WO2004111628A1 - 接触燃焼式ガスセンサ、及びその製造方法 - Google Patents

接触燃焼式ガスセンサ、及びその製造方法 Download PDF

Info

Publication number
WO2004111628A1
WO2004111628A1 PCT/JP2004/007827 JP2004007827W WO2004111628A1 WO 2004111628 A1 WO2004111628 A1 WO 2004111628A1 JP 2004007827 W JP2004007827 W JP 2004007827W WO 2004111628 A1 WO2004111628 A1 WO 2004111628A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
combustion type
type gas
ppm
catalytic combustion
Prior art date
Application number
PCT/JP2004/007827
Other languages
English (en)
French (fr)
Inventor
Seiichi Otani
Mamoru Furusato
Yoshikazu Shibasaki
Shoei Yasuda
Original Assignee
Riken Keiki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki Co., Ltd. filed Critical Riken Keiki Co., Ltd.
Priority to US10/560,359 priority Critical patent/US7526942B2/en
Priority to EP04745603A priority patent/EP1632771A4/en
Priority to KR1020057022191A priority patent/KR101128359B1/ko
Priority to JP2005506898A priority patent/JP4627037B2/ja
Publication of WO2004111628A1 publication Critical patent/WO2004111628A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Definitions

  • the present invention relates to a catalytic combustion type gas sensor installed in an environment susceptible to poisoning by desensitizing substances, and a method of manufacturing the same.
  • a solid polymer membrane fuel cell comprises a stack formed by stacking a plurality of cells formed by sandwiching a solid polymer electrolyte membrane with an anode and a force sword from both sides, and the fuel is used as the anode.
  • hydrogen is supplied as air
  • air as an oxidant is supplied to the force sword
  • hydrogen ions generated by the catalytic reaction at the anode pass through the solid polymer electrolyte membrane and move to the force sword, and oxygen and It generates electricity by causing an electrochemical reaction.
  • Patent Document 1 and Patent Document 2 a hydrogen detector is installed in the discharge system on the force sword side of the fuel cell, and hydrogen gas is present in the off gas by this hydrogen detector. A system has been developed to confirm that the system has been developed.
  • This gas contact combustion type gas sensor comprises a detection element to which a catalyst is attached and a temperature compensation element to which the catalyst is not attached, and a gas to be detected (hydrogen in the case of a hydrogen detector) is used as a catalyst.
  • the gas concentration of the to-be-detected gas is detected from the difference in electric resistance between the detection element and the temperature compensation element using the heat burned when contacting.
  • Patent Document 3 in the case of a semiconductor gas sensor, that is, a sensor for detecting a change in conductivity due to adsorption of a detection gas, dimethyl siloxane exerts a poisoning effect on the sensor. It has been proposed to reduce variations in characteristics such as sensitivity among sensors by storing the sensors in an environment containing oxygen and baking them (aging).
  • Patent Document 1 Japanese Patent Publication No. 6-52662
  • Patent Document 2 Japanese Patent Application Laid-Open No. 6-223850
  • Patent Document 3 Japanese Patent Application Laid-Open No. 56-168542
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a catalytic combustion type gas sensor capable of maintaining a desired sensitivity for a long time in the presence of silicone vapor. To provide.
  • a second object of the present invention is a catalytic combustion type gas sensor which can minimize the reduction in sensitivity caused by the adhesion of silicon even when installed in an atmosphere in which an organic silicon compound is present. It is to provide.
  • a third object of the present invention is to propose a method of manufacturing the above-mentioned catalytic combustion type gas sensor.
  • the invention according to claim 1 contains in a case a gas detection element in which a sensitive part consisting of an oxidation catalyst powder and an insulation powder is fixed to a heater that generates Joule heat.
  • the sensitive part contains the oxidation catalyst in an amount of 30 wt% or more.
  • the sensitive portion is formed by fixing a mixture of the oxidation catalyst powder and the insulating powder with a solution, and the reed is formed.
  • the sensitive portion fixes the mud of the insulating powder to form a solid, and fixes the mud of the oxidation catalyst powder to the solid of the insulating powder.
  • the oxidation catalyst is formed to have a high concentration on the surface side.
  • the invention of claim 6 is subjected to an aging treatment to converge sensitivity reduction with silicone vapor.
  • the aging process is performed by energizing a heater constituting the gas detection element to generate heat.
  • the concentration of the silicone vapor is set higher than the concentration of silicone in the environment used for measurement.
  • the invention of claim 10 is arranged in the force-sword-side gas outlet passage of a polymer fuel cell to detect hydrogen in an environment containing silicon vapor and hydrogen.
  • the invention according to claim 11 relates to a catalytic combustion type gas sensor in which a catalyst is supported on a carrier of a metal oxide sintered body attached to a resistance temperature detector, wherein the catalytic combustion type gas sensor has a temperature of 130 ° C to 500
  • the catalyst is manufactured by poisoning until the change over time in the catalytic ability of the catalyst becomes stable at a predetermined value in an atmosphere containing a silicone compound, at a temperature of ° C.
  • the atmosphere contains 10 ppm to 30000 ppm of at least one of hexamethyldisiloxane, hexamethyldisilane, and hexamethyldisilane.
  • the atmosphere contains 100 ppm to 20000 ppm of at least one of hexamethyldisiloxane, hexamethyldisilane, and hexamethyldisilane.
  • the atmosphere contains 10 ppm to 30000 ppm of at least one of hexamethyldisiloxane, hexamethyldisilane, and hexamethyldisilane, and 100 ppm to 40000 ppm of hydrogen.
  • the invention according to claim 15 is that the concentration of hydrogen in the atmosphere is lOOOOppm to 20000ppm. Ru.
  • the invention according to claim 16 is a catalytic combustion type gas sensor in which a catalyst is supported on a support of a metal oxide sintered body attached to a resistance temperature detector, wherein the metal oxide is selected from alumina, silica or zeolite.
  • the catalyst is configured to be poisoned in advance in the atmosphere containing at least one kind of the silicone compound until the change with time of the catalytic ability of the catalyst with time becomes stable to a predetermined value.
  • the invention according to claim 23 is for detecting hydrogen which is disposed in the force-sword-side gas outlet passage of a polymer fuel cell.
  • the oxidation catalyst powder and the insulating powder can be simultaneously attached to the heater, and the manufacturing process can be simplified.
  • the aging treatment device does not require a heating source, and the gas detection element can be efficiently heated to a predetermined temperature.
  • the detection sensitivity of the flammable gas in the environment where the silicone vapor is present can be prevented from changing with time.
  • processing can be performed more practically.
  • the generation of silicon oxide can be promoted by the combustion of hydrogen on the element surface, and the processing time can be significantly shortened.
  • the concentration of the flammable gas can be measured stably and with high accuracy, without causing a time-dependent change in sensitivity.
  • FIGS. 1 (A) and 1 (B) are a perspective view and a cross-sectional view showing an embodiment of a gas detection element constituting the contact combustion type sensor of the present invention, respectively.
  • FIG. 2 A gas detection element manufactured by changing the concentration of oxidation catalyst powder to be contained in the sensitive part is subjected to aging treatment in an atmosphere containing a high concentration of poisonous substance in an environment containing poisonous substance It is a diagram which shows the time change of sensitivity.
  • FIG. 3 A diagram showing a time-dependent change in sensitivity in an environment containing a poisoning substance, of a gas detection element manufactured by changing the concentration of oxidation catalyst powder to be contained in the sensitive part.
  • FIG. 4 is a cross-sectional view showing another embodiment of the gas detection element constituting the contact combustion type sensor of the present invention.
  • FIG. 5 is a schematic explanatory view of a fuel cell system which is an application example of the catalytic combustion type gas sensor of the present invention.
  • FIG. 6 is a cross-sectional view showing another embodiment of the catalytic combustion type gas sensor before poisoning treatment used in the present invention.
  • Figures (A) to (C) show the pores of the sintered metal oxide constituting the catalytic combustion type gas sensor, and show the state where the oxidation catalyst is attached to the sintered metal oxide. It is a figure which shows the figure and the poisoned state.
  • Figures (A) and (B) show the state in which the oxidation catalyst is intruding into the pores of the sintered metal oxide body that constitutes the catalytic combustion type gas sensor, and the state in which poisoning is caused.
  • FIG. Garden 9 It is a figure which shows one Example of the apparatus for poisoning a contact combustion type gas sensor.
  • Figures (A) and (B) are diagrams showing the changes with time of the sensitivity of the catalytic combustion type gas sensor in an actual use environment and the sensitivity when forcibly depositing a silicon compound, respectively. Explanation of sign
  • FIGS. 1 (A) and 1 (B) show an embodiment of the gas detection element 1 constituting the catalytic combustion type gas sensor of the present invention, respectively, in which a resistance wire having heat resistance and corrosion resistance is shaped into a coil.
  • the heater 2 is stretched over the stays 3 and 4 which also serve as the lead portion, and a mud-like substance in which a predetermined composition of oxidation catalyst powder and insulating powder are kneaded with a liquid such as water is dropped around the heater 2 Then, it is attached in a spherical shape, solidified by natural drying and then sintered to build up the sensitive part 5.
  • reference numeral 6 denotes a base on which the stays 3 and 4 are fixed and a case described later is fitted and fixed.
  • the oxidation catalyst powder and the insulating powder are processed into fine powder through a process such as grinding, and one or more selected from Pt, Pd, PtO, and Pd ⁇ are used, and the oxidation catalyst powder is used.
  • the mixture is kneaded with a heat-resistant insulating powder such as alumina or silicon oxide so as to be at least 30 wt%, preferably at least 40 wt%.
  • the gas sensing element 1 configured in this way is housed in an atmosphere containing a substance having a poisoning effect on the oxidation catalyst, for example, silicone at a concentration higher than that of the actual measurement environment as vapor at a concentration higher than that of the actual measurement environment, Electricity is supplied to the stays 3 and 4, and the sensitive part 5 is heated to about 180 ° C. to about 500 ° C. by Joule heat of the heater 2 to perform aging for a predetermined time, for example, about 2 hours.
  • the aging time can be shortened by setting the temperature of the sensitive part 5 higher.
  • the silicone vapor in the environment reacts with the oxidation catalyst of the sensitive part 5 to become silicon dioxide and adhere to the surface of the sensitive part 5.
  • stop energizing the stays 3 and 4 and take out from the aging environment.
  • the oxidation catalyst powder of the sensing unit 5 of the gas detection element 1 is contained. Samples of varying amounts were prepared and used as silicon vapor for 20 hours in an atmosphere containing 2000 ppm of hexamethyldisiloxane.
  • FIG. 2 shows the sensitivity change in an environment containing silicon vapor after adjusting the initial indicated value of the gas detection element manufactured in the above process to a predetermined value
  • group A represents the sensitivity
  • the group B shows the characteristics of the gas sensing element of which the concentration of the oxidation catalyst powder of the sensitive part 5 is 30 wt% or less, and the concentration of the oxidation catalyst powder of the part 5 is 30 wt% or more, preferably 40 wt% or more.
  • the gas detection element containing the concentration of the oxidation catalyst powder of 3 O wt% or more, preferably 40 wt% or more is also obtained from the curve of group A. As apparent, the decrease in sensitivity was extremely small.
  • the gas detection element whose oxidation catalyst powder is 30wt% or less in the sensitive part 5 has a sharp decrease in sensitivity at the initial stage as shown by B Gonorap in Fig. 2; At the same time, the sensitivity decreased.
  • the group A in FIG. 3 has the characteristics of the gas detection element containing 30 wt% or more, preferably 40 wt% or more, of the oxidation catalyst powder of the sensitive part 5, and the group B has 30 wt% of the oxidation catalyst powder of the sensitive part 5.
  • the decrease in sensitivity was extremely small.
  • the gas detection element with an oxidation catalyst powder of 30 wt% or less in the sensitive part 5 has a sharp decrease in sensitivity at the initial stage as shown by B gonorap in FIG. However, the sensitivity decreased.
  • the concentration of the oxidation catalyst powder of the sensitive part 5 is 30 wt% or more, preferably 40 wt% or more, regardless of the presence or absence of aging treatment in the presence of silicon vapor. It has been found that high sensitivity and stable sensitivity can be maintained over a long period of time while preventing a decrease in sensitivity.
  • FIG. 4 shows an embodiment of the gas detection element, in which a slurry consisting of only oxidation catalyst powder is further applied to the surface of the sensitive part 5 described in the above-mentioned embodiment to obtain a catalyst.
  • the layer 7 is formed and sintered.
  • the gas detection element configured as described above is accommodated in the same environment as described above, and electricity is supplied to the stays 3 and 4 so that the sensitive part 5 is heated to about 180 ° C. 500 ° C. by Joule heat of the heater 2. Run aging.
  • the particle size of the oxidation catalyst powder is smaller than that of the heat-resistant insulating material, and silicone adheres to the oxidation catalyst powder, so that the vicinity of the surface is larger than that of silicone having a relatively large molecular weight. It functions as a filter and prevents the silicone in the measurement environment from intruding into the sensitive part 5 to more reliably suppress the decrease in sensitivity.
  • the gas detection element 1 is aged in the above-described embodiment, the same effect can be obtained by performing aging in a state of being housed in a case and assembled in a contact combustion type gas sensor.
  • the sensitive part 5 is formed by dropping a mixed substance of the oxidation catalyst powder and the insulating powder onto the heater 2 to form a solid. After only the slurry of insulating powder is dropped to 2 to form a solid, and this is sintered, the slurry of oxidation catalyst powder is dropped to form a solid in two steps. After sintering, the same effect is obtained.
  • the above-described heater built-in gas sensor is particularly effective for detecting a combustible gas, such as hydrogen, in the exhaust gas passage of the fuel cell system shown in FIG.
  • the fuel cell 10 is, for example, a fuel cell (not shown) in which an electrolyte electrode assembly having an electrolyte such as a solid polymer electrolyte membrane held between an anode side electrode and a cathode side electrode is further held between a pair of separators. A large number of pairs are stacked.
  • the fuel gas such as hydrogen supplied from the inlet-side passage 11 to the anode electrode is ionized on the catalyst electrode, and moves to the force-sword electrode through the appropriately humidified solid polymer electrolyte membrane, The electrons generated during that time are taken out to an external circuit and used as a DC electrical engineering energy.
  • a contact combustion type gas sensor 15 to which the poisoning countermeasure of the present invention is applied is attached to the outlet side passage 14 on the force sword side, and hydrogen gas is discharged from the outlet side passage 14 on the force sword side. Now, let's check it with the monitoring device 16.
  • a catalyst is supported on a support of a metal oxide sintered body attached to a resistance temperature detector.
  • the metal oxide used in this element include at least one selected from alumina, silica, and zeolite.
  • zeolite is preferable in that the pore diameter of the sintered metal oxide can be easily controlled.
  • the oxidation catalyst used for the catalytic combustion type gas sensor it is preferable to appropriately select from the group of platinum, ruthenium, palladium, and rhodium depending on the type of combustible gas to be detected.
  • FIG. 6 shows an example of a catalytic combustion type gas sensor as a basic body
  • the catalytic combustion type gas sensor 21 is, for example, a platinum wire with a diameter of 60 zm and an outer diameter of 0.6 mm.
  • a resistance temperature sensor 22 is also manufactured by combining a coiled heater with a length of 1.5 mm, and then paste of alumina, silica or zeolite is attached to the resistance temperature sensor 22 at 800 ° C. The resultant is sintered to form a metal oxide sintered body 23 of a porous body having electrical insulation in a platinum coil.
  • the pore diameter of the sintered metal oxide 23 be smaller than that of the organic silicon and larger than the molecules of the flammable gas, the oxygen molecule, and the water molecule.
  • the metal oxide sintered body 23 is immersed in an aqueous solution of chloroplatinic acid to impregnate the pores 24 (FIG. 7 (A)) of the metal oxide sintered body 23 with an aqueous solution of chloroplatinic acid (see FIG. 7). 7 (B)).
  • the catalyst is pulled at 600 ° C. and thermally decomposed at 600 ° C. to load the catalyst particles 25 of the platinum catalyst on the pores 24 and the surface of the metal oxide sintered body 23.
  • the catalytic combustion type gas sensor 21 configured as described above has combustible gas molecules smaller than organic silicon and having pores 4 larger than molecules of combustible gas, and oxygen molecules, and further, water molecules.
  • the molecules and oxygen molecules can reach the catalyst particles 25 supported by the pores 4 of the sintered metal oxide 23.
  • organic silicon adheres to the surface of the catalyst particle 25 adhering to the surface of the sintered metal oxide 23 (FIG. 7 (C)).
  • the base of the catalytic combustion type gas sensor 21 configured as described above is accommodated in the processing chamber 30 as shown in FIG. 9, and an organic silicon as a poisoning component, for example, hexamethyldisiloxane or Xamethyldisilazane is supplied from the vaporizer 31 so that the concentration is 10-lOOOOppm, and at the same time power is supplied from the power supply device 32 to the resistance bulb 22 of the contact combustion gas sensor 21 to perform contact combustion for processing.
  • the formula gas sensor 21 is heated to 130 ° C. to 500 ° C.
  • the condition is that the organic silicon is industrially easily available and has a vapor pressure sufficient to achieve the concentration required for processing.
  • Examples of organic silicon are shown in Table 2.
  • the boiling point of organic silicon and the concentration that can be gasified at normal temperature are correlated as shown in FIG. 10, and can not be gasified to a predetermined concentration when the boiling point becomes high.
  • the boiling point is low, it is easily gasified, but it is easy to handle even at normal temperature, so it is not easy to handle.
  • Hexamethyldisiloxane, hexamethyldisilazane, and hexamethyldisilane which are in the range of 50 ° C. to 150 ° C., are easy to obtain and the concentration necessary for the treatment can be easily adjusted.
  • the concentration of organic silicon is 10 ppm and the upper limit is 30000 ppm.
  • the concentration of organic silicon is 100 ppm to 20000 ppm, considering the accuracy and easiness of preparation of the atmosphere and the production yield. desirable.
  • the catalytic activity of the oxidation catalyst is low, so that the deposition of the silicon compound 26 on the surface of the metal oxide sintered body 23 having a low decomposition rate of organic silicon does not proceed, .
  • the temperature rises to 500 ° C. or more sintering of the metal oxide sintered body 23 occurs to lower the catalytic action of the oxidation catalyst.
  • the organic silicon is decomposed on the surface of the metal oxide sintered body 3 heated to several hundred degrees to form a silicon compound 6 as shown in FIG. 7 (C) and FIG. 8 (B). It adheres in layers.
  • the catalytic combustion type gas sensor 1 'of the present invention is completed.
  • the above silicon compound 6 was analyzed by X-ray electron spectroscopy, it was confirmed to be carbon dioxide.
  • the treatment time depends on the concentration of the organosilicone and the temperature, it is a value that is uniquely determined by these parameters, so the treatment time may be determined by examining it beforehand through experiments. it can.
  • the catalytic combustion type gas sensor 21 ′ configured in this way is a surface of the oxidation catalyst that is exposed on the surface is covered with the silicon compound 26 and loses its catalytic function, but the surface of the sensor 21 ′ is The penetration of organic silicon is inhibited by the silicon compound 26 formed on the surface, and furthermore, the size force of the pores 24 of the sintered metal oxide 23 is smaller than the silicon oxide compound 26, and the combustible gas molecule, oxygen It is presumed that the catalyst particle 25 located inside the pore 24 can still maintain its function as an oxidation catalyst because it is larger than the molecule and the water molecule.
  • the catalytic combustion type gas sensor 21 in which the layer of the oxidation catalyst is smaller than the organic silicon and does not have a pore diameter larger than the combustible molecules, oxygen molecules and water molecules and is not treated above is shown in FIG.
  • line B in (A) the decrease in sensitivity continued to gradually decrease with time, and it converged to a constant value, ie did not settle to a constant value.
  • Line B in FIG. 11 (B) shows the decrease in sensitivity due to the treatment in the atmosphere where hydrogen is not added.
  • the amount of hydrogen added is hydrogen in the combustible gas if the amount of hydrogen added is a concentration of 100 ppm to 100 ppm relative to the vapor of organic silicon, for example, hexamethyldisiloxane or hexamethyldisilazane 10-30000 ppm. Even if used, silicon compound 6 can be produced safely and in a short time.
  • the concentration of hydrogen is less than OOO ppm, the time to complete the process is the same as when the concentration of organic silicon is extremely low, that is, the time for the sensitivity decrease to settle to a certain value, ie, to reach the convergence point is long. Become.
  • the concentration of hydrogen exceeds 40000 ppm, the lower explosion limit is exceeded, which is not preferable for the safety of the operation.
  • the concentration of hydrogen is 100 ppm to 40000 ppm, and in consideration of safety and treatment efficiency, the range of 100 ppm to 20000 ppm is preferable.
  • the time until the completion of processing depends on the concentration of organic silicon, hydrogen, and temperature, but it is a value that is uniquely determined by these parameters.
  • the processing time can be determined by tumbling.
  • the catalytic combustion type gas sensor 21 ' is inserted in an environment where organic silicon is mixed to detect a combustible gas such as hydrogen, oxygen and the combustible gas pass through the pores 24 of the metal oxide to be a catalyst. It reaches 25 and burns to produce a predetermined output.
  • the substance to be the organic silicon is inhibited by the silicon compound 26 previously formed on the surface of the sensor 1 ', and furthermore, the pore diameter of the pores 24 of the sintered metal oxide 23 is smaller than that of the organic silicon. Therefore, it is presumed that the catalyst particles 25 located inside the pores 24 can not penetrate to cause a decrease in sensitivity.
  • the senor of the present invention has a very small decrease in initial sensitivity, and the detection sensitivity at the start of use over a long period of time It can be maintained stable.
  • the resistance wire is formed into a coil and the metal oxide sintered body is formed so as to surround the periphery, metal oxide is formed in a layer on the surface of the plate-like heater. It is apparent that the same effect can be obtained even when applied to a sensor in which an object sintered body is formed.
  • the above-described heater built-in gas sensor is particularly effective for detecting the combustible gas, for example, hydrogen in the exhaust pipe line of the fuel cell system shown in FIG. 5 described above.
  • an organic silicon packing or hose is used in the outlet side passage 14 on the force sword side which is in a high temperature state compared to the other gas passages. Even hydrogen gas can be detected without causing a time-dependent change in sensitivity.
  • the catalytic combustion type gas sensor according to the present invention is less likely to cause a decrease in sensitivity or fluctuation due to silicon in the atmosphere, and is therefore generated from the packing tube due to high temperature like the power sword side gas outlet passage of the polymer fuel cell. Even in an environment where the silicone vapor is present, flammable gases such as hydrogen can be detected without causing a time-dependent change in sensitivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 シリコーン蒸気の存在下で長期間、所期の感度を維持することができる接触燃焼式ガスセンサを提供すること目的として、ガス検知素子1の感応部5が酸化触媒を30wt%以上含有し、被毒物質であるシリコーンの蒸気を含む環境で予めエージングされている。

Description

明 細 書
接触燃焼式ガスセンサ、及びその製造方法
技術分野
[0001] 本発明は、感度劣化物質に被毒しやすい環境に設置される接触燃焼式ガスセンサ 、及びその製造方法に関する。
背景技術
[0002] 例えば固体高分子膜型燃料電池は、固体高分子電解質膜をアノードと力ソードと で両側から挟み込んで形成されたセルを複数積層して構成されたスタックを備えて おり、アノードに燃料として水素が供給され、力ソードに酸化剤として空気が供給され て、アノードで触媒反応により発生した水素イオンが、固体高分子電解質膜を通過し て力ソードまで移動して、力ソードで酸素と電気化学反応を起こして発電するようにな つている。
また、このような固体高分子膜型燃料電池等の燃料電池においては、力ソードから 排出される未反応の空気 (オフガスとレ、う)は系外に排出するのが一般的であるが、そ の場合には、オフガス中に水素ガスが存在しないことを確認する必要がある。
[0003] そこで、従来から、特許文献 1や特許文献 2に見られるように、燃料電池の力ソード 側の排出系に水素検出器を設置し、この水素検出器によってオフガス中に水素ガス が存在してレ、なレ、ことを確認するシステムが開発されてレ、る。
この水素検出器に、ガス接触燃焼式ガスセンサを用いることが考えられている。この ガス接触燃焼式ガスセンサは、触媒が付着されている検出素子と触媒が付着されて いない温度補償素子とを備えて構成されており、被検知ガス (水素検出器の場合は 水素)が触媒に接触した際に燃焼する熱を利用して検出素子と温度補償素子との電 気抵抗の差異から前記被検知ガスのガス濃度を検出するものである。
[0004] このような力ソード側の排出系には、耐熱性を備えた有機シリコンのパッキンやホー スが使用されているため、接触燃焼式ガスセンサの測定雰囲気中にパッキンやホー スから析出、揮散するガス状のシリコン化合物が微量存在する。このようなシリコンィ匕 合物は、検知素子を構成する触媒の性能を劣化させる(いわゆる、被毒)ため、可燃 性ガスに対する検出感度が時間とともに低下し、測定精度が低下するという問題があ る。
このような問題に対処するため、特許文献 3に見られるように半導体ガスセンサ、つ まり被検知ガスの吸着による導電度の変化を検出するセンサにあっては、センサに被 毒作用を及ぼすジメチルシロキサンを含有する環境にセンサを収容して空焼き (エー ジング)することにより、センサ相互間での感度などの特性のバラツキを少なくすること が提案されている。
特許文献 1:特公平 6 - 52662号公報
特許文献 2:特開平 6 - 223850号公報
特許文献 3:特開昭 56 - 168542号公報
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、被検知ガス (水素検出器の場合は水素)が触媒に接触した際に燃焼 する熱を利用して検出素子と温度補償素子との電気抵抗の差異力 ガス濃度を検出 する接触燃焼式ガスセンサに対しては、何ら被毒対策が施されてレ、なかった。
[0006] 本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、 シリコーン蒸気の存在下で長期間、所期の感度を維持することができる接触燃焼式 ガスセンサを提供することである。
[0007] 本発明の第 2の目的は、有機シリコン化合物が存在する雰囲気中に設置してもシリ コンの付着に起因する感度低下を可及的に小さくすることができる接触燃焼式ガスセ ンサを提供することである。
[0008] 本発明の第 3の目的は、上記接触燃焼式ガスセンサの製造方法を提案することで める。
課題を解決するための手段
[0009] このような課題を解消するために請求項 1の発明は、ジュール発熱を発生するヒー タに、酸化触媒粉末と絶縁粉末とからなる感応部を固着したガス検知素子をケース に収容した接触燃焼式ガスセンサにぉレ、て、前記感応部が前記酸化触媒を 30wt% 以上含有している。 [0010] 請求項 2の発明は、前記感応部が、前記酸化触媒粉末と前記絶縁粉末とを溶液で 混練したものを固着させて形成されてレ、る。
[0011] 請求項 3の発明は、前記感応部が、前記絶縁粉末の泥状体を固着させて固形物を 形成し、前記絶縁粉末の固形物に前記酸化触媒粉末の泥状体を固着させて形成さ れているおり、また請求項 4の発明は、前記酸化触媒が、表面側が高い濃度となるよ うに形成されている。
[0012] 請求項 6の発明は、シリコーン蒸気により感度低下を収束させるエージング処理が 施されている。
[0013] 請求項 7の発明は、前記エージング処理が、ガス検知素子を構成するヒータに通電 して発熱させることにより行われてレ、る。
[0014] 請求項 8の発明は、前記シリコーン蒸気の濃度が、測定に使用される環境でのシリ コーンの濃度より高く設定されている。
[0015] 請求項 10の発明は、高分子型燃料電池の力ソード側ガス出口通路に配置されて シリコン蒸気と水素を含む環境中の水素を検出するものである。
[0016] 請求項 11の発明は、測温抵抗体に付着させた金属酸化物焼結体の担体に触媒を 担持させてなる接触燃焼式ガスセンサにおいて、接触燃焼式ガスセンサを 130°C乃 至 500°Cとし、シリコーンィ匕合物を含む雰囲気で前記触媒の触媒能の経時的変化が 所定値に安定するまで被毒させて製造されてレ、る。
[0017] 請求項 12の発明は、前記雰囲気が、へキサメチルジシロキサン、へキサメチルジシ ラザン、及びへキサメチルジシランのうちの少なくとも 1種を lOppm乃至 30000ppm を含んでいる。
[0018] 請求項 13の発明は、前記雰囲気が、へキサメチルジシロキサン、へキサメチルジシ ラザン、及びへキサメチルジシランのうちの少なくとも 1種を lOOppm乃至 20000pp mを含んでいる。
[0019] 請求項 14の発明は、前記雰囲気が、へキサメチルジシロキサン、へキサメチルジシ ラザン、及びへキサメチルジシランのうちの少なくとも 1種を lOppm乃至 30000ppm 、及び水素 lOOppm乃至 40000ppmを含んでいる。
[0020] 請求項 15の発明は、前記雰囲気の水素の濃度が lOOOppm乃至 20000ppmであ る。
請求項 16の発明は、測温抵抗体に付着させた金属酸化物焼結体の担体に触媒を 担持させてなる接触燃焼式ガスセンサにおいて、前記金属酸化物は、アルミナ、シリ 力又はゼォライトから選ばれた少なくとも 1種類であり、かつシリコーンィ匕合物を含む 雰囲気中で前記触媒の触媒能の経時的変化が所定値に安定するまで予め被毒さ せて構成されている。
[0021] 請求項 23の発明は、高分子型燃料電池の力ソード側ガス出口通路に配置されて 水素を検出するものである。
発明の効果
[0022] 請求項 1の発明によれば、被毒対策のためのエージングによる感度低下を防止し、 また測定期間中における初期感度や、経年感度の変化を防止することができる。
[0023] 請求項 2の発明によれば、酸化触媒粉末と絶縁粉末とを同時にヒータに付着させる ことができ、製造工程の簡素化を図ることができる。
[0024] 請求項 3、 4の発明によれば、高価な酸化触媒の使用量を削減しつつ、所定の感 度を得ること力 Sできる。
[0025] 請求項 6の発明によれば、使用環境中のシリコーン蒸気による感度変化を可及的 に防止することができる。
[0026] 請求項 7の発明によれば、エージング処理装置に加熱源が不要となり、かつ効率よ くガス検知素子を所定温度に加熱することができる。
[0027] 請求項 8の発明によれば、より確実に感度の経時変化を防止することができる。
[0028] 請求項 10の発明によれば、高分子型燃料電池の力ソード側ガス出口通路にパツキ ンゃチューブから発生したシリコーンの蒸気が存在しても、水素等の可燃性ガスを感 度に経時変化を招くことなく検出することができる。
[0029] 請求項 11の発明によれば、シリコーン蒸気が存在する環境中での可燃性ガスの検 出感度が経時変化するのを防止することが出来る。
[0030] 請求項 12の発明によれば、処理の歩留まりの向上と、処理時間を短縮することがで きる。
[0031] 請求項 13の発明によれば、より実用的に処理を行うことができる。 [0032] 請求項 14の発明によれば、水素の素子表面での燃焼により酸化珪素の生成を促 して処理時間を大幅に短縮することができる。
[0033] 請求項 15の発明によれば、処理時間の短縮を図りつつ、安全に作業を行うことが できる。
[0034] 請求項 16の発明によれば、シリコーン蒸気が存在する環境でも、感度の経時的変 化を招くことなく安定、かつ高い精度で可燃性ガスの濃度を測定できる。
[0035] 請求項 23の発明によれば、高分子型燃料電池の力ソード側ガス出口通路にパツキ ンゃチューブから発生したシリコーンの蒸気が存在しても、水素等の可燃性ガスを感 度に経時変化を招くことなく検出することができる。
図面の簡単な説明
[0036] [図 1]図 (A)、 (B)は、それぞれ本発明の接触燃焼式センサを構成するガス検知素子 の一実施例を示す斜視図と断面図である。
[図 2]感応部に含有させる酸化触媒粉末の濃度を変えて製作したガス検知素子を、 被毒物質を高濃度で含む雰囲気でエージング処理を行った後の、被毒物質を含む 環境での感度の時間変化を示す線図である。
[図 3]感応部に含有させる酸化触媒粉末の濃度を変えて製作したガス検知素子を、 被毒物質を含む環境での感度の時間変化を示す線図である。
[図 4]本発明の接触燃焼式センサを構成するガス検知素子の他の実施例を示す断 面図である。
[図 5]本発明の接触燃焼式ガスセンサの適用例である燃料電池システムの概略的説 明図である。
[図 6]本発明に使用する被毒処理以前の接触燃焼式ガスセンサの他の実施例を示 す断面図である。
[図 7]図 (A)乃至(C)は、それぞれ接触燃焼式ガスセンサを構成する金属酸化物焼 結体の細孔を示す図、金属酸化物焼結体に酸化触媒が付着した状態を示す図、及 び被毒した状態を示す図である。
[図 8]図 (A)、(B)は、それぞれ接触燃焼式ガスセンサを構成する金属酸化物焼結 体の細孔に酸化触媒が進入している状態を図、及び被毒した状態を示す図である。 園 9]接触燃焼式ガスセンサに被毒処理を施すための装置の一実施例を示す図であ る。
園 10]沸点と温度によるガス化可能な濃度との関係を示す線図である。
[図 11]図 (A)、(B)は、それぞれ接触燃焼式ガスセンサの実使用環境での感度、及 びシリコン化合物を強制付着させる際の感度の経時変化を示す線図である。 符号の説明
[0037] 1 ガス検知素子 2 ヒータ 3、 4 ステー 5 感応部 6 基台 10 燃料 電池 11 アノード側入口側通路 12 力ソード側入口側通路 13 アノード側 出口通路 14 力ソード側出口通路 15 接触燃焼式ガスセンサ 16 監視装
発明の実施の態様
[0038] そこで以下に本発明の詳細を図示した実施例に基づいて説明する。
図 1 (A) (B)は、それぞれ本発明の接触燃焼式ガスセンサを構成するガス検知素 子 1の一実施例を示すものであって、耐熱性、耐食性を有する抵抗線をコイル状に 整形したヒータ 2をリード部を兼ねるステー 3、 4に張設し、ヒータ 2の外周に、所定組 成の酸化触媒粉末と絶縁粉末とを水等の液で泥状に混練した泥状物を滴下して球 状に付着させ、自然乾燥により固化させた後に焼結して感応部 5を作り付けて構成さ れている。
なお、図中符号 6は、ステー 3、 4を固定するとともに、後述するケースを嵌着固定す る基台を示す。
[0039] 酸化触媒粉末、及び絶縁粉末は、粉砕等の行程を経て微粉末状に加工された Pt 、 Pd、 PtO、 Pd〇から選ばれた 1種、または複数種が用いられ、酸化触媒粉末が 30 wt%以上、好ましくは 40wt%以上となるようにアルミナ、酸化珪素などの耐熱性絶 縁粉末に混練されてレ、る。
[0040] このように構成したガス検知素子 1を、酸化触媒に対して被毒作用を有する物質、 例えばシリコーンを実際の測定環境よりも高い濃度で蒸気として lOppm以上含む雰 囲気中に収容し、ステー 3、 4に通電してヒータ 2のジュール熱により感応部 5を 180 °C一 500°C程度に加熱してエージングを所定時間、例えば 2時間程度実行する。 なお、エージングの進行速度は、感応部 5の温度にも大きく依存するので、感応部 5の温度を高めに設定すると、エージング時間を短縮することができる。
[0041] これにより環境中のシリコーンの蒸気が感応部 5の酸化触媒と反応し、二酸化珪素 となって感応部 5の表面に固着していく。所定時間が経過した段階で、ステー 3、 4へ の通電を停止してエージング環境から取り出す。
[0042] ガス検知素子 1の感応部 5の酸化触媒粉末の濃度と、前記エージング処理による 可燃性ガスに対する感度を調查するため、表 1に示したように感応部 5の酸化触媒粉 末の含有量を変えた試料を作成し、これをシリコン蒸気としてへキサメチルジシロキサ ンを 2000ppmが存在する雰囲気で 20時間ェ
[0043] [表 1]
Figure imgf000009_0001
[0044] 図 2は、上述の工程で製作したガス検知素子の初期の指示値を所定値に調整した 後、シリコン蒸気を含む環境での感度変化を示すものであって、グループ Aは、感応 部 5の酸化触媒粉末の濃度が 30wt%以上、好ましくは 40wt%以上含むガス検知 素子の特性を、またグループ Bは、感応部 5の酸化触媒粉末が 30wt%以下のガス 検知素子の特性を示すもので、図 2からも明らかなように、酸化触媒粉末の濃度が 3 Owt%以上、好ましくは 40wt%以上含むガス検知素子は、グループ Aの曲線からも 明らかなように感度の低下が極めて小さかった。これに対して感応部 5の酸化触媒粉 末が 30wt%以下のガス検知素子は、図 2の Bグノレープに示したように初期段階で急 激に感度が低下するば力りでなぐ時間の経過にともなっても感度が低下した。
[0045] 一方、上記の表 1に示したガス検知素子を上述のエージング処理することなぐガス 検知素子の初期の指示値を所定値に調整した後、シリコン蒸気を含む環境で感度 変化を調査したところ、図 3に示すような結果となった。
すなわち、図 3におけるグループ Aは、感応部 5の酸化触媒粉末の濃度が 30wt% 以上、好ましくは 40wt%以上含むガス検知素子の特性を、またグループ Bは、感応 部 5の酸化触媒粉末が 30wt%以下のガス検知素子の特性を示すもので、図 3からも 明らかなように、酸化触媒粉末の濃度が 30wt%以上、好ましくは 40wt%以上含む ガス検知素子は、グループ Aの曲線からも明らかなように感度の低下が極めて小さか つた。これに対して感応部 5の酸化触媒粉末が 30wt%以下のガス検知素子は、図 3 の Bグノレープに示したように初期段階で急激に感度が低下するば力りでなぐ時間の 経過にともなっても感度が低下した。
[0046] このこと力 、感応部 5の酸化触媒粉末の濃度を、 30wt%以上、好ましくは 40wt %以上とするのが、シリコン蒸気の存在下でのエージング処理の有無に関わりなぐ シリコン蒸気による初期感度の低下を防止しつつ、しかも長時間にわたって高ぐか つ安定した感度を維持できることが判明した。
[0047] 図 4は、ガス検知素子の実施例を示すものであって、前述の実施例において説明し た感応部 5の表面に、さらに酸化触媒粉末だけからなる泥状物を塗布して触媒層 7を 形成し、これを焼結して構成されている。
[0048] このように構成したガス検知素子を前述と同様の環境に収容してステー 3、 4に通電 してヒータ 2のジュール熱により感応部 5を 180°C 500°C程度に加熱してエージン グを実行する。
[0049] この実施例によれば、酸化触媒粉末が耐熱性絶縁物質よりも粒度が小さぐかつ酸 化触媒粉末にシリコーンが付着するため、表面近傍が、比較的分子量の大きなシリコ ーンに対してフィルタとして機能し、測定環境のシリコーンが感応部 5に侵入するのを 防止して感度低下をより確実に抑制することができる。 [0050] なお、上述の実施例においてはガス検知素子 1をエージングするようにしているが、 ケースに収容されて接触燃焼式ガスセンサに組み上げた状態でエージングを実行し ても同様の作用を奏する。
[0051] なお、上述の実施例においては、感応部 5は、ヒータ 2に酸化触媒粉末と絶縁粉末 との混合泥状物を滴下して固形物を形成することにより構成されているが、ヒータ 2に 絶縁粉末の泥状物だけを滴下して固形物を形成し、これを焼結した後、酸化触媒粉 末の泥状物を滴下するというように、 2回に分けて固形物を形成してから焼結しても同 様の作用を奏する。
これによれば、被検ガスが接触する表面近傍に選択的に酸化触媒粉末を高濃度 で含浸させることができるため、コスト削減を図るとともに、感応領域の酸化触媒の濃 度を高くしてシリコーン蒸気による感度変動を可及的に小さくすることができる。
[0052] ところで、上述したヒータ内蔵型ガスセンサは、図 5に示した燃料電池システムの排 気管路の可燃ガス、例えば水素の検出に特に有効である。
燃料電池 10は、例えば、固体高分子電解膜などの電解質をアノード側電極とカソ ード側電極で狭持した電解質電極構造体を、更に一対のセバレータで狭持してなる 図示しない燃料電池セルを多数組積層して構成されている。アノード側電極に入口 側通路 11から供給された水素などの燃料ガスは、触媒電極上で水素がイオン化され 、適度に加湿された固体高分子電解質膜を介して力ソード側電極へと移動する、そ の間に生じた電子が外部回路に取り出され、直流の電気工ネルギとして利用される。 力ソード側電極には、例えば、酸素などの酸化剤ガスあるいは空気が入口側通路 12 を介して供給されているために、この力ソード側電極において、水素イオン、電子及 び酸素が反応して水が生成される。そして、アノード側、力ソード側共に出口側通路 1 3、 14から反応済みのいわゆるオフガスが系外に排出される。
ここで、力ソード側の出口側通路 14には、本発明の被毒対策が施された接触燃焼 式ガスセンサ 15が取り付けられ、力ソード側の出口側通路 14から水素ガスが排出さ れてレ、なレ、ことを監視装置 16で確認できるようになってレ、る。
[0053] この実施例によれば、他のガス流路に比較して高温状態となる力ソード側の出口側 通路 14に有機シリコンのパッキンやホースが使用されていても、感度に経時変化を 来すことなぐ水素ガスを検出することができる。
[0054] 次に本発明の接触燃焼式ガスセンサの第 2の実施例について説明する。
本発明の接触燃焼式ガスセンサは測温抵抗体に付着させた金属酸化物焼結体の 担体に触媒を担持している。この素子に用いられる金属酸化物としては、アルミナ、 シリカ、またはゼォライトから選ばれた少なくとも 1種類が挙げられる。
本発明においては、これらの中でも、金属酸化物焼結体の細孔径を制御しやすい 点でゼォライトが好ましい。また、接触燃焼式ガスセンサに用いられる酸化触媒として は、検出する可燃性ガスの種類によって、白金、ルテニウム、パラジウム、およびロジ ゥムの群から適宜選択することが好ましレ、。
[0055] 図 6は、基本体となる接触燃焼式ガスセンサの一実施例を示すものであって、接触 燃焼式ガスセンサ 21は、例えば、直径 60 z mの白金線を、外径 0. 6mmに 10回卷 いて長さ 1. 5mmのコイル状のヒータを兼ねた測温抵抗体 22を作製し、次いで、この 測温抵抗体 22に、アルミナ、シリカまたはゼォライトのペーストを付着させ、 800°Cで 焼成して白金コイルに電気絶縁性を有する多孔質体の金属酸化物焼結体 23を形成 する。
ここで、金属酸化物焼結体 23の細孔径は、有機シリコンよりも小さぐかつ可燃性ガ スの分子、及び酸素分子、さらには水分子よりも大きいことが望ましい。
この金属酸化物焼結体 23を塩化白金酸水溶液に浸漬して、金属酸化物焼結体 2 3の細孔 24(図 7 (A) )に塩ィ匕白金酸水溶液を含侵させる (図 7 (B) )。十分に含侵が終 了した時点で引き上げ、 600°Cで加熱分解して白金触媒の触媒粒子 25を金属酸化 物焼結体 23の細孔 24や表面に担持させる。
[0056] このように構成された接触燃焼式ガスセンサ 21は、有機シリコンよりも小さぐかつ 可燃性ガスの分子、及び酸素分子、さらには水分子よりも大きい細孔 4を有するため 、可燃性ガス分子および酸素分子は、金属酸化物焼結体 23の細孔 4に担持されて レ、る触媒粒子 25まで到達することができる。
一方、有機シリコンは、金属酸化物焼結体 23の表面に固着している触媒粒子 25の 表面に付着する (図 7 (C) )。
[0057] なお、上述の実施例においては、金属酸化物焼結体 23のそれぞれの粒子の細孔 に触媒粒子 25が浸透する場合について説明したが、図 8 (A)に示したように金属酸 化物焼結体の粒子が相互で形成する隙間に触媒粒子 25が浸透している形態では、 有機シリコンは、表面に近い領域 (図中、上の側)にのみ浸透が可能であるため、表面 の触媒粒子 25だけが有機シリコンにより覆われる。
[0058] このように構成された接触燃焼式ガスセンサ 21の基体を、図 9に示したように処理 室 30に収容して、この空間に被毒成分である有機シリコン、例えばへキサメチルジシ ロキサンまたはへキサメチルジシラザンを濃度が 10— lOOOppmとなるように気化器 3 1から供給し、同時に電源装置 32から接触燃焼式ガスセンサ 21の測温抵抗体 22に 電力を供給して被処理用の接触燃焼式ガスセンサ 21を、 130°C乃至 500°Cに加熱 する。
なお、有機シリコンとしては工業的に入手が容易で、かつ処理に必要な濃度となる に足る蒸気圧を有するものであることが条件となる。有機シリコンの例を表 2に示す。
[0059] [表 2]
Figure imgf000013_0001
[0060] 有機シリコンの沸点と常温でガス化が可能な濃度は、図 10に示すように相関性が あり、沸点が高くなると所定の濃度までガス化しなレ、。沸点が低くなると容易にガス化 するが常温でも気化し易いので取り扱いが容易でなくなる。 50°Cから 150°Cの範囲に あるへキサメチルジシロキサン、へキサメチルジシラザン、へキサメチルジシランは入 手が容易で、かつ処理に必要な濃度を容易に調整することができる。 [0061] また、有機シリコンの濃度が lOppm以下の場合には、処理完了までの時間、つまり 感度低下が収束点に到達するまでの時間が長くなるば力りでなぐ有機シリコンの量 が少なくなるため計量誤差が生じやすぐ処理の歩留まりが低下する。
一方、有機シリコンの濃度が 30000PPmを越えると、有機シリコンの気化率が温度 に大きく影響を受けるため、やはり処理の歩留まりが低下する。
したがって、有機シリコンの濃度の下限値は、 10ppm、また上限値は 30000ppmと なるが、雰囲気の調製の精度や容易さ、さらには製造の歩留まりなどを考慮すると、 有機シリコンの濃度は lOOppm乃至 20000ppmが望ましい。
温度が 130°C以下の場合には、酸化触媒の触媒作用が低いため、有機シリコンの 分解率も低ぐ金属酸化物焼結体 23の表面へのシリコン化合物 26の付着が進行し なレ、。他方、温度が 500°C以上になると、金属酸化物焼結体 23のシンタリングが生じ て酸化触媒の触媒作用が低下する。
[0062] これにより、有機シリコンが数百度に加熱された金属酸化物焼結体 3の表面で分解 されて図 7 (C)、図 8 (B)に示したようにシリコン化合物 6となって層状に付着する。所 定時間後に処理室 10から取り出すと、本発明の接触燃焼式ガスセンサ 1 'が完成す る。なお、上記シリコン化合物 6を X線電子分光法により分析したところ、二酸化ケィ 素であることが確認された。
なお、処理時間は、有機シリコーンの濃度、及び温度により左右されるものの、これ らのパラメータにより一義的に決まる値であるから、予め実験などにより調査しておく ことにより、処理時間を決めることができる。
[0063] このように構成された接触燃焼式ガスセンサ 21 'は、酸化触媒のうち、表面に露出 しているものはシリコン化合物 26により被覆されて触媒機能を喪失するものの、セン サ 21 'の表面に形成されているシリコン化合物 26に、有機シリコンの侵入が阻害され 、さらには金属酸化物焼結体 23の細孔 24のサイズ力 シリコンィ匕合物 26よりは小さく 、かつ可燃性ガス分子、酸素分子、及び水分子よりは大きいから、細孔 24の内部に 位置する触媒粒子 25は依然として酸化触媒としての機能を維持できると推定される
[0064] 比較のため、処理前の接触燃焼式ガスセンサ 1と処理後の接触燃焼式ガスセンサ 2 1 'とを有機シリコンが存在する雰囲気に配置して可燃性ガスに対する検出感度の経 時変化を調べたところ、図 11 (A)の線 Aに示したように、本願発明の接触燃焼式ガス センサ 21 'の検出感度に変化はほとんどなかった。
一方、酸化触媒の層が、有機シリコンより小さぐかつ可燃性分子、酸素分子及び 水分子より大きい細孔径を有せず、かつ上記処理が施されていない接触燃焼式ガス センサ 21は、図 11 (A)の線 Bに示したように感度の低下が時間とともに徐々に低下 する傾向が継続し、一定の値に収束、つまり一定値に落ち着かなかった。
[0065] なお、上述の実施例においては有機シリコンが存在する環境で処理をおこなって いる力 水素が添加された環境で処理を実行すると、図 11 (B)の線 Aに示したように 短時間で所定の感度まで低下した。これは有機シリコン及び水素が存在する環境で 処理を実行すると、雰囲気に含まれている水素が接触燃焼式ガスセンサ 1の酸化触 媒により表面で燃焼するため、接触燃焼式ガスセンサ 1の表面温度が、測温抵抗体 のみ (つまり酸化触媒がない状態)で加熱する場合よりも温度が高くなり、有機シリコン の付着が促進されることによるものであると推定される。
なお、図 11 (B)における線 Bは、水素が添加されていない雰囲気での処理による 感度低下を示す。
[0066] 水素の添加量は、水素の添加量は、有機シリコンの蒸気、例えばへキサメチルジシ ロキサン又はへキサメチルジシラザン 10— 30000ppmに対して濃度 lOOppm— 40 OOOppmであれば可燃性ガスの水素を用いても、安全かつ、短時間でシリコン化合 物 6を生成できる。
水素の濃度力 OOOppm以下の場合は、有機シリコンの濃度が極めて低い場合と同 様に処理完了までの時間、つまり感度低下が一定の値に落ち着ぐつまり収束点に 到達するまでの時間が長くなる。また、水素の濃度が 40000ppmを越えると、爆発下 限界を超えるため、作業安全上好ましくない。
これらのことを考慮すると、水素の濃度は、 lOOppm乃至 40000ppmであり、安全 性や処理効率を考慮すると lOOOppm乃至 20000ppmの範囲が好ましい。
なお処理完了までの時間は、有機シリコン、水素の濃度、及び温度に左右されるも のの、これらのパラメータにより一義的に決まる値であるから、予め実験などにより調 查しておくことにより、処理時間を決めることができる。
[0067] 有機シリコンが混入した環境に上記接触燃焼式ガスセンサ 21 'を挿入して水素など の可燃ガスを検出すると、酸素、及び可燃性ガスは、金属酸化物の細孔 24を通過し て触媒 25に到達して燃焼し、所定の出力を生じさせる。一方、有機シリコンとなる物 質は、センサ 1 'の表面に予め形成されているシリコン化合物 26に阻害され、さらには 金属酸化物焼結体 23の細孔 24の細孔径が有機シリコンよりも小さいため、細孔 24 の内部に位置する触媒粒子 25まで侵入することがでず、感度の低下を引き起こすこ とがないと推定される。
[0068] 以上のように、被毒処理を施さない接触燃焼式ガスセンサに比較して、本願発明の ものは、初期感度の低下が極めて小さぐ使用開始時の検出感度を長期間にわたつ て安定に維持することができる。
[0069] なお、上述の実施例においては、抵抗線をコイル状に成形して周囲を取り囲むよう に金属酸化物焼結体を形成して構成したが、板状ヒータの表面に層状に金属酸化 物焼結体を形成したセンサに適用しても同様の作用を奏することは明らかである。
[0070] ところで、上述したヒータ内蔵型ガスセンサは、上述した図 5に示した燃料電池シス テムの排気管路の可燃ガス、例えば水素の検出に特に有効である。
[0071] この実施例によれば、前述の実施例と同様に、他のガス流路に比較して高温状態 となる力ソード側の出口側通路 14に有機シリコンのパッキンやホースが使用されてい ても、感度に経時変化を来すことなぐ水素ガスを検出することができる。
産業上の利用可能性
[0072] 本発明の接触燃焼式ガスセンサは、雰囲気中のシリコンによる感度低下や変動が 少ないため、高分子型燃料電池の力ソード側ガス出口通路のように高温のためにパ ツキンゃチューブから発生したシリコーンの蒸気が存在する環境であっても、水素等 の可燃性ガスを感度に経時変化を招くことなく検出することができる。

Claims

請求の範囲
[I] ジュール発熱を発生するヒータに、酸化触媒粉末と絶縁粉末とからなる感応部を固 着したガス検知素子をケースに収容した接触燃焼式ガスセンサにおいて、
前記感応部が前記酸化触媒を 30wt%以上含有している接触燃焼式ガスセンサ。
[2] 前記感応部が、前記酸化触媒粉末と前記絶縁粉末とを溶液で混練したものを固着さ せて形成されている請求項 1に記載の接触燃焼式ガスセンサ。
[3] 前記感応部が、前記絶縁粉末の泥状体を固着させて固形物を形成し、前記絶縁粉 末の固形物に前記酸化触媒粉末の泥状体を固着させて形成されている請求項 1に 記載の接触燃焼式ガスセンサ。
[4] 前記酸化触媒が、表面側が高レ、濃度となるように形成されてレ、る請求項 1に記載の 接触燃焼式ガスセンサ。
[5] 前記酸化触媒が、 Pt、 Pd、 Pt〇、 PdOから選ばれた 1種、または複数種により構成さ れている請求項 1または、請求項 1、または請求項 2に記載の接触燃焼式ガスセンサ
[6] シリコーン蒸気により感度低下を収束させるエージング処理が施されてレ、る請求項 1 乃至請求項 5のいずれかに記載の接触燃焼式ガスセンサ。
[7] 前記エージング処理が、ガス検知素子を構成するヒータに通電して発熱させることに より行われている請求項 6に記載の接触燃焼式ガスセンサ。
[8] 前記シリコーン蒸気の濃度が、測定に使用される環境でのシリコーンの濃度より高く 設定されている請求項 6に記載の接触燃焼式ガスセンサ。
[9] 前記エージング処理が、前記ガス検知素子の動作温度よりも高い温度に設定されて レ、る請求項 6、または請求項 7に記載の接触燃焼式ガスセンサ。
[10] 高分子型燃料電池の力ソード側ガス出口通路に配置されてシリコン蒸気と水素を含 む環境中の水素を検出する請求項 1に記載の接触燃焼式ガスセンサ。
[II] 測温抵抗体に付着させた金属酸化物焼結体の担体に触媒を担持させてなる接触燃 焼式ガスセンサにおいて、
接触燃焼式ガスセンサを 130°C乃至 500°Cとし、シリコーン化合物を含む雰囲気で 前記触媒の触媒能の経時的変化が所定値に安定するまで被毒させることを特徴とす る接触燃焼式ガ )製造方法。
[12] 前記雰囲気が、 へキサメチルジシラザン、及びへキサメ 種を lOppm乃至 30000ppmを含む請求項 11に記 載の接触燃焼式ガスセンサの製造方法。
[13] 前記雰囲気が、へキサメチルジシロキサン、へキサメチルジシラザン、及びへキサメ チルジシランのうちの少なくとも 1種を lOOppm乃至 20000ppmを含む請求項 11に 記載の接触燃焼式ガスセンサの製造方法。
[14] 前記雰囲気が、へキサメチルジシロキサン、へキサメチルジシラザン、及びへキサメ チノレジ、ンランのうちの少なくとも 1種を lOppm乃至 30000ppm、及び水素 lOOppm 乃至 40000ppmを含む請求項 1に記載の接触燃焼式ガスセンサの製造方法。
[15] 前記雰囲気の水素の濃度が lOOOppm乃至 20000ppmである請求項 14に記載の 接触燃焼式ガスセンサの製造方法。
[16] 測温抵抗体に付着させた金属酸化物焼結体の担体に触媒を担持させてなる接触燃 焼式ガスセンサにおいて、前記金属酸化物は、アルミナ、シリカ又はゼォライトから選 ばれた少なくとも 1種類であり、かつシリコーンィヒ合物を含む雰囲気中で前記触媒の 触媒能の経時的変化が所定値に安定するまで予め被毒させたことを特徴とする接触 燃焼式ガスセンサ。
[17] 前記被毒させる温度が、 130°C乃至 500°Cである請求項 16に記載の接触燃焼式ガ
[18] 前記酸化触媒は、白金、ルテニウム、パラジウム、又はロジウムから選ばれた少なくと も 1種類であることを特徴とする請求項 16に記載の接触燃焼式ガスセンサ。
[19] 前記シリコーン化合物を含む雰囲気力 へキサメチルジシロキサン、へキサメチルジ シラザン、及びへキサメチルジシランのうちの少なくとも 1種を lOppm乃至 30000pp mを含む請求項 16に記載の接触燃焼式ガスセンサ。
[20] 前記雰囲気が、へキサメチルジシロキサン、へキサメチルジシラザン、及びへキサメ チノレジ、ンランのうちの少なくとち 1種を lOOppm乃至 20000ppmを含む請求項 16に 記載の接触燃焼式ガスセンサ。
[21] 前記雰囲気が、へキサメチルジシロキサン、へキサメチルジシラザン、及びへキサメ 種を lOppm乃至 30000ppm、及び水素 lOOppm 乃至 40000ppmを含む請求項 6に記載の接触燃焼式ガスセンサ。
[22] 前記雰囲気の水素の濃度が lOOOppm乃至 20000ppmである請求項 21に記載の 接触燃焼式ガスセンサ。
[23] 高分子型燃料電池の力ソード側ガス出口通路に配置されて水素を検出する請求項:
6に記載の接触燃焼式ガスセンサ。
PCT/JP2004/007827 2003-06-12 2004-06-04 接触燃焼式ガスセンサ、及びその製造方法 WO2004111628A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/560,359 US7526942B2 (en) 2003-06-12 2004-06-04 Contact combustion gas sensor
EP04745603A EP1632771A4 (en) 2003-06-12 2004-06-04 CATALYTIC COMBUSTION TYPE GAS SENSOR AND METHOD FOR MANUFACTURING THE SAME
KR1020057022191A KR101128359B1 (ko) 2003-06-12 2004-06-04 접촉 연소식 가스센서, 및 그 제조방법
JP2005506898A JP4627037B2 (ja) 2003-06-12 2004-06-04 接触燃焼式ガスセンサ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003168042 2003-06-12
JP2003-168042 2003-06-12
JP2003168614 2003-06-13
JP2003-168614 2003-06-13

Publications (1)

Publication Number Publication Date
WO2004111628A1 true WO2004111628A1 (ja) 2004-12-23

Family

ID=33554397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007827 WO2004111628A1 (ja) 2003-06-12 2004-06-04 接触燃焼式ガスセンサ、及びその製造方法

Country Status (5)

Country Link
US (1) US7526942B2 (ja)
EP (1) EP1632771A4 (ja)
JP (2) JP4627037B2 (ja)
KR (1) KR101128359B1 (ja)
WO (1) WO2004111628A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097025A1 (ja) * 2006-02-27 2007-08-30 Fis Inc. 水素ガスセンサ
JP2007248197A (ja) * 2006-03-15 2007-09-27 Riken Keiki Co Ltd 接触燃焼式ガスセンサ
WO2008123092A1 (ja) * 2007-03-28 2008-10-16 Horiba, Ltd. 可燃性ガスセンサ
JP2009002888A (ja) * 2007-06-25 2009-01-08 Yazaki Corp 接触燃焼式ガスセンサ
JP2010112708A (ja) * 2008-11-04 2010-05-20 Riken Keiki Co Ltd 接触燃焼式ガスセンサ
JP5044540B2 (ja) * 2006-02-27 2012-10-10 エフアイエス株式会社 水素ガスセンサ
JP2014126542A (ja) * 2012-12-27 2014-07-07 New Cosmos Electric Corp ガス検知器
JP2015184218A (ja) * 2014-03-25 2015-10-22 新コスモス電機株式会社 接触燃焼式ガスセンサ
RU2583166C1 (ru) * 2014-12-30 2016-05-10 Открытое акционерное общество "Авангард" Полупроводниковый газовый сенсор

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476974B2 (ja) * 2006-07-11 2010-06-09 株式会社東芝 水素発生装置及び燃料電池システム
JP4739166B2 (ja) * 2006-10-24 2011-08-03 本田技研工業株式会社 ガスセンサ
DE112008000824T5 (de) * 2007-03-28 2010-02-11 HORIBA, Ltd., Kyoto-shi Sensor für brennbare Gase
JP4580405B2 (ja) * 2007-03-30 2010-11-10 エフアイエス株式会社 水素ガスセンサ
EP2314953B1 (en) * 2008-06-13 2018-06-27 Mitsubishi Electric Corporation Refrigeration cycle device and control method therefor
CN102959389A (zh) * 2010-05-17 2013-03-06 本田技研工业株式会社 接触燃烧式气体传感器
JP6478404B2 (ja) * 2015-06-01 2019-03-06 理研計器株式会社 分析装置用シロキサン除去フィルター
US10928339B2 (en) * 2015-11-13 2021-02-23 New Cosmos Electric Co., Ltd. Catalytic-conversion-type sensor
JP6884030B2 (ja) * 2017-05-10 2021-06-09 新コスモス電機株式会社 接触燃焼式ガスセンサ
US20220074902A1 (en) 2019-01-23 2022-03-10 Shimadzu Corporation Detection method, analysis method, analysis device and non-transitory computer readable medium
CN113677984A (zh) * 2019-03-28 2021-11-19 松下电器产业株式会社 气体吸附剂、气体吸附装置和气体传感器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560585A (en) * 1983-12-23 1985-12-24 Rexnord Inc. Poison resistant combustible gas sensor
JPS627497B2 (ja) * 1980-06-24 1987-02-17 Nemoto Tokushu Kagaku Kk
JPH0315976B2 (ja) * 1983-06-27 1991-03-04 Tokyo Shibaura Electric Co
JPH06223850A (ja) * 1993-01-29 1994-08-12 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池の運転保護システム
JPH0815204A (ja) * 1994-06-30 1996-01-19 Nemoto Tokushu Kagaku Kk 接触燃焼式coガスセンサの製造方法
JP2524883B2 (ja) * 1990-09-29 1996-08-14 義雄 大野 接触燃焼式coガスセンサとその製造法
JPH08304320A (ja) * 1994-09-23 1996-11-22 Ford Motor Co 接触ガスセンサー
JPH09229889A (ja) * 1996-02-20 1997-09-05 Yazaki Corp ガスセンサ用保護キャップ
JPH09318582A (ja) * 1996-05-28 1997-12-12 Fuji Electric Co Ltd ガス検知素子用触媒の活性化処理方法
JPH10232212A (ja) * 1997-02-20 1998-09-02 Fuji Electric Co Ltd 接触燃焼式ガスセンサの評価方法
JP2000055859A (ja) * 1998-08-04 2000-02-25 Mori Seisakusho:Kk アルコールガス検出触媒、ガスセンサー及びガス漏れ検知器
JP2001272367A (ja) * 2000-03-23 2001-10-05 Ebara Jitsugyo Co Ltd 反応熱検出型ガスセンサ

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL236207A (ja) * 1958-02-18
US3564474A (en) * 1968-06-04 1971-02-16 Nat Res Dev Electrically heatable elements
JPS5023317B1 (ja) * 1969-12-19 1975-08-06
JPS52129592A (en) * 1976-04-23 1977-10-31 Yazaki Corp Temperature sensor contacting type gas detecting element and preparation method of the element
JPS5395097A (en) * 1977-01-31 1978-08-19 Toshiba Corp Gas-sensitive element
BE45T1 (fr) * 1978-03-08 1980-03-14 British Gas Corp Detecteur catalytique de gaz et son procede de realisation
JPS55108961U (ja) * 1979-01-25 1980-07-30
CA1164944A (en) * 1980-01-02 1984-04-03 International Gas Detectors Limited Gas sensor elements and methods of manufacturing them
GB2066963B (en) * 1980-01-02 1983-07-27 Int Gas Detectors Ltd Gas sensor elements and methods of manufacturing them
US4469626A (en) * 1980-05-15 1984-09-04 The Bendix Corporation Composition and method for forming a thick film oxygen sensing element
US4337028A (en) * 1980-05-27 1982-06-29 The United States Of America As Represented By The United States Environmental Protection Agency Catalytic monolith, method of its formulation and combustion process using the catalytic monolith
JPS56168542A (en) * 1980-05-30 1981-12-24 Sharp Corp Aging device for sno2 series semiconductor gas sensor
US4355056A (en) * 1981-03-31 1982-10-19 The Babcock & Wilcox Company Method of manufacturing a combustibles sensor
GB2096321B (en) * 1981-04-04 1984-05-31 English Electric Valve Co Ltd Combustible-gas detectors
GB2121180B (en) * 1982-05-01 1985-07-17 English Electric Valve Co Ltd Catalytic combustible-gas detectors
US4447397A (en) * 1982-08-05 1984-05-08 Bacharach Instrument Company Catalytic gas sensor
JPS59120945A (ja) * 1982-12-28 1984-07-12 Shinkosumosu Denki Kk 水素選択性センサ
JPS60114745U (ja) * 1984-11-22 1985-08-03 三菱電機株式会社 感熱ヘツドの熱制御装置
JPH0517650Y2 (ja) * 1986-01-31 1993-05-12
US5603983A (en) * 1986-03-24 1997-02-18 Ensci Inc Process for the production of conductive and magnetic transitin metal oxide coated three dimensional substrates
JPS6330751A (ja) * 1986-07-24 1988-02-09 Fuji Electric Co Ltd 水素ガス検知素子
JPH02161345A (ja) * 1988-12-15 1990-06-21 Fuji Electric Co Ltd 接触燃焼式ガス検知素子
JP2530276B2 (ja) * 1992-09-14 1996-09-04 株式会社森製作所 接触燃焼式一酸化炭素センサ
GB9306594D0 (en) * 1993-03-30 1993-05-26 Univ Keele Sensor
US5964089A (en) * 1997-06-27 1999-10-12 Lynntech, Inc Diagnostics and control of an on board hydrogen generation and delivery system
DE19732601C2 (de) * 1997-07-29 1999-11-04 Heraeus Electro Nite Int Katalytisches Schichtsystem
US6019946A (en) * 1997-11-14 2000-02-01 Engelhard Corporation Catalytic structure
JPH11169711A (ja) * 1997-12-09 1999-06-29 Honda Motor Co Ltd 排気ガス浄化用複合触媒
JP2000009672A (ja) * 1998-06-26 2000-01-14 Yazaki Corp 接触燃焼式ガスセンサ
US6087297A (en) * 1998-06-29 2000-07-11 Saudi Basic Industries Corporation Catalysts for gas phase production of acetic acid from ethane, processes of making the same and methods of using same
US6143928A (en) * 1998-08-10 2000-11-07 Saudi Basic Industries Corporation Catalysts for low temperature selective oxidation of propylene, methods of making and using the same
JP2000206086A (ja) * 1999-01-12 2000-07-28 Tokyo Gas Co Ltd 水素ガスセンサ及びその製造方法
US6461751B1 (en) * 1999-12-06 2002-10-08 Ballard Power Systems Inc. Method and apparatus for operating a fuel cell
JP4996785B2 (ja) * 2000-10-02 2012-08-08 株式会社京浜理化工業 ガス検出装置
US7041256B2 (en) * 2001-01-30 2006-05-09 Industrial Scientific Corporation Poison resistant combustible gas sensors and method for warning of poisoning

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627497B2 (ja) * 1980-06-24 1987-02-17 Nemoto Tokushu Kagaku Kk
JPH0315976B2 (ja) * 1983-06-27 1991-03-04 Tokyo Shibaura Electric Co
US4560585A (en) * 1983-12-23 1985-12-24 Rexnord Inc. Poison resistant combustible gas sensor
JP2524883B2 (ja) * 1990-09-29 1996-08-14 義雄 大野 接触燃焼式coガスセンサとその製造法
JPH06223850A (ja) * 1993-01-29 1994-08-12 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池の運転保護システム
JPH0815204A (ja) * 1994-06-30 1996-01-19 Nemoto Tokushu Kagaku Kk 接触燃焼式coガスセンサの製造方法
JPH08304320A (ja) * 1994-09-23 1996-11-22 Ford Motor Co 接触ガスセンサー
JPH09229889A (ja) * 1996-02-20 1997-09-05 Yazaki Corp ガスセンサ用保護キャップ
JPH09318582A (ja) * 1996-05-28 1997-12-12 Fuji Electric Co Ltd ガス検知素子用触媒の活性化処理方法
JPH10232212A (ja) * 1997-02-20 1998-09-02 Fuji Electric Co Ltd 接触燃焼式ガスセンサの評価方法
JP2000055859A (ja) * 1998-08-04 2000-02-25 Mori Seisakusho:Kk アルコールガス検出触媒、ガスセンサー及びガス漏れ検知器
JP2001272367A (ja) * 2000-03-23 2001-10-05 Ebara Jitsugyo Co Ltd 反応熱検出型ガスセンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1632771A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097025A1 (ja) * 2006-02-27 2007-08-30 Fis Inc. 水素ガスセンサ
WO2007099933A1 (ja) * 2006-02-27 2007-09-07 Fis Inc. 水素ガスセンサ
JP5044540B2 (ja) * 2006-02-27 2012-10-10 エフアイエス株式会社 水素ガスセンサ
JP2007248197A (ja) * 2006-03-15 2007-09-27 Riken Keiki Co Ltd 接触燃焼式ガスセンサ
WO2008123092A1 (ja) * 2007-03-28 2008-10-16 Horiba, Ltd. 可燃性ガスセンサ
JP2009002888A (ja) * 2007-06-25 2009-01-08 Yazaki Corp 接触燃焼式ガスセンサ
JP2010112708A (ja) * 2008-11-04 2010-05-20 Riken Keiki Co Ltd 接触燃焼式ガスセンサ
JP2014126542A (ja) * 2012-12-27 2014-07-07 New Cosmos Electric Corp ガス検知器
JP2015184218A (ja) * 2014-03-25 2015-10-22 新コスモス電機株式会社 接触燃焼式ガスセンサ
RU2583166C1 (ru) * 2014-12-30 2016-05-10 Открытое акционерное общество "Авангард" Полупроводниковый газовый сенсор

Also Published As

Publication number Publication date
EP1632771A4 (en) 2010-09-15
US20060133962A1 (en) 2006-06-22
EP1632771A1 (en) 2006-03-08
KR20060026022A (ko) 2006-03-22
JP2010078609A (ja) 2010-04-08
KR101128359B1 (ko) 2012-03-23
JPWO2004111628A1 (ja) 2006-07-20
US7526942B2 (en) 2009-05-05
JP4849493B2 (ja) 2012-01-11
JP4627037B2 (ja) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4849493B2 (ja) 接触燃焼式ガスセンサの製造方法
Ono et al. Oxygen chemisorption, formation, and thermal stability of Pt oxides on Pt nanoparticles supported on SiO2/Si (001): size effects
KR101759416B1 (ko) 연료 전지용 전극 및 그 제조 방법
US7938891B2 (en) Using ionic liquids
Cleemann et al. Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes
JPH10239276A (ja) 一酸化炭素ガスセンサおよび同センサを用いた測定装置
KR100892122B1 (ko) 일산화탄소 가스 센서 및 그의 제조 방법
JP5410363B2 (ja) 水素及び酸素の再結合触媒、再結合装置及び原子力プラント
JP2001216991A (ja) 燃料電池性能評価装置およびその評価方法、燃料電池用電極触媒の比表面積評価装置およびその評価方法、並びに燃料電池用電極触媒およびその製造方法
JP2017522171A (ja) 水素を含有する気体中におけるアンモニアの選択的酸化のための触媒
JP2011069705A (ja) アンモニアセンサ素子及びプロトン導電性固体電解質体の製造方法
JP4780654B2 (ja) 水素ガスセンサ
Onuma et al. Electrochemical Oxidation in a CH 4‐H 2 O System at the Interface of a Pt Electrode and Y 2 O 3‐Stabilized ZrO2 Electrolyte: I. Determination of the Predominant Reaction Process
US20230264146A1 (en) System for the removal of hydrogen/oxygen in a gaseous stream
EP1937389B1 (en) Electrochemical reactor comprising oxygen ion pump for after-treatment of combustible gas residues
JP4996171B2 (ja) 水素ガスセンサ
Barz et al. Addition of dilute H 2 O 2 solutions to H 2–CO fuel gases and their influence on performance of a PEFC
JP2022169883A (ja) 水素精製システム
JP2004117123A (ja) ガスセンサ
Hagen et al. Potentiometric CO2 Gas Sensor Based on Zeolites
JP4581253B2 (ja) ガスセンサ
JP3882656B2 (ja) ガス濃度測定方法及びガス濃度センサ
JP2014163889A (ja) 水素センサ装置
JPH11287781A (ja) 水素ガス検知素子及びその製造方法
CN108680617A (zh) 一种氢气传感器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506898

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004745603

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057022191

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006133962

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10560359

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004745603

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057022191

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10560359

Country of ref document: US