WO2004067812A1 - ダイヤモンド複合基板及びその製造方法 - Google Patents

ダイヤモンド複合基板及びその製造方法 Download PDF

Info

Publication number
WO2004067812A1
WO2004067812A1 PCT/JP2004/000532 JP2004000532W WO2004067812A1 WO 2004067812 A1 WO2004067812 A1 WO 2004067812A1 JP 2004000532 W JP2004000532 W JP 2004000532W WO 2004067812 A1 WO2004067812 A1 WO 2004067812A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
composite substrate
single crystal
plane
substrate according
Prior art date
Application number
PCT/JP2004/000532
Other languages
English (en)
French (fr)
Inventor
Kiichi Meguro
Yoshiyuki Yamamoto
Takahiro Imai
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP04704342A priority Critical patent/EP1522611B1/en
Priority to JP2005504682A priority patent/JP5160032B2/ja
Priority to US10/510,848 priority patent/US7892356B2/en
Publication of WO2004067812A1 publication Critical patent/WO2004067812A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/279Diamond only control of diamond crystallography
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals

Definitions

  • the present invention relates to a diamond composite substrate and a method for producing the same, and more particularly to a large-area, high-quality diamond composite substrate used for semiconductor materials, electronic components, optical components, and the like, and a method for producing the same.
  • Diamond has many unique properties, unique to semiconductors, such as high thermal conductivity, high electron and hole mobility, high breakdown field strength, low dielectric loss, and wide band gap. . Particularly in recent years, ultraviolet light-emitting devices utilizing a wide band gap and field-effect transistors having excellent high-frequency characteristics are being developed.
  • artificial diamond single crystals produced mainly by the high-temperature high-pressure synthesis method have a thermal conductivity 5 times or more that of copper at room temperature. Utilizing this, it is applied as a heat dissipation board that requires high performance and high reliability.
  • the thermal conductivity of a diamond polycrystalline film mainly obtained by a vapor phase synthesis method is about half that of a diamond single crystal because of the influence of phonon scattering at grain boundaries.
  • Diamond single crystals obtained by the high-temperature and high-pressure method are useful as substrates for semiconductors, because single crystals with good crystallinity can be obtained as compared with single crystals produced naturally.
  • the ultrahigh-pressure synthesis equipment used in the high-temperature and high-pressure method has a large size and is expensive, so there is a limit in reducing the cost of producing a single crystal.
  • the size of the obtained single crystal is proportional to the size of the apparatus, the size of 1 cm class is practically the limit. Therefore, as a method for obtaining a diamond single crystal substrate having a large area, for example, Japanese Patent Application Laid-Open No.
  • Patent Document 1 discloses a method in which a plurality of high pressure A method is disclosed in which a phase substance is arranged to form a substrate serving as a nucleus for vapor phase growth, and a single crystal is grown thereon by a vapor phase synthesis method to obtain an integrated large single crystal.
  • Japanese Patent Application Laid-Open No. 2-5141-13 discloses that a diamond surface with a gap is provided. And a method of bonding diamond to diamond by growing diamond or diamond-like bridges between the diamond surfaces by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • such a diamond bonded body cross-linked between two surfaces has a problem in that when the surface is polished, polishing stress concentrates on the bonded interface and the bonded portion is separated.
  • Diamond is one of the materials with the lowest coefficient of thermal expansion.
  • semiconductor materials typified by Si and GaAs have a coefficient of thermal expansion that is 1.5 to several times that of diamond. If they are heated by brazing or the like in order to join them, deformation and cracking will occur during cooling.
  • diamond single crystal is a brittle material with low toughness because it has a large Young's modulus and is hard to deform. That is, when a force is applied to the diamond single crystal, the diamond single crystal has a disadvantage that it is easily cleaved along the ⁇ 111 ⁇ plane.
  • a single-crystal substrate composed of a plurality of substrates serving as nuclei for vapor phase growth usually does not have completely the same plane orientation of the growth plane, but each has a slightly different plane orientation.
  • single-crystal vapor phase growth is performed to integrate the single crystals, and the junction has a growth interface with a different angle called a small-angle grain boundary, that is, a defect in a broad sense. Does not basically disappear even if the single crystal growth is continued.
  • the present inventors observed the vicinity of the small-angle grain boundaries in detail using a Raman scattering spectrometer, and as a result, measured a peak shift different from a normal diamond peak.
  • 1 3 3 2 cm- instead of one near the normal of the diamond monocrystal peak in the vicinity of the single crystal connection interface exists microscopic regions to shift it from a few cm one 1 wavenumber or low wavenumber I found out.
  • the single crystal growth was continued as it was, it was found that the single crystal was decomposed during the vapor phase growth at the boundary of the single crystal connection when the film thickness exceeded about 100 / m.
  • the present invention has been made to overcome the problems in the prior art, and has a high toughness, a large area and a high quality diamond substrate used for semiconductor materials, electronic components, optical components and the like, and a method for producing the same.
  • the purpose is to provide.
  • the present invention is c having aspects of the following (1) to (23)
  • a diamond composite substrate composed of a diamond single crystal substrate and a diamond polycrystalline film laminated thereon by a vapor phase synthesis method.
  • the ratio of the thickness of the diamond single crystal substrate to the thickness of the diamond polycrystalline film is in the range of 1: 1 to 1: 4,
  • the diamond composite substrate according to any one of (5) to (5).
  • the single-crystal diamond substrate is composed of a plurality of single-crystal diamonds in which the principal plane having the largest area has the same plane orientation, and is formed on the single-crystal diamond by a vapor phase synthesis method.
  • the diamond composite substrate according to any one of (1) to (6), wherein the plurality of diamond single crystals are joined by a diamond polycrystalline film.
  • the difference between the orientation of the rotation direction with respect to the axis perpendicular to the principal plane of each of the plurality of diamond single crystals is within 0.2 degrees, and the plane orientation of each principal plane and the ⁇ 100 ⁇ plane The difference from the plane orientation is within 5 degrees.
  • a diamond single crystal substrate is composed of a plurality of diamond single crystals each having a difference of less than 5 degrees from the plane orientation of the plane, and a vapor phase is formed on a facing surface parallel to a main surface of each of the plurality of diamond single crystals.
  • Each diamond single crystal is joined by a diamond polycrystalline film formed by a synthesis method, and a gas-phase synthetic diamond single crystal grown on a diamond single crystal substrate as a seed crystal on the main surface.
  • a diamond composite substrate integrated over the entire surface.
  • the thickness of the diamond polycrystal film synthesized in a vapor phase on the diamond single crystal body is 0.1 mm or more and l mm or less, wherein (1 2) to (14) The diamond composite substrate according to any one of the above.
  • the ratio of the thickness of the diamond single crystal body to the thickness of the diamond polycrystalline film is in the range of 1: 1 to 1: 4, wherein the above (1 2) to (1) 5)
  • the surface roughness of the diamond polycrystalline film is Rmax 1 ⁇ m.
  • a plurality of diamond single crystals having the same plane orientation are arranged side by side, a diamond polycrystal film is vapor-phase synthesized on the single crystal by a vapor phase synthesis method, and a plurality of diamond polycrystal films are formed by the diamond polycrystal film.
  • Each of the plurality of diamond single crystals has a deviation of the orientation in the rotation direction with respect to the axis perpendicular to the principal plane having the largest area within 2 degrees, and the plane orientation of each principal plane is different from that of the principal plane.
  • the thickness of the polycrystalline diamond film synthesized in a vapor phase on the diamond single crystal body is 0.1 mm or more and lmm or less, any one of the above (21) to (24). 3.
  • the ratio of the thickness of the diamond single crystal body to the thickness of the diamond polycrystalline film is in the range of 1: 1 to 1: 4, wherein The method for producing a diamond composite substrate according to any one of the above.
  • diamond single-crystal substrate means not only a substrate composed of a single single crystal but also a substrate composed of a plurality of single crystals.
  • This diamond single crystal may be any of a natural diamond single crystal, a human diamond single crystal obtained by a high-temperature and high-pressure method, or a vapor-phase synthesized diamond single crystal, or a diamond single crystal manufactured by any other method. There may be.
  • the single crystal surface on the opposite side where the diamond polycrystalline film is laminated will be used for actual applications such as semiconductor applications and connection surfaces as heat dissipation substrates. In that case, the application is easier if the single crystal surface is composed of ⁇ 100 ⁇ planes that are relatively soft and easy to process.
  • the diamond composite substrate of the present invention the deviation of the plane orientation of the major surface of the diamond single crystal, when considered also good c applications be characterized by within 5 degrees from ⁇ 1 0 0 ⁇ , the single crystal
  • the principal plane is desirably ⁇ 100 ⁇ , but the present inventors have conducted a detailed investigation on the deviation of the orientation of the principal plane, and found that the deviation from the ⁇ 100 ⁇ plane is within 5 degrees. If so, he clearly stated that there would be no problems with subsequent semiconductor applications or polishing calories.
  • the thickness of the diamond single crystal is 0.1 mm or more and 1 mm or less, and the thickness of the diamond polycrystalline film laminated on the diamond single crystal is 0.1 mm or more.
  • the thickness may be 1 mm or less, and the ratio of the thickness of the single crystal to the thickness of the diamond polycrystalline film may be in the range of 1: 1 to 1: 4.
  • the thermal conductivity and toughness of the diamond composite substrate are in opposition to each other, so there is an optimum range for the thickness of the single crystal, the thickness of the polycrystalline layer, and the ratio. I do.
  • the present inventors have clarified that by keeping these values within the above ranges, high toughness can be achieved while maintaining sufficient thermal conductivity.
  • the diamond composite substrate of the present invention is composed of a plurality of diamond single crystals in which the plane orientation of the main surface of the diamond single crystal substrate is uniform, and the plurality of diamond single crystals are formed of the single crystal. It may be characterized in that it is joined by a diamond polycrystalline film formed thereon by a vapor phase synthesis method.
  • a single crystal is directly vapor-phase grown from a single crystal substrate composed of a plurality of single crystal bodies, the substrate may be decomposed due to stress concentration at the interface.
  • one or more single-crystal bodies are joined by a polycrystalline film, such a decomposition does not occur, and a large-sized composite substrate that is substantially integrated can be obtained.
  • the diamond polycrystalline film does not necessarily need to be formed on the side surface of each single crystal body, as long as it is joined by the polycrystal formed on the main surface.
  • the deviation of the azimuth in the rotation direction with respect to the axis perpendicular to the main surface of each of the plurality of diamond single crystal bodies constituting the diamond single crystal substrate is within 2 degrees, and
  • the plane may be ⁇ 100 ⁇ , or the plane orientation of the main plane of the diamond single crystal may be shifted within 5 ° from ⁇ 100 ⁇ , respectively.
  • the plane orientation shift exists two-dimensionally in the vertical and rotational directions.
  • the physical properties such as the workability of the single crystal surface must match on each substrate, and there is an allowable range for the deviation of the plane orientation.
  • Exists. The present inventors have made clear that the physical properties of the composite substrate can be stabilized by keeping the plane orientation of each single crystal within the above range. Aspects (10) and (11)>
  • the difference in the thickness of each of the plurality of diamond single crystals constituting the diamond single crystal substrate is within 10 Atm, and the gap generated between the diamond single crystals is 5 mm. It may be characterized in that it is not more than 0 ⁇ m.
  • the gap between the single crystals when they are integrated by the vapor phase synthesis method is difficult to arrange if it is too small, and there is a disadvantage in increasing the size of the composite substrate. It is desirable to have more than one.
  • the present inventors have studied various application examples, and as a result, by keeping these values within the above numerical range, the diamond It has been clarified that there is no practical problem as a Mondo composite substrate. Modes (1 2) to (20)>
  • the plane orientation of the principal plane of each diamond single crystal is ⁇ 100 ⁇ , or the difference between the plane orientation of each principal plane and the plane orientation of the ⁇ 100 ⁇ plane is:
  • a diamond single-crystal substrate is composed of a plurality of diamond single-crystals having an angle of 5 degrees or more, and a diamond single-crystal is formed by a diamond polycrystalline film formed on a surface parallel to a main surface of each of the diamond single-crystals. They are joined to each other, and their main surface is entirely integrated with a vapor-phase synthesized diamond single crystal grown from a seed crystal diamond single crystal.
  • the single crystal when a single crystal is directly grown from a plurality of diamond single crystals by vapor phase growth and bonded, the single crystal may be decomposed by stress. Therefore, a structure in which one side is joined by a polycrystalline film and the other side is made of a single crystal grown by vapor phase is unrelated to such a decomposition problem.
  • This integrated gas-phase synthetic diamond single crystal can be applied as a large single crystal substrate.
  • the thickness of the diamond single crystal is 0.1 mm or more and 1 mm or less, and the thickness of the diamond polycrystalline film vapor-phase synthesized on the diamond single crystal is 0.1 mm or more and 1 mm or less.
  • the ratio of the thickness of the diamond single crystal body to the thickness of the diamond polycrystalline film is preferably in the range of 1: 1 to 1: 4. Further, it is desirable that the difference in plate thickness of the diamond single crystal composed of a plurality of pieces is within 10 zin, and the gap generated between the single crystals is 500 nm or less.
  • the size and arrangement of the single crystal body and the polycrystalline layer within the above ranges, it can be used as a large-area, high-quality diamond substrate intended in the present invention. Further, if the surface of the polycrystalline film is polished and the surface roughness is 0.1 ⁇ m or less in R max, it is more preferable from the viewpoint of subsequent application.
  • a plurality of diamond single crystals having a uniform plane orientation are arranged and arranged, and a diamond polycrystalline film is vapor-phase synthesized on the single crystal by a vapor phase synthesis method.
  • the method is characterized in that a plurality of diamond single crystal bodies are joined by the generated polycrystalline diamond film.
  • a manufacturing method for forming a polycrystalline film on a plurality of diamond single crystal substrates and bonding the single crystal with the polycrystalline film a diamond single crystal having a uniform plane orientation is prepared. Adopt a method to grow polycrystalline film by vapor phase synthesis on top
  • the obtained diamond composite substrate can be applied as a large-area high-quality diamond composite substrate.
  • the principal surface having the largest area is the ⁇ 100 ⁇ plane, and the deviation of the rotation direction of each single crystal relative to the axis perpendicular to the principal surface. It is preferable that the deviation of the orientation of the main surface be within 5 degrees from ⁇ 100 ⁇ .
  • the plate thickness of the diamond single crystal body is 0.11 mm or more and 1 mm or less, and the thickness of the diamond polycrystalline film vapor-phase synthesized on the diamond single crystal body is 0.1 mm or more and 1 mm or less,
  • the ratio of the thickness of the diamond single crystal body to the thickness of the diamond polycrystalline film is desirably in the range of 1: 1 to 1: 4. Further, it is desirable that the thickness difference between the diamond single crystals composed of a plurality of pieces is within 10 / im and the gap generated between the single crystals is below 500 ⁇ m.
  • FIG. 1 is a schematic view of a diamond single crystal substrate used in the present invention.
  • FIG. 2 is a schematic diagram of a heat conduction test using the diamond composite substrate of the present invention.
  • FIG. 3 is an arrangement diagram of a diamond single crystal substrate for manufacturing a diamond composite substrate of the present invention.
  • FIG. 4 is a schematic view of a large diamond composite substrate manufactured by the present invention.
  • FIG. 5 is an example of producing a large diamond single crystal using the diamond composite substrate of the present invention.
  • a configuration example of a diamond composite substrate in which a diamond polycrystalline film is laminated on a single crystal diamond single crystal substrate will be described.
  • This single-crystal substrate is cut from a single-crystal ore of the so-called Ib type, which contains nitrogen as an impurity and is manufactured by a high-temperature high-pressure synthesis method.
  • the X-ray Laue measurement of the deviation of the plane orientation (angle a in Fig. 1) from ⁇ 100 ⁇ of the main surface with the largest area was 1.9 degrees.
  • a known microwave plasma CVD method is applied on this diamond single crystal substrate.
  • the single crystal layer did not exist in the film formation region after the growth, and it was clearly divided into a single crystal substrate region and a polycrystal film formation region.
  • the thickness of the polycrystalline layer was 0.5 mm.
  • This substrate (substrate 1) was evaluated for toughness and thermal conductivity by the following method. First, toughness 1 "was evaluated by a three-point bending test in accordance with JISR 1601. The bending direction was the direction in which tensile stress was applied to the single crystal side. The evaluation conditions are shown in Table 2. Table 2. Conditions for evaluating toughness As a result of the measurement, the bending force of the substrate 1 was 124 OMPa.
  • FIG. 1 shows a schematic diagram of the heat conduction test.
  • Table 3 The evaluation conditions of the test are shown. Table 3. Thermal conductivity evaluation conditions As a result of measurement, the maximum temperature of the LD heating section was 75, and the laser output was normal.
  • Table 4 summarizes the configuration of the diamond single crystal substrate and the test results.
  • the size of the main surface of each of the diamond single crystal substrates was 10 mm square similar to that of substrate 1, the plane orientation was ⁇ 100 ⁇ , and the deviation of the orientation was within 2 degrees except substrate 9.
  • the conditions for forming the polycrystalline film were the same as those in Table 1. Table 4. Test results
  • Substrates 2 and 3 in Table 4 are a single-crystal diamond substrate and a polycrystalline diamond substrate, respectively. Table 4 shows the test results for these substrates. Since the substrate 2 is a single crystal alone, the heat conduction is improved and the temperature of the heating part is lowered. Flexural power is reduced to about 1 Z5 compared to the composite substrate of substrate 1. For this reason, it is difficult to use for applications requiring toughness. Since the substrate 3 is made of polycrystal alone, the bending strength is higher than that of the substrate 1, but the thermal conductivity is lowered and the temperature of the heat generating part is raised. As a result, a decrease in laser output was observed.
  • Substrates up to 6 have different thicknesses (ratio) of single crystal and polycrystalline films, and compare their performance.
  • the toughness and thermal conductivity of the diamond composite substrate are in conflict, and this is evident from Table 4.
  • the bending power or the laser output was significantly deteriorated, and the superiority of the diamond substrate was reduced.
  • the performance changes of the substrates 7 and 8 when the substrate thickness was changed were compared.
  • both the single crystal and polycrystalline films are thinner than the preferable values.
  • the transverse rupture strength is reduced and the substrate 7 cannot be used for applications requiring high toughness.
  • both the single-crystal and polycrystalline films are thicker than desirable values, and the heat resistance is increased although the bending force is exerted.
  • Another drawback is that the manufacturing cost increases because it is thicker than necessary.
  • the effect when the main surface of the single crystal deviated from ⁇ 100 ⁇ by 5 degrees or more was investigated.
  • the flexural strength was slightly lower than that of Substrate 1, it was a problematic value including the thermal conductivity.
  • the polishing rate of the single crystal face was reduced to 2Z3 of the substrate 1, and there was a problem in workability.
  • the diamond single crystal / polycrystalline film composite substrate represented by the substrate 1 is useful as a heat radiation substrate having both high toughness and high thermal conductivity.
  • Example 2
  • a diamond polycrystal film is laminated on a plurality of diamond single crystals having a uniform plane orientation and bonded together, and thereafter, a diamond single crystal is vapor-phased on a single crystal surface.
  • a grown example will be described.
  • the single crystal is 4 mm long and 0.5 mm thick and 0.5 mm thick, and its main surface is polished.
  • the plane orientation of the main and side surfaces was ⁇ 100 ⁇ , and ⁇ indicating the deviation of the main plane was less than 2 degrees.
  • These were arranged on the substrate holder so that the side surfaces coincided as shown in FIG.
  • the azimuth deviation in the rotation direction with respect to the axis perpendicular to the main surface (; 3 in Fig. 3, the lower figure in Fig. 3 shows the circled part in the upper figure in FIG. ) was within 1 degree in each of all adjacent single crystals.
  • the difference in plate thickness is a maximum of 1 ⁇ , and the maximum gap between single crystals is 90 ⁇ m.
  • a diamond polycrystal film 4 was formed on the diamond single crystal substrate 1 composed of a plurality of single crystals by the microphone mouth-wave plasma CVD method under the same conditions as in Table 1 of Example 1.
  • a diamond composite substrate 2 having a thickness of the polycrystalline layer 4 of 0.5 mm and 16 single crystals bonded together by a polycrystalline film (this Substrate 10) was obtained.
  • the vapor-phase single-crystal films grown from the individual single-crystal bodies became 0.5 mm thick after growth, and were joined together to form one large single-crystal substrate (Fig. 5). After that, the polycrystalline film and the single crystal substrate portion composed of plural pieces were removed by polishing, and a large vapor-phase synthetic diamond single crystal of 16 mm square and 0.5 mm thickness was obtained.
  • a gas-phase synthetic diamond single crystal was prepared on the single crystal face of the composite substrate 1 120 under the same conditions as the substrate 10. With respect to the substrates 11 and 12, the plane orientation of the different single crystal bodies was large, and abnormal growth frequently occurred at the connection interface of the vapor-phase single crystals, so that it was not possible to realize completely integrated single crystal growth.
  • a diamond composite substrate similar to the substrate 10 could be obtained. Furthermore, when a single crystal is grown from the single crystal of the substrate 16 by vapor phase growth, the size of the single crystal becomes larger than that of the substrate 10 by the larger interval, and a large vapor phase synthesis of 16.5 mm square and 0.5 mm thick is performed. for large substrates 1 7 of diamond single crystal obtained c further substrate spacing, but cracks partially caused by stress concentration at the interface during polishing of the polycrystalline layer, degradation could be polished without. Sa Further, the substrate 18 having a larger interval was broken and broken during the polishing of the polycrystalline layer and could not be polished.
  • the diamond composite substrate manufactured by the method typified by the substrate 10 is useful as a seed substrate for obtaining a diamond single crystal substrate having a large area and good crystallinity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 本発明の目的は、半導体材料、電子部品、光学部品などに用いられる、高靱性でかつ、大面積・高品質なダイヤモンド基板及びその製造法を提供することである。 ダイヤモンド単結晶基板の表面にダイヤモンド多結晶膜を積層させてダイヤモンド複合基板とする。該複合基板は、ダイヤモンド単結晶基板の最も面積の大きい主たる面を{100}面とし、この面に平行な対面に、前記ダイヤモンド多結晶膜が積層されていることが好ましい。該ダイヤモンド単結晶基板3を、主たる面の面方位が揃った複数個のダイヤモンド単結晶体から構成し、これら複数個のダイヤモンド単結晶体を該ダイヤモンド多結晶層4によって接合してダイヤモンド複合基板2としてもよい。また、該ダイヤモンド単結晶を種結晶として、その表面に気相合成ダイヤモンド単結晶を設けても良い。

Description

明細: 賓合基板及びその製造方法 技術分野
本発明はダイヤモンド複合基板及びその製造方法に関し、 特に半導体材料、 電子部品、 光学部品などに用いられる大面積で高品質なダイヤモンド複合基 板及びその製造法に関するものである。 背景技術
ダイヤモンドは高熱伝導率、 高い電子 ·正孔移動度、 高い絶縁破壌電界強 度、 低誘電損失、 そして広いバンドギャップといった、 半導体材料として他 に類を見ない、 優れた特性を数多く備えている。 特に近年では、 広いバンド ギヤップを活かした紫外発光素子や、 優れた高周波特性を持つ電界効果トラ ンジスタなどが開発されつつある。
主として高温高圧合成法により作製される人工ダイヤモンド単結晶は、 そ の優れた結晶性と、 金属とは異なるフオノンによる熱伝導機構により、 常温 で銅の 5倍以上の熱伝導率を有する。 これを利用して、 高性能、 高信頼性が 要求される放熱基板として応用されている。 これに対し、 主として気相合成 法で得られるダイャモンド多結晶膜では、 粒界におけるフオノンの散乱の影 響を受けるため、 熱伝導率はダイャモンド単結晶の半分程度となる。
一方、 ダイヤモンドを半導体として応用するためには、 大型のダイヤモン ド単結晶基板が必要となる。 高温高圧法で得られるダイャモンド単結晶は、 天然産の単結晶と比較しても、 結晶性の良い単結晶が得られるので、 半導体 用基板としても有用である。 しかし、 高温高圧法で使用する超高圧合成装置 は、 装置サイズが大きく高価であるため、 単結晶の製造コストの低減には限 界がある。 また、 得られる単結晶サイズも装置サイズに比例するため、 実際 上は 1 c m級のサイズが限界である。 そこで、 大面積なダイヤモンド単結晶 基板を得るための方法として、 例えば特開平 3— 7 5 2 9 8号公報 (特許文 献 1 ) では、 実質的に相互に同じ結晶方位を持つ、 複数の高圧相物質を配置 して気相成長の核となる基板を形成し、 その上に単結晶を気相合成法で成長 させ、 一体となつた大型単結晶を得る方法が開示されている。
また、 特開平 2— 5 1 4 1 3号公報には、 間隔をおいたダイヤモンド表面 を少なくとも二つ設け、 次いで、 化学気相成長 ( C V D) 法によってダイヤ モンド表面間にダイヤモンド又はダイヤモンド様架橋を成長させることによ つてダイヤモンドとダイャモンドとを接合する方法が記載されている。 しか しながら、 このような二つの面間に架橋したダイヤモンド接合体は、 表面を 研磨すると接合界面に研磨応力が集中して接合部分が分離してしまうという 問題がある。
ダイヤモンド単結晶を放熱基板として用いる際に問題となるのが、 発熱体 とダイヤモンド間の熱膨張係数差に起因する、 熱歪みや割れである。 ダイヤ モンドは最も熱膨張係数の小さい物質の一つであり、 一方で S iや G a A s に代表される半導体材料ではダイヤモンドの 1 . 5から数倍程度の熱膨張係 数を有するので、 両者を接合するためにロウ付けなどで加熱すると、 冷却時 に変形や割れが生じる。 特に、 ダイヤモンド単結晶はヤング率が大きく変形 しにくいため、 逆に靱性が低く脆い材料でもある。 すなわち、 ダイヤモンド 単結晶に力が加わると { 1 1 1 } 面に沿って劈開しやすい欠点を有する。 こ のため、 単結晶と比較して靱性が高いダイヤモンド多結晶を利用した放熱基 板も実用化されている。 し力、し、 前述のようにダイヤモンド多結晶膜単独で は単結晶ほどの熱伝導性を稼ぐことはできない。
次に、 前記特許文献 1による大型単結晶を得る方法を用いた際に生じる課 題に関して、 本発明者等は同方法を実施した際、 次の問題が生じることを発 見した。 すなわち、 気相成長の核となる複数枚からなる単結晶基板は、 通常 では完全に同一の成長面の面方位を持たず、 それぞれは若干異なった面方位 を持つことになる。 ここから単結晶気相成長を行って単結晶を一体化させる と、 その接合部分は小傾角粒界と呼ばれる、 角度の異なった成長界面、 すな わち広義の欠陥を有することになり、 これは単結晶成長を継続しても基本的 に消失しない。
本発明者らは、 この小傾角粒界近傍をラマン散乱分光装置で詳細に観察し た結果、 通常のダイヤモンドピークとは異なるピークシフトを計測した。 具 体的には、 1 3 3 2 c m—1付近の通常のダイヤモンド単結晶ピークではなく、 単結晶接続界面の近傍にはそれより数 c m一1高波数あるいは低波数にシフト する微小領域が存在することが分かった。 さらにそのまま単結晶成長を継続 すると、 膜厚が概ね 1 0 0 / mを超えたあたりから、 単結晶接続界面を境に、 気相成長中に単結晶が分解することがわかった。 これら 2つの事象から、 前 記先行例により大型単結晶を形成しても、 小傾角粒界近傍に応力が蓄積され、 ある程度の膜厚以上では界面を境に分解してしまう問題が認められた。 発明の開示
本発明は、 前記従来技術における課題を克服すべくなされたもので、 半導 体材料、 電子部品、 光学部品などに用いられる、 高靱性でかつ、 大面積-高 品質なダイヤモンド基板及びその製造法を提供することを目的とする。
前記課題を解決するため、 本発明は次の (1) 〜 (23) の態様を有する c
(1) ダイヤモンド単結晶基板と、 その上に気相合成法によって積層された ダイヤモンド多結晶膜とから構成されるダイヤモンド複合基板。
(2) 前記ダイヤモンド単結晶基板の最も面積の大きい主たる面の面方位と {100} 面の面方位との差が 5度以内であり、 該主たる面に平行な対面に. 前記ダイヤモンド多結晶膜が積層されていることを特徴とする、 上記 (1) に記載のダイヤモンド複合基板。
(3) 前記主たる面が {100} 面であることを特徴とする上記 (2) に記 載のダイヤモンド複合基板。
(4) 前記ダイヤモンド単結晶基板の板厚である、 主たる面間の距離が 0. lmm以上 lmm以下であることを特徴とする、 上記 (1) 〜 (3) のいず れかに記載のダイャモンド複合基板。
( 5 ) 前記ダイャモンド単結晶基板上に積層されるダイヤモンド多結晶膜の 厚さが 0. lmm以上 lmm以下であることを特徴とする、 上記 (1) 〜 (4) のいずれかに記載のダイヤモンド複合基板。
(6) 前記ダイヤモンド単結晶基板の板厚と、 ダイヤモンド多結晶膜の厚さ の比率が、 1 : 1〜1 : 4の範囲であることを特徴とする、 上記 (1) 〜
( 5 ) のいずれかに記載のダイャモンド複合基板。
(7) 前記ダイヤモンド単結晶基板が、 最も面積の大きい主たる面の面方位 が揃った複数個のダイヤモンド単結晶体から構成され、 該ダイヤモンド単結 晶体上に気相合成法によつて形成されたダイャモンド多結晶膜によってこれ ら複数個のダイャモンド単結晶体が接合されていることを特徴とする、 上記 (1) 〜 (6) のいずれかに記載のダイヤモンド複合基板。
(8) 前記複数個のダイヤモンド単結晶体のそれぞれの主たる面に垂直な軸 に対する回転方向の方位の差が.2度以内であり、 かつ、 それぞれの主たる面 の面方位と { 100} 面の面方位との差が 5度以内であることを特徴とする. 上記 (1) 〜 (7) のいずれかに記載のダイヤモンド複合基板。
(9) 前記複数個のダイヤモンド単結晶体の主たる面の面方位が {100} であることを特徴とする上記 (8) に記載のダイヤモンド複合基板。 ( 1 0) 前記複数個のダイャモンド単結晶体の、 各々の板厚の差が 1 0 μ m 以内であることを特徴とする、 上記 (7) 〜 (9) のいずれかに記載のダイ ャモンド複合基板。
( 1 1) 前記複数個のダイヤモンド単結晶体間に生じる隙間が 5 0 0 μηι 以下であることを特徴とする、 上記 (7) 〜 (1 0) のいずれかに記載のダ ィャモンド複合基板。
( 1 2) 各ダイヤモンド単結晶体のそれぞれの主たる面に垂直な軸に対す る回転方向の方位の差が 2度以内であり、 かつ、 それぞれの主たる面の面方 位と { 1 0 0 } 面の面方位との差が 5度以内である複数個のダイヤモンド単 結晶体からダイャモンド単結晶基板が構成され、 該複数個のダイャモンド単 結晶体のそれぞれの主たる面に平行な対面上に気相合成法によつて形成され たダイャモンド多結晶膜によつて各ダイャモンド単結晶体が接合されており、 さらに、 該主たる面上は、 ダイャモンド単結晶基板を種結晶として成長した 気相合成ダイヤモンド単結晶で全面一体化されてなるダイヤモンド複合基板。
( 1 3) 前記複数個のダイヤモンド単結晶体の主たる面の面方位が { 1 0 0 } であることを特徴とする上記 (1 2) に記載のダイヤモンド複合基板。 ( 1 4) 前記複数個のダイヤモンド単結晶基板の板厚である、 主たる面間 の距離が 0. 1mm以上 l mm以下であることを特徴とする、 上記 (1 2) または (1 3) に記載のダイヤモンド複合基板。
( 1 5) 前記ダイャモンド単結晶体上に気相合成されるダイヤモンド多結 晶膜の厚さは 0. 1 mm以上 l mm以下であることを特徴とする、 上記 (1 2) 〜 (1 4) のいずれかに記載のダイヤモンド複合基板。
( 1 6) 前記ダイャモンド単結晶体の板厚と、 ダイャモンド多結晶膜の厚 さの比率は、 1 : 1〜1 : 4の範囲であることを特徴とする、 上記 (1 2) 〜 (1 5) のいずれかに記載のダイヤモンド複合基板。
( 1 7) 前記複数個のダイヤモンド単結晶体間に生じる隙間が 5 0 0 μτη 以下であることを特徴とする、 上記 (1 2) 〜 (1 6) のいずれかに記載の ダイヤモンド複合基板。
(1 8) 前記複数個のダイャモンド単結晶体の、 それぞれの板厚の差は 1 0 m以内であることを特徴とする、 上記 (1 2) 〜 (1 7) のいずれかに 記載のダイャモンド複合基板。
( 1 9) 前記ダイヤモンド多結晶膜の表面が研磨されていることを特徴と する、 上記 (1 2) 〜 (1 8) に記載のダイヤモンド複合基板。
(2 0) 前記ダイャモンド多結晶膜の表面粗さが、 R m a Xで◦ . 1 μ m 以下であることを特徴とする、 上記 (12) 〜 (19) のいずれかに記載の
(21) 面方位の揃った複数個のダイヤモンド単結晶体を並べて配置し、 気相合成法により該単結晶体上にダイヤモンド多結晶膜を気相合成し、 ダイ ャモンド多結晶膜により複数個のダイヤモンド単結晶体を接合することを特 徴とする、 ダイヤモンド複合基板の製造方法。
(22) 前記複数個のダイャモンド単結晶体のそれぞれの最も面積の大き い主たる面に垂直な軸に対する回転方向の方位のずれが 2度以内であり、 か つ、 それぞれの主たる面の面方位と {100} 面の面方位との差が 5度以内 であることを特徴とする、 上記 (21) に記載のダイヤモンド複合基板の製 造方法。
(23) 前記ダイヤモンド単結晶体を構成する面における最も面積の大き い主たる面が {100} 面であることを特徴とする、 上記 (22) に記載の ダイャモンド複合基板の製造方法。
(24) 前記ダイヤモンド単結晶体の板厚は 0. 1mm以上 lmm以下で あることを特徴とする、 上記 (21) 〜 (23) のいずれかに記載のダイヤ モンド複合基板の製造方法。
(25) 前記ダイヤモンド単結晶体上に気相合成されるダイヤモンド多結 晶膜の厚さは 0. 1mm以上 lmm以下であることを特徴とする、 上記 (2 1) 〜 (24) のいずれかに記載のダイヤモンド複合基板の製造方法。 ·
(26) 前記ダイャモンド単結晶体の板厚と、 ダイャモンド多結晶膜の厚 さの比率は、 1 : 1〜1 : 4の範囲であることを特徴とする、 上記 (21) 〜 (25) のいずれかに記載のダイヤモンド複合基板の製造方法。
(27) 前記複数個のダイャモンド単結晶体の、 それぞれの板厚の差は 1 0 πι以内であることを特徴とする、 上記 (21) - (26) のいずれかに 記載のダイャモンド複合基板の製造方法。
(28) 前記複数個のダイヤモンド単結晶体間に生じる隙間は 50 Ομΐη 以下であることを特徴とする、 上記 (21) 〜 (27) のいずれかに記載の ダイャモンド複合基板の製造方法。 上記の本発明の各態様 (1) 〜 (28) について説明する。
なお、 本明細書においては、 ダイヤモンド単結晶基板という用語は、 単一 の単結晶からなる基板を意味する場合だけでなく、 複数個の単結晶体から構 成される基板も意味する場合がある。 く態様 (1 ) について >
高熱伝導性を有するダイャモンド単結晶基板と、 該単結晶基板上に気相合 成法によつて形成した高靱性を有するダイャモンド多結晶膜とを積層させる ことで、 高熱伝導 ·高靱性ダイヤモンド複合基板として利用できる。 このダ ィャモンド単結晶は、 天然産ダイヤモンド単結晶、 高温高圧法で得られる人 ェダイヤモンド単結晶、 あるいは気相合成ダイヤモンド単結晶いずれであつ てもよいし、 あるいはこれ以外の製法によるダイャモンド単結晶であっても よい。
<態様 ( 2 ) 、 ( 3 ) について〉
ダイヤモンド複合基板を 用する際、 ダイヤモンド多結晶膜を積層させた 反対側の単結晶面が、 半導体応用や、 放熱基板としての接続面など、 実際の 応用に用いられることになる。 その場合、 単結晶表面は相対的に軟質で加工 の容易な { 1 0 0 } 面で構成された方が、 応用が容易となる。
また、 本発明のダイヤモンド複合基板は、 ダイヤモンド単結晶の主たる面 の面方位のずれが、 { 1 0 0 } から 5度以内であることを特徴としてもよい c 応用を考えた際、 単結晶の主たる面は前記の通り、 { 1 0 0 } が望ましいが、 本発明者らは、 主たる面の方位のずれに関して詳細に調査した結果、 { 1 0 0 } 面からのずれの範囲が 5度以内であれば、 その後の半導体応用や研磨カロ ェに問題を生じないことを明らカ 4こした。
<態様 (4 ) 〜 (6 ) について〉
また、 本発明のダイャモンド複合基板は、 ダイャモンド単結晶の板厚が 0 . 1 mm以上 1 mm以下であり、 ダイャモンド単結晶上に積層されるダイャモ ンド多結晶膜の厚さが 0 . 1 mm以上 1 mm以下であり、 単結晶の板厚とダ ィャモンド多結晶膜の厚さの比率が、 1 : 1〜 1 : 4の範囲であることを特 徴としてもよい。 主として放熱基板への応用を企図した場合、 ダイヤモンド 複合基板の熱伝導性と靱性とは相反する関係にあるので、 単結晶の板厚と多 結晶層の厚み、 およびその比率には最適範囲が存在する。 本発明者らは、 こ れら数値を前記範囲内に収めることによって、 十分熱伝導性を維持したまま 高靱性を達成できることを明らかにした。
<態様 (7 ) について > また、 本発明のダイヤモンド複合基板は、 ダイヤモンド単結晶基板が主た る面の面方位が揃つた複数個のダイャモンド単結晶体から構成され、 これら 複数個のダイヤモンド単結晶体が該単結晶体の上に気相合成法によって形成 されたダイヤモンド多結晶膜で接合されていることを特徴としてもよい。 前 述のように、 複数個の単結晶体からなる単結晶基板から直接単結晶を気相成 長させると、 その界面の応力集中により基板が分解する場合がある。 ところ 1 複数個の単結晶体を多結晶膜で接合すると、 このような分解は発生せず、 実質的に一体となつた大型の複合基板とすることができる。 ダイャモンド多 結晶膜は、 それぞれの単結晶体側面には必ずしも成膜される必要はなく、 主 たる面上に形成された多結晶で接合されていればよ 、。
<態様 (8 ) 、 ( 9 ) について >
また、 本発明のダイヤモンド複合基板は、 ダイヤモンド単結晶基板を構成 する複数個のダイャモンド単結晶体のそれぞれの主たる面に垂直な軸に対す る回転方向の方位のずれは 2度以内でかつ、 主たる面が { 1 0 0 } であるか、 またはダイヤモンド単結晶体の主たる面の面方位のずれが、 それぞれ { 1 0 0 } から 5度以内であることを特徴としてもよい。 単結晶体を複数個用意し た場合、 面方位のずれは、 垂直方向と回転方向の 2次元存在する。 多結晶膜 でそれぞれが接合され、 一体として応用を目指す場合、 単結晶面の加工性を はじめとする物性がそれぞれの基板で一致する必要があり、 先の面方位のず れには許容範囲が存在する。 本発明者らは、 単結晶体それぞれの面方位のず れが前記範囲に収めることにより、 複合基板としての物性を安定化できるこ とを明ら力 4こした。 く態様 (1 0 ) 、 (1 1 ) について >
また、 本発明のダイヤモンド複合基板は、 ダイヤモンド単結晶基板を構成 する複数個のダイヤモンド単結晶体のそれぞれの板厚の差が 1 0 At m以内で あり、 ダイヤモンド単結晶体間に生じる隙間は 5 0 0 μ m以下であることを 特徴としてもよい。 複数のダイヤモンド単結晶体が多結晶膜により一体化し た状態で応用する場合、 単結晶体間の板厚の差、 及び隙間は小さければ小さ いほど望ましい。 一方、 気相合成法で一体化する際の単結晶体間の隙間は、 小さすぎると配置が難しく、 また複合基板の大型化にも不利な問題があるた め、 実際上は 1 5 0 i m以上ある方が望ましい。 本発明者らは、 種々の応用 例を検討した結果、 これらの値を前記数値範囲に収めることにより、 ダイヤ モンド複合基板として実用上問題のないことを明らかにした。 く態様 (1 2 ) 〜 (2 0 ) について >
本発明のダイャモンド複合基板は、 各ダイャモンド単結晶体の主たる面の 面方位が { 1 0 0 } であるかまたはそれぞれの主たる面の面方位と { 1 0 0 } 面の面方位との差が 5度以內である複数個のダイヤモンド単結晶体から ダイヤモンド単結晶基板が構成され、 該ダイヤモンド単結晶体のそれぞれの 主たる面に平行な対面上に構成されたダイヤモンド多結晶膜でダイヤモンド 単結晶体が相互に接合され、 さらに、 主たる面上は、 種結晶のダイヤモンド 単結晶体から成長した気相合成ダイヤモンド単結晶で全面一体化されている ことを特徴とする。 前述のように、 複数個のダイヤモンド単結晶から、 直接、 単結晶を気相成長させて接合すると、 応力により分解する場合がある。 そこ で、 片面を多結晶膜で接合し、 もう片面を気相成長した単結晶で一体とした 構造であれば、 この様な分解の問題とは無縁となる。 この、 一体化した気相 合成ダイヤモンド単結晶は、 大型の単結晶基板として応用可能である。 そし て、 ダイヤモンド単結晶体の板厚は 0 . 1 mm以上 l mm以下であり、 ダイ ャモンド単結晶体上に気相合成されるダイャモンド多結晶膜の厚さは 0 . 1 mm以上 1 mm以下であり、 ダイヤモンド単結晶体の板厚と、 ダイヤモンド 多結晶膜の厚さの比率は、 1 : 1〜1 : 4の範囲であることが望ましい。 さ らに、 複数個から構成されるダイヤモンド単結晶体の、 板厚の差は 1 0 z in 以内であり、 単結晶体間に生じる隙間は 5 0 0 i m以下であることが望まし い。 単結晶体、 多結晶層のサイズ及び配置を前記範囲内に収めることで、 本 発明で目的とする大面積で高品質なダイヤモンド基板として利用できる。 さ らにこの多結晶膜面は研磨され、 その表面粗さが R m a Xで 0 . 1 μ m以下 であれば、 その後の応用の観点からより好適となる。
<態様 (2 1 ) 〜 (2 3 ) について >
本発明のダイヤモンド複合基板の製造方法は、 面方位の揃った複数個のダ ィャモンド単結晶体を並べて配置し、 気相合成法により前記単結晶体上にダ ィャモンド多結晶膜を気相合成し、 生成したダイヤモンド多結晶膜により複 数個のダイヤモンド単結晶体を接合することを特徴とする。 そして、 複数枚 からなるダイャモンド単結晶基板上に多結晶膜を形成して該多結晶膜で単結 晶体を接合するための製造方法において、 面方位の揃ったダイヤモンド単結 晶体を用意し、 その上に気相合成法で多結晶膜を成長させる方法を採用する ことにより、 得られたダイャモンド複合基板は大面積高品質ダイャモンド複 合基板として応用できる。 さらに、 ダイヤモンド単結晶基板を構成する面に 於いて、 最も面積の大きい主たる面は { 1 0 0 } 面であり、 それぞれの単結 晶体の、 主たる面に垂直な軸に対する回転方向の方位のずれは 2度以内でか つ、 主たる面の面方位のずれが、 { 1 0 0 } から 5度以内である方が望まし レ、。
<態様 ( 2 4 ) 〜 (2 8 ) について〉
ダイャモンド単結晶体の板厚は 0 · 1 mm以上 1 mm以下であり、 ダイャ モンド単結晶体上に気相合成されるダイャモンド多結晶膜の厚さは 0 . 1 m m以上 1 mm以下であり、 ダイャモンド単結晶体の板厚と、 ダイャモンド多 結晶膜の厚さの比率は、 1 : 1〜1 : 4の範囲であることが望ましい。 さら に、 複数個から構成されるダイャモンド単結晶体の、 板厚の差は 1 0 /i m以 内であり、 単結晶体間に生じる隙間は 5 0 0 μ m以下であることが望ましい。 単結晶体、 多結晶層の条件を前記範囲に収めることで、 本発明で目的とする 大面積で高品質なダイヤモンド基板の作製が容易になる。 図面の簡単な説明
図 1は、 本発明に使用したダイヤモンド単結晶基板の概略図である。
図 2は、 本発明のダイャモンド複合基板を使用した熱伝導試験の概略図で ある。
図 3は、 本発明のダイャモンド複合基板製造のための、 ダイャモンド単結 晶基板の配置図である。
図 4は、 本発明で製造した、 大型ダイヤモンド複合基板の概略図である。 図 5は、 本発明のダイヤモンド複合基板を利用した、 大型ダイヤモンド単 結晶の作製例である。 発明を実施するための最良の形態
以下に、 本発明を実施例に基づき詳細に説明する。 本発明は以下の実施例 によってその範囲を何ら限定されるものではない。 実施例
本実施例では、 単一の単結晶からなるダイヤモンド単結晶基板上にダイヤ モンド多結晶膜を積層させたダイヤモンド複合基板の構成例について説明す る。 まず、 図 1に示す、 板厚 0. 5mm、 板厚方向に直交する 2辺の長さが 共に 10mmで、 6面の面方位が全て { 1 00} である、 立方体ダイヤモン ド単結晶基板を用意した。 この単結晶基板は、 高温高圧合成法で製造された、 不純物として窒素を含むいわゆる I b型と呼ばれる単結晶原石から切り出さ れたものである。 最も面積の大きい主たる面の { 100} からの面方位のず れ (図 1における角度 a ) を X線ラウエ法で計測した結果、 1. 9度であつ た。 このダイヤモンド単結晶基板上に、 公知のマイクロ波プラズマ CVD法
'多結晶膜を成膜した。 多結晶膜成長条件は表 1の通りである c g 1. 多結晶膜成長条件
Figure imgf000012_0001
成長後の成膜領域には、 単結晶層は存在せず、 単結晶である基板領域と多 結晶膜の成膜領域とに明確に分かれていた。 多結晶層の厚みは 0. 5 mmで あった。 この基板 (基板 1とする) について、 次の方法で靱性と熱伝導性の 評価を行った。 まず、 靱 1"生については、 J I S R 1 60 1に準拠した 3点 曲げ抗折試験で評価した。 曲げ方向は単結晶側に引っ張り応力が加わる方向 とした。 評価条件は表 2の通りである。 表 2. 靱性評価条件
Figure imgf000012_0002
測定の結果、 基板 1の抗折カは 1 24 OMP aであった。 次に、 熱伝導性 について、 高出力レーザーダイオード (LD) の放熱基板として基板 1を使 用した時の、 発熱部の冷却効果で評価した。 図 2に熱伝導試験の模式図を示 す。 ダイヤモンド単結晶層 3とダイャモンド多結晶層 4とからなるダイャモ ンド複合基板 2の単結晶面に G aA s層 5からなる LDを口ゥ付けした状態 でレーザー発振し、 レーザー発熱部 6の最大温度を計測した。 表 3 試験の評価条件を示す。 表 3 . 熱伝導性評価条件
Figure imgf000013_0001
測定の結果、 L D発熱部の最高温度は 7 5でで、 レーザー出力も正常であ つた。
次に、 ダイヤモンド単結晶基板単体、 ダイヤモンド多結晶単体、 及ぴダイ ャモンド複合基板の厚さを変更したものについて、 同様の靱性 ·熱伝導性試 験を行った結果を述べる。
表 4はダイヤモンド単結晶基板の構成と試験結果をまとめたものである。 ダイヤモンド単結晶基板の主たる面のサイズはいずれも基板 1と同様の 1 0 mm角で、 面方位は { 1 0 0 } 、 方位のずれを示す は基板 9を除き 2度以 内であった。 また、 多結晶膜の成膜条件はいずれも表 1と同等とした。 表 4 . 試験結果
Figure imgf000013_0002
表 4における、 基板 2、 3はそれぞれ、 ダイヤモンド単結晶基板、 ダイヤ モンド多結晶基板であり、 表 4にはこれらについての試験結果を示した。 基 板 2は単結晶単独のため、 熱伝導が向上して発熱部の温度が低下しているが、 抗折カは基板 1の複合基板に比べ約 1 Z 5まで低下している。 このため、 靱 性の要求される用途には使用が困難である。 基板 3は多結晶単独のため、 抗 折力は基板 1より向上しているものの、 熱伝導性が低下し発熱部温度が上昇 している。 この結果、 レーザー出力の低下が見られた。
次に、 基板 :〜 6は、 単結晶と多結晶膜の厚さ (比率) を変更したもので あり、 その性能を比較したものである。 既に述べたように、 ダイヤモンド複 合基板の靱性と熱伝導性は相反する関係にあり、 表 4からもそれが明確にな つた。 すなわち、 基板 5および 6では抗折カ又はレーザー出力 (発熱部温 度) の悪化が顕著となり、 ダイヤ基板の優位性が低下することがわかった。 さらに、 基板 7および 8については、 基板厚さを変更した時の性能変化を比 較した。
基板 7では単結晶、 多結晶膜とも好ましい値よりは薄く、 この結果、 良好 な放熱性は得られるものの抗折力が低下し、 高靱性が必要となる用途には使 用できない。 逆に基板 8では単結晶、 多結晶膜とも好ましい値より厚く、 抗 折力は 揮されるものの熱抵抗が増大する。 また、 必要以上に厚いため製造 コストが増加する欠点もある。 最後に基板 9については単結晶の主面が { 1 0 0 } から 5度以上ずれた場合の影響を調査した。 この時、 基板 1に比べ若 干抗折カが低下したものの熱伝導性も含めて問題なレ、値であった。 しかし、 別途行った研磨加工試験において、 単結晶面の研磨速度が基板 1の 2 Z 3ま で低下し、 加工性の点で問題があった。
以上のように、 基板 1に代表されるダイヤモンド単結晶 ·多結晶膜複合基 板は、 高靱性と高熱伝導性を兼ね備えた放熱基板として有用であることが示 された。 実施例 2
本実施例では、 複数個の面方位の揃ったダイャモンド単結晶体上にダイャ モンド多結晶膜を積層してこれらを一体に接合した例と、 さらにその後、 単 結晶面にダイヤモンド単結晶を気相成長した例について説明する。
まず、 高温高圧合成法で得られた I b型ダイヤモンド単結晶体を 1 6枚用 意した。 単結晶体のサイズは縦横 4 mm、 厚さ 0 . 5 mmで主面は研磨済み である。 主面 ·側面の面方位はいずれも { 1 0 0 } で、 主面の方位のずれを 示す αは 2度以内であった。 これらを、 図 3に示すように側面が一致するよ うに基板ホルダ上に配置した。 主面に垂直な軸に対する回転方向の方位ずれ (図 3における ;3、 図 3の下図は図 3の上図の円で囲った部分を上から見た 図である。 ) は、 隣り合う全ての単結晶体それぞれにおいて 1度以内であつ た。 また、 板厚の差は最大 1 Ο μ ηιであり、 単結晶体間の最大の隙間は 9 0 μ mであつに。
これら複数個の単結晶体からなるダイヤモンド単結晶基板 1上に、 マイク 口波プラズマ C V D法により、 実施例 1の表 1と同条件でダイャモンド多結 晶膜 4を成膜した。 成膜の結果、 図 4に示すような、 多結晶層 4の厚さが 0 5 mmで、 1 6枚の単結晶が多結晶膜により一体に接合された、 ダイヤモン ド複合基板 2 (これを基板 1 0とする) が得られた。
この後、 この基板 1 0の多結晶面を研磨し、 表面粗さが R m a Xで 0 . 0 9 μ ηιになるまで平滑ィヒした。 そして、 単結晶面に公知のマイクロ波プラズ マ C VD法で単結晶を気相成長させた。 成長条件を表 5に示す。 表 5 . 単結晶成長条件
Figure imgf000015_0001
個別の単結晶体から成長した気相単結晶膜は成長後には 0 . 5 mm厚とな り、 それぞれが一体に接合されて一枚の大型単結晶基板となった (図 5 ) 。 その後、 多結晶膜および複数枚からなる単結晶基板部分を研磨により取り除 くと、 1 6 mm角で 0 . 5 mm厚の大型気相合成ダイャモンド単結晶が得ら れた。
基板 1 0の他に、 複合基板の試料として、 単結晶体の面方位のずれ Q;、 β を変化させたもの、 単結晶体、 多結晶膜の厚みを変えたもの、 単結晶体間の 板厚の差を変えたもの、 単結晶体間の間隔を変えたもの、 そして多結晶膜面 の表面粗さ (研磨有無) を変えたものを作製した (基板 1 1〜2 0 ) 。 表 6 にこれらの作製条件をまとめた。 表 6
基板 角度 α 角度 単結晶 多結晶 多結晶面 番号 (deg) (deg) 厚さ 厚さ 板厚差 基板間 面粗さ 間隔 Rmax
(
1.8 0.9 0.5 0.5 10 90 0.09
5.3 0.6 0.5 0.5 10 85 0.09
1.9 2.2 0.5 0.5 10 94 0.09
2.7 0.8 0.09 0.5 o o 87 0.09
3.9 0.9 0.5 0.09 10 98 (研磨不可)
1.0 1.1 U.O U.O id Kwc ^ BJ )
1.7 0.8 0.5 0.5 9 150 0.09
4.1 1.9 0.5 0.5 9 490 0.09
(一部割れあり)
2.3 0.9 0.5 0.5 8 510 (研磨不可)
3.5 1.5 0.5 0.5 8 89 計測不可
(未研磨)
2.6 0.8 0.5 0.5 9 91 0.15 複合基板 1 1 2 0について、 その単結晶面に基板 1 0と同様の条件で気 相合成ダイヤモンド単結晶を作製した。 基板 1 1および 1 2については、 異 なる単結晶体の面方位ずれが大きく、 気相単結晶の接続界面で異常成長が多 発して、 完全に一体となる単結晶成長が実現できなかった。
次に、 基板 1 3に関しては、 単結晶体の厚さが薄いために、 初期の多結晶 層を成膜した時点で接合された複合基板が反る現象が認められた。 このため、 その後の単結晶気相成長においても一体となる気相成長が実現できなかった 基板 1 4に関しては、 多結晶層が薄く、 多結晶層の研磨の時点で割れが発 生した。 また同等の基板にて多結晶層の研磨を実施せずに単結晶を気相成長 させると応力集中のため、 気相単結晶が割れる現象が認められた。
次に単結晶体の板厚差の大きい基板 1 5については、 多結晶層成膜の時点 でも多結晶層側に段差が存在した。 このため、 多結晶面の研磨加工時に応力 集中のため割れが発生した。 また、 同等の基板にて研磨を行わずに基板を反 転し、 単結晶面に単結晶気相成長すると、 段差による温度分布のため、 一体 の気相成長はできなかった。
基板間間隔のやや大きい基板 1 6については、 基板 1 0と同様のダイヤモ ンド複合基板とすることができた。 さらに、 基板 1 6の単結晶体から単結晶 を気相成長すると、 間隔が大きい分だけ基板 1 0の場合よりも大型化し、 1 6 . 5 mm角で 0 . 5 mm厚の大型気相合成ダイヤモンド単結晶が得られた c さらに基板間間隔の大きい基板 1 7については、 多結晶層の研磨時に界面 への応力集中により一部に割れが発生したが、 分解はせずに研磨できた。 さ らに、 より間隔の大きい基板 1 8については、 多結晶層の研磨時に割れて分 解し研磨できなかった。 また、 基板 1 8と同等の基板にて研磨を行わずに単 結晶面に単結晶気相成長させると、 単結晶基板間の隙間から異常成長が発生 し、 全面一体となる単結晶気相成長は実現できなかった。
最後に、 多結晶面の研磨を行わなかった基板 1 9、 および多結晶面の粗い 基板 2 0では、 単結晶気相成長時に単結晶体ごとに温度分布があり、 全面一 体の気相成長ができなかった。
以上のように、 基板 1 0に代表されるような方法で製造したダイヤモンド 複合基板は、 大面積で結晶性のよいダイヤモンド単結晶基板を得るための種 基板として有用であることが示された。 産業上の利用可能性
以上説明したように、 本発明に関するダイヤモンド複合基板およびその製 造方法を用いれば、 高熱伝導、 高靱性を兼ね備えた放熱基板や、 高品質で大 面積のダイヤモンド単結晶基板として半導体材料、 電子部品、 光学部品など に利用可能である。 ';

Claims

1 . ダイヤモンド単結晶基板と、 その上に気相合成法によって積層された ダイャモンド多結晶膜とから構成されるダイャモンド複合碁板。
2 . 前記ダイヤモンド単結晶基板の最も面積の大きい主たる面の面方位と { 1 0 0 } 面の面方位との差が 5度以内であり、 該主たる面に平行な対面に. 前記ダイヤモンド多結晶膜が積層されていることを特徴とする、 請求の範囲 1に記載のダイヤモンド複合基板。
3 . 前記主たる面が { 1 0 0 } 面であることを特徴とする請求の範囲 2に 記載のダイャモンド複合基板。
4 . 前記ダイヤモンド単結晶基板の板厚である、 主たる面間の距離が 0 .
1 mm以上 1 mm以下であることを特徴とする、 請求の範囲 1〜 3のいずれ かに記載のダイヤモンド複合基板。
5 . 前記ダイャモンド単結晶基板上に積層されるダイャモンド多結晶膜の 厚さが 0 . 1 mm以上 l mm以下であることを特徴とする、 請求の範囲 1〜
4のいずれかに記載のダイャモンド複合基板。
6 . 前記ダイャモンド単結晶基板の板厚と、 ダイャモンド多結晶膜の厚さ の比率が、 1 : 1〜1 : 4の範囲であることを特徴とする、 請求の範囲 1〜 5のいずれかに記載のダイヤモンド複合基板。
7 . 前記ダイヤモンド単結晶基板が、 最も面積の大きい主たる面の面方位 が揃った複数個のダイヤモンド単結晶体から構成され、 該ダイヤモンド単結 晶体上に気相合成法によつて形成されたダイャモンド多結晶膜によってこれ ら複数個のダイャモンド単結晶体が接合されていることを特徴とする、 請求 の範囲 1〜 6のいずれかに記載のダイヤモンド複合基板。
8 . 前記複数個のダイヤモンド単結晶体のそれぞれの主たる面に垂直な軸 に対する回転方向の方位の差が 2度以内であり、 かつ、 それぞれの主たる面 の面方位と { 1 0 0 } 面の面方位との差が 5度以内であることを特徴とする. 請求の範囲 1〜 7のいずれかに記載のダイャモンド複合基板。
9 . 前記複数個のダイャモンド単結晶体の主たる面の面方位が { 1 0 0 } であることを特徴とする請求の範囲 8に記載のダイャモンド複合基板。
1 0 . 前記複数個のダイヤモンド単結晶体の、 各々の板厚の差が 1 0 /z m 以内であることを特徴とする、 請求の範囲 7〜 9のいずれかに記載のダイヤ モンド複合基板。
1 1 . 前記複数個のダイヤモンド単結晶体間に生じる隙間が 5 0 0 m以 下であることを特徴とする、 請求の範囲 7〜1◦のいずれかに記載のダイヤ モンド複合基板。
1 2 . 各ダイヤモンド単結晶体のそれぞれの主たる面に垂直な軸に対する 回転方向の方位の差が 2度以内であり、 かつ、 それぞれの主たる面の面方位 と { 1 0 0 } 面の面方位との差が 5度以内である複数個のダイヤモンド単結 晶体からダイヤモンド単結晶基板が構成され、 該複数個のダイヤモンド単結 晶体のそれぞれの主たる面に平行な対面上に気相合成法によつて形成された ダイヤモンド多結晶膜によって各ダイヤモンド単結晶体が接合されており、 さらに、 該主たる面上は、 ダイャモンド単結晶基板を種結晶として成長した 気相合成ダイヤモンド単結晶で全面一体化されてなるダイヤモンド複合基板。
1 3 . 前記複数個のダイャモンド単結晶体の主たる面の面方位が { 1 0 0 } であることを特徴とする請求の範囲 1 2に記載のダイヤモンド複合基板。
1 4 . 前記複数個のダイャモンド単結晶基板の板厚である、 主たる面間の 距離が 0 . . l mm以上 l mm以下であることを特徴とする、 請求の範囲 1 2 または 1 3に記載のダイヤモンド複合基板。
1 5 . 前記ダイヤモンド単結晶体上に気相合成されるダイヤモンド多結晶 膜の厚さは 0 . 1 mm以上 l mm以下であることを特徴とする、 請求の範囲 1 2〜1 4のいずれかに記載のダイヤモンド複合基板。
1 6 . 前記ダイャモンド単結晶体の板厚と、 ダイャモンド多結晶膜の厚さ の比率は、 1 : 1〜1 : 4の範囲であることを特徴とする、 請求の範囲 1 2 〜 1 5のいずれかに記載のダイヤモンド複合基板。
1 7 . 前記複数個のダイャモンド単結晶体間に生じる隙間が 5 0 0 μ m以 下であることを特徴とする、 請求の範囲 1 2〜1 6のいずれかに記載のダイ ャモンド複合基板。
1 8 . 前記複数個のダイャモンド単結晶体の、 それぞれの板厚の差は 1 0 / m以内であることを特徴とする、 請求の範囲 1 2〜1 7のいずれかに記載 のダイャモンド複合基板。
1 9 . 前記ダイヤモンド多結晶膜の表面が研磨されていることを特徴とす る、 請求の範囲 1 2〜1 8に記載のダイヤモンド複合基板。
2 0 . 前記ダイャモンド多結晶膜の表面粗さが、 Rm a xで 0 . 1 /z m以 下であることを特徴とする、 請求の範囲 1 2〜1 9のいずれかに記載のダイ ャモンド複合基板。
2 1 . 面方位の揃った複数個のダイヤモンド単結晶体を並べて配置し、 気 相合成法により該単結晶体上にダイャモンド多結晶膜を気相合成し、 ダイャ モンド多結晶膜により複数個のダイヤモンド単結晶体を接合することを特徴 とする、 ダイヤモンド複合基板の製造方法。
2 2 . 前記複数個のダイヤモンド単結晶体のそれぞれの最も面積の大きい 主たる面に垂直な軸に対する回転方向の方位のずれが 2度以内であり、 かつ、 それぞれの主たる面の面方位と { 1 0 0 } 面の面方位との差が 5度以内であ ることを特徴とする、 請求の範囲 2 1に記載のダイヤモンド複合基板の製造 方法。
2 3 . 前記ダイヤモンド単結晶体を構成する面における最も面積の大きい 主たる面が { 1 0 0 } 面であることを特徴とする、 請求の範囲 2 2に記載の ダイャモンド複合基板の製造方法。
2 4 . 前記ダイャモンド単結晶体の板厚は 0 . 1 mm以上 1 'mm以下であ ることを特徴とする、 請求の範囲 2 1〜2 3のいずれかに記載のダイヤモン ド複合基板の製造方法。
2 5 . 前記ダイヤモンド単結晶体上に気相合成されるダイヤモンド多結晶 膜の厚さは 0 . 1 mm以上 l mm以下であることを特徴とする、 請求の範囲 2 1〜 2 4のいずれかに記載のダイャモンド複合基板の製造方法。
2 6 . 前記ダイャモンド単結晶体の板厚と、 ダイャモンド多結晶膜の厚さ の比率は、 1 : 1〜1 : 4の範囲であることを特徴とする、 請求の範囲 2 1 〜 2 5のいずれかに記載のダイヤモンド複合基板の製造方法。 .
• 2 7 . 前記複数個のダイヤモンド単結晶体の、 それぞれの板厚の差は 1 0 μ κα以内であることを特徴とする、 請求の範囲 2 1〜2 6のいずれかに記載 のダイヤモンド複合基板の製造方法。
2 8 . 前記複数個のダイャモンド単結晶体間に生じる隙間は 5 0 0 μ m以 下であることを特徴とする、 請求の範囲 2 1〜2 7のいずれかに記載のダイ :、複合基板の製造方法。
PCT/JP2004/000532 2003-01-28 2004-01-22 ダイヤモンド複合基板及びその製造方法 WO2004067812A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04704342A EP1522611B1 (en) 2003-01-28 2004-01-22 Diamond composite substrate
JP2005504682A JP5160032B2 (ja) 2003-01-28 2004-01-22 ダイヤモンド複合基板及びその製造方法
US10/510,848 US7892356B2 (en) 2003-01-28 2004-01-22 Diamond composite substrate and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-018736 2003-01-28
JP2003018736 2003-01-28

Publications (1)

Publication Number Publication Date
WO2004067812A1 true WO2004067812A1 (ja) 2004-08-12

Family

ID=32820590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000532 WO2004067812A1 (ja) 2003-01-28 2004-01-22 ダイヤモンド複合基板及びその製造方法

Country Status (7)

Country Link
US (1) US7892356B2 (ja)
EP (2) EP1522611B1 (ja)
JP (1) JP5160032B2 (ja)
KR (1) KR100988104B1 (ja)
CN (1) CN100567592C (ja)
TW (1) TWI246173B (ja)
WO (1) WO2004067812A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053254A1 (ja) * 2010-10-18 2012-04-26 住友電気工業株式会社 炭化珪素基板を有する複合基板の製造方法
WO2012053252A1 (ja) * 2010-10-18 2012-04-26 住友電気工業株式会社 炭化珪素基板を有する複合基板
JP2012516572A (ja) * 2009-01-30 2012-07-19 エイエムジー・アイデアルキャスト・ソーラー・コーポレーション シード層及びシード層の製造方法
JP2013053051A (ja) * 2011-09-06 2013-03-21 Sumitomo Electric Ind Ltd ダイヤモンド複合体およびそれから分離した単結晶ダイヤモンド、及びダイヤモンド複合体の製造方法
JP2016050139A (ja) * 2014-08-29 2016-04-11 国立大学法人電気通信大学 単結晶ダイヤモンドの製造方法、単結晶ダイヤモンド、単結晶ダイヤモンド基板の製造方法、単結晶ダイヤモンド基板及び半導体デバイス
RU2705518C1 (ru) * 2018-12-27 2019-11-07 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Способ сращивания диэлектрических пластин под действием сильного электрического поля

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120014017A (ko) * 2009-05-11 2012-02-15 스미토모덴키고교가부시키가이샤 탄화규소 기판, 반도체 장치 및 탄화규소 기판의 제조 방법
GB201000768D0 (en) * 2010-01-18 2010-03-03 Element Six Ltd CVD single crystal diamond material
GB201107736D0 (en) 2011-05-10 2011-06-22 Element Six Holdings N V Composite diamond assemblies
US9966161B2 (en) * 2015-09-21 2018-05-08 Uchicago Argonne, Llc Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics
RU2635612C1 (ru) * 2016-11-29 2017-11-14 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН) Способ сращивания изделий из поликристаллических алмазов в СВЧ-плазме
WO2019222458A1 (en) * 2018-05-18 2019-11-21 Board Of Trustees Of Michigan State University Methods for forming large area diamond substrates
CN110857467A (zh) * 2018-08-23 2020-03-03 中国科学院宁波材料技术与工程研究所 一种金刚石复合片及其制备方法
CN109355702B (zh) * 2018-12-19 2022-03-18 长沙新材料产业研究院有限公司 一种用于降低cvd合成金刚石杂质含量的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375298A (ja) * 1989-05-22 1991-03-29 Sumitomo Electric Ind Ltd 高圧相物質単結晶の製造方法
JPH0748198A (ja) * 1993-08-05 1995-02-21 Sumitomo Electric Ind Ltd ダイヤモンドの合成法
JPH11145056A (ja) * 1997-11-07 1999-05-28 Sony Corp 半導体材料

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208397A (ja) 1988-02-16 1989-08-22 Asahi Daiyamondo Kogyo Kk ダイヤモンド被覆体及びこれを用いた切削工具
GB8810113D0 (en) 1988-04-28 1988-06-02 Jones B L Bonded composite
JPH0393695A (ja) 1989-09-07 1991-04-18 Sumitomo Electric Ind Ltd 多結晶ダイヤモンド及びその製造法
JPH0799791B2 (ja) 1992-04-15 1995-10-25 インターナショナル・ビジネス・マシーンズ・コーポレイション 透明基板上の回路ライン接続方法
JPH0672797A (ja) * 1992-08-24 1994-03-15 Sumitomo Electric Ind Ltd 高圧相物質の合成方法
JPH06107494A (ja) 1992-09-24 1994-04-19 Sumitomo Electric Ind Ltd ダイヤモンドの気相成長法
JPH06172089A (ja) * 1992-12-08 1994-06-21 Sumitomo Electric Ind Ltd ダイヤモンドの合成法
US5474021A (en) * 1992-09-24 1995-12-12 Sumitomo Electric Industries, Ltd. Epitaxial growth of diamond from vapor phase
US5442199A (en) * 1993-05-14 1995-08-15 Kobe Steel Usa, Inc. Diamond hetero-junction rectifying element
JPH06345592A (ja) * 1993-06-10 1994-12-20 Kobe Steel Ltd ダイヤモンド薄膜の形成方法
US5804321A (en) * 1993-07-30 1998-09-08 The United States Of America As Represented By The Secretary Of The Navy Diamond brazed to a metal
JPH08241942A (ja) * 1994-12-28 1996-09-17 Toyota Central Res & Dev Lab Inc 薄膜積層体
US5803967A (en) * 1995-05-31 1998-09-08 Kobe Steel Usa Inc. Method of forming diamond devices having textured and highly oriented diamond layers therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375298A (ja) * 1989-05-22 1991-03-29 Sumitomo Electric Ind Ltd 高圧相物質単結晶の製造方法
JPH0748198A (ja) * 1993-08-05 1995-02-21 Sumitomo Electric Ind Ltd ダイヤモンドの合成法
JPH11145056A (ja) * 1997-11-07 1999-05-28 Sony Corp 半導体材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1522611A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516572A (ja) * 2009-01-30 2012-07-19 エイエムジー・アイデアルキャスト・ソーラー・コーポレーション シード層及びシード層の製造方法
WO2012053254A1 (ja) * 2010-10-18 2012-04-26 住友電気工業株式会社 炭化珪素基板を有する複合基板の製造方法
WO2012053252A1 (ja) * 2010-10-18 2012-04-26 住友電気工業株式会社 炭化珪素基板を有する複合基板
JP2013053051A (ja) * 2011-09-06 2013-03-21 Sumitomo Electric Ind Ltd ダイヤモンド複合体およびそれから分離した単結晶ダイヤモンド、及びダイヤモンド複合体の製造方法
JP2016050139A (ja) * 2014-08-29 2016-04-11 国立大学法人電気通信大学 単結晶ダイヤモンドの製造方法、単結晶ダイヤモンド、単結晶ダイヤモンド基板の製造方法、単結晶ダイヤモンド基板及び半導体デバイス
RU2705518C1 (ru) * 2018-12-27 2019-11-07 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Способ сращивания диэлектрических пластин под действием сильного электрического поля

Also Published As

Publication number Publication date
US7892356B2 (en) 2011-02-22
EP1522611A4 (en) 2008-12-24
CN1697894A (zh) 2005-11-16
EP1522611B1 (en) 2012-03-07
JPWO2004067812A1 (ja) 2006-05-18
EP2135977B1 (en) 2012-03-07
JP5160032B2 (ja) 2013-03-13
EP1522611A1 (en) 2005-04-13
CN100567592C (zh) 2009-12-09
TW200428622A (en) 2004-12-16
KR100988104B1 (ko) 2010-10-18
KR20050094341A (ko) 2005-09-27
US20050160968A1 (en) 2005-07-28
EP2135977A3 (en) 2010-03-24
TWI246173B (en) 2005-12-21
EP2135977A2 (en) 2009-12-23

Similar Documents

Publication Publication Date Title
WO2004067812A1 (ja) ダイヤモンド複合基板及びその製造方法
JP2654232B2 (ja) 高圧相物質単結晶の製造方法
JP5163920B2 (ja) ダイヤモンド単結晶基板の製造方法及びダイヤモンド単結晶基板
JP3834314B2 (ja) ダイヤモンド製造用装置及び方法
US5370299A (en) Bonding tool having diamond head and method of manufacturing the same
JP6772711B2 (ja) 半導体積層構造体および半導体デバイス
EP2072646A1 (en) Process for producing single crystal of silicon carbide
TW200422446A (en) Single crystal diamond
US9590046B2 (en) Monocrystalline SiC substrate with a non-homogeneous lattice plane course
JP5162895B2 (ja) 窒化アルミニウム結晶の製造方法、窒化アルミニウム結晶、窒化アルミニウム結晶基板および半導体デバイス
JP2008013390A (ja) AlN結晶基板の製造方法、AlN結晶の成長方法およびAlN結晶基板
JP4385764B2 (ja) ダイヤモンド単結晶基板の製造方法
JPH02273960A (ja) ダイヤモンドヒートシンク
JP5003918B2 (ja) ダイヤモンド単結晶基板
JP2007161535A (ja) 半導体結晶基板の製造方法
CN116180222A (zh) 一种单晶金刚石外延生长方法
JP2000086391A (ja) 単結晶ダイヤモンド合成用基板
JPH0672797A (ja) 高圧相物質の合成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005504682

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10510848

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004704342

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047016807

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048003220

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004704342

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047016807

Country of ref document: KR