JP3834314B2 - ダイヤモンド製造用装置及び方法 - Google Patents

ダイヤモンド製造用装置及び方法 Download PDF

Info

Publication number
JP3834314B2
JP3834314B2 JP2003542679A JP2003542679A JP3834314B2 JP 3834314 B2 JP3834314 B2 JP 3834314B2 JP 2003542679 A JP2003542679 A JP 2003542679A JP 2003542679 A JP2003542679 A JP 2003542679A JP 3834314 B2 JP3834314 B2 JP 3834314B2
Authority
JP
Japan
Prior art keywords
diamond
temperature
holder
growth surface
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003542679A
Other languages
English (en)
Other versions
JP2005508279A (ja
Inventor
ヘムレイ、ラッセル、ジェイ.
− クワン マオ、ホー
− シウ ヤン、チィー
フォーラ、ヨーゲシュ、ケイ.
Original Assignee
カーネギー インスチチューション オブ ワシントン
ザ ユーエイビー リサーチ ファンデーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23292514&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3834314(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by カーネギー インスチチューション オブ ワシントン, ザ ユーエイビー リサーチ ファンデーション filed Critical カーネギー インスチチューション オブ ワシントン
Publication of JP2005508279A publication Critical patent/JP2005508279A/ja
Application granted granted Critical
Publication of JP3834314B2 publication Critical patent/JP3834314B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1016Apparatus with means for treating single-crystal [e.g., heat treating]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1076Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone
    • Y10T117/108Including a solid member other than seed or product contacting the liquid [e.g., crucible, immersed heating element]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、参照によりそのすべてが本明細書に組み込まれている、2001年11月7日に出願した米国仮出願第60/331,073号の権利を主張するものである。
本発明は、国立科学財団(米国)によって与えられた認可番号EAR−8929239及びDMR−9972750のもとで政府の援助でなされたものである。政府は本発明の一定の権利を有する。
本発明は、ダイヤモンドを製造するための、そしてさらに特定すれば、マイクロ波プラズマ化学蒸着(MPCVD)を用いて成膜チャンバー内でダイヤモンドを成長させる装置及び方法に関する。
合成ダイヤモンドの大規模な生産は、研究と産業の両方にとって長い間の目標であった。ダイヤモンドは、その宝石としての特性に加えて、最も硬い既知物質であり、最も高い既知の熱伝導率を有しており、幅広い種類の電磁放射線に対して透明である。したがって、それは、宝石としてのその価値に加えて多数の産業におけるその広範な用途のために貴重なものである。
少なくとも過去20年間、化学蒸着(CVD)による少量のダイヤモンドを製造する方法は入手可能であった。B.V.Spitsyn等、「ダイヤモンド及びその他の表面の蒸気成長(Vapor Growth of Diamond and Other Surfaces)」、Journal of Crystal Growth、vol.52、219〜226頁によって報告されているように、その方法は、減圧下及び800〜1200℃の温度で、メタンと水素ガスの組合せ、又は、別の単に水素ガスを使用することによる基体上へのダイヤモンドのCVDを必要とする。水素ガスを含むことによってダイヤモンドが核をなし、成長するときに黒鉛の生成が防止される。この技術で、1μm/時間までの成長速度が報告されている。
その後の研究、例えば、「マイクロ波プラズマ内ガス相からのダイヤモンドの合成(Diamond Synthesis from Gas Phase in Microwave Plasma)」、Journal of Crystal Growth、vol.62、642〜644頁、に報告されているKamo等のそれは、マイクロ波プラズマ化学蒸着(MPCVD)を使用して、800〜1000℃の温度の中、1〜8Kpaの圧力で、2.45GHzの周波数での300〜700Wのマイクロ波出力により、ダイヤモンドが製造されることを実証した。Kamo等の方法では、1〜3%濃度のメタンガスが使用された。このMPCVD法を使用して、3μm/時間の最大成長速度が報告されている。
上記の方法において、そして多数のより最近報告された方法においても、成長速度は、1時間当たりわずか数マイクロメートルに限定されている。既知のより高い成長速度の方法は、ダイヤモンドの多結晶形を生成又は成長させるのみである。一般的に、1時間当たり約1マイクロメートルより高い成長速度で単結晶ダイヤモンドを製造しようと試みても、かなり双晶になった単結晶ダイヤモンド若しくは多結晶ダイヤモンド、又は全くダイヤモンドを生じない結果となる。さらに、ダイヤモンドを成長させるための既知の方法は、通常、100トルより低い低圧を必要とする。
したがって、本発明は、従来の技術の制約及び不都合による問題の1つ又は複数を実質的に回避するダイヤモンド製造の装置及び方法を対象とする。
本発明の目的は、マイクロ波プラズマ化学蒸着システムで高い成長速度及び適度の圧力においてダイヤモンドを製造する装置及び方法に関する。
本発明のさらなる特徴及び利点は、以後の記述に示すので、ある程度はその記述から明らかになり、あるいは本発明を実施することによって知ることができる。本発明の目標及び他の利点は、本明細書及び本明細書の請求項並びに添付されている図面に指し示した構造によって実現及び獲得されよう。
これら及び他の利点を達成するため並びに本発明の目的に合致するには、具体的に示し、広範に記載すると、成膜チャンバー内でダイヤモンドを製造する装置の実施形態は、ダイヤモンドを保持し、前記ダイヤモンドの成長面の縁に隣接する前記ダイヤモンドの側面と熱的接触をするための放熱ホルダーと、前記ダイヤモンドの前記成長面を横切って前記ダイヤモンドの温度を測定するように配置した非接触温度測定装置と、前記非接触温度測定装置からの温度計測を受け、前記成長面の温度を、前記成長面を横切る全部の温度勾配が20℃未満となるように制御するための主プロセス制御器とを含む。
他の実施形態においては、ダイヤモンドを製造するための試験片ホルダー組立て品が、ダイヤモンドと、前記ダイヤモンドの成長面の縁に隣接する前記ダイヤモンドの側面と熱的接触をする放熱ホルダー(ただし、前記ダイヤモンドは、前記放熱ホルダー内でスライド可能なように取り付ける)と、前記放熱ホルダーから熱エネルギーを受け取るためのステージと、前記放熱ホルダー内の前記ダイヤモンドを再配置するために前記成長面に対して実質的に直角をなす軸に沿って移動することが可能な第1の作動装置部分とを含む。
他の実施形態においては、ダイヤモンドを製造するための試験片ホルダー組立て品が、ダイヤモンドと、前記ダイヤモンドの成長面の縁に隣接する前記ダイヤモンドの側面と熱的接触をする放熱ホルダーと、前記放熱ホルダーからの熱エネルギーを受け取るための温度塊(ただし、前記ダイヤモンドは、前記温度塊を介して加えられる圧力によって前記放熱ホルダー内に保持される)と、前記放熱ホルダーからの熱エネルギーを前記温度塊を経由して受け取るためのステージとを含む。
本発明の他の実施形態によれば、ダイヤモンドを製造する方法が、前記ダイヤモンドの成長面の縁に隣接する前記ダイヤモンドの側面と熱的接触をするように、ホルダー内にダイヤモンドを配置するステップと、前記ダイヤモンドの前記成長面の温度を測定して温度計測値をもたらすステップと、前記温度測定値に基づいて前記成長面の温度を制御するステップと、前記ダイヤモンドの成長速度が1時間当たり1マイクロメートルより大きいマイクロ波プラズマ化学蒸着により、前記成長面に単結晶ダイヤモンドを成長させるステップとを含む。
本発明の他の実施形態によれば、ダイヤモンドを製造する方法が、ホルダー中にダイヤモンドを配置するステップと、前記ダイヤモンドの成長面の温度を測定して温度計測値をもたらすステップと、前記温度測定値を用いて前記成長面を横切る全部の温度勾配が20℃未満となるように主プロセス制御器により前記成長面の温度を制御するステップと、前記成長面上にダイヤモンドを成長させるステップと、前記ダイヤモンドを前記ホルダー中で再配置するステップとを含む。
本発明の他の実施形態によれば、ダイヤモンドを製造する方法が、前記ダイヤモンドの成長面の温度を、前記成長面を横切る全部の温度勾配が20℃未満となるように制御するステップと、少なくとも130トルの圧力の雰囲気を有する成膜チャンバー中でマイクロ波プラズマ化学蒸着により前記成長面に成長温度で単結晶ダイヤモンドを成長させるステップとを含む。
本発明の他の実施形態によれば、ダイヤモンドを製造する方法が、前記ダイヤモンドの成長面の温度を、前記成長面を横切る全部の温度勾配が20℃未満となるように制御するステップと、前記成長面上に、マイクロ波プラズマ化学蒸着により、900〜1400℃の温度で単結晶ダイヤモンドを成長させるステップとを含む。
これまでの概要及び以後の詳細な説明は、共に例示のため及び説明のためのものであり、請求した本発明のさらなる説明を提供することを意図したものであることを理解されたい。
本発明のさらなる理解を提供するために含め、本明細書に組み込んで本明細書の一部を構成する添付の図面は、本発明の実施形態を図解し、記述と共に本発明の原理を説明するために役立つ。
次に、本発明の好ましい実施形態について詳細に言及し、その例が添付の図面に図解されている。図1は、本発明の実施形態によるダイヤモンド製造システム100の図であり、蒸着装置102の断面が描かれている。そのダイヤモンド製造システム100は、蒸着装置102並びに反応物及びプラズマ制御装置106を含有するマイクロ波プラズマ化学蒸着(MPCVD)システム104を含んでいる。例えば、MPCVDシステム104は、ウェイブマットインク社(Wavemat Inc.)製のWAVEMAT MPDR330 313EHPであり得る。上記のMPCVDシステムは、2.45GHzにおいて6キロワットの出力を生み出すことが可能であり約5,000立方センチメートルのチャンバー容積を有する。しかしながら、MPCVDシステムの仕様は、蒸着面積及び/又は蒸着の速度の大きさの点から見た蒸着プロセスの規模によって変化し得る。
MPCVDシステム104は、蒸着装置102内にチャンバーを含み、蒸着装置102は、チャンバーを密閉するために用いるベル形ジャー108によって少なくともある程度輪郭が定まる。MPCVD操作に先立って、チャンバー内の空気を抜き出す。例えば、一番目の機械式真空ポンプを用いてチャンバーを減圧にし、次に二番目の高真空タイプの真空ポンプ、例えばターボポンプ又はクライオポンプを用いてチャンバーの内側の空気をさらに引き抜く。チャンバー内に間隔をおいて離れているプラズマ電極のセットによって、プラズマをチャンバー内に発生させる。ポンプ又はプラズマ電極のどちらも図1には描かれていない。
蒸着装置102は、またMPCVDシステム104のチャンバー内に設置されている試験片ホルダー組立て品120も含む。一般的には、試験片ホルダー組立て品は、図1に示されているように蒸着装置102の成膜チャンバーの床122の中央に配置されている。図1に示されている試験片ホルダー組立て品120は、断面が図示されている。その試験片ホルダー組立て品120は、蒸着装置102の床に設置されているステージ124を含むことができる。
図1に示されているように、ステージ120は、ボルト126a及び126cを用いて、成膜チャンバーの床122に取り付けることができる。ステージ124は、モリブデン又は高い熱伝導率を有するその他のタイプの材料であり得る。さらに、ステージ124は、ダイヤモンドの成長のプロセスの途中、ステージ124内のクーラントパイプ128を通るクーラントによって冷却することができる。そのクーラントは、水、冷却剤、又は他のタイプのステージを冷却するのに十分な熱運搬能力を有する流体であり得る。図1でクーラントパイプは、ステージ124を通るU型の通路を有するように示されているが、クーラントパイプ128は、ステージ124をより効率的に冷却するために、ステージ124内にらせん形をした通路又は他のタイプの通路を有することができる。
図1に示されているように、試験片ホルダー組立て品120のステージ124上に配置されているのは、セットリング130であり、セットリング130は、ダイヤモンド136を保持するシース134の周りのコレット132a及び132bを固定するためのねじ131a及び131cなどの位置決めねじを有する。シース134はホルダーであって、それは、ダイヤモンド136の上面の端に隣接するダイヤモンド136の側面と熱的に接触させる。コレット132a及び132bは、ねじ131によってシース134に固定されるので、シース134は、ダイヤモンド136を固定された位置で保持し、ヒートシンクとして作用して双晶ダイヤモンド又は多結晶ダイヤモンドがダイヤモンド136の成長面の縁に沿って形成されるのを防ぐ。
ダイヤモンド136は、ダイヤモンドの種部分138及び成長したダイヤモンド部分140を含むことができる。ダイヤモンドの種部分138は、人造ダイヤモンド又は天然ダイヤモンドであり得る。図1に示されているように、ダイヤモンド136の上面又は成長面は、成膜チャンバーの床122の上に高さHの共振出力を有するプラズマ141の領域内に位置している。その共振出力は、プラズマ141内の最大共振出力又はその程度のものであり得る。ダイヤモンド136の上面又は成長面は、最初はダイヤモンドの種部分138であり、次いでダイヤモンドが成長すると成長ダイヤモンド部分140となる。
図1に示されているように、シース134の上端は、ダイヤモンド136の上面又は上端の直ぐ下の間隔Dのところにある。その間隔Dは、ダイヤモンド136の成長面の端をプラズマ141にさらすのに十分な大きさでなければならない。しかしながら、その間隔Dは、シース134の放熱効果を防ぐほど大きくはあり得ないので、ダイヤモンド136の成長面の縁に沿った双晶又は多結晶のダイヤモンド形成を防ぐ。したがって、Dは、特定の間隔の範囲内、例えば0〜1.5mmであるべきである。間隔D及び高さHは、図1に示されているように、ダイヤモンド136をシース内に配置し、シースをコレット132a及び132bの中に配置し、次にねじ131を締め付けることにより、セットリング130のねじ131を用いて手作業でセットする。
図2は、図1に示されている蒸着装置の透視図である。図2の成膜チャンバーの床122の中央に、中央の凹所部分を有する円形のステージ124がある。図2に示されているようにそのステージ124は、ボルト126a〜126dによって適所に保持されている。そのステージは、モリブデン又は高い熱伝導率を有するその他の材料で形成することができる。4つのねじ131a〜131bを備えたセットリング130は、ステージ124の凹所部分125内にコレット132a〜132bと共に配置されている。別法では、セットリング130は、ステージとセットリング間の熱伝導を増すために、ステージ124にボルトで締めることができる。
図2aに示されているように、丈の短い矩形の管又は矩形に折り曲げたシートのいずれかであり得る矩形のシース134は、その中にダイヤモンド136があるコレット132a及び132bの中に配置する。シース124は、モリブデン又は高い熱伝導率を有するその他のタイプの材料であり得る。ねじ131a〜131dは、シース134がダイヤモンド136上に固定されるようにコレット132a〜132bに締め付け、その結果、シース134は、ダイヤモンド136の4つの側面のヒートシンクとして作用する。図1に示されているように、シース134はまた、ステージ124に対する熱的接触もする。コレット132a〜132bは、ステージ124との熱的接触をして、シース134からの熱をステージ124に伝達するための温度塊としての役割を果たす。シース134のダイヤモンド136への締め付けによって、ダイヤモンドとシース間の熱的接触の量が増大する。図1に示されているように、シース134は、ステージ124に対する熱的接触をすることもできる。図2aには、シース及びダイヤモンドの両方共矩形の形が示されているが、そのシース及びダイヤモンドは、楕円形、円形、又は多角形など任意の幾何学的形状を持つことができる。そのシースすなわちホルダーの形状は、実質的にダイヤモンドと同じものとすべきである。
図1及び2aに示されている本発明の典型的な実施形態において、ステージ124は、約10.1cmの直径をもつことが可能であり、シース134は、幅が約2.5cmであり得る。ステージ及びシース134のために選択した寸法とは関係なく、ステージ122の温度塊、モリブデンのシース124、及びコレット132は、ダイヤモンド136の最適の放熱を提供するように調整することができる。加えて、クーラントパイプ128の通路及び大きさは、特に特別大きいダイヤモンドを製造する場合は、より大きな冷却効果をだすために修正することが可能である。さらに、冷却剤又は他の低温流体を、クーラントとして使用することができる。
モリブデンは、ステージ124、セットリング130、コレット132、シース134、及び他の構成要素に使用する唯一の可能性のある材料である。モリブデンは、それが2617℃という高い融点及び高い熱伝導率を有しているため、これらの構成要素に適している。それに加えて、大きな黒鉛の堆積が、モリブデン上に形成される傾向はない。他の材料も、例えば、モリブデン−タングステン合金、又は人工セラミックスなど、加工温度より上の高い融点及びモリブデンのそれに匹敵する熱伝導率を有していれば、選択的にモリブデンの代わりに使用することができる。
図1に戻って、ダイヤモンド製造システム100の他の構成要素は、赤外線高温計142のような非接触測定装置であって、それはダイヤモンドの種138及びその後の成長プロセスの間の成長ダイヤモンド140の温度をダイヤモンド136と接触することなく測定するために使用する。その赤外線高温計142は、例えば、米国ニュージャージー州オークランドのMikron Instruments,Inc.のMMRON M77/78 2色赤外線高温計であり得る。その赤外線高温計142は、2mmの目標領域寸法をもつダイヤモンドシード138又はその後の成長ダイヤモンド140の上に焦点を合わせる。その赤外線高温計142を使用することにより、ダイヤモンド136の成長面の温度が、1℃の範囲内で測定される。
図1のダイヤモンド製造システム100はまた、MPCVDプロセス制御器144を含んでいる。そのMPCVDプロセス制御器144は、一般的にはMPCVDシステム104の構成要素として提供される。当分野ではよく知られているように、MPCVDプロセス制御器144は、それだけに限定されないが、プロセス温度、ガス流量、プラズマパラメータ、及び、反応物及びプラズマ制御装置106の使用による反応物の流速を含む多数のMPCVDパラメータに関してフィードバック制御をはたらかせる。そのMPCVDプロセス制御器144は、主プロセス制御器146と相まって作動する。主プロセス制御器146は、MPCVDプロセス制御器144、赤外線高温計142、及び該ダイヤモンド製造システム100のその他の構成要素の他の測定装置からのインプットを取り上げ、そのプロセスに関する実行水準の制御を行う。例えば、主プロセス制御器146は、クーラント制御器148を使用する段階において、クーラント温度及び/又はクーラントの流速を測定し且つ制御することができる。
主プロセス制御器146は、汎用コンピュータ、特殊用途コンピュータシステム、例えばASIC、又はMPCVDプロセスを制御する任意のその他の既知タイプのコンピュータシステムであり得る。主プロセス制御器146のタイプによっては、MPCVDプロセス制御器144は、主プロセス制御器に統合して2つの構成要素の機能を合併することができる。例えば、主プロセス制御器146は、米国テキサス州オースティンのNational Instruments,Inc.のLabVIEWプログラム言語及びLabVIEWプログラムを搭載した汎用コンピュータであることが可能で、そうすれば、その汎用コンピュータは、すべてのプロセスパラメーターを制御、記録、及び報告する機能をももつ。
図1の主プロセス制御器146は、ダイヤモンドの成長面を横切るすべての温度勾配が20℃以下となるように成長面の温度を制御する。成長面温度及び成長面温度勾配についての正確な制御により、多結晶又は双晶ダイヤモンドの形成を防止し、その結果、大きな単結晶のダイヤモンドを成長させることができる。ダイヤモンド136の成長面を横切るすべての温度勾配を制御する能力は、いくつかの要因に影響されるが、その要因としては、ステージ124の放熱性能、プラズマ141中のダイヤモンドの上面の位置取り、ダイヤモンドの成長面がさらされるプラズマ141の均一性、ホルダーすなわちシース134を経由するダイヤモンドの縁からステージ124への熱転移の良否、マイクロ波能力の制御の可能性、クーラント流速、クーラント温度、ガス流速、反応物流速、赤外線高温計142の検知能力等が挙げられる。高温計142からの温度測定値に基づいて、主プロセス制御器146は、成長面を横切るすべての温度勾配が20℃未満となるように、プラズマ141に対するマイクロ波能力、クーラント流速、クーラント温度、ガス流速、及び反応物流速の少なくとも1つを調節することによって成長面の温度を制御する。
図2bは、図1に示されているダイヤモンド136の透視図であって、ダイヤモンド136の成長面137に沿った典型的な点P1、P2、P3、P4を描いている。図2bはまた、成長面137すなわちダイヤモンド136の上端139とシース134の端135の間の間隔Dを描いている。一般的に成長面を横切る温度差に関しては、大きな温度変化が、ダイヤモンドの成長面の縁と中央部の間で起こる。例えば、点P1とP2の間では、点P1とP3の間で起こるより大きな温度勾配が発生する。他の例では、点P4とP2の間では、点P4とP3の間で起こるより大きな温度勾配が発生する。したがって、成長面を横切るすべての温度勾配が20℃未満となるようにダイヤモンドの成長面の温度を制御するには、少なくとも成長面137の中央と縁139の間の温度測定を織り込むべきである。例えば、主制御器146は、点P1とP2の間の温度勾配が20℃未満となるように成長面の温度を制御することができる。
赤外線高温計のスポットサイズは、ダイヤモンドの上面を横切る温度勾配を監視する能力及び、それに伴ってダイヤモンドの成長速度に影響することがあり得る。例えば、ダイヤモンドの大きさが赤外線高温計のスポットサイズと比較して大きい場合は、ダイヤモンドの成長面の各縁の温度は、赤外線高温計の視野の外側となり得る。したがって、大きく成長する領域を有するダイヤモンドには多重赤外線高温計を使用すべきである。多重高温計のそれぞれは、ダイヤモンドの表面の周りの異なる縁、好ましくは可能な場合は角付近に焦点を当てるべきである。したがって、図1に示す主プロセス制御器146は、部分的に重なり合う多重高温計からの視野を統合して、ダイヤモンドの表面を横切る温度の連続的な「マップ」を作成するか、又は重なり合わない視野の間には中間値を挿入してダイヤモンドの成長面を横切る温度の翻訳「マップ」を作成するように、プログラムを組むべきである。別法では、成長表面の中央に対する単一の縁又は角の点の間の温度勾配をダイヤモンドの成長面を横切って存在する最大の温度勾配を示すものとして監視することができる。
ダイヤモンド製造システム100には、温度制御のための赤外線高温計142に加えて他のプロセス制御器械の装備を含めることができる。追加のプロセス制御器械としては、成長の途中にあるダイヤモンド136のタイプ及び品質を測定する装置を含むことができる。そのような装置の例をしては、可視分光計、赤外分光計、及びラマン分光計が挙げられ、それらは、光学的性質をしており赤外線高温計142と同じ点に焦点を当て、成長の途中にあるダイヤモンドの構造及び品質に関するデータを得ることができる。追加の装置が提供される場合は、それは主プロセス制御器146に接続して、その主プロセス制御器146がその器械を制御し、その分析方法の結果を他の状況情報と共に提示するようにすることができる。追加のプロセス制御器械は、実験の設定、より大きいダイヤモンドを製造する方法の「スケールアップ」、及び既存のダイヤモンド製造システム100及び対応する方法のための品質管理活動に特に有用であり得る。
ダイヤモンド136が成長するにつれて、間隔D及び高さHが増大する。間隔Dが増大するにつれて、ダイヤモンド136の成長面の上端139のためのシース134の放熱能力が低下する。さらに、温度及び/又はコンシステンシーなどプラズマの特性が、ダイヤモンド136の成長面がプラズマ141中に伸びるに従って変化する。ダイヤモンド製造システム100においては、ダイヤモンドの位置が、間隔Dを減らすためにシース134に対して下方に調整することができ、ダイヤモンド及びシース134の両方が、高さHを低下するために成膜チャンバーの床122に対して、下方に調整することができるように成長プロセスを周期的に停止する。この再配置は、ダイヤモンド136の成長面のダイヤモンドの成長が、プラズマ141内の共振出力の望ましい領域内で起こることを可能とし、赤外線高温計142及び付加的な装置をダイヤモンド136の成長面に焦点が合ったままにすることを可能とし、ダイヤモンド136の成長面の縁から放熱させるための効率的な熱的接触を維持する効果を有する。しかしながら、成長プロセスを繰り返して停止することは、大規模生産にとっては不便であり、注意深く実施しない場合はプロセス中に汚染が導入される機会が増すことになる。
図3は、本発明の1実施形態によるダイヤモンド製造装置300の線図であり、その中にはダイヤモンド成長プロセスの間にダイヤモンド136を移動させるための試験片保持組立て品320を有する蒸着装置304の断面図が描かれている。ダイヤモンド製造装置300のいくつかの構成要素は、ダイヤモンド製造システム100のものと実質的に同じであり、したがって、図3の中にある同様の構成要素を説明するには図1に関して上で述べたことで十分であろう。例えば、図3の、高温計142、成膜チャンバーの床122、クーラントパイプ128、ベル形ジャー108は、図1で説明したものと実質的に同じである。
図3に示されているように、ダイヤモンド136は、試験片ホルダー組立て品320のシース134内のダイヤモンド作動装置部分360の上に乗っている。ダイヤモンド136は、シース134内で成長面と実質的に直角をなす軸に沿って移動するダイヤモンド作動装置部分360の上にスライドできるように乗っている。そのダイヤモンド作動装置部分360は、ステージ324を通して突きだしており、図3のクーラント及びダイヤモンド/ホルダー制御装置329の一部として示されているダイヤモンド制御装置によりステージ324の下から制御される。そのダイヤモンド作動装置部分360は、ダイヤモンド136の成長面と成膜チャンバーの床122の間の高さHを設定するためのものである。図3のダイヤモンド作動装置部分360は、ねじ棒として示されているが、そのダイヤモンド作動装置部分は、ダイヤモンド136を成膜チャンバー床の上の高さと位置に配置することを可能にする任意の幾何学的形状のものであり得る。ダイヤモンド作動装置部分360など、ベル形ジャー内に置かれる構成要素は、必要な雰囲気の維持における問題を避けるために真空に適合するものであるべきであることは、当業者であれば認識するであろう。
ダイヤモンド作動装置部分360の作動装置(図示なし)は、モーター(図示なし)である。しかしながら、その作動装置は、成長するダイヤモンドの大きさ、成長速度、及び必要な移動の正確さの程度によって、多数の既知のタイプの作動装置の任意の1つであり得る。例えば、ダイヤモンド136の大きさが小さい場合は、圧電アクチュエータを使用することができる。ダイヤモンド136が比較的大きいか比較的大きく成長させることができる場合は、モーター付きのコンピュータ制御可能な作動装置が好ましい。特定の作動装置を採用することとは関係なく、主プロセス制御器346は、ダイヤモンド作動装置部分360の動きを、ダイヤモンド136がダイヤモンドの成長の進行に合わせて下方に自動的に移動することができるように制御する。
さらに、ホルダー作動装置部分362が、ステージ324を通って突き出ており、図3のクーラント及びダイヤモンド/ホルダー制御装置329の一部として示されているホルダー制御装置によりステージ324の下から制御される。そのホルダー作動装置部分362は、成長面と実質的に直角をなす軸に沿って移動し、それはダイヤモンド136の成長面の縁とホルダーすなわちシース134の上端の間の間隔Dを維持するためである。ダイヤモンド製造系は、ダイヤモンド作動装置部分、ホルダー作動装置部分、又はその両方の組合せを持つことができる。
図3においてホルダー作動装置部分362は、ステージ324中に差し込まれており、ダイヤモンド作動装置部分360は、ホルダー作動装置部分362の中に差し込まれている。この配列によって、図3に示されているクーラント及びダイヤモンド/ホルダー制御装置329のダイヤモンド及びホルダー制御装置は、ダイヤモンド136、シース134、又はシース134及びダイヤモンド136の両方を移動させることができる。図3のホルダー作動装置部分362は、ダイヤモンド作動装置部分360に対して内側がねじ切りされており、ステージ324中を通り抜けるために外側をねじで進むねじ切りされた円筒として示されているが、そのホルダー作動装置部分は、ダイヤモンド136の成長面の縁とホルダーすなわちシース134の上端の間の特定の間隔範囲を維持することが可能な任意の形状のものであり得る。ホルダー作動装置部分362又はホルダー作動装置部分及びダイヤモンド作動装置部分の両方の組合せなど、ベル形ジャー内に置かれる構成要素は、必要な雰囲気の維持における問題を避けるために真空に適合するものであるべきであることは、当業者であれば認識するであろう。
図3に示されているように、温度塊364が、ステージ324の凹所内に配置されている。ホルダーすなわちシース134は、熱エネルギーがシース134からステージ324に転移するように温度塊364内でスライドできるように配置されている。温度塊364の上面は、熱がシース134から転移し、同時にプラズマ341に対する温度塊364の電気的影響を最小にすることができるように輪郭を付けることができる。図4a〜4cの温度塊466a、466b、及び466cは、それぞれ、断面の形状が異なる他の輪郭を示す温度塊の例であって、それらは選択的に、図3に示されている温度塊364の代わりに使用することができる。温度塊はモリブデンから作製することができる。他の材料も、例えば、モリブデン−タングステン合金、又は人工セラミックスなど、加工温度より上の高い融点及びモリブデンのそれに匹敵する熱伝導率を有していれば、ダイヤモンドの面からステージに熱を転移する温度塊として使用することができる。
プラズマ341に対する温度塊364の電気的影響を最低限にすることによって、ダイヤモンドが成長するプラズマ341内の領域は、より均一になるであろう。さらに、ダイヤモンドを成長させるのにより高い圧力を使用することが可能となり、それによって単結晶ダイヤモンドの成長速度が増すであろう。例えば、圧力は130から400トルまで変化させることができ、単結晶の成長速度は、1時間当たり50から150ミクロンとすることができる。ダイヤモンドの成長面の縁から熱を除去する輪郭になっている温度塊364は、それのプラズマ341に対する電気的影響を最低限にし、プラズマ341の均一性、形状及び/又は位置が、その温度塊364によって容易には影響されないので、400トルといった高めの圧力を使用することが可能である。さらに、プラズマ341を維持するために必要なのは、1〜2kWといった低めのマイクロ波出力である。そうでない場合は、プラズマ341の均一性、形状及び/又は位置を維持するために、低めの圧力及び/又は増大したマイクロ波出力を使用しなくてはならない。
ダイヤモンド136が成長するのに伴い間隔D及び高さHが増加する。間隔Dが増加するのに伴い、ダイヤモンド136の成長面の上端に対するシース134の放熱能力が減少する。さらに、温度などのプラズマの特性が、ダイヤモンド136の成長表面がプラズマ341中に伸びると変化する。ダイヤモンド製造システム300において、間隔D及び高さHは、ダイヤモンド成長プロセスの間にホルダー作動装置部分362及びダイヤモンド作動装置部分360を用いるクーラント及びダイヤモンド/ホルダー制御装置329を経由した主プロセス制御器346によって、制御することができるので、ダイヤモンド136が予め決めておいた厚さに到達した時、成長プロセスは停止する。この再配置により、手動によるか又は制御器144の制御の下での自動によるかのいずれかで、ダイヤモンド136の成長面上のダイヤモンドの成長がプラズマ341内の共振出力の望ましい領域内で起こることが可能となる。さらに、再配置は、赤外線高温計142及び付加的な装置がダイヤモンド136の成長面上に焦点が合ったままにすることを可能とし、ダイヤモンド136の成長表面の縁からの効果的な放熱を維持することができる。
図5は、本発明の実施形態によるダイヤモンド製造装置500の線図であり、そこにはダイヤモンド成長プロセスの間にダイヤモンド136を移動させるための試験片ホルダー組立て品520を備えた蒸着装置504の断面図が描かれている。ダイヤモンド製造装置500のいくつかの構成要素は、ダイヤモンド製造システム100及び300のものと実質的に同じであり、したがって、図5の中にある同様の構成要素を説明するには図1及び図3に関して上で述べたことで十分であろう。例えば、図5の、高温計142、成膜チャンバーの床122、クーラントパイプ128、ベル形ジャー108は、図1で説明したものと実質的に同じである。他の例では、図5のクーラント及びダイヤモンド/ホルダー制御装置329、及びダイヤモンド作動装置部分360は、図3のものと実質的に同じである。
図5に示されているように、ダイヤモンド136は、ダイヤモンド作動装置部分360上に乗っていて、ホルダーとして作用する輪郭をなす温度塊566内にある。ダイヤモンド136を成形した温度塊566内に直接配置することによって、ダイヤモンド136の放熱の熱効率が増大する。しかしながら、プラズマ541は、全体の輪郭を示す温度塊が、図3においてクーラント及びダイヤモンド/ホルダー制御装置329の一部として示されているダイヤモンドホルダー制御装置を備えたステージ524中のホルダー作動装置562が移動させるので、一層容易に影響を受ける。したがって、プラズマ及び/又は成長プロセスの他のパラメータを適切に制御するために、主プロセス制御器546には上記の要因を織り込むべきである。別法では、図3に示されている凸状の温度塊364、図4bの脇が傾斜している温度塊466b、図4cの脇が傾斜していて頂端がシリンダー状の温度塊466c、又はその他の幾何学的形態を、図5の凹状の温度塊566の代わりに使用することができる。
図6は、図1に示されている試験片ホルダー組立て品と共に使用することができる本発明の実施形態によるプロセス600を示す流れ図である。プロセス600は、ステップS670で始まり、そこでは適当な種ダイヤモンド又は成長の過程にあるダイヤモンドをホルダーに配置する。例えば図1の試験片ホルダー組立て品120において、ダイヤモンドの種部分138は、シース134中に置き、作業者がねじ131a〜131dを締める。シース及びダイヤモンドの両方を適所に維持するため他の仕掛けを用いることができ、例えば、バネ仕掛けのコレット、又は油圧その他の仕掛けをホルダーすなわちシースに対して力をはたらかせるために使用することができる。
ステップS672に記されているように、ダイヤモンド(ダイヤモンドの種又は成長したダイヤモンドのいずれか)の成長面の温度を測定する。例えば、図1の高温計142は、成長しつつあるダイヤモンド部分140の上面である成長面の測定値を取り、その測定値を主プロセス制御器146に提供する。その測定値は、ダイヤモンド136の成長面を横切る熱勾配が、主プロセス制御器によって測定できるように、又は少なくともダイヤモンドの成長面の縁の温度が主プロセス制御器に入力されるように取る。
図1に示されている主プロセス制御器146のような主プロセス制御器は、図6のS674に記されているように成長面の温度を測定するために使用される。その主プロセス制御器は、成長面を横切る温度勾配を20℃未満に維持することにより温度を制御する。成長面の温度を制御する一方で、図6のステップS675に示されているように、ダイヤモンドをホルダー中で再配置すべきかどうかを決定する。主制御器が、プラズマ、ガス流、及びクーラント流を制御することによって、成長面を横切るすべての温度勾配が20℃未満であるようにダイヤモンドの成長面の温度を制御できない場合は、図6のステップS678に示されているように、ダイヤモンドのよりよい放熱のため及び/又はプラズマ内のダイヤモンドのよりよい位置取りのため、ダイヤモンドをホルダー中で再配置することができる。主制御器が、ダイヤモンドの成長面を横切るすべての温度勾配を20℃未満に維持できる場合は、図6のステップS676に示されているように、成長面上でのダイヤモンドの成長が起こる。
図6に示されているように、ダイヤモンドの成長面の温度を測定するステップ、成長面の温度を制御するステップ、及び成長面でダイヤモンドが成長するステップは、ダイヤモンドを再配置すべきであることが決定されるまで起こる。測定、制御、成長、及び決定の行為は、ステップとして示されており、説明されているが、それらは必ずしも連続しているものではなく、互いに同時に起こり得る。例えば、成長面上でダイヤモンドを成長させるステップは、ダイヤモンドの成長面の温度を測定するステップ及びその成長面の温度を制御するステップが発生している間に起こり得る。
ダイヤモンドの再配置は、ステップS678に記されているように、手動又はロボットを利用した手法により行うことができる。さらに、図6のステップS673に示されているように、決定は、ダイヤモンドが予め決めた厚さ又は必要な厚さに到達したかどうかについて行うことができる。その決定は、機械装置又は光学装置による実測に基づくことができる。他の例では、その測定は、その方法についての既知の成長速度に照らした処理時間の長さに基づくことができる。図6のステップ680に記されているように、ダイヤモンドが予め決めた厚さに到達した場合は、そのとき成長プロセスは完了である。ダイヤモンドが予め決めた厚さに到達していない場合は、そのとき成長プロセスは、図6に示されているように、再出発し、ダイヤモンドの成長面の温度を測定するステップと、成長面の温度を制御するステップと、成長面上にダイヤモンドを成長させるステップとが、そのダイヤモンドを再配置する必要があると決定されるまで続けられる。
図7は、図3及び図5に示されている試験片ホルダー組立て品と共に使用することができる本発明の実施形態によるプロセス700を示す流れ図である。そのプロセス700は、ステップS770で始まり、そこでは成長したダイヤモンド、人造ダイヤモンド、天然ダイヤモンド、又はそれらの混合物であってよい適当な種ダイヤモンドをホルダーの中に配置する。例えば図3の試験片ホルダー組立て品320において、ダイヤモンドの種部分138は、図3に示されているように、シース134と共にダイヤモンド作動装置部分360の上に置く。試験片ホルダー組立て品の別の例では、ダイヤモンドの種部分138は、図5に示されているように、輪郭を付けた温度塊566内のダイヤモンド作動装置360上に置く。
ステップS772に記されているように、ダイヤモンド(ダイヤモンドの種又はそのダイヤモンドの種の上に新たに成長したダイヤモンド部分のいずれか)の成長表面の温度を測定する。例えば、図3の高温計142は、成長しつつあるダイヤモンド部分140の上面である成長面の測定値を取り、その測定値を主プロセス制御器346に提供する。別の例において、図5の高温計142は、種のダイヤモンド部分138の上面である成長面の測定値を取り、その測定値を、主プロセス制御器546に提供する。その測定値は、ダイヤモンドの成長面を横切る温度勾配が、主プロセス制御器によって測定され得るように、又は少なくとも成長面の縁及び中央の温度が、主プロセス制御器に入力されるように取られる。
主プロセス制御器346又は546などの主プロセス制御器は、図7のS774に記されているように、成長面の温度の制御に用いられる。その主プロセス制御器は、ダイヤモンドの成長面の温度を、成長面を横切るすべての温度勾配が20℃未満であるように制御する。図7のステップ775に示されているように、成長面の温度を制御している間に、そのダイヤモンドがホルダー中で再配置する必要があるかどうかについて決定がなされる。主制御器が、プラズマ、ガス流、及びクーラント流によってダイヤモンドの成長面の温度を、成長面を横切るすべての温度勾配が20℃未満であるように維持できない場合は、そのとき、ダイヤモンドは、図7に示されているようにダイヤモンドが成長している間に「YES」の進路によってステップS775からステップS776及びステップS778の両方に再配置する。ダイヤモンドをホルダー内で再配置することによって、成長面の縁の放熱が改善される。さらに、成長面は、ダイヤモンドの成長面を横切るすべての熱勾配が20℃未満を維持するためのコンシステンシーを有するプラズマの最適の領域内に配置することができる。主制御器が、ダイヤモンドの成長面を横切るすべての熱勾配が20℃未満を維持することができる場合は、成長面上のダイヤモンドの成長は、図7のステップS775からステップS776への「NO」の進路で示されているように、再配置することなく起こる。
ダイヤモンドの成長面の温度を測定するステップ、成長面の温度を制御するステップ、成長面でダイヤモンドを成長させるステップ、及びダイヤモンドをホルダー中で再配置するステップは、そのダイヤモンドが予め決めた厚さに到達したことが測定されるまで起こる。図7のステップS773に記されているように、測定は、ダイヤモンドが予め決めた厚さ又は所望の厚さに到達したか否かによってなされる。その測定は、機械装置又は光学装置による実測に基づくことができる。例えば、ダイヤモンドを成長プロセスの間に再配置しなければならない間隔についての深さ又は量を記録するトラッキングプログラムによる。他の例では、その測定は、その成長プロセスの既知の成長速度に照らした処理時間の長さに基づくことができる。そのダイヤモンドが、予め決めた厚さに到達した場合は、図7のステップ780に記されているようにその成長プロセスは完了である。そのダイヤモンドが、予め決めた厚さに到達していない場合は、図7のステップS773からステップS774への「NO」の進路で示されているように、その成長プロセスは、ダイヤモンドの成長面の温度を測定するステップ、成長面の温度を制御するステップ、成長面上でダイヤモンドを成長させるステップ、及びホルダー中のダイヤモンドを再配置するステップを、そのダイヤモンドを再配置する必要があることが決定されるまで続ける。
プロセス600及び700を実行する場合、ダイヤモンドの成長は、通常「ステップ成長」条件が維持することができる限り継続される。一般に、「ステップ成長」条件とは、ダイヤモンドがダイヤモンド136の成長面でダイヤモンド136が孤立した「突出」又は双晶がなく現実に滑らかであるように成長する成長を指す。その「ステップ成長」条件は、視覚的に実証できる。別法では、レーザーを使用してダイヤモンド136の成長面を走査することができる。レーザー反射率の変化が、「突出」又は双晶の形成を示す。そのようなレーザー反射率を、成長プロセスを停止する条件として主プロセス制御器にプログラム化することができよう。例えば、ダイヤモンドが、予め決めた厚さであるか決定することの他に、レーザー反射率を受け入れているか否かの決定もすることができる。
一般的に言って、本発明の典型的な実施形態による方法は、増加した[100]成長速度をもつ大きくて高品質のダイヤモンドを作り出すように設計されている。プロセス温度は、所望される単結晶ダイヤモンドの特定のタイプによって、又は酸素を使用する場合、約900〜1400℃の範囲から選択することができる。多結晶ダイヤモンドは、高温で生成し、ダイヤモンドのような炭素が、より低温で生成する可能性がある。成長プロセスの間、メタン濃度を6〜12%のメタンの範囲にして130〜140トルの圧力を使用する。15%より大きい炭化水素濃度は、MPCVDチャンバーの内側に過剰の黒鉛が析出する原因となり得る。反応物混合物に加える1〜5%のN/CHは、さらに有効な成長場所を生み出し、成長速度を高め、{100}面の成長を促進する。本発明の他の態様は以下の実施例からこれまでより詳細に理解することができる。
ダイヤモンド成長プロセスを上記の図1のMPCVDチャンバー内で実施した。最初に、市販の3.5×3.3×1.6mmの高圧高温(HPHT)合成タイプIbダイヤモンドの種を、成膜チャンバーに配置した。そのダイヤモンドの種は、アセトンで超音波洗浄してあり、磨かれた滑らかな表面を有する。蒸着面は、ダイヤモンドの種の{100}表面の2度以内であった。
次に、成膜チャンバーを10−3トルのベースプレッシャーまで排気した。赤外線高温計142を、石英の窓を通して65度の入射角でダイヤモンドの成長面に焦点を合わせたが、それは最低2mmの直径のスポットサイズを有していた。ダイヤモンドの成長は、3%N/CH、及び12%CH/Hのガス濃度を用いて160トルの圧力で実施した。プロセス温度は1220℃であり、ガス流速は、Hが500sccm、CHが60sccm、Nが1.8sccmであった。蒸着は12時間継続した。
得られたダイヤモンドは、磨かないで、4.2×4.2×2.3mmであり、種の結晶に約0.7mmの成長を示し、すなわちそれは、1時間当たり58ミクロンの成長速度で成長したことになる。成長形態は、<100>側の成長速度が、<111>成長株の成長速度より速いことを示した。成長パラメータαは、2.5〜3.4と判断された。
蒸着したダイヤモンドを、X線回折(XRD)、ラマン分光法、光ルミネセンス(PL)分光法、及び電子常磁性共鳴(EPR)を用いて特性を明らかにした。得られたダイヤモンドのX線回折による検討で、わずかの多結晶性がダイヤモンドの上端に見つかったが、それが単結晶であることが確認された。MPCVD成長ダイヤモンド及び種ダイヤモンドの可視/近赤外透過スペクトルにより、窒素が結晶構造に効果的に組み込まれることを確認している。ラマン分光法は、MPCVD成長ダイヤモンドの上面は、種のダイヤモンドとは異なる光学特性を有するが同じ内部応力を有することを立証している。
多数のMPCVDダイヤモンドを実施例1の指針に従い、一方でプロセス温度を記載したように変化させて製造した。これらの実験は、本発明の実施形態と一致する成長プロセスにおいて、種々のタイプのダイヤモンドの製造に対しては、プロセス温度が変化することを立証する。表1は、これらの追加の実験の結果を示す。
Figure 0003834314
高品質で厚さが0.6mmを越える純粋CVD単結晶ダイヤモンドを、実質的に上の実施例1の手順により、少量(1〜3%)の酸素を加え、成長温度を摂氏900度に下げることにより作製した。添加した酸素は、低い成長温度を可能にし、そのことが、窒素が関係する不純物を除去し、ケイ素及び水素の不純物濃度を低下させる。この方法を用いた成長速度は、ほぼ10μm/時間であって、実施例1のそれよりは低いが、従来の方法よりは依然として大きい。
上で論じた方法によって形成したダイヤモンドの色は、アニールによって変わる。例えば、褐色のダイヤモンドの黄色は、アニールして緑色のダイヤモンドにすることができる。上記の実施例で製造したダイヤモンドに関するさらなる情報が、その全体が参照により本明細書に組み込まれている、全米科学アカデミー会報、2002年10月1日、99巻、20号、12523〜12525頁の、題名が、「非常に高い成長速度の単結晶ダイヤモンドの化学蒸着(Very High Growth Rate Chemical Vapor Deposition)である本発明者等による論文にある。上記の方法及び装置により製造されたダイヤモンドは、十分に大きく、欠点がなく、そして高出力のレーザー応用における窓として又は高圧装置のアンビルとして役立つように透明である。
本発明は、その精神又は基本的な特徴から離れることなくいくつもの形で具現することが可能であるので、特別の定めのない限り、上記の実施形態は、前の説明のどんな細部にも制約されず、むしろ添付の請求項に規定したその精神と範囲に広く入るものと解釈すべきであり、それゆえ、請求項の境界又はその境界と同等のものに該当するすべての変更及び修正は、したがって、添付の請求項に包含されることを意味する。
ダイヤモンド成長過程の間、ダイヤモンドが固定されるように保持するための試験片ホルダー組立て品を備えた蒸着装置の断面が描かれている本発明の実施形態によるダイヤモンド製造装置を示す線図である。 図1に示されている蒸着装置を示す透視図である。 図1に示されているダイヤモンド及びシースを示す透視図である。 ダイヤモンド成長過程の間、ダイヤモンドを移動させるための試験片ホルダー組立て品を備えた蒸着装置の断面が描かれている本発明の実施形態によるダイヤモンド製造装置を示す線図である。 本発明により使用することが可能なホルダー又は温度塊を示す断面図である。 本発明により使用することが可能なホルダー又は温度塊を示す断面図である。 本発明により使用することが可能なホルダー又は温度塊を示す断面図である。 ダイヤモンド成長過程の間、ダイヤモンドを移動させるための試験片ホルダー組立て品を備えた蒸着装置の断面が描かれている本発明の他の実施形態によるダイヤモンド製造装置を示す線図である。 図1に示されている試験片ホルダー組立て品により使用することが可能な本発明の実施形態によるプロセス600を示す流れ図である。 図3に示されている試験片ホルダー組立て品により、又は図5に示されている試験片ホルダー組立て品により使用することが可能な本発明の実施形態によるプロセス700を示す流れ図である。

Claims (56)

  1. 成膜チャンバー内でダイヤモンドを製造する装置であって、
    ダイヤモンドを保持し、前記ダイヤモンドの成長面の縁に隣接する前記ダイヤモンドの側面と熱的接触をするための放熱ホルダーと、
    前記ダイヤモンドの前記成長面を横切って前記ダイヤモンドの温度を測定するように配置した非接触温度測定装置と、
    前記非接触温度測定装置からの温度計測を受け、前記成長面の温度を、前記成長面を横切る全部の温度勾配が20℃未満となるように制御するための主プロセス制御器とを備えた前記装置。
  2. 前記放熱ホルダーが、モリブデンからなる管状部分品を備えている請求項1に記載の前記装置。
  3. 前記放熱ホルダーが、前記成膜チャンバー内に設置されているステージに配置されており、そこに熱エネルギーを伝達する請求項1に記載の前記装置。
  4. 前記放熱試験片ホルダーが、温度塊と熱的接触して、それによって熱エネルギーを前記ステージに伝達する請求項3に記載の前記装置。
  5. 前記ダイヤモンドを、ねじで前記放熱試験片ホルダーに対して前記温度塊を締め付けることによって前記ホルダー内に保持する請求項4に記載の前記装置。
  6. 前記ダイヤモンドが、前記放熱ホルダー内でスライド可能なように取り付けられる請求項1に記載の前記装置。
  7. 前記ダイヤモンドが、前記放熱ホルダー内でスライド可能なように取り付けられ、前記成長面に対して実質的に直角をなす軸に沿って移動する第1の作動装置部分上に取り付けられる請求項1に記載の前記装置。
  8. 前記放熱ホルダーが第2の作動装置部分上に配置されていて、前記第2の作動装置部分が、前記ダイヤモンドの前記成長面の縁と前記放熱ホルダーの上端部の間の間隔を維持するために前記成長面に対して実質的に直角をなす軸に沿って移動する請求項7に記載の前記装置。
  9. 前記放熱ホルダーが、第1の作動装置部分上に、前記ダイヤモンドから熱を受け取るために温度塊内をスライド可能なように配置されている請求項1に記載の前記装置。
  10. 前記ダイヤモンドが、前記放熱ホルダー内でスライド可能なように取り付けられ、前記成長面に対して実質的に直角をなす軸に沿って移動する第2の作動装置部分上に取り付けられる請求項9に記載の前記装置。
  11. 前記温度塊が、前記成膜チャンバー内に設置されているステージである請求項9に記載の前記装置。
  12. 前記第1の作動装置部分が、前記ダイヤモンドの前記成長面の縁と前記放熱ホルダーの上端部の間の間隔を維持するために前記成長面に対して実質的に直角をなす軸に沿って移動する請求項9に記載の前記装置。
  13. 前記非接触温度測定装置が、赤外線高温計である請求項1に記載の前記装置。
  14. 前記ダイヤモンドが、実質的に単結晶ダイヤモンドである請求項1に記載の前記装置。
  15. ダイヤモンドを製造するための試験片ホルダー組立て品であって、
    ダイヤモンドと、
    前記ダイヤモンドの成長面の縁に隣接する前記ダイヤモンドの側面と熱的接触をする放熱ホルダーであって、前記ダイヤモンドは、前記放熱ホルダー内でスライド可能なように取り付けられる放熱ホルダーと、
    前記放熱ホルダーから熱エネルギーを受け取るためのステージと、
    前記放熱ホルダー内の前記ダイヤモンドを再配置するために前記成長面に対して実質的に直角をなす軸に沿って移動することが可能な第1の作動装置部分とを備えた前記組立て品。
  16. 前記放熱ホルダーが、モリブデンにより構成されている請求項15に記載の前記組立て品。
  17. 前記放熱試験片ホルダーが、温度塊と熱的接触をして、それによって熱エネルギーを前記ステージに移動させる請求項15に記載の前記組立て品。
  18. 前記放熱ホルダーが、前記ダイヤモンドの前記成長面の縁と前記放熱ホルダーの上端部の間の間隔を維持するために前記成長面に対して実質的に直角をなす軸に沿って移動する第2の作動装置部分上に配置されている請求項15に記載の前記組立て品。
  19. ダイヤモンドを製造するための試験片ホルダー組立て品であって、
    ダイヤモンドと、
    前記ダイヤモンドの成長面の縁に隣接する前記ダイヤモンドの側面と熱的接触をする放熱ホルダーと、
    前記放熱ホルダーからの熱エネルギーを受け取るための温度塊であって、前記ダイヤモンドは、前記温度塊を介して加えられる圧力によって前記放熱ホルダー内に保持される温度塊と、
    前記放熱ホルダーからの熱エネルギーを、前記温度塊を経由して受け取るためのステージとを含む前記組立て品。
  20. 前記圧力を、ねじを用いて加える請求項19に記載の前記組立て品。
  21. 前記温度塊が、コレットである請求項19に記載の前記組立て品。
  22. ダイヤモンドを製造する方法であって、
    前記ダイヤモンドの成長面の縁に隣接する前記ダイヤモンドの側面と熱的接触をするように、ホルダー内にダイヤモンドを配置するステップと、
    前記ダイヤモンドの前記成長面の温度を測定して温度計測値をもたらすステップと、
    前記温度測定値に基づいて前記成長面の温度を制御するステップと、
    マイクロ波プラズマ化学蒸着により、前記成長面に単結晶ダイヤモンドを成長させるステップであって、前記ダイヤモンドの成長速度が1時間当たり1マイクロメートルより大きいステップと、
    ダイヤモンドを成長させる前記ステップの後、前記ホルダー中に前記ダイヤモンドを再配置するステップと、
    前記成長面上にマイクロ波プラズマ化学蒸着によりダイヤモンドを再度成長させるステップとを含む、前記方法。
  23. ダイヤモンドを製造する方法であって、
    前記ダイヤモンドの成長面の縁に隣接する前記ダイヤモンドの側面と熱的接触をするように、ホルダー内にダイヤモンドを配置するステップと、
    前記ダイヤモンドの前記成長面の温度を測定して温度計測値をもたらすステップと、
    前記温度測定値に基づいて前記成長面の温度を制御するステップと、
    マイクロ波プラズマ化学蒸着により、前記成長面に単結晶ダイヤモンドを成長させるステップであって、前記ダイヤモンドの成長速度が1時間当たり1マイクロメートルより大きいステップと、
    ダイヤモンドを成長させる間に、前記ホルダー中の前記ダイヤモンドを再配置するステップを含む、前記方法。
  24. ダイヤモンドを製造する方法であって、
    前記ダイヤモンドの成長面の縁に隣接する前記ダイヤモンドの側面と熱的接触をするように、ホルダー内にダイヤモンドを配置するステップと、
    前記ダイヤモンドの前記成長面の温度を測定して温度計測値をもたらすステップと、
    前記温度測定値に基づいて前記成長面の温度を制御するステップと、
    マイクロ波プラズマ化学蒸着により、前記成長面に単結晶ダイヤモンドを成長させるステップであって、前記ダイヤモンドの成長速度が1時間当たり1マイクロメートルより大きいステップと、
    前記ダイヤモンドを、前記ホルダー中で再配置すべきか否かを決定するステップを含む、前記方法。
  25. ダイヤモンドを製造する方法であって、
    ホルダー中にダイヤモンドを配置するステップと、
    前記ダイヤモンドの成長面の温度を測定して温度計測値をもたらすステップと、
    前記温度測定値を用いて前記成長面を横切る全部の温度勾配が20℃未満となるように主プロセス制御器により前記成長面の温度を制御するステップと、
    前記成長面上にダイヤモンドを成長させるステップと、
    前記ダイヤモンドを前記ホルダー中で再配置するステップとを含む前記方法。
  26. さらに、
    前記ダイヤモンドを、前記ホルダー中で再配置すべきか否かを決定するステップを含む請求項25に記載の前記方法。
  27. さらに
    前記ダイヤモンドが予め決めた厚さであるか否かを測定するステップと、
    前記ダイヤモンドが予め決めた厚さである場合はダイヤモンドの前記成長を停止するステップとを含む請求項25に記載の前記方法。
  28. 雰囲気が水素と、メタンの単位当たり1〜5%の窒素と、水素の単位当たり6〜12%のメタンを含む請求項25に記載の前記方法。
  29. 前記ダイヤモンドが、実質的に単結晶ダイヤモンドである請求項25に記載の前記方法。
  30. 成長温度が、900〜1400℃である請求項25に記載の前記方法。
  31. 前記雰囲気が、メタンの単位当たり3%の窒素と、水素の単位当たり12%のメタンを含む請求項25に記載の前記方法。
  32. 圧力が、130〜400トルである請求項25に記載の前記方法。
  33. 成長温度が、1000〜1400℃である請求項25に記載の前記方法。
  34. ダイヤモンドを成長させる前記ステップを、前記ホルダー中の前記ダイヤモンドを再配置した後に繰り返す請求項25に記載の前記方法。
  35. 前記ホルダー中で前記ダイヤモンドを再配置するステップが、ダイヤモンドを成長させる前記ステップの間に起こる請求項25に記載の前記方法。
  36. 前記ダイヤモンドの成長速度が、1時間当たり1マイクロメートルより大きく、前記ダイヤモンドが単結晶ダイヤモンドである請求項25に記載の前記方法。
  37. ダイヤモンドを製造する方法であって、
    前記ダイヤモンドの成長面の温度を、前記成長面を横切る全部の温度勾配が20℃未満となるように制御するステップと、
    少なくとも130トルの圧力の雰囲気を有する成膜チャンバー中でマイクロ波プラズマ化学蒸着により前記成長面に成長温度で単結晶ダイヤモンドを成長させるステップとを含む前記方法。
  38. 前記雰囲気が水素と、メタンの単位当たり1〜5%の窒素と、水素の単位当たり6〜12%のメタンを含む請求項37に記載の前記方法。
  39. 前記雰囲気が、さらに、水素の単位当たり1〜3%の酸素を含む請求項38に記載の前記方法。
  40. 前記成長温度が、900〜1400℃である請求項39に記載の前記方法。
  41. 前記雰囲気が、メタンの単位当たり3%の窒素と、水素の単位当たり12%のメタンを含む請求項38に記載の前記方法。
  42. 前記圧力が、130〜400トルである請求項37に記載の前記方法。
  43. 前記成長温度が、1000〜1400℃である請求項37に記載の前記方法。
  44. さらに、
    ホルダー中にダイヤモンドの種を配置するステップを含む請求項37に記載の前記方法。
  45. さらに、
    単結晶ダイヤモンドを成長させる前記ステップの後に前記ホルダー中で前記ダイヤモンドを再配置するステップと、
    単結晶ダイヤモンドを成長させる前記ステップを繰り返すステップとを含む請求項44に記載の前記方法。
  46. さらに、
    前記単結晶ダイヤモンドを成長させる間に前記ホルダー中で前記単結晶ダイヤモンドを再配置するステップを含む請求項44に記載の前記方法。
  47. 前記単結晶ダイヤモンドの成長速度が、1時間当たり1から150マイクロメートルである請求項37に記載の前記方法。
  48. ダイヤモンドを製造する方法であって、
    前記ダイヤモンドの成長面の温度を、前記成長面を横切る全部の温度勾配が20℃未満となるように制御するステップと、
    前記成長面上に、マイクロ波プラズマ化学蒸着により、900〜1400℃の温度で単結晶ダイヤモンドを成長させるステップとを含む前記方法。
  49. 雰囲気が水素と、メタンの単位当たり1〜5%の窒素と、水素の単位当たり6〜12%のメタンを含む請求項48に記載の前記方法。
  50. 雰囲気が、さらに、水素の単位当たり1〜3%の酸素を含む請求項48に記載の前記方法。
  51. 前記雰囲気が、メタンの単位当たり3%の窒素と、水素の単位当たり12%のメタンを含む請求項49に記載の前記方法。
  52. ダイヤモンドの成長が起こる雰囲気の圧力が、130〜400トルである請求項48に記載の前記方法。
  53. さらに、
    ホルダー中にダイヤモンドの種を配置するステップを含む請求項48に記載の前記方法。
  54. さらに、
    単結晶ダイヤモンドを成長させる前記ステップの後に前記ホルダー中で前記ダイヤモンドを再配置するステップと、
    単結晶ダイヤモンドを成長させる前記ステップを繰り返すステップとを含む請求項53に記載の前記方法。
  55. さらに、
    前記単結晶ダイヤモンドを成長させる間に前記ホルダー中で前記単結晶ダイヤモンドを再配置するステップを含む請求項53に記載の前記方法。
  56. 前記単結晶ダイヤモンドの成長速度が、1時間当たり1から150マイクロメートルである請求項48に記載の前記方法。
JP2003542679A 2001-11-07 2002-11-07 ダイヤモンド製造用装置及び方法 Expired - Lifetime JP3834314B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33107301P 2001-11-07 2001-11-07
PCT/US2002/035659 WO2003040440A2 (en) 2001-11-07 2002-11-07 Apparatus and method for diamond production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006121387A Division JP4494364B2 (ja) 2001-11-07 2006-04-26 ダイヤモンド製造用装置及び方法

Publications (2)

Publication Number Publication Date
JP2005508279A JP2005508279A (ja) 2005-03-31
JP3834314B2 true JP3834314B2 (ja) 2006-10-18

Family

ID=23292514

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003542679A Expired - Lifetime JP3834314B2 (ja) 2001-11-07 2002-11-07 ダイヤモンド製造用装置及び方法
JP2006121387A Expired - Lifetime JP4494364B2 (ja) 2001-11-07 2006-04-26 ダイヤモンド製造用装置及び方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006121387A Expired - Lifetime JP4494364B2 (ja) 2001-11-07 2006-04-26 ダイヤモンド製造用装置及び方法

Country Status (15)

Country Link
US (4) US6858078B2 (ja)
EP (1) EP1444390B1 (ja)
JP (2) JP3834314B2 (ja)
KR (1) KR100942279B1 (ja)
CN (1) CN1296528C (ja)
AT (1) ATE453741T1 (ja)
AU (1) AU2002361594B2 (ja)
CA (1) CA2466077C (ja)
DE (1) DE60234949D1 (ja)
HK (1) HK1075072A1 (ja)
RU (1) RU2302484C2 (ja)
TW (1) TWI239266B (ja)
UA (1) UA81614C2 (ja)
WO (1) WO2003040440A2 (ja)
ZA (1) ZA200404243B (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA81614C2 (ru) * 2001-11-07 2008-01-25 Карнеги Инститьюшн Ов Вашингтон Устройство для изготовления алмазов, узел удержания образца (варианты) и способ изготовления алмазов (варианты)
RU2328563C2 (ru) 2002-09-06 2008-07-10 Элемент Сикс Лимитед Цветные алмазы
GB2430194B (en) * 2002-09-06 2007-05-02 Element Six Ltd Coloured diamond
US20050025886A1 (en) * 2003-07-14 2005-02-03 Carnegie Institution Of Washington Annealing single crystal chemical vapor depositon diamonds
KR101277232B1 (ko) * 2004-09-10 2013-06-26 카네기 인스티튜션 오브 워싱턴 초인성 cvd 단결정 다이아몬드 및 이의 삼차원 성장
JP4649153B2 (ja) * 2004-09-14 2011-03-09 アリオス株式会社 ダイヤモンド合成用cvd装置
CN100510199C (zh) * 2004-11-16 2009-07-08 日本电信电话株式会社 结晶制造装置
JP5002982B2 (ja) * 2005-04-15 2012-08-15 住友電気工業株式会社 単結晶ダイヤモンドの製造方法
WO2006127611A2 (en) * 2005-05-25 2006-11-30 Carnegie Institution Of Washington Colorless single-crystal cvd diamond at rapid growth rate
JP4613314B2 (ja) * 2005-05-26 2011-01-19 独立行政法人産業技術総合研究所 単結晶の製造方法
TWI410538B (zh) * 2005-11-15 2013-10-01 Carnegie Inst Of Washington 建基於以快速生長速率製造之單晶cvd鑽石的新穎鑽石的用途/應用
WO2007081492A2 (en) * 2006-01-04 2007-07-19 Uab Research Foundation High growth rate methods of producing high-quality diamonds
JP2007331955A (ja) * 2006-06-12 2007-12-27 National Institute Of Advanced Industrial & Technology ダイヤモンド製造方法
JP5284575B2 (ja) * 2006-10-31 2013-09-11 住友電気工業株式会社 ダイヤモンド単結晶及びその製造方法
JP5514552B2 (ja) * 2007-01-29 2014-06-04 カーネギー インスチチューション オブ ワシントン 単結晶cvdダイヤモンドの新規なレーザー用途
CN100500951C (zh) * 2007-02-07 2009-06-17 吉林大学 高速生长金刚石单晶的装置和方法
US7776408B2 (en) * 2007-02-14 2010-08-17 Rajneesh Bhandari Method and apparatus for producing single crystalline diamonds
CN100457983C (zh) * 2007-03-23 2009-02-04 北京科技大学 浸埋式固态碳源制备单晶金刚石的方法
JP2010540399A (ja) * 2007-10-02 2010-12-24 カーネギー インスチチューション オブ ワシントン ダイヤモンドを低圧でアニールする方法
JP5003442B2 (ja) * 2007-12-04 2012-08-15 住友電気工業株式会社 ダイヤモンド単結晶基板の製造方法
US7547358B1 (en) 2008-03-03 2009-06-16 Shapiro Zalman M System and method for diamond deposition using a liquid-solvent carbon-transfer mechanism
US9487858B2 (en) * 2008-03-13 2016-11-08 Board Of Trustees Of Michigan State University Process and apparatus for diamond synthesis
JP5539968B2 (ja) * 2008-05-05 2014-07-02 カーネギー インスチチューション オブ ワシントン 超靭性の単結晶ホウ素ドープダイヤモンド
WO2010068419A2 (en) * 2008-11-25 2010-06-17 Carnegie Institution Of Washington Production of single crystal cvd diamond rapid growth rate
US8747963B2 (en) * 2009-01-23 2014-06-10 Lockheed Martin Corporation Apparatus and method for diamond film growth
CN102272046A (zh) * 2009-04-28 2011-12-07 储晞 生产大颗粒金刚石的方法和设备
TW201204863A (en) 2010-05-17 2012-02-01 Carnegie Inst Of Washington Production of large, high purity single crystal CVD diamond
GB201021853D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021870D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021913D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave plasma reactors and substrates for synthetic diamond manufacture
GB201021855D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave power delivery system for plasma reactors
GB201021860D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for diamond synthesis
GB2486778B (en) 2010-12-23 2013-10-23 Element Six Ltd Controlling doping of synthetic diamond material
GB201021865D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201121642D0 (en) 2011-12-16 2012-01-25 Element Six Ltd Single crtstal cvd synthetic diamond material
JP5418621B2 (ja) * 2012-02-16 2014-02-19 住友電気工業株式会社 ダイヤモンド単結晶基板
US9469918B2 (en) 2014-01-24 2016-10-18 Ii-Vi Incorporated Substrate including a diamond layer and a composite layer of diamond and silicon carbide, and, optionally, silicon
DE102014223301B8 (de) 2014-11-14 2016-06-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Substrathalter, Plasmareaktor und Verfahren zur Abscheidung von Diamant
WO2017036543A1 (de) * 2015-09-03 2017-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtungsanlage und verfahren zur beschichtung
CN107021480B (zh) * 2017-04-26 2019-01-08 金华职业技术学院 一种用于沉积制备金刚石的反应器
CN108554334B (zh) * 2018-04-20 2021-06-11 长沙新材料产业研究院有限公司 一种mpcvd合成设备及合成温度控制方法
CN108840321A (zh) * 2018-07-10 2018-11-20 中喜(宁夏)新材料有限公司 天然气基石墨烯纳米金钢石联产炭黑的方法
DE102018121854A1 (de) * 2018-09-07 2020-03-12 Aixtron Se Verfahren zum Einrichten oder zum Betrieb eines CVD-Reaktors
CN109678150B (zh) * 2018-12-19 2022-05-27 长沙新材料产业研究院有限公司 金刚石合成用的衬底、温度均匀性控制装置及合成设备
CN110714225B (zh) * 2019-10-31 2021-10-01 长沙新材料产业研究院有限公司 一种金刚石生长托盘和系统
RU2762222C1 (ru) * 2019-11-05 2021-12-16 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН) СВЧ плазменный реактор с регулированием температуры косвенного нагрева подложки
CN111394792B (zh) * 2020-01-17 2023-10-24 北京大学东莞光电研究院 一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法
CN112030146A (zh) * 2020-08-04 2020-12-04 西安电子科技大学芜湖研究院 一种基于plc冷却装置的金刚石生长控制方法及装置
RU2763103C1 (ru) * 2020-08-27 2021-12-27 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт общей физики им. А.М. Прохорова Российской академии наук" (ИОФ РАН) Способ контроля и управления температурным режимом ростовой поверхности подложки
CN113058506B (zh) * 2021-03-23 2022-05-20 湖州中芯半导体科技有限公司 一种mpcvd金刚石高效合成工艺及其装置
CN115142039A (zh) * 2021-03-31 2022-10-04 苏州贝莱克晶钻科技有限公司 Cvd钻石及其制作方法、改进钻石光学性质的方法
CN114772592B (zh) * 2022-06-21 2022-09-16 成都沃特塞恩电子技术有限公司 钻石培育设备调节方法、装置、电子设备及存储介质
CN117535791A (zh) * 2023-12-06 2024-02-09 广东省新兴激光等离子体技术研究院 基于mpcvd的生长单晶金刚石材料的基台及其方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927754B2 (ja) * 1981-12-17 1984-07-07 科学技術庁無機材質研究所長 ダイヤモンドの合成法
US5099788A (en) 1989-07-05 1992-03-31 Nippon Soken, Inc. Method and apparatus for forming a diamond film
JP2833164B2 (ja) * 1989-07-05 1998-12-09 株式会社日本自動車部品総合研究所 ダイヤモンド膜の製造装置および製造方法
US5209182A (en) 1989-12-01 1993-05-11 Kawasaki Steel Corporation Chemical vapor deposition apparatus for forming thin film
US5704976A (en) 1990-07-06 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy High temperature, high rate, epitaxial synthesis of diamond in a laminar plasma
JPH04367592A (ja) * 1991-06-14 1992-12-18 Kawasaki Steel Corp 単結晶ダイヤモンド膜の合成方法
JPH05105584A (ja) * 1991-10-18 1993-04-27 Tokai Carbon Co Ltd 合成ダイヤモンド析出用基体の温度調整法
JPH06183887A (ja) * 1992-12-16 1994-07-05 Idemitsu Petrochem Co Ltd ダイヤモンドの合成装置
JP3143252B2 (ja) * 1993-02-24 2001-03-07 三菱電機株式会社 硬質炭素薄膜形成装置およびその形成方法
CN1067119C (zh) * 1996-03-20 2001-06-13 中国科学院金属研究所 一种大面积高速度热丝化学气相沉积金刚石的方法及设备
CN2361640Y (zh) * 1998-01-22 2000-02-02 河北省机电一体化中试基地 一种气相生长金刚石膜的反应室
AU1348901A (en) 1999-10-28 2001-05-08 P1 Diamond, Inc. Improved diamond thermal management components
UA81614C2 (ru) * 2001-11-07 2008-01-25 Карнеги Инститьюшн Ов Вашингтон Устройство для изготовления алмазов, узел удержания образца (варианты) и способ изготовления алмазов (варианты)
JP3551177B2 (ja) * 2001-11-30 2004-08-04 株式会社豊田自動織機 フロントライト用導光板

Also Published As

Publication number Publication date
UA81614C2 (ru) 2008-01-25
JP2006219370A (ja) 2006-08-24
WO2003040440A2 (en) 2003-05-15
WO2003040440A3 (en) 2004-03-04
US6858078B2 (en) 2005-02-22
US7235130B2 (en) 2007-06-26
US20050160969A1 (en) 2005-07-28
US7452420B2 (en) 2008-11-18
US20070193505A1 (en) 2007-08-23
EP1444390B1 (en) 2009-12-30
JP2005508279A (ja) 2005-03-31
JP4494364B2 (ja) 2010-06-30
CN1296528C (zh) 2007-01-24
US20090038934A1 (en) 2009-02-12
CN1608148A (zh) 2005-04-20
US20030084839A1 (en) 2003-05-08
EP1444390A2 (en) 2004-08-11
TW200301157A (en) 2003-07-01
DE60234949D1 (de) 2010-02-11
TWI239266B (en) 2005-09-11
KR20040076250A (ko) 2004-08-31
ATE453741T1 (de) 2010-01-15
ZA200404243B (en) 2005-03-30
KR100942279B1 (ko) 2010-02-16
CA2466077C (en) 2011-01-04
RU2004117077A (ru) 2005-04-10
RU2302484C2 (ru) 2007-07-10
AU2002361594B2 (en) 2007-09-06
CA2466077A1 (en) 2003-05-15
HK1075072A1 (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP3834314B2 (ja) ダイヤモンド製造用装置及び方法
JP5296533B2 (ja) 高成長速度での無色単結晶cvdダイヤモンド
AU2002361594A1 (en) Apparatus and method for diamond production
JP5269605B2 (ja) 速い成長速度で製造される単結晶cvdダイヤモンドに基づく新たなダイヤモンドの利用/用途
AU2007234618B2 (en) Apparatus and Method for Diamond Production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050725

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent or registration of utility model

Ref document number: 3834314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term