CN100457983C - 浸埋式固态碳源制备单晶金刚石的方法 - Google Patents

浸埋式固态碳源制备单晶金刚石的方法 Download PDF

Info

Publication number
CN100457983C
CN100457983C CNB2007100647280A CN200710064728A CN100457983C CN 100457983 C CN100457983 C CN 100457983C CN B2007100647280 A CNB2007100647280 A CN B2007100647280A CN 200710064728 A CN200710064728 A CN 200710064728A CN 100457983 C CN100457983 C CN 100457983C
Authority
CN
China
Prior art keywords
graphite
carbon
crystal diamond
base material
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007100647280A
Other languages
English (en)
Other versions
CN101070613A (zh
Inventor
陈广超
李彬
吕反修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CNB2007100647280A priority Critical patent/CN100457983C/zh
Publication of CN101070613A publication Critical patent/CN101070613A/zh
Application granted granted Critical
Publication of CN100457983C publication Critical patent/CN100457983C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种浸埋式固态碳源制备单晶金刚石的方法,属于金刚石制备技术领域。采用氩气和氢气混合气体作为等离子体源气体,在混合气体中保持氩气和氢气的流量比为Ar/H2=2-4;氩气和氢气混合气体采用直流电弧激发方式,激发功率在10-30kW,使之受激为等离子体;沉积腔的原始真空在10-1Pa以下;采用无定形碳作为碳源,覆盖在钻有微孔的石墨支撑台上,无定形碳以范德华力和石墨表面相连,石墨支撑台上的微孔直径为2-8mm;基材为(100)晶面的单晶金刚石,通过钎焊固定在钼金属的基材托杆上,基材通过石墨支撑台上的微孔,浸埋在无定形碳中,在制备过程中基材温度保持在900-1100℃之间。优点在于,大量节约甲烷(CH4)的用量。

Description

浸埋式固态碳源制备单晶金刚石的方法
技术领域:
本发明属于金刚石制备技术领域,特别是提供了一种浸埋式固态碳源制备单晶金刚石的方法,在等离子体环境中,采用固态碳源制备单晶金刚石。
技术背景:
等离子体增强化学气相沉积金刚石多以气态碳氢化合物为碳源(J.C.Angus和C.C.Hayman,Science,241,(1988),913),近来,为了提高碳输运量,增加金刚石生长速度,一些液态碳源也被使用(M.Asmann,D.Kolman,J.Heberlein和E.Pfender,Diamond and Related Materials,9,(2000),13)。但是,还没有采用固态碳源进行等离子体增强化学气相沉积单晶金刚石的报道。
在制备单晶金刚石的技术中,固态碳源只有在高温高压方法(HTHP)中才能使用,并且需要借助催化剂的催化作用才能实现相转变从而得到单晶金刚石。(H.Sumiya,et al,J.Crystal Growth,237-239,(2002),1281)相对于高温高压方法,等离子体增强化学气相沉积方法(PECVD),其环境压强都低于大气压,称为低压沉积法(B.V.Spitsyn,L.L.Bouilov,and B.V.Derjaguin,J.Crystal.Growth,52(1981)219以及S.Matsumoto,Y.Sato,M.Kamo and N.Setaka,Jap.J.Appl.Phys.,21(4)(1982)L183)。以往认为在这样的环境下,碳基团是不能通过固态碳源来提供的,只有采用气态碳氢化合物(通常为甲烷(CH4))或者液态碳源,通过高温使其分解和离化,成为碳基团(J.C.Angus和C.C.Hayman,Science,241,(1988),913以及M.Asmann,D.Kolman,J.Heberlein和E.Pfender,Diamond and Related Materials,9,(2000),13)。这样的碳源因为密度低,碳基团的提供量少,使金刚石的生长速度很低。在这样的条件下,提高生长速度,往往造成气源和液源的大量浪费。
发明内容
发明目的在于提供一种浸埋式固态碳源制备单晶金刚石的方法,在等离子体增强化学气相沉积方法中使用固态碳源制备单晶金刚石。解决了气源和液源大量浪费的问题。
本发明的制备方法是在真空沉积系统中完成的。采用氩气(Ar)和氢气(H2)混合气体作为等离子体源气体,在混合气体中保持氩气和氢气的流量比为Ar/H2=2-4。氩气(Ar)和氢气(H2)混合气体采用直流电弧(dc arc)激发方式,激发功率在10-30kW,使之受激为等离子体。沉积腔的原始真空在10-1Pa以下,等离子体点燃后,沉积腔压强在100-104Pa之间。采用无定形碳(amorphous carbon)作为碳源,覆盖在钻有微孔的石墨支撑台上,无定形碳以范德华力和石墨表面相连,石墨支撑台上的微孔直径为2-8mm。基材为(100)晶面的单晶金刚石,通过钎焊固定在钼(Mo)金属的基材托杆上,基材通过石墨支撑台上的微孔,浸埋在无定形碳中,在制备过程中基材温度保持在900-1100℃之间。
优点和积极效果:
本方法提供了一条在等离子体增强化学气相沉积方法中使用固态碳源制备单晶金刚石的途径,从而大量节约甲烷(CH4)的用量。
附图说明
图1是沉积过程中沉积腔中的结构图。其中,直流电弧等离子体炬1,混合气体在此被激发;混合气体被激发后的等离子体2;覆盖无定形碳的石墨支撑台3;钎焊在钼基材托杆上的(100)晶面的单晶金刚石以及钼基材托杆4;支撑基材和托杆的样品台5,采用水冷。
图2是作为碳源的无定形碳的扫描电子显微形貌。从中可以看到,无定形碳集聚成球状,并束集成相互分离的束。
图3是无定形碳和石墨支撑台表面连接情况的高分辨电子扫描图象。可以看到无定形碳没有晶体结构,其与石墨之间没有晶体取向关系。其中石墨晶体的晶面间距为0.336nm。
图4是所制备的金刚石的光学照片,从中可以看到,所制备的金刚石厚度为600μm。
图5是所制备的金刚石的Raman谱结果。从中可以看到在1332.2cm-1附近出现了波数为1332.6cm-1的尖锐的谱峰,而波数1332.2cm-1的峰位是金刚石的特征峰,这说明所制备的晶体为金刚石。图中峰的波数大于1332.2cm-1意味着所制备的金刚石中存在着压应力。
图6是所制备的金刚石的X-射线(XRD)谱结果。从中可以看到,在2θ=43°附近出现了衍射峰,而这个衍射峰对应于金刚石的(111)晶面。除此之外,在XRD谱上没有其他晶面衍射峰,这意味着所制备的金刚石为单晶体金刚石。
具体实施方式
以(100)晶面的单晶金刚石为基材,浸埋在无定形碳中,制备温度为1090℃,沉积腔初始的真空度为9×10-2Pa,等离子体源气体为氩气(Ar)和氢气(H2)混合气体,流量分别为:Ar为6slm;H2为3slm;Ar/H2=2。采用直流电弧激发方式,激发功率为30kW,使混合气体成为等离子体。沉积腔中的压强为8000Pa。沉积时间为5小时。

Claims (1)

1、一种浸埋式固态碳源制备单晶金刚石的方法,其特征在于,采用氩气和氢气混合气体作为等离子体源气体,在混合气体中保持氩气和氢气的流量比为Ar/H2=2-4;氩气和氢气混合气体采用直流电弧激发方式,激发功率在10-30kW,使之受激为等离子体;沉积腔的原始真空在10-1Pa以下,等离子体点燃后,沉积腔压强在100-104Pa之间;采用无定形碳作为碳源,覆盖在钻有微孔的石墨支撑台上,无定形碳以范德华力和石墨表面相连,石墨支撑台上的微孔直径为2-8mm;基材为(100)晶面的单晶金刚石,通过钎焊固定在钼金属的基材托杆上,基材通过石墨支撑台上的微孔,浸埋在无定形碳中,在制备过程中基材温度保持在900-1100℃之间。
CNB2007100647280A 2007-03-23 2007-03-23 浸埋式固态碳源制备单晶金刚石的方法 Expired - Fee Related CN100457983C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100647280A CN100457983C (zh) 2007-03-23 2007-03-23 浸埋式固态碳源制备单晶金刚石的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100647280A CN100457983C (zh) 2007-03-23 2007-03-23 浸埋式固态碳源制备单晶金刚石的方法

Publications (2)

Publication Number Publication Date
CN101070613A CN101070613A (zh) 2007-11-14
CN100457983C true CN100457983C (zh) 2009-02-04

Family

ID=38898022

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100647280A Expired - Fee Related CN100457983C (zh) 2007-03-23 2007-03-23 浸埋式固态碳源制备单晶金刚石的方法

Country Status (1)

Country Link
CN (1) CN100457983C (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109454228B (zh) * 2018-11-02 2020-12-08 江苏锋泰工具有限公司 一种涂覆功能梯度涂层的金刚石
CN112877773B (zh) * 2021-01-13 2022-05-24 哈尔滨工业大学 利用固态碳源的无气流mpcvd单晶金刚石生长方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417655A (ja) * 1990-05-11 1992-01-22 Sumitomo Electric Ind Ltd 複合材料及びその製造方法
US5704976A (en) * 1990-07-06 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy High temperature, high rate, epitaxial synthesis of diamond in a laminar plasma
CN1608148A (zh) * 2001-11-07 2005-04-20 华盛顿卡内基研究所 生产金钢石的装置和方法
CN1654321A (zh) * 2004-12-22 2005-08-17 哈尔滨工业大学 一种低压力下烧结碳纳米管直接合成金刚石的方法
CN1763267A (zh) * 2005-10-10 2006-04-26 北京科技大学 大颗粒单晶金刚石的直流等离子体沉降制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417655A (ja) * 1990-05-11 1992-01-22 Sumitomo Electric Ind Ltd 複合材料及びその製造方法
US5704976A (en) * 1990-07-06 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy High temperature, high rate, epitaxial synthesis of diamond in a laminar plasma
CN1608148A (zh) * 2001-11-07 2005-04-20 华盛顿卡内基研究所 生产金钢石的装置和方法
CN1654321A (zh) * 2004-12-22 2005-08-17 哈尔滨工业大学 一种低压力下烧结碳纳米管直接合成金刚石的方法
CN1763267A (zh) * 2005-10-10 2006-04-26 北京科技大学 大颗粒单晶金刚石的直流等离子体沉降制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MPCVD法纳米金刚石膜的制备及分析. 吕反修等.人工晶体学报,第29卷第1期. 2000
MPCVD法纳米金刚石膜的制备及分析. 吕反修等.人工晶体学报,第29卷第1期. 2000 *
Nucleation and Bulk Film Growth Kinetics of NanocrystallineDiamond Prepared by Microwave Plasma enhanced CVD onSilicon Substrates. Joungchel Lee等.Appl. Phys. Lett.,Vol.69 . 1996
Nucleation and Bulk Film Growth Kinetics of NanocrystallineDiamond Prepared by Microwave Plasma enhanced CVD onSilicon Substrates. Joungchel Lee等.Appl. Phys. Lett.,Vol.69 . 1996 *

Also Published As

Publication number Publication date
CN101070613A (zh) 2007-11-14

Similar Documents

Publication Publication Date Title
KR101019029B1 (ko) 그라핀 하이브리드 물질 및 그 제조 방법
CN100575545C (zh) 低成本生长高品质纳米金刚石膜的方法
CN101979315B (zh) 一种单原子层石墨烯薄膜的制备方法
CN112877773B (zh) 利用固态碳源的无气流mpcvd单晶金刚石生长方法
Zhou et al. Manipulation of the equilibrium between diamond growth and renucleation to form a nanodiamond/amorphous carbon composite
KR19990073593A (ko) 탄소나노튜브의 대량합성을 위한 화학기상증착장치.
US9643847B2 (en) Method for growth of vertically aligned carbon nanotubes on diamond substrates
Tiwari et al. Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition
CN100457983C (zh) 浸埋式固态碳源制备单晶金刚石的方法
KR20040042791A (ko) 섬유형 고체 탄소 집합체 및 그의 제조 방법
Chen et al. Plasma-induced low-temperature growth of graphitic nanofibers on nickel substrates
Liao et al. Characteristics of aligned carbon nanotubes synthesized using a high-rate low-temperature process
Pradhan et al. Grain-Size-Dependent Diamond− Nondiamond Composite Films: Characterization and Field-Emission Properties
Yang et al. Simultaneous growth of diamond thin films and carbon nanotubes at temperatures⩽ 550° C
Yao et al. Deposition of microcrystalline diamond films in H2 microwave plasma with graphite powder as hydrocarbon precursor
Hou et al. Preparation of diamond films by hot filament chemical vapor deposition and nucleation by carbon nanotubes
Tzeng et al. Graphene induced diamond nucleation on tungsten
KR100827951B1 (ko) 니켈 포일에 직접 탄소나노튜브를 합성하는 방법
KR19990073589A (ko) 저압화학기상증착법에 의한 탄소나노튜브의 대량 합성.
Bogdanowicz Advancements in diamond-like carbon coatings
Choi et al. Growth of carbon nanotubes on glass substrate by MPECVD
Liu et al. A study on nano-nucleation and interface of diamond film prepared by hot filament assisted with radio frequency plasma
Wei et al. Deposition of diamond films by microwave plasma CVD on 4H-SiC substrates
Albella et al. Deposition of diamond and boron nitride films by plasma chemical vapour deposition
CN109573981B (zh) 一种硅化物生长单壁碳纳米管的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090204

Termination date: 20110323