WO2004064180A1 - Materiau d'electrode positive pour accumulateur au lithium et procede permettant de produire ce materiau - Google Patents

Materiau d'electrode positive pour accumulateur au lithium et procede permettant de produire ce materiau Download PDF

Info

Publication number
WO2004064180A1
WO2004064180A1 PCT/JP2003/016416 JP0316416W WO2004064180A1 WO 2004064180 A1 WO2004064180 A1 WO 2004064180A1 JP 0316416 W JP0316416 W JP 0316416W WO 2004064180 A1 WO2004064180 A1 WO 2004064180A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride
aqueous solution
lithium
carbonate
secondary battery
Prior art date
Application number
PCT/JP2003/016416
Other languages
English (en)
Japanese (ja)
Inventor
Yoshio Kajiya
Hiroshi Tasaki
Original Assignee
Nikko Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co., Ltd. filed Critical Nikko Materials Co., Ltd.
Priority to US10/541,817 priority Critical patent/US20060121350A1/en
Priority to JP2004566290A priority patent/JP4444121B2/ja
Priority to EP03782865.4A priority patent/EP1587156B1/fr
Publication of WO2004064180A1 publication Critical patent/WO2004064180A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • C01B13/185Preparing mixtures of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a material for a positive electrode for a lithium secondary battery (a precursor material for producing a positive electrode active material, a positive electrode active material) and a method for producing the same, which contribute to improvement in battery performance.
  • lithium secondary batteries lithium secondary batteries
  • This lithium secondary battery is composed of three basic elements: a “positive electrode”, a “negative electrode”, and a “separator holding electrolyte” interposed between the two electrodes.
  • the positive electrode and the negative electrode include "active material, conductive material, A slurry obtained by mixing and dispersing a binder and, if necessary, a plasticizer in a dispersion medium, is applied to a current collector such as a metal foil or a metal mesh.
  • Cobalt composite oxide as the positive electrode active material of the (L - x Co0 2), nickel-based composite oxide (Li n Ni O 2), lithium such manganese-based composite oxide (Li n Mn 2 0 4)
  • Ni n Ni O 2 nickel-based composite oxide
  • Li n Mn 2 0 4 lithium such manganese-based composite oxide
  • the above-described lithium composite oxide used as a positive electrode material for a lithium secondary battery generally includes a compound of an element (carbon such as Co, Ni, Mn, or an oxide) which is a main component of the positive electrode material for a lithium secondary battery. ) And a lithium compound (such as lithium carbonate) at a predetermined ratio and heat-treated.
  • an element carbon such as Co, Ni, Mn, or an oxide
  • a lithium compound such as lithium carbonate
  • Japanese Patent Application Laid-Open No. 11-92464 describes that "an aqueous solution containing chlorides of Ni and Co is saturated with carbon dioxide gas (carbon dioxide gas), and an aqueous solution of sodium bicarbonate is added to this solution.
  • the Ni and Co carbonates were coprecipitated by leaving to stand.
  • the resulting precipitate was washed with water, dried at 140 ° C in argon gas, mixed with lithium carbonate and air A method for producing a lithium composite oxide by heating and reacting in a furnace ”.
  • Japanese Patent Application Laid-Open No. 11-307904 discloses that “a sulfate aqueous solution of each component element other than lithium and ammonium bicarbonate to which a small amount of ammonia is added. Aqueous salt solution is added simultaneously or alternately little by little to the reaction tank, and while the PH of the mixed solution is kept in the neutral region, uniform complex carbonate crystal growth is performed almost concentrically, A method for producing a lithium composite oxide, which comprises mixing the obtained composite carbonate and lithium hydroxide and heating and firing the mixture in an atmosphere of flowing oxygen gas.
  • an object of the present invention is to establish a means for stably providing a lithium secondary battery positive electrode material which has excellent sinterability and composition stability and can exhibit sufficient battery characteristics.
  • the present inventors have further studied to achieve the above object, and as a result, have obtained the following findings.
  • the ammonia is used to grow the complex carbonate crystals, so that the waste liquid contains nitrogen and the cost of the waste liquid treatment is increased.
  • the use of aqueous sulphate solution causes sulfur (S) contamination of the resulting composite carbonate. Sulfur reacts with lithium to form lithium sulfide. It also causes deterioration of lithium secondary battery characteristics.
  • an aqueous solution of Ni chloride, Mn chloride, or Co chloride (or this aqueous solution and one or more chlorides selected from Mg, Al, Ti, Cr, Fe, Cu, Zr) is added to the lithium carbonate suspension.
  • CO 2 gas carbon dioxide gas
  • Co-chloride aqueous solution (or a mixture of this aqueous solution and an aqueous solution of one or more chlorides selected from Mg, Al, Ti, Cr, Fe, Cu and Zr) and the pH of this aqueous solution
  • an aqueous solution of lithium bicarbonate produced by injecting carbon dioxide gas (CO 2 gas) into an aqueous solution of lithium carbonate is used as an aqueous solution of Ni chloride, Mn chloride, and Co chloride
  • this aqueous solution and one selected from Mg, Al, Ti, Cr, Fe, Cu, and Zr When the solution was dropped or poured into the above-mentioned mixed solution with chloride solution and the pH of this solution was raised to precipitate carbonates, it was not contaminated with Na and S Ultra fine Ni, Mn, Co carbonate (or carbonate of one or more elements selected from Mg, Al, Ti, Cr, Fe, Cu, Zr), water Mixture with an oxide).
  • the carbonate or mixture obtained in this way is oxidized to form an oxide, which is then mixed with a lithium source such as lithium carbonate and calcined.
  • a lithium source such as lithium carbonate and calcined.
  • the mass ratio is less than 100 ppin.
  • a lithium composite oxide with a high density is obtained, and when this is used as an active material for the positive electrode of a lithium secondary battery, excellent battery characteristics are stabilized.
  • An aqueous solution of Ni chloride, Mn chloride, or Co chloride (or an aqueous solution of one or more chlorides selected from Mg, Al, Ti, Cr, Fe, Cu, and Zr) is added to an aqueous solution of lithium hydrogen carbonate.
  • a mixture obtained by raising the pH of the solution and an aqueous solution of lithium bicarbonate with an aqueous solution of Ni chloride, Mn chloride, or Co chloride (or an aqueous solution of this chloride).
  • a carbonate or a mixture of one or more chlorides selected from the group consisting of Mg, Al, Ti, Cr, Fe, Cu, and Zr with an aqueous solution thereof and raising the pH of the aqueous solution.
  • the present invention has been made based on the above findings and the like.
  • the materials for the positive electrode of a lithium secondary battery shown in the following items (1) to (4) ⁇ Precursor materials for producing a positive electrode active material (carbonate or carbonate) And a hydroxide) and a lithium composite oxide as a positive electrode active material), and a method for producing them.
  • a precursor material for a lithium secondary battery positive electrode material which is as follows.
  • Li-A-D-0 series lithium batteries (where A is at least one of Ni, Mn and Co, and D is at least one of Mg, Al, Ti, Cr, Fe, Cu and Zr)
  • a composite oxide for a positive electrode material wherein the atomic ratio “DZ (A + D :)” of the D element to the total value of the A element and the D element is 0 to 0.1, and the impurity elements Na and S
  • the lithium secondary battery positive electrode material wherein the content of each is 100 ppm or less by mass.
  • AC 0 3 (where a is Ni, on one or more kinds of Mn and Co) carbonates of the formula DC 0 3 represented by (wherein D is Mg , Al, Ti, Cr, Fe, Cu and at least one of Zr) And a hydroxide represented by the formula D (OH), wherein the atomic ratio of the D element to the total value of the A element and the .D element, "D / (A + D)", is greater than 0 and 0
  • a method for producing a precursor material for a lithium secondary battery positive electrode material which is at most 1.
  • An aqueous solution comprising at least one type of Co chloride is dropped, or the lithium hydrogen carbonate aqueous solution is dropped or added to an aqueous solution comprising at least one type of Ni chloride, Mn chloride and Co chloride.
  • the content of any of the impurity elements, Na and S, is by mass, characterized by raising the pH of the aqueous solution to precipitate carbonates by removing dissolved carbon dioxide by passing air through the aqueous solution. 1 0 0 ppm of the following, the production method of the formula AC 0 3 (where a is Ni, 1 or more of Mn and Co) lithium secondary battery positive electrode material for a precursor material consisting of carbonates represented by at.
  • the precipitating carbonate, the content of impurity elements der Ru Na and S in any proportion by weight less 1 0 0 ppm, wherein AC 0 3 (where a is Ni, Mn and Co s) carbonates of the formula represented by DC ⁇ 3 (however Shi D is Mg, Al, Ti, Cr, Fe, Cu and Zr 1 A carbonate represented by the above) Or a mixture of these carbonates and a hydroxide represented by the formula D ( ⁇ H), wherein the atomic ratio of the D element to the total value of the A element and the D element is ⁇ DZ (A + D ) ”Is greater than 0 and less than or equal to 0.1.
  • AC 0 3 where a is Ni, Mn and Co s carbonates of the formula represented by DC ⁇ 3 (however Shi D is Mg, Al, Ti, Cr, Fe, Cu and Zr 1 A carbonate represented by the above) Or a mixture of these carbonates and a hydroxide represented by the formula D ( ⁇ H), wherein the atomic ratio of
  • a mixture of an aqueous solution comprising at least one of chloride and Zr chloride is added to precipitate carbonate or carbonate and hydroxide, and the resulting precipitate is mixed with a lithium source. Characterized by baking or by oxidizing the resulting precipitate to form an oxide, followed by mixing with a lithium source and calcining.
  • Li-A-D-0 system (where A is one or more of Ni, Mn and Co, and D is one or more of Mg, Al, Ti, Cr, Fe, Cu and Zr)
  • a composite oxide for a positive electrode material for lithium secondary batteries in which the atomic ratio of the D element to the total value of the A element and the D element, "DZ (A + D)", is 0 to 0.1 Method for manufacturing a lithium secondary battery positive electrode material.
  • the solution is dropped or poured into a mixture with an aqueous solution comprising at least one of the following, and then the pH of the aqueous solution is increased by raising the pH of the aqueous solution by driving air through the aqueous solution to drive out dissolved carbon dioxide.
  • the obtained precipitate is mixed with a lithium source and calcined, or the obtained precipitate is oxidized to an oxide and then mixed with a lithium source.
  • BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a positive electrode material for a lithium secondary battery in which the atomic ratio of elements “D / (A + D) J is 0 to 0.1.
  • the contents of Na and S, which are impurity elements, are particularly 10 O ppm or less (hereinafter, ppin is a mass ratio) is defined as the sinterability of any material (carbonate, lithium composite oxide, etc.) when the Na content exceeds 10 ppm.
  • ppin is a mass ratio
  • the S content is 10%. If it exceeds O ppm, the stability of the material composition will be impaired through the formation of lithium sulfide, and the deterioration of battery characteristics will also become noticeable.
  • the lithium secondary battery positive electrode active material is made of Mg, Al, Ti, It may contain one or more of Cr, Fe, Cu and Zr. Therefore, the precursor material for the lithium secondary battery cathode material contains one or more of Mg, Al, Ti, Cr, Fe, Cu and Zr. May be.
  • the total of Ni, Mn, or Co which is the main component of the positive electrode active material and the precursor material. If the atomic ratio of the total amount of Mg, Al, Ti, Cr, Fe, Cu or Zr to the total of the amount and the total amount of Mg, Al, Ti, Cr, Fe, Cu or Zr exceeds 0.1, on the contrary, the battery Since the performance shows a tendency to deteriorate, Mg, Al, Ti, Cr, Fe, Cu or Zr is the sum of the total amount of Ni, Mn or Co and the total amount of Mg, Al, Ti, Cr, Fe, Cu or Zr. It should be noted that the atomic ratio of the total amount of is within the range of 0 to 0.1.
  • a lithium carbonate suspension is prepared, or carbon dioxide gas (CO 2 gas) is blown into a lithium carbonate aqueous solution.
  • CO 2 gas carbon dioxide gas
  • the lithium carbonate concentration of the liquid to be prepared is suitably about 20 to 600 g / _g.
  • the concentration is preferably about 30 g / _g.
  • the concentration is preferably about 40 Og / ⁇ .
  • lithium hydrogen carbonate is an unstable substance, it is preferable to blow carbon dioxide gas into an aqueous solution of lithium carbonate to produce an aqueous solution of lithium hydrogen carbonate immediately before producing carbonate for a lithium secondary battery positive electrode material. . Subsequently, an aqueous solution of Ni chloride, Mn chloride, or Co chloride having a desired composition is added or dropped into the adjusted lithium carbonate suspension or aqueous lithium hydrogen carbonate solution, or lithium hydrogen carbonate is used. The aqueous solution is dropped or added to an aqueous solution of Ni chloride, Mn chloride, or Co chloride having a desired composition. At this time, a small amount of an aqueous solution of a chloride of a different element such as Mg, Al, Ti, Cr, Fe, Cu, Zr, Si, or Ca may be added.
  • a different element such as Mg, Al, Ti, Cr, Fe, Cu, Zr, Si, or Ca
  • composition of the aqueous chloride solution to be used may be adjusted by adjusting the mixing ratio of Ni chloride, Mn chloride, and Co chloride according to the "composition of the carbonate to be produced". Depending on the carbonate to be obtained, A single aqueous solution of Ni chloride, Mn chloride and Co chloride may be used.
  • the concentration of the aqueous chloride solution is based on the chlorides of Ni, Mn, Co It is appropriate that the total concentration of the substance is 1.0 to 5.0 mol. Preferably it is 1.5 to 3.0 mol /.
  • the dropping or adding speed of the solution so that the total amount is added in 10 minutes to 2 hours.
  • the dropping rate is about 30 ⁇ Z hr.
  • 50 liters of a chloride aqueous solution is added to 75 liters of lithium carbonate suspension (180 g / _ ⁇ of lithium carbonate)
  • 50 liters are required in about 30 minutes.
  • Input When adding or dropping 140 liters of aqueous solution of lithium bicarbonate to 30 liters of aqueous chloride solution, the rate of dropping or feeding should be around 100 £ / hr.
  • the liquid may be at room temperature, but may be heated.
  • aqueous chloride solution aqueous lithium hydrogen carbonate solution
  • the stirring speed is determined according to the tank used.
  • a carbonate having a desired particle size can be obtained depending on the dropping (feeding) speed and the stirring speed.
  • the operation stability is better if the dropping (injection) of the aqueous chloride solution is carried out batchwise into the prepared lithium carbonate suspension (aqueous lithium hydrogen carbonate solution).
  • a method of continuously dropping (continuously adding) an aqueous chloride solution to the aqueous lithium hydrogen carbonate solution while continuously producing an aqueous lithium hydrogen carbonate solution by blowing carbon dioxide gas into the aqueous lithium carbonate solution may be employed. Absent.
  • the carbonates of Ni, Mn, and Co produced by the reaction between the lithium hydrogen carbonate solution and the chloride solution are soluble in the surrounding solution and are dissolved in the solution. It is necessary to sufficiently precipitate carbonate by increasing the pH.
  • a method for removing dissolved carbon dioxide a method of heating a solution, a method of adding an alkali, or the like can be employed, but the method of passing air is the simplest and cheapest. Therefore, it can be said that it is industrially preferable.
  • using a lithium carbonate suspension can improve the yield per batch.
  • the fine-grained carbonate thus obtained is oxidized (calcined in an oxidizing atmosphere, etc.) in the usual manner to form an oxide, and then mixed with a lithium source (lithium carbonate, etc.).
  • a lithium composite oxide with a high tap density, with both Na and S contents of less than 100 ppm, is obtained.
  • this is used as a positive electrode material (active material) for lithium secondary batteries, A lithium secondary battery with excellent characteristics (rate characteristics) is realized.
  • the fine-grained carbonate may be directly mixed with the lithium source without being oxidized and fired.
  • the Li-A-0 according to the present invention (where A is at least one of Ni, Mn and Co)
  • the composite oxides for positive electrodes of lithium secondary batteries are based on various known chemical formulas, including those introduced in the “Background” section. Any value of ⁇ or less is effective for improving the battery characteristics of the lithium secondary battery.
  • lithium carbonate suspension (lithium carbonate concentration of 420 g / _O prepared by suspending lithium carbonate in water was prepared.
  • the lithium carbonate suspension (room temperature) was stirred at 300 rpm, and a Ni: Mn: Co chloride aqueous solution (Ni, Mn) having a composition of Ni: Mn: Co of 1: 1: 1 was added thereto.
  • a total of 2.9 mol of Co chloride at room temperature was added at a rate of 0.3 ⁇ Zhr at 0.6 liter.
  • the Na content in the composite carbonate obtained in this manner was 20 ppin, and the S content was 1 O ppm or less.
  • the obtained composite carbonate was subjected to a heat treatment at 65 ° C. for 15 hours to obtain fine particles (average particle diameter 10 m) having a composition of Ni: Mn: Co force 1: 1: 1.
  • a composite oxide was obtained.
  • the chemical composition was LiNi. 33 Mn. .33 Co. . It was confirmed 33 is a layered lithium composite oxide is 0 2.
  • This lithium composite oxide powder had an average particle size of 9.8 wm and a specific surface area of 0.4 m 2 / g.
  • the Na content in the powder was 20 ppm and the S content was less than 10 ppm. there were.
  • the lithium secondary battery used for evaluation was a 2022-type coin cell using the above positive electrode sample as the positive electrode and lithium foil applied to the counter electrode, and 1 mol of LiP F 6 was used as the electrolyte (EC).
  • the solution dissolved in a solvent with a ZDMC (dimethyl carbonate) ratio of 1: 1 was used.
  • discharge capacity obtained at 0.5 C / discharge capacity obtained at 0.2 C were investigated using the lithium secondary battery for this evaluation. Show.
  • Lithium carbonate was dissolved in water to form an aqueous solution, and carbon dioxide gas was blown into the solution to prepare 140 liters of an aqueous solution of lithium hydrogencarbonate having a lithium carbonate concentration of 30 g / L.
  • Ni: Mn: Co was a composite carbonate having a composition of 1: 1: 1.
  • the Na content in the composite carbonate thus obtained was 10 to 50 ppm, and the S content was 10 ppm or less.
  • the obtained composite carbonate is subjected to a heat treatment at 65 ° C. for 15 hours to obtain fine particles (average particle diameter 7 / zm) having a composition of Ni: Mn: Co of 1: 1: 1.
  • a composite oxide was obtained.
  • the chemical composition was LiNi. 33 Mn. . 3 3 COD.
  • a layered lithium composite oxide was confirmed to be 3 3 0 2.
  • This lithium composite oxide powder had an average particle diameter of 7 m, a specific surface area of 0.4 m 2 / g, a Na content of the powder of 10 to 50 ppm, and an S content of 1 It was also confirmed that it was about 0 ppm or less.
  • lithium composite oxide was used as an active material at 85 wt%, acetylene black at 8 wt%, and PVDF (polyvinyl fluoride).
  • a 7 wt% slurry was prepared using NMP (N-methylpyrrolidone) as a solvent, applied to aluminum foil, dried, and press-molded to obtain a positive electrode sample for lithium secondary battery evaluation.
  • the lithium secondary battery used for evaluation was a 2022-type coin cell using the above positive electrode sample as the positive electrode and a lithium foil as the counter electrode, and 1 mol of LiP F 6 in the electrolyte (EC (ethylene carbonate)).
  • the solution was dissolved in a solvent with a ratio of 1: 1) / DMC (dimethylcapone).
  • discharge capacity obtained at 0.5C / discharge capacity obtained at 0.2C discharge capacity obtained at 0.5C / discharge capacity obtained at 0.2C
  • Lithium carbonate was dissolved in water to form an aqueous solution, and carbon dioxide gas was blown into the solution to prepare 140 liters of an aqueous solution of lithium hydrogencarbonate having a lithium carbonate concentration of 30 g / _g.
  • Ni: Mn: Co was a composite carbonate having a composition of 4: 4: 2.
  • the Na content in the composite carbonate thus obtained was 10 to 60 PPin, and the S content was 20 ⁇ .
  • the obtained composite carbonate is subjected to a heat treatment at 65 ° C. for 15 hours to obtain a composite of fine particles (average particle diameter of 6 m) having a composition of Ni: Mn: Co 4: 4: 2. An oxide was obtained.
  • the chemical composition was Li Nio.4 Mno. 4 Co. . It was confirmed that the lithium composite oxide is a 2 0 2.
  • the lithium composite oxide powder had an average particle size of 6, a specific surface area of 0.7 m 2 / g, a Na content of the powder of 10 to 60 ppm, and an S content of 30 ppm. Was also confirmed.
  • the lithium secondary battery used for evaluation was a 2022-type coin cell using the above positive electrode sample as the positive electrode and a lithium foil as the counter electrode, and 1 mol of LiP Fs in the electrolyte was EC (ethylene carbonate).
  • discharge capacity and current load characteristics (Discharge capacity obtained at 0.5 C / discharge capacity obtained at 0.2 C) was investigated. The results of the investigation are also shown in Table 1 above.
  • Lithium carbonate was dissolved in water to form an aqueous solution, and carbon dioxide gas was blown into the solution to prepare 140 liters of an aqueous solution of lithium hydrogencarbonate having a lithium carbonate concentration of 30 g / ⁇ .
  • Ni: Mn: Co was a composite carbonate having a composition of 6: 3: 1.
  • the complex carbonate obtained in this way had a Na content of 30 ppm and an S content of 30 ppm.
  • the obtained composite carbonate is subjected to a heat treatment in air at 65 ° C. for 15 hours to obtain fine grains (Ni: Mn: Co) having a composition of 6: 3: 1 (average particle size of 7: 7). ⁇ M) was obtained.
  • the lithium composite oxide powder had an average particle size of 7 m, a specific surface area of 0.6 mVg, a Na content of 30 ppm and an S content of 40 ppm. It was also confirmed that there was.
  • the lithium secondary battery used for evaluation was a 2022-type coin cell using the above positive electrode sample as the positive electrode and a lithium foil applied to the counter electrode, and 1 mol of LiPFs was used as the electrolyte in EC (ethylene carbonate).
  • EC ethylene carbonate
  • Neat A solution dissolved in a solvent with a ZDMC (dimethyl carbonate) ratio of 1: 1 was used. )
  • discharge capacity obtained at 0.5 C / discharge capacity obtained at 0.2 C were investigated using the lithium secondary battery for this evaluation. The results are also shown in Table 1 above.
  • Lithium carbonate was dissolved in water to form an aqueous solution, and carbon dioxide gas was blown into the solution to prepare 140 liters of an aqueous solution of lithium hydrogen carbonate having a lithium carbonate concentration of 30 g / _g.
  • Ni: Mn: Co was a composite carbonate having a composition of 5: 3: 2.
  • the complex carbonate thus obtained had a Na content of 40 ppm and an S content of 20 ppra.
  • the obtained composite carbonate is subjected to a heat treatment in air at 65 ° C. for 15 hours to obtain fine particles having a Ni: Mn: Co composition of 5: 3: 2 (average particle diameter of 6: 1). m) was obtained.
  • the composite oxide (100 g) and lithium carbonate (45.9 g) were mixed and fired at 900 ° C. in air for 10 hours.
  • the Toko filtration of the powder of the compound obtained was measured powder X-ray diffraction Te cowpea processing, chemical composition Li Nio mno;... Coo it was confirmed that the lithium composite oxide is a 2 0 2.
  • This lithium composite oxide powder had an average particle size of 6 m, a specific surface area of 0.5 m 2 / g, a Na content of 50 ppin, and an S content of 20 pm in the powder. It was also confirmed.
  • Lithium secondary battery for evaluation was a 2 0 3 2 type Koinseru manner of applying the lithium foil together counter With each positive sample for the positive electrode, also in the electrolyte solution one mole of LiP F 6 EC (ethylene Capo The solution dissolved in a solvent with a ZDMC (dimethyl carbonate) ratio of 1: 1 was used.
  • LiP F 6 EC ethylene Capo
  • ZDMC dimethyl carbonate
  • NiO 37.3g
  • Mn 2 0 39.5 g
  • Co 3 ⁇ 4 40.1 g
  • Li 2 C 0 3 mixing the 18.5 g, the mixed powder was calcined 1 0 h 1 0 0 0 ° C.
  • This lithium composite oxide powder had a Na content of 300 ppm and an S content of 300 ppm in the powder.
  • the lithium secondary battery used for evaluation was a 2022-type coin cell format in which each of the above positive electrode samples was used for the positive electrode and a lithium foil was applied to the counter electrode, and 1 mol of LiP F 6 was used as the electrolyte (EC). Net) ZDMC (Dimethyl carbonate) dissolved in a solvent having a ratio of 1: 1 was used.
  • discharge capacity obtained at 0.5C / discharge capacity obtained at 0.2C discharge capacity obtained at 0.5C / discharge capacity obtained at 0.2C
  • Lithium carbonate was dissolved in water to form an aqueous solution, and carbon dioxide gas was blown into the solution to prepare 140 liters of an aqueous solution of lithium hydrogencarbonate having a lithium carbonate concentration of 30 gZ_g.
  • an aqueous solution of Ni, Mn, Co chloride having a composition of Ni: Mn: Co 1: 1 (aqueous solution at room temperature with a total concentration of Ni, Mn, Co chloride of 1.5 mol / ⁇ ) is used. While stirring the bottle at 300 rpm, the above-mentioned lithium hydrogen carbonate was added thereto at a rate of 70 £ / hr.
  • Ni: Mn: Co was a composite carbonate having a composition of 1: 1: 1.
  • the Na content in the composite carbonate thus obtained was 20 to 50 PPin, and the S content was 20 ppra or less.
  • the obtained composite carbonate is subjected to a heat treatment at 65 ° C. for 15 hours to obtain a composite oxide having an average particle diameter of 10 m, in which the composition of Ni: Mn: Co is 1: 1: 1. Obtained.
  • the lithium composite oxide powder had an average particle size of 10 / zm, a specific surface area of 0.35 m 2 / g, a Na content of the powder of 20 to 50 ppm, and an S content of It was also confirmed that the concentration was below 20 ppm.
  • the lithium secondary battery used for evaluation was a 2022-type coin cell type in which each of the above positive electrode samples was used for the positive electrode and a lithium foil was applied to the counter electrode.
  • One mole of LiP F s was used as the electrolyte in EC (ethylene carbonate).
  • EC ethylene carbonate
  • discharge capacity obtained at 0.5 C / discharge capacity obtained at 0.2 C were investigated using the lithium secondary battery for this evaluation. Also shown.
  • Lithium carbonate was dissolved in water to form an aqueous solution, and carbon dioxide gas was blown into the solution to prepare 140 liters of an aqueous solution of lithium hydrogencarbonate having a lithium carbonate concentration of 30 gZ.
  • the above aqueous solution of lithium hydrogen carbonate (room temperature) was stirred at 300 rpm.
  • the composition of Ni: Mn: Co: A1 is 0.317: 0.317: 0.317: 0.05
  • the aqueous solution of Ni, Mn, Co, A1 chloride (the total concentration of Ni, Mn, Co, Al chloride is An aqueous solution at room temperature of 1.5 mol / ⁇ ) was injected at a rate of 30 ⁇ Zhr.
  • the Na content in the composite carbonate thus obtained was 20 to 50 PPin, and the S content was 10 ppm or less.
  • the obtained composite carbonate is subjected to a heat treatment at 65 0 for 15 hours to obtain a composite oxide having a composition of Ni: Mn: Co: A1 of 0.317: 0.317: 0.317: 0.05 and an average particle diameter of 7 m. I got something.
  • the lithium composite oxide powder had an average particle size of 7, a specific surface area of 0.41 m 2 / g, a Na content of the powder of 20 to 50 ppm, and an S content of 10 ppm. It was also confirmed that:
  • Lithium secondary battery for evaluation was a 2 0 3 2 type Koinseru manner that both apply lithium foil as the counter electrode With each positive sample for the positive electrode, also the electrolytic solution of 1 mole of Li PF s EC (ethylene carbonate It was dissolved in a solvent with a ratio of (Nate) / DMC (dimethyl carbonate) of 1: 1.
  • Li PF s EC ethylene carbonate It was dissolved in a solvent with a ratio of (Nate) / DMC (dimethyl carbonate) of 1: 1.
  • discharge capacity obtained at 0.5 C / discharge capacity obtained at 0.2 C were investigated using the lithium secondary battery for this evaluation. The results are also shown in Table 1 above.
  • Examples only the examples relating to the carbonate-lithium composite oxide containing both Ni, Mn and Co are shown, but the carbonate or lithium composite oxide containing only Ni, Mn or Co alone is shown. It has also been confirmed that excellent results can be obtained when the target is a target, or when the target is a carbonate or lithium composite oxide containing two of Ni, Mn, and Co.
  • a material for a positive electrode for a lithium secondary battery (a precursor material for producing a positive electrode active material, a positive electrode active material) capable of realizing a lithium secondary battery exhibiting excellent battery characteristics, and The stable manufacturing method can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

L'invention se rapporte à la production stable d'un matériau destiné à l'électrode positive d'un accumulateur au lithium. Ce matériau se prête particulièrement bien au frittage, présente une composition très stable, et assure un rendement satisfaisant de l'accumulateur. On obtient ce matériau en réduisant à une quantité égale ou inférieure à 100 ppm, les impuretés Na et S dans les oxydes doubles utilisés comme composants de l'électrode positive d'un accumulateur au lithium, et dans les sels carboniques constituant des précurseurs du matériau d'électrode positive destiné à un accumulateur au lithium.
PCT/JP2003/016416 2003-01-08 2003-12-22 Materiau d'electrode positive pour accumulateur au lithium et procede permettant de produire ce materiau WO2004064180A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/541,817 US20060121350A1 (en) 2003-01-08 2003-12-22 Cathode material for lithium secondary battery and method of producing same
JP2004566290A JP4444121B2 (ja) 2003-01-08 2003-12-22 リチウム二次電池正極用の材料並びにその製造方法
EP03782865.4A EP1587156B1 (fr) 2003-01-08 2003-12-22 Materiau d'electrode positive pour accumulateur au lithium et procede permettant de produire ce materiau

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-1955 2003-01-08
JP2003001955 2003-01-08

Publications (1)

Publication Number Publication Date
WO2004064180A1 true WO2004064180A1 (fr) 2004-07-29

Family

ID=32708840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016416 WO2004064180A1 (fr) 2003-01-08 2003-12-22 Materiau d'electrode positive pour accumulateur au lithium et procede permettant de produire ce materiau

Country Status (6)

Country Link
US (1) US20060121350A1 (fr)
EP (1) EP1587156B1 (fr)
JP (1) JP4444121B2 (fr)
KR (1) KR101069484B1 (fr)
TW (1) TWI279019B (fr)
WO (1) WO2004064180A1 (fr)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285572A (ja) * 2004-03-30 2005-10-13 Nikko Materials Co Ltd リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
JP2005336004A (ja) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP2006117517A (ja) * 2004-09-27 2006-05-11 Ishihara Sangyo Kaisha Ltd リチウム・遷移金属複合酸化物の製造方法及び該リチウム・遷移金属複合酸化物を用いてなるリチウム電池
WO2006049001A1 (fr) * 2004-11-02 2006-05-11 Nippon Mining & Metals Co., Ltd. Matériau d’électrode positive pour batterie secondaire au lithium et procédé de fabrication dudit matériau
JP2007265731A (ja) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd リチウムイオン二次電池
JP2008534423A (ja) * 2005-03-30 2008-08-28 エスケー エネルギー 株式会社 球状の炭酸マンガン沈殿方法及びそれにより製造された生成物
JP2009536437A (ja) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド 高性能リチウム2次電池材料の調製方法
JP2011016668A (ja) * 2009-07-07 2011-01-27 Jx Nippon Mining & Metals Corp 炭酸マンガンの製造方法
JP2011105594A (ja) * 2010-12-13 2011-06-02 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
WO2011105361A1 (fr) * 2010-02-23 2011-09-01 戸田工業株式会社 Poudre particulaire pour précurseur de matériau actif d'électrode positive, poudre particulaire pour matériau actif d'électrode positive, et batterie secondaire à électrolyte non aqueux
WO2011108355A1 (fr) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Matériau actif d'électrode positive pour batterie au lithium-ion, électrode positive pour batterie au lithium-ion, et batterie au lithium-ion
JP2011230994A (ja) * 2010-04-28 2011-11-17 Daiichi Kigensokagaku Kogyo Co Ltd ニッケル−コバルト−マンガン系複合酸化物及びその製造方法
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
JPWO2011108389A1 (ja) * 2010-03-04 2013-06-24 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JPWO2011108659A1 (ja) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JPWO2011108658A1 (ja) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8574541B2 (en) 2005-04-13 2013-11-05 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2014503942A (ja) * 2010-11-25 2014-02-13 ビーエーエスエフ ソシエタス・ヨーロピア 遷移金属複合酸化物前駆体の製造方法
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
JP2016160126A (ja) * 2015-02-27 2016-09-05 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP2017536654A (ja) * 2014-10-08 2017-12-07 ユミコア 好ましい形態を有する不純物含有カソード材料及び不純物含有金属炭酸塩から調製するための方法
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP2020510981A (ja) * 2017-03-14 2020-04-09 ユミコア 改善された二次電池性能を有するカソード材料の前駆体及び前駆体を調製する方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4292761B2 (ja) * 2002-07-23 2009-07-08 日鉱金属株式会社 リチウム二次電池用正極材料の製造方法
JP4740409B2 (ja) 2003-06-11 2011-08-03 株式会社日立製作所 電気自動車或いはハイブリット自動車用リチウム二次電池
JP5021892B2 (ja) * 2004-06-17 2012-09-12 Jx日鉱日石金属株式会社 リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
WO2007083457A1 (fr) * 2006-01-20 2007-07-26 Nippon Mining & Metals Co., Ltd. Oxyde composite cobalt manganèse nickel lithium et batterie rechargeable au lithium
EP2048262B1 (fr) * 2006-07-27 2018-09-12 JX Nippon Mining & Metals Corporation Cible d'oxyde de metal de transition contenant du lithium, procede de fabrication associe et méthode de production d'une batterie litzium-ion secondaire en couche mince
CN101803070B (zh) 2007-06-22 2014-10-22 波士顿电力公司 用于锂离子电池的电流中断装置维持装置
WO2009128289A1 (fr) * 2008-04-17 2009-10-22 日鉱金属株式会社 Matériau actif d’électrode positive pour batterie au lithium-ion, électrode positive pour batterie rechargeable, et batterie au lithium-ion
CN102067362B (zh) * 2008-12-05 2013-12-25 Jx日矿日石金属株式会社 锂离子二次电池用正极活性物质、使用其的二次电池用正极及使用该正极的锂离子二次电池
US8465873B2 (en) * 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
CN102408120B (zh) * 2010-09-20 2014-01-01 华东理工大学 一种制备高纯碳酸锂超细微粉的方法
CN102408119A (zh) * 2010-09-20 2012-04-11 华东理工大学 一种采用溶析-反应结晶制备碳酸锂超细粉体的方法
US9171652B2 (en) 2010-11-25 2015-10-27 Basf Se Process for preparing precursors for transition metal mixed oxides
US8883350B2 (en) 2010-11-25 2014-11-11 Basf Se Process for preparing precursors for transition metal mixed oxides
CN103221339B (zh) * 2010-11-25 2015-08-12 巴斯夫欧洲公司 制备过渡金属混合氧化物的前体的方法
US10161057B2 (en) * 2011-03-31 2018-12-25 Toda Kogyo Corporation Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
WO2013067027A1 (fr) * 2011-10-31 2013-05-10 Simbol Inc. Procédés pour la production de précurseurs de poudre de cathode et d'anode
US20140356714A1 (en) * 2012-01-16 2014-12-04 Robert Bosch Gmbh Process for preparing a core-shell structured lithiated manganese oxide
JP6090661B2 (ja) 2012-06-20 2017-03-08 株式会社Gsユアサ リチウム二次電池用正極活物質、その正極活物質の前駆体、リチウム二次電池用電極、リチウム二次電池
JP6129993B2 (ja) 2013-02-14 2017-05-17 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びそれを含むリチウム二次電池
KR102142258B1 (ko) 2014-03-26 2020-08-07 제이엑스금속주식회사 LiCoO2 스퍼터링 타깃 및 그 제조 방법, 그리고 정극재 박막
KR102566074B1 (ko) * 2015-03-20 2023-08-10 세키스이가가쿠 고교가부시키가이샤 리튬 이차 전지 전극용 조성물
JP6430427B2 (ja) * 2016-03-17 2018-11-28 Jx金属株式会社 コバルト酸リチウム焼結体及び該焼結体を用いて作製されるスパッタリングターゲット及びコバルト酸リチウム焼結体の製造方法並びにコバルト酸リチウムからなる薄膜
KR102279837B1 (ko) 2016-04-01 2021-07-20 세키스이가가쿠 고교가부시키가이샤 리튬 이차 전지 전극용 조성물
US20190027739A1 (en) * 2017-07-24 2019-01-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
KR102160712B1 (ko) * 2018-03-09 2020-09-28 주식회사 엘지화학 리튬 이차전지
EP4328335A1 (fr) * 2022-08-26 2024-02-28 H.C. Starck Tungsten GmbH Procédé de production de matière cathodique à partir de déchets de batteries
KR102623075B1 (ko) 2022-11-18 2024-01-11 (주)에코프로머티리얼즈 양극 소성용 사용 후 도가니의 유가금속 회수 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343066A (ja) * 1992-06-09 1993-12-24 Mitsui Mining & Smelting Co Ltd リチウム二次電池用正極活物質
JPH10182159A (ja) * 1996-12-18 1998-07-07 Tosoh Corp リチウムマンガン酸化物及びその製造方法並びにそのリチウムマンガン酸化物を正極として使用するリチウム二次電池
JPH11154512A (ja) * 1997-11-21 1999-06-08 Asahi Chem Ind Co Ltd 非水電解質二次電池
EP1225650A2 (fr) * 2001-01-23 2002-07-24 Kabushiki Kaisha Toshiba Materiau actif d'électrode positive et pile secondaire aux ions lithium
JP2002313338A (ja) * 2001-04-16 2002-10-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用の正極活物質、その原料、及びそれらの製造方法
JP2002321921A (ja) * 2001-04-24 2002-11-08 Sony Corp コバルト酸リチウムの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699176B2 (ja) * 1988-05-20 1998-01-19 日立マクセル 株式会社 リチウム二次電池
US6017654A (en) * 1997-08-04 2000-01-25 Carnegie Mellon University Cathode materials for lithium-ion secondary cells
JPH11180717A (ja) * 1997-12-22 1999-07-06 Ishihara Sangyo Kaisha Ltd マンガン酸リチウム及びその製造方法ならびにそれを用いてなるリチウム電池
JPH11307094A (ja) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
JP4171848B2 (ja) * 1998-06-02 2008-10-29 宇部興産株式会社 リチウムイオン非水電解質二次電池
US6334992B1 (en) * 1999-06-30 2002-01-01 Seimi Chemical Co., Ltd. Process for producing a positive electrode active material for a lithium secondary cell
JP4385457B2 (ja) * 1999-11-19 2009-12-16 堺化学工業株式会社 微細球状金属ニッケル微粉末の製造方法
JP4292761B2 (ja) * 2002-07-23 2009-07-08 日鉱金属株式会社 リチウム二次電池用正極材料の製造方法
JP4916094B2 (ja) * 2004-03-30 2012-04-11 Jx日鉱日石金属株式会社 リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
JP5021892B2 (ja) * 2004-06-17 2012-09-12 Jx日鉱日石金属株式会社 リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
WO2006049001A1 (fr) * 2004-11-02 2006-05-11 Nippon Mining & Metals Co., Ltd. Matériau d’électrode positive pour batterie secondaire au lithium et procédé de fabrication dudit matériau

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343066A (ja) * 1992-06-09 1993-12-24 Mitsui Mining & Smelting Co Ltd リチウム二次電池用正極活物質
JPH10182159A (ja) * 1996-12-18 1998-07-07 Tosoh Corp リチウムマンガン酸化物及びその製造方法並びにそのリチウムマンガン酸化物を正極として使用するリチウム二次電池
JPH11154512A (ja) * 1997-11-21 1999-06-08 Asahi Chem Ind Co Ltd 非水電解質二次電池
EP1225650A2 (fr) * 2001-01-23 2002-07-24 Kabushiki Kaisha Toshiba Materiau actif d'électrode positive et pile secondaire aux ions lithium
JP2002313338A (ja) * 2001-04-16 2002-10-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用の正極活物質、その原料、及びそれらの製造方法
JP2002321921A (ja) * 2001-04-24 2002-11-08 Sony Corp コバルト酸リチウムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1587156A4 *

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285572A (ja) * 2004-03-30 2005-10-13 Nikko Materials Co Ltd リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
JP2005336004A (ja) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP4496150B2 (ja) * 2004-09-27 2010-07-07 石原産業株式会社 リチウム・遷移金属複合酸化物の製造方法及び該リチウム・遷移金属複合酸化物を用いてなるリチウム電池
JP2006117517A (ja) * 2004-09-27 2006-05-11 Ishihara Sangyo Kaisha Ltd リチウム・遷移金属複合酸化物の製造方法及び該リチウム・遷移金属複合酸化物を用いてなるリチウム電池
WO2006049001A1 (fr) * 2004-11-02 2006-05-11 Nippon Mining & Metals Co., Ltd. Matériau d’électrode positive pour batterie secondaire au lithium et procédé de fabrication dudit matériau
JP2008534423A (ja) * 2005-03-30 2008-08-28 エスケー エネルギー 株式会社 球状の炭酸マンガン沈殿方法及びそれにより製造された生成物
US8795897B2 (en) 2005-04-13 2014-08-05 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8784770B2 (en) 2005-04-13 2014-07-22 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8815204B2 (en) 2005-04-13 2014-08-26 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8574541B2 (en) 2005-04-13 2013-11-05 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
JP2007265731A (ja) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd リチウムイオン二次電池
JP2009536437A (ja) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド 高性能リチウム2次電池材料の調製方法
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
JP2011016668A (ja) * 2009-07-07 2011-01-27 Jx Nippon Mining & Metals Corp 炭酸マンガンの製造方法
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
WO2011105361A1 (fr) * 2010-02-23 2011-09-01 戸田工業株式会社 Poudre particulaire pour précurseur de matériau actif d'électrode positive, poudre particulaire pour matériau actif d'électrode positive, et batterie secondaire à électrolyte non aqueux
JPWO2011108658A1 (ja) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2011108355A1 (fr) * 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Matériau actif d'électrode positive pour batterie au lithium-ion, électrode positive pour batterie au lithium-ion, et batterie au lithium-ion
JPWO2011108355A1 (ja) * 2010-03-04 2013-06-24 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP5313392B2 (ja) * 2010-03-04 2013-10-09 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JPWO2011108389A1 (ja) * 2010-03-04 2013-06-24 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5843753B2 (ja) * 2010-03-04 2016-01-13 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JPWO2011108659A1 (ja) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2011230994A (ja) * 2010-04-28 2011-11-17 Daiichi Kigensokagaku Kogyo Co Ltd ニッケル−コバルト−マンガン系複合酸化物及びその製造方法
JP2014503942A (ja) * 2010-11-25 2014-02-13 ビーエーエスエフ ソシエタス・ヨーロピア 遷移金属複合酸化物前駆体の製造方法
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP2011105594A (ja) * 2010-12-13 2011-06-02 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10411258B2 (en) 2014-10-08 2019-09-10 Umicore Impurity containing cathode material with preferred morphology and method to prepare from impurity containing metal carbonate
JP2017536654A (ja) * 2014-10-08 2017-12-07 ユミコア 好ましい形態を有する不純物含有カソード材料及び不純物含有金属炭酸塩から調製するための方法
US11462735B2 (en) 2014-10-08 2022-10-04 Umicore Impurity containing cathode material with preferred morphology and method to prepare from impurity containing metal carbonate
JP2016160126A (ja) * 2015-02-27 2016-09-05 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP2020510981A (ja) * 2017-03-14 2020-04-09 ユミコア 改善された二次電池性能を有するカソード材料の前駆体及び前駆体を調製する方法
US11476461B2 (en) 2017-03-14 2022-10-18 Umicore Precursors for cathode material with improved secondary battery performance and method to prepare the precursors

Also Published As

Publication number Publication date
TWI279019B (en) 2007-04-11
EP1587156A1 (fr) 2005-10-19
JP4444121B2 (ja) 2010-03-31
US20060121350A1 (en) 2006-06-08
KR20050092392A (ko) 2005-09-21
TW200421658A (en) 2004-10-16
EP1587156B1 (fr) 2018-12-12
KR101069484B1 (ko) 2011-09-30
EP1587156A4 (fr) 2008-04-09
JPWO2004064180A1 (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
WO2004064180A1 (fr) Materiau d'electrode positive pour accumulateur au lithium et procede permettant de produire ce materiau
JP5021892B2 (ja) リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
KR101989760B1 (ko) 정극 활성 물질 전구체 입자 분말 및 정극 활성 물질 입자 분말, 및 비수전해질 이차 전지
KR101445954B1 (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
KR101450421B1 (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
US9150427B2 (en) Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
JP2007123255A (ja) リチウム・遷移金属複合酸化物及びその製造方法並びにそれを用いてなるリチウム電池
KR20140138780A (ko) 정극 활물질 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
WO2007015473A1 (fr) Matière active d’électrode positive, électrode positive pour une batterie électrolytique non aqueuse et batterie électrolytique non aqueuse
JP5069007B2 (ja) リチウム・遷移金属複合酸化物の製造方法
CN100413125C (zh) 锂二次电池正极用材料及其制造方法
JP7389376B2 (ja) 非水系電解質二次電池用正極活物質
JP7452570B2 (ja) 非水系電解質二次電池用正極活物質
JP2021136096A (ja) リチウムイオン二次電池用正極活物質前駆体およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法
WO2017033894A1 (fr) Matériau actif d'électrode positive de batterie rechargeable à électrolyte non aqueux et son procédé de fabrication, et batterie rechargeable à électrolyte non aqueux
JP5691159B2 (ja) オキシ水酸化マンガン及びその製造方法並びにそれを用いたリチウムマンガン系複合酸化物
WO2013141317A1 (fr) Oxyde manganomanganique et son procédé de production
JP7417675B1 (ja) 金属複合水酸化物粒子、金属複合化合物の製造方法、及びリチウム二次電池用正極活物質の製造方法
JP7412485B1 (ja) 金属複合水酸化物粒子及びリチウム二次電池用正極活物質の製造方法
WO2024014558A1 (fr) Hydroxyde métallique composite et procédé de production d'une substance active d'électrode positive pour batterie secondaire au lithium
JP2023162559A (ja) リチウム複合酸化物及びその製造方法
WO2001077023A1 (fr) Oxyde a complexe de lithium/manganese, son procede de production et pile au lithium l'utilisant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004566290

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057012733

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006121350

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20038A85191

Country of ref document: CN

Ref document number: 10541817

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003782865

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057012733

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003782865

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10541817

Country of ref document: US