RU2762222C1 - СВЧ плазменный реактор с регулированием температуры косвенного нагрева подложки - Google Patents

СВЧ плазменный реактор с регулированием температуры косвенного нагрева подложки Download PDF

Info

Publication number
RU2762222C1
RU2762222C1 RU2019135283A RU2019135283A RU2762222C1 RU 2762222 C1 RU2762222 C1 RU 2762222C1 RU 2019135283 A RU2019135283 A RU 2019135283A RU 2019135283 A RU2019135283 A RU 2019135283A RU 2762222 C1 RU2762222 C1 RU 2762222C1
Authority
RU
Russia
Prior art keywords
substrate
ring
temperature
holder
exorbitant
Prior art date
Application number
RU2019135283A
Other languages
English (en)
Inventor
Евгений Евсеевич Ашкинази
Виктор Григорьевич Ральченко
Станислав Геннадиевич Рыжков
Андрей Петрович Большаков
Вадим Станиславович Седов
Виталий Иванович Конов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН)
Priority to RU2019135283A priority Critical patent/RU2762222C1/ru
Application granted granted Critical
Publication of RU2762222C1 publication Critical patent/RU2762222C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Изобретение относится к СВЧ плазменному реактору для осаждения алмазной пленки на подложку из твердого сплава, выполненному с возможностью регулирования температуры косвенного нагрева подложки. СВЧ плазменный реактор содержит герметичную осесимметричную камеру, центральная часть которой является СВЧ резонатором, и установленные в указанной камере подложкодержатель для размещения подложки или группы подложек из твердого сплава, представляющий собой радиальный волновод с СВЧ полем, и запредельное проводящее кольцо из тугоплавкого материала в виде волновода. Подложкодержатель установлен в указанной камере на охлаждаемой проводящей платформе. Упомянутое запредельное проводящее кольцо выполнено с возможностью размещения в его отверстии подложки или группы подложек из твердого сплава. Запредельное проводящее кольцо регулируемо по температуре по обратной связи с инфракрасным пирометром. Запредельное проводящее кольцо установлено на одном конце подвижного держателя из СВЧ прозрачного материала, а второй конец упомянутого держателя соединен с актюатором, взаимодействующим по сигналу от инфракрасного пирометра. Основание запредельного проводящего кольца обращено к подложкодержателю подложки. Подложка ориентирована перпендикулярно держателю запредельного проводящего кольца. Высота H перемещения упомянутого кольца аксиально СВЧ резонатору составляет 0,75h<H≤1,75h высоты h одной или группы упомянутых подложек, установленных в отверстие кольца. Обеспечивается управление и стабилизация температуры нагрева подложки, лежащей на базовой проводящей платформе реактора внутри запредельного проводящего кольца, стабилизация скорости роста алмазной пленки для получения однородной структуры однослойного или многослойного покрытия с точностью стабилизации температуры ±10 °С на 100 мкм смещения запредельного кольца. 7 ил., 1 табл., 1 пр.

Description

Предлагаемое изобретение относится к СВЧ реакторам для плазмохимического синтеза материалов из газовой фазы, использующих объемно-резонаторный метод передачи СВЧ энергии в область подложки лежащей на охлаждаемой проводящей платформе и ее косвенным нагревом излучением плазмы. Нагрев подложки излучением обеспечивается с помощью окружающего ее «запредельного» проводящего кольца, с помощью образуемой им высокотемпературной плазмы, служащей источником косвенного нагрева. Одной из технологических задач является осаждение углеродсодержащей пленки на подложках из твердого сплава, в том числе сложной формы с тонким лезвием, или на группе таких подложек с высокой адгезией покрытия к подложке. При этом неравномерный профиль поперечного сечения тонкого лезвия, ухудшает условия теплоотвода, что стимулирует дополнительный нагрев тонкого лезвия вплоть до его перегрева. Для предотвращения перегрева, нарушения адгезии и обеспечения роста алмазной пленки с заданной скоростью на контролируемых участках рельефа, необходимо устанавливать нужную температуру в заданном срезе поперечного сечения, в т.ч. на выступающей части рельефа, не допускающую перегрев подложки, как при единичном росте, так и на группе подложек, не изменяя заранее заданных режимов роста.
Известен держатель подложки с контролем и управлением температуры (заявка РСТ WO 9737375), в котором держатель подложки содержит множество термоэлектрических модулей, находящихся в тепловом контакте с поверхностью держателя подложки. Для поддержания необходимой однородной по поверхности температуры низко аспектной подложки или группы таких подложек, постоянное внешнее управление, не только усложняет систему и снижает ее надежность, но становится не эффективным. Кроме того, термоэлектрические модули могут влиять на СВЧ поле разряда, создавая помехи.
Известен держатель подложки (Заявка ЕР 0867538 (А1)), в котором для равномерного распределения тепла держатель подложки,; расположенный между источником нагрева и полупроводниковой подложкой, выполнен из материала с проводимостью выше, чем у графита. Однако данное решение не предполагает возможности эффективного отвода излишка тепла для поддержания оптимальной температуры из зон локального перегрева связанного с краевым эффектом вызванным возмущением СВЧ поля при внесении низко аспектной подложки или группы таких подложек.
Известен СВЧ плазменный реактор, содержащий герметичную осесимметричную камеру с каналами для газа и установленные в ней радиальный волновод, центральная часть которого является СВЧ резонатором, и держатель подложки (патент RU 2403318 С2), который благодаря системе теплообмена управляет, как съемом лишнего тепла с держателя подложки, так и ее дополнительным подогревом, что позволяет дополнительно выравнивать температурное поле, при росте на высоко аспектных подложках. В случае роста алмазного покрытия на подложках меньших размеров, например с низкоаспектной формой геометрии, равномерность температурного поля нарушается, на периферии подложки в результате краевого эффекта образуются зоны перегрева. В этом случае отвод излишек тепла за счет теплопроводности подложки в охлаждаемый держатель становится не эффективным, а локальный перегрев ростовой поверхности приводит к нарушению кристаллической структуры, однородности зернового состава и качества алмазной пленки, а также алмазного покрытия.
Известен СВЧ плазменный реактор (Патент RU 2 644 216 С2) с высокой однородностью температурного поля на поверхности равновысоких подложек с низкоаспектной геометрией формы.
Такой СВЧ плазменный реактор, содержащий герметичную осесимметричную камеру, центральная часть которой является СВЧ резонатором и установленный в ней охлаждаемый держатель подложки, представляющий радиальный волновод, как часть СВЧ поля, в СВЧ резонатор аксиально реактору введено «запредельное» проводящее кольцо в виде плазмообразующей кассеты с наружным диаметром D, пропорциональным длине волны СВЧ поля, имеющее внутреннее отверстие произвольной формы, причем вышеупомянутая кассета установлена так, что ее основание обращено к держателю подложки, а оси отверстий ориентированы перпендикулярно ей, при этом высота Η кассеты составляет 1,75h≤Η>0,75h высоты подложки h, установленной в отверстие кассеты.
Задачей изобретения является создание СВЧ плазменного реактора с регулированием температурного поля подложки за счет позиционирования аксиально резонатору «запредельного» проводящего кольца и создаваемого им косвенного нагрева излучением подложки с тонким лезвием, обеспечение управления и стабилизации температуры нагрева любой подложки лежащей на базовой проводящей платформе реактора, в т.ч. переменного сечения, внутри запредельного проводящего кольца, стабилизации скорости роста алмазной пленки для получения однородной структуры однослойного или мультислойного покрытия, как при одиночном, так и при групповом осаждении из газовой фазы в СВЧ-плазме, с точностью стабилизации температуры ±10°С на 100 мкм смещения запредельного кольца.
На фигуре 1 представлено схематическое изображение поперечного сечения СВЧ плазменного реактора для единичного или группового роста алмазных покрытий на низкоаспектных подложках с рельефной формой ростовой поверхности и регулированием температуры подложки в системе обратной связи с инфракрасным пирометром с помощью «левитации» проводящего запредельного кольца аксиально резонатору. Подложка (подложки) 1 установлена в отверстие запредельного проводящего кольца 2 и нижним основанием лежит в центральной области базовой проводящей платформы реактора на охлаждаемом постаменте, который выполнен из молибдена и охлаждается путем теплопередачи в нижележащий теплообменник, с которым плотно соприкасается. Запредельное проводящее кольцо 2 лежит на подвижном СВЧ прозрачном держателе 10, связанным с актуатором 11. Запредельное проводящее кольцо 2 размещено аксиально резонатора СВЧ реактора и образует на участке генерации стоячей волны контур плазмы 5. Откачка воздуха в реакторе обеспечивается вакуумной системой 6. Подача газовой смеси осуществляется через форсунки 3. Мощность плазмы поддерживается микроволновой энергией 7 подводимой через СВЧ прозрачное цилиндрическое окно 8. Визуальный контроль за объектами внутри плазменного реактора выполняется через кварцевые окна 4. Температура подложки измеряется с помощью ИК пирометра 9 и регистрируется персональным компьютером 12. Запредельное проводящее кольцо 2 имеет размеры: высоту Н, диаметр D. Высота кольца 2 связана с максимальной высотой подложки hмакс или с сечением, требующим контроля и управления температурой. На первоначальном этапе роста данное сечение принимается за нулевое и совпадает с верхним абрисом кольца. Высота hмакс принимается с учетом выступающей части рельефа тонкого лезвия. Диаметр плазмообразующей кассеты принимается кратным длине волны λ, D=n⋅λ, где n коэффициент кратности для данной частоты СВЧ поля.
Кольцо из тугоплавкого металла представляет собой короткозамкнутый отрезок круглого запредельного волновода, в котором возбуждается осесимметричное поле волны типа Ε01 вертикальной электрической компонентой внешнего СВЧ поля. Внутри кольца СВЧ поле в направлении оси распространяться не может, так как постоянная распространения волны в запредельном волноводе β=0, т.е. фаза волны по высоте кольца не изменяется, а ее амплитуда экспоненциально затухает. С учетом затухания поля внутри кольца заполненного плазмой, которая смещает показатель преломления пространства в сторону уменьшения показателя преломления n, длина волны в плазме становится больше, чем в вакууме.
При включении системы в реактор подают газовую смесь и микроволновую энергию. В центральной части реактора СВЧ волна распространяется по кольцу (2) образуя плазму (5) с плотностью мощности PIV, квт/см3, где Р - подведенная мощность, V - объем плазменного облака, являющуюся источником тепла для активации газовой смеси и осаждения алмаза на ростовой поверхности подложки (1), расположенных в отверстиях кассеты. Сферический кант плазмы (5) образуется СВЧ полем обтекающим периметр кольца на высоте Н. Форму поперечного сечения контура диаметром D=n⋅λ можно описать каноническим уравнением эллипса с большой (а=2) и малой (в=1) полуосями характеризируемым коэффициентом сжатия и фокальным периметром равным
Figure 00000001
, т.е.
х2/222/12=1,
или практически измерить и контролировать методом оптической электронной спектроскопии (ОЭС).
В случае рельефной поверхности роста, не все участки подложек лежащих в плоскости большой полуоси эллипса равно удалены от контура плазмы, которая служит для них источником косвенного нагрева. Сильнее нагревается выступающая часть рельефа. Косвенный нагрев исключает локальный перегрев от краевого эффекта, но не дает возможность одновременно осаждать равномерные покрытия на выступающих и нижележащих частях подложки. Массивный постамент, выполненный из молибдена, выравнивает температуру по основанию подложек 2, за счет теплопередачи. Таким образом, средняя температура стабилизируется лишь по основанию подложки, но в плоскости роста пленки на выступающей части подложки (1) остается неоднородной. Косвенный нагрев неподвижного «запредельного» проводящего кольца не позволяет корректировать температуру нагрева по всей высоте ростовой поверхности подложки, включая выступающую часть рельефа и температурного поля внутри критического диапазона высот и получать однородные пленки с заданными структурными характеристиками поликристаллических зерен. Затруднено управление скоростью роста и размером поликристаллических зерен. Без ущерба качеству алмазной пленки температурой можно управлять лишь в пределах критического диапазона режимных параметров (мощность, давление газовой смеси, расход газа и др.). Выход за пределы диапазона соотношения высот кольца и подложки в меньшую сторону приводит к перегреву выступающей части рельефа подложки за счет приближения к контуру плазмы, выход в большую сторону наоборот приводит к падению температуры ниже критической, при которой в покрытии возможно образование трещин, при существенном снижении средней температуры образца. Предлагаемое техническое решение обеспечивает высокую производительность и качество получения алмазных пленок, позволяет получать в СВЧ плазменном реакторе с косвенным нагревом подложки однородные пленки на высоко- и на низкоаспектных подложках с любым, в т.ч и со сложным профилем рельефа и реализовать метод группового роста в запредельном кольце максимального размера с наибольшей производительностью.
Пример реализации технического решения.
Был произведен сравнительный эксперимент по росту низко аспектных подложек с выступающей частью рельефа в СВЧ плазменном реакторе с поддержанием температуры тонкого лезвия в стационарном режиме и без него. Использовали образцы в виде сменных режущих пластин из твердого сплава (WC+Co) типа Nice Cat или Tungaloy (Фигура 2). Предназначенные для использования в специальных корпусных фрезах для обработки композиционных материалов, эти пластины содержат две вершины А и Б, с существенно выступающей частью рельефа. Отличие высот относительно основания резца составляло более чем на 1 мм (3,69-2,57 мм).
Поддержание температуры в заданном сечении тонкого лезвия в стационарном режиме осуществляли путем изменения положения верхнего контура проводящего запредельного кольца по обратной связи с двухлучевым инфракрасным пирометром. Подвижное плазмообразующее кольцо (2) с помощью СВЧ прозрачного держателя (10) перемещалось аксиально резонатора реактора. Смещение в пределах 3000 мкм, обеспечивало интегральное изменение температуры подложки в среднем на 225°С. Фотография плазмохимического осаждения в СВЧ реакторе с подвижным плазмообразующим кольцом на резец из твердого сплава (1) расположенного внутри плазмообразующего кольца (2) в двух крайних положениях, нижнем (а) положении h0 и в верхнем (б) положении Δh+xi показаны на Фигуре 3, где 1 - подложка из твердого сплава с тонким лезвием; 10 - СВЧ прозрачный держатель плазмообразующего кольца; 2 - проводящее плазмообразующее кольцо; 5 - плазменное облако. Для испытания реакции системы на установку требуемого позиционирования были с помощью программы последовательно установлены следующие температуры нагрева подложки 1300-1500-1100-1500-1300°С. Протокол регистрации средней температуры нагрева резца из твердого сплава в процессе роста АП, с автоматическим плавающим смещением «левитирующего» запредельного кольца аксиально резонатору СВЧ реактора (ход кольца 3000 мкм) по обратной связи с инфракрасным пирометром представлен на Фигуре 4. Для испытания реакции системы на точность регулирования температуры на тонком лезвии проведен эксперимент и зафиксирована протоколом регистрации температура в т. А вершины резца. Точность поддержания температуры плавающим кольцом составила ±10°С при заданной температуре роста 790°С (Фигура 5).
Рост поликристаллического алмазного покрытия производился в плазмохимическом реакторе ARDIS-100 (ООО "Оптосистемы", 5 кВт, 2,45 ГГц). Наружный диаметр подвижного плазмообразующего кольца толщиной 2 мм, составлял 80, а внутренний - 60 мм. Диаметр кольца был кратный длине волны на частоте 2,45 ГГц. Синтез алмазных пленок проводили на постоянном режиме роста: СВЧ мощность 2,5-2,9 кВт, давление в камере 9,3-10,6 кПа, газовая смесь Н2/СН4=96/4 (%), расход газа 1,0 дм3/мин, длительность процесса осаждения - 5 час. Сравнивали рост, в одном случае, на резцах, окруженных сменным кольцом постоянной высоты, в другом, рост на резцах, которые находились внутри подвижного (плавающего) проводящего кольца, электрически не связанного с базовой проводящей платформой. Контролировали температуру на двух вершинах резца (Фигура 2) разной высоты А и Б. В обоих случаях контроль температуры ростовой поверхности подложки осуществляли через прорезь в плазмообразущем кольце шириной 3 мм инфракрасным пирометром Williamson, модель PRO-81-35-С, диаметр опорного пятна лазера 2,0 мм, направление луча на боковую поверхность образца осуществляли через боковое окон камеры CVD-реактора (Фигура 1). Чтобы избежать перегрева наиболее высокой вершины А, резец (Фигура 6, а) окружили кольцом высотой 6,49 мм, которое на 2,8 мм превышало точку А резца, температура нагрева в процессе роста составила 725°С. В этом случае расстояние до вершины Б составило 3,83 мм, что обеспечило ее нагрев лишь до 620°С. За время роста 5 часов было получено алмазное покрытие на двух вершинах с различным качеством. На вершине режущей кромки А образовалось сплошное покрытие с хорошей адгезией к подложке, а на вершине Б, из-за низкой температуры и малой скорости роста не качественное, из-за не сплошности покрытия (Фигура 7), когда нуклеация алмаза происходит только на части поверхности подложки, оставляя незарощенные алмазом участки.
Рост с неподвижным кольцом повторили с уменьшением высоты кольца до вершины Б с 3,83 до 2,92 мм. В этом случае, температура вершины Б повысилась до 750°С, но одновременно расстояние до кольца уменьшилось до 1,8 мм, что привело к росту температуры уже на вершине А до 820°С. В результате алмазное покрытие из-за перегрева отслоилось (Фигура 6, в).
Эксперимент с плавающим кольцом за счет оперативного изменения расстояния до плавающего кольца обеспечил рост алмазного покрытия на двух режимах (Таблица 1). На режиме нагрева вершины А до температуры 750°С в течении 0,5 часа. И дальнейшего роста с уменьшением расстояния до кольца до +1.8 мм в течении 4,5 часа. Нагрев вершины А уже с выращенной алмазной пленкой толщиной 500 мкм до температуры 815±7,5°С оказался достаточным для роста качественной алмазной пленки с хорошей адгезией, и скоростью роста, превышающей скорость при температуре 720°С. В этом случае роль барьера от диффузии кобальта сыграла уже сформированная алмазная пленка. Фотография алмазной пленки на вершине резца с тонким лезвием, осажденной при температуре 815±7,5°С представлена на Фигуре 6, б.
Техническое решение основанное на использовании стационарных плазмообразующих колец одной высоты не исключает превышение требуемой температуры вершины главной режущей кромки (А) по отношению к средней температуры подложки, а любое регулирование ее значения невозможно без приостановки процесса роста (с перезапуском вакуумной системы реактора) для установки кольца нужной высоты или изменения всего комплекса режимных параметров, приводящих к изменению температуры газа в плазме, и плотности мощности, что часто не допустимо, исходя из требований к качеству алмазной пленки, в частности для обеспечения адгезионной стойкости, при росте мультислойных покрытий с подачей и без подачи в газовую смесь прекурсоров (азот, силан и т.д.) и требует периодической остановки процесса для смены высот плазмообразующих колец.
Микроструктура образцов тонкого лезвия режущих кромок (Фигура 6, а) пластин Tungalloy с CVD алмазным покрытием осажденным в режиме группового роста была исследована на микроскопе «JEOL JSM 7001F» показана на Фигуре 6, б.
На основании вышеизложенного новым достигаемым техническим результатом предполагаемого изобретения по сравнению с прототипом является
повышение качества и производительности процесса роста алмазного покрытия за счет управления и стабилизации температуры нагрева в заданной опорной точке подложки, по обратной связи с инфракрасным пирометром в т.ч. переменного сечения, лежащей на базовой проводящей платформе реактора внутри запредельного проводящего кольца, стабилизации скорости роста алмазной пленки для получения заданной структуры однослойного или мультислойного покрытия, как при одиночном, так и при групповом осаждении из газовой фазы в СВЧ-плазме, за счет левитации запредельного проводящего кольца аксиально оси резонатора реактора, при этом точность стабилизации температуры составляет ±10°С.
Figure 00000002

Claims (1)

  1. СВЧ плазменный реактор для осаждения алмазной пленки на подложку из твердого сплава, выполненный с возможностью регулирования температуры косвенного нагрева подложки, содержащий герметичную осесимметричную камеру, центральная часть которой является СВЧ резонатором, и установленные в указанной камере подложкодержатель для размещения подложки или группы подложек из твердого сплава, представляющий собой радиальный волновод с СВЧ полем, и запредельное проводящее кольцо из тугоплавкого материала в виде волновода, при этом подложкодержатель установлен в указанной камере на охлаждаемой проводящей платформе, а упомянутое запредельное проводящее кольцо выполнено с возможностью размещения в его отверстии подложки или группы подложек из твердого сплава, отличающийся тем, что запредельное проводящее кольцо регулируемо по температуре по обратной связи с инфракрасным пирометром, причем запредельное проводящее кольцо установлено на одном конце подвижного держателя из СВЧ прозрачного материала, а второй конец упомянутого держателя соединен с актюатором, взаимодействующим по сигналу от инфракрасного пирометра, при этом основание запредельного проводящего кольца обращено к подложкодержателю подложки, а подложка ориентирована перпендикулярно держателю запредельного проводящего кольца, при этом высота H перемещения упомянутого кольца аксиально СВЧ резонатору составляет 0,75h<H≤1,75h высоты h одной или группы упомянутых подложек, установленных в отверстие кольца.
RU2019135283A 2019-11-05 2019-11-05 СВЧ плазменный реактор с регулированием температуры косвенного нагрева подложки RU2762222C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019135283A RU2762222C1 (ru) 2019-11-05 2019-11-05 СВЧ плазменный реактор с регулированием температуры косвенного нагрева подложки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019135283A RU2762222C1 (ru) 2019-11-05 2019-11-05 СВЧ плазменный реактор с регулированием температуры косвенного нагрева подложки

Publications (1)

Publication Number Publication Date
RU2762222C1 true RU2762222C1 (ru) 2021-12-16

Family

ID=79175336

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019135283A RU2762222C1 (ru) 2019-11-05 2019-11-05 СВЧ плазменный реактор с регулированием температуры косвенного нагрева подложки

Country Status (1)

Country Link
RU (1) RU2762222C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3752208T2 (de) * 1986-11-10 1998-12-24 Semiconductor Energy Lab Durch Mikrowellen gesteigertes CVD-Verfahren und -Gerät
WO2003040440A2 (en) * 2001-11-07 2003-05-15 Carnegie Institution Of Washington Apparatus and method for diamond production
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus
RU2575205C1 (ru) * 2011-12-16 2016-02-20 Элемент Сикс Текнолоджиз Лимитед Монокристаллический, полученный хогф, синтетический алмазный материал
RU2644216C2 (ru) * 2016-07-15 2018-02-08 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН) СВЧ плазменный реактор для получения однородной нанокристаллической алмазной пленки

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3752208T2 (de) * 1986-11-10 1998-12-24 Semiconductor Energy Lab Durch Mikrowellen gesteigertes CVD-Verfahren und -Gerät
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus
WO2003040440A2 (en) * 2001-11-07 2003-05-15 Carnegie Institution Of Washington Apparatus and method for diamond production
RU2575205C1 (ru) * 2011-12-16 2016-02-20 Элемент Сикс Текнолоджиз Лимитед Монокристаллический, полученный хогф, синтетический алмазный материал
RU2644216C2 (ru) * 2016-07-15 2018-02-08 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук (ИОФ РАН) СВЧ плазменный реактор для получения однородной нанокристаллической алмазной пленки

Similar Documents

Publication Publication Date Title
US8668962B2 (en) Microwave plasma reactors
EP2108714B1 (en) Microwave plasma cvd system
CN110268095B (zh) 用于微波等离子体辅助沉积的模块化反应器
US11854775B2 (en) Methods and apparatus for microwave plasma assisted chemical vapor deposition reactors
JP2004244298A (ja) ダイヤモンド気相合成用基板ホルダ及びダイヤモンド気相合成方法
Zuo et al. Investigation of diamond deposition uniformity and quality for freestanding film and substrate applications
US20160177441A1 (en) Apparatus and Method of Manufacturing Free Standing CVD Polycrystalline Diamond Films
TW201332889A (zh) 利用低頻電磁波製備石墨烯之方法
Mallik et al. Influence of the microwave plasma CVD reactor parameters on substrate thermal management for growing large area diamond coatings inside a 915 MHz and moderately low power unit
RU2644216C2 (ru) СВЧ плазменный реактор для получения однородной нанокристаллической алмазной пленки
US10704161B2 (en) Toroidal plasma processing apparatus with a shaped workpiece holder
RU2762222C1 (ru) СВЧ плазменный реактор с регулированием температуры косвенного нагрева подложки
SE502094C2 (sv) Metod för diamantbeläggning med mikrovågsplasma
JP6951549B2 (ja) 炭素化合物の堆積及び処理のためのマイクロ波リアクタ
Nad et al. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions
CN111005065B (zh) 一种金刚石膜的等离子体电弧沉积装置与方法
RU2763103C1 (ru) Способ контроля и управления температурным режимом ростовой поверхности подложки
US11515129B2 (en) Radiation shield modification for improving substrate temperature uniformity
JP4366500B2 (ja) マイクロ波プラズマcvd装置の基板支持体
KR101866869B1 (ko) SiC 소재 및 SiC 복합 소재
JP4729741B2 (ja) ダイヤモンド製造方法
KR20010024423A (ko) 개량된 연속 주조 주형 시스템 및 관련 방법
Tzeng et al. Synthesis of Large Area Diamond Films By A Low Pressure DC Plasma Jet
KR20220112778A (ko) 다결정 다이아몬드 성장에 의해 지원되는 단결정 다이아몬드의 성장 방법
JP2009013003A (ja) ダイヤモンド製造方法及び製造装置