength band of 1.25 to 1.6 m.
  • the design values of the phase generation power blurs 1 11 and 112 are optimized so that the degree of approximation is improved between 1.3 m and 1.55. Furthermore, it has a high extinction ratio of less than 50 dB.
  • an asymmetric Mach-Zehnder interferometer capable of maintaining a high extinction ratio over a wide band was manufactured for the first time by the present invention, and a good gate switch was realized.
  • the present invention can be applied not only to the gate switch but also to a wide band of any interferometer type optical switch.
  • the present invention may be applied to a wide band tap switch.
  • the first in the OFF state 2 ⁇ ⁇ ⁇ ( ⁇ ) + ⁇ 1 ( ⁇ ) + ⁇ 2 ( ⁇ ) ⁇ two (2m '+ 1) ⁇ ⁇ Cm' is an integer)
  • the phase difference of the phase generation power 'We set the optical path length difference ⁇ !
  • the constraint condition is that all the N + 1 optical couplers (123, 124, 125) have the same branching ratio and that the value is minimized. It was set. Although such a constraint is not essential, there is an advantage that the optical coupler can be easily manufactured if the branching ratios of the optical couplers constituting the phase generator are all constant.
  • the branching ratio can be set to any value between 0 and 1, but the branching ratio has been optimized to a small value of 0.1. The reason is that the smaller the branching ratio is, the smaller the directional coupler is, the more the manufacturing error is increased, and the advantages such as the polarization dependency is reduced.
  • the phase generating force blur (FIG.
  • the parameter that can be set increases as N increases, so that the approximation degree of the phase generation camera can be increased. For example, comparing FIG. 17 (third embodiment) with FIG.
  • the extinction ratio is 30 dB or more in this embodiment because the phase generation power Bra has a better approximation.
  • the configuration of the interferometer type optical switch of the present embodiment is a special example, and the phase generation power bras of the same design value is used as the first and second optical multiplexing / demultiplexing means, and the optical path length difference of the Mach-Zeng interferometer is provided.
  • the optical path length difference of the optical path length difference providing unit indicates the relative optical path length difference of the first waveguide with respect to the second waveguide, If is longer than the first waveguide, the optical path length difference is negative.
  • is 2 or more and ⁇ optical path length difference providing units have different codes, uneven distribution can be defined in the same manner as described above.
  • the sum of the optical path length differences is 2 1 13 + 551.
  • FIG. 27 shows a configuration of an interferometer type optical switch according to the seventh embodiment of the present invention.
  • the interferometer type optical switch of the present embodiment can function as an IX2 switch. Furthermore, by using a phase generator whose output phase difference has wavelength dependence as the optical multiplexing / demultiplexing means of the interferometer type optical switch which is the basic element of this circuit, the switching operation can be performed regardless of the wavelength band. Can be done.
  • the circuit of this optical switch was constructed by connecting two interferometer-type optical switches 170 and 171 in multiple stages.
  • the first and second two with the same design value
  • the port above the output side of the first interferometer type optical switch 170 is connected to the port below the input side of the second interferometer type optical switch 171.
  • the port on the input side of the first interferometer type optical switch 170 is defined as the input waveguide 101
  • the port on the output side of the second interferometer type optical switch 171 is defined as the output waveguide 103 (first waveguide).
  • the lower port on the output side of the first interferometer type optical switch 170 was set as the output waveguide 104 (second output port).
  • the two interferometer type optical switches 170 and 171 have the same design value, only the first interferometer type switch 170 will be described in detail.
  • Various methods are conceivable as a method of realizing an optical multiplexing / demultiplexing means whose output phase difference has wavelength dependence.However, it is realized by an optical multiplexing / demultiplexing means configured by connecting an optical coupler and an optical path length difference providing unit. You may.
  • optical multiplexing / demultiplexing means (phase generation power blur) 111 and 112 were configured.
  • the optical multiplexing / demultiplexing unit 111 includes an optical coupler (directional couplers 151 and 152) and an optical path length difference providing unit 132 sandwiched between adjacent optical couplers.
  • Optical path length difference imparting section 132 is made up of two optical delay line of the first optical waveguide and second optical waveguide, the respective optical light path length is 7 i physician 7 21, the optical path length difference Ichizo 21 .
  • the optical multiplexing / demultiplexing means 112 is an optical coupler.
  • an optical multiplexing / demultiplexing means including N + 1 optical couplers and N minute optical path length difference providing sections sandwiched between adjacent optical couplers is used.
  • a directional coupler consisting of two adjacent optical waveguides was used as the optical coupler.
  • the applicable wavelength range is 1.45 to 1.65 °
  • the branching ratio of the phase generating power Bra is approximately 0.5 over the entire wavelength band used
  • the output phase difference ⁇ ( ⁇ )
  • the design parameters were optimized so that ( ⁇ ) + 2 ( ⁇ ) matched the appropriate phase ⁇ ( ⁇ ).
  • the appropriate phase is the phase difference between the outputs of the phase generating power brass necessary for the first and second interferometer optical switches 170 and 171 to function as an asymmetric Mach-Zehnder interferometer optical switch. This is the phase when m (m is an integer) in Equation 7 above is set to 2m '+1 (m' is an integer).
  • the optimized design parameters are as follows: the branching ratio of the optical coupler that composes the phase generation power blur, the optical path length difference of the micro optical path length difference providing unit, and the optical path of the Mach-Zehnder interferometer.
  • the length difference is ⁇ 1L.
  • the optical path length difference ⁇ L of the optical path length difference providing section of the conventional Mach-Zeng interferometer type optical switch was set to 0 ⁇ ⁇ c or 0.5 ⁇ ⁇ c
  • the present invention One of the features is that the phase difference of the output of the phase generation power blur including the optical path length difference L is optimized so that the phase difference becomes an appropriate phase.
  • N + 1 Constraints were set so that all optical couplers had the same splitting ratio.
  • the second embodiment does not impose any restrictions on the branching ratio of the optical coupler constituting the phase generating power blur, and increases the degree of freedom of design values. It was better than this embodiment.
  • this embodiment is designed in consideration of the ease of manufacture. In this way, the phase generating power bra should be appropriately designed according to the application of the circuit.
  • two phase generating force bras are used, and their optical path length differences are added.
  • the optical delay line with the longer sum of the optical path length differences is unevenly distributed on one side (upper side of FIG. 27), that is,? , Parenthesis: ⁇ ? It was placed on the circuit to satisfy
  • N l
  • the distance between the two optical waveguides was set to 100 zzm.
  • a thin film heater was used as the phase shifter, and its width was set to 30 m and its length to 2 mm.
  • a quartz optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching.
  • the optical waveguide was manufactured so that the relative refractive index was 0.75% and the core cross section of the optical waveguide was 6 ⁇ 6 m 2 .
  • the chip on which the interferometer type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and a single mode fiber (not shown) is provided in the human output waveguides 101 to 104. No) and a thin film heater 141 connected to a power supply lead (not shown) to form a two-input two-output optical switch module.
  • the interferometer type optical switch of the present embodiment can be operated as a two-branch switch with a constant power consumption of 0.5 W.
  • FI G. 28A shows the wavelength characteristic of the transmittance in the initial state (OFF state) output from the output waveguide 103 (first output port) of the interferometer type optical switch of the present embodiment.
  • 28B shows the wavelength characteristic of the transmittance in the state after switching ( ⁇ N state) outputted from another output waveguide 104 (second output port). Regardless of the output from any of the output waveguides, a high extinction ratio of less than 130 dB is obtained in a wide wavelength band of 1.45 to 1.65, and a constant power consumption with a high extinction ratio in a wide wavelength band 1X2 switch realized.
  • one interferometer type optical switch having a phase generating force bra is connected in multiple stages to constitute one interferometer type optical switch.
  • the interferometer-type optical switch functions as a broadband 1 ⁇ 2 switch with constant power consumption.
  • the optical switch of the present embodiment may be used for other applications, and the present invention is applied.
  • a method of configuring an optical switch with constant power consumption and a 1 ⁇ 2 optical switch has been described in the present embodiment.
  • the present invention is not limited to the configuration, and can take any form.
  • FIG. 29 shows a configuration of an interferometer type optical switch according to the eighth embodiment of the present invention.
  • the optical switch according to the present embodiment can function as an IX2 switch having a PI-Loss (Path Independent Loss) configuration. Further, by using a phase generating power bra whose output phase difference has wavelength dependence as an optical multiplexing / demultiplexing means of an interferometer type optical switch which is a basic element of the circuit of the present embodiment, switching can be performed regardless of the wavelength band. You can make it work.
  • the circuit of the interferometer type optical switch of this embodiment is configured by connecting a plurality of interferometer type optical switches in multiple stages.
  • the output of the first interferometer-type optical switch 170 is used by using the first to third three interferometer-type optical switches 170 to 171 having the same design values.
  • the upper port on the side is connected to the lower port on the input side of the second interferometer type optical switch 171, and the lower port on the output side of the first interferometer type optical switch 17 Is connected to the port on the input side of the third interferometer type optical switch 172.
  • the port above the input side of the first interferometer type optical switch 170 is set as the input waveguide 101, and the port above the output side of the second interferometer type optical switch 17 1 is set as the input waveguide.
  • the output waveguide 10 3 (first output port) is used, and the port on the output side of the third interferometer type optical switch 17 2 is used as the output waveguide 104 (second output port).
  • the optical couplers 15 1 to 15 constituting each of the phase generating power brackets 11 1 and 11 2 are controlled so that the output intensity of the interferometer type optical switch of the present embodiment is constant over the entire wavelength band to be used.
  • the optimization of the branching ratio of 4 and the optical path length difference of the small optical path length providing sections 13 2 and 13 3 and the optical path length difference L of the optical path length providing section 13 1 of the Matsu Hatsuenda interferometer were optimized.
  • the directional coupler 1 that composes the phase generation power 1 1 1 and 1 1 2 51, 152 and 1 53, 154, respectively r 2 the branching ratio of, r 2 0.
  • the phase shifters 141 and 142 thin-film heaters were used, the width was set to 50 m, and the length was set to 3 mm.
  • a quartz optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching.
  • the optical waveguide was manufactured so that the relative refractive index was 1.5%, and the core cross section of the optical waveguide was 4.5 ⁇ 4.5 m 2 .
  • a chip on which the interferometer type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and single-mode fibers (not shown) are provided in the human output waveguides 101 to 104.
  • a power supply lead (not shown) was connected to the thin film heater 141 to form a two-input two-output optical switch module.
  • the operation of inputting light from the input waveguide 101 of the manufactured optical module and switching the output port from the output waveguide 103 (first output port) to 104 (second output port) will be described.
  • the first interferometer type optical switch 170 is in the par state, and the two latter interferometer type optical switches 171 are in the cross state.
  • the light input from the input waveguide 101 completely passes through the through port of the interferometer type optical switch 1 ⁇ 0, and is output from the output waveguide 103 (first output port) of the interferometer type optical switch 17 1. .
  • the interferometer type optical switch Since the light is blocked by the cross port of the switch 170 and the through port of the interferometer type optical switch 172, no light is output from the output waveguide 104 (second output port).
  • the first interferometer type optical switch 170 is in the cross state, and the second interferometer type optical switches 171 and 172 are in the closed state. Therefore, the light input from the input waveguide 101 passes through the cross port of the interferometer type optical switch 170, and is output from the output waveguide 104 (second output port) of the interferometer type optical switch 172. On the other hand, since the light is blocked by the through port of the interferometer type optical switch 170 and the cross port of the interferometer type optical switch 171, no light is output from the output waveguide 103 (first output port).
  • FI G.3 OA shows the wavelength characteristics of the transmittance in the initial state (OFF state) output from the output waveguide 103 (first output port) of the interferometer type optical switch of the present embodiment.
  • 30B shows the wavelength characteristic of the transmittance in the state after switching (ON state) output from another output waveguide 104 (second output port). Regardless of the output from any of the output waveguides, a high extinction ratio of less than 1-45 dB was obtained in a wide wavelength band of 1.45 to 1.65 m.
  • the output waveguides 103 (first output port), 104 The same characteristics were obtained regardless of which port was used as the second output port.
  • one interferometer type optical switch having a phase generating power blur is connected in multiple stages to constitute one interferometer type optical switch.
  • the interferometer type optical switch functions as a broadband 1 ⁇ 2 switch of PI-LOSS having the same wavelength characteristics regardless of the optical path.
  • the optical switch of the present embodiment is used for other purposes.
  • the configuration method of the PI-LOSS optical switch or the 1 ⁇ 2 optical switch to which the present invention is applied is not limited to the configuration shown in the present embodiment, but may take any form.
  • FIG. 31 shows the configuration of an interferometer type optical switch according to the ninth embodiment of the present invention.
  • a birefringence adjusting means is provided on the optical waveguide of the interferometer type optical switch of the present embodiment, and the switch of the present embodiment can function as a polarization beam switch, as described later. Further, by using a phase generating power blur whose output phase difference has wavelength dependence as an optical multiplexing / demultiplexing means of the interferometer type optical switch which is a basic element of the circuit of the present embodiment, regardless of the wavelength band. Switching operation can be performed.
  • the circuit of the interferometer type optical switch of the present embodiment is configured by connecting two interferometer type optical switches 170 and 171 in multiple stages.
  • the first and second interferometer type optical switches 1700 and 1171 having the same design value are used, and the first interferometer type optical switch 1 ⁇ 0
  • the port was connected to the port below the input side of the second interferometer type optical switch 171.
  • the port above the input side of the first interferometer type optical switch 1701 is used as the input waveguide 101
  • the port above the output side of the second interferometer type optical switch 1771 is used as the output waveguide.
  • Waveguide 103 (first output port) was used, and the port below the output side of the first interferometer type optical switch 170 was used as output waveguide 104 (second output port).
  • the optical couplers 151, 152 and 153, 154 directional couplers composed of two adjacent optical waveguides were used.
  • the applicable wavelength range is 1.45 to 1.65 m
  • the branching ratio of the phase generating couplers 1 1 and 1 12 is approximately 0.5 over the entire wavelength band used, and the output phase difference
  • the parameters have been optimized so that ⁇ ( ⁇ ) matches the proper phase ⁇ ( ⁇ ).
  • the optimized design parameters are based on the splitting ratio of the optical couplers 151, 152, 153, and 154 that constitute the phase generating power blurs 111 and 112, and the optical ratio of the optical path length difference providing units 132 and 133.
  • N l
  • the first interferometer-type optical switch 170 and the second interferometer-type optical switch 171 are used in the initial state of the optical path length difference providing unit of the Matsuhazenda interferometer in order to facilitate the function as a polarization beam switch.
  • the optical path length differences were set to different design values. As will be described in detail later, the optical path length difference between the two optical delay lines of the first optical waveguide and the second optical waveguide of the optical path length difference providing unit 13 1 of the first interferometer type optical switch 170 is described.
  • a quartz optical waveguide circuit was fabricated using flame deposition, photolithography, and reactive ion etching.
  • the optical waveguide was manufactured so that the relative refractive index was 0.75% and the core cross section of the optical waveguide was 6 ⁇ 6 m 2 .
  • the birefringence adjusting means 191 adjusts the birefringence of the first optical waveguide of the optical path length difference providing unit 131 of the first interferometer type optical switch 170, and sets the TM mode.
  • the birefringence of the second optical waveguide of the optical path length difference providing unit 134 of the second interferometer type optical switch 171 is adjusted by the birefringence index adjusting means 194, and the optical path difference of the TM mode is adjusted.
  • the optical path length difference of the first optical waveguide was increased by nL.
  • Examples of the birefringence adjusting means 191 to 194 include a method using light irradiation such as laser irradiation, a method using a thin film heater, a method for attaching a stress applying film, a method for changing the shape of the waveguide, and a material for the waveguide. Many methods are known, such as a method of locally changing, and any means can be used.
  • a chip on which the interferometer type optical switch is manufactured is cut out by dicing, a heat sink (not shown) is provided below the silicon substrate 161, and a single mode fiber (not shown) is provided in the human output waveguides 101 to 104. ) was connected, and a power lead (not shown) was connected to the thin film heater 141 to make a two-input, two-output optical switch module.
  • the first interferometer type optical switch 170 is The cross state
  • the second interferometer type optical switch 171 is in the closed state.
  • FIG. 32A shows the wavelength dependence of the transmittance of the TE mode in the OFF state of the interferometer type optical switch of the present embodiment.
  • the TE light input from the input waveguide 101 is completely transmitted from the cross port of the interferometer type optical switch 170 and output from the output waveguide 104 (second output port).
  • the output waveguide 103 first output port
  • FIG. 32B shows the wavelength dependence of the transmittance of the TM mode in the OFF state.
  • the TM light input from the input waveguide 101 passes through the through port of the interferometer type optical switch 170 and the cross port of the interferometer type optical switch 171 and is output from the output waveguide 103 (first output port). .
  • the light is cut off by the cross port of the interferometer type optical switch 170, no TM light is output from the output waveguide 104 (second output port).
  • the first interferometer type optical switch 170 is in the bar state and the second interferometer type optical switch 171 is in the cross state in the TE mode.
  • Fig. 33A shows the wavelength dependence of the transmittance of the TE mode in the ON state of the interferometer type optical switch of the present embodiment.
  • the TE light input from the input waveguide 101 is an interferometer type optical switch.
  • the light passes through the through-port 0 and the cross-port of the interferometer type optical switch 171, and is output from the output waveguide 103 (first output port).
  • the output waveguide 104 second output port.
  • the first interferometer type optical switch 170 is in a cross state and the second interferometer type optical switch 17 is in a bar state with respect to the mode.
  • Fig. 33 B shows the wavelength dependence of the transmittance of the TM mode in the ON state.
  • the TM light input from the input waveguide 101 completely passes through the cross port of the interferometer type optical switch 170 and is output from the output waveguide 104 (second output port).
  • TM light is not output from the output waveguide 103 (first output port) because it is cut off by the through port of the interferometer type optical switch 170 and the cross port of the interferometer type optical switch 1771.
  • the present embodiment is an example in which birefringence adjustment is performed on an interferometer type optical switch including a phase generating power blur whose output phase difference has wavelength dependence.
  • the optical path length difference of the optical path length difference providing unit of the Mach-Zehnder interferometer in the TE mode and the TM mode is made to exactly match, and the interferometer type with small polarization dependence It can also be an optical switch.
  • the interferometer type optical switch described in each embodiment of the present invention may be used alone as an optical switch, or a combination of a plurality of such optical switches may be used as a tap switch, a gate switch, a double gate switch, a 1 ⁇ 2 switch, or the like. As a component of May be used.
  • an interferometer type optical switch of the present invention as a basic component, an NXN matrix switch (see FIG. 34A), a 1 XN tree switch (see FIG.
  • a 1 XN tap switch a 1 XN tap switch
  • M An MXN large-scale optical switch such as a DC (Delivery and Coupling) switch and a ROADM (Reconfigurable OADM) switch composed of one XN switch and N MX1 power brass may be configured. Further, for example, not only the function as an optical switch but also an optical add-drop multiplex (OADM) circuit may be configured in combination with an AWG.
  • 180-1 & to 8 & are input waveguides
  • 181-1b to 8b are output waveguides
  • 182 is a basic constituent element of an optical switch
  • 183 is an optical switch.
  • 184 is an IX2 switch
  • 185 is a gate switch.
  • examples have been shown in which the present invention is applied to an interferometer type optical switch including a polarizing beam switch, a polarizing beam splitter, a polarizing beam cover, and the like, and a variable optical attenuator.However, the present invention can be applied to any circuit. Can be. Further, the interferometer type optical switch to which the present invention is applied and the variable optical attenuator can be combined to function as one optical circuit. In each embodiment of the present invention, an example in which the present invention is applied to a Mach-Zehnder interferometer having one optical path length difference providing unit has been described. However, the same principle can be applied to a configuration having two or more optical path length providing units.
  • various wavelength-independent waveguide optical circuits can be obtained.
  • it can be used in various waveguide-type optical circuits such as a lattice filter, a multi-beam interference filter, a transversal filter, a Michelson interferometer filter, a Fabry-Bello interferometer filter, and a filter with a ring resonator.
  • the principles of the invention can be applied.
  • the optical path length difference described in each embodiment is the optical path difference of the optical waveguide constituting the optical path length difference providing unit, and the refractive index of the optical waveguide including the wavelength dependence ⁇ the birefringence index. This is the optical path difference considered.
  • phase difference of the output of the optical multiplexing / demultiplexing means is used to generate the optical path length difference of the optical path length providing unit.
  • various wavelength-independent waveguide optical circuits can be obtained.
  • the present invention is not limited to the wavelength dependence, but can also eliminate the frequency dependence.
  • the interferometer type optical switch and the variable optical attenuator are processed using a silica-based optical waveguide formed on a silicon substrate as shown in FIGS. 35A-35E. It was produced in. That is, the Koagarasusu Ichito 1 6 3 with the addition of G E_ ⁇ 2 to S i 0 2 lower clad glass scan was mainly Ichito 1 6 2, S i 0 2 In flame hydrolysis deposition on the silicon substrate 1 6 1 Deposited (FI G. 35 A). Thereafter, the glass was made transparent at a high temperature of 1000 ° C. or higher. At this time, the lower clad glass layer 164 and the core glass 165 were deposited so that they had the designed thickness (FIG.
  • etching mask 166 was formed on the core glass 165 using photolithography technology (FI G. 35C), and the core glass 165 was patterned by reactive ion etching (FI G. 35 D) 0
  • the upper cladding glass 167 was again formed by flame deposition.
  • the upper clad glass 1 6 7 by the addition of B 2 ⁇ 3 and P 2 0 3 of which de one dopant lowering the glass transition temperature, in the narrow gap of the respective core glass 1 6 5 and the core glass 1 6 5
  • the upper clad glass 1 67 was inserted (Fig. 35 E).
  • the optical module described in each embodiment was assembled as follows (see FIG. 36). That is, in the optical module, the Peltier holding plate 702 is fixed inside the housing 701 having good heat conductivity with the fixing screw 703, and the optical module is formed in a recess formed by excavating the Peltier holding plate 702. A Peltier element and a temperature sensor (thermocouple) (not shown) are placed in the vicinity. Just above the Peltier element and the temperature sensor, the chip composed of the interferometer-type optical switch or the variable optical attenuator shown in each of the above embodiments is used. Arrange so that comes.
  • a glass plate 705 is bonded to the end of the chip 704 with an adhesive, and is bonded so as to optically couple with the fiber block 707 holding the fiber 706.
  • the fiber 706 is bonded to a concave portion provided on the edge of the housing 701 with a heat-insulating elastic adhesive 708, and a fiber boot 710 having a fiber code 709 is further attached to the housing 710. Hold to embed in one.
  • the chip 704 is bonded to the Peltier holding plate with a heat insulating elastic adhesive 708.
  • the optical module of the present invention was assembled by attaching a lid so as to cover them and screwing them. • The lid and the screwed part are not shown. This is an example of modularization.
  • the input waveguide and the output waveguide are taken out from different end faces on the chip.
  • the circuit may be laid out so as to be on the same end face. Then, the input waveguide and the output waveguide can be connected to the fiber with only one fiber block.
  • circuit of the present invention may be manufactured as different independent chips, they may be directly connected between the chips to form a single chip, or light may be coupled between a plurality of chips to form an optical module. May be. Alternatively, a separate optical module may be manufactured for each chip, and the optical modules may be connected by a fiber. Further, an optical module in which the two or more chips described above are each held on a Peltier holding plate inside one housing may be manufactured.
  • the form of the interferometer type optical switch or variable optical attenuator of the present invention does not depend on the type, shape, material, refractive index, and manufacturing method of the optical waveguide.
  • the waveguides material polyimide, silicone, semiconductor, and they may be a L i N b 0 2
  • the substrate material may be a quartz.
  • the present invention is applicable even when the manufacturing method is a spin coating method, a sol-gel method, a sputtering method, a CVD method, an ion diffusion method, an ion beam direct drawing method, or the like.
  • a square optical waveguide is used, but an arbitrary shape such as a rectangle, a polygon, and a circle is used. Can be used.
  • the core width of the optical waveguide can be partially changed so that the refractive index is different from the other portions.
  • a stress can be applied to the optical waveguide to change the value of the refractive index.
  • the present circuit uses a silica-based optical waveguide, it may transmit a different material.
  • the optical waveguide may include a material such as a silicon resin or a polyimide wave plate.
  • various temperature compensation methods and polarization dependency reduction methods may be applied.
  • the refractive index of the optical waveguide is locally changed using a light irradiation method such as laser irradiation, a local heating method using a thin film heater, or the like to obtain an optical path length difference, a coupling characteristic of an optical multiplexing / demultiplexing device, and the like.
  • the phase characteristics can also be adjusted.
  • the thermo-optic effect of the thin film heater is used for the light switching operation, the invention is not limited to this, and for example, light irradiation may be used, and the electro-optic effect, the magneto-optic effect, etc. .
  • the shape of the area is arbitrary.
  • the optical waveguide is not limited to the planar optical waveguide, and may be configured using, for example, a laminated optical waveguide or an optical fiber, or may be configured by combining a plurality of types of optical waveguides such as a planar optical waveguide and an optical fiber. May be. Also, a grating may be formed in the optical waveguide, or the optical waveguide may be divided or divided in the middle.
  • the interferometer type optical switch and the variable optical attenuator according to the present invention are not limited to optical waveguides, and an interference circuit may be constituted by a spatial optical system that propagates light into space.
  • this spatial optical system may be composed of a translucent mirror, a total reflection mirror, a multilayer film, or the like.
  • the interferometer type optical switch and the variable optical attenuator in each of the embodiments described above are examples of the configuration of the present invention, and are not limited to these configurations.
  • the optical multiplexing / demultiplexing means composed of the N + 1 optical couplers used in each embodiment and the N optical path length difference providing units sandwiched between adjacent optical couplers is a phase generation switch. It is an example of the configuration of various filters such as a multi-beam interference filter, a transversal filter, a Michelson interferometer filter, a Fabry-Balech interferometer filter, and a filter with a ring resonator. It may be used as a demultiplexing means.
  • an optical coupler constituting a phase generating power blur and an optical multiplexing / demultiplexing means in addition to the directional coupler described in each embodiment of the present invention, a multimode interference power blur, a variable coupler, an X-branch, and the like. Any type such as a force bra and a Y-branch force bra can be used, or they can be combined.
  • the coupling ratio given to the optical multiplexing / demultiplexing means, the value of the optical path length difference of the optical path length difference providing unit, and the calculation method are also examples. ⁇ These may be the optimum values according to the form to be used. If there are a plurality of phase generation camera configuration methods and optimum values, the most suitable configuration may be selected in consideration of the size, manufacturing tolerance, excess loss, and the like.
  • optical wavelength division multiplexing WDM
  • WDM wavelength division multiplexing
  • optical components have a wide bandwidth of several THz, and the current network uses only a small part of it. If this band can be divided and used by wavelength division multiplexing, a network that can easily handle a large amount of various information essential for multimedia communication, including expansion of capacity, can be realized ⁇
  • optical cross-connect systems using optical switches and optical drop multiplex systems are key devices of WDM technology, and many demands are expected.
  • the interferometer type optical switch and the variable optical attenuator according to the present invention can be used not only in these optical systems but also in various fields as optical switch elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 広帯域でスイッチング可能であると共に、高消光比で製造トレランスが大きい干渉計型光スイッチ及びそれを用いた光スイッチモジュールを提供する。光合分波手段として出力の位相差が波長依存性を持つ位相生成カプラ(111)を用い、位相生成カプラ(111)から出力される光の位相差φ1(λ)と、光路長差付与部(131)の光路長差に起因する位相差φ⊿L(λ)と、方向性結合器(153)から出力される光の位相差φ2(λ)との総和2π{φ1(λ)+φ⊿L(λ)+φ2(λ)}が波長によらず一定になるように設定することで、波長無依存の干渉計型光スイッチを実現する。

Description

明 細 書 干渉計型光スィツチおよび可変光アツテネータ 技術分野
本発明は、 光通信システムや光信号処理等に用いられる干渉計型光スィツチ 及ぴ可変光アツテネ一夕に関するものであり、 詳細には、 広い波長帯域で切り 替え動作が可能な導波路型光回路に関する。 背景技術
インタ一ネットの爆発的な普及により、 通信回線の大容量化が米国を中心と して急速に進められている。 この大容量化のキー技術は、 波長分割多重 (WD M) システムである。 WD Mシステムは 1本の光ファイバに複数の波長の異な る信号光'を同時に伝搬させ、 通信容量を飛躍的に拡大するものである。 現在敷 設されている光通信システムは、 個別にノード間を結ぶポイントッ一ポイント システム (Point to po int sys tem) であるが、 今後は更に高機能な光クロスコ ネクト (Cross connec t) システムや光アドドロップ多重 (Opt i cal Add/drop Mul t ipl ex i ng ; OADM) システムの開発が進められている。 光クロスコネクトシ ステムは、 例えば、 電話局などのノード部分で伝送路の切り替えを行うシステ ムであり、 光アドドロップ多重システムは、 多重化された信号光から特定の波 長を抜き取り、 別の伝送路に分けたり、 特定の波長に新たな信号を加えて送り 出したりするシステムである。 従って、 これらのシステムには信号光の合分波 機能の他に、 光信号のまま光路の切り替え機能を可能とする空間分割型光スィ ッチが必要とされており、 今後の光通信網を担う重要な部品の 1つである。 このような商用通信システムに用いる光スィッチには小型、 低コスト、 低消 費電力、 高速制御性などの特性が求められている。 また透過率の波長依存性や 偏波依存性が小さく、 広い波長帯域で切り替え可能な光スィッチが要求されて いる。
様々な光部品が研究開発されている中、 基板上の光導波路を基本とした導波 路型光部品は量産性、 集積性、.信頼性に優れた光部品として注目されている。 導波路型光スィッチはフォトリソグラフィ技術及び微細加工技術によって、 光 波長以下の高精度で再現性良く量産でき、 更にスィツチを構成する基本素子が 小型なため大規模ィ匕にも適しており、 最も有望な形態の光スィッチと考えられ ている。 また、 特にシリコン基板上に形成された石英系光導波路は低損失であ り、 信頼性、 拡張性も高いことから、 今後の光通信システムの構成部品として 期待されている。
従来の導波路型光スィツチの基本構成要素として、 マッハツエンダ干渉計が 用いられている。 マッハツエンダ干渉計は 2つの力ブラと、 それら 2つのカプ ラに挟まれたアーム導波路から構成されている。 アーム導波路上の薄膜ヒータ を駆動することにより、 光路を切り替えることができる。
(従来技術の第 1例)
従来の導波路型光部品における光スィツチは、 光合分波手段と光路長差付与 部より構成された干渉計型光スィツチである。 代表的な干渉計型光スィツチは 2入力 2出力のマッハツエンダ干渉計であり、 光スィツチの基本素子として多 く用いられている (文献 1 : M. Okuno et al., "Low-loss and high ext inc t ion rat io s i l ica-based IxN thermo-opt ic swi tches, " OECC/IOOC 2001 Conference Incorporat ing AC0FT, pp. 39-41, 5 July 2001)。
F I G. 3 7は、従来のマッハツエンダ干渉計型光スィッチの平面図である。 このマッハツェング干渉計型光スィッチは、 2つの方向性結合器 1 5 1、 1 5 2と、 これら 2つの方向性結合器 1 5 1、 1 5 2に挟まれた光路長差付与部 1 31と、光路長差付与部に形成された位相シフタ 141と、入力導波路 101、 102と、 出力導波路 103、 104とから構成されている。 例えば、 方向性 結合器 151、 152として分岐比が r = 0. 5の 3 d B方向性結合器が用い られ、 位相シフタ 141として薄膜ヒー夕が用いられている。 そして 2つの方 向性結合器 151、 152を^んでいる 2本の光導波路 (光路長差付与部) の 光学的な光路長差 は、 信号光の波長を A s (=1. 5/ m) とすると、 L=0. 5 λ s (=0. 75 m) や L = 0 · λ s = 0になるよう設定され ている。 なお、 は図 37の光路長差付与部において、 下側の導波路に対す る上側の導波路の相対的な光路長差であり、 導波路の実効屈折率を含む光学的 な光路長差である。 一般に初期状態で Lが 0. 5 λ sに設定されている素子 は非対称型マッハツエンダ干渉計光スイッチと呼ばれ、 夕、リ-ブスィッチゃゲ一 トスイッチとして用いられている。 一方、 が 0に設定されている素子は対 称型マッハツエンダ干渉計光スィッチと呼ばれ、 2分岐スィッチとして用いら れている。
F I G. 38は、 F I G. 37に示すマッハツエンダ干渉計型光スィッチの B— B線の矢視断面図である。 シリコン基板 161上には石英系ガラスで形成 されたクラッドガラス層 164、 .167が設けられている。 このクラッドガラ ス層 164、 167の中層には石英系ガラスで形成されたコアガラス部 165 が設けられ、 光導波路が形成されている。 また、 上部クラッドガラス層 167 の表面には位相シフタ (薄膜ヒ一夕) 141が形成されている。 つまり、 上記 導波路型光部品は光導波路及び薄膜ヒータ等によって形成されている。
次に、 F I G. 37に示したマッハツェング干渉計型光スィッチのスィッチ ング動作を説明する。
まず、 非対称型スイッチングの場合を説明する。 位相シフ夕 (薄膜ヒータ) 141が O F F状態の時、 スィツチはパー状態にあり、 入力導波路 101から 入力した信号光は出力導波路 103から出力され、 入力導波路 102から入力 した信号光は出力導波路 104から出力される。 薄膜ヒー夕 141を通電し、 熱光学効果により光学的な光路長を信号光の半波長 {0. 5λ s · k (kは 0 以外の整数) }相当分変化させると、光路長差は L + S L=0. 5λ s -0. 5 λ s = 0となる。 この位相 フ夕 (薄膜ヒータ) 141が ON状態の時、 ス イッチはクロス状態にあり、 入力導波路 101から入力した信号光は出力導波 路 10.4から出力され、 入力導波路 102から入力した信号光は出力導波路 1 03から出力される。 このように、 薄膜ヒータによる加熱の有無により、 光路 長差付与部 131の光学的な光路長を変化させることにより、 光路の切り替え を行うことができる。
次に、 対称型スィッチの場合を説明する。 位相シフ夕 (薄膜ヒ一夕) 141 が OFF状態の時、 スィッチはクロス状態にあり、 信号光はクロスポート (1 01→104、 もしくは 102→103) から出力される。 薄膜ヒ一夕 141 を通電し、 光学的光路長差を^ L+ (5 L=0. 5 λ sにした ON状態では、 スィッチはバ一状態に切り替わり、 信号光はスルーポート (101→103、 もしくは 102 104) から出力される。
対称型を用いた 2分岐スィッチでは、 光を入力導波路 101から入力したと すると、 信号光は—、 OFF状態ではクロスポート (出力導波路 104) から出 力され、 スルーポート (出力導波路 103) からは出力されない。 逆に ON状 態では、 信号光は、 スル一ポート (出力導波路 103) から出力され、 クロス ポート (出力導波路 104) からは出力されない。 このように、 2分岐スイツ チは初期の OFF状態でクロスポートから出力されるようにしており、 薄膜ヒ 一夕の加熱により出力をスルーポートに切り替えている。
非対称型を用いたタップスィッチは 2分岐スィッチとは逆のスイッチング動 作をし、 初期の OFF状態でスルーポ一卜から出力されるようにしており、 薄 膜ヒ一夕の加熱により出力をクロスポートに切り替えている。 また、 非対称型 を用いたゲ一トスイッチはタップスィッチのクロスポ一トのみを使用する。 初 期の OFF状態ではクロスポートからは出力されず、 薄膜ヒー夕の加熱により ON状態にすると、 信号光はクロスポートから出力される。 対称型と非対称型 のどちらも光スィッチの基本率子として用いられる。 しかし、 特に非対称型の 場合は第 1と第 2の方向性結合器 151と 152の分岐比が等しければ、 高消 光比を維持できるという特徴があるので、 光結合器の製造誤差に対して強いと いう利点がある。
これら干渉計型光スィツチは 1 X 1型スィツチや、 光通信システムに障害が 発生したときに現用系から予備系への切り替えに用いられる 1 X 2型光スイツ チとして利用されている。 また、 単独で用いられるだけでなく、 消光比を高め るように、 マッハツエンダ干渉計型光スィッチの一方の出力に、 同じ構成のマ ッハツエンダ干渉計型光スィッチを従属に接続する構成も報告されている (文 南允 2 : T. Goh et al. , "High-extinction ratio and low-loss silica-based 8x8 thermooptic matrix switch, IEEE Photonics technology Letters 1998, Vol. , 10, pp.358-360)»
また、 薄膜ヒータ通電時の消費電力を低減するため、 位相シフタめ両端に断 熱溝構造を設ける搆成も報告されている (文献 3 : S. Sohma et al., "Low switching power silica-based super high delta thermo-optics switch with heat insulating grooves、 Electronics Letters 2002、 Vol.38、 No.3, pp.127-128)。
また、 上記マッハツエンダ干渉計型光スィッチを基本構成素子とし、 それら を複数組み合わせることにより NXNマトリクス光スィッチ(文献 4 :T. Gohet al. , Low-loss and high-extinction-ratio silica-based strictly 議 blocking 16x16 thermooptic matrix switch," IEEE Photonics Technology Letters 1998, Vol. 10, No.6, pp.810- 812)、 1 XNタップ型光スィッチ (文 献 1)、 1 XNツリー型光スィッチ(文献 5: T. Watanabeet al., "Silica-based PLC 1 X 128 thermo-ορί ic switch, 27th European Conference on Optical Communication 2001, ECOC '01., Vol.2, pp.134-135), ROADM (Reconf igurable OADM) スィッチなど、 MX N 規模光スィッチを構成することもできる。
(従来技術の第 2例)
F I G.39に従来の波長無依存光スィッチ (Wave length insensitive + Switch; WINS)を示す。 WI NSは第 1の基本回路 190に、 第 1の基本回路 1 90に対して点対称となる第 2の基本回路が接続された構成をしている。 ここ で、 第 1の基本回路 190は、 2つの方向性結合器 151、 152と、 これら 2つの方向性結合器 151、 152に挟まれた光路長差付与部 134より構成 された波長無依存カプラ(Wavelength Insensitive Coupler; WINC)である。 方向性結合器 151 (154) の分岐比は r i = 0. 8、 方向性結合器 152 (153) の分岐比は r 2 = 0. 3、 光路長差付与部 134の光学的光路長差は A'Ll (=— iL3) =0. 32 mであり、 第 1の基本回路 190と、 ぞれに 対し点対称となる第 2の基本回路に挟まれた二本の導波路は光路長差付与部 1 35を形成し、 その光学的光路長差は 1L2=0に設定されている。 ただし、 光 路長差は一方の光導波路 (同図では下側の光路) に対する他方の光導波路の相 対的な光路長差を表している。 光路長差付与部 135の光導波路上には位相シ フタ (薄膜ヒータ) 142が形成されており、 この薄膜ヒ一夕を通電すること で切り替え動作を行うことができる。
この回路は、 従来の対称型マッハツエンダ干渉計スィッチ (F I G. 37) の方向性結合器 151、 152をそれぞれ W I NCに置き換えた回路であると 見なすことができる。 従来の方向性結合器の分岐比は波長依存性を持つので 3 dB力ブラ、 すなわち分岐比 0. 5の力ブラとして機能する波長範囲は限られ ている。 対称型マッハツェング干渉計スィッチの消光比が高くなるのは、 方向 性結合器 1 51と 1 52の合計が完全結合長になる時であるので、 方向性結合 器 151と 1 52の分岐比がそれぞれ 0. 5よりも小さく、 もしくは大きくな れば消光比は劣化する。 それに対し、 F I G. 39の回路は WI NCを用いて いるので、 波長によらず分岐 ½を概ね 0. 5にすることができる。 WI NSは 光結合器の分岐比の波長依存性が小さい WI NCを用いるので、 従来の対称型 マッハツェング干渉計スィツチよりも広い波長帯域でスィツチングが可能であ る。 しかし、 実際には製造誤差等により、 広い波長帯域にわたり WI NCの分 岐比を 0. 5に保つのは困難であり、分岐比の偏差により波長特性は劣化する。 そこで、 WI NSを構成する 2つの WI NCの分岐比を調整できるよう WI NCの光路長差付与部 134と 136に微調整用位相シフタ (薄膜ヒータ) 1 41、 143を形成した (F I G. 40)。 WI NSは対称型であるので、 薄膜 ヒータを駆動しない初期状態では、 WI NSはクロス状態にあり、 入力導波路 101から入力した信号光は出力導波路 104から出力される。 ここで、 光路 長差付与部の薄膜ヒータ 141、 142及び 143へ通電し、 熱光学効果によ り光学的な光路長をそれぞれ (5 IL 6Ah^ (5 L3だけ変化させると WI NSはバ一状態となり、 入力導波路 10 1から入力した信号光は出力導波路 1 03から出力され、出力導波路 104への出力は阻止された。 その透過率の波 長依存性を測定した結果、 1. 2〜1. 7 imの広い波長領域で消光比一 20 dB以上が得られた。
(従来技術の第 3例)
干渉計型光スィツチは、 出力強度を 0と 1にすることにより切り替え動作を 行うが、 出力強度を 0から 1の間に設定することにより、 光信号の強度を減衰 させる可変光アツテネ一夕として用いることができる。 例として、 従来の非対 称型マッハツエンダ干渉計の波長特性を示し、 干渉型光スィッチと可変光アツ テネ一夕の相違点を説明する。 F I G. 41 Aは従来技術の第 1例で説明した 非対称型マッハツエンダ干渉計スィツチの透過率の波長依存性を示す。 ON状 態が出力強度 1、 OFF状態が出力強度 0に対応し、 OFF状態の透過率が小 さいほど消光比は高くなる。 初期の OFF状態では光路長差付与部 131 (F I G. 37) の光学的光路長萆は L=0. 5 A sであり、 ON状態では光路 長差付与部 131 (F I G. 37) の光学的光路長差は +5^!し=0. 5 λ s— 0. 5 λ s = 0である。
F I G. 41 Bに、 従来の可変光アツテネー夕において中心波長 λ cでの光 の透過率を— 30 dB、 — 20 dB、 — 10 d Bに設定した時の透過率の波長 依存性を示す。 位相シフタ (薄膜ヒー夕) により光路長差付与部 131の光学 的光路長差を変化させ、 透過率を適切な値に設定するごとにより、 光強度を任 意に減衰させることができる。
(従来技術の課題)
しかしながら、 従来の干渉計型光スィッチもしくは可変光アツテネ一夕には 次のような課題があった。
従来技術の第 1例で説明した従来の対称型マッハツエンダ干渉計スィッチの 消光比が高くなるのは、 2つの方向性結合器の合計が完全結合長になる時であ るので、 2つの方向性結合器の分岐比が 0. 5なら高消光比が得られる。 しか し、 作製誤差により方向性結合器の分岐比が例えば r l=r 2 = 0. 4となれ ば高消光比となる条件を満たさないので、 消光比は大きく劣化する。 さらに、 ある波長では分岐比が 0. 5であったとしても、 波長依存性により方向性結合 器の分岐比は波長により変化するので、 透過率に波長依存性が生じる。 このよ うに、 光結合器の製造誤差と波長依存性により従来の対称型マッハツエンダ干 渉計スィッチを広い帯域で使用することはできなかった。
一方、 非対称型マッハツエンダ干渉計スィッチの消光比が高くなるのは、 2 つの方向性結合器の分岐比が等しくなる時であるので、 作製誤差により例えば r l=r 2 = 0. 4となったとしても高消光比を維持できる。 同様に、 波長依 存性により分岐比が波長により変化しても高消光比を維持できる。 しかし、 マ ッハツエンダ干渉計スィッチを非対称型とするには光路長差付与部の光学的光 路長差を 0. 5 λ cに設定す^)必要があった。 光路長差を有限の値に設定する と原理的に波長依存性が生じ、 透過率が波長により変化する。 非対称型は光結 合器の製造誤差と波長依存性に対する耐性が強いという利点があるが、 従来の 技術では波長依存無く光路長差を有限の値に設定することは不可能であった。 そのため、いずれのマッハツエンダ干渉計型光スィッチを用いても、 F I G. 41 Αに示すような波長依存性を持つ。 F I G. 41 Aでは、 信号光波長 λ s を 1. 5 /mに設定した時の、 1. 45〜1. 65 の波長帯域を示すが、 λ sでは消光比が良好であるが、 波長が信号光波長から離れるに伴い、 〇Ν状 態と OFF状態の透過率の差である消光比が劣化する。 もし、 消光比の目標値 が— 30 d B以下であるとすれば、 従来のマッハツエンダ干渉計型光スィツチ で目標値を達成できるのは信号光波長 λ sを中心に広くとも 60 nm程度であ る。 そのため、 例えば中心波長 1. 55 mでは消光比は一 25 d B程度に劣 化する。 このように、 従来のマッハツエンダ干渉計型光スィッチでは、 十分な 消光比を確保できる波長帯域は限られており、 広い波長帯域を用いる波長分割 多重伝送システム等に適用することはできなかった。
従来技術の第 2例で説明した W I N Sは光結合器の分岐比の波長依存性を小 さくできるので、 従来技術の第 1例の光スィツチよりも波長依存性が軽減でき る。 しかし、 WI NSは対称型マッハツェング干渉計スィッチに基づいている ため、 高い消光比を得るには 2つの WI NCの分岐比を 0. 5にする必要があ る。 WINCを用いることにより波長依存性を小さくできるが、 全波長帯域で 分岐比を 0. 5に保つことはできない。 そのため、 例えば、 ある波長で分岐比 r l=r 2 = 0. 45になったとすれば消光比が大きく劣化する。 また、 F I G. 40で示したように WI NCの光路長差付与部にも位相シフタを形成し、 光路長差を微調整すれば、 波長依存性を改善することができる。 しかし、 3つ の位相シフタを同時に駆動する必要がある。 したがって、 (1) スイッチング時 の消費電力が従来の数倍も増し、 (2) 調整箇所が増すことにより制御時間が増 し、 (3) スイッチング動作の制御アルゴリズムが複雑になり、 (4) 位相シフ 夕の数が増加したことにより電気配線量が従来の何倍も増大するなどの多くの 問題が発生し、 低消費電力、 高速制御性など、 商用システムに必要とされる特 性を満たさ かった。
従来技術の第 3例で説明した可変光アツテネ一夕は中心波長のみで所望の減 衰量が得られ、 それ以外の波長では減衰量を設定することはできなかった。 なお、 本発明に関連する文献として文献 1〜5を上記したが、 同様な従来技 術についての記述のある他の参考文献として下記のものを紹介する。
文南 6 : K. Jinguj i et al. , 'Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations. , Journal of Lightwave Technology 1996, Vol.14, o.10, pp.2301-2310.
文献 7 : M. 0k漏 t al. , "Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch. " , Journal of Lightwave Technology 1994, Vo.12, No.4, pp.625-633.
文献 8 : T. Mizuno et al. , ' "Mach-Zehnder interferometer with a uniform wavelength period. ", Optics Letters 2004, Vol.29, No.5, pp. 54-456 文献 9 : EP 0382461
文献 10 :特許第 3175499号公報
文献 11 :特許第 3041825号公報 発明の開示
本発明は、 上述のような従来技術の課題を解決するためになされたもので、 広帯域でスィツチングが可能であると共に、 高消光比で製造トレランスが大き い干渉計型光スィッチ及び可変光ァッテネー夕を提供することを目的とする。 この目的を達成するため、 本発明では、 マッハツエンダ干渉計を構成する力 ブラ (光合分波手段) のうちの少なくとも一つに、 出力の位相差が波長依存性 を有する位相生成力ブラを用いた。 そして、 この位相生成力ブラとアーム導波 路に起因する位相の総和が波長によらず一定になるように設定することを特徴 とすることにより、 マツハツヱンダ干渉計の出力強度の波長無依存化を実現し た。
ここで、 光合分波手段の出力の位相差とは、 光合分波手段の入力ポートのう ち少なくとも 1つに光を入力し、 光合分波手段の出力ポートのうち少なくとも 2つから光を出力した時の 2つの出力ポート間に生じる出力光の位相差である t また、 光合分波手段の入力ポートのうち少なくとも 2つに光を入力し、 光合分 波手段の出力ポートのうち少なくとも 1つから光を出力した時、 入力ポートの 違いにより同一出力ポートでも光の位相差が生じる。 この場合は、 1つの出力 ポ一トに光を入力し、 2つの入力ポートから光を出力したとみなせるので、 い ずれの場合も 2つのポート間の出力の位相差を定義をすることができる。 この ように、 異なる入力ポートもしくは出力ポートに光を入力、 もしくは出力した 時、 ポート間に波長ごとに異なる位相差を生じさせることのできる光力ブラが 位相生成力ブラである。
更に詳しくは、 本発明に係る干渉計型光スィツチ及び可変光アツテネ一夕は、 第 1の光合分波手段と、 第 1の光合分波手段に接続された 2本の光導波路から なる光路長差付与部と、 光路長差付与部に接続された第 2の光合分波手段と、 第 1の光合分波手段に接続された 1つあるいは複数の入力導波路と、 第 2の光 合分波手段に接続された 1つあるいは複数の出力導波路と、 光路長差付与部に 設けられた位相シフタとを備えた導波路型光回路からなり、 第 1の光合分波手 段もしくは第 2の光合分波手段のうち少なくとも一方は、 出力の位相差が波長 依存性を持つ位相生成力ブラ することにより、 従来の干渉計型光スィッチで は実現できなかった新たな機能を有する干渉計型光スィツチ、 及び可変光アツ テネ一夕を提供することができる。
また、 位相生成力ブラが光結合器と光路長差付与部との接続により構成され たものであることを特徴とすることにより、 出力の^:相差が波長依存性を有す る光合分波手段を実現してもよい。 さらに、 光結合器の分岐比と光路長差付与 部の光学的光路長差を適切に設定することにより、 任意の位相差を生成するこ とができる。
また、 位相生成力ブラが、 N+ 1個 (Nは自然数) の光結合器と、 隣接する 光結合器に挟まれた N個の光路長差付与部とによって構成されたものであるこ とを特徴とすることにより、 原理損失無く位相生成機能を有する位相生成カブ ラを実現してもよい。 さらに、 Nを大きくするほどパラメ一夕設定の自由度が 増し、 位相生成力ブラの出力の位相差と適正位相との近似度、 及び位相生成力 ブラの分岐比と適正分岐比との近似度が高まる。 そのため、 容易に、 精度の良 い位相を生成できる位相生成力ブラを提供することができる。
また、 光の波長を λ、 第 1の光合分波手段により出力される光の位相差を 2 πφ, (え)、 光路長差付与部の光学的光路長差 1Lに起因する位相差を 2 ττφ L (λ)、 第 2の光合分波手段により出力される光の位相差を 2 ττφ2 (λ) と すると、 3つの位相差の総和
2 it {φχ (λ) +φΑ^ (λ) + 2 (Λ)} (数式 1) が波長無依存になるように一定に設定されたことを特徴とすることにより、 実 効的に光路長差付与部の光学的光路長差を波長によらずに任意の値に設定して もよい。 それにより出力の透過特性を波長無依存にすることができ、 広帯域で 使用できる干渉計型光スィツチや可変光減衰器などの光部品を提供することが できる。
また、 3つの位相差の総和 π {φχ (λ) +φΑ^ (λ) + 2 (λ)} が、 (2m' + 1) · 7Τ (m' は整数) に設定され、 第 1の光合分波手段と第 2の光 合分波手段の分岐比が、 全波長領域にわたり概ね等しくなるよう設定してもよ い。 それにより、 従来は原理的に不可能であった、 波長無依存の非対称型マツ ハツエンダ干渉計スィッチを実現することができる。 例えば、 広い波長帯域で 高消光比を有し、 製造偏差に強い広帯域ゲートスィッチやタップスィッチを提 供することができる。 さらに、 波長無依存の可変光アツテネ一夕として使用す ることもできる。
また、 3つの位相差の総和 27Γ {(^ (λ) +<i> lL (λ) +φ2 (λ)} が、 2m' - % (m' は整数) に設定され、 第 1の光合分波手段と第 2の光合分波手 段の分岐比の合計が概ね 1になるよう設定されたことを特徴とすることができ る。 それにより、 例えば波長無依存の対称型マッハツエンダ干渉計スィッチと して動作させてもよい。
また、 第 1の光合分波手段の出力の位相差と、 第 2の光合分波手段の出力の 位相差との和が、 / λ + m / 2 (mは整数) であることを特徴とすること ができる。
また、 光の波長をえ、 第 1の光合分波手段により出力される光の位相差を 2 π 1 (λ)、 光路長差付与部の光学的光路長差 Lに起因する位相差を 2 πφ A (え)、 第 2の光合分波手段により出力される光の位相差を 2 ττφ2 (λ) と すると、 導波路型光回路の出力強度が波長に対して一定になるよう 3つの位相 差の総和 2 ττ { , (λ) +ΦΑ^ (λ) +φ2 (λ)} が設定されたことを特徴 とすることができる。 そうすれば、 広帯域にわたり出力強度が一定の干渉計型 光スイツチ及び可変光アツテネ一夕を提供することができる。
また、 第 1の光合分波手段もしくは第 2の光合分波手段のうち一方が、 位相 差 2 π φ。 (定数) の光結合器であり、 他方が 2つの光結合器とその 2つの光 結合器に挟まれた一つの光路焉差付与部より構成された位相差 2 π φ ( λ ) の 位相生成力ブラであり、
(λ ) = 1L / λ + m / 2 - d> c (数式 2 )
を満たすように、 光合分波手段を構成する 2つの光結合器の分岐比と、 一つの 光路長差付与部の光学的光路長差とが設定されたことを特徴とすることにより 広い波長帯域でスィツチング動作が可能な干渉計型光スィツチを提供すること ができる。
また、 第 1の光合分波手段及び第 2の光合分波手段が、 夫々 2つの光結合器 と 2つの光結合器に挟まれた一つの光路長差付与部より構成された位相生成力 ブラであり、 第 1の光合分波手段の出力の位相差と第 2の光合分波手段の出力 の位相差との和が、
, (λ ) + 2 (λ ) = / λ + πι / 2 (数式 3 )
を満たすように、 第 1の光合分波手段及び第 2の光合分波手段を構成する 2つ の光結合器の分岐 ½と、 一つの光路長差付与部の光学的光路長差とが設定され たことを特徴とすることにより、 広い波長帯域でスィツチング動作が可能な干 渉計型光スィツチを提供することができる。
また、 第 1の光合分波手段及び第 2の光合分波手段が、 夫々 N + 1個 (Νは 自然数) の光結合器と、 隣接する光結合器に挟まれ、 第 1と第 2の 2本の光導 波路 (遅延線) からなる Ν個の光路長差付与部とによって構成された位相生成 力ブラであり、 第 1の光合分波手段の Ν個の光路長差付与部を構成する第 1光 導波路の光学的光路長差の総和を 、 第 2光導波路の光学的光路長差の総和 を∑ 1、 第 2の光合分波手段の N個の光路長差付与部を構成する第 1光導波路 の光学的光路長差の総和を∑ 2、 第 2光導波路の光学的光路長差の総和を∑ 22 とすると、 光学的光路長差の総和が (∑ 1〉∑«¾21かっ∑ ,2〉∑ 2)、 もしくは、 (∑ 1〉∑<¾1かっ∑ 2>∑ 2) のいずれかを満たすよう設定し、 位相生成カブ ラにより効率的に位相を生成 てもよい。
また、 第 1の光合分波手段及び第 2の光合分波手段が、 N+ 1個 (Nは自然 数) の光結合器と、 隣接する光結合器に挟まれた N個の光路長差付与部とによ つて構成された位相生成力ブラであり、 第 1の光合分波手段及び第 2の光合分 波手段の N+ 1個 (Nは自然数) の光結合器の分岐比が等しい値に設定された ことを特徴としてもよい。 光結合器が作製しやすくなれば歩留まりを向上させ ることができる。
また、 光結合器として、 近接した 2本の光導波路からなる方向性結合器を用 いれば、 2本の光導波路の結合長や導波路間の間隔等を適切に設定することで、 光結合器の分岐比を容易に任意 値に設定することができる。
また、 位相シフタとして、 光導波路上に設けられた薄膜ヒ一夕を用いること により、 精度良く位相をシフトさせることができる。
また、 位相シフタの近傍に断熱溝を形成することにより、 位相シフトに必要 な消費電力を抑え?)ことができる。
また、 導波路型光回路が、 石英系ガラス光導波路で構成されていることを特 徴とすることにより、 集積性、 信頼性、 安定性に優れた低損失導波路型光回路 を提供することができる。
また、 干渉計型光スイッチを多段に複数接続したことを特徴とすることによ り、 さらなる高消光比の干渉計型光スィツチや高機能干渉計型光スィツチを提 供することができる。 さらに、 干渉計型光スィッチを複数接続することで NX Nマトリックススィッチ、 1 XNツリースィッチ、 1 XNタップスィッチ、 M X Nの D Cスィッチ、 R O ADMスィッチなどの大規模干渉計型光スィッチを 構成することができる。
また、 第 1の干渉計型光スィツチの 2つの出力導波路のうち一方が第 2の干 渉計型光スィツチの入力導波路に接続され、 第 1の干渉計型光スィツチの入力 導波路を干渉計型光スィッチ 0入力ポートとして用い、 第 2の干渉計型光スィ ツチの出力導波路を干渉計型光スィツチの第 1出力ポートとして用い、 第 1の 干渉計型光スィツチの 2つの出力導波路のうち他方が干渉計型光スィツチの第 2出力ポートとして用いたことを特徴とすることにより、 一定消費電力の I X 2干渉計型光スィッチを実現してもよい。
また、 第 1の干渉計型光スィッチの 2つの出力導波路のうち一方が第 2の干 渉計型光スィツチの入力導波路に接続され、 他方が第 3の干渉計型光スィツチ •の入力導波路に接続され、 第 1の干渉計型光スィツチの入力導波路を干渉計型 光スィツチの入力ポートとして用い、.第 2の干渉計型光スィツチの出力導波路 を干渉計型光スィツチの第 1出力ポートとして用い、 第 3の干渉計型光スィッ チの出力導波路を干渉計型光スィッチの第 2出力ポートとして用いたことを特 徴とすることにより、 P I— L O S S (パス無依存損失) の I X 2干渉計型光 スィッチを実現してもよい。
また、 干渉計型光スィッチを少なくとも一つ用い、 M (M:自然数) 入力 N (N :自然数) 出力の光スィッチを構成したことを特徴とすることにより、 N X Nマトリックススィッチ、 1 X Nツリースィッチ、 1 X Nタップスィッチ、 M X Nの D Cスィツチ、 R OADMスィツチなどの大規模光スィツチを提供す ることができる。
また、 干渉計型光スィツチの光導波路上に複屈折率調整手段が設けられてい る、 もしくは複屈折率の調整が行われたことを特徴とする偏波無依存、 あるい は偏光ビームスィツチなどの偏光 ^fe存の干渉計型光スィツチを提供することが できる。
また、 導波路型光回路の出力強度が最大となる状態と最小となる状態を切り 替えるのが干渉計型光スィッチであるが、 その出力強度を可変にし、 最大と最 小の間の任意の値に設定することにより、 可変光ァッテネー夕として機能させ ることができる。 この場合、 出力強度が広い波長帯域で一定となる広帯域可変 光アツテネ一夕を提供することができる。
また、 導波路型光回路を内部に有する筐体と、 筐体に保持され、 導狭路型光 • 回路に信号の入出力を行う光ファイバとを有することを特徴とすることにより、 光クロスコネクト (OXC) システムや光アドドロップ多重 (OADM) シス テムなどの光通信システムに使用できる導波路型光回路の光モジュールを提供 できる。
本発明では、 マッハツエンダ干渉計の第 1の光合分波手段もしくは第 2の光 合分波手段のうち少なくとも一方に、 出力の位相差が波長依存性を持つ位相生 成力ブラを用いる。 それにより、 従来技術では実現できなかった新たな機能を 有する干渉計型光スィツチ及び可変光アツテネ一夕を実現している。
位相生成力ブラを備えた本発明のマッハッェンダ干渉計型光スイッチにおい て、 クロスポート (101→104) の光強度 P cは次式
Pc = 2R( ) · [1 - R(A)] · [1 + cos{2^r{^ (λ) + Φ(λ)}}] (数式 4 )
で表すことができる。 ただし、 (λ) はマッハツエンダ干渉計の光路長差 付与部の光学的光路長差に起因する位相差、 Φ (λ) は位相生成力ブラにより 生成される出力の位相差である。 また簡単のため、 第 1と第 2の光合分波手段 の分岐比が等しく、 R (λ) であるとした。 光強度を 0にするには 27Τ { ^ (λ) +Φ (λ)} が πの奇数倍になるようにすればよい。 しかし、 従来のマツ ハツエンダ干渉計では Lを有限の値に設定すると物理的に光学的光路長差に 波長依存性が発生するので、 2 τζ { ^ (λ)} が波長によらず一定値になるよ う設定することは不可能であった。 一方、 本発明では位相生成力ブラを用いて 適切な位相差を生成することにより、はじめて位相差?;!^ ^し く人 + 入;^ を波長に依らずに任意の一定値に設定することを可能にした。 適用する干渉計 回路の用途により位相生成力ブラの出力の位相差 Φ ( λ ) を適宜設定すること により、 広い波長帯域で動作可能な干渉計型光スィッチや可変光アツテネ一夕 を提供することができる。
また、 本発明によれば、 広い波長帯域でスイッチング動作が可能な干渉計型 光スィッチ回路を実現できるので、 この回路を光スィッチの基本素子として導 入すれば、 任意の波長帯域で動作する光クロスコネクトシステムゃ光ァドドロ ップ多重システム用スィッチが実現できる。 それにより、 部品の共用が可能に なり、 システムを低コストで構築することができる。
本発明では干渉計を構成する光合分波手段のうち少なくとも一つに、 出力の 位相差が波長依存性を持つ位相生成力ブラを用いることにより、 はじめて波長 依存性を発生させることなく光路長差付与部の光学的光路長差を有限の値に設 定することを可能とした。 それにより従来技術では実現できなかった広い帯域 で高消光比を有し、 かつ製造誤差に対する許容量の大きい干渉計型光スィツチ、 及び広い帯域で動作可能な可変光アツテネ一夕を実現した。 図面の簡単な説明
F I G. 1は本発明の第 1実施形態における干渉計型光スィツチの構成を示 す模式図である。
F I G. 2は本発明の第 1実施形態における位相補正量の波長依存性を示す 図である。
F I G. 3は本発明の第 1実施形態における干渉計型光スィッチの O F F状 態における透過率の波長依存性を示す図である。 F I G. 4は本発明の第 1実施形態で用いた位相生成力ブラの模式図である。
F I G. 5は本発明の第 1実施形態で用いた位相生成力ブラの位相差の波長 依存性を示す図である。
F I G. 6は本発明の第 1.実施形態で用いた位相生成力ブラの分岐比の波長 依存性を示す図である。 .
F I G. 7は本発明の第 1実施形態における干渉計型光スィッチの構成を示 す模式図である。
F I G. 8は本発明の第 1実施形態における干渉計型光スィツチの透過率の 波長依存性を示す図である。
F I G. 9は本発明の第 1実施形態の第 1変形における干渉計型光スィッチ の透過率の波長依存性を示す図である。
F I G. 1 0は本発明の第 1実施形態の第 2変形における干渉計型光スイツ チの透過率の波長依存性を示す図である。
F I G. 1 1は本発明の第 2実施形態における干渉計型光スィッチの構成を 示す模式図である。
F I G. 1 2は本発明の第 2実施形態における位相補正量の波長依存性を示 す図である。 ·
F I G. 1 3は本発明の第 2実施形態における干渉計型光スィッチの構成を 示す模式図である。
F I G. 1 4は本発明の第 2実施形態における干渉計型光スィツチの透過率 の波長依存性を示す図である。
F I G. 1 5は本発明の第 3実施形態における干渉計型光スィッチの構成を 示す模式図である。
F I G. 1 6は本発明の第 3実施形態における干渉計型光スィッチの断面図 である。 F I G. 17は本発明の第 3実施形態における干渉計型光スィツチの透過率 の波長依存性を示す図である。
F I G. 18は本発明の第 4実施形態における干渉計型光スィツチの構成を 示す模式図である。
F I G. 19は本発明の第 4実施形態における干渉計型光スィツチの透過率 の波長依存性を示す図である。
F I G. 20本発明の第 4実施形態の第 1変形における干渉計型光スィッチ の構成を示す模式図である。
F I G. 21は本発明の第 4実施形態の第 1変形における干渉計型光スイツ チの透過率の波長依存性を示す図である。
F I G. 22は本発明の第 5実施形態における干渉計型光スィッチの構成を 示す模式図である。
F I G. 23は本発明の第 5実施形態における干渉計型光スィッチの透過率 の波長依存性を示す図である。
F I G. 24は本発明の第 6実施形態における干渉計型光スィッチの構成を 示す模式図である。
F I G. 25は本発明の第 6実施形態で用いた位相生成力ブラの模式図であ る。
F I G. 26は本発明の第 6実施形態における干渉計型光スィッチの透過率 の波長依存性を示す図である。
F I G. 27は本発明の第 7実施形態における干渉計型光スィッチの構成を 示す模式図である。
F I G. 28 Aは本発明の第 7実施形態における干渉計型光スィッチの OF F状態の透過率の波長依存性を示す図である。 '
F I G. 28 Bは本発明の第 7実施形態における干渉計型光スィツチの ON 状態の透過率の波長依存性を示す図である。
F I G. 29は本発明の第 8実施形態における干渉計型光スィッチの構成を 示す模式図である。
F I G. 30 Aは本発明の第 8実施形態における干渉計型光スィツチの O F F状態の透過率の波長依存性耷示す図である。
F I G. 30 Bは本発明の第 8実施形態における干渉計型光スィッチの ON 状態の透過率の波長依存性を示す図である。
F I G. 31は本発明の第 9実施形態における干渉計型光スィツチの構成を 示す模式図である。
F I G. 32 Aは本発明の第 9実施形態における干渉計型光スィッチの OF F状態における T Eモードの透過率の波長依存性を示す図である。
F I G. 32 Bは本発明の第 9実施形態における干渉計型光スイッチの OF F状態における TMモ一ドの透過率の波長依存性を示す図である。
F I G. 33 Aは本発明の第 9実施形態における干渉計型光スィッチの ON 状態における TEモードの透過率の波長依存性を示す図である。
F I G. 33 Bは本発明の第 9実施形態における干渉計型光スィッチの ON 状態における TMモードの透過率の波長依存性を示す図である。
F I G. 34 Aは本発明の干渉計型光スィッチを用いた NXNスィッチの構 成例を示す模式図である。
F I G. 34 Bは本発明の干渉計型光スィッチを用いた 1 XNスィッチの構 成例を示す模式図である。
F I Gs. 35A-35 Eは導波路型光回路の作製工程を説明する模式図で ある。
F I G. 36は本発明の干渉計型光スィツチを用いた光スィツチモジュール の模式図である。 F I G. 37は従来のマッハツエンダ干渉計型光スィツチの構成を示す模式 図である。
F I G. 38は従来のマッハツェング干渉計型光スィツチの断面図である。 F I G. 39は従来の波長無依存スィツチ (WINS) の構成を示す模式図 である。
F I G. 40は従来の波長無依存スィツチ (WINS) の構成を示す模式図 である。
F I G. 41 Aは従来技術の第 1例の非対称型マッハツエンダ干渉計スィッ チの透過率の波長依存性を示す図である。
F I G. 41 Bは従来の可変光アツテネ一夕において中心波長 λ cでの光の 透過率を— 30 dB、 — 20dB、 — 10 d Bに設定した時の透過率の波長依 存性を示す図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の最良の実施形態を詳細に説明する。
なお、 発明の実施の形態を説明するための全図において、 同一機能を有する ものは同一符号を付け、その繰り返しの説明は省略する。以下の実施形態では、 平面光導波路を用い、 光導波路としてはシリコン基板上に形成した石英系光導 波路を使用した干渉計型光スィッチおよび可変光アツテネ一夕について説明す る。 これは平面光導波路が集積性に優れ、 スィッチ規模の大規模化や作製費用 の低コスト化に優れるためである。 さらにこの組み合わせの光導波路が低損失 で安定であり、 しかも石英系光ファイバとの整合性に優れているためである。 しかしながら本発明はこれらの組み合わせに限定されるものではない。 また、 導波路型光スィッチの説明は、 一般的に広く用いられているマッハツエンダ千 渉計型 2X2基本構成素子を例に取りあげて説明する。 しかしながら、 本発明 はこれに限定されるものではなく、 他のスィッチに関しても同様に適応可能で ある。
(第 1の実施形態)
F I G. 1に本発明の第 1実施形態における干渉計型光スィッチの構成を示 す。 .
本実施形態の干渉計型光スィツチは、 出力の位相差が波長依存性を持つ光合 分波手段 (位相生成力ブラ) 1 1 1と、 光合分波手段 1 2 1と、 光合分波手段 1 1 1; 1 2 1に挟まれた光路長差付与部 1 3 1と、 光路長差付与部 1 3 1に 形成された位相シフタ 1 4 1と、 入力導波路 1 0 1、 1 0 2と、 出力導波路 1 0 3、 1 0 4とから構成されている。
マッハツェング干渉計の透過特性は、 F I G. 4 1 Aに示したように、 信号 光波長 λ sで高い消光比を有し、 信号光波長から離れるほど消光比は劣化する。 ここで、 もし全ての波長領域を信号光波長にできれば、 その波長領域全体で高 レ消光比を維持できる。 信号光波長は光路長差付与部に位相差を与えることに より変化させることができ、 その与える位相差の量により信号光波長が決まる。 したがって、 それぞれの波長に応じて適切な位相差を光路長差付与部に与える ことができれば、 全波長領域を信号光波長にできる。
この原理を数式により詳細に説明する。 マッハツェング干渉計 (F I G. 3 7を参照) の入力導波路 1 0 1から信号光を入力し、 出力導波路 1 0 4から出 力される光強度 P cは、 光路長差付与部 1 3 1の光学的光路長差 Lに起因す る位相差を <i) ^!t (え)、 λを波長とすると、
Pc = 0.5.[l + cos(2^(A)}] (数式 5 ) と表される。 ただし、 本発明の各実施形態では、 位相差は 2 7Tで規格化した値 を用いるものとする。 また、 マッハツエンダ干渉計を構成する 2つの光合分波 手段の分岐比は一定値 0. 5としている。 上記数式 5から、 従来のマッハツエ ンダ干渉計の出力強度は光路長差付与部 131の光路長差に起因する位相差が 波長により変化するため、 原理的に波長依存性を有することが明らかである。 ここで、 もし光路長差付与部 131に生じる位相差が波長に対して一定にな るように設定できれば、マッハ、;/ェンダ干渉計を波長無依存にできる。そこで、 光合分波手段 1 1 1から出力される光の位相差を利用して位相補償を行う。 マ ッハツエンダ干渉計の第 1の光合分波手段 1 1 1に光を入力し、 この光合分波 手段 1 1 1につながる 2本の光導波路から出力される光の位相差を (入)、 マッハツエンダ干渉計の第 2の光合分波手段 12 1につながる 2本の光導波路 に光を入力し、 この光合分波手段 12 1から出力される光の位相差を ψ2 (λ) とすると、 上記の数式 5は、
?c=0.5-[l+ οο&{2π{ ι (λ) + (Λ)+ 2 (λ)} }] (数式 6 ) と変形することができる。 ここで、 ,位相差の総和 27Τ { , (λ) + 1 (λ)
+ φ2 (λ)} が波長無依存になるように設定すれば、 出力強度を波長無依存に することができる。 以上が本発明で用いる波長無依存化の原理である。
具体的にマッハツエンダ干渉計型光スィッチに本発明の波長無依存化の原理 を適用する場合を 明する。 光スィッチとして動作させるには、 OFF状態で 出力強度が 0となり、 ON状態で出力強度が 1となるようにすればよい。 した がって、 位相差の総和 2 π { , (λ) + L (λ) + 2 (λ)}が m. π (m は整数) となるように設定すれば、 mが奇数の時は OFF状態、 mが偶数の時 は〇 N状態となり、 スィッチング動作が可能である。
次に、 位相差の総和を一定にするための光合分波手段 1 1 1による位相補正 量 Ψ (λ) を導出する。 (λ) は一 ILZAで与えられるため、 位相補正 量 Ψ (λ) は、 ψ(λ)-^ = ΙΜ (m=整数) (数式 7)
λ
となる。 ここで、 例えば m=— 1、 1L = A c/2 (A cは波長帯域の中心波 長 1. 55 m) に設定した時の位相補正量 Ψ (λ) の波長依存性を F I G. 2に示す。 このような位相補正量を光路長差付与部 131に寄与させた時のマ ッハツエンダ干渉計型光スィツチの透過特性の波長依存性を F I G. 3に示す。 光路長差付与部 131の光路長差に起因する位相差の波長依存性が補償され、 広い波長領域で高消光比が得られることがわかる。
実際のマッハツェング干渉計に F I G. 2に示した位相補正量を与える方法 として、 出力の位相差が波長依存性を持つ光合分波手段を用いる場合を説明す る。 以降、 このような光合分波手段を位相生成力ブラ (Phase- generating coupler: PGC) と呼ぶことにする。 出力の位相差が波長依存性を有する光合 分波手段を実現する方法として様々な手段が考えられるが、 例えば光結合器と 光路長差付与部とを接続することにより位相生成力ブラとして機能させること ができる。 本実施形態では、 N+ 1個 (Nは自然数) の光結合器と、 隣接する 光結合器に挟まれた N個の光路長差付与部とによって構成される光合分波手段 を位相生成力ブラとして使用した。 それは、 N+ 1個の光結合器の分岐比と N 個の光路長差付与部の光路長差を調整することにより、 この光合分波手段の分 岐比と出力の位相差を任意に設定することができるからである。 また、 Nを大 きくするほどパラメ一夕設定の自由度が増し、 目的とする特性との近似度を高 めることができる。 さらに、 この構成では原理損失が無いという特長がある。
F I G. 1に示した本実施形態の干渉計型光スィツチは、 位相生成力ブラ 1 11を 1つ用いている。 位相生成カプラ 111に光を入力し、 この位相生成力 ブラ 11 1につながる 2本の光導波路から出力される光の位相差を Φ (λ)、 光 合分波手段 121につながる 2本の光導波路に光を入力し、 この光合分波手段 1 2 1から出力される光の位相差を φ c (定数) とすると、
^) = ^ + IW-^ (m:整数) (数式 8 ) となるように、 位相生成力ブラ 1 1 1の出力の位相差の波長依存性を設定すれ ばよい。
位相生成力ブラ 1 1 1の一例を F I G. 4に示す。 F I G. 4に示す光合分 波手段 (位相生成力ブラ) 1 1 1は、 2つの方向性結合器 1 5 1 1 5 2と、 この 2つの方向性結合器 1 5 1 1 5 2を結んでいる 2本の光導波路から成る 微小光路長差付与部 1 3 2.と、 入力導波路 1 0 1 1 0 2と、 出力導波路 1 0 3 1 0 4とから構成されている。
この光合分波手段 1 1 1の分岐比が波長領域の中心波長 λ c = l . 5 5 wm で概ね 0 . 5となり、 出力される光の位相差が上記の数式 8を満たすように、 2つの方向性結合器 1 5 1 1 5 2の分岐比と、 1つの微小光路長差付与部 1 5 2の光路長差を多重回帰近似により求めた。
上記の数式 5 6は簡単のため第 1と第 2の光合分波手段の分岐比を一定値 0 . 5として導出した。 これは理想的な場合であるが、 実際には光合分波手段 の分岐比は波長依存性を有するので、 それも考慮する必要がある。 マッハツエ ンダ干渉計型光スィッチをクロス出力 O F F状態で使用する場合、 第 1と第 2 の光合分波手段の分岐比が等しければ、 先に説明した位相補償を行うことによ り高消光比を得ることができる。 したがって、 第 1と第 2の光合分波手段の分 岐比の波長依存性が概ね一致するように光合分波手段を設定した。
設計した位相生成力ブラの入力導波路 1 0 1から光を入力し、 出力導波路 1 0 3 1 0 4から出力される光の位相差の波長依存性 ψ (λ ) と分岐比の波長 依存性をそれぞれ F I G. 5 F I G.. 6に示す。 また、 F I G. 5に位相生 成力ブラで補正する位相補正量 Ψ (λ )、 すなわち上記の数式 8の右辺で表され る所望の関数を同時に描いた。 F I G. 5、 F I G. 6では、 数値例として Lを 0. 34A c (=0. 53 rn), mを一 1、 φ cを一 1 Z4に設定してい る。位相生成力ブラは分岐比が概ね 0. 5の 3 d B光合分波手段として機能し、 その出力の位相差 φ (λ) は波長無依存化に必要な位相補正量 Ψ (λ) に概ね 一致することがわかる。 .
F I G. 7に、 この位相生成力ブラ 111を用いて作製した干渉計型光スィ ツチの平面図を示す。 位相生成力ブラ 111を構成する方向性結合器 151、 152の分岐比をそれぞれ r, = 0. 3、 r2 = 0. 7とし、 微小光路長差付与 部 131の光路長差を 1^ = 0. 30 λ c (=0. 47 urn) に設定した。 ま た、 マッハツエンダ干渉計 131の光路長差を L=0. 34λ c (=0. 5 3 urn)とし、方向性結合器 153の分岐比は r3 = 0. 5に設定した。ただし、 光路長差は、 一方の光導波路 (図では下側の光路) に対する他方の光導波路の • 相対的な光路長をあらわしている。 干渉計型光スィッチの光合分波手段 11 1 と方向性結合器 153を結んでいる 2本の光導波路の間隔は 250 にした。 位相シフタ(phase shifter) 141としては薄膜ヒータを用い、幅を 40 m、 長さを 4 mmに設定した。
上記の設計値に基づき、 火炎堆積法、 フォト-リソグラフィ技術、 反応性ィォ ンエッチングを用 て石英系光導波路回路を作製した。 光導波路の比屈折率は 0. 75%、 光導波路のコア断面は 6 X 6 m2 になるように作製した。
この干渉計型光スィッチが作製されたチップをダイシングにより切り出し、 そのスィツチング特性を評価した。 ここでは作製した光導波路回路を基本構成 素子とするゲートスィツチとして用いた場合のスィツチング動作について説明 する。
位相シフ夕 (薄膜ヒータ) 141が OFF状態の時、 スィッチはバ一状態に あり、 これにより信号光が入力導波路 101から入力した場合に信号光は出力 導波路 103から出力され、 出力導波路 104からは出力されないようにして いる。 ここで薄膜ヒー夕 141を通電し、 熱光学効果により光学的な光路長を 信号光の半波長相当分 {0. 5λ c · k (kは 0以外の整数) } 変化させると、 光路長差は L+ 6 L=0. 34 λ c - 0. 5 λ c=-0. 16 λ cとなつ た。 この時、 位相シフタ (薄聘ヒ一夕) 141は ON状態でスィッチはクロス 状態にあり、 入力導波路 101から入力された信号光は出力導波路 104から 出力される。 すなわち、 入力ポートを 101とし、 出力ポートを 104とした 時、 位相シフ夕が OFF状態では信号光は出力されず、 位相シフタが ON状態 では信号光が出力され、 ゲ一トスイッチとして機能した。 入力ポートを 102 とした場合も同様のスィツチング動作を確認できた。
次に、 F I G. 8に、 測定した透過率の波長特性を示す。 比較のために、 F I G. 37に示す従来のマッハツェング干渉計型光スィツチの透過率の波長依 存性も合わせて図示した。
位相シフタ (薄膜ヒ一夕) 141が OFF状態の時、 本実施形態の干渉計型 光スィッチは 1. 45〜1. 6 mの広い波長帯域で— 40 dB以下の高消光 比が得られた。 位相シフタを〇 N状態にした時、 -本実施形態の干渉計型光スィ ツチは広い波長帯域で良好な挿入損失が得られた。
このように、 本実施形態の干渉計型光スィッチは、 従来と全く異なる原理を 用いて広帯域にわたる高消光比を実現し、 小型であり、 1つの位相シフ夕のみ で広帯域のスイッチング動作ができることを確認した。 また、 広い波長帯域で のスィツチング動作に対応しているため、 光合分波手段の分岐比誤差や光路長 差付与部の光路長差誤差に対する許容量が大きく、 たとえ作製誤差が発生した としても高消光比を維持することができる干渉計型光スィッチを実現できた。 以上、 本実施形態で説明した干渉計型光スィッチでは、 波長帯域が 1. 45 〜 1. 65 mの範囲で高消光比が得られるように設計したが、 位相補正量を 最適に設計することにより、 例えば 1 m〜2 /i mなど、 任意の波長帯域で高 消光比が得られるようにすることができる。 さらに、 出力の位相差が波長依存 性を持つ光合分波手段として N + 1個(Nは 1以上の整数)の光合分波手段と、 隣接する光合分波手段に挟まれた N個の光路長差付与部とによつて構成されて いる光合分波手段を用いたが、 .もちろんその他の光合分波手段を用いても良い。 また、 本実施形態で説明した構成に限らず、 例えば 3個の光合分波手段と隣接 する光合分波手段に挟まれた 2個の光路長差付与部によって構成してもよいし, 異なる光合分波手段を組み合わせて位相生成力ブラを構成してもよい。 さらに、 光合分波手段は、 本実施形態で使用した方向性結合器に限らず、 マルチモード 干渉力ブラ等、 その他の種類のものを用いても良いし、 例えば位相生成力ブラ を構成する光合分波手段の一方を方向性結合器、 他方をマルチモ一ド干渉計力 ブラにするなど、 複数種類の光合分波手段を用いても構わない。
そして、 使用する光合分波手段の分岐比の波長依存性を考慮して位相特性を 設定してもよい。 また、 光導波路の屈折率を局所的に変化させ、 光学的な光路 長差や光合分波手段の結合特性、 位相特性を調整することもできる。 また、 本 実施例では入力導波路を 1 0 1、 1 0 2としたが、 1 0 3、 1 0 4を入力導波 路として使用し、 1 0 1、 1 0 2を出力導波路として使用しても同じ効果が得 られた。 また、 mがー 1になるように設計したが、 mは + 1でも良いし、 その 他の整数を用いてよい。
以上説明したように、 本発明はここで説明した構成に限らず、 回路全体とし て見た時に、 設定した波長帯域や周波数帯域全域で回路を構成する光合分波手 段の出力の位相差と光路長差付与部の光路長差に起因する位相差の総和が波長 無依存になるように設定すれば、 導波路の種類、 導波路の形状、 導波路材料、 波長帯、 光合分波手段の種類などによらずに広帯域で高消光比を維持できる干 渉計型光スィツチを構成することができる。 (第 1の実施形態の第 1変形例)
本発明の第 1の実施形態の第 1変形例では、 F I G. 7に示す第 1の実施形 態における干渉計型光スィツチと同じ構成を用いる。
位相生成力ブラ 111の分岐比が波長領域の中心波長 λ c = l. 55 で 概ね 0. 5となり、 出力され 光の位相差が上記の数式 8を満たすように、 2 つの方向性結合器 151、 152の分岐比と、 1つの微小光路長差付与部 13 2の光路長差を多項式近似により求めた。 その結果、 方向性結合器 151、 1 52の分岐比をそれぞれ 1^ = 0. 1、 r2 = 0. 6とし、 微小光路長差付与部 132の光路長差を = 0. 27 · λ c (=0. 38 m) とし、 方向性結 合器 153の分岐比を r 3 = 0. 5に設定した。 また、 マッハツエンダ干渉計の 光路長差は L=0. 37 · λ c (=0. 53 xm) とし、 光合分波手段 11 1と方向性結合器 153を結んでいる 2本の光導波路の間隔は 250 /mにし た。 ただし、 光路長差は一方の光導波路 (同図では下側の光路) に対する他方 の光導波路の相対的な光路長をあらわしている。 位相シフタ 141としては薄 膜ヒ一タを用い、 その幅を 40 ΠΙ、 その長さを 4mmに設定した。
上記の設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性ィォ ンエッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 1. 5%、 光導波路のコア断面は 4. 5X4. 5 m2 となるように作製した。 このように本実施例では、 従来の導波路に比べて比屈折率の高い導波路を用い た。 なぜなら、 導波路の比屈折率を高くすると、 ファイバ結合損失等の過剰損 失が増す反面、 導波路の最小曲率半径を小さくすることができるため、 回路が 小型になるからである。
この干渉計型光スィッチが作製されたチップをダイシングにより切り出し、 シリコン基板 161の下部には放熱板 (図示しない) を配設し、 入出力導波路 10:!〜 104にはシングルモードファイバ (図示しない) を接続し、 薄膜ヒ —夕 141には給電リード (図示しない) を接続して、 2入力 2出力光スイツ チモジュールとした。 本実施形態の干渉計型光スイッチをこのようにモジュ一 ル化することにより、 このスィッチは光クロスコネクトシステムや光アドドロ ップ多重システムなどの光通信システムに容易に導入することができる。
次に、 作製した干渉計型光スィッチモジュールのスイッチング特性を評価し た。 ここでは作製した光導波路回路を基本構成素子とするゲ一トスィツチとし て用いた場合のスイッチング動作について説明する。 位相シフ夕 (薄膜ヒー夕) 141が OFF状態の時、 スィッチはパ一状態にあり、 これにより信号光が入 力導波路 101から入力した場合に信号光は出力導波路 103から出力され、 出力導波路 104からは出力されないようにしている。 ここで、 F I G. 7に , は図示していないが、 光路長差付与部 131を構成する 2本の遅延線のうち、 上側の光導波路 (第 1光導波路) に形成された薄膜ヒータへ通電し、 熱光学効 ' 果により光学的な光路長を信号光の半波長相当分 {0. 5 λ c · k (kは 0以 外の整数) } 変化させると、 光路長差は <5 L = 0. 30 λ c + 0. 50 λ c = 0. 80A cとなった。 この時、 位相シフ夕 (薄膜ヒ一夕) 141は〇 N状態でスィッチはクロス状態となり、 入力導波路 101から入力された信号 光は出力導波路 104から出力され、 ゲートスィッチとして機能することを確 認した。 本実施例では上記の kの値を + 1としたが、 もちろん、 kはその他の値 であっても構わない。
F I G. 9に、 測定した透過率の波長特性を示す。 比較のために、 F I G. 37に示す従来のマツ八ツエンダ干渉計型光スィツチの透過率の波長特性も合 わせて図示した。 位相シフタが OFF状態の時、 本実施形態の干渉計型光スィ ツチは従来型の光スィツチに比べて広い波長帯域で高消光比が得られた。 位相 シフ夕を ON状態にした時、 本実施形態の干渉計型光スィツチは広い波長帯域 で良好な挿入損失が得られた。 (第 1の実施形態の第 2変形例)
本発明の第 1の実施形態の第 2変形例では、 F I G. 7に示す第 1の実施形 態における干渉計型光スィッチと同じ構成を用いた。
位相生成カプラ 1 1 1の分岐比が波長領域の中心波長 λ c = 1. 55 で 概ね 0. 45となり、 出力される光の位相差が上記の数式 8を満たすように、 2つの方向性結合器 15 1、 152の分岐比と、 1つの微小光路長差付与部 1 32の光路長差とを最小二乗曲線近似により求めた。 その結果、 方向性結合器 151、 152の分岐比をそれぞれ = 0. 4、 r2 = 0. 8とし、 微小光路 長差付与部 132の光路長差を L, = 0. 30 λ c (= 0. 47 ^m) とし、 方向性結合器 153の分岐比を r3 = 0. 5に設定した。 また、 マッハツエンダ 干渉計の光路長差は^ 1L=0. 32 λ c (=0. 50 ^m) とし、 光合分波手 段 1 1 1と方向性結合器 153を結んでいる 2本の光導波路の間隔は 50 0 mにした。 ただし、 光路長差は一方の光導波路 (図では下側の光路) に対する 他方の光導波路の相対的な光路長をあらわしている。 位相シフタとしては薄膜 ヒータを用い、 幅を 40 ΠΙ、 長さを 8mmに設定した。 マッハツエンダ干渉 計の光路長差は最初 L = 0 に設定し、 回路を作製した後、 薄膜ヒータに よる恒久的な局所加熱処理を行うことにより導波路の屈折率を変化させ、 光学 的な光路長差が =0. 32 λ c (=0. 50 μ,πι) になるように調整した。 このように、 光学的光路長は導波路の屈折率を含めた導波路の光路長であり、 屈折率の波長依存性も含む光路の長さである。 そのため、 導波路を形成した後 も導波路の屈折率を変化させることにより光学的な光路長を変化させることが できる。そのため、光路長差が 0 (零) の干渉計型光スィッチを作製しておき、 作製工程で導波路の屈折率を変化させることにより光学的光路長差が設計値に なるように調整することができる。 その他、 薄膜ヒ一夕による恒久的な局所加 熱処理法を用いて作製誤差を解消することもできる。 すなわち、 作製誤差によ り光学的光路長差が設計値からずれた場合も、 作製後に屈折率を調整すること により、 光路長差を設計通りに補正することができる。 なお、 本実施形態で薄 膜ヒ一夕を用いたのは、 光導波路上に既に位相シフ夕として薄膜ヒー夕が形成 されているためである。 さらに、 光導波路上に薄膜ヒー夕が装着されているた め、 屈折率を簡便に、 精度良く調整することができる。 もちろん、 屈折率の調 整方法は薄膜ヒータに限らず、 レーザ等の光照射など、 その他の手段を用いて もよい。 また、 本実施形態では局所加熱処理に位相シフタ用の薄膜ヒー夕を併 用したが、 恒久的な局所加熱処理専用の薄膜ヒータを設けて屈折率を調整して もよい。 さらに、 光合分波手段 1 1 1を構成する方向性結合器' 1 5 1、 1 5 2 や微小光路長差付与部 1 3 2の光導波路の屈折率を調整することで、 光合分波 手段 1 1 1の特性を補正することもできる。
上記設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性イオン エッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 0 . 7 5 %、 光導波路のコア斬面は 6 X 6 m2 となるように作製した。
この干渉計型光スイツチが作製されたチップをダイシングにより切り出し、 シリコン基板 1 6 1の下部には放熱板 (図示しない) を配設し、 入出力導波路 1 0 1〜1 0 4には分散シフトファイバ (図示しない) を接続し、 薄膜ヒ一夕 1 4 1には給電リード (図示しない) を接続して、 2入力 2出力光スィッチモ ジュールとした。
次に、 上記のようにして作製した干渉計型光スィッチモジュールのスィッチ ング特性を評価した。 ここでは作製した光導波路回路を基本構成素子とするゲ 一トスィツチとして用いた場合のスィツチング動作について説明する。 位相シ フタ (薄膜ヒータ) 1 4 1が O F F状態の時、 スィッチはバー状態にあり、 こ れにより信号光が入力導波路 1 0 1から入力した場 に信号光は出力導波路 1 0 3から出力され、 出力導波路 1 0 4からは出力されないようにしている。 こ こで薄膜ヒータ 141を通電し、 熱光学効果により光学的な光路長を信号光の 半波長相当分 {0. 5λ c · k (kは 0以外の整数) } 変化させると光路長差は L+ δ L = 0. 32 λ c - 0. 50 λ c =- 0. 18 λ cとなった。 この 時、 位相シフ夕 (薄膜ヒータ) 141は ON状態でスィッチはクロス状態とな り、 入力導波路 101から入力された信号光は出力導波路 104から出力され、 ゲートスィッチとして機能することを確認した。
F I G. 10に、測定した透過率の波長特性を示す。 比較のために、 F I G. 37に示す従来のマッハツエンダ干渉計型光スィッチの透過率の波長特性も合 わせて図示した。 位相シフ夕が OFF状態の時、 本実施形態の干渉計型光スィ ツチは 1. 45〜1. 63 mの広い波長帯域で一 30 dB以下の消光比を維 持することができた。 位相シフタを ON状態にした時、 本実施形態の干渉計型 光スィッチは広い波長帯域で良好な挿入損失が得られた。 本実施例では、 第 1 の光合分波手段 (位相生成力ブラ 111) の分岐比 (0, 45) と、 第 2め光 合分波手段 (方向性結合器 153) の分岐比 (0. 5) が異なるように設計し たが、 従来型の光スィッチに比べて広い波長帯域で高消光比が得られた。 この ように第.1と第 2の光合分波手段が異なる分岐比であってもよいし、 分岐比の 波長依存性が異なっていても構わない。
(第 2の実施形態)
F I G. 11に本発明の第 2実施形態における干渉計型光スィッチの構成を 示す。 この干渉計型光スィッチの回路は、 出力の位相差が波長依存性を持つ一 対の光合分波手段 (位相生成力ブラ) 111と 112と、 これら光合分波手段 111、 112に挟まれた光路長差付与部 131と、 この光路長差付与部 13 1に形成された位相シフタ (薄膜ヒ一夕) 141と、 入力導波路 101、 10 2と、 出力導波路 103、 104とから構成されている。
本実施形態では、 位相生成力ブラを複数用いた場合の構成について説明する。 4009773
35 前段の位相生成力ブラ 111に光を入力し、 この位相生成力ブラ 111につな がる 2本の光導波路から出力される光の位相差を (ί (λ) とし、 次段の位相生 成力ブラ 112.につながる 2本の光導波路に光を入力し、 この位相生成力ブラ 112から出力される光の位相差を φ2 (λ) とし、 mを整数とすると、 φ )+φ2(λ) = ^+ίΜ (数式 9) となるように、 位相生成力ブラ 111と 112の出力の位相差の波長依存性を • 設定すればよい。
ここでは、 位相生成力ブラ 111と 112として、 それぞれ F I G. 4に示 す光合分波手段 (位相生成力ブラ) を用いた。 F I G. 4に示す光合分波手段 (位相生成力ブラ) は、 2つの方向性結合器 151、 152と、 これら 2つの 方向性結合器 151、 152を結んでいる 2本の光導波路から成る微小光路長 差付与部 132と、 入力導波路 101、 102と、 出力導波路 103、 104 とから構成されている。 この光合分波手段の分岐比が波長領域の中心波長 c = 1. 55 mでそれぞれ概ね 0. 5となり、 出力される光の位相差が上記の 数式 9を満たすように、 それぞれの位相生成力ブラを構成する 2つの方向性結 合器 151、 152の分岐比と、 1つの微小光路長差付与部 132の光路長差 とを最小二乗曲線近似により求めた。
このように設計した位相生成力ブラ 111、 112の位相差の合計の値を F I G. 12に示す。 また、 位相生成力ブラで補正する位相補正量 Ψ (え)、 すな わち上記の数式 9の右辺で表される所望の関数を同時に描いた。 F I G. 12 では、 数値例として を 0. 16 A c (=0. 25 im)、 mを一 1に設定し ている。 2つの位相生成力ブラは分岐比がそれぞれ概ね 0. 5の 3 d B光合分 波手段として機能し、 位相差の合計 (λ) +φ2 (λ) は波長無依存化に必 要な位相補正量 Ψ (λ) に概ね一致することがわかる。 F I G. 13に実際に作製した干渉計型光スィッチの平面図を示す。 位相生 成力ブラ 111を構成する方向性結合器 151、 152の分岐比をそれぞれ r , =0. 4、 r2 = 0. 1とし、 微小光路長差付与部 132は第 1光導波路と第 2 光導波路の 2本の光遅延線からなり、それぞれの光学的光路長を i i = 502. 32 rn, 721=501. 99. mに設定し、 その光学的光路長差を L =ゾ ii—ゾ 2
Figure imgf000038_0001
21 λ c (=0. 33 m) とした。 もう一方の位相生成カプ ラ 112を構成する方向性結合器 153、 154の分岐比をそれぞれ r 3 = 0. 2、 r4 = 0. 3とし、 微小光路長差付与部 133は第 1光導波路と第 2光導波 路の 2本の光遅延線からなり、 それぞれの光学的光路長を i 2 = 463. 94 ^m 722=463. 68 mに設定し、 その光学的光路長差を ^L2= 712 - i22=0. 17 λ c (=0. 26 m) とした。 さらに、 本実施形態では 2 つの位相生成力ブラを用い、 それらの光路長差付与部において光学的光路長差 の総和の長い方の光遅延線が片方 (F I G. 13の上側) に偏在するよう回路 上に配置した。 すなわち、 = 2jl = l1{, ∑ 2 = 、 ∑«¾2,2 = 722なので、 かつ∑ 2>∑<¾2,2を満たす。 また、 マッハツエンダ干渉計の光路長差 を 1L = 0. 16 λ c (=0. 25 m) とし、 光合分波手段 111と 112 を結んでいる 2本の光導波路の間隔は 200 mにした。 位相シフタ 141と しては薄膜ヒー夕を用い、 幅を 40 ΠΙ、 長さを 4mm【こ設定した。
上記の設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性ィォ ンエッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 1. 5 %、 光導波路のコア断面は 4. 5X4. 5 m2 になるように作製した。 この干渉計型光スィッチが作製されたチップをダイシングにより切り出し、 シリコン基板 161の下部には放熱板 (図示しない) を配設し、 入出力導波路 101〜104にはシングルモードファイバ (図示しない) を接続し、 薄膜ヒ 一夕 141には給電リード (図示しない) を接続して、 2入力 2出力光スイツ チモジュールとした。 この干渉計型光スィツチモジュールのスィツチング特性 を評価した。
ここでは作製した光導波路回路を基本構成素子とするゲートスィッチとして 用いた塲合のスイッチング動作について説明する。 位相シフ夕 (薄膜ヒータ) 141が OFF状態の時、 スィッチはバー状態にあり、 これにより信号光が入 力導波路 101から入力した場合に信号光は出力導波路 103から出力され、 出力導波路 104からは出力されないようにしている。 ここで薄膜ヒータ 14 1を通電し、 熱光学効果により光学的な光路長を信号光の半波長相当分 {0. 5A c - k (kは 0以外の整数) }変化させると、光路長差は L+6 1L=0. 16 λ c - 0. 5 λ c=- 0. 34A cとなった。 この時、 位相シフタ (薄膜 ヒータ) 141は〇N状態でスィッチはクロス状態にあり、 入力導波路 101 から入力された信号光は、 出力導波路 104から出力される。 すなわち、 入力 ポートを 101とし、 出力ポートを 104とした時に、 位相シフ夕 141が〇 FF状態では信号光は出力されず、 位相シフタ 141が ON状態では信号光が 出力され、 ゲートスィッチとして機能した。 入力ポートを 102とした場合も 同様のスィツチング動作を確認できた。
次に、 F I G. 14に、 本実施形態の干渉計型スィッチの測定した透過率の 波長特性を示す。 比較のために、 F I G. 37に示す従来のマッハツエンダ干 渉計型光スィッチの透過率の波長依存性も合わせて図示した。 位相シフタ 14 1が OFF状態の時に、 本実施形態の干渉計型光スィッチは 1. 45〜1. 6 mの広い波長帯域で一 40 dB以下の高消光比が得られた。 位相シフ夕を O N状態にした時、 本実施形態の干渉計型光スィツチは広い波長帯域で良好な揷 入損失が得られた。
このように、 本実施形態の干渉計型光スィッチは従来と全く異なる原理を用 いて広帯域にわたる高消光比を実現し、 1つの位相シフ夕のみで広帯域スイツ チング動作が可能であることを確認した。 また、 広い波長帯域でのスィッチン グ動作に対応しているため、 光合分波手段の分岐比誤差や光路長差付与部の光 路長差誤差に対する許容量が大きく、 そのため作製誤差が発生したとしても高 消光比を維持することができる干渉計型光スィツチを実現できた。
本実施形態では 2つの異な ¾位相生成力ブラを用いているため、 位相補償量 と光合分波手段の分岐比の近似度が高まり、 第 1実施形態に比べて良好な特性 が得られた。 また、 最も理想的なマッハツェング干渉計型光スィッチは、 第 1 • と第 2光合分波手段の分岐比が波長に依らずに 0 . 5になっている時である。 本実施形態は第 1と第 2光合分波手段の位相差と分岐比を共に自由に設定でき る構成であるため、 限りなく理想的な干渉計型スィッチを実現することが可能 である。
以上、 本実施形態で説明した干渉計型光スィッチでは、 波長帯域が 1 . 4 5 〜1 . 6 5 mの範囲で高消光比が得られるように設計したが、 本発明はこれ に限定されず、 位相補正量を最適に設計することにより、 例えば 1 m〜2 mなどの、 任意の波長帯域で高消光比が得られるようにすることができる。 さ らに、 出力の位相差が波長依存性を持つ光合分波手段として、 N + 1個 (Nは 1以上の整数) の方向性結合器と、 隣接する方向性結合器に挟まれた N個の微 小光路長差付与部とによって構成されている光合分波手段を用いたが、 もちろ んその他の構成の光合分波手段を用いても良い。 また、 本実施形態で説明した 構成に限らず、 例えば 4個の光合分波手段と隣接する光合分波手段に挟まれた 3個の光路長差付与部とによつて干渉計型光スィツチを構成してもよいし、 異 なる光合分波手段を組み合わせて位相生成力ブラを構成してもよい。 さらに、 光合分波手段は、 本実施形態で使用した方向性結合器に限らず、 その他の種類 のものを用いても良い。 そして、 使用する光合分波手段の分岐比の波長依存性 を考慮して位相特性を設定してもよい。 また、 本実施形態の構成において、 光 導波路の屈折率を局所的に変化させることで、 光学的な光路長差や光合分波手 段の結合特性、 位相特性を調整することもできる。 また、 本実施例では入力導 波路を 1 0 1、 1 0 2としたが、 1 0 3、 1 0 4を入力導波路として使用し、 1 0 1、 1 0 2を出力導波路として使用しても同じ効果が得られる。 また、 本 実施例では、 上記の数式 9の!^がー 1になるように設計したが、 mは + 1でも 良いし、 任意の整数を用いてよい。
以上説明したように、 本発明は、 ここで説明した構成に限らず、 回路全体と して見た時に、 設定した波長帯域や周波数帯域全域で、 回路を構成する光合分 波手段の出力の位相差と、 光路長差付与部の光路長差に起因する位相差の総和 が波長に対して一定になるようにすれば、 導波路の種類、 導波路の形状、 導波 路材料、 波長帯、 光合分波手段の種類などによらずに、 広帯域で高消光比を維 持できる干渉計型光スィッチを構成することができる。
(第 3の実施形態)
F I G. 1 5に本発明の第 3実施形態における干渉計型光スィッチの構成を 示す。 本実施形態の干渉計型光スィッチの回路は、 出力の位相差が波長依存性 を持つ光合分波手段 (位相生成力ブラ) 1 1 1と、 方向性結合器 1 5 3と、 光 合分波手段 1 1 1および方向性結合器 1 5 3に挟まれた光路長差付与部 1 3 1 と、 光路長差付与部 1 3 1に形成された位相シフタ 1 4 1と、 入力導波路 1 0 1、 1 0 2と、 出力導波路 1 0 3、 1 0 4とから構成されている。 また、 位相 生成力ブラ 1 1 1として、 2つの方向性結合器 1 5 1、 1 5 2と、 2つの方向 性結合器 1 5 1、 1 5 2を結んでいる 2本の光導波路から成る微小光路長差付 与部 1 3 2とから構成されている光合分波手段を用いている。 さらに、 一対の 位相シフ夕 1 4 1の側部近傍の基板上に 3個の断熱溝 1 6 8が形成されている ( F I G. 1 6は、 F I G. 1 5に示す干渉計型光スィツチの A— A線矢視断 面の構造を示す。 シリコン基板 1 6 1上には石英系ガラスで形成されたクラッ ドガラス層 164、 167が積層されている。 このクラッドガラス層 164、 167の中層には石英系ガラスで形成されたコアガラス部 165が配設され、 これにより光導波路が形成されている。 また、 上部クラッドガラス層 167の 表面には位相シフ夕 (薄膜ヒ一夕) 141が形成されており、 位相シフタ 14 1の両側には、 断熱溝 168 形成されている。 また、 この断熱溝 168の構 造は周辺のコア近傍における応力が均等になるような位置に配置されている。 位相生成力ブラ 111の分岐比が波長領域の中心波長; I c = 1. 55 zmで 概ね 0. 5となり、 出力される光の位相差が上記の数式 8を満たすように、 2 つの方向性結合器 151、 152の分岐比と 1つの微小光路長差付与部 132 の光路長差を非線形多項式近似により求めた。その結果、方向性結合器 151、 152の分岐比をそれぞれ =0. 1、 r2 = 0. 6とし、 微小光路長差付与 部 132の光路長差を = 0. 27 · λ c (=0. 38 m) とし、 方向性 結合器 153の分岐比を r3 = 0. 5に設定した。 また、 マッハツェング干渉計 の光路長差は L = 0. 37 · λ c (=0. 53^m) とし、 光合分波手段 1 11と方向性結合器 153を結んでいる 2本の光導波路の間隔は 100 に した。 ただし、 光路長差は一方の光導波路 (同図では下側の光路) に対する他 方の光導波路の相対的な光路長をあらわしている。 位相シフ夕 141としては 薄膜ヒータを用い、幅を 40 m、 長さを 2 mmに設定した。
上記の設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性ィォ ンエッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 0. 75%、光導波路のコア断面は 6X6/ m2、断熱溝 168の幅は 70 m、 深さは 35 mとなるように作製した。
この干渉計型光スィッチが作製されたチップをダイシングにより切り出し、 シリコン基板 161の下部には放熱板 (図示しない) を配設し、 入出力導波路 101〜104にはシングルモードフアイノ (図示しない) を接続し、 薄膜ヒ —夕 141には給電リ一ド (図示しない) を接続して、 2入力 2出力光スイツ チモジュールとした。 この干渉計型光スィツチモジュールのスィツチング特性 を評価した。
ここでは作製した光導波路回路を基本構成素子とするゲートスィツチとして 用いた場合のスイッチング動作について説明する。 位相シフ夕 (薄膜ヒー夕) 141が OFF状態の時、 スィッチはバ一状態にあり、 これにより入力導波路 101から信号光が入力した場合に信号光は出力導波路 103から出力され、 出力導波路 104からは出力されないようにしている。 ここで薄膜ヒータ 14 1を通電し、 熱光学効果により光学的な光路長を信号光の半波長相当分 {0. 5 λ c · k (kは 0以外の整数) }変化させると、光路長差は 十 <5 L = 0. 37 λ c -0. 50 λ c=-0. 1 3 A cとなった。 この時、 位相シフ夕 (薄 膜ヒータ) 141は〇N状態でスィッチはクロス状態にあり、 入力導波路 10 1から入力された信号光は出力導波路 104から出力される。 すなわち、 入力 ポ一トを, 101とし、 出力ポートを 104とした時、 位相シフタ 141が OF F状態では信号光は出力されず、 位相シフタ 141が ON状態では信号光が出 力され、 ゲートスィッチとして機能した。 入力ポートを 102とした場合も同 様のスィツチング動作を確認できた。また、本実施例では入力導波路を 101、 102としたが、 :103、 104を入力導波路として使用し、 101、 102 を出力導波路として使用しても同じ効果が得られた。 さらに、 本実施形態の光 スィッチには断熱溝構造が形成されているため、 スイッチングに要する位相シ フ夕の消費電力を従来の 1ノ 10に抑えることができた。
次に、 F I G. 17に本実施形態の回路で測定した透過率の波長依存性を示 す。 本実施形態の光スィッチにおいても、 位相シフタが OFF状態の時、 1. 3〜 1. 6; mの広い波長帯域で一 30 d B以下の高消光比が得られた。
以上、 本実施形態の干渉計型光スィッチは、 従来と全く異なる原理を用いて 広帯域にわたる高消光比を実現し、 小型であり、 1つの位相シフタのみでの広 帯域スイッチング動作ができることを確認した。 また、 広い波長帯域でのスィ ッチング動作に対応しているため、 光合分波手段の分岐比誤差や光路長差付与 部の光路長差誤差に対する許容量が大きく、 作製誤差が発生したとしても高消 光比を維持することができる干渉計型光スィッチを実現できた。 さらに、 本実 施形態の干渉計型光スィツチは基板上に断熱溝構造を有するため、 スィッチン グ電力を極めて小さく抑えることができた。 もちろん、 溝の形状、 位置は任意 であるし、 溝に空気以外の任意の材料を含んでいても良く、 本実施形態で示し たように平面基板上に光回路以外の構造が形成されていても良い。
(第 4の実施形態)
F I G. 1 8に本発明の第 4実施形態における干渉計型光スィツチの構成を 示す。 本実施形態の干渉計型光スィッチの回路は、 複数の干渉計型光スイツ チを用いた多重干渉計構成の光スィッチである。 このような多重干渉計構成を 取ると、 スィッチが O F F状態の時に複数の基本構成素子により漏れ光を阻止 できるので、 基本構成素子単体に比べて高い消光比が得られる。
本回路は、 F I G . 7に示した第 1実施形態の干渉計型光スィッチを 2台接 続している。 そして、 前段 (入力側) の干渉計型光スィッチ 1 7 0の一方の出 力 (F I G. 7の: L 0 4に対応) が後段 (出力側) の干渉計型光スィッチ 1 7 1の一方の入力 (F I G. 7の 1 0 2に対応) に接続されており、 前段の干渉 計型光スィツチ 1 7 0の他方の出力 (F I G. 7の 1 0 3に対応) は出力導波 路 1 0 3として使用されている。 後段の干渉計型光スィッチ 1 7 1の他方の入 力 (F I G. 7の 1 0 1に対応) は入力導波路 1 0 1として使用されており、 入力導波路 1 0 1と出力導波路 1 0 3の途中は互いに交差し、 交差導波路 1 5 5となっている。 もちろん、 入力導波路と出力導波路が互いに交差しないよう に回路をレイアウトすることもできる。 また、 前段の干渉計型光スィッチ 1 7 0の一方の入力 (F I G. 7の 1 0 1に対応) は入力導波路 1 02として使用 されており、 後段の干渉計型光スィッチ 1 7 1の一方の出力 (F I G. 7の 1 03に対応) は出力導波路 1 04として使用されている。
位相生成力ブラの分岐比が波長領域の中心波長 λ c = 1. 5 5 /imで概ね 0. 5となり、 出力される光の位相差が上記の数式 8を満たすように、 2つの方向 性結合器 1 5 1、 1 52の分岐比と 1つの微小光路長差付与部 1 32の光路長 差を共役勾配法により求めた。 その結果、 方向性結合器 1 5 1、 1 5 2の分岐 • 比をそれぞれ =0. 3、 r2 = 0. 7とし、 微小光路長差付与部 1 3 2の光 路長差を 1^ = 0. 30 λ c (=0. 47 urn) とし、 方向性結合器 1 5 3の 分岐比を r3 = 0. 5に設定した。 また、 マッハツエンダ干渉計の光路長差は L= 0. 34λ c (=0. 5 3 ^m) とし、 光合分波手段 1 1 1と方向性結合 器 1 5 3を結んでいる 2本の光導波路の間隔は 1 00 mにした。 ただし、 光 路長差は一方の光導波路 (同図では下側の光路) に対する他方の光導波路の相 対的な光路長をあらわしている。 位相シフ夕 14 1としては薄膜ヒータを用い、 その幅を 40 111、 その長さを 4mmに設定した。 マッハツエンダ干渉計の光 路長差は最初 L=0 imに設定して、 回路を作製した後、 薄膜ヒータ 1 4 1 による恒久的な局所加熱処理を行うことにより、 光学的な光路長差が L = 0.. 34 λ c (=0. 5 3 m) になるように調整した。
本実施形態では光路長差付与部 1 3 1を構成する 2組の光導波路にそれぞれ 2つの薄膜ヒ一夕 14 1を形成し、 一方を局所加熱処理に用い、 他方をスイツ チング動作に用いたが、 その両方を局所加熱処理に用いてもよいし、 その両方 をスイッチング動作に用いてもよい。 もちろん、 3つ以上の薄膜ヒータを形成 してもよい。 また、 薄膜ヒータ 14 1の形状は任意であるし、 複数の薄膜ヒー 夕の形状はそれぞれ異なっていても良い。 さらにまた、 光路長差付与部 1 3 1 を構成する 2組の光導波路の薄膜ヒータ 14 1を同時に用いて局所加熱処理や スィツチング動作を行っても良い。
上記設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性イオン エッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 1. 5%、 光導波路のコア断面は 4. 5X4. 5 m2, 断熱溝の幅は 70 ^m、 深 さは 50 mとなるように作 した。
この干渉計型光スィッチが作製されたチップをダイシングにより切り出し、 シリコン基板 161の下部には放熱板 (図示しない) を配設し、 入出力導波路 101〜104には分散シフトファイバ (図示しない) を接続し、 薄膜ヒ一夕 141には給電リード (図示しない) を接続して、 2入力 2出力光スィッチモ ジュールとした。 この干渉計型光スィッチモジュールのスイッチング特性を評 価した。
位相シフタ (薄膜ヒータ) 141が OFF状態の時、 スィッチはバー状態に あり、 これにより信号光が入力導波路 102から入力した場合に信号光は出力 '導波路 103から出力され、 出力導波路 104からは出力されないようにして いる。 この時、 2つの基本構成素子 170, 171により出力導波路 104へ の漏れ光が阻止されるため、 高い消光比が得られた。 ここで干渉計型光スイツ チ 170、 171の薄膜ヒータ 141を通電し、 熱光学効果により光学的な光 路長を信号光の半波長相当分 {0. 5λ c · k (kは 0以外の整数) } 変化させ ると、 光路長差は^し+6^11^ = 0. 34 λ c - 0. 50 λ c =- 0. 16 λ cとなった。 この時、 位相シフタ (薄膜ヒータ) 141は ON状態でスィッチ はクロス状態にあり、 入力導波路 102から入力された信号光は出力導波路 1 04から出力された。 また、 本実施例では入力導波路を 101、 102とした が、 103、 104を入力導波路として使用し、 101、 102を出力導波路 として使用しても同じ効果が得られた。 さらに、 本実施形態の光スィッチには 断熱溝構造が形成されているため、 スイッチングに要する位相シフタの消費電 力を従来の 1 Z 1 0に抑えることができた。
次に、 F I G. 1 9に、 本実施形態の干渉計型光スィッチの測定した透過率 の波長特性を示す。 比較のために、 F I G. 3 7に示す従来のマッハツエンダ 干渉計型光スィッチの透過率の波長依存性も合わせて図示した。 位相シフ夕 1 4 1が O F F状態の時、 本実施形態の干渉計型光スィツチは多重干渉計構成に より、 1 . 4 5〜1 . 6 3 mの広い波長帯域で— 6 0 d B以下の高消光比が 得られた。 位相シフタ 1 4 1を ON状態にした時、 本実施形態の干渉計型光ス •ィツチは広い波長帯域で良好な挿入損失が得られた。
以上説明したように、 本発明の干渉計型光スィッチを複数、 多段に用いるこ とにより、 1つの干渉計型光スィッチとして機能させることができた。 本実施 形態では、 同じ干渉計型光スィツチを 2つ組み合わせることにより二重干渉計 構造を構成したが、 もちろん 2つの干渉計型光スィッチは異なる設計値を用い てもよい。 また、 本実施形態で示した二重干渉計構成に限らず、 その他の構成 を取ることができるし、 任意の光導波路を互いに接続して任意の光導波路を入 力導波路、 出力導波路として用いても良い。 さらに、 3つ以上の同じ構造の干 渉計型光スィッチを組み合わせてもよいし、 異なる構造の干渉計型光スィッチ を複数組み合わせても構わない。
以上述べたように、 本実施形態の干渉計型光スィツチを用いることにより、 広い波長帯域でスイッチング動作を行うことができた。 また、 本実施形態の干 '渉計型光スィッチは、 広い波長帯域でのスイッチング動作に対応しているため、 光合分波手段の分岐比誤差や光路長差付与部の光路長差誤差に対する許容量が' 大きく、 そのため作製誤差が発生したとしても、 高消光比を維持することがで きる干渉計型光スィツチを実現できた。
(第 4の実施形態の第 1変形例)
F I G. 2 0に本発明の第 4実施形態の第 1変形例における干渉計型光スィ ツチの構成を示す。 本変形例の回路は、 F I G. 13で示す第 2実施形態で説 明した干渉計型光スィツチを 2台用いた多重干渉計構成の光スィツチである。 このような多重干渉計構成を取ると、 スィツチが〇 F F状態の時に複数の基本 構成素子 170, 171により漏れ光を阻止できるので、 基本構成素子単体に 比べて、 高い消光比が得られ 。
本例の多重干渉計型光スィッチは、 回路の中心に対し線対称になるように F I G. 13の基本構成素子が 2台配置されている。 そして、 前段の干渉計型光 スィッチ 170の一方の出力 (F I G. 13の 104に対応) が後段の干渉計 型光スィツチ 171の一方の入力 (F I G. 13の 102に対応) に接続され ており、 前段の干渉計型光スィッチ 170の他方の出力 (F I G. 13の 10 3に対応) は出力導波路 103として使用されている。 後段の干渉計型光スィ ツチ 171の他方の入力 (F I G. 13の 101に対応) は入力導波路 101 として使用されており、 入力導波路 101と出力導波路 103の途中は互いに 交差して交差導波路 155となっている、 また、 前段の干渉計型光スィッチ 1 70の一方の入力 (F I G. 13の 101に対応) は入力導波路 102として 使用されており、 後段の干渉計型光スィッチ 171の一方の出力 (F I G. 1 3の 103に対応) は出力導波路 104として使用されている。 もちろん、 前 述の第 4実施形態のように 2台の基本構成素子 170, 171を同じ向きに配 置しても良い。 また、 回路レイアウトは任意であり、 同図のように 2つの基本 構成素子 170, 171を横に並べてもよいし、 縦に並べてもかまわない。 本例の多重干渉計を構成する干渉計型光スィツチ 170と 171は、 同じ設 計値を用いた。 位相生成力ブラ 111と 112 (F I G. 13参照) の分岐比 が波長領域の中心波長 λ c = 1. 55 mでそれぞれ概ね 0. 5となり、 出力 される光の位相差が上記の数式 9を満たすように、 それぞれの位相生成力ブラ を構成する 2つの方向性結合器 151, 152、 および 153, 154の分岐 比と微小光路長差付与部 132, 133の光路長差を多重回帰近似により求め た。 その結果、 一方の位相生成力ブラ 111を構成する方向性結合器 151、 152の分岐比をそれぞれ Γ| = 0. 3、 r2 = 0. 1とし、 微小光路長差付与 部 132の光路長差を I 1^ = 0. 19 λ c (=0. 29 m) に設定した。 た だし、 光路長差は一方の光導 ^路 (同図では下側の光路) に対する他方の光導 波路の相対的な光路長をあらわしている。 もう一方の位相生成力ブラ 112を 構成する方向性結合器 153、 154の分岐比をそれぞれ r 3 = 0. 1、 r 4 = 0. 3とし、 微小光路長差付与部 133の光路長差を L2 = 0. 19 λ c (= 0. 29 m) に設定した。 また、 マッハツエンダ干渉計の光路長差は^ 1L = 0. 16 λ c (=0. 2' 5 m) とし、 光合分波手段 111と 112を結んで いる 2本の光導波路の間隔は 100 mにした。 位相シフタ 141としては薄 膜ヒータを用い、 その幅を 40 m、 その長さを 4 mmに設定した。
上記の設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性ィォ ンエッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 1. 5 %、 光導波路のコア断面は 4. 5X4. 5 m2、 断熱溝 168の幅は 7 0 m、 その深さは 50 mとなるように作製した。
この干渉計型光スィッチが作製されたチップをダイシングにより切り出し、 シリコン基板 161の下部には放熱板 (図示しない) を配設し、 入出力導波路 101〜104にはシングルモ一ドファイノ、 (図示しない) を接続し、 薄膜ヒ —夕 141には給電リード (図示しない) を接続して、 2入力 2出力光スイツ チモジュールとした。 この干渉計型光スィッチモジュールのスイッチング特性 を評価した。
位相シフタ (薄膜ヒータ) 141が OFF状態の時、 スィッチはバー状態に あり、 これにより信号光が入力導波路 102から入力した場合に信号光は出力 導波路 103から出力され、 出力導波路 104からは出力されないようにして いる。 この時、 2つの基本構成素子 170, 171により出力導波路 104へ の漏れ光が阻止されるため、 高い消光比が得られる。 ここで干渉計型光スイツ チ 170、 171の薄膜ヒータ 141を通電し、 熱光学効果により光学的な光 路長を信号光の半波長相当分 {0. 5 A c · k (kは 0以外の整数)} 変化させ ると、 光路長差は L— L=0. 16 λ c - 0. 50 λ c =- 0. 34 λ cとなった。 この時、 位相シフタ (薄膜ヒータ) 141は ON状態でスィッチ はクロス状態にあり、 入力導波路 102から入力された信号光は出力導波路 1 04から出力された。 また、 本実施例では入力導波路を 10 1、 102とした が、 103、 104を入力導波路として使用し、 101、 102を出力導波路 として使用しても同じ効果が得られた。 さらに、 本例の光スィッチには断熱溝
,構造が形成されているため、 スイッチングに要する位相シフタの消費電力を従 来の 1 / 10に抑えることができた。
次に F I G. 21に、 本例の干渉計型光スィッチの測定した透過率の波長特 性を示す。 比較のために、 F I G. 37に示す従来のマッハツエンダ干渉計型 光スィツチの透過率の波長依存性も合わせて図示した。
位相シフタが 0 F F状態の時、 本例の干渉計型光スィツチは多重干渉計構成 により、 1. 45〜1. 65 mの広い波長帯域で一 60 dB以下、 1. 45 〜 1. 63 mの広い波長帯域で一 80 d B以下の高消光比が得られた。 位相 シフ夕を ON状態にした時、 本例の干渉計型光スィツチは広い波長帯域で良好 な挿入損失が得られた。
以上で説明したように、 本発明の干渉計型光スィッチを複数用いることによ り、 1つの干渉計型光スィッチとして機能させることができた。 本例では、 同 じ干渉計型光スィツチを 2つ組み合わせることにより二重干渉計構造を構成し たが、 もちろん 2つの干渉計型光スィッチは異なる設計値を用いてもよい。 ま た、 本例で示した二重干渉計構成に限らず、 例えば第 1実施形態の干渉計型光 スィツチと第 2実施形態の干渉計型光スィツチを組み合わせて二重干渉計を構 成するなど、 その他の構成を取ることができる。 さらに、 複数の干渉計型光ス ィツチを接続する方法は本例に限定されず、 任意の光導波路同士を互いに接続 してもよく、 任意の光導波路を入力導波路、 出力導波路として用いても良い。 さらに、 3つ以上の干渉計型 スィッチを組み合わせることもできる。
本例では作製誤差に対するトレランスを増大させるために 2つの位相生成力 ブラ 1 1 1, 1 1 2 (F I G. 1 3参照) を構成する方向性結合器 1 5 1〜 1 5 4の分岐比と微小光路長差付与部 1 3 2, 1 3 3の光路長差が同じ値になる ように設計した。 そして位相生成力ブラ 1 1 1, 1 1 2をその中心に対し線対 称になるようにしている。 すなわち、 ^ ^ Γ r 2 = r 3、 1^ = 2 とし た。 こうすることにより、 例えば方向性結合器 1 5 1〜1 5 4の分岐比は 2種 類しか使用しないので、 設計通りの特性を実現するには 2種類の分岐比が作製 できればよい。 一方、 第 2実施形態では 4種類の異なる設計値の方向性結合器 を用いているので、 設計通りの特性を実現するには 4種類の分岐比を作製する 必要がある。その反面、第 2実施形態のように第 1と第 2光合分波手段 1 1 1, 1 1 2を異なる設計値にすると、 位相差と分岐比の波長依存性の設計自由度が 増すため、 より近似度が高まるという特長がある。 したがって、 用途により、 作製誤差に対する耐性と、 設計の自由度のどちらを重視するかを選択すればよ い。 - さらに、 多重干渉計構成同士で比較すると、 本例は前述の第 4実施形態に比 ベて回路サイズが大きくなっている反面、 設計値の種類が少ないという利点が ある。 すなわち、 第 4実施形態では分岐比の異なる 3種類の方向性結合器を用 いたが、 本例では 2種類の分岐比しか使用しないので、 より容易に作製するこ とができる。 さらにまた、 本例では、 線対称な干渉計型光スィッチの 2つを線 対称に配置して多重干渉計を構成している。 本例はこのように非常に対称性の 高い構成のため、 例えば半波長板等を容易に挿入することができる。
本例では、 2つの干渉計型光スィッチ 170と 171を同じ設計値にしたが、 異なる設計値にしてもよい。 例えば、 本例では、 2つの干渉計型光スィッチの 最大消光波長を共に 1. 55 /xm近傍に設定しているため、 1. 55 tmを中 心に 1. 52〜1. 57 mの最大消光波長範囲で一 140 dB以上の絶対値 が非常に大きい最大消光比を実現している。 しかし、 干渉計型光スィッチ 17 0の最大消光波長を例えば 1. 5 /m近傍、 干渉計型光スィッチ 171の最大 消光波長を例えば 1. 6 im近傍に設定すれば、 最大消光比の絶対値は小さく なるが、 最大消光波長を維持することのできる波長範囲を拡大することができ る。 もちろんここで説明したのは一例であり、 多重干渉計を構成するそれぞれ の基本構成素子を任意の特性になるように設定することができる。
(第 5の実施形態)
F I G. 22に本発明の第 5実施形態における干渉計型光スィッチの構成を 示す。 本実施形態の干渉計型光スィッチの回路は、 位相生成力ブラ 111と、 方向性結合器 153と、 光合分波手段 111および方向性結合器 15' 3に挟ま れた光路長差付与部 131と、 光路長差付与部 131に形成された位相シフタ 141と、 入力導波路 101、 102と、 出力導波路 103、 104とから構 成されている。 、
前述の第 1乃至第 4の各実施形態の干渉計型光スィツチでは、 特に出力強度 が 0か 1にスィツチングされるように上記の数式 7を満たす場合について説明 した。 しかし、本発明の光スィッチは位相差の総和 27T { , (λ) +φ !_ (λ)
+ Φ2 (λ)} が波長無依存になるように m · π (mは整数) 以外の値になるよ うに設定すれば、 出力強度が 0と 1の間の異なる値 ¾取るようにすることもで きる。 そのようにすれば、 広帯域で使用できる出力強度可変の光スィッチ (広 帯域可変光減衰器、 所謂、 可変光アツテネ一夕) が実現できる。 具体的に出力の透過率を 0 dB、 一 1 0 dB、 一 2 0 dB、 一 3 0 dBにす るためには、 出力導波路 1 04から出力される光信号のそれぞれの出力強度が P c = l. 0、 0. 1、 0. 0 1、 0. 00 1となるように位相差の値を設定 すればよい。 光スィッチの出力強度は上記の数式 6で表されるので、 光合分波 手段 1 1 1と光路長差付与部 1 3 1による総位相差 {φ, (λ) + , (λ) + φ2 (λ)} がそれぞれ一 1. 00、 一 0. 60、 一 0. 5 3、 一 0. 5 1、 一 0. 50となるよう設定すれば、 出力の透過率がそれぞれ 0 d Β、 - 1 0 d B、 _2 0 dB、 — 3 0 dBの広帯域光強度可変光スィッチにすることができ る。
F I G. 22に示す本実施形態の干渉計型光スィツチでは、 位相生成力ブラ 1 1 1を構成する方向性結合器 1 5 1、 1 52の分岐比をそれぞれ r , = 0. 3、 r2 = 0. 7とし、 微小光路長差付与部 1 32の光路長を 1^ = 0. 30 λ c (=0., 47 βΐη) に設定した。 また、 マッハツエンダ干渉計 1 3 1の光路長 を L=0. 34 λ c (=0. 5 3 ^m) とし、 方向性結合器 1 5 3の分岐比 は r3 = 0. 5に設定した。 ただし、 光路長差は一方の光導波路 (同図では下側 の光路) に対する他方の光導波路の相対的な光路長をあらわしている。 干渉計 型光スィツチの光合分波手段 1 1 1と方向性結合器 1 5 3とを結んでいる 2本 の光導波路の間隔は 2 0 0 mにした。 位相シフタ 14 1としては薄膜ヒー夕 を用い、 その幅を 40 01、 その長さを 4mmに設定した。
上記の設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性ィォ ンエッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 1. 5 %、 光導波路のコア断面は 4. 5 X4. 5 m2 になるように作製した。 この干渉計型光スィッチが作製されたチップをダイシングにより切り出し、 シリコン基板 1 6 1の下部には放熱板 (図示しない) を配設し、 入出力導波路 1 0 1〜1 04にはシングルモ一ドファイバ (図示しない) を接続し、 薄膜ヒ 一夕 141には給電リード (図示しない) を接続して、 2入力 2出力光スイツ チモジュールとした。 この干渉計型光スィツチモジュールのスィツチング特性 を評価した。
位相シフ夕 (薄膜ヒ一夕) 141が OFF状態の時、 スィッチはパ一状態に あり、 そのため信号光が入力導波路 101から入力した場合に信号光は出力導 波路 104からは出力されない。 この状態における透過率の波長依存性を最大 消光時として、 透過率の波長依存性を F I G. 23に示した。 ここで薄膜ヒー • 夕 141を通電し、 電力を変えて、 熱光学効果により光学的な光路長差をそれ ぞれ L=0. 35 λ 0. 37 λ c , 0. 44 λ c, 0 · 84 λ cとする と、 光合分波手段 1 1 1と光路長差付与部 131による総位相差 {φ| (λ) + ι (λ) +φ2 (λ)} がそれぞれ一 0. 51、 - 0. 53、 一0. 60、 一 1. 00となり、 それぞれの状態における透過率は一 30 dB、 一 20 dB、 一 10 dB、 0 dBとなった (F I G. 23参照)。 また、 透過率の波長依存性 は、 F I G. 23に示すように、広い波長帯域で波長無依存になった。 F I G. 41 Bに示した従来の可変光アツテネ一夕の波長特性と比べると本発明の効果 は一目瞭然である。 従来はある特定の 1波長でしか光を減衰させることができ なかったのに対し、 本発明では、 広い波長帯域にわたり光を一括で減衰させる ことができる。 こ ように、 光強度可変の広帯域光スィッチ (可変光アツテネ 一夕) としてのスイッチング動作が確認できた。
なお、 ここでは第 1と第 2の光合分波手段 1 1 1, 153の分岐比が 0. 5 である理想的な場合を説明したが、 実際には波長依存性や作製誤差が発生する。 厳密に平坦ィヒするには次のように第 1と第 2の光合分波手段 1 1 1, 1 53の 分岐比も考慮して位相差を設定すればよい。 第 1と第 2の光合分波手段 1 1 1, 153の分岐比をそれぞれ R 1 (λ), R2 (λ) とすれば、 出力強度 P c (λ) が波長に対して一定になるよう位相差の総和を設定すれば、 出力強度は波長無 依存になる。 具体的には、 位相差の総和が 十 (ス)+
= arccos|{ c(/l) - Rl(A){l― R2{A)}-R2(A){\ -R1(A)}}
- [4Rl(A){l - R2( )}R2( ){\― Rl( )}J"i Ι2π となるようにすればよい。 もちろん、 F I G. 2 3の特性から明らかなように、 位相差の総和が一定値になるように設定しただけでも充分広い帯域にわたり透 過率は一定であり、 良好な特性が得られる。
上記の例では入力導波路 1 0 1に光信号を入力し、 出力導波路 1 0 4から光 信号を取り出したが、 出力導波路 1 0 3から光信号を取り出しても良いし、 入 力導波路 1 0 2に光信号を入力しても良い。 また、 出力導波路 1 0 3、 1 0 4 に光信号を入力し、入力導波路 1 0 Γ、 1 0 2から光信号を取り出しても良い。 また、 F I G. 2 2には図示していないが、 光路長差付与部 1 3 1を構成する 2本の遅延線のうち、 下側の光導波路 (第 2光導波路) にも位相シフタを形成 し、 光学的光路長差を変化させることにより、 任意の光減衰量を設定してもよ い。 もちろん、 本実施形態の光強度可変の干渉計型光スィッチに各実施形態で 説明した特徴構成を取り入れることができる。 例えば、 第 2実施形態で説明し たように F I G. 3の第 1と第 2の光合分波手段 1 1 1 , 1 1 2を位相生成 力ブラにしてもよいし、 第 3実施形態で説明したように F I G. 1 5の断熱溝 構造を形成してもよいし、 第 4実施形態で説明したように F I G. 1 8の多重 干渉計構成にし、 各基本構成素子を互いに異なる条件に調整して全体の出力強 度を波長に対して一定になるようにしてもよい。
以上説明したように、 本実施形態の干渉計型光スィッチは、 従来と全く異な る原理を用いて広帯域にわたり透過率が一定の光強度可変の光スィッチを実現 できた。 さらに 1つの位相シフタのみでの広帯域スィツチング動作ができるこ とを確認した。
(第 6の実施形態)
F I G. 2 4に本発明の第 6実施形態における干渉計型光スィッチの構成を 示す。 本実施形態の干渉計型光スィッチの回路は、 出力の位相差が波長依存性 を有する一対の光合分波手段 . (位相生成力ブラ) 1 1 1と 1 1 2と、 これら光 合分波手段 1 1 1と 1 1 2に挟まれた光路長差付与部 1 3 1と、 光路長差付与 部 1 3 1に形成された位相シフタ 1 4 1と、 入力導波路 1 0 1、 1 0 2と、 出 力導波路 1 0 3、 1 0 4とから構成されている。 光合分波手段 1 1 1と 1 1 2 の出力の位相差を適切に設定することにより、 広い波長帯域で良好なスィッチ ング特性を有する光スィツチが実現できる。
出力の位相差が波長依存性を有する光合分波手段を実現する方法として様々 な手段が考えられるが、 本実施形態では、 N + 1個の光結合器と、 隣接する光 結合器に挟まれた N個の光路長差付与部によって、 それぞれ光合分波手段 1 1 1と 1 1 2を構成している。 ただし、 Nは自然数であって、 F I G. 2 4では N= 2の場合を示している。
F I G. 2 5は本発明の第 6実施形態で用いた位相生成力ブラ (光合分波手 段) の構成を示す。 F I G. 2 5の光合分波手段は、 3個の光結合器 1 2 3、 1 2 4、 1 2 5と、—隣接する光結合器に挾まれた 2個の光路長差付与部 1 3 2、 1 3 3とによって構成されている。 光路長差付与部 1 3 2は第 1光導波路 1 5 6と第 2光導波路 1 5 8の 2本の光遅延線からなり、 それぞれの光学的光路長 を 、 /2aとすると、 その光学的光路長差は S /,= /la - である。 光路長差付与 部 1 3 3は第 1光導波路 1 5 7と第 2光導波路 1 5 9の 2本の光遅延線からな り、 それぞれの光学的光路長を 、 とすると、 その光学的光路長差は δ /2= ゾ 1「 でめ 。
これまでに説明した第 1乃至第 5の実施形態でも位相生成力ブラを実現する 手段として本構成の光合分波手段を用いたが、 それは原理的に損失無しで所望 の出力の位相差と分岐比を持たせることができるからである。 もちろん、 本構 成の光合分波手段以外の手段を用いても、 出力の位相差に波長依存性を持たせ ることにより本発明による効果を得ることができる。 例えば、 光結合器と光路 長差付与部を組み合わせて光命分波手段を構成しても良く、 それがトランスバ —サル型をはじめとする F I R (Finite Impulse Response) フィル夕やリング 型をはじめとする I I R (Infinite I即 ulse Response)フィルタであっても良い c この干渉計型光スィッチを非対称型光スィッチとして動作させる場合の設計 例を次に示す。 マッハツエンダ干渉計の光路長差付与部の光学的光路長差に起 因する位相差 2 ττφ^ (λ) と、 出力の位相差が波長依存性を有する位相生成力 ブラ 11 1、 112により生成される位相差 2 πφ,. (λ) および 2 τφ2 (λ) とを総合した位相が πι· π (mは整数) となり、 かつ mが奇数の時に、 非対称 型スィッチになる。 従来の非対称型マッハ 'ツェング干渉計スィッチでは、 光路 長差付与部に波長依存性がある。 そのため、 ある特定の波長でしか位相を m · ' κ (m:奇数) に設定できなかったので、使用できる波長帯域が限られていた。 一方、 本発明の干渉計型スィッチでは、 出力の位相差が波長依存性を有する光 合分波手段 (位相生成力ブラ) 11 1, 112を用いることにより、 波長帯域 によらずに位相を一定値 m* π (m:奇数) に設定することができる。 さらに、 非対称型なので、 第 1及び第 2の光合分波手段 111, 112の分岐比が理想 値 0. 5からずれたとしても、クロスポ一トで高い消光比が安定して得られる。 もちろん、 非対称型では分岐比が理想値からずれれば ON状態での損失となる が、 それは対称型で分岐比が理想値からずれることによる消光比の劣化に比べ れば無視できるほど小さい値である。
F I G. 1を用いて説明した第 1実施形態では簡単のため、 第 1と第 2の光 合分波手段 111, 112の分岐比が全波長帯域にわたり一定値 0. 5を取る ものとして前述の数式 6を得た。 しかし実際には、 使用する全ての波長帯域で 光合分波手段の分岐比を一定値 0. 5にするのは容易ではなく、 特に波長帯域 が広いほど分岐比を一定に保つのが難しくなる。 第 1と第 2の光合分波手段 1 1 1, 1 1 2の分岐比が等しく、 R (λ) であるとすれば、 入力導波路 1 0 1 から入力し、 出力導波路 1 04.から出力される光強度 P cは次式
Pc = 2R( ) · [l - R(A) J-[l +
Figure imgf000058_0001
(Λ) + Φ(λ)}}] (数式 1 0 ) で表すことができる。 ただし、 Φ(λ)は第 1と第 2の光合分波手段 1 1 1, 1 1 2の出力の位相差による位相であり、 ここでは
Figure imgf000058_0002
(λ) +φ2 (λ) とした。 上記の数式 1 0から、 2 π {φΔΙ (λ) +φ, (λ) +φ2 (λ)} が m ' % (mは整数) となり、 かつ mが奇数なら、第 1と第 2の光合分波手段 1 1 1, 1 1 2の分岐比 R (λ) がいかなる値であっても、 高い消光比を保つことがで きる。 そのため、 広い波長帯域にわたり、 高消光比を容易に維持することがで きる。
すなわち、 従来は光路長差付与部を有限の値に設定すると波長依存性が発生 するのが常識であったため、 広い波長帯域にわたりスィツチング動作が可能な 非対称型マッハツエンダ干渉計型光スィツチは実現できなかった。 それに対し、 本発明の原理、 すなわち光合分波手段の出力の位相差に波長依存性を持たせる ことにより、 はじめて光路長差付与部の光学的光路長差を波長無依存、 かつ任 意の値に設定できるようになった。 実施形態の一つとして本発明の原理を非対 称マッハツエンダ干渉計型光スィッチに適用することにより、 これまで不可能 であった、 広帯域にわたり高い消光比を有し、 かつ製造偏差に強い干渉計型光 スィッチをはじめて実現可能とした。
具体的な位相生成力ブラの設計例を次に説明する。 本実施形態では、 位相生 成力ブラを実現する手段として、 N+ 1個の光結合器と、 隣接する光結合器に 挟まれた Ν個の微小光路長差付与部からなる光合分波手段を用いた。 そして第 1と第 2の光合分波手段 1 1 1と 1 1 2とを構成する N+ 1個の光結合器を全 て同一分岐比とし、 さらにその値を極力小さくするという制約条件の下、 位相 生成力ブラの分岐比が使用する波長帯の全域で概ね 0. 5となり、 かつ出力の 位相差 Φ (λ) が位相補正量 (λ) と一致するよう設計パラメ一夕を最適化 した。 最適化した設計パラメ一夕は、 位相生成力ブラを構成する光結合器 1 5 1、 1 52、 1 5 3、 2 5 1、 2 5 2、 2 5 3の分岐比と、 微小光路長差付与 部 1 3 2, 1 3 3, 2 32, 2 3 3の光学的光路長差、 及びマッハツエンダ干 • 渉計の光路長差付与部 1 3 1の光学的光路長差 Lである。 従来のマッハツエ ンダ干渉計型光スィッチの光路長差付与部の光学的光路長差が 0 · λ cもしく は 0. 5 · λ cに設定されていたのに対し、 本発明では光学的光路長差 1Lも 含めて位相生成力ブラの出力の位相差が適正位相になるよう最適化したことも 特徴の一つである。
本実施形態では適用波長範囲を 1. 2 5〜1. 6 とし、 また、 1. 3 mと 1. 5 5 mで使用することを考慮して、 特に 1. 3 ^mと 1.
mで近似度が最も高くなるよう最適化した。光結合器 1 5 1、 1 52、 1 5 3、 2 5 1、 2 52、 2 5 3としては近接した 2本の光導波路からなる方向性結合 器を用いた。 最適化の結果 N=2となり、 方向性結合器 1 5 1、 1 52、 1 5 3、 2 5 1、 2 52、 2 5 3の分岐比は r = 0. 1、 微小光路長差付与部 1 3 2と 2 32の光学的光路長差は 1^=0. 0 9 · A c (= 0. 1 3 m)、 微 小光路長差付与部 1 3 3と 2 33の光学的光路長差は^! L2=0. 0 5 · λ c (= 0. 0 7 ΐΐΐ) となった。 また、 マッハツエンダ干渉計の光学的光路長差は L=0. 3 1 · λ c (=0. 45 τη), m=— 1とし、 光合分波手段 1 1 1、 1 1 2に挟まれた 2本の光導波路の間隔は 5 0 0 mにした。 位相シフ夕 14 1としては薄膜ヒータを用い、 その幅を 8 0 ^m、 その長さを 3 mmに設定し た。 上記の設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性ィォ ンエッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 0. 75%、 光導波路のコア断面は 6X6 m2となるように作製した。
この干渉計型光スィッチが作製されたチップをダイシングにより切り出し、 シリコン基板 161の下部には放熱板 (図示しない) を配設し、 人出力導波路 101〜104にはシングルモ一ドファイノ (図示しない) を接続し、 薄膜ヒ —夕 141には給電リード (図示しない) を接続して、 2入力 2出力光スイツ チモジュールとした。
位相シフタ (薄膜ヒータ) 141が OFF状態の時、 スィッチはバー状態に あり、 信号光はクロスポートからは出力されなかった。 薄膜ヒータ 141に通 電し、 光学的光路長差を^!し+5 =0. 31 λ c -0. 50 λ c=-0. 19 λ cにした ON状態では、 スィッチはクロス状態に切り替わり、 信号光は クロスポートから出力された。
次に、 F I G. 26に、 本実施形態の干渉計型光スィッチで測定した透過率 の波長特性を示す。 位相シフタ 141が〇 F F状態の時、 本実施形態の干渉計 型光スィッチは 1. 25〜1. 6 mの広い波長帯域で一 30 dB以下の高消 光比が得られた。 特に本実施形態では 1. 3 mと 1. 55 で近似度が良 くなるよう位相生成力ブラ 1 11, 112の設計値を最適化しているので、 1. 3 /imと 1. 55 mではさらに高消光比であり、一 50 dB以下を実現した。 以上述べたように、 広帯域にわたり高消光比を維持することができる非対称 マッハツエンダ干渉計を本発明によりはじめて作製し、 良好なゲートスィツチ を実現した。 しかし、 本発明はゲートスィッチに限らず任意の干渉計型光スィ ツチの広帯域化に適用でき、 例えば広帯域タップスィッチに適用しても良い。 また、 上記では、 最初の OFF状態で 2 π {φ^ (λ) +φ1 (λ) +φ2 (λ)} 二 (2m' + 1) · π Cm' は整数) となるように、 位相生成力ブラの位相差と 'エング干渉計の光路長差付与部の光学的光路長差^! Lを設定したが、 OFF状態で 2 π {φ^ (λ) +φ1 (λ) +φ2 (λ)} =2m' - π (m' は 整数) となるよう設定することにより、 広い波長帯域でスイッチング動作が可 能な対称型マッハツェング干渉計を実現し、 良好な 2分岐スィツチとして動作 した。 ,
本実施形態では、 位相生成力ブラの最適化の際に、 N+ 1個の光結合器 (1 23, 124, 125) を全て同一分岐比とし、 さらにその値を極力小さくす • るという制約条件を設定した。 このような制約条件は必須ではないが、 位相生 成力ブラを構成する光結合器の分岐比を全て一定にすれば、 光結合器を作製し やすくなるという利点がある。 また、 その分岐比は 0から 1までの間の任意の 値に設定できるが、その分岐比は 0. 1と、小さな値になるように最適化した。 それは、分岐比が小さいほど方向性結合器が小型になり、製造誤差に強くなる、 偏波依存性が小さくなるなどの利点が得られるからである。 本実施形態の位相 生成力ブラ (F I G. 25) は N=lの場合 (F I G. 4) に比べて光結合器 (123, 124, 125) と光路長差付与部 (132, 133) がそれぞれ 1つずつ多いので、 若干回路サイズが大きくなる。 しかし、 方向性結合器 (1 23, 124, 125) が小型のため、 回路サイズの増大は僅かであった。 また、 本実施形態では N+1個の光結合器と、 隣接する光結合器に挟まれた N個の光路長差付与部とによって構成された位相生成力ブラを用い、 N= 2に 設定した。 Nを大きくするほど設定可能なパラメ一夕が増すので位相生成カブ ラの近似度を高めることができる。 例えば、 F I G. 17 (第 3実施形態) と F I G. 26 (本実施形態) を比較すると、 本実施形態の方が位相生成力ブラ の近似度が良好なため、 消光比が 30 dB以上となる波長範囲が広くなつてい る。 さらに詳しく説明すると、 第 3実施形態では N=lに設定したので、 位相 生成力ブラに 3種類の設計値がある。 一方、 本実施形態では N== 2に設定した ので、 5種類の設計値があり、 設計の自由度が高くなる。 そのため、 位相差の 近似度を高めることができるし、 N+ 1=3個の光結合器を同じ値に設定した としても 3種類の設計の自由度が残る。 結果として全ての光結合器の分岐比が 0. 1となる設計値が得られ、 製造誤差に強く、 かつ偏波依存性が小さい干渉 計型光スィッチを得た。 ,
さらに、 本実施形態では 2つの位相生成力ブラ 111, 112を用い、 それ らの光路長差付与部 151, 152, 153, 251, 252, 253におい て光学的光路長差の総和の長い方の光遅延線が片方 (F I G. 24の上側) に 偏在するよう回路上に配置した。 具体的に、 F I G. 24では、 第 1の光合分 波手段 111の N=2個の光路長差付与部 132、 133を構成する第 1光導 波路の光学的光路長差の総和 7lla+ _ llb=678. 26 + 551. 7 9 = 1230. 05、 第 2光導波路の光学的光路長差の総和 = l21a + 12 lb=678.' 13 + 551. 72 = 12.29. 85、 そして第 2の光合分波手 段 112の N= 2個の光路長差付与部 233、 232を構成する第 1光導波路 の光学的光路長差の総和 s 2= 12a+ゾ 12b= 551. 79 + 678. 26 =
1230. 05、 第 2光導波路の光学的光路長差の総和∑ 2 = ^ 22 a+ ^ 22 b =
551. 72 + 678. 13 = 1229. 85である。 したがって、 〉 ^ かつ∑ ,2>∑ ,2を たすので、 位相生成力ブラ 11 1と 112の光路長差付与 部の総和が長いのは第 1光導波路の方であり、 F I G. 24の上側に偏在して いることがわかる。 このようにすることで、 位相生成力ブラ 1 11, 112に より効率的に位相を生じさせることができる。 特に、 本実施形態の干渉計型光 スィッチの構成は、 特殊な例であり、 第 1と第 2光合分波手段として同じ設計 値の位相生成力ブラを用い、 マッハツェング干渉計の光路長差付与部 131を 中心に、互いに鏡像対称になるよう配置している。 この時、 (ί^ (λ) = φ2 (λ) =Ψ (λ) 2を満たすよう位相差を設定すれば良い。 第 1実施形態では、 一 つの位相生成力ブラの位相差ί^ (λ) のみを用いていたのに対し、 本実施形態 では一つの位相生成力ブラにつき生成すべき位相差が半分で良いことになる。 もちろん、 第 1と第 2位相生成力ブラの光路長差付与部の長い方を片側に偏在 させるのは必須ではなく、 互いに逆の方に偏在していても良い。 なお、 本発明 の各実施形態で光路長差付与部の光路長差とは、 第 2導波路に対する第 1導波 路の相対的な光路長差を表しているので、 第 2導波路の方が第 1導波路よりも 長い場合、 光路長差は負となる。 Νが 2以上の時で Ν個の光路長差付与部の符 号が異なる場合も上記と同様に偏在を定義することができる。 例えば、 仮に微 小光路長差付与部 132と 232の第 2導波路の方が長く、 光路長差の符号が 負であったとすれば、 第 1の光合分波手段 111の光路長差付与部 132, 1 33を構成する第 1光導波路と第 2光導波路、 および第 2の光合分波手段 11. 2の光路長差付与部 233, 232を構成する第 1光導波路と第 2光導波路の 光学的光路長差の総和はそれぞれ 2 1
Figure imgf000063_0001
13 + 551.
79 = 1229. 92、 ^ 21 a+ ^ 21 b= 67 ,8. 26 + 551. 72 = 1229. 98、 ∑ 2=ゾ 12a + 12b= 551. 79 + 678. 13、 2>2 = ; 22a + 722b = 551. 72 + 678. 26となる。 この場合は か つ∑δ!2,2 >∑¾2を満たし、 第 2導波路の方に偏在しているということができる。
(第 7の実施形態)
F I G. 27に本発明の第 7実施形態における干渉計型光スィッチの構成を 示す。 本実施形態の干渉計型光スィッチは I X 2スィッチとして機能させるこ とができる。 さらに、 本回路の基本要素である干渉計型光スィッチの光合分波 手段として、 出力の位相差が波長依存性を有する位相生^力ブラを用いること により、 波長帯域によらずにスィツチング動作をさせることができる。
本光スィッチの回路は 2つの干渉計型光スィッチ 170, 171を多段に接 続することにより構成した。 詳細には、 同じ設計値を持つ第 1と第 2の 2つの 干渉計型光スィッチ 170, 171を用い、 第 1の干渉計型光スィッチ 170 の出力側の上のポ一トを、 第 2の干渉計型光スィツチ 171の入力側の下のポ —トに接続した。 また、 第 1の干渉計型光スィッチ 170の入力側の上のポー トを入力導波路 101とし、 第 2の干渉計型光スィッチ 171の出力側の上の ポートを出力導波路 103 (第 1出力ポート) とし、 第 1の干渉計型光スイツ チ 170の出力側の下のポートを出力導波路 104 (第 2出力ポート)とした。 本実施形態では、 2つの干渉計型光スィッチ 170, 171を同じ設計値と しているので、 第 1の干渉計型スィッチ 170のみを詳細に説明する。 出力の 位相差が波長依存性を有する光合分波手段を実現する方法として様々な手段が 考えられるが、 光結合器と光路長差付与部との接続により構成した光合分波手 段により実現してもよい。 本実施形態では、 N+1 (=2) 個の光結合器 15 1, 152と 153, 154と、 隣接する光結合器に挟まれた N (= 1) 個の 光路長差付与部 132と 133によって光合分波手段 (位相生成力ブラ) 11 1と 112を構成した。 光合分波手段 111は、 光結合器 (方向性結合器 15 1、 152) と、 隣接する光結合器に挟まれた光路長差付与部 132とによつ て構成されている。 光路長差付与部 132は第 1光導波路と第 2光導波路の 2 本の光遅延線からなり、 それぞれの光学的光路長を 7 iい 721とすると、 その 光学的光路長差は 一ゾ21である。光合分波手段 112は、光結合器
(方向性結合器 153、 154) と、 隣接する光結合器に挟まれた光路長差付 与部 133とによって構成されている。 光路長差付与部 133は第 1光導波路 と第 2光導波路の 2本の光遅延線からなり、 それぞれの光学的光路長を 12、 ゾ22とすると、 その光学的光路長差は 2= 1222である。
次に、 具体的な位相生成力ブラの設計例'を説明する。 本実施形態では、 位相 生成力ブラを実現する手段として、 N+ 1個の光結合器と、 隣接する光結合器 に挟まれた N個の微小光路長差付与部からなる光合分波手段を用いた。 そして 第 1と第 2の光合分波手段 111と 112とを構成するそれぞれ N+ 1=2個 (合計 4個) の光結合器の分岐比が全て同一 (rェ-r 2=r3=r4=r) とす る制約条件を設定した。 光結合器としては近接した 2本の光導波路からなる方 向性結合器を用いた。 本実施形態では適用波長範囲を 1. 45〜1. 65 ΠΙ とし、 位相生成力ブラの分岐比が使用する波長帯の全域で概ね 0. 5となり、 かつ出力の位相差 Φ (λ) = , (λ) + 2 (λ) が適正位相 Ψ (λ) と一致 するよう設計パラメ一夕を最適ィ匕した。 ここで適正位相とは、 第 1と第 2の干 渉計型光スィツチ 170 , 171が非対称型マッハツエンダ干渉計型光スィッ チとして機能するために必要な位相生成力ブラの出力の位相差であり、 上記の 数式 7の m (mは整数) を 2m' +1 (m' は整数) と置いた時の位相である。 最適化した設計パラメ一夕は、 位相生成力ブラを構成する光結合器の分岐比と 微小光路長差付与部の光学的光路長差、 及びマッハツエンダ干渉計の光路長差 付与部の光学的光路長差^ 1Lである。 従来のマッハツェング干渉計型光スイツ. チの光路長差付与部の光学的光路長差 ^ Lが 0 · λ cもしくは 0. 5 · λ cに 設定されていたのに対し、 本発明では光学的光路長差 Lも含めて位相生成力 ブラの出力の位相差が適正位相になるよう最適化したことも特徴の一つである 本実施形態では位相生成力ブラの最適化の際、 N+ 1個の光結合器を全て同 一分岐比とする制約条件を設定した。 このような制約条件は必須ではないが、 位相生成力ブラを構成する光結合器の分岐比を全て一定にすれば、 光結合器を 作製しやすくなるという利点がある。 第 2実施形態と対比させると、 第 2実施 形態では位相生成力ブラを構成する光結合器の分岐比には制約条件は課さず、 設計値の自由度を多くしたので位相差の近似度は本実施形態よりもよかった。 一方、 本実施形態は作製のしゃすさを考慮して設計した。 このように、 回路の 用途に合わせて位相生成力ブラを適切に設計すればよい。
さらに、 本実施形態では 2つの位相生成力ブラを用い、 それらの光路長差付 与部において光学的光路長差の総和の長い方の光遅延線が片方 (F I G. 27 の上側) に偏在する、 すなわち ? ,かっ:^ ? を満たすようよう回 路上に配置した。
数値計算の結果 N=lとし、 方向性結合器 151、 152、 153、 154 の分岐比は r = 0. 2、 微小光路長差付与部 132と 133の光学的光路長差 は^ 11^=^1 L2= 0. 1 5 · λ c (= 0. 23 urn) に設定した。 また、 マツ ハツエンダ干渉計の光学的光路長差は^ IL=0. 28 · λ c (=0. 43 m)、 m, =ー 1とし、 光合分波手段 1 1 1、 1 12に挟まれた 2本の光導波路の間 隔は 100 zzmにした。 位相シフタとしては薄膜ヒータを用い、 その幅を 30 m, その長さを 2 mmに設定した。
上記の設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性ィォ ンエッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 0. 75%、 光導波路のコア断面は 6 X 6 m2となるように作製した。
この干渉計型光スィッチが作製されだチヅプをダイシングにより切り出し、 シリコン基板 1 6 1の下部には放熱板 (図示しない) を配設し、 人出力導波路 101〜104にはシングルモードファイバ (図示しない) を接続し、 薄膜ヒ 一夕 141には給電リード (図示しない) を接続して、 2入力 2出力光スイツ チモジュールとした。
作製した光モジュールの入力導波路 101から光を入力し、 出力ポー卜を出 力導波路 103 (第 1出力ポート) から 104 (第 2出力ポート) に切り替え る動作について説明する。 初期状態では薄膜ヒー夕 (144) に通電し、 干渉 計型光スィッチ 17 1の光学的光路長差を L+δ L=0. 28 λ c -0. 50 λ c=-0. 22 λ cにした。 この状態では、 前段の干渉計型光スィツチ 170はバー状態、 後段の干渉計型光スィッチ 17 1はクロス状態となる。 そ のため、 入力導波路 1 0 1から入力した光は干渉計型光スィッチ 1 7 0のスル —ポートから完全に透過し、干渉計型光スィッチ 1 Ί 1の出力導波路 103 (第 1出力ポート) から出力される。 一方、 干渉計型光スィッチ 170の出力導波 路 104 (第 2出力ポート) からは光は出力されない。 次に、 薄膜ヒー夕 (1 44) を OFFに戻し、 薄膜ヒータ (142) に通電して、 干渉計型光スイツ チ 170の光学的光路長差を^ 1L+ S L=0. 28 λ c - 0. 50 λ c=- 0. 22 A cにした。 この状態では、 前段の干渉計型光スィッチ 170はクロ ス状態、 後段の干渉計型光スィッチ 17 1はバ一状態となる。 そのため、 入力 導波路 101から入力した光は干渉計型光スィッチ 170のクロスポートであ る出力導波路 104 (第 2出力ポート) から出力される。 一方、 干渉計型光ス イッチ 170のスル一ポートと干渉計型光スィッチ 171のクロスポートによ り光は遮断されるため、 出力導波路 103 (第 1出力ポート) からは光は出力 されない。 このように、 本実施形態の干渉計型光スィッチでは、 0. 5Wの一 定消費電力で 2分岐スィッチとして動作させることができる。
F I G. 28 Aに本実施形態の干渉計型光スィツチの出力導波路 103 (第 1出力ポート) から出力される初期の状態 (OFF状態) における透過率の波 長特性を示し、 F I G. 28 Bに別の出力導波路 104 (第 2出力ポート) ら出力される切り替え後の状態(〇N状態)における透過率の波長特性を示す。 いずれの出力導波路から出力される場合でも 1. 45〜1. 65 の広い波 長帯域で一 30 dB以下の高消光比が得られ、 広い波長帯域で高消光比を有す る一定消費電力の 1 X 2スィツチを実現した。
本実施形態では、 位相生成力ブラを備えた干渉計型光スィツチを多段に接続 し、 一つの干渉計型光スィッチを構成した。 そして、 その干渉計型光スッチを 一定消費電力の広帯域 1 X 2スィッチとして機能させる例を示した。 しかし、 本実施形態の光スィッチはその他の用途に用いても良いし、 本発明を適用した —定消費電力の光スィツチや 1 X 2光スィツチの構成法は本実施形態で示した 構成に限らず、 任意の形態をとることができる。
(第 8の実施形態)
F I G. 2 9に本発明の第 8実施形態における干渉計型光スィツチの構成を 示す。 本実施形態の光スィッチは PI- Loss (Path Independent Loss ;パス無依存 損失) 構成の I X 2スイッチ^して機能させることができる。 さらに、 本実施 形態の回路の基本要素である干渉計型光スィツチの光合分波手段として、 出力 の位相差が波長依存性を有する位相生成力ブラを用いることにより、 波長帯域 によらずにスィツチング動作をさせることができる。
本実施形態の干渉計型光スィツチの回路は干渉計型光スィツチを多段に複数 接続することにより構成した。 詳細には、 同じ設計値を持つ第 1乃至第 3の 3 つの干渉計型光スィッチ 1 7 0, 1 7 1 , 1 7 2を用い、 第 1の干渉計型光ス イッチ 1 7 0の出力側の上のポ一トを、 第 2の干渉計型光スィッチ 1 7 1の入 力側の下のポートに接続し、 第 1の干渉計型光スィッチ 1 7 0の出力側の下の ポ一トを、 第 3の干渉計型光スィッチ 1 7 2の入力側の上のポートに接続して いる。 また、 第 1の干渉計型光スィッチ 1 7 0の入力側の上のポートを入力導 波路 1 0 1とし、 第 2の干渉計型光スィッチ 1 7 1の出力側の上のポ一トを出 力導波路 1 0 3 (第 1出力ポート) とし、 第 3の干渉計型光スィッチ 1 7 2の 出力側の上のポートを出力導波路 1 0 4 (第 2出力ポート) としている。
本実施形態では、 3つの干渉計型光スィッチ 1 7 0 , 1 7 1 , 1 7 2を同じ 設計値としているので、 第 1の干渉計型スィツチ 1 7 0のみを詳細に説明する。 使用する波長帯全域で本実施形態の干渉計型光スィッチの出力強度が一定にな るように、 各位相生成力ブラ 1 1 1, 1 1 2を構成する光結合器 1 5 1〜1 5 4の分岐比と微小光路長差付与部 1 3 2, 1 3 3の光学的光路長差、 及びマツ ハツエンダ干渉計の光路長差付与部 1 3 1の光学的光路長差 Lを最適化した 数値計算の結果、 位相生成力ブラ 1 1 1及び 1 1 2を構成する方向性結合器 1 51、 152及び 1 53、 154の分岐比をそれぞれ r 2、 r 2=0.
2、 r
Figure imgf000069_0001
2、 r 4=0. 2とし、 微小光路長差付与部 132及び 133の 光学的光路長差を 1^=0. 15 · λ c (=0. 23 im)、 1L2=0. 15 · λ c (=0. 23 m) に設定した。 また、 マッハツエンダ干渉計の光路長差 付与部 131の光学的光路長荸は^ IL=0. 28 · λ c (=0. 43 m) と し、 光路長差付与部 131の 2本の光導波路の間隔は 200 にした。 位相 シフ夕 141, 142としては薄膜ヒ一タを用い、 その幅を 50 m、 その長 • さを 3 mmに設定した。
上記の設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性ィォ ンエッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 1. 5 %、 光導波路のコア断面は 4. 5 X4. 5 m2となるように作製した。 この干渉計型光スィッチが作製されたチップをダイシングにより切り出し、 シリコン基板 161の下部には放熱板 (図示しない) を配設し、 人出力導波路 101〜104にはシングルモ一ドファイバ (図示しない) を接続し、 薄膜ヒ —夕 141には給電リード (図示しない) を接続して、 2入力 2出力光スイツ チモジュールとした。
作製した光モジュールの入力導波路 10 1から光を入力し、 出力ポートを出 力導波路 103 (第 1出力ポート) から 104 (第 2出力ポート) に切り替え る動作について説明する。 初期状態では薄膜ヒータ (144と 146) に通電 し、 干渉計型光スィッチ 171と 172の光学的光路長差を^ 1L+S^L=0. • 28 λ c - 0. 50 λ c =- 0. 22 A cにした。 この状態では、 前段の干渉 計型光スィツチ 170はパー状態、 後段の 2つの干渉計型光スィツチ 17 1は クロス状態となる。 そのため、 入力導波路 101から入力した光は干渉計型光 スィッチ 1 Ί 0のスルーポートから完全に透過し、 干渉計型光スィッチ 17 1 の出力導波路 103 (第 1出力ポート) から出力される。 一方、 干渉計型光ス イッチ 170のクロスポートと干渉計型光スィッチ 172のスル一ポートによ り光は遮断されるため、 出力導波路 104 (第 2出力ポート) からは光は出力 されない。 次に、 薄膜ヒ一夕 (144と 146) を OFFに戻し、 薄膜ヒー夕 (142) に通電して、 干渉計型光スィッチ 170の光学的光路長差を^ 1L + <5 L=0. 28 λ c - 0. 5.0 λ c = - 0. 22 λ cにした。 この状態では、 前段の干渉計型光スィッチ 170はクロス状態、 後段の干渉計型光スィッチ 1 71, 172はバ一状態となる。 そのため、 入力導波路 101から入力した光 • は干渉計型光スィッチ 170のクロスポートを透過し、 干渉計型光スィッチ 1 72の出力導波路 104 (第 2出力ポート) から出力される。 一方、 干渉計型 光スィッチ 170のスルーポートと干渉計型光スィッチ 171のクロスポート により光は遮断されるため、 出力導波路 103 (第 1出力ポート) からは光は 出力されない。
F I G. 3 OAに本実施形態の干渉計型光スィッチの出力導波路 103 (第 1出力ポート) から出力される初期の状態 (OFF状態) における透過率の波 長特性を示し、 F I G. 30Bに別の出力導波路 104 (第 2出力ポート) か ら出力される切り替え後の状態(ON状態)における透過率の波長特性を示す。 いずれの出力導波路から出力される場合でも、 1. 45〜1. 65 mの広い 波長帯域で一 45 dB以下の高消光比が得られた。 また、 本実施形態の干渉計 型光スィッチでは、 出力ポートによらずに通過する光スィッチ素子が一定とな る PI- Loss構成であるため、 出力導波路 103 (第 1出力ポート)、 104 (第 2出力ポート) のいずれのポートから出力されても同じ特性となった。
本実施形態では位相生成力ブラを備えた干渉計型光スィッチを多段に接続し、 一つの干渉計型光スィッチを構成した。 そして、 その干渉計型光スィッチを、 光路によらず同じ波長特性を有する P I一 LOS Sの広帯域 1 X 2スィッチと して機能させる例を示した。 しかし、 本実施形態の光スィッチはその他の用途 に用いても良いし、 本発明を適用した P I一 L O S Sの光スィッチや 1 X 2光 スッチの構成法は本実施形態で示した構成に限らず、 任意の形態をとることが できる。
(第 9の実施形態)
F I G . 3 1に本発明の第 9実施形態における干渉計型光スィッチの構成を 示す。 本実施形態の干渉計型光スィツチの光導波路上には複屈折率調整手段が 設けられており、 後に説明するように本実施形態のスィッチは偏光ビームスィ ツチとして機能させることができる。,さらに、 本実施形態の回路の基本要素で ある干渉計型光スィツチの光合分波手段として、 出力の位相差が波長依存性を 有する位相生成力ブラを用いることにより、 波長帯域によらずにスイッチング 動作をさせることができる。
本実施形態の干渉計型光スィッチの回路は、 2つの干渉計型光スィッチ 1 7 0 , 1 7 1を多段に接続することにより構成した。 詳細には、 同じ設計値を持 つ第 1と第 2の 2つの干渉計型光スィッチ 1 7 0, 1 7 1を用い、 第 1の干渉 計型光スィツチ 1 Ί 0の出力側の上のポ一トを、 第 2の干渉計型光スィツチ 1 7 1の入力側の下のポートに接続した。 また、 第 1の干渉計型光スィッチ 1 7 0の入力側の上のポートを入力導波路 1 0 1とし、 第 2の干渉計型光スィッチ 1 7 1の出力側の上のポートを出力導波路 1 0 3 (第 1出力ポート) とし、 第 1の干渉計型光スィッチ 1 7 0の出力側の下のポートを出力導波路 1 0 4 (第 2出力ポ一卜) とした。
本実施形態では、 第 1と第 2の干渉計型光スィッチ 1 7 0, 1 7 1を同じ設 計値としているので、 第 1の干渉計型スィッチ 1 7 0のみを詳細に説明する。 本実施形態では、 位相生成力ブラ 1 1 1, 1 1 2を実現する手段として、 N + 1 (= 2 ) 個の光結合器 1 5 1, 1 5 2と 1 5 3, 1 5 4と、 隣接する光結合 器に挟まれた N (= 1 ) 個の微小光路長差付与部 1 3 2と 1 3 3からなる光合 分波手段を用いた。 光結合器 1 51, 1 52と 1 53, 154としては近接し た 2本の光導波路からなる方向性結合器を用いた。 本実施形態では適用波長範 囲を 1. 45〜1. 65 mとし、 位相生成カプラ 1 1 1, 1 12の分岐比が 使用する波長帯の全域で概ね 0. 5となり、 かつ出力の位相差 Φ (λ) が適正 位相 Ψ (λ) と一致するよう^計パラメ一夕を最適化した。 最適化した設計パ ラメ一夕は、 位相生成力ブラ 1 11と 1 12を構成する光結合器 151, 15 2と 153 , 1 54の分岐比と微小光路長差付与部 132と 133の光学的光 路長差、 及びマッハツェング干渉計の光路長差付与部 131の光学的光路長差 Lである。 数値計算の結果 N=lとし、 方向性結合器 151、 152、 15 3, 154の分岐比は r l = 0. 2、 r 2 = 0. 2、 r 3 = 0. 2、 r 4 = 0. 2、 微小光路長差付与部 132と 1 33の光学的光路長差は l L ,= 0. 1 5 · λ c (=0. 23 ΐη), L2=0. 1 5 · λ c (=0. 23 ίΐπι) に設定し た。 また、 位相シフタを駆動しない初期状態で干渉計型光スィッチ 170をス ルー状態とするためのマツハツヱンダ干渉計の光路長差付与部 131の光学的 光路長差の最適値は、 )L=0. 28 · λ c (=0. 43 ^m) となった。 本 実施形態では偏光ピ一ムスイッチとして機能させやすくするため、 初期状態で 第 1の干渉計型光スィツチ 170と第 2の干渉計型光スィツチ 171とでマツ ハツエンダ干渉計の光路長差付与部の光学的光路長差を互いに異なる設計値と した。 具体的には後に説明するが、 第 1の干渉計型光スィッチ 170の光路長 差付与部 13 1の第 1光導波路と第 2光導波路の 2本の光遅延線の光学的光路 長差を L, =Ah-0. 5 λ c=- 0. 22 λ c (—0. 34um)、 第 2の 干渉計型光スィッチ 171の光路長差付与部 134の第 1光導波路と第 2光導 波路の 2本の光遅延線の光学的光路長差を^! L" =AL=0. 28 · A c (= 0. 43 urn) に設定した。 第 1と第 2の 2本の光導波路の間隔は 200 にした。 位相シフタ 141, 142, 143, 144としては薄膜ヒ一夕を用 い、 その幅を 40 m、 その長さを 5 mmに設定した。
上記の設計値に基づき、 火炎堆積法、 フォトリソグラフィ技術、 反応性ィォ ンエッチングを用いて石英系光導波路回路を作製した。 光導波路の比屈折率は 0. 75%、 光導波路のコア断面は 6 X 6 m2となるように作製した。
石英系光導波路回路を作製レた後、 複屈折率調整手段 191により第 1干渉 計型光スィツチ 170の光路長差付与部 131の第 1光導波路の複屈折率を調 整し、 TMモードの光学的光路長差が TEモードの光学的光路長差よりも 0. 5 A c長くなるようにした。 さらに詳細には、 複屈折率調整による TEモード と TMモードの光学的光路長差の変化分をそれぞれ nLTE= nL、
nLTM= nL+0.5Acとしたので、 nL^- lnL^O.5 λ cとなっている。したがって、 初期状態の TEモードと TMモードの光学的光路長差をそれぞれ、 A -A AV n=A とすると、複屈折率調整により L' ^AV +^nL> AV TM= lL' +^nL+0.5Acとなった。複屈折率調整の過程で第 1光導波路の光学的光路長が 初期状態よりも nLだけ余分に長くなつている。 そこで、 第 2光導波路の実 効屈折率を調整することにより第 2光導波路の光学的光路長差を n Lだけ長 くした。それにより、 TEモードと TMモードの光学的光路長差をそれぞれ TE= L, (=- 0.22Ac)、 L, TM= L, +0.5Ac(=0.28Ac)とした。
次に、 第 2干渉計型光スィッチ 171の光路長差付与部 134の第 2光導波 路の複屈折率を複屈折率調整手段 194により調整し、 TMモ一ドの光学的光 路長差が TEモードの光学的光路長差よりも 0. 5 λ c長くなるようにした。 さらに詳細には、 複屈折率調整による ΤΕモードと ΤΜモードの光学的光路長 差の変化分をそれぞれ^ lnLTE= nL、 nLTM= nL+0.5 λ cとしたので、
^nLTM- lnLTE=0.5Acとなっている。したがって、初期状態の TEモードと TMモ —ドの光学的光路長差をそれぞれ、 L" TE=^L"、 u= l" とすると、複屈 折率調整により L" n= l" - n A " - nL - 0.5Acとなった。 ここ で符号をマイナスとしたのは、 光路長差を第 2光導波路に対する第 1光導波路 の相対的光路長であらわしているからである。 複屈折率調整の過程で第 2光導 波路の光学的光路長が初期状態よりも n Lだけ余分に長くなつている。 そこ で、 第 1光導波路の実効屈折率を調整することにより第 1光導波路の光学的光 路長差を nLだけ長くした。.それにより、 TEモードと TMモードの光学的 光路長差をそれぞれ L" TE= L" (-0.28· Ac), l" TM=^1L" -0.5Ac (=-0.22 Ac)とした。
複屈折率調整手段 191〜 194として、 例えば、 レーザ照射等の光照射を 用いる方法、 薄膜ヒータを用いる方法、 応力付与膜を装着する方法、 導波路の 形状を変化させる方法、 導波路の材質を局所的に変化させる方法など多数の手 法が知られており、 任意の手段を用いることができる。
この干渉計型光スィツチが作製されたチップをダイシングにより切り出し、 シリコン基板 161の下部には放熱板 (図示しない) を配設し、 人出力導波路 10 1〜104にはシングルモードファイバ (図示しない) を接続し、 薄膜ヒ —夕 141には給電リード (図示しない) を接続して、 2入力 2出力光スイツ チモジュールとした。
このように作製した光モジュールの入力導波路 101から光を入力し、 出力 ポート 103 (第.ュ出力ポート) と 104 (第 2出力ポート) から出力される 偏波を切り替える動作について説明する。 初期の OFF状態では、 第 1干渉計 型光スィツチ 170の光路長差付与部の光学的光路長差は TEモ一ドが^ 1L' TE= L, (=-0.22 Ac), TMモードが L, TM= L, +0.5Ac(=0.28λο)であり、 第 2干渉計型光スィッチ 17 1の光路長差付与部の光学的光路長差は ΤΕモード が !/' TE= 1L" (=0.28· Ac), TMモードが ΐΙ/' TM= L" - 0.5Ac
(=—0.22 Ac)である。
この OFF状態では、 TEモードに対し、 第 1干渉計型光スィッチ 170は クロス状態、 第 2干渉計型光スィッチ 171はバ一状態である。 F I G. 32 Aは本実施形態の干渉計型光スィツチの OF F状態における TEモードの透過 率の波長依存性を示す。 入力導波路 101から入力した TE光は干渉計型光ス イッチ 170のクロスポートから完全に透過し、 出力導波路 104 (第 2出力 ポート) から出力される。 一方、 干渉計型光スィッチ 170のスルーポートと 干渉計型光スィッチ 171のクロスポートにより遮断されるため、 出力導波路 103 (第 1出力ポート) から TE光は出力されない。
また、 この OFF状態では、 TMモードに対し、 第 1干渉計型光スィッチ 1 70はバ一状態、第 2干渉計型光スィッチ 171はクロス状態である。 F I G. 32 Bに O F F状態の TMモ一ドの透過率の波長依存性を示す。 入力導波路 1 01から入力した TM光は干渉計型光スィッチ 170のスル一ポートと干渉計 型光スィッチ 171のクロスポ一卜から透過し、 出力導波路 103 (第 1出力 ポート) から出力される。 一方、 干渉計型光スィ、 チ 170のクロスポートに より遮断されるため、 出力導波路 104 (第 2出力ポート) から TM光は出力 されない。
次に、 薄膜ヒータ 141と 143に通電して、 ON状態とした。 第 1干渉計 型光スィツチ 170の光路長差付与部 131の光学的光路長差は TEモ一ドが AV T = AV +Q, 5 λ c (=0.28λ c), TMモードが L, TU=A +1.0A c (=0.78λ c) であり、 第 2干渉計型光スィッチ 171の光路長差付与部 13 4の光学的光路長差は TEモードが L" TE = ^L" +0.5A c ( = 0.78 - Ac), TMモードが^ a" TU=Al" (=0.28λ c) である。
この ON状態では、 TEモードに対し、 第 1干渉計型光スィッチ 170はバ —状態、 第 2干渉計型光スィッチ 171はクロス状態である。 F I G. 33 A に本実施形態の干渉計型光スィツチの ON状態の TEモードの透過率の波長依 存性を示す。 入力導波路 101から入力した TE光は干渉計型光スィッチ 17 0のスル一ポートと干渉計型光スィッチ 1 7 1のクロスポートから透過し、 出 力導波路 1 0 3 (第 1出力ポート) から出力される。 一方、 干渉計型光スイツ チ 1 7 0のクロスポートにより遮断されるため、 出力導波路 1 0 4 (第 2出力 ポート) から T E光は出力されない。
またこの〇N状態では、 モードに対し、 第 1干渉計型光スィッチ 1 7 0 はクロス状態、 第 2干渉計型光スィッチ 1 7 1はバ一状態である。 F I G. 3 3 Bに ON状態の TMモードの透過率の波長依存性を示す。 入力導波路 1 0 1 から入力した TM光は干渉計型光スィッチ 1 7 0のクロスポートから完全に透 過し、 出力導波路 1 0 4 (第 2出力ポート) から出力される。 一方、 干渉計型 光スィッチ 1 7 0のスルーポートと干渉計型光スィッチ 1 7 1のクロスポート により遮断されるため、 出力導波路 1 0 3 (第 1出力ポート) から TM光は出 力されない。
以上説明したように、 本実施形態は、 出力の位相差が波長依存性を有する位 相生成力ブラを備えた干渉計型光スィッチに複屈折率調整を行う一例である。 本実施形態のように T Eモードと TMモードでマッハツエンダ干渉計の光路長 差付与部の光学的光路長差が半波長だけ異なるものにすることにより、 偏光ビ 一ムスイッチとして機能させることができる。 もちろん、 本実施形態で説明し た以外の形態を取ることもできる。 また、 複屈折率調整を行うことにより、 T Eモ一ドと TMモードでマッハツエンダ干渉計の光路長差付与部の光学的光路 長差がちょうど一致するようにして、 偏光依存性の小さい干渉計型光スィッチ とすることもできる。
(その他の実施形態)
本発明の各実施形態で説明した干渉計型光スィツチは、 単体で光スィツチと して用いても良いし、 それら光スィッチを複数組み合わせ、 タップスィッチ、 ゲートスィッチ、 ダブルゲートスイッチや 1 X 2スイツチ等の構成要素として 用いても良い。 また、 本発明の干渉計型光スィッチを少なくとも一つ基本構成 素子として用い、 NXNマトリックススィッチ (F I G. 34A参照)、 1 XN ツリースィッチ (F I G. 34B参照)、 1 XNタップスィッチ、 M個の 1 XN スィッチと N個の MX 1力ブラから構成される DC (Delivery and- Coupl ing) スィッチ、 ROADM (Reconfigurable OADM) スィッチなどの MX N大規模光スィ ツチを構成しても良い。 また、 例えば光スィッチとしての機能だけでなく、 A WGと組み合わせて光アドドロップ多重 (OADM) 回路を構成しても良い。 なお、 F I G. 34A, F I G34Bにおいて、 180— 1 &〜8 &は入カ 導波路、 181— 1 b〜8 bは出力導波路、 182は光スィッチの基本構成素 子、 183は光スィッチの基本構成素子の交差、 184は I X 2スィッチ、 1 85はゲートスィッチである。
また、 各実施形態では偏光ビームスィッチ、 偏光ビームスプリツ夕、 偏光ビ ームカブラなどを含む干渉計型光スィッチや可変光アツテネ一夕に適用した例 を示したが、 本発明は任意の回路に適用することができる。 さらに、 本発明を 適用した干渉計型光スィツチと可変光アツテネ一夕を組み合わせて一つの光回 路として機能させることができる。 また、 本発明の各実施形態では光路長差付 与部が一つであるマッハツエンダ干渉計に適用した例を示したが、 光路長差付 与部を 2つ以上有する構成でも、 同様の原理を適用することにより波長無依存 の各種導波路光回路が得られる。 例えば、 ラテイス型フィル夕、 多光束干渉フ ィルタ、 トランスバーサル型フィル夕、 マイケルソン干渉計型フィルタ、 ファ ブリベロ一干渉計型フィルタ、 リング共振器付フィル夕など各種導波路型光回 路に本発明の原理を適用することができる。 なお、 各実施形態で説明した光学 的光路長差は光路長差付与部を構成する光導波路の光学的な光路差であり、 波 長依存性を含めた光導波路の屈折率ゃ複屈折率を考慮した光路差である。 この ように、 光合分波手段の出力の位相差を用い、 光路長差付与部の光路長差に起 因する位相差を波長無依存に設定することにより、 波長無依存の各種導波路光 回路が得られる。 もちろん本発明は波長依存性に限らず、 周波数依存性を解消 することもできる。
以上述べた各実施形態では、 干渉計型光スィツチおよび可変光アツテネ一夕 をシリコン基板上に形成された石英系光導波路を用いて、 F I G s . 3 5 A- 3 5 Eに示すような工程で作製した。 すなわち、 シリコン基板 1 6 1上に火炎 堆積法で S i 02 を主体にした下部クラッドガラスス一ト 1 6 2、 S i 02 に G e〇2 を添加したコアガラスス一ト 1 6 3を堆積した (F I G. 3 5 A)。 その 後、 1 0 0 0 °C以上の高温でガラス透明化を行った。 この時に、 下部クラッド ガラス層 1 6 4、 コアガラス 1 6 5は設計した厚さとなるように、 ガラスの堆 積を行った (F I G. 3 5 B)。 引き続き、 フォトリソグラフィ技術を用いてコ ァガラス 1 6 5上にエッチングマスク 1 6 6を形成し (F I G. 3 5 C)、 反応 性イオンエッチングによってコアガラス 1 6 5のパターン化を行った (F I G. 3 5 D) 0 エッチングマスク 1 6 6を除去した後、 上部クラッドガラス 1 6 7を: 再度火炎堆積法で形成した。 上部クラッドガラス 1 6 7には B 23や P 2 03な どのド一パントを添加してガラス転移温度を下げ、 それぞれのコアガラス 1 6 5とコアガラス 1 6 5の狭い隙間にも上部クラッドガラス 1 6 7が入り込むよ うにした (F I G... 3 5 E)。 さらに、 上部クラッドガラス 1 6 7の表面に薄膜 ヒ一タ (図示せず) とそれにつながる電気配線(図示せず) をパターン化した。 また、各実施形態で述べた光モジュールは、次のように組み立てた(F I G. 3 6を参照)。 すなわち、 光モジュールは、 熱伝導性の良い筐体 7 0 1の内部に ペルチェ保持板 7 0 2を固定ネジ 7 0 3で固定し、 ペルチェ保持板 7 0 2を掘 削して作製した凹部にペルチヱ素子と温度センサ (熱電対) (図示しない) をそ の近傍に配置する。 ペルチェ素子及び温度センサの直上に、 上記各実施形態に 示した干渉計型光スィッチもしくは可変光アツテネ一夕からなるチップ 7 0 4 が来るように配置する。 チップ 7 0 4の端部にはガラス板 7 0 5を接着剤で接 着し、 ブアイバ 7 0 6を保持しているファイバブロック 7 0 7と光結合するよ うに接着している。 ファイバ 7 0 6は筐体 7 0 1の縁に設けた凹部に断熱性弾 性接着剤 7 0 8で接着してあり、 さらにファイバコード 7 0 9を有するフアイ バブーツ 7 1 0を筐体 7 0 1に埋め込むように保持している。 チップ 7 0 4は ペルチヱ保持板に断熱性弾性接着剤 7 0 8で接着されている。 最後に、 これら を被うように蓋をかぶせてネジ止めし、 本発明の光モジュールを組み立てた。 • なお、 蓋とネジ止め部は図示していない。 なお、 これはモジュール化の一例で ある。 上記本発明の各実施形態では、 入力導波路と出力導波路がチップ上の異 なる端面から取り出されているが、 もちろん同一端面に来るように回路をレイ アウトしても構わない。 そうすれば、 1つのファイバブロックだけで入力導波 路と出力導波路をファイバと接続することができる。
本発明の回路は異なる独立したチップとして作製する場合もあるが、 それら をチップ間で直接接続することにより 1つのチップにしてもよいし、 複数チッ プ間で光を結合させ、 光モジュールを形成してもよい。 また、 それぞれのチッ プごとに別々の光モジュールを作製し、 光モジュール間をファイバで結合して も良い。 さらに、 1つの筐体内部に上記 2つ以上のチップをそれぞれペルチェ 保持板の上に保持させた光モジュールを作製しても良い。
また、 本発明の干渉計型光スィツチもしくは可変光アツテネ一夕の形態は、 光導波路の種類、 形状、 材料、 屈折率、 作製法によらない。 例えば、 その導波 路材料がポリイミド、 シリコン、 半導体、 L i N b 02などであってもよいし、 基板材質が石英などであってもよい。 また、 例えば、 その製造方法が、 スピン コート法、 ゾルゲル法、 スパッ夕法、 C V D法、 イオン拡散法、 イオンビーム 直接描画法などであっても本発明は適用可能である。 また、 本発明の各実施形 態では、 正方形の光導波路を用いたが、 長方形、 多角形、 円形など任意の形状 を用いることができる。 例えば、 光導波路のコア幅を部分的に変え、 屈折率を 他の部分と異なる値にすることができる。 また、 光導波路に応力を付与し、 屈 折率の値を変化させることもできる。 さらに、 本回路は石英系光導波路を用い たが、 異なる材料を透過するようにしても良い。 例えば、 光導波路中にシリコ ン樹脂などの材料を含んでも良いし、ポリイミド波長板を含んでも良い。また、 各種温度補償法や偏波依存性低減法を適用してよい。
また、 レーザ照射などの光照射法や薄膜ヒータなどによる局所加熱法などを 用いて光導波路の屈折率を局所的に変化させ、.光学的な光路長差や光合分波手 段の結合特性、 位相特性を調整することもできる。 また、 光のスイッチング動 作には薄膜ヒー夕による熱光学効果を用いたが、 これに限らず、 例えば、 光照 射を用いても良いし、 電気光学効果、 磁気光学効果などを用いても良い。 もち ろんその領域の形状は任意である。
さらに、 平面型光導波路に限らず、 例えば積層光導波路や光ファイバなどを 用いて光導波路を構成してもよいし、 平面光導波路と光ファイバなど、 複数種 類の光導波路を組み合わせて構成しても良い。 また光導波路にグレーティング が形成されていても良いし、 光導波路が途中で分割、 分断されていてもよい。 もちろん、 本発明の干渉計型光スィツチおよび可変光アツテネ一夕は光導波路 に限定されず、 光を空間中に伝搬させた空間光学系で干渉回路を構成してもよ レ 。 例えば、 この空間光学系は半透明鏡、 全反射鏡、 多層膜などから構成され ていてもよい。 このように、 空間光学系を用いても、 回路を光導波路で構成し た場合と同様の効果が実現できる。 また、 以上に述べた各実施形態における干 渉計型光スィッチおよび可変光アツテネ一タは本発明の構成例の 1つであり、 これらの構成に限定されるものではない。
以上、 各実施形態で用いた N + 1個の光結合器と隣接する光結合器に挟まれ た N個の光路長差付与部とによって構成される光合分波手段は、 位相生成カブ ラの構成例であり、例えば多光束干渉フィル夕、 トランスバ一サル型フィル夕、 マイケルソン干渉計型フィルタ、 フアブリべ口一干渉計型フィルタ、 リング共 振器付フィルタなど各種フィル夕構成を光合分波手段として用いてもよい。 さ らに、 位相生成力ブラを構成する光結合器や、 光合分波手段として、 本発明の 各実施形態で述べた方向性結合器以外にもマルチモード干渉力ブラ、 可変カブ ラ、 X分岐力ブラ、 Y分岐力ブラなど任意の種類のものを用いることができる し、 またそれらを組み合わせることもできる。 さらにまた、 上記光合分波手段 に与えた結合率や光路長差付与部の光路長差の値や計算方法も 1つの例である < それらは利用する形態に合わせて最適値を求めればよい。 また、 位相生成カブ ラの構成法や最適値が複数ある場合は、 サイズ、 製造トレランス、 過剰損失な どを考慮して最も好適な形態を選択してもよい。
さらになお、 本発明の好適な実施形態とその変形例を例示して説明したが、 本発明の実施形態は上記例示に限定されるものではなく、 請求の範囲の各請求 項に記載の範囲内であれば、その構成部材等の置換、変更、 追加、個数の増減、 形状の変更等の各種変形は、 全て本発明の実施形態に含まれる。 産業上の利用の可能性
マルチメディア時代の到来と共に、 大量の情報を効率よく扱えるネットヮ一 クの実現が大きな課題となってきている。 各家庭とネットワークを光ファイバ で結ぶアクセス系の光化を含めて、 今後柔軟で効率的な構造を持つネットヮ一 クを構築していくには、 光の波長多重 (WDM) 技術を取り入れていくことが 必要不可欠である。 元来、 光部品は数 TH zの広大な帯域を有しており、 現在 のネットワークはそのごく一部を利用しているに過ぎない。 波長多重によりこ の帯域を分割して使用できれば、 容量の拡大を初めとしマルチメディア通信に 不可欠な多様な情報を大量にかつ容易に取り扱えるネットワークが実現できる < 近年では光スィッチを用いた光クロスコネクトシステムゃ光ァドドロップ多 重システムは WD M技術のキ一デバイスであり、 多くの需要が見込まれる。 本 発明の干渉計型光スィッチおよび可変光アツテネ一夕はこれらの光システムだ けでなく、 光スィツチ素子として多くの分野で利用することができる。

Claims

請求の範囲
1. 第 1の光合分波手段と、 前記第 1の光合分波手段に接続された 2本の光 導波路からなる光路長差付与部と、 前記光路長差付与部に接続された第 2の光 合分波手段と、.前記第 1の光合分波手段に接続された 1つあるいは複数の入力 導波路と、 前記第 2の光合分波手段に接続された 1つあるいは複数の出力導波 路と、 前記光路長差付与部に設けられた位相シフタとを備えた導波路型光回路 • からなり、
前記第 1の光合分波手段もしくは前記第 2の光合分波手段のうち少なくとも 一方は、 出力の位相差が波長依存性を持つ位相生成力ブラであることを特徴と する干渉計型光スィッチ。
2. 請求項 1に記載の干渉計型光スィツチにおいて、
光の波長をえ、 前記第 1の光合分波手段により出力される光の位相差を 2 π : (λ)、 前記光路長差付与部の光学的光路長差^ 1Lに起因する位相差を 27C (え)、 前記第 2の光合分波手段により出力される光の位相差を 2 ττφ2 (λ) とすると、
前記 3つの位相差の総和 2 {φ1(λ) + φ^Ι.(λ) + 2(λ)} が、 波長無依存 になるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手 段の出力の位相差と、 前記光路長差付与部の光学的光路長差 ^ Lとが設定され たことを特徴とする干渉計型光スィッチ。
3 - 請求項 2に記載の干渉計型光スィツチにおいて、
前記第 1の光合分波手段の出力の位相差 Φェ(λ)と、 前記第 2の光合分波手段 の出力の位相差 Φ2(λ)との和が、 / λ + m / 2 (mは整数) であること を特徴とする干渉計型光スィツチ。
4. 請求項 2に記載の干渉計型光スィッチにおいて、 前記 3つの位相差の総和 2 ττ { 1(λ) + φ 1ι(λ) + φ2(λ)} が、 (2m' + 1) · π (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定された ことを特徴とする干渉計型光スィッチ。
5. 請求項 2に記載の干渉 I†型光スィッチにおいて、
前記 3つの位相差の総和 2 π { 1(λ) + ^Ι[,(λ) + 2(λ)} が、 2m' · π (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光 合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする干渉計 型光スィッチ。
6. 請求項 1に記載の干渉計型光スィッチにおいて、
光の波長を λ、 前記第 1の光合分波手段から出力する光の位相差を 27Τ φ丄 (入)、 前記光路長差付与部の光学的光路長差 に起因する位相差を 2 ττφ L (え)、 前記第 2の光合分波手段から出力する光の位相差を 2 πφ2 (λ) とす ると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 2 π { , (λ) +ΦΔ^ (λ) + 2 (λ)} が設定されたこ とを特徴とする干渉計型光スィツチ。
7. 請求項 1に記載の干渉計型光スィツチにおいて、
前記位相生成力ブラが光結合器と光路長差付与部との接続により構成された ものであることを特徴とする干渉計型光スィッチ。
8. 請求項 7に記載の干渉計型光スィツチにおいて、
光の波長を λ、 前記第 1の光合分波手段により出力される光の位相差を 2 π , (λ), 前記光路長差付与部の光学的光路長差 !Lに起因する位相差を 2 ττ (t> L (λ)、 前記第 2の光合分波手段により出力される光の位相差を 2 ττφ2 (λ) とすると、 前記 3つの位相差の総和 2 ττ {φ1(λ)ί ι(λ)^φ2(λ)} が、 波長無依存 になるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手 段の出力の位相差と、 前記光路長差付与部の光学的光路長差 ^ Lとが設定され たことを特徴とする干渉計型光スィッチ。
9. 請求項 8に記載の干渉計型光スィッチにおいて、
前記第 1の光合分波手段の出力の位相差 Φェ(λ)と、 前記第 2の光合分波手段 の出力の位相差 Φ2(λ)との和が、 1L / λ + m / 2 (mは整数) であること を特徴とする干渉計型光スィッチ。
10. 請求項 8に記載の干渉計型光スィツチにおいて、
前記 3つの位相差の総和 2 π {φ1(λ) + ΐΙ.(λ) + 2(λ)} が、 (2m, + 1) · π (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定された ことを特徴とする干渉計型光スィッチ。
11. 請求項 8に記載の干渉計型光スィツチにおいて、
前記 3つの位相差の総和 27T
Figure imgf000085_0001
が、 2m, · C (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光 合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする干渉計 型光スィッチ。 ―
12. 請求項 7に記載の干渉計型光スィッチにおいて、
光の波長を λ、 前記第 1の光合分波手段から出力する光の位相差を 2 ^(^ (入)、 前記光路長差付与部の光学的光路長差 に起因する位相差を 2 πφ L (λ), 前記第 2の光合分波手段から出力する光の位相差を 2 τε(ί)2 (λ) とす ると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 27Τ {φ1 (λ) +<bA (λ) +ώ (λ)} が設定されたこ とを特徴とする干渉計型光スィツチ。
13. 請求項 7に記載の干渉計型光スィッチにおいて、
前記位相生成力ブラが、 N+ 1個 (Nは自然数) の光結合器と、 隣接する前 記光結合器に挟まれた N個の光路長差付与部とによって構成されたものである ことを特徴とする干渉計型光スィツチ。
14. 請求項 13に記載の干渉計型光スィツチにおいて、
光の波長をえ、 前記第 1の光合分波手段により出力される光の位相差を 27C • Φ1 (え)、 前記光路長差付与部の光学的光路長差^ ILに起因する位相差を 2兀 ΦΑ^ (え)、 前記第 2の光合分波手段により出力される光の位相差を 2 πφ2 (λ) とすると、
前記 3つの位相差の総和 27t {φι{λ) Αι λ) ζ{λ)} が、 波長無依存 になるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手 段の出力の位相差と、 前記光路長差付与部の光学的光路長差^ 1Lとが設定され たことを特徴とする干渉計型光スィッチ。 :
1 5. 請求項 14に記載の干渉計型光スィッチにおいて、
前記第 1の光合分波手段の出力の位相差 Φェ(λ)と、 前記第 2の光合分波手段 の出力の位相差 φ2(λ)との和が、 L / λ + m / 2 (mは整数) であること を特徴とする干渉計型光スィツチ。
16. 請求項 14に記載の干渉計型光スィツチにおいて、
前記 3つの位相差の総和 2 {φ1(λ) + ^ι(λ) + φ2(λ)} が、 (2m, + 1) - % (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定された ことを特徴とする干渉計型光スィッチ。
17. 請求項 14に記載の干渉計型光スィツチにおいて、
前記 3つの位相差の総和 2 π {(ί^ (λ) + Φ^^(λ) + (ί)2(λ)} が、 2m, . C (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光 合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする干渉計 型光スィッチ。
18. 請求項 13に記載の干渉計型光スィッチにおいて、
光の波長をえ、 前記第 1の;^合分波手段から出力する光の位相差を 2兀 丄 (入)、 前記光路長差付与部の光学的光路長差 Lに起因する位相差を 2 ττφ L (え)、 前記第 2の光合分波手段から出力する光の位相差を 2 ττφ2 (λ) とす ると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 27Τ { 1 (λ) + ^ (λ) + 2 (λ)} が設定されたこ とを特徴とする干渉計型光スィツチ。
19. 請求項 7に記載の干渉計型光スィツチにおいて、
前記第 1の光合分波手段もしくは前記第 2の光合分波手段のうち一方が、 位 相差 2 πφ ε (定数) の光結合器であり、 他方が 2つの光結合器と該 2つの光 結合器に挟まれた一つの光路長差付与部から構成された位相差 2 πφ (λ) の 位相生成力ブラであり、
前記光路長差付与部の光学的光路長差を L、 mを整数とすると ' φ (λ) = L /..λ + m / 2 - φο (数式 1 1) を満たすように、 前記位相生成力ブラを構成する 2つの光結合器の分岐比と、 一つの光路長差付与部の光学的光路長差とが設定されたことを特徴とする干渉 計型光スィッチ。
20. 請求項 19に記載の干渉計型光スィッチにおいて、
前記第 1の光合分波手段と第 2の光合分波手段の出力の位相差と、 前記光路 長差付与部の光学的光路長差 1Lに起因する位相差 2 πφ ^ (λ) との総和 2 Γ { (λ) + ^,.(λ) + φο(λ)} が、 (2m' +1) · 7t (m' は整数) に設定さ れ、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定されたことを特徴とする干渉計型光ス ィツチ。
2 1. 請求項 1 9に記載の干渉計型光スィツチにおいて、
前記第 1の光合分波手段と第 2の光合分波手段の出力の位相差と、 前記光路 長差付与部の光学的光路長差 に起因する位相差 2 πφ L (λ) との総和 2 π {φ (λ) +
Figure imgf000088_0001
+ φ。 (λ)} が、 2m, · % (m' は整数) に設定され、 前 ■ 記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比の合計が 1 になるよう設定されたことを特徴とする干渉計型光スィッチ。
2 2. 請求項 1 9に記載の干渉計型光スィツチにおいて、
光の波長を λ、 前記光路長差付与部の光学的光路長差 l Lに起因する位相差 を 2 πφ ^ (λ) .とすると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 27Τ { (λ) + φ^ί(λ) + ο (λ)} が設定されたことを特徴 とする干渉計型光スィッチ。
2 3. 請求項 7に記載の干渉計型光スィッチにおいて、
前記第 1の光合分波手段及び前記第 2の光合分波手段が、 夫々 2つの光結合 器と前記 2つの光結合器に挟まれた一つの光路長差付与部から構成された位相 生成力ブラであり、
前記光路長差付与部の光学的光路長差を^! L、 mを整数とすると、 前記第 1 の光合分波手段の出力の位相差 2 TC ci^ (λ) と前記第 2の光合分波手段の出力 の位相差 2 πφ2 (λ) との和が、
φ,(λ) + φ2 (λ) = L / λ + m / 2 (数式 1 2) を満たすように、 前記第 1の光合分波手段及び前記第 2の光合分波手段を構成 する夫々の 2つの光結合器の分岐比と、 一つの光路長差付与部の光学的光路長 差とが設定されたことを特徴とする干渉計型光:
24. 請求項 23に記載の干渉計型光スィツチにおいて、
前記第 1の光合分波手段と第 2の光合分波手段の出力の位相差と、 前記光路 長差付与部の光学的光路長差^ 1Lに起因する位相差 2 ττφ^^ (λ) との総和 2 π (λ) + !ί(λ) + 2(λ)} が、 (2m, +1) · π (m' は整数) に設定 され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定されたことを特徴とする干渉計型光ス イッチ。
25. 請求項 23に記載の干渉計型光スィツチにおいて、
前記第 1の光合分波手段と第 2の光合分波手段の出力の位相差と、 前記光路 長差付与部の光学的光路長差^ 1Lに起因する位相差 2 ττφ L (^) との総和 2 π { 1(λ) φΑι(λ) 2(λ)} が、 2m, · Τ (m, は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2'の光合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする干渉計型光スィッチ。
26. 請求項 23に記載の干渉計型光スィツチにおいて、
光の波長を λ、 前記光路長差付与部の光学的光路長差 Lに起因する位相差 を 27T<i) L (λ) とすると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 27t {φ1 (λ) +ΦΑ^ (λ) + 2 (λ)} が設定されたこ とを特徴とする干渉計型光スィツチ。
27. 請求項 7に記載の干渉計型光スィツチにおいて、
前記第 1の光合分波手段及び前記第 2の光合分波手段が夫々、 N+ 1個 (Ν は自然数) の光結合器と、 隣接する前記光結合器に挟まれて第 1と第 2の 2本 の光導波路 (遅延線) からなる Ν個の光路長差付与部とによって構成された位 相生成力ブラであり、 前記第 1の光合分波手段の N個の光路長差付与部を構成する第 1光導波路の 光学的光路長差の総和を∑ w、 第 2光導波路の光学的光路長差の総和を∑ 4、 前記第 2の光合分波手段の N個の光路長差付与部を構成する第 1光導波路の光 学的光路長差の総和を∑ 2、 第 2光導波路の光学的光路長差の総和を: s ,2とす ると、 前記光学的光路長差の榉和が ^ ? ^かっ:^ 〉 ^^)、 もしくは、
(∑Sl2>1 > Σδ1かつ∑δ!2,2 >∑ 2 ) のいずれかを満たすことを特徵とする干渉計型 光スィッチ。
• 28. 請求項 27に記載の干渉計型光スィッチにおいて、
光の波長をえ、 前記第 1の光合分波手段により出力される光の位相差を 2 π , (λ)、 前記光路長差付与部の光学的光路長差^ 1Lに起因する位相差を 2 π (入)、 前記第 2の光合分波手段により出力される光の位相差を 27Τ 2 (λ) とすると、
前記 3つの位相差の総和 2 π
Figure imgf000090_0001
が、 波長無依存 になるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手 段の出力の位相差と、 前記光路長差付与部の光学的光路長差 とが設定され たことを特徴とする干渉計型光スィッチ。
29. 請求項 28に記載の干渉計型光スィッチにおいて、
前記第 1の光合分波手段の出力の位相差 ェ(λ)と、前記第 2の光合分波手段 の出力の位相差 φ2(λ)との和が、 / λ i m / 2 (mは整数) であること を特徴とする干渉計型光スィツチ。
30. 請求項 28に記載の干渉計型光スィッチにおいて、
前記 3つの位相差の総和 27T {φ1(λ) + φ^ι(λ) + φ2(λ)} が、 (2m, + 1) - π (τη' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定された ことを特徴とする干渉計型光:
31. 請求項 28に記載の干渉計型光スィッチにおいて、 前記 3つの位相差の総和 27C {φ1(λ) + ^ί(λ) + φ2(λ)} が、 2 m' · 7Τ (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光 合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする干渉計 型光スィッチ。 .
32. 請求項 27に記載の干渉計型光スィツチにおいて、
光の波長を λ、 前記第 1の光合分波手段から出力する光の位相差を 27Τ φェ (λ)、 前記光路長差付与部の光学的光路長差 Lに起因する位相差を 2 πφ^ L (λ), 前記第 2の光合分波手段から出力する光の位相差を 2 πφ2 (λ) とす ると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 2 π {φ, (λ) +ΦΑ^ (λ) + 2 (λ)} が設定されたこ とを特徴とする干渉計型光スィッチ。
33. 請求項 27に記載の干渉計型光スィッチにおいて、
前記第 1の光合分波手段の Ν+ 1個の光結合器の分岐比と前記第 2の光合分 波手段の Ν+ 1個の光結合器の分岐比とが等しい値に設定されたことを特徴と する干渉計型光スィッチ。
34. 請求項 3—3に記載の干渉計型光スィツチにおいて、
前記第 1の光合分波手段の出力の位相差 Φェ(λ)と、 前記第 2の光合分波手段 の出力の位相差 Φ2(λ)との和が、 L / λ + m / 2 (mは整数) であり、 光の波長を λ、 前記光路長差付与部の光学的光路長差 ^ Lに起因する位相差 を 2 πφ^^ (λ) とすると、
2 % { 1(λ) + Φ^11.(λ) + 2(λ)} が、 (2m' +1) · % (m' は整数) に なるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手段 の出力の位相差と、 前記光路長差付与部の光学的光路長差^ 1Lとが設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全 波長領域にわたり等しくなるよう設定されたことを特徴とする干渉計型光スィ ツチ。
35. 請求項 33に記載の干渉計型光スィッチにおいて、
前記第 1の光合分波手段の出力の位相差 Φ^λ)と、 前記第 2の光合分波手段 の出力の位相差 Φ2(λ)との和が、 / λ + m / 2 (mは整数) であり、 光の波長を λ、 前記光路長尊付与部の光学的光路長差 Lに起因する位相差 . を 2 (λ) とすると、
2 % { 1(λ) + φ^ι(λ) + φ2(λ)} が、 2m' · π (m, は整数) になるよ う前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手段の出力 の位相差と、 前記光路長差付与部の光学的光路長差 とが設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比の合計 ' が 1になるよう設定されたことを特徴とする干渉計型光スィッチ。
36. 請求項 33に記載の干渉計型光スィッチにおいて、
光の波長を人、 前記第 1の光合分波手段から出力する光の位相差を 2
Figure imgf000092_0001
(え)、 前記光路長差付与部の光学的光路長差 Lに起因する位相差を 2 πφ L (λ)、 前記第 2の光合分波手段から出力する光の位相差を 2 πφ2 (λ) とす ると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 2 π { 1 (λ) +<i)^L (λ) + 2 (λ)} が設定されたこ とを特徴とする干渉計型光スィツチ。
37. 請求項 7に記載の干渉計型光スィツチにおいて、
前記第 1の光合分波手段及び前記第 2の光合分波手段が夫々、 Ν + 1個 (Ν は自然数) の光結合器と、 隣接する前記光結合器に挟まれた Ν個の光路長差付 与部とによって構成された位相生成力ブラであり、 前記第 1の光合分波手段の N+ 1個の光結合器の分岐比と前記第 2の光合分 波手段の N+ 1個の光結合器の分岐比とが等しい値に設定されたことを特徴と する干渉計型光スィッチ。
38. 請求項 37に記載の干渉計型光スィツチにおいて、
光の波長をえ、 前記第 1の光合分波手段により出力される光の位相差を 2 φ, (λ)、 前記光路長差付与部の光学的光路長差 に起因する位相差を 2 π Φ ^ (λ)、 前記第 2の光合分波手段により出力される光の位相差を 2 ττφ2 • (λ) とすると、
前記 3つの位相差の総和 2 π {φ1{λ) Αι{λ) 2{λ)} が、 波長無依存 になるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手 段の出力の位相差と、 前記光路長差付与部の光学的光路長差 Lとが設定され' たことを特徴とする干渉計型光スィッチ。
39. 請求項 38に記載の干渉計型光スィツチにおいて、
前記第 1の光合分波手段の出力の位相差 Φェ(λ)と、 前記第 2の光合分波手段 の出力の位相差 Φ2(λ)との和が、 / λ + m / 2 (mは整数) であること を特徴とする干渉計型光スィツチ。
40. 請求項 38に記載の干渉計型光スィツチにおいて、
前記 3つの位相差の総和 2 T { 1(λ) + φ^ί(λ) + φ2(λ)} が、 (2m, + 1) - % (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定された ことを特徴とする干渉計型光スィッチ。
41. 請求項 38に記載の干渉計型光スィツチにおいて、
前記 3つの位相差の総和 2 π {φ1(λ) φ ι(λ)ίφ2(λ)} が、 2m, ' 7t (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光 合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする干渉計 型光:
42. 請求項 37に記載の干渉計型光スィツチにおいて、
光の波長を λ、 前記第 1の光合分波手段から出力する光の位相差を 2 π d)ェ (入)、 前記光路長差付与部の光学的光路長差 に起因する位相差を 2 ττφ^Ι L (λ)、 前記第 2の光合分波手段から出力する光の位相差を 2 ττφ2 (λ) とす ると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 2 π { 1 (λ) +ΦΑ^ (λ) + 2 (λ)} が設定されたこ とを特徴とする干渉計型光スィッチ。
43. 請求項 1に記載の干渉計型光スィッチの出力強度を可変にして用いた ことを特徴とする可変光アツテネ一夕。
44. 請求項 43に記載の可変光アツテネ一夕において、
光の波長を λ、 前記第 1の光合分波手段により出力される光の位相差を 27Τ , (え)、 前記光路長差付与部の光学的光路長差^ 1Lに起因する位相差を 2 π Α^ (え)、 前記第 2の光合分波手段により出力される光の位相差を 2 ττ.φ2 (λ) とすると、
前記 3つの位相差の総和 27t {(^( )+ λ) + φ2(λ)} 'が、 波長無依存 になるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手 段の出力の位相差と、 前記光路長差付与部の光学的光路長差 とが設定され たことを特徴とする可変光アツテネ一夕。
45. 請求項 44に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段の出力の位相差 φェ(λ)と、 前記第 2の光合分波手段 の出力の位相差 φ2(λ)との和が、 / λ + Hi / 2 (mは整数) であること を特徴とする可変光アツテネ一夕。
46. 請求項 44に記載の可変光アツテネ一夕において、 前記 3つの位相差の総和 2 ττ {φ1{λ)ίφ ι(λ)^φ2(λ)} が、 (2m' + 1) . π (τη' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定された ことを特徴とする可変光アツテネ一夕。
47. 請求項 44に記載の可変光アツテネー夕において、
前記 3つの位相差の総和 2 π { 1(λ) + φ^[,(λ) + φ2(λ)} が、 2m' · π (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光 • 合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする可変光 アツテネ一夕。
48. 請求項 43に記載の可変光アツテネ一夕において、
光の波長を λ、 前記第 1の光合分波手段から出力する光の位相差を 2 π φ丄 (入)、 前記光路長差付与部の光学的光路長差^ ILに起因する位相差を 2 ττφ L (λ), 前記第 2の光合分波手段から出力する光の位相差を 2 τϋφ2 (λ) とす ると、. '
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 2 π {φ1 (λ) +(i>^L (λ) +φ2 (λ)} が設定されたこ とを特徴とする可変光アツテネ一夕。
49. 請求項 43に記載の可変光アツテネー夕において、
前記位相生成力ブラが光結合器と光路長差付与部との接続により構成された ものであることを特徴とする可変光アツテネ一夕。
5 0. 請求項 49に記載の可変光アツテネー夕において、
光の波長を λ、 前記第 1の光合分波手段により出力される光の位相差を 2 π χ (え)、 前記光路長差付与部の光学的光路長差^ 1Lに起因する位相差を 2兀 Α^ (え)、 前記第 2の光合分波手段により出力される光の位相差を 2 ττφ2 (λ) とすると、 前記 3つの位相差の総和 2 π {(^(λ φ^^λ Φ^λ)} が、 波長無依存 になるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手 段の出力の位相差と、 前記光路長差付与部の光学的光路長差 Lとが設定され たことを特徴とする可変光ァッテネ一夕。
51. 請求項 50に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段の出力の位相差 Φ i (λ)と、 前記第 2の光合分波手段 の出力の位相差 Φ2(λ)との和が、 / λ + m / 2 (mは整数) であること を特徴とする可変光アツテネ一夕。
52. 請求項 50に記載の可変光アツテネ一夕において、
前記 3つの位相差の総和 2 π {φ1(λ) + !ί(λ) + 2(λ)} が、 (2m' +
1) · 7T (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第
2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定された ことを特徴とする可変光アツテネ一夕。
53. 請求項 50に記載の可変光アツテネ一夕において、
前記 3つの位相差の総和 2 π
Figure imgf000096_0001
が、 2m, · (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光 合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする可変光 アツテネ一夕。 ―
54. 請求項 49に記載の可変光アツテネー夕において、
光の波長をえ、 前記第 1の光合分波手段から出力する光の位相差を 2 ^(ί^ (入)、 前記光路長差付与部の光学的光路長差 に起因する位相差を 2 πφ^ L (λ)、 前記第 2の光合分波手段から出力する光の位相差を 2 φ2 (λ) とす ると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 2 π { , (λ) (λ) +φ2 (λ)} が設定されたこ とを特徴とする可変光アツテネー夕。
55. 請求項 49に記載の可変光アツテネ一夕において、
前記位相生成力ブラが、 N+ 1個 (Nは自然数) の光結合器と、 隣接する前 記光結合器に挟まれた N個の光路長差付与部とによって構成されたものである ことを特徴とする可変光アツテネ一夕。
56. 請求項 55に記載の可変光アツテネー夕において、
光の波長を λ、 前記第 1の光合分波手段により出力される光の位相差を 2 % ί (λ)、 前記光路長差付与部の光学的光路長差 に起因する位相差を 2 ττ Α^ (え)、 前記第 2の光合分波手段により出力される光の位相差を 2 πφ2 (λ) とすると、
前記 3つの位相差の総和 2 π {φ1{λ) Αι{λ) 2{λ)} が、 波長無依存 になるよう前記第 1の光'合分波手段の出力の位相差と、 前記第 2の光合分波手 段の出力の位相差と、 前記光路長差付与部の光学的光路長差 とが設定され たことを特徴とする可変光ァッテネー夕。
57. 請求項 56に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段の出力の位相差 Φェ(λ)と、 前記第 2の光合分波手段 の出力の位相差 φ2(λ)との和が、 / λ + m / 2 (mは整数) であること を特徴とする可変光アツテネ一夕。
58. 請求項 56に記載の可変光アツテネー夕において、
前記 3つの位相差の総和 2 π {φ1{λ) Αι{λ) φ2{λ)} が、 (2m, + 1) - % (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定された ことを特徴とする可変光アツテネ一夕。
59. 請求項 56に記載の可変光アツテネ一夕において、
前記 3つの位相差の総和 2 T
Figure imgf000097_0001
が、 2m' · π (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光 合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする可変光 アツテネ一夕。
60. 請求項 55に記載の可変光アツテネ一夕において、
光の波長をえ、 前記第 1の光合分波手段から出力する光の位相差を 2
Figure imgf000098_0001
(入)、 前記光路長差付与部の光学的光路長差^ 1Lに起因する位相差を 2 πφ^Ι L (λ), 前記第 2の光合分波手段から出力する光の位相差を 2 ττφ2 (λ) とす + ると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 27C { χ (λ) +<i) L (Λ) +φ2 (λ)} が設定されたこ とを特徴とする可変光アツテネ一夕。
61. 請求項 49に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段もしくは前記第 2の光合分波手段のうち一方が、 位 相差 2 πφ ε (定数) の光結合器であり、 他方が 2つの光結合器と該 2つの光 結合器に挟まれた一つの光路長差付与部から構成された位相差 2 ττφ (λ) の 位相生成力ブラであり、
前記光路長差付与部の光学的光路長差を L、 mを整数とすると
(λ) = A /_λ + m / 2 - ο (数式 13) を満たすように、 前記位相生成力ブラを構成する 2つの光結合器の分岐比と、 一つの光路長差付与部の光学的光路長差とが設定されたことを特徴とする可変 光アツテネ一夕。
62. 請求項 61に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段と第 2の光合分波手段の出力の位相差と、 前記光路 長差付与部の光学的光路長差 に起因する位相差 2 ττφ ^ (λ) との総和 2 π { (λ) + ΐ,(λ) + ο(λ)} が、 (2m' +1) · % (m' は整数) に設定さ れ、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定されたことを特徴とする可変光アツテ ネー夕。
6 3. 請求項 6 1に記載の可変光アツテネー夕において、
前記第 1の光合分波手段と第 2の光合分波手段の出力の位相差と、 前記光路 長差付与部の光学的光路長差^ 1Lに起因する位相差 2 ττφ L (λ) との総和 2 % {φ (λ) + φ ι(λ) + ζ (λ)} が、 2m' · % (m' は整数) に設定され、 前 ■記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比の合計が 1 になるよう設定されたことを特徴とする可変光アツテネ一夕。
64. 請求項 6 1に記載の可変光アツテネ一夕において、
光の波長を λ、 前記光路長差付与部の光学的光路長差 Lに起因する位相差 を 2 πΦ (λ) とすると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 ' つの位相差の総和 27Τ {φ (λ) + φ 4(λ) + φΰ (λ)} が設定されたことを特徴: とする可変光アツテネ一夕。
6 5. 請求項 49に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段及び前記第 2の光合分波手段が、 夫々 2つの光結合 器と前記 2つの光結合器に挟まれた一つの光路長差付与部から構成された位相 生成力ブラであり、
前記光路長差付与部の光学的光路長差を 1L、 mを整数とすると、 前記第 1 の光合分波手段の出力の位相差 2 Tc ci^ (λ) と前記第 2の光合分波手段の出力 の位相差 2 πφ2 (λ) との和が、
Φ,(λ) + φ2 (λ) = !L / λ + m / 2 (数式 14) を満たすように、 前記第 1の光合分波手段及び前記第 2の光合分波手段を構成 する夫々の 2つの光結合器の分岐比と、 一つの光路長差付与部の光学的光路長 差とが設定されたことを特徴とする可変光アツテネー夕。
6 6. 請求項 6 5に記載の可変光アツテネ一夕において、
前記第 1の光合分波 段と第 2の光合分波手段の出力の位相差と、 前記光路 長差付与部の光学的光路長差 1Lに起因する位相差 2 ττφ^^ (λ) との総和 2 π { 1(λ) + ^Ι,(λ) + φ2( )} 力 (2m' +1) · % (m' は整数) に設定 され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定されたことを特徴とする可変光アツテ ネー夕。
6 7. 請求項 6 5に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段と第 2の光合分波手段の出力の位相差と、 前記光路 長差付与部の光学的光路長差^ ILに起因する位相差 2 ττφ ^ (λ) との総和 2 % {φ1(λ)^ ι(λ)^φ2(λ)} が、 2m, ' 7t (m, は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする可変光アツテネ一夕。
6 8. 請求項 6 5に記載の可変光アツテネ一夕において、
光の波長を λ、 前記光路長差付与部の光学的光路長差 Lに起因する位相差 を 2 TC* l (λ) とすると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 27Τ { 1 (λ) + A (λ) + 2 (λ)} が設定されたこ とを特徴とする可変光アツテネ一夕。
6 9. 請求項 49に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段及び前記第 2の光合分波手段が夫々、 Ν + 1個 (Ν は自然数) の光結合器と、 隣接する前記光結合器に挟まれて第 1と第 2の 2本 の光導波路 (遅延線) からなる Ν個の光路長差付与部とによって構成された位 相生成力ブラであり、 前記第 1の光合分波手段の N個の光路長差付与部を構成する第 1光導波路の 光学的光路長差の総和を∑ 、 第 2光導波路の光学的光路長差の総和を 、 前記第 2の光合分波手段の N個の光路長差付与部を構成する第 1光導波路の光 学的光路長差の総和を∑ 2、 第 2光導波路の光学的光路長差の総和を∑ ,2とす ると、 前記光学的光路長差の攀、和が かつ∑ 2>∑ 2)、 もしくは、 ( 〉? かつ∑ 2>∑ 2) のいずれかを満たすことを特徴とする可変光ァ ッテネータ。
+
70. 請求項 69に記載の可変光アツテネ一夕において、
光の波長をえ、 前記第 1の光合分波手段により出力される光の位相差を 27T Φ1 (λ)、 前記光路長差付与部の光学的光路長差 1Lに起因する位相差を 27Τ ΦΑ^ (λ), 前記第 2の光合分波手段により出力される光の位相差を 2 πφ2 (λ) とすると、
前記 3つの位相差の総和 27Τ { 1{λ) φΔι{λ) φ2{λ)} が、 波長無依存 になるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手 段の出力の位相差と、 前記光路長差付与部の光学的光路長差 とが設定され たことを特徴とする可変光アツテネ r "夕。
7 1. 請求項 70に記載の可変光アツテネー夕において、
前記第 1の光合分波手段の'出力の位相差 Φェ (λ)と、 前記第 2の光合分波手段 の出力の位相差 2(λ)との和が、 1L / λ + m / 2 (mは整数) であること を特徴とする可変光アツテネ一夕.。
72. 請求項 70に記載の可変光アツテネ一夕において、
前記 3つの位相差の総和 27T { 1{λ) φΑι{λ) φ2 λ)) が、 (2m, + 1) - % (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定された ことを特徵とする可変光アツテネ一夕。
73. 請求項 70に記載の可変光アツテネ一夕において、
前記 3つの位相差の総和 2 π { 1(λ) + ^1Ι.(λ) + φ2(λ)} が、 2m' · π (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光 合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする可変光 アツテネ—夕.。
74. 請求項 69に記載の可変光アツテネ一夕において、
光の波長を λ、 前記第 1の光合分波手段から出力する光の位相差を 2 π φ • (λ)、 前記光路長差付与部の光学的光路長差 Lに起因する位相差を 2 πφ ! L (λ), 前記第 2の光合分波手段から出力する光の位相差を 2 ττ(|)2 (λ) とす ると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 2 Τ {φ1 (λ) +ΦΛ^ (λ) +φ2 (λ)} が設定されたこ とを特徴とする可変光アツテネー夕。
75. 請求項 69に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段の Ν+ 1個の光結合器の分岐比と前記第 2の光合分 波手段の Ν+ 1個の光結合器の分岐比とが等しい値に設定されたことを特徴と する可変光アツテネ一夕。
76. 請求項 75に記載の可変光ァッテネ一夕において、
前記第 1の光合分波手段の出力の位相差 Φ i (λ)と、 前記第 2の光合分波手段 の出力の位相差 φ2(λ)との和が、 / λ + m / 2 (mは整数) であり、 光の波長を λ、 前記光路長差付与部の光学的光路長差 Lに起因する位相差 を 2 τΤ(ί)^^ (λ) とすると、
2 π {φ1(λ)^- ι(λ) 2(λ)} が、 (2m, +1) · % (m' は整数) に なるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手段 の出力の位相差と、 前記光路長差付与部の光学的光路長差^ 1Lとが設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全 波長領域にわたり等しくなるよう設定されたことを特徴とする可変光アツテネ
―タ
7 7. 請求項 7 5に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段の出力の位相差 Φ 1 (λ)と、 前記第 2の光合分波手段 の出力の位相差 Φ2(λ)との和が、 L / 久 + m / 2 (mは整数) であり、 光の波長を λ、 前記光路長差付与部の光学的光路長差^! Lに起因する位相差 を 2 ττφ ^ (λ) とすると、
2 C { 1(λ)^φ ι(λ)^φ2(λ)} が、 2m' · π (m' は整数) になるよ う前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手段の出力 の位相差と、 前記光路長差付与部の光学的光路長差^! Lとが設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比の合計 が 1になるよう設定されたことを特徴とする可変光アツテネ一夕。
7 8. 請求項 7 5に記載の可変光アツテネ一夕において、
光の波長をえ、 前記第 1の光合分波手段から出力する光の位相差を 27T 丄 (λ), 前記光路長差付与部の光学的光路長差 1Lに起因する位相差を 2 φ L (え)、 前記第 2の光合分波手段から出力する光の位相差を 2 ϋ(ί)2 (λ) とす ると、 _
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 つの位相差の総和 27Τ { 1 (λ) + Α^ (λ) + 2 (λ)} が設定されたこ とを特徴とする可変光ァッテネ一夕。
7 9. 請求項 49に記載の可変光アツテネ一夕において、
前記第 1の光合分波手段及び前記第 2の光合分波手段が夫々、 Ν + 1個 (Ν は自然数) の光結合器と、 隣接する前記光結合器に挟まれた Ν個の光路長差付 与部とによつて構成された位相生成力ブラであり、 前記第 1の光合分波手段の N + 1個の光結合器の分岐比と前記第 2の光合分 波手段の N+ 1個の光結合器の分岐比とが等しい値に設定されたことを特徴と する可変光アツテネ一夕。
80. 請求項 79に記載の可変光アツテネ一夕において、
光の波長をえ、 前記第 1の光合分波手段により出力される光の位相差を 27C φχ (λ)、 前記光路長差付与部の光学的光路長差^ !Lに起因する位相差を 27C Α^ (λ)、 前記第 2の光合分波手段により出力される光の位相差を 2 πφ2 • (λ) とすると、
前記 3つの位相差の総和 2 Τ { 1(λ) + ^Ι.(λ) + φ2(λ)} が、 波長無依存 になるよう前記第 1の光合分波手段の出力の位相差と、 前記第 2の光合分波手 段の出力の位相差と、 前記光路長差付与部の光学的光路長差^! Lとが設定され たことを特徴とする可変光アツテネー夕。
81. 請求項 80に記載の可変光アツテネ 夕において、
前記第 1の光合分波手段の出力の位相差 Φ i (λ)と、 前記第 2の光合分波手段 の出力の位相差 Φ2(λ)との和が、 / λ + ffl / 2 (mは整数) であること を特徴とする可変光アツテネ一夕。
82. 請求項 80に記載の可変光アツテネ一夕において、
前記 3つの位相差の総和 2 π {φι{λ) φΑι{λ) 2{λ)} が、 (2m, + 1) - π (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光合分波手段の分岐比が、 全波長領域にわたり等しくなるよう設定された ことを特徴とする可変光アツテネ一夕。
83. 請求項 80に記載の可変光アツテネ一夕において、
前記 3つの位相差の総和 2 π { 1(λ) + ΐ1.(λ) + φ2(λ)} が、 2 m' · π (m' は整数) に設定され、 前記第 1の光合分波手段の分岐比と前記第 2の光 合分波手段の分岐比の合計が 1になるよう設定されたことを特徴とする可変光 アツテネ一夕。
84. 請求項 79に記載の可変光アツテネ一夕において、
光の波長を λ、 前記第 1の光合分波手段から出力する光の位相差を 27Τ φェ (入)、 前記光路長差付与部の光学的光路長差 1Lに起因する位相差を 2 πφ L (λ), 前記第 2の光合分波手段から出力する光の位相差を 2 πφ2 (λ) とす ると、
前記導波路型光回路の出力強度が波長 λに対して一定になるように、 前記 3 - つの位相差の総和 2 π { χ (λ) + Δ^ (λ) +φ2 (λ)} が設定されたこ とを特徴とする可変光ァッテネ一夕。
85. 請求項 1から 42のいずれかに記載の干渉計型光スィツチを多段に複 数接続したことを特徴とする干渉計型光スィッチ。
86. 請求項 43から 84のいずれかに記載の可変光アツテネ一タを多段に 複数接続したことを特徴とする可変光アツテネ一夕。
87. 請求項 1から 42のいずれかに記載の干渉計型光スィツチを多段に複 数接続した光回路を有し、 .
第 1の干渉計型光スィツチの 2つの出力導波路のうちの一方の出力導波路が 第 2の干渉計型光スィッチの入力導波路に接続され、 , .
前記第 1の干渉計型光スィツチの入力導波路を前記光回路の入力ポー卜とし て用い、
前記第 2の干渉計型光スィツチの出力導波路を前記光回路の第 1の出力ポー 卜として用い、
前記第 1の干渉計型光スィツチの 2つの出力導波路のうちの他方の出力導波 路を前記光回路の第 2の出力ポートとして用いたことを特徴とする干渉計型光 スィッチ。
88. 請求項 43から 84のいずれかに記載の可変光アツテネ一夕を多段に 複数接続した光回路を有し、
第 1の可変光アツテネ一夕の 2つの出力導波路のうちの一方の出力導波路が 第 2の可変光アツテネ一夕の入力導波路に接続され、
前記第 1の可変光アツテネ一夕の入力導波路を前記光回路の入力ポートとし て用い、
前記第 2の可変光アツテネ一夕の出力導波路を前記光回路の第 1の出力ポ一 トとして用い、
前記第 1の可変光アツテネ一夕の 2つの出力導波路のうちの他方の出力導波 路を前記光回路の第 2の出力ポートとして用いたことを特徴とする可変光ァッ テネ一夕。
8 9 . 請求項 1から 4 2のいずれかに記載の干渉計型光スィッチを多段に複 数接続した光回路を有し、 ,
第 1の干渉計型光スィツチの 2つの出力導波路のうちの一方の出力導波路が 第 2の干渉計型光スィッチの入力導波路に接続され、
前記第 1の干渉計型光スィツチの 2つの出力導波路のうちの他方の出力導波 路が第 3の干渉計型光スィッチの入力導波路に接続され、
前記第 1の干渉計型光スィツチの入力導波路を前記光回路の入力ポートとし て用い、 ―
前記第 2の干渉計型光スィツチの出力導波路を前記光回路の第 1の出力ポ一 トとして用い、
前記第 3の干渉計型光スィツチの出力導波路を前記光回路の第 2の出力ポー トとして用いたことを特徴とする干渉計型光スィッチ。
9 0 . 請求項 4 3から 8 4のいずれかに記載の可変光アツテネ一夕を多段に 複数接続した光回路を有し、
第 1の可変光アツテネ一夕の 2つの出力導波路のうちの一方の出力導波路が 第 2の可変光アツテネ一夕の入力導波路に接続され、
前記第 1の可変光アツテネ一夕の 2つの出力導波路のうちの他方の出力導波 路が第 3の可変光アツテネ一夕の入力導波路に接続され、
前記第 1の可変光アツテネ一夕の入力導波路を前記光回路の入力ポー卜とし て用い、
前記第 2の可変光アツテネ一夕の出力導波路を前記光回路の第 1の出力ポー トとして用い、
前記第 3の可変光アツテネ一夕の出力導波路を前記光回路の第 2の出力ポー トとして用いたことを特徴とする可変光アツテネ一夕。
9 1 . 請求項 1から 4 2のいずれかに記載の干渉計型光スィツチを少なくと も一つ用い、 M (M:自然数) 入力 N (N:自然数) 出力の光スィッチを構成 したことを特徴とする干渉計型光スィッチ。
9 2 . 請求項 4 3から 8 4のいずれかに記載の可変光アツテネ一夕を少なく とも一つ用い、 M (M: 自然数) 入力 N (N: : 自然数) 出力の光スィッチを構 成したことを特徴とする可変光ァッテネ一タ。
9 3 . 請求項 1から 4 2のいずれかに記載の干渉計型光スィツチにおいて、 前記光結合器が、 近接した 2本の光導波路からなる方向性結合器であること を特徴とする干渉計型光スィツチ。
9 4. 請求項 4 3から 8 4のいずれかに記載の可変光アツテネー夕において、 前記光結合器が、 近接した 2本の光導波路からなる方向性結合器であること を特徴とする可変光アツテネ一夕。
9 5 . 請求項 1力、ら 4 2のいずれかに記載の干渉計型光スィツチにおいて、 前記位相シフタが、 光導波路上に設けられた薄膜ヒ一夕であることを特徴と する干渉計型光スィッチ。
9 6 . 請求項 4 3から 8 4のいずれかに記載の可変光アツテネ一夕において、 前記位相シフ夕が、 光導波路上に設けられた薄膜ヒー夕であることを特徴と する可変光アツテネ一夕。
9 7 . 請求項 1力 ^ら 4 2のいずれかに記載の干渉計型光スィツチにおいて、 前記位相シフタが光導波路上に設けられた薄膜ヒ一夕であり、 該薄膜ヒー夕 の近傍に断熱溝が形成されていることを特徴とする干渉計型光スィッチ。
9 8 . 請求項 4 3から 8 4のいずれかに記載の可変光アツテネ一夕において、 前記位相シフタが光導波路上に設けられた薄膜ヒータであり、 該薄膜ヒータ • の近傍に断熱溝が形成されていることを特徴とする可変光アツテネー夕。
9 9 . 請求項 1力、ら 4 2のいずれかに記載の干渉計型光スィツチにおいて、 前記導波路型光回路が、 石英系ガラス光導波路で構成されていることを特徴 とする干渉計型光スィッチ。
1 0 0 . 請求項 4 3から 8 4のいずれかに記載の可変光アツテネ一タにおい て、
前記導波路型光回路が、 石英系ガラス光導波路で構成されていることを特徴 とする可変光アツテネ一夕。
1 0 1 . 請求項 1から 4 2のいずれかに記載の干渉計型光スィツチにおいて、 前記干渉計型光スィッチの光導波路上に複屈折率調整手段が設けられている. もしくは複屈折率の調整が行われたことを特徴とする干渉計型光スィッチ。
1 0 2 . 請求項 4 3から 8 4のいずれかに記載の可変光アツテネ一夕におい て、
前記可変光アツテネー夕の光導波路上に複屈折率調整手段が設けられている. もしくは複屈折率の調整が行われたことを特徴とする可変光ァッテネ一夕。
1 0 3 . 請求項 1力、ら 4 2のいずれかに記載の干渉計型光スィツチを内部に 有する筐体と、 前記筐体に保持されて前記干渉計型光スィツチに信号の入出力 を行う光ファイバとを有することを特徴とする光モジュール。
1 0 4. 請求項 4 3から 8 4のいずれかに記載の可変光アツテネ一夕を内部 に有する筐体と、 前記筐体に保持されて前記可変光アツテネ一夕に信号の入出 力を行う光ファイバとを有することを特徴とする光モジュール。
PCT/JP2004/009773 2003-07-04 2004-07-02 干渉計型光スイッチおよび可変光アッテネータ WO2005003852A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2506387A CA2506387C (en) 2003-07-04 2004-07-02 Interferometer optical switch and variable optical attenuator
EP04747241.0A EP1643302B1 (en) 2003-07-04 2004-07-02 Interferometer optical switch and variable optical attenuator
JP2005511424A JP4105724B2 (ja) 2003-07-04 2004-07-02 干渉計型光スイッチおよび可変光アッテネータ
US10/536,649 US7590312B2 (en) 2003-07-04 2004-07-02 Interferometer optical switch and variable optical attenuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003191797 2003-07-04
JP2003-191797 2003-07-04

Publications (1)

Publication Number Publication Date
WO2005003852A1 true WO2005003852A1 (ja) 2005-01-13

Family

ID=33562379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009773 WO2005003852A1 (ja) 2003-07-04 2004-07-02 干渉計型光スイッチおよび可変光アッテネータ

Country Status (7)

Country Link
US (1) US7590312B2 (ja)
EP (1) EP1643302B1 (ja)
JP (1) JP4105724B2 (ja)
KR (1) KR100725638B1 (ja)
CN (1) CN100405202C (ja)
CA (1) CA2506387C (ja)
WO (1) WO2005003852A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276323A (ja) * 2005-03-29 2006-10-12 Furukawa Electric Co Ltd:The 光スイッチ
JP2007171733A (ja) * 2005-12-26 2007-07-05 Tama Tlo Kk 光スイッチ及び光スイッチの製造方法
JP2007171734A (ja) * 2005-12-26 2007-07-05 Tama Tlo Kk 光フィルタ及び光フィルタの製造方法
JP2008216640A (ja) * 2007-03-05 2008-09-18 Tama Tlo Kk 光スイッチ及びその製造方法
JP2011064657A (ja) * 2009-09-18 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> 光回路
JP2012027313A (ja) * 2010-07-26 2012-02-09 Nec Corp 光スイッチ
JP2013195643A (ja) * 2012-03-19 2013-09-30 Fujitsu Optical Components Ltd 光変調器
WO2014174735A1 (ja) * 2013-04-24 2014-10-30 日本電気株式会社 偏波分離器、及び光デバイス
KR20170087916A (ko) * 2014-11-21 2017-07-31 케이엘에이-텐코 코포레이션 광학 결합기-분할기를 구비한 이중 파장 이중 간섭계
FR3066282A1 (fr) * 2017-05-12 2018-11-16 Stmicroelectronics (Crolles 2) Sas Diviseur de signal optique
WO2022259431A1 (ja) * 2021-06-09 2022-12-15 日本電信電話株式会社 可変波長フィルタおよびその制御方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271704A (ja) * 2006-03-30 2007-10-18 Nec Corp 可変光制御デバイス及び可変光制御方法
DE102006033229B4 (de) * 2006-07-18 2013-05-08 Ezono Ag Ultraschallsonde und Verfahren zur optischen Detektion von Ultraschallwellen
US20090074426A1 (en) * 2007-09-14 2009-03-19 Lucent Technologies Inc. Monolithic dqpsk receiver
US8224139B2 (en) * 2008-08-21 2012-07-17 Infinera Corporation Tunable optical filter
CN101364656B (zh) * 2008-09-23 2012-02-22 吉林大学 基于soi光波导单片集成的微波光子移相器及制备方法
KR20110070420A (ko) * 2009-12-18 2011-06-24 한국전자통신연구원 마하젠더 간섭계를 이용한 광 스위치 및 그것을 포함하는 광 스위치 매트릭스
JP2012215692A (ja) * 2011-03-31 2012-11-08 Furukawa Electric Co Ltd:The 偏波分離素子および光集積素子
RU2608300C2 (ru) 2011-10-28 2017-01-17 Неофотоникс Корпорейшн Масштабируемые оптические коммутаторы и модули коммутации
US10338309B2 (en) * 2012-12-13 2019-07-02 Luxtera, Inc. Method and system for stabilized directional couplers
US20140293393A1 (en) * 2013-03-28 2014-10-02 Barthelemy Fondeur Flat-top tunable filter
WO2014155900A1 (ja) * 2013-03-29 2014-10-02 日本電気株式会社 集積光源及び光出力制御方法
CN103278889A (zh) * 2013-06-21 2013-09-04 上海交通大学 前馈式可调光延迟线
CN103399378B (zh) * 2013-08-05 2015-09-16 东南大学 一种基于级联马赫-曾德干涉仪型可重构梳状滤波器及其制备方法
EP2905913B1 (en) * 2014-02-05 2017-07-12 Aurrion, Inc. Photonic transceiver architecture with loopback functionality
CN103884450B (zh) * 2014-03-19 2016-03-16 北京大学 一种光电温度传感器
US9742520B1 (en) 2014-09-19 2017-08-22 Neophotonics Corporation Optical switching system with a colorless, directionless, and contentionless ROADM connected to unamplified drop channels
JP6356254B2 (ja) * 2014-09-30 2018-07-11 株式会社フジクラ 基板型光導波路素子及び基板型光導波路素子の製造方法
JP6314240B2 (ja) 2014-09-30 2018-04-18 株式会社フジクラ 基板型光導波路素子
US20160248519A1 (en) * 2015-02-19 2016-08-25 Coriant Advanced Technology, LLC Variable power splitter for equalizing output power
KR102559579B1 (ko) 2015-09-03 2023-07-25 삼성전자주식회사 광 변조기 및 이를 이용하는 데이터 처리 시스템
US10094980B2 (en) * 2016-01-12 2018-10-09 King Saud University Three-dimensional space-division Y-splitter for multicore optical fibers
EP3223049B1 (en) * 2016-03-22 2024-01-24 Huawei Technologies Co., Ltd. Point-symmetric mach-zehnder-interferometer device
CN107346047B (zh) * 2016-05-04 2020-04-21 华为技术有限公司 一种光开关
CN106199220B (zh) * 2016-07-14 2019-01-22 厦门大学 基于光程差校正的阵列天线相位一致性测量方法
JP6233480B1 (ja) * 2016-09-20 2017-11-22 富士通オプティカルコンポーネンツ株式会社 光変調器
CN111142192B (zh) * 2019-12-26 2022-10-11 上海理工大学 实现高速的光开光响应的方法及超高速光调制光开关器件
CN111913330A (zh) * 2020-08-17 2020-11-10 中国电子科技集团公司第四十四研究所 高消光比光延时调控结构及装置
US11609374B2 (en) 2021-03-22 2023-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. Directionally tunable optical reflector
US20230021995A1 (en) * 2021-07-06 2023-01-26 Psiquantum, Corp. Mach zehnder lattice based generalized mach zehnder interferometer
CN114465668B (zh) * 2022-01-28 2023-10-20 中国科学技术大学 应用于量子密钥分发片上系统的相位调制单元

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341825B2 (ja) 1981-11-05 1991-06-25
JPH0561077A (ja) 1991-08-30 1993-03-12 Nippon Telegr & Teleph Corp <Ntt> 導波路型光スイツチ
JPH08122545A (ja) * 1994-10-21 1996-05-17 Hitachi Cable Ltd 導波路型光合分波器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781424A (en) * 1986-07-28 1988-11-01 Nippon Telegraph And Telephone Corporation Single mode channel optical waveguide with a stress-induced birefringence control region
JPH0718964B2 (ja) 1987-06-29 1995-03-06 日本電信電話株式会社 集積光デバイスおよびその製造方法
JPH01158413A (ja) 1987-09-29 1989-06-21 Nippon Telegr & Teleph Corp <Ntt> 光導波路装置
CA2009352C (en) 1989-02-07 1995-02-28 Masao Kawachi Guided-wave optical branching components and optical switches
JP3009418B2 (ja) * 1990-01-25 2000-02-14 キヤノン株式会社 画像処理装置
JP3041825B2 (ja) 1992-07-29 2000-05-15 日本電信電話株式会社 導波路型マトリックス光スイッチ
JP3370129B2 (ja) * 1993-03-01 2003-01-27 株式会社バルダン ループ縫目形成装置
US6226091B1 (en) * 1998-09-24 2001-05-01 Thomas & Betts International, Inc. Optical fiber Mach-Zehnder interferometer fabricated with asymmetric couplers
US6912362B1 (en) * 1999-10-19 2005-06-28 Nippon Telegraph And Telephone Corporation Dispersion slope equalizer
EP1146386A1 (en) * 2000-04-14 2001-10-17 International Business Machines Corporation Free-space non-blocking switch
US20020159702A1 (en) 2001-03-16 2002-10-31 Lightwave Microsystems Corporation Optical mach-zehnder interferometers with low polarization dependence

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341825B2 (ja) 1981-11-05 1991-06-25
JPH0561077A (ja) 1991-08-30 1993-03-12 Nippon Telegr & Teleph Corp <Ntt> 導波路型光スイツチ
JPH08122545A (ja) * 1994-10-21 1996-05-17 Hitachi Cable Ltd 導波路型光合分波器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1643302A4 *
TSUTOMU KITOH ET AL., NOVEL BROAD-BAND OPTICAL SWITCH USING SILICA-BASED PLANAR LIGHTWAVE CIRCUIT

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276323A (ja) * 2005-03-29 2006-10-12 Furukawa Electric Co Ltd:The 光スイッチ
JP2007171733A (ja) * 2005-12-26 2007-07-05 Tama Tlo Kk 光スイッチ及び光スイッチの製造方法
JP2007171734A (ja) * 2005-12-26 2007-07-05 Tama Tlo Kk 光フィルタ及び光フィルタの製造方法
JP2008216640A (ja) * 2007-03-05 2008-09-18 Tama Tlo Kk 光スイッチ及びその製造方法
JP2011064657A (ja) * 2009-09-18 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> 光回路
JP2012027313A (ja) * 2010-07-26 2012-02-09 Nec Corp 光スイッチ
JP2013195643A (ja) * 2012-03-19 2013-09-30 Fujitsu Optical Components Ltd 光変調器
US9568801B2 (en) 2012-03-19 2017-02-14 Fujitsu Optical Components Limited Optical modulator
US9465168B2 (en) 2013-04-24 2016-10-11 Nec Corporation Polarization beam splitter and optical device
JP6011719B2 (ja) * 2013-04-24 2016-10-19 日本電気株式会社 偏波分離器、及び光デバイス
WO2014174735A1 (ja) * 2013-04-24 2014-10-30 日本電気株式会社 偏波分離器、及び光デバイス
KR20170087916A (ko) * 2014-11-21 2017-07-31 케이엘에이-텐코 코포레이션 광학 결합기-분할기를 구비한 이중 파장 이중 간섭계
JP2017538113A (ja) * 2014-11-21 2017-12-21 ケーエルエー−テンカー コーポレイション 光コンバイナ/スプリッタを有する二波長二重干渉計
KR102327898B1 (ko) * 2014-11-21 2021-11-17 케이엘에이 코포레이션 광학 결합기-분할기를 구비한 이중 파장 이중 간섭계
FR3066282A1 (fr) * 2017-05-12 2018-11-16 Stmicroelectronics (Crolles 2) Sas Diviseur de signal optique
WO2022259431A1 (ja) * 2021-06-09 2022-12-15 日本電信電話株式会社 可変波長フィルタおよびその制御方法

Also Published As

Publication number Publication date
EP1643302A1 (en) 2006-04-05
CA2506387C (en) 2012-01-31
CN100405202C (zh) 2008-07-23
EP1643302A4 (en) 2007-11-07
KR100725638B1 (ko) 2007-06-08
CA2506387A1 (en) 2005-01-13
US20060072866A1 (en) 2006-04-06
JPWO2005003852A1 (ja) 2006-08-17
JP4105724B2 (ja) 2008-06-25
KR20050097942A (ko) 2005-10-10
CN1739059A (zh) 2006-02-22
EP1643302B1 (en) 2013-09-25
US7590312B2 (en) 2009-09-15

Similar Documents

Publication Publication Date Title
WO2005003852A1 (ja) 干渉計型光スイッチおよび可変光アッテネータ
JP4494495B2 (ja) 位相生成機能を備えた光合分波回路
US20020159684A1 (en) Novel optical waveguide switch using cascaded mach-zehnder interferometers
JPS62183406A (ja) 導波形光干渉計
Hang et al. Compact, highly efficient, and controllable simultaneous 2× 2 three-mode silicon photonic switch in the continuum band
JP2006515435A (ja) 加熱用光素子
JP4152869B2 (ja) 位相生成機能を備えた光合分波回路
CN114924357B (zh) 一种基于级联马赫-曾德干涉仪结构的波分复用光延时线
JP2007163825A (ja) 導波路型熱光学回路
JPH08234149A (ja) 電子−光学材料を使用した光フィルタ
JP4197126B2 (ja) 光スイッチ及び光波長ルータ
JP4263027B2 (ja) 導波路型光信号処理器
US20030016938A1 (en) Planar lightwave circuit type variable optical attenuator
JP3727556B2 (ja) 光マトリクススイッチ
JP2004078002A (ja) 光学部品
JP2009244624A (ja) Plc型可変分散補償器
US20030198438A1 (en) Tunable add/drop multiplexer
JP3678624B2 (ja) 導波路型光スイッチ
US7035500B2 (en) Multi-mode interference waveguide based switch
JP3555842B2 (ja) 干渉計型光スイッチ
JP3868431B2 (ja) 干渉計型光スイッチ
JP2010276897A (ja) 2入力2出力の光スイッチ
JP4799602B2 (ja) 導波路型光信号処理器
JPH0743484B2 (ja) 導波路型光スイッチ
JP2005321711A (ja) 光可変減衰器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005511424

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004747241

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006072866

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10536649

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2506387

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057013093

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048022310

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057013093

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004747241

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10536649

Country of ref document: US