WO2004110942A1 - 光学ガラス - Google Patents

光学ガラス Download PDF

Info

Publication number
WO2004110942A1
WO2004110942A1 PCT/JP2004/008272 JP2004008272W WO2004110942A1 WO 2004110942 A1 WO2004110942 A1 WO 2004110942A1 JP 2004008272 W JP2004008272 W JP 2004008272W WO 2004110942 A1 WO2004110942 A1 WO 2004110942A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical glass
less
glass according
oxide
mass
Prior art date
Application number
PCT/JP2004/008272
Other languages
English (en)
French (fr)
Inventor
Koji Shimizu
Susumu Uehara
Original Assignee
Kabushiki Kaisha Ohara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Ohara filed Critical Kabushiki Kaisha Ohara
Priority to CN2004800229566A priority Critical patent/CN1835895B/zh
Priority to JP2005506949A priority patent/JP4537317B2/ja
Priority to EP04736346A priority patent/EP1640346A4/en
Publication of WO2004110942A1 publication Critical patent/WO2004110942A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/901Optical glass, e.g. silent on refractive index and/or ABBE number having R.I. at least 1.8

Definitions

  • the present invention high refractive, S i 0 2 having a highly dispersed - a T i 0 2 -Nb 2 0 5 -L i 2 0 based glass, low glass transition point (T g) and low average linear expansion coefficient Optical glass suitable for mold press molding that has a number (h)
  • the optical constants belong to the highest refraction and high dispersion range of the optical glass required in this field, and if it becomes possible to manufacture an optical glass having this optical constant range by a glass mold,
  • the lens obtained in this way can achieve correction of chromatic aberration in a more compact optical system at low cost.
  • optical glass for mold press which is very useful for optical design.
  • conventional optical glass for mold presses in this range not only has poor chemical durability, but also has poor thermal shock resistance, and has the problem of chipping of glass gob when obtaining preform materials or during pressing. It often occurs, and no practical optical glass for mold press has ever existed.
  • optical glasses having optical constants near the object of the present invention have been disclosed.
  • Japanese Patent Application No. 2001-0158845 and Japanese Patent Application Laid-Open No. 2002-173336 disclose optical glass containing phosphate, but this glass not only has insufficient chemical durability but also is fused with a press die. It is not suitable for mold press molding because it has a very high average linear thermal expansion coefficient (h), and the glass breaks and breaks during rapid cooling and rapid heating before and after pressing.
  • Japanese Patent Application Laid-Open No. 58-217451 discloses an optical glass for mold press containing a large amount of P or Pb, but a glass containing a large amount of the P or Pb component cannot be used in a mold at a press temperature range. And high reactivity, it is easy to deteriorate the mold and is not suitable as an optical glass for mold press.
  • JP-A-48-034913 discloses that K 20 (Na 20 ) —S i 0 2 —T I_ ⁇ 2 _Nb 2 0 5 system of the optical glass is disclosed, but the glass transition point as the mode one Rudopuresu optical glass et is calculated in recent years (T g) is high, further average linear expansion coefficient (ratio) of Due to its large size, the glass is liable to break during rapid cooling and rapid heating before and after pressing, making it unsuitable for mold press molding.
  • JP-A-2000-344542, JP-A-61-168551, JP-A-54-161616, JP-A-54-161620, JP-A-49-087716, JP-A-58-125636 Discloses high-refractive glasses for glasses whose average linear expansion coefficient (H) is less than 100 [10— ⁇ C— 1 ]. Is large or the refractive index (nd) is low, deviating from the optical constant of the optical glass for mold press, which is the object of the present invention.
  • An object of the present invention is to provide an optical glass for a mold press having a low glass transition point (T g) and a high thermal shock resistance while having the above desired optical constants.
  • T g glass transition point
  • thermal shock can be predicted by the following equation.
  • ⁇ ⁇ ⁇ ⁇ ⁇ l ⁇ / (1-so) — (A)
  • is a constant related to shape and heat transfer velocity.
  • is Young's modulus
  • a is average linear expansion coefficient
  • So is The temperature difference, So, is the Poisson's ratio.
  • a method of reducing 1T is considered.
  • a preheating furnace is installed before or after the molding process to avoid rapid heating and quenching of the glass.
  • this method since the preform material stays for a long time under high temperature conditions for the glass of the pre-furnace and the forming process, there is a high risk of precipitation of fine crystals (so-called devitrification).
  • installing one or more spare furnaces increases the complexity of equipment and processes, or increases the cycle time required to manufacture one product. High. Therefore, there are limits to measures to reduce the temperature change l T applied to the glass during mold press molding.o
  • the values that greatly depend on the glass composition are Young's modulus (E), average coefficient of linear expansion (H), and Poisson's ratio (SO). Therefore, obtaining a material with a small Young's modulus (E) and a small average linear expansion coefficient (H) is an important point as an optical glass for mold press with high thermal shock resistance. Disclosure of the invention
  • the refractive index (nd) is 1.825 to 1.870
  • the Abbe number (so d) is less than 22 to 27
  • the transition point (T g) is 530 ° C .: up to 585 ° C .
  • the average linear expansion coefficient ( ⁇ ) is SOIOSCIO 7 ⁇ —1 ], and S i 0 2 , T i ⁇ 2 , and Nb 2 0 5, containing L i 2 0 component, a and substantially does not contain lead compounds' optical glass, characterized in that.
  • the refractive index (nd) is 1.825 to 1.870
  • the Abpe number (so d) is less than 22 to 27
  • the glass transition point (Tg) is 53 0 ° C ⁇ 5 8 5 ° C
  • Nb 2 0 have L i 2
  • An optical glass characterized by containing no component and substantially not containing a lead compound.
  • the refractive index (nd) is 1.825 to 1.870
  • the Abbe number (so d) is less than 22 to 27
  • the glass transition point (Tg) is 5 3 a 0 ° C ⁇ 5 8 5 ° C
  • the formula - 1: the value of E ⁇ Fei /) is, 1.0 0 x 1 ⁇ 0 6 ⁇ : L .3 5 X 1 0 6 [P a ⁇ C ' 1 ]
  • An optical glass characterized in that it contains S i O 2 , T i O or Nb 20 or L i 20 components, and is substantially free of a lead compound.
  • Nb 2 0 5 / T i 0 2 values 2.9 or higher.
  • optical glass according to any one of the above aspects 1 to 3, wherein
  • a sixth aspect of the present invention is a method of the present invention, wherein:
  • R Mg, C a, S r, selected from among B a and Z n ⁇ species or 'two or more species.
  • An eighth aspect of the present invention is a method of the present invention, wherein:
  • a ninth aspect of the present invention is a method for producing a compound, comprising:
  • optical glass according to any one of the above-described embodiments 1 to 9, wherein First one aspect of the present invention, in mass percent on the oxide basis, wherein 1-1 0 embodiment of the optical science glass, characterized in that S i 0 2 is not more than 3-6% greater than 25% It is.
  • a twenty-second aspect of the present invention is the optical glass according to any one of the first to eleventh aspects, wherein K20 is from 10% to 20 % by mass on an oxide basis. .
  • Embodiment of the first 3 of the present invention characterized in that S i O had T i O There Nb 2 0 have L i 2 0, is + N a 2 0, K 2 0 total amount of components 90% or more
  • the optical glass according to any one of the above aspects 1 to 12.
  • the fifteenth embodiment of the present invention is characterized in that the refractive index (nd) is 1.825 to 1.870, the number of atoms (d) is less than 22 to 27, the glass transition point (Tg ) Is 5350 ° C to 585 ° C, and the average coefficient of linear expansion () is 80 or more: L03 [ ⁇ ⁇ 7 ⁇ : 1 ]. - value 1.0 0 xl Les) 0 6 ⁇ 1.3 5 x 1 0 6 [P a ⁇ C "1] There, the 1-1 of the third aspect you characterized by containing substantially no lead compound Optical glass.
  • the optical glass has a refractive index (nd) of 1.825 to 1.870, an Abbe number (so d) of less than 22 to 27, and a glass transition point ( T g) of 53 0 ° C ⁇ 5 8 5 ° C, average linear expansion coefficient (ratio) of 8 0-1 0 0 - a [1 0 7 1], wherein one 1: E ⁇ a / (1 - source value is) '1.0 0 X 1 0 6 ⁇ : L .3 5 X 1 0 6 [P a'. 1 ]
  • the optical glass according to any one of the above aspects 1 to 13, wherein the optical glass substantially does not contain a lead compound.
  • a sixteenth aspect of the present invention there is provided,
  • L i 20 2-8% It is an optical glass characterized by containing.
  • An eighteenth aspect of the present invention provides a method for measuring
  • R is one or more selected from Mg, Ca, Sr, Ba, and Zn: or two or more,
  • optical glass according to any one of the above aspects 16 to 17, wherein the nineteenth aspect of the present invention comprises:
  • a twentieth aspect of the present invention provides a method
  • a twenty-first aspect of the present invention is an optical science glass of the 1 6 ⁇ 20 aspects of mass% in 3 i 0 2 on the oxide basis is equal to or less than 36% larger Ri by 25%.
  • the 22nd mode of the present invention an optical glass of the 16-2 1 embodiment, wherein the 1 (2 0 is less greatly than 20% 10%% by mass on the oxide basis.
  • the 23rd mode of the present invention is, S i O had T i O There Nb 2 0 have L i 2 0, Na 2 0 , K 2 0 before the total amount of the component is 90% or more by weight percent on the oxide basis It is an optical glass according to any one of Embodiments 16 to 22.
  • the 24th mode of the present invention there is provided an optical glass as aspects of the 1-23 is ⁇ less than 2 0 3 ingredient content of 5%.
  • 25th aspect of the present invention is a T a 2 0 5, WO 3 , G e 0 2 of the respective content. Amount is less than 5% the 1-24 aspect of the optical glass.
  • a twenty-sixth aspect of the present invention is the optical glass according to any one of the first to twenty-fifth aspects, wherein the content of the rare earth oxide is less than 5%.
  • the optical glass of the embodiment of the A 1 2 0 3 before the content of the component is less than 5% SL 1-26.
  • the optical glass of the previous SL 1-27 aspects of the content of C s 2 0 component is less than 3%.
  • the optical glass of the embodiment of B i 2 0 3 component of the content is less than 3% in a pre-Symbol 1-28.
  • a thirtieth aspect of the present invention is the optical glass according to any one of the first to 29th aspects, wherein the yield point (At) is 620 ° C or less.
  • a thirty-first aspect of the present invention is the optical glass according to any one of the first to third aspects, wherein the rigidity (G) is 30 GPa or more.
  • the thirty-second embodiment of the present invention relates to the above-mentioned 1st aspect, wherein the class (SR) indicating acid resistance according to the measurement method of International Standards Organization I S08424: 1996 (E) is 1.
  • 34 to 34 are optical glasses according to the embodiments.
  • a part or all of the oxide in the glass composition expressed on an oxide basis is substituted with a fluoride.
  • the optical glass of the present invention S i O have contain T i 0 2, N b 2 0 have L i 2 0 component, a refractive index of 1. 8 2 5-1. 8 7 0, Abbe number 2 2 Mold glass with a low glass transition point and a low average linear expansion coefficient of less than 27.
  • Optical glass for presses under conditions of rapid temperature changes before and after press, such as rapid temperature rise and fall. Also, it has extremely good thermal shock resistance compared to conventional high refraction and high dispersion optical glass for mold press. In addition, since it has a low average coefficient of linear expansion, it is possible to significantly reduce the occurrence of chips and chips generated when a preform or a gob itself is obtained by direct molding.
  • the optical glass of the present invention has higher stability as a glass and can be expected to have good productivity as compared with conventional high refractive index and high dispersion glass, and has excellent chemical durability and homogeneity. With good workability
  • optical glass of the present invention is suitable for environmental measures such as PbO. It is economically advantageous because it does not contain costly components Best mode for carrying out the invention
  • the reasons for limiting each property value and the reason for limiting the composition range of each component are as follows.
  • “substantially free” means that it is not blended as a raw material component, that is, it is not intentionally contained, and even if it is mixed as an impurity. Is not excluded.
  • oxide standard means that oxides, complex salts, metal fluorides, etc. used as raw materials for the glass constituents of the present invention are completely decomposed and converted to oxides upon melting.
  • the composition is such that the total weight of the produced oxide is 100% by mass and the components contained in the glass are described.
  • the refractive index (nd) is preferably 1.825, more preferably 1.830, and most preferably, in order to realize a compact and high-spec optical design in recent years.
  • the lower limit is 1.840, preferably 1.870, and more preferably 1.860.
  • the Abbe number is preferably at the lower limit of 22 and more preferably 23, preferably less than 27, more preferably 26 and most preferably 25.
  • the mold press molding it is desirable that the mold can be pressed at a low temperature as much as possible, so that the glass transition point (T g) of the optical glass for mold press having the optical constant of the present invention is 60 °. It is required to be below 0 ° C. The higher the glass transition temperature (T g), the shorter the life of the mold. In particular, it was found that when the glass transition point (T g) of the glass to be subjected to mold press molding is set to 585 ° C. or less, the life of the mold becomes remarkably long. Therefore, higher productivity and lower For cost reduction, the glass transition point (T g) is preferably set to 585 ° C. or lower.
  • the glass transition point (T g) is preferably in the range of 530 to 585 ° C, more preferably the lower limit is 535 ° C and Z or the upper limit is 570 ° C. Most preferably, the lower limit is 540 ° C and / or the upper limit is 565 ° C.
  • the yield point (A t) is one of the indices indicating the low-temperature softening property of glass, like the glass transition point (T g), and is closer to the press forming temperature. Therefore, it can be an index for facilitating press forming.
  • the temperature be not higher than 64 ° C. However, if the temperature is too low, the chemical durability of the glass tends to deteriorate as described above. Therefore, the temperature is preferably set to 560 ° C. or more. More preferably, the lower limit is 565 ° C and / or the upper limit is 630. C, most preferably the lower limit is 570 ° C and / or the upper limit is 620 ° C.
  • the average linear expansion coefficient () is also low.
  • the refractive index (nd) is less than 1.8
  • the upper limit of the average linear expansion coefficient () of the conventional glass mold glass is preferably about 103 [1 O- ⁇ C " 1 ].
  • mold press molding is difficult because defects such as cracks and chips are likely to occur, but if it is too small, it is difficult to satisfy the glass transition point (T g) described above.
  • the average linear expansion coefficient (alpha) is 8 0 ⁇ 1 0 3 [1 0- 7 ° 1] is preferably in the range of, more preferably the lower limit is 8 5 [1 O- ⁇ C "1] and / or the upper limit [a C- 1 0- 7 °, and most preferably lower limit is 8 8 [1 O - ⁇ C 1 0 0" 1] and / or the upper limit of 9 5 [1 O 7 ⁇ — 1 ] O
  • E ⁇ / (1-—) be low. If this value is too large, during press molding, or the so significantly high no longer liable risk Wa les Ya chipping failure occurs frequently in obtaining the preform material 1.35 XI 0 6 [P a ' . 1 ] It is preferably the following. Further, particularly in the optical glass having the optical constants, Me is preferably other to the 80 [10 7 ° C- or sea urchin average linear expansion coefficient by the above-mentioned, E, for even shed les), 1.00 x10 6 [ P a. 1 ] It is preferable to do the above.
  • E ⁇ hi Z (1—so) be in the range of 1.00 ⁇ 10 6 to 1.35 xlO 6 [P a ⁇ C ” 1 ], and 1.00 X10 6 to 1.25 xl0 6 [P a ⁇ "range is more Konomajiku of 1], 1.00 xl0 6 ⁇ 1.20 xl0 6 [P a -" C is most preferred range of C "1].
  • the components that can be contained in the optical glass of the present invention will be described. Hereinafter, unless otherwise specified, the content of each component is represented by mass%.
  • the order to sufficiently exhibit the effect described above is 18% or more
  • the content is preferably 36% or less. Therefore, it is preferable to set the lower limit to 18% and / or the upper limit to 36%. More preferably, the lower limit is at least 20% and / or the upper limit is 30%, most preferably more than 25%, and / or the upper limit is 27.5%.
  • T i 0 2 component increases the refractive index, and is a component that is effective in extremely to increase the dispersion, the glass if its amount is too small rather Tokunan their effect and too large Tends to deteriorate in stability. Therefore, it is preferable that the lower limit is in the range of 6% and / or the upper limit is in the range of less than 18%. More preferably, the lower limit is 9% and / or the upper limit is 15%, and the most preferred lower limit is 10% and / or the upper limit is less than 12%.
  • Nb 2 0 5 component is an important ingredient in the present invention, particularly in the composition system which are allowed to coexist T i ⁇ 2 and L i 2 0, the high refractive index while maintaining excellent stability It is an essential component to obtain.
  • the amount is too small, it becomes difficult to maintain a desired optical constant, and if it is too large, the stability as glass tends to deteriorate. Therefore, it is preferable to be in the range of more than 42% and / or 55% or less. More preferably, the lower limit is greater than 43% and / or the upper limit is 52%, most preferably the lower limit is 45% and / or the upper limit is 48%. In order to obtain even higher levels the effects are preferably to Nb 2 -0 5 / T i 0 a value of 2 2.7 or more, 2. and more preferably child and .9 more. Most preferably, it is 3.5 or more. Further, by limiting the ratio within the above range, crystallization in the press temperature range tends to be prevented. .
  • the Li 20 component has the greatest effect on maintaining the average coefficient of linear expansion low, promoting the melting of glass, and lowering the glass transition point (Tg). If the amount is too large, the above effect is difficult to obtain, and if the amount is too large, it becomes difficult to maintain the Abbe number in a desired range. Therefore, it is preferable to set the lower limit to 2% and / or the upper limit to 8%. More preferably, the lower limit is 3% and / or the upper limit is 7%, and most preferably, the lower limit is 4% and / or the upper limit is 6%.
  • the amount of N a 2 0 and each component of K 2 0 both in order to have the effect of promoting the melting of glass, lowers the glass transition point (T g) is Na 2 0 ⁇ beauty K 2 0 However, it is preferable that they are 10% or less and 20% or less, respectively.
  • kappa 2 0 component compared to Na 2 0 component since the effect of increasing the dispersion, especially in the case of requiring a small optical glass having the Abbe number, be a N a 2 0 to less than 3% preferably, more preferably it is preferable to add N a 2 0 a substantially free without K 2 0 2% or more, particularly preferably in the kappa 2 0 8% or more, content exceeds 10%
  • the total amount of one or more of these components is up to 25%, more preferably less than 20%.
  • Sb 2 0 3 component, fining the glass but may optionally be added as a defoaming agent for homogenizing, the amount is sufficient up to 1%.
  • the R0 component that is, each component of Mg0, Ca ⁇ , SrO, BaO, and Zn ⁇ , as needed, for the purpose of adjusting the optical constants and improving the melting property and stability of the glass.
  • One or more selected from these can be added in an amount of less than 5% in total of these components.
  • ingredients may be added up to less than 5% adjustment of the optical constants, the durability improvement of the glass as a purpose.
  • one or two types of RO components (BaO, CaO, MgO, SrO, and ZnO components) are selected. above), it is preferable that the total amount of Z r 0 2 component and L i 2 0 ingredient 8% or less. Because it contains where L i 2 0 component 2-8%, the total amount of the component is 2% lower limit, and / or upper limit is preferably set to 8%. More preferably, the lower limit is 3% and / or the upper limit is 7%, and even more preferably, the lower limit is 4% and Z or the upper limit is 6%.
  • the total amount of the above components is preferably 90% or more, more preferably 94% or more. Without impairing the chemical durability of the glass, lower glass transition temperature (Tg) obtained in Ru purposes it is also possible to add B 2 0 3 component in an amount of less than 5%. However, when higher light transmittance is to be obtained, it is more preferably contained in an amount of 3% or less, and most preferably substantially not contained.
  • T a 2 0 5, W0 3 , and Ge 0 2 like also adjust optical constants, devitrification resistance, but can also contain in order to improve the light transmittance, the purpose of the press molding
  • the content is preferably less than 5%, more preferably 4% or less, and most preferably 3% or less.
  • a 1 2 0 3 is Degiru also be containing chromatic for the purpose of improving the chemical durability of the glass, may worsen the stability of the glass there Runode, less than 5%, more preferably It is contained in an amount of 3% or less, and most preferably substantially not.
  • C s 20 can be contained for the purpose of adjusting the optical constant, it is an expensive raw material, so if low-cost glass is to be obtained, it is less than 3%, more preferably 1% or less. , And most preferably substantially not.
  • Rukoto is low glass transition point (T g) of, when performing a mode one Rudopuresu molding, Because clouding may occur on the lens surface due to volatilization.
  • T g glass transition point
  • Each transition metal component, such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo, excluding Ti, is contained alone or in combination in small amounts.
  • the glass is not substantially contained in an optical glass using a wavelength in the visible region.
  • each of the rare earth components other than La and Gd is colored by being contained singly or in combination, and tends to cause absorption at a specific wavelength in the visible region. It is preferable that the optical glass used is not substantially contained.
  • the Th component is for increasing the refractive index or improving the stability of the glass
  • the Cd and T1 components are for decreasing the glass transition point (Tg)
  • the .As component is for clarifying or improving the glass. It can be included for the purpose of homogenization.
  • the components of Pb, Th, Cd, Tl, As, and ⁇ s have tended to refrain from being used as harmful chemicals in recent years. Environmental measures are required up to the processing step and disposal after commercialization, so it is preferable that they are not substantially included when emphasizing environmental impact.
  • a fluorine component may be contained as necessary.
  • the fluorine component is effective for obtaining a high transmittance, and can obtain an optical glass having a low transition temperature (T g).
  • the F component exists in the form of a fluoride in which some or all of the oxygen atoms of one or more oxides of silicon or another metal element are substituted. . If the total amount of the fluorides substituted with part or all of the oxygen atoms of the oxide as F is too large, the volatilization amount of the fluorine component will increase and it will be difficult to obtain a homogeneous glass, so that stable production will be achieved. Should not be added if it would interfere.
  • the amount is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and most preferably 1 part by mass with respect to 100 parts by mass of the oxide-based glass composition. Parts or less.
  • the rigidity (G) is desirably high, and is preferably 3 O GPa or more. However, if it is too high, the glass transition point (T g) tends to increase, so that the pressure is preferably 50 GPa or less. More preferably, the lower limit is 33 GPa and / or the upper limit is 47 GPa, and most preferably, the lower limit is 35 GPa and / or the upper limit is 45 GPa.
  • the acid resistance be as high as possible.
  • the SR value should be at least 4 or less, preferably 3 or less, more preferably 2 or less, and most preferably, based on the measurement method in accordance with International Standardization Organization IS08424: 1996 (E). Is one.
  • the glass composition of the present invention cannot be directly expressed in the description of mo 1% because the composition is expressed in mass%, it is present in the glass composition satisfying the various properties required in the present invention.
  • the molybdenum content of each component is shown as follows: ⁇
  • the composition takes the following values on an oxide basis.
  • a to D refer to compositions having a refractive index of 1.80 or more among the examples described in JP-A-2002-87841, and Comparative Examples No. E and N.
  • 0.F refers to the composition of the example relatively close to the composition of the present invention in JP-A-52-45612, and the glasses of Comparative Examples Nos. G to J are described in JP-A-48-349. In 13, the compositions of Examples which do not contain lead and have a refractive index of 1.8 or more are cited.
  • each item in these tables is as follows: content of each component is [mass%], glass transition point (T g), yield point (At), devitrification temperature is [° C], average linear expansion coefficient ( Hi) is [1 O 7 ⁇ —1 ], Young's modulus (E) and rigidity (G) are [GPa], and ⁇ ⁇ ⁇ / (1—) is [lOsp a 'oC- 1 ].
  • the glasses of the examples (N 0.1 to No. 25) according to the present invention are oxides Ordinary optical glass materials such as carbonates and nitrates are weighed so as to have a predetermined ratio, mixed and then put into a platinum crucible or the like. Melt and defoam at temperature C for 2 to 4 hours, homogenize with stirring, cool down, cool down in a mold, etc., and slowly cool to easily obtain glass with excellent homogeneity Can be.
  • the class (SR) showing acid resistance is the result obtained by measuring according to the measurement method of International Organization for Standardization IS 08424: 1996 (E).
  • SR is a rating based on the time (h) required for a glass sample in a given acid treatment solution to undergo 0.1 m erosion, where SR is 1, 2, 3, and 4
  • the erosion is more than 100 hours, 100 to 10 hours, less than 10 hours to 1 hour, and less than 1 hour to 0.1 hour.
  • the SR is 5, 51, 5.2 and 53
  • the erosion exceeds 10 hours, 10 hours to 1 hour, and less than 1 hour to 0. It took up to 1 hour and less than 0.1 hour. Therefore, the smaller the SR class value, the higher the acid resistance of the glass and the better the chemical durability.
  • GIS 16 Measured by the method according to 1S76 . However, the measurement temperature range was not 30 to +70 ° C in this standard, but was measured in the temperature range of 100 to 300 ° C.
  • the Young's modulus (E), the rigidity (G), and the Poisson's ratio ( ⁇ ) were measured by an ultrasonic pulse method using a 100 ⁇ 10 ⁇ 10 mm sample.
  • the devitrification temperature was measured as follows. Glass particles were crushed and passed through a 170 ⁇ screen, and remained on a 140 ⁇ screen screen. The glass particles were immersed in alcohol, ultrasonically cleaned, and dried in a high-temperature bath. These glass particles are placed on a platinum boat in a row along the length of the boat, at regular intervals in a row, and over a number of 1 mm holes, with an appropriate temperature gradient along the length of the boat. For 0.5 hours in an electric furnace set at a temperature as described above. Obtain the glass particles on the platinum boat taken out of the furnace, identify the position of the glass where devitrification has begun, determine the temperature at the position of the glass from the position and the temperature gradient of the furnace, and measure the temperature. The transmission temperature was set.
  • the glasses (No. 1 to 25) of the examples of the present invention all have refractive indexes (nd), Abbe numbers (so d), and glass transition points in desired ranges.
  • T g has an average linear expansion coefficient ().
  • the acid resistance class (SR) was “1” in all cases, indicating that the acid resistance was remarkably excellent and the chemical durability was good.
  • the values of ⁇ ⁇ ⁇ (1- () are within the desired range.
  • the glasses of Comparative Examples No. G to J do not satisfy the composition range required by the present invention, so that the refractive index, abbe number, and glass transition point required by the present invention are not satisfied. Does not meet any of In all of the examples, the average linear expansion coefficient exceeded 103 (1O- 7 ⁇ -1 ), and was not suitable as an optical glass for mold press.
  • Industrial applicability INDUSTRIAL APPLICABILITY The present invention is an optical glass suitable for molding, and can be applied to the manufacture of optical elements other than lenses and lenses, such as prisms, diffraction gratings, and reflection mirrors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

屈折率(nd)が1.825~1.870、アッベ数(νd)が22~27未満、ガラス転移点(Tg)が530℃~585℃、平均線膨張係数(α)が80~103[10-7℃-1]であり、SiO2、TiO2、Nb2O5、Li2O成分を含有し、且つ実質的に鉛化合物を含有しないことを特徴とする光学ガラス

Description

明細書
光学ガラス 技術分野
本発明は、 高屈折、 高分散性を有する S i 02- T i 02-Nb 205 -L i20系ガラスであり、 低いガラス転移点 (T g) と低い平均線膨張係 数 (ひ) を併せ持つ、 モ一ルドプレス成形に好適な光学ガラスに関する
背景技術
高屈折 ·高分散である光学ガラスを使った非球面レンズを用いて、 レ ンズ枚数を削減することにより、 レンズ等の光学素子を軽量 · 小型化す る傾向は、 近年特に強まりつつある。 しかしながら、 従来の研削 ·研磨 工程で非球面を得ようとすると、 高コス 卜で複雑且つ多くの作業工程を 必要とする。 そこで、 ガラスゴブあるいはガラスプロックから得られた プリフォーム材を超精密加工された金型で直接レンズ成形する方法が開 発された。 この方法により得られたレンズは研削 ·研磨する必要がない ため、 低コス ト ·短納期で生産することが可能となった。 この成形方法 はガラスモールドと呼ばれ、 盛んに研究 ' 開発が行われ、 そして光学機 器に使用されるガラスモールドによる非球面レンズは年々増加している これらのガラスは、 ガラスモールドで使用する金型の耐熱性から、 用 いるガラスについては、 より低温で軟化するガラスが求められている。 またレンズに求められる光学定数も多様化している。 例えば、 特開平 2 - 1480 10 N 特開平 6— 1 607 12に記載されるように、 コンパ ク トかつ高スペックな光学設計を実現するため、 高屈折率高分散な非球 面レンズを使用したいという要望が強くなつている。 特に屈折率 (nd ) 1.825 - 1.870, 及びアッベ数 (レ d) 22〜 27未満という 光学定数は、 この分野において求められている光学ガラスとしては最も 高屈折 ·高分散な範囲に属するものであり、 この光学定数範囲の光学ガ ラスをガラスモールドにより製造することが可能となれば、 これにより 得られるレンズは、 よりコンパク トな光学系での色収差の補正を低コス トで実現することができる。
したがって光学設計上非常に有用であるこの範囲のモールドプレス用 光学ガラスに対する開発要求は非常に強い。 しかしながら、 この範囲の 従来のモールドプレス用光学ガラスは化学的耐久性が悪いだけでなく、 耐熱衝撃性も悪く、 プリフォーム材を得る際やプレス時において、 ガラ スゴブのカケゃヮレの問題が発生することが多く、 実用的なモールドプ レス用光学ガラスは今まで存在しなかった。
本発明の目的とする光学定数の近傍の光学ガラスは従来から数多く開 示されている。 例えば特閧 200 1— 058845、 特開 2002— 1 73336には、 リン酸塩を含む光学ガラスが開示されているが、 この ガラスは化学耐久性が十分でないだけでなく、 プレス型との融着が発生 しゃすく、 また非常に高い平均線膨張係数 ( ひ) を有するため、 プレス 前後での急冷急加熱時にガラスが破損しゃすいため、 モールドプレス成 形に不向きである。
特開昭 58 -2 1745 1には、 Pまたは P bを多量に含むモールド プレス用光学ガラスが開示されているが、 Pまたは P b成分を多量に含 むガラスは、 プレス温度域において金型と高い反応性を有するため、 金 型を劣化させやすくモールドプレス用光学ガラスとしては不向きである 特開昭 48-0349 13には、 K20 (N a20) —S i 02— T i〇 2 _Nb 205系の光学ガラスが開示されているが、 近年において求めら れるモ一ルドプレス用光学ガラスとしてはガラス転移点 (T g) が高く 、 更に平均線膨張係数 (ひ) が大きいため、 プレス前後での急冷急加熱 時にガラスが破損しやすく、 モールドプレス成形に不向きである。 特開平 0 1— 148726、 特開平 05 -05 1233には、 Na20 — S i 02— T i 02— Nb205系ガラスに、 Geまたは C sを含むガラ スが開示されているが、 これらの成分はいずれも原料が高価であるため 、 高コストになるという問題がある。
特閧昭 52 -456 12には、 R20— RO— S i 02— Nb205系の 光学ガラスが開示されて'いるが、 屈折率 (nd) が低く、 アッベ数 ( レ d) も大きいため、 高屈折率 ·低分散という所望の光学特性を得ること ができない。 この様な理由により、 このガラスは近年求められているモ —ルドプレス用光学ガラスとして不向きである。
特開 2002— 87841では、 精密プレス成形用素材として S i 0 2 - T i 02 - N b 205 - N a2◦系ガラスが開示されているが、 近年に おいて要求されている屈折率 (nd) 、 アッベ数 ( ソ d) 、 平均線膨張 係数 ( ).のいずれかを満たさないため、 モールドプレス成形用の高屈 折レンズとしては、 不向きである。
特開 2000— 0 16830には、 ガラス転移点 ( T g) の低い光学 ガラスが開示されているが、 アッベ数 ( ソ d) が大きい (=低分散) ま たは屈折率 (nd) が低いため、 本発明の目的とするモ一ルドプレス用 光学ガラスとしての光学定数から外れている。
特開 2000— 344542、 特開昭 6 1— 16855 1、 特開昭 5 4— 1 6 1 6 19、 特開昭 54— 16 1 620、 特開昭 49— 0877 16、 特開昭 58— 125636では、 眼鏡用の高屈折ガラスで平均線 膨張係数 ( ひ) が 100 [ 10— ^C—1] を下回るガラスが開示されてい るが、 本発明に比較していずれもアッペ数 ( レ d) が大きい、 あるいは 屈折率 (nd) が低く、 本発明の目的とするモールドプレス用光学ガラ スとしての光学定数から外れている。
本発明は、 上記所望の光学定数を有しながら、 ガラス転移点 (T g) が低く、 耐熱衝撃性の高いモールドプレス用光学ガラスを提供すること を目的とする。 一般に熱衝撃による応力 ( び) のは次の式で予測可能である。
σ" = λ ■ Ε · ひ · l Τ/ ( 1ー ソ) — (A) ここで λは、 形状や熱伝達速度に関わる定数である。 Εはヤング率、 a は平均線膨張係数、 は温度差、 ソはポアソン比である。
( 1 ) 式で表される熱衝撃による応力 ( び) を低減するには、 例えば 1 Tを小さくする方法が考えられる。 モールドプレス成形を行う場合にお • いて、 ガラスの急熱急冷を回避すべく、 成形工程の前または後に予備炉 を設置することにより、 昇温や降温の過程での急激な温度変化 ( 1 T) を低減することが考えられる。 しかし、 この方法では、 プリフォーム材 が予備炉と成形工程というガラスにとっては高温の条件下に長く滞在す るので、 微細な結晶が析出 (いわゆる失透) する危険性が高くなる。 ま た、 予備炉を 1個あ.るいは複数個設置すれば、 それだけ設備的にも工程' 的にも複雑となり、 あるいは 1つの製品を製造するのに必要なサイクル タイムが長くなるため、 コス ト高となる。 したがってモールドプレス成 形においてガラスにかかる温度変化 l Tを小さくする対策には限界があ る o
前記各パラメ一夕の中で、 ガラス組成に大きく依存する値は、 ヤング 率 (E) 、 平均線膨張係数 ( ひ) 、 ポアソン比率 ( ソ) である。 したが つて、 ヤング率 (E) 及び平均線膨張係数 ( ひ) が共に小さい材料を得 る'ことが、 耐熱衝撃性の高いモールドプレス用光学ガラスとして重要な ポイントとなる。 発明の開示
前記課題を解決するために、 本発明者は鋭意研究を重ねた結果、 S i 02、 T i 02、 Nb 205、 L i20を主要成分とし、 且つ平均線膨張係 数 ( ひ) とヤング率 (E) に着目して、 平均線膨張係数 ( ) を 8 0〜 1 0 3 [ 1 Ο—7^—1] 、 または式一 1 : Ε · ひ/ ( 1—ソ) の値を 1 · 0 0 X 1 06〜: L .3 5 X 1 06 [P a - 。 1] の範囲となるように組成 を調整することにより、 高屈折率 ·高分散である光学特性を有し、 しか も耐熱衝撃性の高いモールド'プレス用光学ガラスが得られることを見出 し、 本発明に至った。
すなわち、 前記目的を達成すべく、 本発明の第 1の態様は、 屈折率 ( n d) が 1. 8 2 5〜 1. 8 70、 アッベ数 ( ソ d) が 2 2〜 2 7未満 、 ガラス転移点 (T g) が 5 3 0 °C:〜 5 8 5 °C;、 平均線膨張係数 (α) が S O I O S C I O 7^—1] であり、 S i 02、 T i〇2、 Nb205、 L i20成分を含有し、 且つ実質的に鉛化合物を含有しない'ことを特徴 とする光学ガラスである。
本発明の第 2の態様は、 屈折率 (nd) が 1. 8 2 5 ~ 1. 8 70、 アッペ数 ( ソ d ) が 2 2〜 2 7未満、 ガラス転移点 ( T g ) が 5 3 0 °C 〜 5 8 5 °C、 平均線膨張係数 ( ひ) が 8 0〜 1 00 [ 1 O 7^—1] であ り、 ' S.i Oい T i Oい Nb20い L i20成分を含有し、 且つ実質的 に鉛化合物を含有しないことを特徴とする光学ガラスである。
. 本発明の第 3の態様は、 屈折率 (nd) が 1. 8 2 5〜 1. 8 7 0、 アッベ数 ( ソ d) が 2 2〜 2 7未満、 ガラス転移点 ( T g) が 5 3 0 °C 〜 5 8 5 °Cであり、 式— 1 : Ε · ひ/ ) の値が、 1.0 0 x 1· 06〜: L .3 5 X 1 06 [P a^C'1]
但し、 E :ヤング率
a :平均線膨張係数
ソ : ポアソン比
であり、 S i 02、 T i Oい Nb20い L i20成分を含有し、 且つ実 質的に鉛化合物を含有しないことを特徴とする光学ガラスである。
本発明の第 4の態様は、 酸化物基準の質量%で、
S i 02 1 8〜 3 6 %、
T i 02 6〜 1 8 %未満、
Nb205 42 %より多く 5 5 %以下、
但し、 Nb 205/T i 02の値が 2. 7以上、 L i 20 2〜 8 %、
を含有することを特徴とする前記 1〜 3の態様の光学ガラスである。 本発明の第 5の態様は、 酸化物基準の質量%で、
S i〇2 20〜36%、
T i 02 6〜; L 5 %、
N.b205 42 %より多く 55%以下、
但し、 Nb 205 /T i 02の値が 2. 9以上、 .
L i 20 2〜8%、
を含有することを特徴とする前記 1〜 3の態様の光学ガラスである。
本発明の第 6の態様は、 酸化物基準の質量%で、
0 0〜5%未満
但し、 R = M g、 C a、 S r、 : B a、 Z nの中から選ばれる ■ 種または ' 2種以上、 .
'を含有することを特徴とする前記 1〜 5の態様の光学ガラスである。
本発明の第 7の態様は、 酸化物基準の質量%で、
Z r 02 0〜5%未満、
および/または Na20 0〜; 10%、
および Zまたは K20 0〜20%、
を含有することを特徴とする前記 1〜 6の態様の光学ガラスである。 本発明の第 8の態様は、 酸化物基準の質量%で、
L i20 + Na20 + K20 10〜25%、
を含有することを特徴とする前記 1〜 7の態様の光学ガラスである。
本発明の第 9の態様は、 酸化物基準の質量%で、
L i20 + Na20 + K20 10〜20%、
を含有することを特徴とする前記 1〜 7の態様の光学ガラスである。
本発明の第 10の態様は、 酸化物基準の質量%で、
Sb203 0〜 1%、
および Zまたは RO + Z r〇2 + L i20 2〜8%、 を含有することを特徴とする前記 1〜 9の態様の光学ガラスである。 本発明の第 1 1の態様は、 酸化物基準の質量%で、 S i 02が 2 5 % より大きく 3 6 %以下であることを特徴とする前記 1〜 1 0の態様の光 学ガラスである。
本発明の第 1 2の態様は、 酸化物基準の質量%で、 K20が 10 %より 大きく 2 0 %以下であることを特徴とする前記 1〜 1 1の態様の光学ガ ラスである。
本発明の第 1 3の態様は、 S i Oい T i Oい Nb20い L i20、 + N a20、 K20成分の合計量が 9 0 %以上であることを特徴とする前記 1〜 1 2の態様の光学ガラスである。
本発明の第 1 4の態様は、 屈折率 (nd) 1. 8 2 5〜 1.. 8 7 0、 ァヅぺ数 ( ソ d) が 2 2〜 2 7未満、 ガラス転移点 (T g) が 5 3 0 °C 〜 5 8 5 °C、 平均線膨張係数 ( ) が 8 0〜 : L 0 3 [ Ι Ο 7^:1] であ り、 式一 1 : Ε · ひ/ ( 1—レ) の値が 1.0 0 x l 06〜 1.3 5 x 1 06 [P a^C"1] あり、 実質的に鉛化合物を含有しないことを特徴とす る前記 1〜 1 3の態様の光学ガラスである。
本発明の第 1 5の態様は、 前記光学ガラスにおいて屈折率 (nd) 1 . 8 2 5〜 1. 8 7 0、 アッベ数 ( ソ d) が 2 2〜 2 7未満、 ガラス転 移点 (T g) が 53 0 °C〜 5 8 5 °C、 平均線膨張係数 ( ひ) が 8 0〜 1 0 0 [ 1 0— 71] であり、 式一 1 : E · a/ ( 1— ソ) の値が' 1.0 0 X 1 06〜: L .3 5 X 1 06 [P a '。 1] あり、 実質的に鉛化合物を含 有しないことを特徴とする前記 1〜 1 3の態様の光学ガラスである。 本発明の第 1 6の態様は、 酸化物基準の質量%で、
S i 02 1 8 ~ 3 6 %、
T i 02 6〜 1 8 %未満、
Nb205 4 2 %より多く 5 5 %以下、
但し、 Nb 205/T i 02の値が 2. 7以上、
L i20 2〜8 %、 を含有することを特徴とする光学ガラスである。
本発明の第 1 7の態様は、 酸化物基準の質量%で、
S i 02 20〜36%、
T i 02 6〜: 1 5 %、
Nb205 42 %より多く 55%以下、
但し、 N b 205 /T i 02の値が 2. 9以上、
L i 20 2〜8%、
を含有することを特徴とする光学ガラスである。
本発明の第 18·の態様は、 酸化物基準の質量%で、
R 0 0〜5%未満
但し、 R = Mg、 Ca、 S r、 B a、 Znの中から選ばれる 1 種または :2種以上、
および/または Z r 02 0〜5%未満、
および/または N a20 0 ~ 10 %、
および/または K20 0〜20%、
を含有することを特徴とする前記 1 6〜 1 7の態様の光学ガラスである 本発明の第 19の態様は、 酸化物基準の質量%で、
L i20 + Na2〇 + K20 10〜25%、
および/または Sb203 0〜: L %、
および/または RO + Z r02 + L i20の値が 2〜8%、 を含有することを特徴とする前記 1 6〜 18の態様の光学ガラスである ο
本発明の第 20の態様は、 酸化物基準の質量%で、
L i20 + Na20 + K20 10〜20%、
および/または S b203 0 ~ 1 %、
および/または R 0 + Z r 02 + L i20の値が 2 ~ 8 %、 を含有することを特徴とする前記 16〜 18の態様の光学ガラスである 本発明の第 21の態様は、 酸化物基準の質量%で3 i 02が 25%よ り大きく 36%以下であることを特徴とする前記 1 6^20の態様の光 学ガラスである。
本発明の第 22の態様は、 酸化物基準の質量%で1(20が 10 %より大 きく 20%以下であることを特徴とする前記 16〜2 1の態様の光学ガ ラスである。
本発明の第 23の態様は、 S i Oい T i Oい Nb20い L i20、 Na20、 K20成分の総量が酸化物基準の質量%で90%以上である前 記 1 6〜 22の態様の光学ガラスである。
本発明の第 24の態様は、 Β 203成分の含有量が 5%未満である前記 1〜 23の態様の光学ガラスである。
本発明の第 25の態様は、 T a 205、 WO 3、 G e 02の各々の含有. 量が 5 %未満である前記 1〜 24の態様の光学ガラスである。
本発明の第 26の態様は、 希土類酸化物の含有率が 5 %未満である前 記 1〜 25の態様の光学ガラスである。 '
本発明の第 27の態様は、 A 1203成分の含有量が 5%未満である前 記 1〜 26の態様の光学ガラスである。
本発明の第 28の態様は、 C s20成分の含有量が 3%未満である前 記 1〜 27の態様の光学ガラスである。
本発明の第 29の態様は、 B i 203成分の含有量が 3%未満である前 記 1〜 28の態様の光学ガラスである。
本発明の第 30の態様は、 屈服点 (At) が 620 °C以下である前記 1〜 29の態様の光学ガラスである。
本発明の第 31の態様は、、剛性率 (G) が 30 GP a以上で前記構成 1〜30の態様の光学ガラスである。
本発明の第 32の態様は、 国際標準化機構 I S08424 : 1996 (E) の測定方法による耐酸性を示すクラス (SR) が 1である前記 1 〜 3 3の態様の光学ガラスである。
本発明の第 3 3の態様は、 前記 1〜 3 2の態様の光学ガラスにおいて 、 酸化物基準で表されたガラス組成における当該酸化物の一部又は全部 がフッ化物置換されており、 当該フッ化物の Fとしての合計量が、 酸化 物基準で表されたガラス組成 1 0 0質量部に対して 0〜 5 . 0質量部の 範囲である光学ガラスである。
本発明の光学ガラスは、 S i Oい T i 02、 N b 2 0い L i 2 0成分 を含有し、 屈折率 1 . 8 2 5〜 1 . 8 7 0で、 アッベ数が 2 2〜 2 7未 満で、 低いガラス転移点と低い平均線膨張係数を有しているモールドプ. レス用光学ガラスであって、 急速な温度上昇及び下降といったプレス前 後の激しい温度変化の条件下においても、 従来の高屈折. ·高分散のモー ルドプレス用光学ガラスと比較して耐熱衝撃性が極めて良好である。 ま た、 低い平均線膨張係数を有するため、 直接成形によりプリフォーム材 、 あるいはゴブそのものを得よう.とする際に発生するヮレ、 カケについ ても著しく軽減される。
従来、 モールドプレス用光学ガラスにおいて高屈折高分散域では、 レ ンズ径や形状の制約が問題とされてきたが、 本発明の光学ガラスでは、 上記、 ヮレ、 カケ不良の低減により、 プレス成形可能な形状の範囲は格 段に広がることが考えられる。 したがって、 極めて高い成形性が期待さ れ、 レンズの薄肉化、 大口径化のニーズにも答えられる可能性が高い。 また、 レンズ以外の光学素子 (例えばプリズム、 回折格子、 反射ミラー 等) のガラスモールドへの展開も可能である。
更に本発明の光学ガラスは、 従来の高屈折率 ·高分散ガラスと比較し て、 ガラスとしての安定性が高く、 良好な生産性が期待でき、 加えて、 優れた化学的耐久性および均質性も有し、 加工性も良好であることから
、 通常の研削および/または研磨を必要とするレンズとして用いるのに も好適である。
そして、 本発明の光学ガラスは、 P b O等をはじめとする環境対策に コストを要する成分を含有していないため経済的に有利である 発明を実施するための最良の形態
以下、 本発明について詳細に説明する。
前記のとおり、 各物性値を限定した理由、 及び各成分の組成範囲を限 定した理由は、 次のとおりである。 尚、 本明細書において 「実質的に含 まない」 とは、 原料成分として配合しない、 すなわち意識的に含有させ るものではないということを意味するものであり、 不純物として混入し てしまうものまでを除外するものではない。
なお、 本明細書中において 「酸化物基準」 とは、 本発明のガラス構成 成分の原料として使用される酸化物、 複合塩、'金属弗化物等が熔融時に すべて分解され酸化物へ変化すると仮定した場合に、 当該生成酸化物の 総重量を 1 0 0質量%として、 ガラス中に含有される各成分を表記した 組成である。
'前述のように、 近年のコンパク トかつ高スペックな光学設計を実現す るために、 屈折率 (n d ) は、 好ましくは 1 . 8 2 5、 より好ましくは 1 . 8 3 0、 最も好ましくは 1 . 8 4 0を下限とし、 好ましくは 1 . 8 7 0、 より好ましくは 1 . 8 6 0を上限とする。
またアッベ数については、 好ましくは 2 2、 より好ましくは 2 3を下 限とし、 好ましくは 2 7未満であり、 より好ましくは 2 6、 最も好まし くは 2 5を上限とする。
モールドプレス成形においては、 成形型を長持ちさせるベく、 極力低 温でプレスできることが望ましく、 そのため本発明の光学定数を有する モ一ルドプレス用光学ガラスにおいては、 ガラス転移点 (T g ) が 6 0 0 °C以下とすることが求められている。 ガラス転移点 (T g ) が高けれ ば、 それだけ型の寿命が短くなる。 特にモールドプレス成形するガラス のガラス転移点 (T g ) が 5 8 5 °C以下とすると、 成形型の寿命が著し く長持ちするという知見が得られた。 したがって、 より高い生産性と低 コス ト化のためには、 ガラス転移点 ( T g ) を 5 8 5 °C以下とするのが 好ましい。 しかし、 ガラス転移点 (T g) が低すぎると、 ガラスの化学 的耐久性が劣化してしまうだけでなく、 ガラス化が困難になり易く、 か えってガラス自体の生産性を悪化させてしまう。 更に、 平均線膨張係数 ( a) を極端に大きく してしまうため、 耐熱衝撃性を悪化させることに もなる。 したがって、 ガラス転移点 (T g) は 5 3 0〜 5 8 5 °Cの範囲 が好ましく、 より好ましくは、 下限が 5 3 5 °Cおよび Zまたは上限が 5 7 0 °Cである。 最も好ましくは下限が 5 4 0 °Cおよび または上限が 5 6 5 °Cである。
また、 屈服点 (A t ) はガラス転移点 (T g) と同様にガラスの低温 軟化性を示す指標の一つであり、 よりプレス成形温度に近いものである 。 したがって、 プレス成形の容易さを図る指標になり得る。 そして上記 と同様に成形型を長持ちさせるためには 6 4 0 °C以下とすることが好ま しい。 しかしあまり低い温度にしょうとすると、 前述のようにガラスの 化学的耐久性が劣化する傾向となってしまうので、 5 6 0 °C以上とする ことが好ましい。 より好ましくは、 下限が 5 6 5 °Cおよび/または上限 が 6 3 0。Cであり、 最も好ましくは、 下限が 5 7 0 °Cおよび/または上 限が 6 2 0 °Cである。
平均線膨張係数 ( ) についても低いことが望まれる。 屈折率 (n d ) 1 . 8未満における従来のガラスモ一ルド用ガラスの平均線膨張係数 ( ) の上限はおよそ 1 0 3 [ 1 O -^C"1] 程度が好ましく、 これを超 えるとヮレ、 カケの不良が発生し易くなるため、 モールドプレス成形が 困難となる。 しかし、 あまり小さいと前述したガラス転移点 (T g) を 満たすことが困難となる。 したがって、 本発明のガラスにおいても、 こ れらと同様に、 平均線膨張係数 (α) は 8 0〜 1 0 3 [ 1 0—7° 1] の 範囲とすることが好ましく、 より好ましくは下限が 8 5 [ 1 O-^C"1 ] および/または上限が 1 0 0 [ 1 0— 7°C— であり、 最も好ましくは下 限が 8 8 [ 1 O -^C"1] および/または上限が 9 5 [ 1 O 7^—1] であ る o
耐熱衝撃性を高めるには、 特に E · / ( 1— レ) が低いことが望ま れる。 この値があまり大きいと、 モールドプレス成形時、 あるいはその プリフォーム材を得る際にヮレゃカケ不良が多発する危険性が著しく高 くなり易いので 1.35 XI 06 [P a '。 1] 以下であることが好ましい 。 また、 特にこの光学定数を有する光学ガラスにおいては、 前述したよ うに平均線膨張係数を 80 [ 10 7°C— 以上とすることが好ましいた め、 E , ひ レ) についても、 1.00 xl06 [P aに。 1] 以上 とするこどが好ましい。 したがって、 E · ひ Z ( 1— ソ) の値は 1.0 0 X 106〜 1.35 xlO6 [P a ^C"1] の範囲とすることが好ましく、 1.00 Xl06~1.25 xl06 [P a ^C"1] の範囲がより好まじく、 1.00 xl06〜1.20 xl06 [P a -"C"1] の範囲が最も好ましい。 本発明の光学ガラスに含有できる成分について説明する。 以下、 特に 断らない限り各成分の含有率は質量%で表すものとする。
S i 02成分は、 ガラス形成酸化物であると共に、 ガラスの安定性お よび化学的耐久性を向上させる成分であり、 上記の効果を十分に発揮す るためには、 18%以上とすることが好ましいが、 過剰に含有するとガ ラス転移点 (T g) が高くなり屈折率も 1. 825以上を維持し難くな る傾向になるため 36 %以下とすることが好ましい。 したがって下限を 18 %及び/又は上限を 36 %とすることが好ましい。 より好ましくは 、 下限が 20%以上、 および/または上限が 30 %であり、 最も好まし くは 25%を超え、 および/または上限が 27. 5%である。
T i 02成分は、 その屈折率を高め、 かつ分散を大きくするのに極め て効果がある成分であるが、 その量が少なすぎるとそれらの効果が得難 く、 また多すぎるとガラスとしての安定性が悪化し易い。 したがって下 限を 6 %及び/又は上限を 18%未満の範囲とすることが好ましい。 よ り好ましくは、 下限が 9%および/または上限が 15%であり、 最も好 ましい下限は 10 %および/または上限が 12 %未満である。 Nb 205成分は、 本発明において重要な成分の一つであり、 特に T i 〇2及び L i20を共存させた組成系において、 良好な安定性を維持しな がら高い屈折率を得るのに欠くことができない成分である。 そして、 そ の量が少なすぎると所望の光学定数を維持することが困難となり、' また 、 多すぎるとガラスとしての安定性が悪化し易い。 したがって、 42% より大きく、 及び/又は 55%以下の範囲とすることか好ましい。 より 好ましくは下限が 43%より大きく、 および/または上限が 52%であ り、 最も好ましくは下限が 45 %および/または上限が 48 %である。 また、 上記効果をよりいっそう高いレベル得るためには、 Nb2-05/ T i 02の値を 2. 7以上とすることが好ましく、 2. .9以上とするこ とがより好ましい。 最も好ましくは 3. 5以上である。. さらに当該比を 上記範囲内に限定することにより、 プレス温度域での結晶化を防止でき る傾向が高い。 .
L i20成分は、 平均線膨張係数を小さく維持すると共に、 ガラスの 溶融を促進し、 ガラス転移点 (Tg) を低くするこ.とに最も大きな効果 を有する成分であり、 その量が少なすぎると上記効果は得難く、 またそ の量が多すぎるとアッベ数を所望の範囲に維持することが困難となる。 したがづて、 下限を 2 %及び/又は上限を 8 %とすることが好ましい。 より好ましくは、 下限が 3 %および/または上限が 7 %であり、 最も好 ましくは、 下限が 4%および/または上限が 6%である。
N a20および K20の各成分は、 いずれも、 ガラスの溶融を促進し、 ガラス転移点 (T g) を低下させる効果を有するためには、 Na20及 び K20の量が、 それぞれ 10 %以下及び 20 %以下であることが好ま しい。 また、 Κ20成分は Na20成分に比べ、 分散を大きくする効果が あるので、 特にアッベ数の小さい光学ガラスを必要とする場合には、 N a20を 3 %未満にすることが好ましく、 更に好ましくは N a20を実質 的に含有せず K20を 2 %以上添加することが好ましく、 Κ20を 8 %以 上とすることが特に好ましく、 10%を超えて含有することが最も好ま しい。 また、 L i20成分を含めたこれらアルカリ成分の 1種または 2 種以上の合計量が 10 %未満であると、 上記効果が不十分となり、 平均 線膨張係数を所望の値に維持するためには、 これらの成分の 1種または 2種以上の合計量を 25%まで、 さらに好ましくは 20%未満であるこ とが好ましい。
Sb 203成分は、 ガラスを清澄、 均質化するための脱泡剤として任意 に添加しうるが、 その量は 1 %までで十分である。
R 0成分、 すなわち M g 0、 Ca〇、 S rO、 B aOおよび Z n〇の 各成分については、 光学定数の調整、 ガラスの溶融性および安定性を改 善する目的で必要に応じて、 これらの中から選ばれる 1種または 2種以 上を、 これら成分の合計量で 5 %未満の量で添加することができる。 ' Z r02成分についても、 光学定数の調整、 ガラスの耐久性改善を目 的として 5 %未満まで添加することができる。 しかし、 ガラスとしての 安定性を悪化させる場合があるので、 この様な場合には Z r 02を 2 % 未満とすることが好ましく、 実質的に含まないことがより好ましい。 本発明の特徴の一つである高屈折 ·高分散性を容易に得ることを目的 として、 前記 RO成分 (B aO、 CaO、 MgO、 S rO、 ZnO成分 の中から選ばれる 1種または 2種以上) 、 Z r 02成分および L i20成 分の合計量を 8 %以下とすることが好ましい。 ここで L i20成分は 2 〜8%含有していることから、 上記成分の総量は下限を 2%とし、 及び /又は上限が 8 %とすることが好ましい。 より好ましくは、 下限が 3% および/または上限が 7 %、 更に好ましくは、 下限が 4%および Zまた は上限が 6 %である。
そして、 S i 02、 T i 02、 Nb 205、 L i20、 Na20、 及び K2 0の含有量が上記の範囲内であっても、 所望の光学定数 (ndゃソ d) 、 平均線膨張係数 (ひ) 、 ガラス転移点 (T g) を得ることが困難な場 合がある。 この場合、 上記成分の合量を 90%以上にすることが好まし く、 94%以上とすることがより好ましい。 ガラスの化学的耐久性を損なわずに、 低いガラス転移点 (Tg) を得 る目的で、 B 203成分を 5%未満の量で添加することも可能である。 し かし、 より高い光線透過性を得ようとする場合には、 3%以下の量で含 まれることがより好ましく、 最も好ましくは実質的に含まない。
T a205、 W03、及び Ge 02等も光学定数の調整、 耐失透性、 光線 透過性を改善する目的で含有することも可能であるが、 モールドプレス 成形の目的の一つである低コス ト化のためには 5 %未満とすることが好 ましく、 4%以下の量で含まれることがより好ましく、 最も好ましくは 3%以下にすることが好ましい。 . ·
同様に L a203、 Gd 203、 Y203、 Yb 203、 Lu203等の希土類 ::金属酸化物についても光学定数や各種物理特性 (ヤング率、 硬度、 曲げ 強度等) を改善または調整する目的で含有することは可能であるが、 過 剰に加えるとガラスとしての安定性を悪化させてしまう。 より高分散な ガラス'を得ようとする場合には 5 %以下、 より好ましくは 3 %以下の量 で含有され、 最も好ましくは実質的に含まないことが好ましい。
A 1203は、 ガラスの化学的耐久性を向上させることを目的として含 有させることもでぎるが、 ガラスとしての安定性を悪化させる場合があ るので、 5%未満、 より好ましくは 3 %以下の量で含有され、 最も好ま しくは実質的に含まないことが好ましい。
C s20は光学定数の調整を目的として含有することも可能であるが 、 高価な原料な為、 低価格なガラスを得ようとする場合には、 3%未満 、 より好ましくは 1 %以下の量で含有され、 最も好ましくは実質的に含 まないことが好ましい。
B i 203、 T e 02は、 高屈折率化、 低ガラス転移点 (T g) 化させ ることを目的として含有することも可能であるが、 モ一ルドプレス成形 を行なう際に、 揮発によりレンズ表面にクモリを発生させてしまう場合 があるため。 このような場合には 3%未満、 より好ましくは 1 %以下の 量で含有され、 最も好ましくは実質的に含まないことが好ましい。 T iを除く、 V、 C r、 M n、 F e、 C o、 N i、 C u、 A gおよび M o等の各遷移金属成分は、 それぞれを単独または複合して少量含有し た場合でも着色してしまい、 可視域の特定の波長に吸収を生じさせるた め、 可視領域の波長を使用する光学ガラスにおいては実質的に含まない ことが好ましい。
また、 L aおよび G dを除く各希土類成分それぞれも単独または複合 'して含有することにより着色してしまい、 可視域の特定の波長に吸収を 生じさせる傾向があるため、 可視領域の波長を使用する光学ガラスにお いては、 実質的に含まないことが好ましい。
T h成分は高屈折率化またはガラスとしての安定性の向上を目的とし て、 C d及び T 1成分は低ガラス転移点 (T g ) 化を目的として、 .A s 成分はガラスの清澄または均質化を目的として含有させることも可能で ある。 しかしその一方では P b、 T h、 C d、 T l、 A s, 〇 sの各成. 分は、 近年有害な化学物資として使用を控える傾向にあり、 ガラスの製 造工程のみならず、 加工工程、 及び製品化後の処分に至るまで環境対策 上の措置が必要とされるため、 環境上の影響を重視する場合には実質的 に含まないことが好ましい。
本発明の光学ガラス中においては、 必要に応じフッ素成分を含有させ ても良い。 フッ素成分は、 高い透過率を得る為には効果的であり、 また 低い転移温度 (T g ) を有する光学ガラスを得ることができる。
本発明の光学ガラス中においては、 F成分は珪素や他の金属元素の 1 種又は 2種以上の酸化物の酸素原子の一部又は全部と置換したフッ化物 の形態で存在するものと考えられる。 当該酸化物の酸素原子の一部又は 全部と置換したフッ化物の Fとしての合計量が多すぎると、 フッ素成分 の揮発量が多くなり、 均質なガラスを得にく くなるため安定した生産を 妨げるような場合には加えるべきではない。
従って、 酸化物基準のガラス組成物 1 0 0質量部に対して、 好ましく は 5質量部以下、 より好ましくは 3質量部以下、 最も好ましくは 1質量 部以下の量にて含有する。
剛性率 (G) については、 高いことが望ましく、 3 O GP a以上が好 ましい。 しかし、 あまり高すぎると、 ガラス転移点 (T g) の上昇を招 き易くなるため、 50 GP a以下が好ましい。 より好ましくは、 下限が 33 GP aおよび/または上限が 47 GP aであり、 最も好ましくは、 下限が 35 G P aおよび/または上限が 45 GP aである。
耐酸性については極力高いことが望ましい。 具体的には国際標準化機 構 I S08424 : 1996 (E) に準拠した測定方法に基づき、 S R 値が少なくとも 4以下であるべきであり、 好ましくは 3以下、 より好ま しくは 2以下、 最も好ましくは 1である。
本発明のガラス組成物は、 その組成が質量%で表されているため直接 的に mo 1 %の記載に表せるものではないが、 本発明において要求され る諸特性を満たすガラス組成物中に存在する各成分の mo 1 %表示によ. · る組成は、 酸化物基準で概ね以下の値をとる。
S i 02 30〜 50 %
T i 02 5%〜20%
Nb203 1 5 %〜 20 %及び
L i20 7〜25 %
及び
N a20 0〜: L 5%、 及びノ又は
K20 0〜 20 %、 及び/又は
M g 0 0〜 10%、 及び/又は
C a 0 0〜: 10 %、 及び/又は
S r 0 0〜5%、 及び/又は
B a 0 0〜5%、 及び/又は
Z nO 0〜5%、 及び/又は
Z r 02 0〜5%、 及び/又は
B203 0〜 10 %、 及び/又は 203 0〜 5 %、 及び/又は
0〜3 %、 及び/又は
G e 02 0〜 5 % 及び/又は
T a205 0〜 3 %ヽ 及び/又は
WO 3
であって、
L i20 + Na20 + K20 1 5〜40 %、
Nb 203/T i 02 0. 8 5以上.
RO合計量. 0%〜 10% .
RO + Z r02 + L i20 8 %〜20%
次に、 本'発明にかかる光学ガラスの好適な実施例 (N.o. l〜No... 25 ) および従来公知の S i 02— Nb205— R20— RO系のガラスの 比較例 (No. A〜.No. J) の組成 (いずれも酸化物基準の質量%に よる表示) 、 ならびにこれらのガラスの光学定数 (nd、 ソ d) 、 ガラ ス転移点 (T g) 、 平均線膨張係数 (α) 、 ヤング率 (Ε) 、 剛性率 ( G) を表 1〜8に示した 。 尚、 実施例の耐酸性のクラス (SR) につ いては、 本願実施例 No. 1〜 25について測定した。.
比較例 N 0. A〜Dは、 特開 2002— 8784 1に記載されている 実施例の中で、 屈折率が 1.80以上の組成を引用したものであり、 比 較例 N o .E、 N 0. Fは、 特開昭 52— 456 12の中で比較的本発明 の組成に近い実施例の組成を引用したものであり、 比較例 No. G〜J のガラスは特開昭 48 - 349 13の中で鉛を含有せず、 屈折率が 1. 8以上の実施例の組成を引用した。
これらの表における各項目の単位は、 各成分の含有量は [質量%] 、 ガラス転移点 (T g) 、 屈服点 (At) 、 失透温度は [°C] 、 平均線膨 張係数 ( ひ) は [ 1 O 7 ^—1] 、 ヤング率 (E) および剛性率 (G) は [GP a] 、 Ε · α/ ( 1— ) は [ l Osp a ' oC— 1 ] である。
本発明にかかる実施例 (N 0. l〜No. 25) のガラスは、 酸化物 、 炭酸塩および硝酸塩等の通常の光学ガラス用原料を所定の割合となる ように秤量し、 混合した後、 白金坩堝等に投入し、 ガラス組成による溶 融性に応じて、 1 100〜1300°Cの温度で 2〜4時間、 溶融、 脱泡 し、 攪拌均質化した後、 降温してから金型等に錡込み徐冷することによ り、 均質性の優れたガラスを容易に得ることができる。
耐酸性を示すクラス (SR) は、 国際標準化機構 I S 08424 : 1 996 (E) の測定方法に準拠し、 測定して得た結果を示したものであ る。 ここで、 SRは、 所定の酸処理液中におけるガラス試料が 0. 1 mの侵食を受けるのに要した時間 (h) によって等級付けしたものであ り、 SRが 1、 2、 3および 4の場合は、 pHO . 3の硝酸溶液を用い て、 それぞれ、 侵食に 100時間を超える、 100峙間〜10時間、 1 0時間未満から 1時間まで、 および 1時間未満から 0.' 1時間までを要 したことを示す。 また、 SRが 5、 5 1、 5.2および 53の場合は、 p H 4. 6の酢酸緩衝液を用いて、 それぞれ、 侵食に 10時間を超える、 10時間〜 1時間、 1時間未満から 0. 1時間まで、 および 0. 1時間 未満を要したことを示す。 したがって、 S Rのクラスの値が小さいほど ガラスの耐酸性が高く、 化学的耐久性が優れていることを示す。
平均線膨張係数 ( 1 o— 7Z°c リ は、 日本光学硝子工業会規格 J 0
G I S 16—1S76による方法より測定した。 但し、 測定温度範囲はこ の規格にある一 30〜+ 70 °Cではなく、 100〜 300 °Cにおける温 度範囲において測定した。
ヤング率 (E) 、 剛性率 (G) 、 ポアソン比 ( レ) は、 100 x 10 X 10 mmの試料を用い、 超音波パルス法により測定した。
失透温度は次のようにして測定した。 ガラスを粉砕して 170 Ομπι のフルイを通り 140 Ομπιのフルイ上にとどまったガラス粒を、 アル コールに浸潰して超音波洗浄をし、 高温槽で乾燥させた。 このガラス粒 を白金ボート上にボートの長さ方向に 1列に一定間隔であけた、 1 mm 径の多数の孔の上にのせ、 ボートの長さ方向に適当な温度勾配を有する ように温度設定された電気炉中で 0 . 5時間保持する。 炉から取り出し た白金ボート.上のガラス粒を観察し、 失透が発生始めたガラスの位置を 特定し、 その位置と炉の温度勾配から、 そのガラスの位置の温度を計箅 により求め、 失透温度とした。
Figure imgf000023_0001
Z.Z800/l700Zdf/X3d ひ 60ΪΪ請 OAV O.L 0"L 0Ί d s
8L.L 'L 93 'L 9L'L IV i ( -い /» ·ョ
092Ό 092Ό 692Ό L£2'0 Λ
88 O 6S 68 Of Ό
96 OOL 86 96 LOL 3
£6 L6 96 £6 68 Ό
Ζί Ι ― (H ― ―
669 009 969 669 069 ^ V
899 999 899 999 9 β 1
LZl 8'εζ VU 0"93 Ρ
86178 "L 簡 'L 9938'L Ρ u
00·9 00"9 09"9 09^ 00'8 0s Π+20-"Ζ+Οϋ
OO'O OO'O OO'O OO'O OO'O oy
£8'8 99'£ 06·ε Z9"9 o 20!-l/s02qN
00"9L 0 "£L 00'9L OO'U
OO.OOl OO'OOl OO'OOL 00.001 OO'OOL L e ο丄
OO'O 00.0 OO'O 00.0 OO'O ε ΟΜ
00"0 OO'O OO'O OO'O OO'O sO ze丄
OO'O OO'O OO'O OO'O OO'O 20 θ 0
OO'O OO'O 00.0 OO'O OO'O
OO'O OO'O OO'O OO'O 00.0 ε 0 ' L
00.0 OO'O 00.0 OO'O OO'O ε ο 2 a
OO'O OO'O OO'O OO'O OO'O 0 u Ζ
OO'O OO'O OO'O OO'O OO'O ο g a
OO'O OO'O OO'O OO'O OO'O 0」 s
OO'O OO'O OO'O OO'O OO'O . 0 s 0
OO'O OO'O OO'O OO'O OO'O 0 β 11
0に 0 oro oro OO'O OO'O ε o 2 q s
OO'OL 00·え OS' 09'OL οο'ε 0 z »
OO'O 02 "L 09 -.3 00. L 00" L 02 ¾ N
00"9 00"5 09'^ 00 ^ . 0 Ί
00"9l7 0セ'^ 06. oo. 9 o 3 q N
00 "L 00 "0 00 OO'O 00" I 20 J z
06' 08 L OS' 00"6 OO'OL 20 !■ 丄
00*93 09"82 WLZ 00^3 oo ε 20 !· S
01 6 8 L 9
ひ 60Ϊ OAV
Figure imgf000025_0001
PZ
Z.Z800/^00Zdf/X3<I ひ 60Ϊ OAV
Figure imgf000026_0001
ひ 60ΪΪ請 OAV O' L O'L O' L d S
LZ' i 82 ' L (/l一い /»■ ョ
WO 8ZZ"0 εεε'ο A
LZ 8£ IZ 98 98 0
£6 6 £6 36 96 3
LOL SOL 30L 86 L6 Ό
― ― LZOi ― ―
889 6Z9 9Z9 009 V
9^9 0t^9 m 099 099 6 丄
U O.W 8'S2 P
6888 "L 8' L 6S L 09 8'L p u
09" 39^ Oz Π+30-"Ζ+0^
OO'O OO'O OO'O OO'O OO'O Oil εο' 99'S 66 80" zoLi/9o2qN
69'ZL 09'8L 88"8L 69'U Ο' +Ο^Ν+Ο'Π
OO'OOL OO.OOL OO'OOL OO'OOL OO'OOL L e o 丄
0に 0 OO'O 0に 0 OO'O OO'O ε 02 s V
OO'O 00 OO'O OO'O OO'O ε O
00 "0 OO'O OO'O OO'O OO'O s 02 e 丄
OO'O OO'O OO'O OO'O OO'O δ 0 θ 0
OO'O OO'O OO'O OO'O OO'O ε 02 e Ί
OO'O OO'O 00.0 OO'O OO'O ε 0 ζ L V
OO'O OO'O OO'O OO'O 00.0 ε ο a
OO'O OO'O OO'O 00.0 OO'O 0 u ζ
OO'O OO'O OO'O OO'O OO'O ο ^ a
00 "0 OO'O OO'O OO'O OO'O 0 」 S
OO'O OO'O OO'O OO'O OO'O 0 e 〇
OO'O OO'O OO'O OO'O OO'O 0 61Λ1
OO'O 0に 0 00.0 0に 0 0に 0 ε ο 3 q s
ZO'SL OO' L 'il 90'OL 0 ζ >\
OO'O OO'O 00.0 OO'O 00.0 02 e Ν
OS ' 69' 39"f 0 Ί
89"9 OL'^ 'St £9'9l7 9 ο 2 q Ν
00 "0 OO'O OO'O OO'O OO'O 20 -J ζ
99' U 38'9l 99 'U 30 !■ 丄 zvn 6· ZVU 30 L s
92 u ίΖ 11 IZ
【s辇】
91
ΖίΖ800/ 00Ζάΐ/13ά ひ 60ΪΪ請 OAV
Figure imgf000028_0001
LI
Z.Z800/l700Zdf/X3d ひ 60ΪΪ請 OAV
Figure imgf000029_0001
Figure imgf000030_0001
【 8辇】
61
Z.Z800/l700Zdf/X3d ひ 60ΪΪ請 OAV 表 1〜 5に見られるとおり、 本発明の実施例のガラス (N o . 1〜2 5.) は、 いずれも所望範囲の屈折率 (nd) 、 アッベ数 (ソ d) 、 ガラ ス転移点 (T g) 平均線膨張係数 ( ) を有している。 また、 耐酸性の クラス ( SR) については、 いずれも 「 1」 であり耐酸性に格段に優れ 、 化学的耐久性は良好であった。 また、 Ε ■ ひ ( 1— レ) の数値も所 望の範囲となっている。 したがって前記のガラスはいずれも高屈折率高' 分散特性を持ちながら、 耐熱衝撃性に優れ、 モール ドプレス成形を行う 上で、 ヮレゃカケによる不良が軽減され、 良好な生産性が期待できる。 比較例 N o . A〜Dのガラスはいずれも、 本発明で要求している組成 範囲を満たしておらず、 また比較例 N o . B〜: Dのガラスは、 本発明の' ガラスにおいて要求している平均線膨張係数を満たしていない。 また、 E · / ( 1 - v) においては、 比較例 N o . A〜 Dのいずれもが 1. 3 5 X 1 06を上まわっており、 耐熱衝撃性が低く、 ヮレ、 カケが発生 しゃすくモールドプレス成形には不向きであった。
比較例 N o .E、 N o .Fのガラスは、 いずれも T i 02を含有してい ないことが原因で、 本発明の実施例のガラスに比較して、 記載されてい る屈折率が低く、 光学設計上の有用性が低い。 また、 本発明の実施例と 同様の熔解方法を用いて 1 3 0 0 °Cで熔解を試みたが、 いずれの実施例 もガラス化しなかった。
比較例 N o . G〜Jのガラスは、 いずれも本発明で要求している組成 範囲を満たしていないことが原因で、 本発明で要求している屈折率、 ァ ヅべ数、 ガラス転移点のいずれかを満たしていない。 いずれの実施例も 平均線膨張係数が 1 0 3 ( 1 O—7^—1) を上まわっており、 モール ドプ レス用光学ガラスとして適していなかった。 産業上の利用可能性 本発明は、 モールド成形に好適な光学ガラスであり、 レンズおよびレ ンズ以外の光学素子たとえばプリズム、 回折格子、 反射ミラー等の製造 に適用することができる。

Claims

請求の範囲
1. 屈折率 ( n d ) が 1. 8 2 5 ~ 1 · 8 7 0、 アツベ数 ( レ d ) が 2 2〜2 7未満、 ガラス転移点 (T g) が 5 3 0 °C;〜 5 8 5。C;、 平均線 膨張係数 ( ひ) が 8 0〜; 1 0 3 [ 1 0—7° 1] であり、 S i 02ヽ T i 0い Nb 205、 L i20成分を含有し、 且つ実質的に鉛化合物を含有し ないことを特徴とする光学ガラス。
2. 屈折率 (nd) が 1. 8 2 5〜 1. 8 70、 ァ ヅベ数 ( レ d ) が 2 2〜 2 7未満、 ガラス転移点 (T g) が 5 3 0 °C〜 5 8 5 °C:、 平均線 膨張係数 (ひ) が 8 0〜: L 0 0 [ 1 0— 7 XT1] であり、 S i 02ヽ T i
02、 Nb 205、 L i20成分を含有し、 且つ実質的に鉛化合物を含有し ないことを特徴とする光学ガラス。
3. 屈折率 ( n d ) が 1. 8 2 5〜 1. 8 70、 ア ッベ数 ( レ d ) が 2 2〜 2 7未満、 ガラス転移点 (T g) が 5 30 °C;〜 5 8 5 °Cであり、 式— 1 : Ε · α/ ( 1— レ) の値が、 1.0 0 x l 06〜 1.3 5 x l 06 [P a'-C"1]
但し、 E :ヤング率
:平均線膨張係数
:ポアソン比
であり、 S i Oい T i Oい Nb20い L i20成分を含有し、 且つ実 質的に鉛化合物を含有しないことを特徴とする光学ガラス。
4. 酸化物基準の質量%で、
S i 02 1 8〜 3 6 %、
T i 02 6〜 1 8 %未満、
Nb205 42 %より多く 5 5 %以下、
但し、 Nb 205/T i 02の値が 2. 7以上、
L i 20 2〜 8 %、 を含有することを特徴とする請求項 1〜 3のいずれかに記載の光学ガラ ス。
5. 酸化物基準の質量%で、
S i 02 20〜36%、
T i〇2 6〜 1 5 %、
Nb205 42 %より多く 55%以下、 '
但し、 N b 205 /T i 02の値が 2. 9以上、
L i 20 2〜8%、
を含有することを特徴とする請求項 1〜 3のいずれかに記載の光学ガラ ス。
6. 酸化物基準の質量%で、
R 0 0〜5%未満
但し、 R = Mg、 Ca、 S r、 B a、 Z nの中から選ばれる 1 種または 2種以上、
を含有することを特徴とする請求項 1〜 5のいずれかに記載の光学ガラ ス。
7. 酸化物基準の質量%で、
Z r 02 0〜5%未満、
および/または N a2◦ 0〜 10 %、
および Zまたは K20 0〜20%、
を含有することを特徴とする、 請求項 1〜 6のいずれかに記載の光学ガ ラス。
8. 酸化物基準の質量%で、
L i20 + Na20 + K20 10〜25%、
を含有することを特徴とする請求項 1〜 7のいずれかに記載の光学ガラ ス。
9. 酸化物基準の質量%で、
L izO + Na¾0-l-K?.0 10〜20%、 を含有することを特徴とする請求項 1〜7のいずれかに記載の光学ガラ ス。
10. 酸化物基準の質量%で、
Sb203 0〜: 1%、
および Zまたは R 0 + Z r 02 + L i 20 2〜8%、 を含有することを特徴とする請求項 1〜 9のいずれかに記載の光学ガラ ス。
1 1. 酸化物基準の質量%で、 S i 02が 25 %より大きく 36 %以下 であるこどを特徴とする請求項 1〜 1 0のいずれかに記載の光学ガラス 。
12. 酸化物基準の質量%で、 K20が 10 %より大きく 20 %以下で あることを特徴とする、 請求項 1〜 1 1のいずれかに記載の光学ガラス
13. 酸化物基準の質量%で、 S i 02、 T i 02、 Nb 205、 L i20 、 Na20、 K20成分の合計量が 90%以上であることを特徴とする請 求項 1〜 1 2のいずれかに記載の光学ガラス。
14 · 屈折率 (nd) 1. 825〜 1 · 870、 ァヅべ数 ( レ d) が 22〜27未満、 ガラス転移点 (T g) が 530 °C〜 585 °C、 平均線 膨張係数 ( ) が 80〜 103 [ 1 O-^C"1] であり、 式— 1 : E · / ( 1 - v) の値が 1.00 x 106〜; L .35 X 106 p a .。c-i] あ り、 実質的に鉛化合物を含有しないことを特徴とする請求項 1〜 13の いずれかに記載の光学ガラス。
15. 屈折率 (nd) 1. 825〜 1 · 870、 ァヅべ数 ( ソ d) が 22〜27未満、 ガラス転移点 (T g) が 530 °C〜 585。 (、 平均線 膨張係数 ( ひ) が 80〜: 100 [ 1 0—7°C— であり、 式一 1 : E · α / ( 1ーリ) の値が 1.0 0 X 1 06〜: L .3 5 X 1 06 [P a -"C"1] あ り、 実質的に鉛化合物を含有しないことを特徴とする請求項 1〜 1 3の いずれかに記載の光学ガラス。
1 6. 酸化物基準の質量%で、
S i 02 1 8〜 3 6 %、
T i 02 6〜; 1 8 %未満、
Nb205 4 2 %より多く 5 5 %以下、
但し、 Nb 205ZT i 02の値が 2. 7以上、
L i2〇 2〜 8 %、
を含有することを特徴とする光学ガラス。
1 7. 酸化物基準の質量%で、
S i 02 2 0〜 3 6 %、
T i 02 6〜 1 5 %、
Nb205 4 2 %より多く 5 5 %以下、
但し、 Nb205/T i 02の値が 2. 9以上、
L i2〇 2〜 8 %、
を含有することを特徴とする光学ガラス。
1 8. 酸化物基準の質量%で、
R O 0〜 5 %未満
但し、 R=Mg、 C a、 S T B a、 Z nの中から選ばれる 1 種または 2種以上、
および/または Z r 02 0〜5 %未満、
および/または N a20 0〜 1 0 %、
および/または K20 0〜2 0 %、
を含有することを特徴とする請求項 1 6又は 1 7に記載の光学ガラス。
1 9. 酸化物基準の質量%で、
L i20 + N a20 + K20 1 0〜 2 5 %、
および/または S b203 0〜 1 %、
および/または R〇 + Z r〇 2 + L i 20の値が 2〜 8 %、 を含有することを特徴とする請求項 1 6〜 1 8のいずれかに記載の光学 ガラス。
2 0. 酸化物基準の質量%で、
L i20 + Na20 + K20 10〜20%、
および/または S b203 0〜 1 %、
および/または R 0 + Z r 02 + L i2〇の値が 2〜8%、 を含有することを特徴とする請求項 1 6〜 18のいずれかに記載の光学 ガラス。
2 1. 酸化物基準の質量%で、 S i 02が 25 %より大きく 36 %以下. であることを特徴とする請求項 1 6〜20のいずれかに記載の光学ガラ ス。
22. 酸化物基準の質量%で、 K20が 10 %より大きく 20 %以下で あることを特徴とする請求項 1 6〜2 1のいずれかに記載の光学ガラス
23. S i〇2、 T i 02、 Nb 205、 L i20、 Na20、 K2〇成分の 総量が酸化物基準の質量%で 90%以上である請求項 16〜22のいず れかに記載の光学ガラス。
24. B 203成分の含有量が 5 %未満であることを特徴とする請求項 1〜 23のいずれかに記載の光学ガラス。
25. T a 205、 W03、 G e 02の各々の含有量が 5 %未満である ことを特徴とする請求項 1〜24のいずれかに記載の光学ガラス。
26. 希土類酸化物の含有率が 5%未満であることを特徴とする請求 項 1〜 25のいずれかに記載の光学ガラス。
27. A 1203成分の含有量が 5 %未満であることを特徴とする請求 項 1〜 26のいずれかに記載の光学ガラス。
28. C s20成分の含有量が 3 %未満であることを特徴とする請求項 1〜 27のいずれかに記載の光学ガラス。
29. B i 203成分の含有量が 3%未満であることを特徴とする請求 項 1〜 28のいずれかに記載の光学ガラス。
30. 屈服点 (At) が 620 °C以下であることを特徴とする請求項 1〜29のいずれかに記載の光学ガラス。
3 1. 剛性率 (G) が 30 GP a以上であることを特徴とする請求項 1〜 30のいずれかに記載の光学ガラス。
32. 国際標準化機構 I S08424 : 1996 (E) の測定方法に よる耐酸性を示すクラス (SR) が 1であることを、 特徴とする請求項 1〜3 1のいずれかに記載の光学ガラス。
33. 請求項 1〜 32のいずれかに記載の光学ガラスにおいて、 酸化 物基準で表されたガラス組成における当該酸化物の酸素原子の一部又は 全部がフッ素置換されており、 当該フッ化物の Fとしての合計量が、 酸 化物基準で表されたガラス組成 100質量部に対して 0〜 5.0質量部 の範囲である光学ガラス。
PCT/JP2004/008272 2003-06-10 2004-06-08 光学ガラス WO2004110942A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2004800229566A CN1835895B (zh) 2003-06-10 2004-06-08 光学玻璃
JP2005506949A JP4537317B2 (ja) 2003-06-10 2004-06-08 光学ガラス
EP04736346A EP1640346A4 (en) 2003-06-10 2004-06-08 OPTICAL GLASS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-164840 2003-06-10
JP2003164840 2003-06-10

Publications (1)

Publication Number Publication Date
WO2004110942A1 true WO2004110942A1 (ja) 2004-12-23

Family

ID=33549193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008272 WO2004110942A1 (ja) 2003-06-10 2004-06-08 光学ガラス

Country Status (5)

Country Link
US (2) US7528083B2 (ja)
EP (1) EP1640346A4 (ja)
JP (2) JP4537317B2 (ja)
CN (2) CN101811825A (ja)
WO (1) WO2004110942A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179538A (ja) * 2008-01-31 2009-08-13 Ohara Inc 光学ガラス
JP2010105902A (ja) * 2008-09-30 2010-05-13 Ohara Inc 光学ガラス及び分光透過率の劣化抑制方法
WO2011065098A1 (ja) * 2009-11-26 2011-06-03 コニカミノルタオプト株式会社 光学ガラス
EP2374764A1 (en) 2010-03-31 2011-10-12 Hoya Corporation Optical glass, preform for precision press molding, optical element, methods for manufacturing the same, and image pickup device
JP2012197211A (ja) * 2010-06-23 2012-10-18 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2013028532A (ja) * 2012-10-22 2013-02-07 Ohara Inc 光学ガラス
US8476178B2 (en) 2008-01-31 2013-07-02 Hoya Corporation Optical glass
JP2013227216A (ja) * 2013-05-24 2013-11-07 Hoya Corp 光学ガラス、プレス成形用ガラス素材および光学素子とその製造方法ならびに光学素子ブランクの製造方法
JP2015205814A (ja) * 2008-09-30 2015-11-19 株式会社オハラ 光学ガラス及び分光透過率の劣化抑制方法
WO2017090646A1 (ja) * 2015-11-24 2017-06-01 旭硝子株式会社 光学ガラス
WO2019082616A1 (ja) * 2017-10-25 2019-05-02 Agc株式会社 光学ガラス、光学部材およびウェアラブル機器
JP2021054693A (ja) * 2019-10-02 2021-04-08 光ガラス株式会社 光学ガラス、光学ガラスを用いた光学素子、光学系、交換レンズ、光学装置、及び光学ガラスの製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528083B2 (en) * 2003-06-10 2009-05-05 Kabushiki Kaish Ohara Optical glass
CN1298650C (zh) * 2005-03-18 2007-02-07 中国科学院上海光学精密机械研究所 纳米铋团簇掺杂二氧化硅基光学玻璃及其制备方法
EP2087501A1 (en) * 2006-10-17 2009-08-12 Rensselaer Polytechnic Institute Process for making rare earth containing glass
JP5073353B2 (ja) * 2007-04-16 2012-11-14 株式会社オハラ 光学ガラス
CN101397187B (zh) * 2007-09-29 2012-11-28 株式会社小原 光学玻璃
EP2217539A4 (en) * 2007-11-30 2015-07-01 Corning Inc LOW DILATION GLASS MATERIAL HAVING A LOW GRADIENT OF EXPANSION POWER
WO2009104379A1 (ja) * 2008-02-18 2009-08-27 三井造船株式会社 原子層成長装置および原子層成長方法
DE102009008673B3 (de) 2009-02-12 2010-08-19 Schott Ag Gestanztes Durchführungselement mit eingelötetem Kontaktstift
JP5734587B2 (ja) * 2009-07-29 2015-06-17 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子とそれら製造方法、ならびに撮像装置
CN102471130A (zh) * 2009-08-07 2012-05-23 株式会社小原 光学玻璃
JP6081914B2 (ja) 2010-10-18 2017-02-15 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 高屈折率ガラス組成物
JP5794412B2 (ja) * 2011-01-26 2015-10-14 日本電気硝子株式会社 光学ガラス
JP6922741B2 (ja) * 2015-11-24 2021-08-18 Agc株式会社 光学ガラス
US10442727B2 (en) * 2017-01-05 2019-10-15 Magic Leap, Inc. Patterning of high refractive index glasses by plasma etching
JP7480142B2 (ja) 2018-11-26 2024-05-09 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 改善された比弾性率を有する高性能ガラス繊維組成物
JP7488260B2 (ja) 2018-11-26 2024-05-21 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 改善された弾性率を有する高性能ガラス繊維組成物
KR20210101269A (ko) 2018-12-12 2021-08-18 코닝 인코포레이티드 이온-교환 가능한 리튬-함유 알루미노실리케이트 유리
JP2023526619A (ja) 2020-05-18 2023-06-22 コーニング インコーポレイテッド 高い屈折率及び低い密度を有するガラス組成物

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834913A (ja) 1971-07-28 1973-05-23
JPS4987716A (ja) 1972-12-02 1974-08-22
JPS5245612A (en) 1975-10-09 1977-04-11 Sumita Optical Glass Flint glass of low density
JPS54161620A (en) 1978-06-07 1979-12-21 Jenaer Glaswerk Schott & Gen High refractive index glass having limited specific gravity for long and short distance glass lenses
JPS54161619A (en) 1978-06-07 1979-12-21 Jenaer Glaswerk Schott & Gen Light weight* high refractive index glass for glass lense
JPS58125636A (ja) 1982-01-18 1983-07-26 シヨツト・グラスヴエルケ 1.84〜1.87の屈折率および30〜33のアツベ数を有する高屈折率光学ガラス
JPS58217451A (ja) 1982-06-04 1983-12-17 コ−ニング・グラス・ワ−クス 酸化ニオブを含有する成形可能なフルオロリン酸塩ガラス
JPS61168551A (ja) 1985-01-22 1986-07-30 Nippon Kogaku Kk <Nikon> 高屈折率眼鏡レンズ用のガラス
JPH01148726A (ja) 1987-12-04 1989-06-12 Sumita Kogaku Glass Seizosho:Kk 光学ガラス
JPH02148010A (ja) 1988-11-30 1990-06-06 Hitachi Ltd ズームレンズ
JPH0551233A (ja) 1991-08-20 1993-03-02 Sumita Kogaku Glass:Kk 精密プレス成形用光学ガラス
JPH06160712A (ja) 1992-11-17 1994-06-07 Konica Corp ズームレンズ
JP2000016830A (ja) 1998-04-30 2000-01-18 Hoya Corp 光学ガラスおよび光学製品
JP2000344542A (ja) 1999-05-06 2000-12-12 Carl Zeiss:Fa 無鉛光学ガラス
JP2001058845A (ja) 1999-08-20 2001-03-06 Sumita Optical Glass Inc 精密プレス成形用光学ガラス
JP2001342035A (ja) * 2000-05-29 2001-12-11 Minolta Co Ltd 光学ガラス
JP2002087841A (ja) 2000-07-14 2002-03-27 Hoya Corp 光学ガラス、精密プレス成形用素材および光学部品
JP2002173336A (ja) 2000-06-30 2002-06-21 Hoya Corp 光学ガラス及びそれを用いた光学製品
JP2003252646A (ja) * 2002-03-05 2003-09-10 Minolta Co Ltd 光学ガラス
EP1350770A1 (en) * 2002-04-02 2003-10-08 Kabushiki Kaisha Ohara Optical glass

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225812A (en) * 1975-08-20 1977-02-26 Sumita Optical Glass Optical flint glass of low density
JPS598637A (ja) * 1982-07-02 1984-01-17 Minolta Camera Co Ltd 高屈折率高分散ガラス
JPS5950048A (ja) * 1982-09-16 1984-03-22 Ohara Inc 光学ガラス
DE3504625C1 (de) * 1985-02-11 1986-07-03 Schott Glaswerke, 6500 Mainz Hochbrechendes optisches Glas im System SiO2-TiO2-Nb2O5-BaO-Alkalioxid mit Brechwerten ? 1,83 und Abbezahlen ? 25,und mit sehr guter chemischer Bestaendigkeit
JP2561835B2 (ja) * 1987-04-23 1996-12-11 株式会社 オハラ 光学ガラス
JP2747964B2 (ja) * 1993-06-07 1998-05-06 株式会社オハラ 光学ガラスの製造方法
JP3255390B2 (ja) * 1994-12-02 2002-02-12 ホーヤ株式会社 低融点光学ガラス
US7005187B2 (en) * 1999-08-30 2006-02-28 Kabushiki Kaisha Ohara Glass for a light filter and a light filter
US6995101B2 (en) * 2000-06-30 2006-02-07 Hoya Corporation Optical glass and optical product using the same
US7320949B2 (en) * 2002-04-02 2008-01-22 Kabushiki Kaisha Ohara Optical glass
AU2003231441A1 (en) * 2002-05-14 2003-11-11 Asahi Glass Company, Limited Glass, method for production thereof, and fed device
US7060640B2 (en) * 2002-07-18 2006-06-13 Kabushiki Kaisha Ohara Optical glass
EP1433757B1 (en) * 2002-12-27 2017-02-01 Hoya Corporation Optical glass, press-molding glass gob and optical element
CN1298651C (zh) * 2003-04-17 2007-02-07 Hoya株式会社 光学玻璃、压制成形用预制件及其制造方法、光学元件及其制造方法
US7528083B2 (en) * 2003-06-10 2009-05-05 Kabushiki Kaish Ohara Optical glass
JP4726666B2 (ja) * 2006-03-22 2011-07-20 Hoya株式会社 光学ガラス、光学素子およびその製造方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834913A (ja) 1971-07-28 1973-05-23
JPS4987716A (ja) 1972-12-02 1974-08-22
JPS5245612A (en) 1975-10-09 1977-04-11 Sumita Optical Glass Flint glass of low density
JPS54161620A (en) 1978-06-07 1979-12-21 Jenaer Glaswerk Schott & Gen High refractive index glass having limited specific gravity for long and short distance glass lenses
JPS54161619A (en) 1978-06-07 1979-12-21 Jenaer Glaswerk Schott & Gen Light weight* high refractive index glass for glass lense
JPS58125636A (ja) 1982-01-18 1983-07-26 シヨツト・グラスヴエルケ 1.84〜1.87の屈折率および30〜33のアツベ数を有する高屈折率光学ガラス
JPS58217451A (ja) 1982-06-04 1983-12-17 コ−ニング・グラス・ワ−クス 酸化ニオブを含有する成形可能なフルオロリン酸塩ガラス
JPS61168551A (ja) 1985-01-22 1986-07-30 Nippon Kogaku Kk <Nikon> 高屈折率眼鏡レンズ用のガラス
JPH01148726A (ja) 1987-12-04 1989-06-12 Sumita Kogaku Glass Seizosho:Kk 光学ガラス
JPH02148010A (ja) 1988-11-30 1990-06-06 Hitachi Ltd ズームレンズ
JPH0551233A (ja) 1991-08-20 1993-03-02 Sumita Kogaku Glass:Kk 精密プレス成形用光学ガラス
JPH06160712A (ja) 1992-11-17 1994-06-07 Konica Corp ズームレンズ
JP2000016830A (ja) 1998-04-30 2000-01-18 Hoya Corp 光学ガラスおよび光学製品
JP2000344542A (ja) 1999-05-06 2000-12-12 Carl Zeiss:Fa 無鉛光学ガラス
JP2001058845A (ja) 1999-08-20 2001-03-06 Sumita Optical Glass Inc 精密プレス成形用光学ガラス
JP2001342035A (ja) * 2000-05-29 2001-12-11 Minolta Co Ltd 光学ガラス
JP2002173336A (ja) 2000-06-30 2002-06-21 Hoya Corp 光学ガラス及びそれを用いた光学製品
JP2002087841A (ja) 2000-07-14 2002-03-27 Hoya Corp 光学ガラス、精密プレス成形用素材および光学部品
JP2003252646A (ja) * 2002-03-05 2003-09-10 Minolta Co Ltd 光学ガラス
EP1350770A1 (en) * 2002-04-02 2003-10-08 Kabushiki Kaisha Ohara Optical glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1640346A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476178B2 (en) 2008-01-31 2013-07-02 Hoya Corporation Optical glass
EP2105417A1 (en) 2008-01-31 2009-09-30 Ohara Inc. Optical glass
US8785339B2 (en) 2008-01-31 2014-07-22 Hoya Corporation Optical glass
US8664133B2 (en) 2008-01-31 2014-03-04 Ohara Inc. Optical glass
JP2009179538A (ja) * 2008-01-31 2009-08-13 Ohara Inc 光学ガラス
JP2010105902A (ja) * 2008-09-30 2010-05-13 Ohara Inc 光学ガラス及び分光透過率の劣化抑制方法
JP2015205814A (ja) * 2008-09-30 2015-11-19 株式会社オハラ 光学ガラス及び分光透過率の劣化抑制方法
WO2011065098A1 (ja) * 2009-11-26 2011-06-03 コニカミノルタオプト株式会社 光学ガラス
US8647996B2 (en) 2010-03-31 2014-02-11 Hoya Corporation Optical glass, preform for precision press molding, optical element, methods for manufacturing the same, and image pickup device
JP2011213554A (ja) * 2010-03-31 2011-10-27 Hoya Corp 光学ガラス、精密プレス成形用プリフォーム、光学素子、それらの製造方法、及び撮像装置
EP2374764A1 (en) 2010-03-31 2011-10-12 Hoya Corporation Optical glass, preform for precision press molding, optical element, methods for manufacturing the same, and image pickup device
JP2012197211A (ja) * 2010-06-23 2012-10-18 Ohara Inc 光学ガラス、プリフォーム及び光学素子
JP2013028532A (ja) * 2012-10-22 2013-02-07 Ohara Inc 光学ガラス
JP2013227216A (ja) * 2013-05-24 2013-11-07 Hoya Corp 光学ガラス、プレス成形用ガラス素材および光学素子とその製造方法ならびに光学素子ブランクの製造方法
JPWO2017090646A1 (ja) * 2015-11-24 2018-09-06 Agc株式会社 光学ガラス
WO2017090646A1 (ja) * 2015-11-24 2017-06-01 旭硝子株式会社 光学ガラス
WO2019082616A1 (ja) * 2017-10-25 2019-05-02 Agc株式会社 光学ガラス、光学部材およびウェアラブル機器
CN111263737A (zh) * 2017-10-25 2020-06-09 Agc株式会社 光学玻璃、光学部件和可穿戴设备
JPWO2019082616A1 (ja) * 2017-10-25 2020-11-19 Agc株式会社 光学ガラス、光学部材およびウェアラブル機器
EP3702335A4 (en) * 2017-10-25 2021-08-18 AGC Inc. OPTICAL GLASS, OPTICAL ELEMENT AND PORTABLE DEVICE
TWI808102B (zh) * 2017-10-25 2023-07-11 日商Agc股份有限公司 光學玻璃、光學構件及可穿戴機器
JP2021054693A (ja) * 2019-10-02 2021-04-08 光ガラス株式会社 光学ガラス、光学ガラスを用いた光学素子、光学系、交換レンズ、光学装置、及び光学ガラスの製造方法
JP7433830B2 (ja) 2019-10-02 2024-02-20 光ガラス株式会社 光学ガラス、光学ガラスを用いた光学素子、光学系、交換レンズ、光学装置、及び光学ガラスの製造方法

Also Published As

Publication number Publication date
JP4537317B2 (ja) 2010-09-01
CN101811825A (zh) 2010-08-25
JPWO2004110942A1 (ja) 2006-08-10
CN1835895A (zh) 2006-09-20
CN1835895B (zh) 2010-12-29
US8178452B2 (en) 2012-05-15
EP1640346A1 (en) 2006-03-29
US20090082189A1 (en) 2009-03-26
EP1640346A4 (en) 2009-01-07
US7528083B2 (en) 2009-05-05
US20050026768A1 (en) 2005-02-03
JP2010150137A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
WO2004110942A1 (ja) 光学ガラス
JP4429295B2 (ja) 光学ガラス
JP5108209B2 (ja) 光学ガラス
JP4590386B2 (ja) 光学ガラス
TWI532698B (zh) Optical glass, preformed stock and optical components
TWI594966B (zh) Optical glass, preform and optical element
JP5296345B2 (ja) 光学ガラス
JP6903373B2 (ja) 光学ガラス、プリフォーム材及び光学素子
CN112142322B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
JP5616566B2 (ja) 光学ガラス
JP7503163B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2024521535A (ja) 特殊分散光学ガラス、ガラスプリフォーム、光学素子、及び光学機器
CN113264675B (zh) 光学玻璃、光学元件和光学仪器
CN114853335A (zh) 光学玻璃、光学预制件、光学元件和光学仪器
JPWO2009107612A1 (ja) 光学ガラス
TWI783603B (zh) 光學玻璃、玻璃預製件、光學元件及光學儀器
CN112159098B (zh) 光学玻璃、光学元件和光学仪器
JP6639074B2 (ja) 光学ガラス、レンズプリフォーム及び光学素子
CN111253064B (zh) 光学玻璃、光学预制件、光学元件和光学仪器
TW201731785A (zh) 光學玻璃、預成形材及光學元件
CN110550860A (zh) 一种光学玻璃
JP2011241128A (ja) 光学ガラスならびに、モールドプレス成形用プリフォームおよび光学素子
JP6866012B2 (ja) 光学ガラス、プリフォーム材及び光学素子
CN112174517B (zh) 光学玻璃及光学元件
JP2019099395A (ja) 光学ガラス、プリフォーム及び光学素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022956.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506949

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004736346

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004736346

Country of ref document: EP