WO2004060831A1 - 重水素化方法 - Google Patents

重水素化方法 Download PDF

Info

Publication number
WO2004060831A1
WO2004060831A1 PCT/JP2003/014182 JP0314182W WO2004060831A1 WO 2004060831 A1 WO2004060831 A1 WO 2004060831A1 JP 0314182 W JP0314182 W JP 0314182W WO 2004060831 A1 WO2004060831 A1 WO 2004060831A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
catalyst
deuteration
carbon
palladium
Prior art date
Application number
PCT/JP2003/014182
Other languages
English (en)
French (fr)
Inventor
Nobuhiro Ito
Tsuneaki Maesawa
Kazushige Muto
Kosaku Hirota
Hironao Sajiki
Original Assignee
Wako Pure Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries, Ltd. filed Critical Wako Pure Chemical Industries, Ltd.
Priority to JP2004564469A priority Critical patent/JP4396522B2/ja
Priority to CA002511885A priority patent/CA2511885A1/en
Priority to AU2003277596A priority patent/AU2003277596A1/en
Priority to EP03814536A priority patent/EP1577280A4/en
Priority to US10/539,188 priority patent/US20060116535A1/en
Publication of WO2004060831A1 publication Critical patent/WO2004060831A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/36Systems containing two condensed rings the rings having more than two atoms in common
    • C07C2602/42Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/60Ring systems containing bridged rings containing three rings containing at least one ring with less than six members
    • C07C2603/66Ring systems containing bridged rings containing three rings containing at least one ring with less than six members containing five-membered rings
    • C07C2603/68Dicyclopentadienes; Hydrogenated dicyclopentadienes

Definitions

  • the present invention relates to a method for deuterating a compound, which is carried out using an activated catalyst.
  • Deuterated (diuterated and tritiated) compounds are said to be useful for a variety of purposes.
  • diuterized compounds are very useful for elucidating the reaction mechanism and substance metabolism, and are widely used as labeling compounds. Since its properties change, it is considered to be useful as pharmaceuticals, agricultural chemicals, organic EL materials, and the like.
  • tritiated compounds are said to be useful as labeling compounds when investigating the absorption, distribution, blood concentration, excretion, metabolism, etc. of pharmaceuticals and the like in animal experiments and the like. Therefore, in recent years, researches using deuterated (diuterium and tritiated) compounds have been actively conducted in these fields.
  • Conventional techniques include, for example, 1) a method of deuterating carboxylic acid under basic conditions using deuterium peroxide (see US Pat. No. 3,849,458), and 2) a method of using deuterated water using an iridium complex as a catalyst. Method for deuteration of alcohols and hydroruponic acid by using as a deuterium source (J. Am. Chem. Soc. Vol. 124, No. 10, 209) 2 (2002)), 3) A method for deuterating fatty acids using palladium carbon as a catalyst and only deuterium gas as a deuterium source (LIP IDS, Vol. 9, No.
  • the present invention relates to the general formula [1]
  • R 1 represents an alkyl group or an aralkyl group which may have a carbon-carbon double bond and Z or a triple bond
  • R 2 has a carbon-carbon double bond and / or a triple bond
  • Alkyl group, aryl group, aralkyl And X represents a hydroxyl group, an alkoxy group, an aryloxy group or a hydroxyl group
  • X represents a hydroxyl group or a hydroxymethylene group.
  • R 1 and R 2 may combine to form an aliphatic ring together with the carbon atom contained in X.
  • R 2 represents an alkyl group, an aryl group or an aralkyl group which may have a carbon-carbon double bond and / or a triple bond.
  • an activated catalyst selected from the group consisting of a palladium catalyst, a platinum catalyst, a rhodium catalyst, a ruthenium catalyst, a nickel catalyst and a coparte catalyst.
  • the present invention is an invention of tricyclo [5.2.1.0 2 ′ 6 ] decan-8-ol having a deuteration ratio of 60% or more.
  • deuterium means diuterium (D) or tritium (T), and deuterium means diuterium and tritiated.
  • the ratio of the hydrogen atoms of the compound represented by the general formula [1] replaced by deuterium atoms is defined as the deuteration ratio.
  • the alkyl group of the group may be linear, branched or cyclic, and usually has 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 6 carbon atoms.
  • Examples of the alkyl group having a carbon-carbon double bond or triple bond include those having one or more double bonds or triple bonds in the chain of the above-mentioned alkyl groups having 2 or more carbon atoms.
  • Examples of the alkyl group having a carbon-carbon double bond and a triple bond include at least one double bond and one triple bond in the chain of the above alkyl groups having 4 or more carbon atoms.
  • Specific examples of such an alkyl group having a carbon-carbon double bond and / or a triple bond include, for example, a vinyl group, an aryl group, a 1-propenyl group, and an isopropyl group.
  • the aralkyl group represented by R 1 and R 2 may be linear, branched, or cyclic, and usually has 7 to 34, preferably 7 carbon atoms in which the above alkyl group is substituted by the above aryl group. To 20 and more preferably 7 to 15. Specific examples include a benzyl group, a phenylethyl group, a phenylpropyl group, a phenylbutyl group, a phenylpentyl group and a phenylhexyl group.
  • the Ariru group represented by R 2 usually carbon atoms 6-1 4, preferably include those of 6-1 0, and specific examples thereof include for example phenyl group, naphthyl group, anthryl group and the like .
  • the alkoxy group represented by R 2 may be linear, branched or cyclic, and usually has 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 6; specifically, for example, methoxy, ethoxy, propyloxy, isopropyloxy, Butoxy, isobutyloxy, sec-butyloxy, tert-butyloxy, pentyloxy, neopentyloxy, hexyloxy, isohexyloxy, tert-hexyloxy, heptyloxy, octyloxy, Noeroxy, decyloxy, pendecyloxy, tetradecyloxy, hexadecyloxy, hepdecyloxy, nonadecyloxy, icosyloxy, cyclohexyloxy, cyclooctyloxy, cyclodecyl
  • the aryloxy group represented by R 2 usually has 6 to 14 carbon atoms, preferably 6 to 10 carbon atoms. Specific examples include a phenoxy group, a naphthyloxy group, and an anthroxy group. Can be
  • the hydroxyl group represented by R 2 includes those in which the hydrogen atom is replaced by an alkali metal atom such as sodium, potassium, lithium and the like.
  • the aliphatic ring formed by combining R 1 and R 2 together with the carbon atom contained in X may be monocyclic or polycyclic, and usually has 3 to 15 carbon atoms, preferably 5 to 10 carbon atoms. And more preferably 6 to 8, and specifically, for example, cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cyclododecane Saturated monocyclic ring such as ring, cycloundecane ring, cyclotridecane ring, cyclotetradecane ring, cyclopentenedecane ring, etc., and unsaturated such as cyclobutenyl ring, cyclopentenyl ring, cyclohexenyl ring, cyclohepten
  • Japanese monocyclic ring for example, tricyclodecane ring, dicyclopentene ring, perhydronaphthale Ring, perhydroanthracene ring, Noruporunan ring, nor pinane ring, norcarane ring, and a saturated or unsaturated polycyclic such as Adamantan ring.
  • R 1 and R 2 The alkyl group and aralkyl group optionally having a carbon-carbon double bond and Z or a triple bond represented by, an aryl group, an alkoxy group and an aryloxy group represented by R 2 are furthermore usually It may have 1 to 5, preferably 1 to 3 various substituents, such as an alkyl group optionally having a carbon-carbon double bond Z triple bond, Aryl group, aralkyl group, alkoxy group, aryloxy group, alkoxyl alkenyl group, aryloxycarbonyl group, acyl group, alkoxy group, aldehyde group, hydroxyl group, amino group, aminoalkyl group, cyano group, alkanol group And a rubamoyl group and an alkyl group.
  • An alkyl group which may have a single carbon double bond and / or a triple bond, an aralkyl group, an aryl group, an alkoxy group, which is a substituent of the group represented by R 1 and / or R 2 as described above; Specific examples of the aryloxy group and the hydroxy group include those represented by R 1 and Z or R 2 .
  • a substituent of the group represented by R 1 and / or R 2 Specific examples of the alkoxy force Ruponiru group and ⁇ reel O carboxymethyl Cal Poni group, represented by R 1 and / or R 2, such as described above Specific examples of the alkoxy group and aryloxy group include those in which a carbonyl group is bonded to an oxygen atom, and the like.
  • the acyl group which is a substituent of the group represented by R 1 and R or R 2 , usually has 2 carbon atoms. To 20, preferably 2 to 10, more preferably 2 to 4, and specifically include, for example, acetyl, propionyl, butyryl, isoptyryl, valeryl, isovaleryl, and vivaloyl.
  • Lauroyl, myristoyl, palmitoyl, stearoyl and other aliphatic saturated monocarboxylic acid-derived acyl groups such as acryloyl, propioyl, methacrylic Yl group, Kurotonoiru group, aliphatic unsaturated monocarboxylic acids derived from Ashiru group such Oreoiru group, for example base Nzoiru group
  • an acyl group derived from an aromatic monocarboxylic acid such as a naphthoyl group.
  • the lipoxyl group which is a substituent of the group represented by R 1 and / or R 2 also includes those in which the hydrogen atom is replaced by an alkali metal atom such as sodium, potassium, lithium and the like.
  • one or two of the hydrogen atoms usually have 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and are branched. Alternatively, it may be substituted with a cyclic alkyl group.
  • a aminoalkyl group is a substituent of the group represented by R 1 and or R 2 is an amino group such as at least one of the hydrogen atoms are the above-described alkyl groups represented by R 1 and Z or R 2 And substituted ones.
  • the alkyl rubamoyl group which is a substituent of the groups represented by R 1 and R or R 2 is one in which one or two of the hydrogen atoms of the rubamoyl group are each independently replaced by the alkyl group as described above.
  • Specific examples thereof include, for example, a methylcarbamoyl group, an ethylcarbamoyl group, an n-propyl group, a rubamoyl group, an isopropyl group, a n-butylcarbamoyl group, an isobutylcarbamoyl group, a tert-butylcarbamoyl group, and a pentyl group.
  • Methyl group decylcarbamoyl group, methylpentyldecylcarbamoyl group, cyclopentylmethylcarbamoyl group, cyclohexylmethylcarbamoyl group, cyclohexylethyl group, cyclohexylpropyl group, cyclohexylbutylcarbamoyl group, dicyclohexylcarbamoyl group And the like.
  • deuterium gas DT
  • deuterated solvents As a deuterium source for deuterating a compound represented by the general formula [1] in which X is a carbonyl group, a deuterated solvent is particularly preferable, and when X is a hydroxymethylene group, As the deuterium source, a deuterated solvent is preferable.
  • deuterated solvent when deuterium is diuterium, for example, heavy water (D 2 O), for example, heavy methanol, heavy ethanol, heavy isopropanol, heavy butanol, heavy Heavy alcohols such as tert-butanol, heavy pentanol, heavy hexanol, heavy heptanol, heavy octanol, heavy nonanol, heavy decanol, heavy dexanol, heavy dodecanol, etc., for example, heavy formic acid, heavy acetic acid, heavy Gravity rubonic acids such as propionic acid, heavy butyric acid, heavy isobutyric acid, heavy valeric acid, heavy isovaleric acid, and heavy pivalic acid, for example, heavy acetone, heavy methyl ethyl ketone, heavy methyl isobutyl ketone, heavy getyl ketone, heavy dipropyl Ketones, heavy diisopropyl ketones
  • D 2 O heavy water
  • the deuterated solvent may be one in which one or more hydrogen atoms in the molecule are deuterated, for example, a hydrogen atom of a hydroxyl group in heavy alcohols, and a hydrogen atom of a hydroxyl group in gravity rubonic acids. If the atoms are deuterated, they can be used in the deuteration method of the present invention, but those in which all hydrogen atoms in the molecule are deuterated are particularly preferred.
  • the amount of deuterium atoms contained in the deuterium source is determined by the general formula [ 1] is preferably as a lower limit in order to a deuteratable hydrogen atom of the compound represented by the formula [1], and is preferably as equimolar, 10-fold, 20-fold, 30-fold, 40-fold, and upper-limit in order. , 250 times mole, 150 times mole.
  • a reaction solvent may be used if necessary. If the reaction substrate is a liquid, there is no need to use a reaction solvent even when deuterium gas is used as the deuterium source, and even if the reaction substrate is a solid, a deuterated solvent must be used as the deuterium source. When used, there is no particular need to use a reaction solvent, but if the reaction substrate is solid and the deuterium source is deuterium gas, then an appropriate reaction solvent must be used.
  • the reaction solvent used as necessary is used as a deuterium source. Even if it is not deuterated by deuterium gas or deuterated by deuterium gas, the deuterated reaction solvent as it is becomes the deuterium source for deuteration of the present invention. What is obtained is preferred.
  • the reaction system since the reaction system may be in a suspended state, a reaction solvent which hardly dissolves the substrate can be used, but a solvent which easily dissolves the substrate is more preferable.
  • reaction solvent used if necessary include, for example, dimethyl ether, getyl ether, diisopropyl ether, ethyl methyl ether, tert-butyl methyl ether, 1,2-dimethylmethoxyethane, oxysilane, 1,4 -Organic solvents that are not deuterated by deuterium gas, such as ethers such as dioxane, dihydropyran, and tetrahydrofuran, and aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, and cyclohexane.
  • ethers such as dioxane, dihydropyran, and tetrahydrofuran
  • aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, and cyclohexane.
  • alcohols such as methanol, ethanol, isopropanol, butanol, tert-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, pendanol, and dodecanol.
  • acetic acid formic acid, acetic acid, propionic acid, butyric acid
  • Carboxylic acids such as isobutyric acid, valeric acid, isovaleric acid, and pivalic acid
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, getyl ketone, dipropyl ketone, diisopropyl ketone, dibutyl ketone, and dimethyl
  • Organic solvents and the like which can be used as the deuterium source of the present invention even when deuterated with a deuterium gas such as sulfoxide are exemplified.
  • an activated catalyst selected from a palladium catalyst, a platinum catalyst, a rhodium catalyst, a ruthenium catalyst, a nickel catalyst and a cobalt catalyst (hereinafter, may be abbreviated as an activated catalyst).
  • an activated catalyst Is a so-called palladium catalyst, platinum catalyst, rhodium catalyst, ruthenium catalyst, nickel catalyst or cobalt catalyst (sometimes abbreviated as “inactivated catalyst” or simply “catalyst”).
  • deuteration may be carried out using a catalyst which has been activated in advance, and the catalyst which has not been activated may be converted into hydrogen gas in a dehydrogenation reaction system.
  • the activation of the catalyst and the deuteration of the reaction substrate may be performed simultaneously in the presence of deuterium gas.
  • deuterating a compound represented by the general formula [1] containing a carbon-carbon double or triple bond if hydrogen gas or deuterium gas is present in the reaction system, water Since addition occurs, it is preferable to use a catalyst that has been activated in advance so that such a phenomenon does not occur.
  • the gas layer of the deuteration reaction vessel is replaced with an inert gas such as nitrogen or argon. May be.
  • hydrogen gas or deuterium gas is passed directly through the reaction solution or hydrogen gas is passed through the gas layer of the reaction vessel. Alternatively, it may be replaced with deuterium gas.
  • a preactivated catalyst is used.
  • the deuteration reaction can be performed by replacing the gas layer of the reaction vessel of the deuteration reaction with hydrogen or deuterium.
  • the reaction vessel is in a sealed state or a state close to the sealed state, and as a result, the reaction system is in a pressurized state.
  • the state close to sealing includes, for example, a case where a reaction substrate is continuously charged into a reaction vessel and a product is continuously removed, as in a so-called continuous reaction.
  • the temperature of the reaction system can be easily increased, and deuteration can be performed efficiently.
  • the gas phase of the reaction vessel in the deuteration reaction is replaced with hydrogen gas or deuterium gas, and the deuteration of the reaction substrate and the activation of the catalyst are performed simultaneously, the catalyst will be activated in advance. Since the complicated step of conversion to a compound is not required, deuteration of the compound represented by the general formula [1] excluding those containing a carbon-carbon double bond and / or a triple bond can be performed more efficiently. Can be.
  • the activated catalyst includes the above-mentioned palladium catalyst, platinum catalyst, rhodium catalyst, ruthenium catalyst, nickel catalyst and cobalt catalyst, and among them, palladium catalyst, platinum catalyst and rhodium catalyst are preferable. Further, a palladium catalyst and a platinum catalyst are preferable, and a palladium catalyst is particularly preferable. These catalysts can be used effectively in the deuteration method of the present invention either alone or in combination as appropriate.
  • the palladium catalyst includes one having usually 0 to 4, preferably 0 to 2, and more preferably 0 valence of a palladium atom.
  • platinum catalyst examples include those in which the valence of a platinum atom is usually 0 to 4, preferably 0 to 2, and more preferably 0.
  • the rhodium catalyst includes one having usually 0 or 1, preferably 0 valence of a rhodium atom.
  • the ruthenium catalyst includes one in which the valence of a ruthenium atom is usually 0 to 2, preferably 0.
  • nickel catalyst examples include those in which the valence of a nickel atom is usually 0 to 2, preferably 0.
  • cobalt catalyst examples include those in which the valence of a cobalt atom is usually 0 or 1, and preferably 1.
  • the catalyst as described above may be a metal itself, or an oxide, a halide, an acetate, or a ligand coordinated with such a metal, or a metal, metal oxide, halide, or the like.
  • Acetates, metal complexes and the like may be supported on various supports.
  • metal catalyst supported on a carrier may be abbreviated as “metal catalyst supported on a carrier”, and a catalyst not supported on a carrier may be abbreviated as “metal catalyst”.
  • the ligands of the metal catalysts to which the ligands may be coordinated include, for example, 1,5-six-octane (COD), dibenzylideneacetone ( DBA), bipyridine (BPY), phenanthroline (PHE), benzonitrile (PhCN), isocyanide (RNC), triethylarsine (As (Et) 3 ), acetylacetonato (acac :), for example, dimethylpropane Enyl phosphine (P (CH 3 ) 2 Ph), diphenyl phosphinophenol (DPPF), trimethyl phosphine (P (CH 3 ) 3 ), triethyl phosphine (PEt 3 ), tri-tert-butyl phosphine (P l Bu 3 ), tricyclohexylphosphine (PCy 3 ), trimethoxyphosphine
  • COD 1,5-six-octane
  • the palladium metal catalyst include, for example, Pd. (Palladium hydroxide catalyst such as 1 (011) 2 , for example, palladium oxide catalyst such as PdO, for example, palladium halide catalyst such as PdBr 2 , PdCl 2 , Pdl 2 , for example, palladium acetate (Pd (0Ac) 2 ), palladium Palladium acetate catalysts such as trifluoroacetate (Pd (0C0CF 3 ) 2 ), such as Pd (RNC) 2 Cl 2 , Pd (acac) 2 , diacetate bis (triphenylphosphine) palladium [Pd (0Ac) 2 (PPh 3 ) 2 ] , Pd (PPh 3 ) 4 , Pd 2 (dba) 3 , Pd (NH 3 ) 2 Cl 2 , Pd (CH 3 CN) 2 Cl 2 , dichlorobis (benzonitrile) palladium [Pd (Pd
  • platinum metal catalyst examples include, for example, Pt, for example, PtO 2 , PtCl or PtC 1 or K 2 PtCl 4 , such as PtCl 2 (cod), PtCl 2 (dba), PtCl 2 (PCy 3 ) 2 , PtCl 2 (P (OEt) 3 ) 2 , PtCl 2 (P (0'Bu) 3 ) or PtCl 2 (bpy), PtCl 2 (phe), Pt (PPh 3 ) or Pt (cod) 2 , Pt ( Examples include platinum catalysts coordinated with ligands such as dba) 2 , Pt (bpy) 2 , and Pt (phe) 2 .
  • Pt platinum catalysts coordinated with ligands such as dba) 2 , Pt (bpy) 2 , and Pt (phe) 2 .
  • rhodium metal catalyst examples include a rhodium catalyst coordinated to a ligand, such as Rh, for example, RhCl (PPh 3 ) 3 .
  • the ruthenium metal catalyst include a ruthenium catalyst coordinated to a ligand such as Ru, for example, RuCl 2 (PPh 3 ) 3 .
  • nickel metal catalyst examples include, for example, nickel catalysts such as Ni, for example, NiCl 2 and NiO, for example, NiCl 2 (dppe), NiCl 2 (PPh 3 ) 2 Ni (PPh 3 ) 4 , Ni (P (0Ph) 3 ) 4 , a nickel catalyst coordinated to a ligand, such as Ni (cod) 2 .
  • nickel catalysts such as Ni, for example, NiCl 2 and NiO, for example, NiCl 2 (dppe), NiCl 2 (PPh 3 ) 2 Ni (PPh 3 ) 4 , Ni (P (0Ph) 3 ) 4 , a nickel catalyst coordinated to a ligand, such as Ni (cod) 2 .
  • cobalt metal catalyst examples include, for example, a cobalt metal complex catalyst coordinated to a ligand such as Co (C 3 H 5 ) ⁇ P (0CH 3 ) 3 ⁇ 3 .
  • the carrier include carbon, alumina, silica gel, zeolite, molecular sieves, ion exchange resin, and polymer. Among them, carbon is preferable.
  • the ion exchange resin used as the carrier may be any one which does not adversely affect the deuteration of the present invention, and examples thereof include a cation exchange resin and an anion exchange resin.
  • the cation exchange resin include a weakly acidic cation exchange resin and a strongly acidic cation exchange resin.
  • the anion exchange resin include a weakly basic anion exchange resin and a strongly basic anion exchange resin. Is mentioned.
  • Ion exchange resins generally include a backbone polymer that is cross-linked with a bifunctional monomer, to which acidic or basic groups are bound and exchanged with various cations or anions (counterions), respectively. I have.
  • the weakly acidic cation exchange resin include, for example, those obtained by hydrolyzing a polymer of acrylate or methacrylate crosslinked with divinylbenzene.
  • the strongly acidic cation exchange resin include, for example, those obtained by sulfonating a copolymer of styrene-divinyl benzene.
  • Examples of the strongly basic anion exchange resin include those in which an amino group is bonded to an aromatic ring of a styrene-dibutylbenzene copolymer.
  • the basicity of the basic anion exchange resin is such that the amino groups bonded become primary amino groups, secondary amino groups, tertiary amino groups, and quaternary ammonium salts. It becomes stronger in order.
  • a commercially available ion exchange resin can be used as a carrier for the deuteration catalyst of the present invention, similarly to the ion exchange resin as described above.
  • the polymer used as the carrier is not particularly limited as long as it does not adversely affect the deuteration of the present invention.
  • a polymer for example, a monomer represented by the following general formula [2] And those obtained by polymerization or copolymerization.
  • R 3 is a hydrogen atom, a lower alkyl group, a propyloxyl group, a carboxyalkyl group, an alkyloxycarbonyl group, a hydroxyalkyloxy group
  • R 4 represents a hydrogen atom, a lower alkyl group, a propyloxyl group, an alkyloxycarbonyl group, a hydroxyalkyloxycarbonyl group, a cyano group or a halogen atom
  • R 5 represents a cycloalkyl group, a cyano group or a formyl group
  • the lower alkyl group represented by R 3 to R 5 may be any of linear, branched, and cyclic, and examples thereof include an alkyl group having 1 to 6 carbon atoms. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, isopentyl, tert- Examples include a pentyl group, trimethylpentyl group, n-hexyl group, isohexyl group, cyclopropyl group, cyclopentyl group, and cyclohexyl group.
  • Examples of the carboxyalkyl group represented by R 3 and R 4 include those in which a hydrogen atom of the lower alkyl group is partially substituted with a carbonyl group as described above. Specifically, for example, carboxymethyl Group, carboxystyl group, carboxypropyl group, carboxybutyl group, carboxypentyl group, and propyloxyhexyl group.
  • the alkyloxycarbonyl group represented by R 3 to R 5 is preferably, for example, one having 2 to 11 carbon atoms, specifically, for example, a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarponyl group , Pentyloxycarponyl group, hexyloxyl carbonyl group A heptyloxycarbonyl group, a 2-ethylhexyloxycarbonyl group, an octyloxycarbonyl group, a nonyloxycarbonyl group, and a decyloxycarbonyl group.
  • hydroxyalkyloxycarbonyl group represented by R 3 to R 5 as described above, a part of one hydrogen atom of an alkyloxycarbonyl group having 2 to 11 carbon atoms is substituted with a hydroxy or sil group.
  • hydroxymethyloxycarbonyl group examples thereof include, for example, a hydroxymethyloxycarbonyl group, a hydroxyxyloxycarbonyl group, a hydroxypropyloxycarbonyl group, a hydroxybutyloxycarbonyl group, a hydroxypentyloxycarbonyl group, Examples thereof include a hydroxyhexyloxycarbonyl group, a hydroxyheptyloxycarbonyl group, a hydroxyoctyloxycarbonyl group, a hydroxy-2-hydroxycarbonyl group, and a hydroxydecyloxycarbonyl group.
  • halogen atom represented by R 4 and R 5 examples include fluorine, chlorine, bromine, iodine and the like.
  • the haloalkyl group represented by R 5 for example, the lower alkyl group represented by R 3 to R 5 is halogenated (for example, fluorinated, chlorinated, brominated, iodinated, etc.), and has 1 to 1 carbon atoms. 6, specifically, for example, chloromethyl group, bromomethyl group, trifluoromethyl group, 2-chloroethyl group, 3-chloropropyl group, 3-bromopropyl group, 3,3,3 -Trifluoropropyl group, 4-chlorobutyl group, 5-chloropentyl group, 6-cyclohexyl group and the like.
  • halogenated for example, fluorinated, chlorinated, brominated, iodinated, etc.
  • Examples of the aryl group which may have a substituent include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
  • Examples of the substituent include an amino group, a hydroxyl group, and a lower group. Examples thereof include an alkoxy group and a carbonyl group.
  • Specific examples of the substituted aryl group include, for example, an aminophenyl group, a toluidino group, a hydroxyphenyl group, and a methylphenyl group.
  • the aliphatic heterocyclic group is, for example, a 5-membered or 6-membered ring, and contains 1 to 3 heteroatoms such as nitrogen, oxygen, and sulfur as isomers. And specific examples thereof include a pyrrolidyl-2-one group, a piperidyl group, a piperidino group, a piperazinyl group, and a morpholino group.
  • the aromatic heterocyclic group is, for example, a 5-membered or 6-membered ring, and contains 1 to 3 heteroatoms such as nitrogen, oxygen, sulfur, etc. as isomers. Specific examples thereof include, for example, a pyridyl group, an imidazolyl group, a thiazolyl group, a furanyl group, and a pyraryl group.
  • the cyanoalkyl group include, for example, a part of the hydrogen atom of the lower alkyl group as described above is a cyano group.
  • cyanomethyl group examples include, for example, a cyanomethyl group, a 2-cyanoethyl group, a 2-cyanopropyl group, a 3-cyanopropyl group, a 2-cyanobutyl group, a 4-cyanobutyl group, a 5-cyanopentyl group, And a 6-cyanohexyl group.
  • acyloxy group examples include those derived from a carboxylic acid having 2 to 20 carbon atoms.Specific examples include, for example, an acetyloxy group, a propionyloxy group, a ptyryloxy group, a penylyloxy group, a nonanoyloxy group, a decanolyloxy group, A benzoyloxy group;
  • aminoalkyl group examples include those in which a part of the hydrogen atoms of the lower alkyl group as described above is substituted with an amino group. Specific examples include an aminomethyl group, an aminoethyl group, an aminopropyl group, and an aminobutyl group. Group, aminopentyl group, aminohexyl group and the like.
  • N-alkyl rubamoyl group examples include those in which a part of the hydrogen atoms of the rubamoyl group is substituted with an alkyl group. Examples include a tylcarbamoyl group, an N-ethylcarbamoyl group, an Nn-propylcarbamoyl group, an N-isopropylcarbamoyl group, a Nn-butylcarbamoyl group, and an N-toptylcarbamoyl group.
  • hydroxyalkyl group examples include those in which a part of the hydrogen atoms of the lower alkyl group as described above is substituted with a hydroxyl group.
  • Specific examples include a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, Examples include a hydroxybutyl group, a hydroxypentyl group, and a hydroxyhexyl group.
  • the aliphatic ring includes, for example, an unsaturated fat having 5 to 10 carbon atoms.
  • a ring may be a monocyclic or polycyclic ring. Specific examples of these rings include a norbornene ring, a cyclopentene ring, a cyclohexene ring, a cyclooctene ring, a cyclodecene ring and the like.
  • the monomer represented by the general formula [2] include, for example, ethylenically unsaturated aliphatic hydrocarbons having 2 to 20 carbon atoms, such as ethylene, propylene, butylene, and isobutylene, for example, styrene, 4-methylstyrene, Ethylenically unsaturated aromatic hydrocarbons having 8 to 20 carbon atoms such as 4-ethylstyrene and divinylbenzene, and 3 to 2 carbon atoms such as vinyl formate, vinyl acetate, vinyl propionate, and isopropenyl acetate.
  • ethylenically unsaturated aliphatic hydrocarbons having 2 to 20 carbon atoms such as ethylene, propylene, butylene, and isobutylene
  • styrene 4-methylstyrene
  • Ethylenically unsaturated aromatic hydrocarbons having 8 to 20 carbon atoms such as 4-ethylstyrene and divin
  • Unsaturated carboxylic acids (these acids may be in the form of a salt such as an alkali metal salt such as sodium or potassium or an ammonium salt), for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate , Butyl methacrylate, Methacrylic acid 2-ethylhexyl, methyl acrylate, ethyl acrylate, propyl acrylate, buty
  • Ethylenically unsaturated aldehydes having 3 to 20 carbon atoms such as rhein and crotonaldehyde
  • ethylenically unsaturated sulfonic acids having 2 to 20 carbon atoms such as pyrylsulfonic acid and 4-vinylbenzenesulfonic acid (these acids are in the form of salts such as alkali metal salts such as sodium and potassium).
  • ethylenically unsaturated aliphatic amines having 2 to 20 carbon atoms such as vinylamine, arylamine, etc.
  • ethylenically unsaturated aromatic amines having 8 to 20 carbon atoms such as vinylaniline.
  • ethylenically unsaturated aliphatic heterocyclic amines having 5 to 20 carbon atoms such as N-vinylpyrrolidone and vinylpiperidine; and 0.3 to 20 ethylenically unsaturated aliphatic amines such as aryl alcohol and crotyl alcohol.
  • Saturated alcohols include, for example, ethylenically unsaturated phenols having 8 to 20 carbon atoms such as 4-vinylphenol.
  • a polymer or the like as described above is used as a carrier, it is preferable to use a polymer in which the carrier itself is not easily deuterated by deuteration according to the present invention.
  • the prepared catalyst can also be used for the deuteration of the present invention.
  • a palladium catalyst supported on a carrier among the catalysts supported on a carrier, a palladium catalyst supported on a carrier, a platinum catalyst supported on a carrier, or a rhodium catalyst supported on a carrier are used. It is preferable to use a medium, and among them, a palladium catalyst supported on a carrier is preferable, and specifically, palladium ion is particularly preferable.
  • the ratio of the catalytic metal palladium, platinum, rhodium, ruthenium, nickel or cobalt is usually 1 to 99% by weight, preferably 1 to 50% by weight, more preferably 1 to 50% by weight. %, More preferably 1 to 20% by weight, particularly preferably 5 to 10% by weight.
  • the amount of the activated catalyst or the non-activated catalyst used depends on whether the catalyst is used as a reaction substrate regardless of whether the catalyst is supported on a carrier or the like.
  • the so-called catalyst amount is generally preferably 0.01 to 200% by weight, 0.01 to 100% by weight, 0.01 to 50% by weight, 01 to 20% by weight, 0.1 to 20% by weight, 1 to 20% by weight, 10 to 20% by weight, and the upper limit of the amount of the catalyst metal contained in the whole catalyst is as follows: It is preferably 20% by weight, 10% by weight, 5% by weight, and 2% by weight, and the lower limit is, in order, 0.0005% by weight, 0.005% by weight, 0.05% by weight, 0.5% by weight. Is the amount
  • two or more of the various catalysts described above can be used in appropriate combination as a catalyst.
  • Deuteration rates may increase with use.
  • a compound in which X is a hydroxymethylene group is used as a catalyst combination that improves the deuteration rate when deuterated.
  • a combination of a catalyst with a platinum catalyst, a ruthenium catalyst or a rhodium catalyst for example, a combination of a platinum catalyst with a ruthenium catalyst or a rhodium catalyst, for example, a combination of a ruthenium catalyst with a platinum catalyst, and among them, a palladium catalyst and a platinum catalyst Is preferable, and one or both of them may be supported on a carrier.
  • Preferred specific examples include, for example, a combination of palladium carbon and platinum carbon.
  • the amount of the catalyst used may be set so that the total amount of the catalyst is the amount of the catalyst used as described above.
  • the ratio of the amount of each catalyst used is not particularly limited.
  • the weight of palladium in the catalyst is usually 0.01 to 0.01% of the weight of platinum.
  • the amount of the catalyst used may be set to be 100 times, preferably 0.1 to 10 times, and more preferably 0.2 to 5 times.
  • the amount of hydrogen used when hydrogen is present in the reaction system for activating the catalyst is too large to be a heavy hydrogen source. Since the hydrogenated solvent is hydrogenated or the ratio of deuterium serving as a deuterium source in the reaction system becomes small and adversely affects the deuteration reaction of the present invention, the amount required to activate the catalyst is reduced. The amount is usually 1 to 20,000 equivalents, preferably 10 to 700 equivalents to the catalyst.
  • the amount of deuterium used may be an amount necessary for activating the catalyst, and the amount of the deuterium is usually relative to the catalyst.
  • the amount is 1 to 20,000 equivalents, preferably 10 to 700 equivalents. Since the deuterium can be used as the deuterium source of the present invention, there is no problem even if the used amount is large, Can be performed.
  • the lower limit of the reaction temperature of the deuteration method of the present invention is generally preferably from 10 ° C to 20 ° C, 40 ° C, 80 ° C, 110 ° C, and 140 ° C. T: 160 ° C., and the upper limit is usually 300 ° C., and more preferably 200 ° C. and 180 ° C. in that order.
  • the reaction time of the deuteration method of the present invention is usually 30 minutes to 72 hours, preferably 1 to 48 hours, more preferably 3 to 30 hours, and still more preferably 6 to 24 hours. .
  • the deuteration method of the present invention is activated by using heavy water as a deuterium source.
  • a specific example will be described with reference to an example in which palladium-carbon (Pd / C) (Pd content: 10%) is used as a catalyst.
  • the compound (substrate) represented by the general formula [1] having no carbon-carbon double bond or carbon-carbon triple bond in its structure and 0.01 to 200% by weight based on the substrate The unactivated Pd / C is added to an amount of heavy water containing 10 to 150 times the molar amount of deuterium atoms with respect to the deuteratable hydrogen atoms of the substrate, and the sealed reaction is performed. After replacing the gas phase of the container with hydrogen, the mixture is stirred and reacted in an oil bath at about 110 to 200 ° C for about 1 to 48 hours.
  • the structure solution of the product from the reaction mixture by measuring the 1 H- Hokusatsu R, 2 H- NMR and Mass spectra from isolated Perform analysis.
  • the filtrate may be directly measured by 1 H-NMR using an appropriate internal standard substance, and the structure of the product may be analyzed.
  • the product is poorly soluble in the deuterated solvent, isolate the product from the reaction solution and measure the 1 H-band R, 2 H-NMR and Mass spectrum to determine the structure. Perform analysis.
  • the filtrate may be directly measured with 1 H-dragon R using an appropriate internal standard substance, and the structure of the product may be analyzed.
  • the product can be isolated from the reaction solution in the same manner as in the isolation method in the deuteration method of the present invention using an unactivated catalyst.
  • the product is hardly soluble in a deuterated solvent, for example, the product is extracted from the reaction solution using an organic solvent or the like in which the product dissolves, and the product is further filtered. Purification may be performed according to a known purification method such as removing the catalyst.
  • the deuteration rate is usually 60% or more, preferably 70% or more, and 78% or more.
  • Tricyclo [5.2.1.0 2 ' 6 ] decane-8-ol having a concentration of at least 80%, at least 85%, at least 88%, at least 89%, and at least 90% can be easily obtained.
  • the deuterated tricyclo [5.2.1.0 2 ' 6 ] decan-8-ol thus obtained is a very useful compound as a raw material of a deuterated methacrylate for a polymer for an optical fiber, for example. is there.
  • the deuteration method of the present invention is carried out using a catalyst which has been activated in advance as an activated catalyst and using a deuterated solvent as a deuterium source, the general formula Even when the compound represented by [1] has a carbon-carbon double bond or a carbon-carbon triple bond, Even if the compound has a substituent such as a nitro group or a cyano group, the substituent is not reduced and the desired heavy Only hydrogenation takes place.
  • the compound represented by the general formula [1] has a carbon-carbon double or triple bond, and the bond is easily polymerized in the deuteration reaction of the present invention.
  • a polymerization inhibitor or the like may be added to the reaction system of the deuteration reaction.
  • a compound represented by the general formula [1] in which a compound represented by the general formula [1] is reacted with a deuterium source in the presence of an activated catalyst, a compound having a hydroxyl group And the secondary alcohol compound can be efficiently deuterated (diuterium and tritiated) irrespective of the presence or absence of a double or triple bond, the presence or absence of a substituent, and the type in the compound. Become.
  • the deuteration reaction can be carried out without particularly using acid or base conditions, not only the working environment is improved, but also under high temperature, acid or base conditions.
  • Application to deuteration of easily decomposable substrates is now possible.
  • palladium carbon (Pd / C) has a Pd content of 10%
  • platinum carbon (Pt / C) has a Pt content of 5%
  • ruthenium carbon (Ru / C) has a Ru content of 5%
  • the dimethyl carbon (Rh / C) used had a Rh content of 5%.
  • a deuteration reaction was carried out in the same manner as in Example 1 except that the reaction was carried out at the reaction temperature shown in Table 1, using the substrate and catalyst to be deuterated shown in Table 1 below.
  • Table 1 shows the isolation yield and deuteration ratio of the obtained compound.
  • 2-butane nonone, 2-norpornanone, tricyclo [5.2.1.0 2 ' 6] decane - 8-one, Noruporuneoru, tricyclo [5.2.1.0 2 '6] - 3- dec emissions - 8- ol ((deuteration ratio of Kisano Lumpur hydroxy dicyclopentanol evening Gen) and the cycloalkyl are The deuteration ratios at the positions indicated by the numbers in the following chemical formulas are shown, and the deuteration ratios of the other compounds represent the average deuteration ratios of all hydrogen atoms that can be deuterated.
  • the case where the isolation yield is unity indicates that the deuteration ratio was measured without isolating the target product after deuter
  • CD 3 CD 2 — C— CD
  • Tricyclo [5.2.1.0 2 ' 6 ] decane-8-ol (substrate) (500 mg) and palladium carbon (50 mg) were suspended in 17 mL of heavy water, the reaction system was replaced with hydrogen, and then reacted in an oil bath at 180 ° C for about 24 hours. I let it. After completion of the reaction, the reaction solution was extracted with ether, the catalyst was filtered, and the filtrate was concentrated under reduced pressure. The obtained compound was subjected to 1 H-NMR, 2 H_NMR, and mass spectrometry for structural analysis. , Purpose The isolation yield of the product was 60%, and the deuteration ratio was 45%. Table 2 shows the results.
  • the amount of metal is the ratio of the amount of catalyst metal present in the carrier-supported catalyst to the substrate
  • the deuteration ratio in Table 2 is the total amount of hydrogen atoms that can be deuterated.
  • (1) indicates the deuteration ratio at the position indicated by (1) in the following chemical formula, and the other indicates the average deuteration ratio of the portion other than (1).
  • Tricyclo [5.2.1.0 2 ' 6 ] decane-8 was used in the same manner as in Example 16 except that the catalysts shown in Table 2 were used in the amounts shown in Table 2 and reacted for the reaction times shown in Table 2. -Deuteration of all. The results are shown in Table 2.
  • a deuteration reaction was carried out in the same manner as in Example 26, except that the reaction was carried out at the reaction temperature shown in Table 3, using the substrates and catalysts to be deuterated shown in Table 3 below.
  • Table 3 also shows the isolation yield and deuteration ratio of the obtained compound.
  • one of the isolation yields has the same meaning as in Table 1.
  • Example 26 Deuteration was performed in the same manner as in Example 26, except that methacrylic acid was used as a substrate and deuterium gas was used as a deuterium source, and 1 H-fraction R and 2 H-NMR of the obtained compound were measured. Structural analysis revealed that the carbon-carbon double bond of methacrylic acid had been reduced, albeit deuterated. As is clear from Examples 1 to 32, according to the deuteration method of the present invention, it is found that a compound having a hydroxyl group or a compound having a hydroxyl group can be efficiently deuterated. As is apparent from Examples 1 to 25, when deuterating a compound containing no carbon-carbon double bond, the catalyst activation and the deuteration reaction are efficiently and simultaneously performed in the reaction system. I can do it.
  • Examples 24 and 25 show that deuteration can occur even when a catalyst is used in combination.
  • Example 24 a catalyst using a combination of palladium carbon and platinum carbon was used, which was the same as in Examples 21 and 22 even though the amount of the catalytic metal relative to the substrate was 2% by weight. Furthermore, it can be seen that the deuteration ratio is clearly higher than that of the example using a catalyst containing only palladium carbon and having a relatively large amount of catalyst metal of 4% by weight or 5% by weight.
  • Example 25 in which deuteration was performed using a mixed catalyst in which palladium and platinum were combined had a higher deuteration ratio.
  • the deuteration method of the present invention uses a catalyst which is not activated. It can be seen that the deuteration rate is high.
  • deuteration can be efficiently performed without making the reaction solution a basic condition.
  • Industrial potential According to the deuteration (diuterium and tritium) method of the present invention in which a compound represented by the general formula [1] is reacted with a deuterium source in the presence of an activated catalyst, the conventional base condition
  • the work environment can be significantly improved because deuteration, which has been performed under severe conditions such as the following, can be performed under neutral conditions.
  • the compound represented by the general formula [1] contains a carbon-carbon double bond or a carbon-carbon triple bond
  • the compound may have a double bond or a triple bond. It is possible to efficiently perform the target deuteration without reducing the amount of hydrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

重水素化方法 技術分野
本発明は、 活性化された触媒を用いて行われる、 化合物の重水素化方 法に関する。 明
技術背景
重水素化 (ジユウテリゥム化及びトリチウム化) された化合物は、 種 々の目的に有用であるとされている。 例えば、 ジユウテリゥム化された 化合物は、 反応機構及び物質代謝などの解明に非常に有用であり、 標識 化合物として広く利用されており、 更に該化合物は、 その同位体効果に よって化合物自体の安定性や性質が変化することから、 医薬品、 農薬品 、 有機 E L材料等としても有用であるとされている。 また、 トリチウム 化された化合物は、 医薬品等の吸収、 分布、 血中濃度、 排泄、 代謝等を 動物実験等で調査する際の標識化合物として有用であるとされている。 そのため、 近年、 これらの分野に於いても重水素化 (ジユウテリゥム化 及びトリチウム化) された化合物を用いた研究が盛んに行われている。 従来、 このような重水素化された化合物を得るために様々な方法が用 いられているが、 中でもその構造中にカルポニル基ゃヒドロキシル基を 有する化合物を重水素化する技術は未だ問題が多く、 重水素化された化 合物を効率的且つ工業的に得ることは困難であった。
従来の技術としては、 例えば、 1 )過酸化重水素を用い、 塩基性条件下 でカルボン酸を重水素化する方法 (USP 3849458号公報参照) 、 2)イリジ ゥム錯体を触媒として用い、 重水を重水素源として用いてアルコールや 力ルポン酸を重水素化する方法 (J . Am. Chem. S oc . Vo l . 1 24, No . 10, 209 2 (2002)参照) 、 3)パラジウムカーボンを触媒として用い、 重水素源と して重水素ガスのみを用いて脂肪酸を重水素化する方法 (L IP I DS, Vo l . 9, No . 1 1 , 913 (1974)参照) 、 4)第 8族金属から選ばれる金属を触媒と して用い、 重水又は重水 +重水素ガスを重水素源として用いてァクリル 酸、 アクリル酸メチル、 メタクリル酸、 メタクリル酸メチルを重水素化 する方法 (特公平 5- 1 9536号公報、 特開昭 61 - 277648号公報及び特開昭 61 -275241号公報参照) 或いは 5)水素で活性化されていない触媒を用い、 重水を重水素源として用いて、 アクリル酸ゃメタクリル酸メチル等を重 水素化する方法 (特開昭 63- 198638号公報参照) が挙げられる。
しかしながら、 これらの方法は夫々以下の如き問題を有している。
1 )過酸化重水素を用い、 塩基性条件下でカルボン酸を重水素化する方 法では、 過酸化重水素により分解される化合物や塩基性条件により分解 される化合物の重水素化を行うことは出来ないという問題点を有してお り、 また、 たとえ酸性或いは塩基性条件下で分解しない化合物を基質と して使用した場合でも、 反応液の液性が中性ではないため、 該方法によ つて重水素化された化合物を単離するためには、 煩雑な精製操作が必要 となる。
2)ィリジゥム錯体を触媒として用い、 重水を重水素源として用いてァ ルコール化合物やカルボン酸を重水素化する方法では、 アルコール化合 物の水酸基が結合する炭素原子から遠い位置に結合する水素原子程重水 素化率が高くなり、 水酸基の側では、 重水素化率が極めて低いという問 題点があり、 また、 触媒として用いられるイリジウム錯体自体も不安定 な化合物であるため、 製造が難しくまた入手も困難であるという問題点 を有している。
3)パラジウムカーボンを触媒として用い、 K O D + D 2 0の電気分解 により発生する重水素ガスを重水素源として用いて脂肪酸を重水素化す る方法では、 重水素ガスの製造に特殊な装置が必要であり、 その操作も 非常に煩雑であり、 実用的ではない。 また、 このように重水素ガスを重 水素源として用いる方法では、 水添により還元される不飽和結合を有す る不飽和脂肪酸等の化合物を重水素化することが困難である。
4)第 8族金属から選ばれる金属を触媒として用い、 重水又は重水十重 水素ガスを重水素源として用いてアクリル酸、 アクリル酸メチル、 メタ クリル酸或いはメタクリル酸メチルを重水素化する方法では、 重水素源 として重水のみを用いる場合は、 触媒として活性化されていないものを 用いていることから重水素化率が低いという問題点を有しており、 一方 、 重水素源として重水 +重水素ガスを用いる場合には、 重水素化と同時 に、 反応基質であるアクリル酸、 アクリル酸メチル、 メタクリル酸或い はメタクリル酸メチルの炭素一炭素二重結合部分が、 重水素ガスにより 水添 (接触還元) され易く、 該結合を残したまま重水素化出来ない。
5 )水素により活性化されていない触媒を用い、 重水素源として重水を 使用してァクリル酸ゃメタクリル酸メチルを重水素化する方法では、 触 媒として活性化されていないものを用いていることから重水素化率が低 いという問題点を有している。
上記した如き状況から、 置換基の種類や二重結合或いは三重結合の有 無に拘わらず、 効率的且つ工業的にカルポニル化合物又は第 2アルコー ル化合物を重水素化する方法の開発が望まれている。 発明の開示
本発明は、 一般式 [ 1 ]
Figure imgf000005_0001
( R 1 は、 炭素一炭素二重結合及び Z又は三重結合を有していてもよい アルキル基又はァラルキル基を表し、 R 2 は、 炭素—炭素二重結合及び /又は三重結合を有していてもよいアルキル基、 ァリール基、 ァラルキ ル基、 アルコキシ基、 ァリールォキシ基又はヒドロキシル基を表し、 X は力ルポニル基又はヒドロキシメチレン基を表す。 また、 R 1 と R 2 と が結合して Xに含まれる炭素原子と共に脂肪族環を形成していてもよい 。 伹し、 Xがヒドロキシメチレン基の場合には、 R 2 は、 炭素—炭素二 重結合及び/又は三重結合を有していてもよいアルキル基、 ァリール基 又はァラルキル基を表す。 ) で示される化合物を、 活性化された、 パラ ジゥム触媒、 白金触媒、 ロジウム触媒、 ルテニウム触媒、 ニッケル触媒 及びコパルト触媒より選ばれる触媒の共存下、 重水素源と反応させるこ とを特徴とする、 一般式 [ 1 ] で示される化合物の重水素化方法の発明 である。
また、 本発明は、 重水素化率 6 0 %以上のトリシクロ [5.2.1.02'6] デカン -8-オールの発明である。 発明を実施するための最良の形態
本発明に於いて、 重水素とはジユウテリゥム (D) 又は卜リチウム ( T) のことを意味し、 重水素化とはジユウテリゥム化及びトリチウム化 のことを意味する。 また、 本明細書に於いては、 一般式 [ 1 ] で示され る化合物が有する水素原子のうち重水素原子に置換された比率を重水素 化率とする。
本発明の重水素化方法に於いて、 一般式 [ 1 ] で示される化合物の R 1 及び R2 で表される、 炭素一炭素二重結合及び/又は三重結合を有し ていてもよいアルキル基のアルキル基としては、 直鎖状、 分枝状或いは 環状でもよく、 通常炭素数 1〜 2 0、 好ましくは 1〜 1 5、 より好まし くは 1〜 1 0、 更に好ましくは 1〜 6のものが挙げられ、 具体的には、 例えばメチル基、 ェチル基、 n-プロピル基、 イソプロピル基、 n-ブチル 基、 イソブチル基、 sec-ブチル基、 tert-ブチル基、 n-ペンチル基、 ィ ソペンチル基、 sec-ペンチル基、 tert-ペンチル基、 ネオペンチル基、 n -へキシル基、 イソへキシル基、 3-メチルペンチル基、 2-メチルペンチ ル基、 1, 2-ジメチルブチル基、 n-ヘプチル基、 イソへプチル基、 sec-へ プチル基、 n-ォクチル基、 イソォクチル基、 sec-ォクチル基、 n-ノニル 基、 n-デシル基、 n-ゥンデシル基、 n-ドデシル基、 n-トリデシル基、 n_ テトラデシル基、 n-ペン夕デシル基、 n_へキサデシル基、 n-ヘプ夕デシ ル基、 n-ォクタデシル基、 n-ノナデシル基、 n-ィコシル基、 シクロプロ ピル基、 シクロペンチル基、 シクロへキシル基、 シクロへプチル基、 シ クロォクチル基、 シクロノニル基、 シクロデシル基、 シクロドデシル 、 シクロウンデシル基、 シクロ トリデシル基、 シクロテトラデシル基、 シクロペン夕デシル基、 シクロへキサデシル基、 シクロヘプ夕デシル基 、 シクロォクタデシル基、 シクロノナデシル基、 シクロイコシル基等が 挙げられる。
炭素一炭素二重結合又は三重結合を有するアルキル基としては、 上記 した如きアルキル基のうち炭素数が 2以上のものの鎖中に二重結合或い は三重結合が 1つ以上含まれているものが挙げられ、 また、 炭素一炭素 二重結合及び三重結合を有するアルキル基としては、 上記アルキル基の うち炭素数が 4以上のものの鎖中に二重結合及び三重結合が夫々 1っ以 上含まれているものが挙げられ、 このような炭素一炭素二重結合及び/ 又は三重結合を有するアルキル基の具体例としては、 例えばビニル基、 ァリル基、 1-プロぺニル基、 イソプロぺニル基、 3-ブテニル基、 2-ブテ ニル基、 卜ブテニル基、 1, 3-ブタジェニル基、 4-ペンテニル基、 3-ペン テニル基、 2_ペンテニル基、 1-ペンテニル基、 1, 3-ペンタジェニル基、 2, 4-ペン夕ジェニル基、 1, 1-ジメチル -2-プロぺニル基、 卜ェチル -2 -プ 口ぺニル基、 1, 2-ジメチル -1-プロぺニル基、 1-メチル -1 -ブテニル基、 5-へキセニル基、 4-へキセニル基、 2-へキセニル基、 卜へキセニル基、 1-メチル -1-へキセニル基、 2-メチル -2-へキセニル基、 3-メチル _1,3 - へキサジェニル基、 1-ヘプテニル基、 2-ォクテニル基、 3_ノネニル基、 4-デセニル基、 1 -ドデセニル基、 1 -テトラデセニル基、 1 -へキサデセニ ル基、 1 -ォクタデセニル基、 1 -ィコセニル基、 1 -シクロプロぺニル基、 2-シクロペンテ'ニル基、 2,4-シクロペン夕ジェニル基、 卜シクロへキセ ニル基、 2-シクロへキセニル基、 3-シクロへキセニル基、 2 -シクロヘプ テニル基、 2-シクロノネニル基、 3-シクロデセニル基、 2-シクロ トリデ セニル基、 シクロへキサデセニル基、 1 -シクロォクタデセニル基、 1 - シクロイコセニル基等の炭素一炭素二重結合のみを有するアルキル基、 例えばェチニル基、 2-プロピニル基、 1 -プロピニル基、 2-ペンチニル基 、 2-ノニル -3 -ブチニル基、 シクロへキシル -3-ィニル、 4 -ォクチニル基 、 1 -メチルデシル- 5-ィニル基等の炭素—炭素三重結合のみを有するァ ルキル基、 例えば 1 -ブテン- 3-ィニル基 1、 2-ペンテン -4-ィニル基、 5- (3-ペンテニル) -3 , 6,.8-デカトリェン-卜ィニル基、 6- (1 , 3-ペンタジェ ニル) -2 , 4, 7-ドデカトリエン -9-ィニル基、 6- (卜ペンテン- 3-ィ二ル)- 2 , 4, 7, 9-ゥンデカテトラェニル基等の炭素一炭素二重結合及び三重結合 を有するアルキル基が挙げられる。
R 1 及び R 2 で表されるァラルキル基としては、 直鎖状、 分枝状、 或 いは環状でもよく、 上記アルキル基に上記ァリール基が置換した通常炭 素数 7〜 3 4、 好ましくは 7〜 2 0、 より好ましくは 7〜 1 5のものが 挙げられ、 具体的には、 例えばべンジル基、 フエニルェチル基、 フエ二 ルプロピル基、 フエニルブチル基、 フエ二ルペンチル基、 フエ二ルへキ シル基、 フエニルヘプチル基、 フエニルォクチル基、 フエニルノニル基 、 フエニルデシル基、 フエニルドデシル基、 フエ二ルゥンデシル基、 フ ェニルトリデシル基、 フエ二ルテ卜ラデシル基、 フエ二ルペン夕デシル 基、 フエニルへキサデシル基、 フエニルヘプ夕デシル基、 フエ二ルォク 夕デシル基、 フエ二ルノナデシル基、 フエ二ルイコシル基、 ナフチルェ チル基、 ナフチルプロピル基、 ナフチルブチル基、 ナフチルペンチル基 、 ナフチルへキシル基、 ナフチルヘプチル基、 ナフチルォクチル基、 ナ フチルノニル基、 ナフチルデシル基、 ナフチルドデシル基、 ナフチルゥ ンデシル基、 ナフチルトリデシル基、 ナフチルテトラデシル基、 ナフチ ルペン夕デシル基、 ナフチルへキサデシル基、 ナフチルヘプタデシル基 、 ナフチルォクタデシル基、 ナフチルノナデシル基、 ナフチルイコシル 基、 アントリルェチル基、 アントリルプロピル基、 アントリルブチル基 、 アントリルペンチル基、 アントリルへキシル基、 アントリルへプチル 基、 アントリルォクチル基、 アントリルノニル基、 アントリルデシル基 、 アントリルドデシル5、 アントリルゥンデシル基、 アントリルトリデ シル基、 アントリルテトラデシル基、 アントリルペン夕デシル基、 アン トリルへキサデシル基、 アントリルヘプ夕デシル基、 アントリルォク夕 デシル基、 アントリルノナデシル基、 アントリルイコシル基、 フエナン トリルェチル基、 フエナントリルプロピル基、 フエナントリルブチル基 、 フエナントリルペンチル基、 フエナントリルへキシル基、 フエナント リルへプチル基、 フエナントリルォクチル基、 フエナントリルノニル基 、 フエナントリルデシル基、 フエナントリルドデシル基、 フエナントリ ルゥンデシル基、 フエナントリルトリデシル基、 フエナン.トリルテトラ デシル基、 フエナントリルペン夕デシル基、 フエナントリルへキサデシ ル基、 フエナントリルへプタデシル基、 フエナントリルォクタデシル基 、 フヱナントリルノナデシル基、 フヱナントリルイコシル基等が挙げら れる。
R 2 で表されるァリール基としては、 通常炭素数 6〜 1 4、 好ましく は 6〜 1 0のものが挙げられ、 具体的には、 例えばフエニル基、 ナフチ ル基、 アントリル基等が挙げられる。
R 2 で表されるアルコキシ基としては、 直鎖状、 分枝状或いは環状で もよく、 通常炭素数 1〜 2 0、 好ましくは 1〜 1 5、 より好ましくは 1 ~ 1 0、 更に好ましくは 1〜 6のものが挙げられ、 具体的には、 例えば メ トキシ基、 エトキシ基、 プロピルォキシ基、 イソプロピルォキシ基、 ブトキシ基、 イソブチルォキシ基、 s ec-ブチルォキシ基、 t e r t -ブチル ォキシ基、 ペンチルォキシ基、 ネオペンチルォキシ基、 へキシルォキシ 基、 イソへキシルォキシ基、 t e r t -へキシルォキシ基、 ヘプチルォキシ 基、 ォクチルォキシ基、 ノエルォキシ基、 デシルォキシ基、 ゥンデシル ォキシ基、 テトラデシルォキシ基、 へキサデシルォキシ基、 ヘプ夕デシ ルォキシ基、 ノナデシルォキシ基、 ィコシルォキシ基、 シクロへキシル ォキシ基、 シクロォクチルォキシ基、 シクロデシルォキシ基、 シクロノ ナデシルォキシ基等が挙げられる。
R 2 で表されるァリールォキシ基としては、 通常炭素数 6〜 1 4、 好 ましくは 6〜 1 0のものが挙げられ、 具体的には、 例えばフエノキシ基 、 ナフチルォキシ基、 アントリルォキシ基等が挙げられる。
R 2 で表されるヒドロキシル基は、 その水素原子が例えばナトリウム 、 カリウム、 リチウム等のアルカリ金属原子に置換されたものも含む。
また、 R 1 と R 2 とが結合して Xに含まれる炭素原子と共に形成する 脂肪族環としては、 単環でも多環でもよく、 通常炭素数 3〜 1 5 , 好ま しくは 5〜 1 0、 より好ましくは 6〜 8のものが挙げられ、 具体的には 、 例えばシクロプロパン環シクロブタン環、 シクロペンタン環、 シクロ へキサン環、 シクロヘプタン環、 シクロオクタン環、 シクロノナン環、 シクロデカン環、 シクロ ドデカン環、 シクロウンデカン環、 シクロ トリ デカン環、 シクロテトラデカン環、 シクロペン夕デカン環等の飽和単環 、 例えばシクロブテニル環、 シクロペンテニル環、 シクロへキセニル環 、 シクロヘプテニル環、 シクロォクテニル環、 シクロノニル環等の不飽 和単環、 例えばトリシクロデカン環、 ジシクロペン夕ジェン環、 パーヒ ドロナフタレン環、 パーヒドロアントラセン環、 ノルポルナン環、 ノル ピナン環、 ノルカラン環、 ァダマンタン環等の飽和或いは不飽和多環等 が挙げられる。
本発明に係る一般式 [ 1 ] で示される化合物に於いて、 R 1 及び R 2 で表される、 炭素一炭素二重結合及び Z又は三重結合を有していてもよ いアルキル基及びァラルキル基、 R 2 で表されるァリール基、 アルコキ シ基及びァリールォキシ基は、 更に、 通常 1〜 5個、 好ましくは 1〜 3 個の種々の置換基を有していてもよく、 それら置換基としては、 例えば 炭素一炭素二重結合 Z三重結合を有していてもよいアルキル基、 ァリー ル基、 ァラルキル基、 アルコキシ基、 ァリールォキシ基、 アルコキシ力 ルポニル基、 ァリールォキシカルポニル基、 ァシル基、 力ルポキシル基 、 アルデヒド基、 ヒドロキシル基、 アミノ基、 アミノアルキル基、 シァ ノ基、 力ルバモイル基、 アルキル力ルバモイル基等が挙げられる。
上記した如き R 1 及び 又は R 2 で表される基の置換基である、 素 一炭素二重結合及び 又は三重結合を有していてもよいアルキル基、 ァ ラルキル基、 ァリール基、 アルコキシ基、 ァリールォキシ基及びヒドロ キシル基の具体例どしては、 R 1 及び Z又は R 2 で表されるそれと同様 のものが挙げられる。
また、 R 1 及び/又は R 2 で表される基の置換基である、 アルコキシ 力ルポニル基及びァリールォキシカルポニル基の具体例としては、 上記 した如き R 1 及び/又は R 2 で表されるアルコキシ基及びァリールォキ シ基の具体例の酸素原子にカルポニル基が結合したもの等が挙げられる R 1 及びノ又は R 2 で表される基の置換基であるァシル基としては、 通常炭素数 2〜 2 0、 好ましくは 2〜 1 0、 より好ましくは 2〜 4のも のが挙げられ、 具体的には、 例えばァセチル基、 プロピオニル基、 プチ リル基、 イソプチリル基、 バレリル基、 イソバレリル基、 ビバロイル基 、 ラウロイル基、 ミリス トイル基、 パルミ トイル基、 ステアロイル基等 の脂肪族飽和モノカルボン酸由来のァシル基、 例えばァクリロイル基、 プロピオロイル基、 メタクリロイル基、 クロトノィル基、 ォレオイル基 等の脂肪族不飽和モノカルボン酸由来のァシル基、 例えばべンゾィル基 、 ナフトイル基等の芳香族モノカルボン酸由来のァシル基等が挙げられ る。
R 1 及び/又は R 2 で表される基の置換基である力ルポキシル基は、 その水素原子が例えばナトリウム、 カリウム、 リチウム等のアルカリ金 属原子に置換されたものも含む。
R 1 及び Z又は R 2 で表される基の置換基であるアミノ基は、 その水 素原子の 1つ又は 2つが、 通常炭素数 1〜 6、 好ましくは 1〜 4の直鎖 、 分枝又は環状のアルキル基で置換されていてもよい。
R 1 及び 又は R 2 で表される基の置換基であるアミノアルキル基と しては、 R 1 及び Z又は R 2 で表されるアルキル基の少なくとも 1つの 水素原子が上記した如きアミノ基に置換されたものが挙げられる。
R 1 及びノ又は R 2 で表される基の置換基であるアルキル力ルバモイ ル基としては、 力ルバモイル基の水素原子の 1つ又は 2つが夫々独立し て上記した如きアルキル基に置き換わったものが挙げられ、 具体的には 、 例えばメチルカルバモイル基、 ェチルカルバモイル基、 n-プロピル力 ルバモイル基、 イソプロピル力ルバモイル基、 n -ブチルカルバモイル基 、 イソブチルカルバモイル基、 t e r t -ブチルカルバモイル基、 ペンチル 力ルバモイル基、 へキシルカルバモイル基、 へプチルカルバモイル基、 ォクチルカルバモイル基、 ノニルカルバモイル基、 デシルカルバモイル 基、 ドデシルカルバモイル基、 テトラデシルカルバモイル基、 ペンタデ シルカルバモイル基、 へキサデシルカルバモイル基、 ヘプタデシル力ル バモイル基、 ノナデシルカルバモイル基、 ィコシルカルバモイル基、 シ クロペンチルカルバモイル基、 シクロへキシルカルバモイル基、 シクロ へプチルカルバモイル基、 ジメチルカルバモイル基、 ェチルメチルカル バモイル基、 ジェチルカルバモイル基、 メチルプロピル力ルバモイル基 、 ジプロピル力ルバモイル基、 ェチルへキシルカルバモイル基、 ジブチ ルカルバモイル基、 へプチルメチルカルバモイル基、 メチルォクチルカ ルバモイル基、
ィル基、 メチルペン夕デシルカルバモイル基、 ェチルォク夕デシルカル パモイル基、 シクロペンチルメチルカルバモイル基、 シクロへキシルメ チルカルバモイル基、 シクロへキシルェチル基、 シクロへキシルプロピ ル基、 シクロへキシルプチルカルバモイル基、 ジシクロへキシルカルバ モイル基等が挙げられる。
一般式 [ 1 ] で示される化合物のうち、 例えばアルコキシカルポニル 基、 ァリールォキシカルポニル基、 シァノ基等の酸性或いは塩基性条件 で分解され易い基を含んでなる化合物を重水素化する際、 本発明の方法 を用いることにより、 これら置換基が分解されることなく、 目的とする 重水素化物が効率的に得られる。
本発明の重水素化方法に於いて、 上記した如き一般式 [ 1 ] で示され る化合物と反応させる重水素源としては、 例えば重水素ガス (D T
2 ) 、 重水素化された溶媒等が挙げられる。 尚、 Xがカルポニル基であ る一般式 [ 1 ] で示される化合物を重水素化する重水素源としては、 重 水素化された溶媒が特に好ましく、 また、 Xがヒドロキシメチレン基で ある場合も、 重水素源としては、 重水素化された溶媒が好ましい。
重水素源である重水素化された溶媒としては、 重水素がジユウテリゥ ムである場合には、 例えば、 重水 (D 2 O ) 、 例えば重メタノール、 重 エタノール、 重イソプロパノール、 重ブ夕ノール、 重 t e r t -ブ夕ノール 、 重ペンタノ一ル、 重へキサノール、 重ヘプ夕ノール、 重ォクタノール 、 重ノナノール、 重デカノール、 重ゥンデ力ノール、 重ドデカノール等 の重アルコール類、 例えば重ギ酸、 重酢酸、 重プロピオン酸、 重酪酸、 重イソ酪酸、 重吉草酸、 重イソ吉草酸、 重ピバル酸等の重力ルボン酸類 、 例えば重アセトン、 重メチルェチルケトン、 重メチルイソプチルケト ン、 重ジェチルケトン、 重ジプロピルケトン、 重ジイソプロピルケトン 、 重ジブチルケトン等の重ケトン類、 重ジメチルスルホキシド等の有機 溶媒等が挙げられ、 中でも重水、 重アルコール類が好ましく、 具体的に は、 重水、 重メタノールが特に好ましいものとして挙げられる。 尚、 環 境面や作業性を考慮すれば重水が好ましい。 また、 重水素がトリチウム の場合には、 重水素化された溶媒としては、 例えば重水 (τ 2 〇) 等が 挙げられる。
重水素化された溶媒は、 分子中の一つ以上の水素原子が重水素化され ているものであればよく、 例えば重アルコール類ではヒドロキシル基の 水素原子、 重力ルボン酸類では力ルポキシル基の水素原子が重水素化さ れていれば本発明の重水素化方法に使用し得るが、 分子中の水素原子全 てが重水素化されたものが特に好ましい。
重水素源の使用量は、 多い程本発明の重水素化が進みやすくなるが、 経済的な面を考慮すると、 重水素源に含まれる重水素原子の量が、 反応 基質である一般式 [ 1 ] で示される化合物の重水素化可能な水素原子に 対して、 下限として順に好ましく、 等モル、 1 0倍モル、 2 0倍モル、 3 0倍モル、 4 0倍モル、 上限として順に好ましく、 2 5 0倍モル、 1 5 0倍モルとなるような量である。
本発明の重水素化方法に於いては、 必要に応じて反応溶媒を用いても よい。 反応基質が液体であれば、 重水素源として重水素ガスを使用する 場合でも反応溶媒を用いる必要はなく、 また、 反応基質が固体であって も、 重水素源として重水素化された溶媒を用いる場合には、 特に反応溶 媒を用いる必要はないが、 反応基質が固体であり且つ重水素源が重水素 ガスである場合には適当な反応溶媒の使用が必要となる。
尚、 炭素一炭素二重結合或いは炭素一炭素三重結合が含まれている化 合物を重水素化する場合、 これらの基は触媒の存在下で水素ガスや重水 素ガスと接触させると、 所謂水添が起こり還元されてしまうため、 重水 素源としては重水素化された溶媒を用いることが好ましい。
必要に応じて使用される反応溶媒としては、 重水素源として使用され る重水素ガスにより重水素化されないもの、 或いは重水素ガスにより重 水素化されてしまうものであっても、 該重水素化された反応溶媒がその まま本発明の重水素化の重水素源となり得るものが好ましい。 また、 本 発明の重水素化は反応系が懸濁状態でもよいことから、 反応溶媒として 基質を溶解レ難いものも使用が可能であるが、 基質を溶解し易いものが より好ましい。
必要に応じて用いられる反応溶媒の具体例としては、 例えばジメチル ェ一テル、 ジェチルエーテル、 ジイソプロピルエーテル、 ェチルメチル エーテル、 t e r t -ブチルメチルエーテル、 1, 2 -ジメ トキシェタン、 ォキ シラン、 1 , 4-ジォキサン、 ジヒドロピラン、 テトラヒドロフラン等のェ 一テル類、 例えばへキサン、 ヘプタン、 オクタン、 ノナン、 デカン、 シ クロへキサン等の脂肪族炭化水素類等の重水素ガスにより重水素化され ない有機溶媒、 例えばメタノール、 エタノール、 イソプロパノール、 ブ タノ一ル、 t e r t -ブ夕ノール、 ペンタノール、 へキサノール、 ヘプタノ ール、 ォク夕ノール、 ノナノール、 デカノール、 ゥンデ力ノール、 ドデ 力ノール等のアルコール類、 例えばギ酸、 酢酸、 プロピオン酸、 酪酸、 イソ酪酸、 吉草酸、 イソ吉草酸、 ピバル酸等のカルボン酸類、 例えばァ セトン、 メチルェチルケトン、 メチルイソプチルケトン、 ジェチルケト ン、 ジプロピルケトン、 ジイソプロピルケトン、 ジブチルケトン等のケ トン類、 ジメチルスルホキシド等の重水素ガスにより重水素化されても 本発明の重水素源として使用し得る有機溶媒等が挙げられる。
本発明に於ける、 活性化された、 パラジウム触媒、 白金触媒、 ロジゥ ム触媒、 ルテニウム触媒、 ニッケル触媒及びコバルト触媒より選ばれる 触媒 (以下、 活性化された触媒と略記することがある。 ) とは、 所謂パ ラジウム触媒、 白金触媒、 ロジウム触媒、 ルテニウム触媒、 ニッケル触 媒或いはコバルト触媒 ( 「活性化されていない触媒」 或いは単に 「触媒 」 と略記することがある。 ) が水素ガス或いは重水素ガスと接触するこ とにより活性化されたものをいう。
本発明の重水素化方法においては、 予め活性化させておいた触媒を使 用して重水素化を行ってもよく、 また、 活性化されていない触媒を重水 素化の反応系で水素ガス或いは重水素ガスと共存させ、 触媒の活性化と 反応基質の重水素化を同時に行ってもよい。 しかしながら、 一般式 [ 1 ] で示される化合物のうち炭素—炭素二重或いは三重結合が含まれてい るものを重水素化する場合には、 反応系に水素ガス或いは重水素ガスを 存在させると水添が起こるため、 そのようなことが起こらないよう触媒 としては予め活性化させておいたものを使用することが好ましい。
予め水素ガス或いは重水素ガスによつて活性化された触媒を用いて重 水素化を行う場合、 重水素化の反応容器の気層部分は、 例えば窒素、 ァ ルゴン等の不活性ガスにより置換されていてもよい。
反応系に水素ガス或いは重水素ガスを存在させて本発明の重水素化反 応を行うには、 反応液に直接水素ガス或いは重水素ガスを通過させるか 、 反応容器の気層部分を水素ガス或いは重水素ガスで置換すればよい。
また、 一般式 [ 1 ] で示される化合物のうち炭素—炭素二重或いは三 重'結合が含まれていないものを重水素化する場合には、 予め活性化され た触媒を用いる場合であっても、 重水素化反応の反応容器の気層部分を 水素或いは重水素で置換して重水素化反応を行うことが出来る。
尚、 本発明の重水素化方法に於いては、 反応容器を密封状態或いはそ れに近い状態となるようにして、 反応系が結果的に加圧状態となってい ることが好ましい。 密封に近い状態とは、 例えば所謂連続反応の様に、 反応基質が連続的に反応容器に投入され、 連続的に生成物が取り出され るような場合等を含む。
尚、 本発明の重水素化方法は、 反応容器が密封状態となっている場合 には、 反応系の温度を容易に上昇させることが出来、 重水素化を効率よ く行うことが可能となる。 また、 重水素化反応の反応容器の気層部分を、 水素ガス或いは重水素 ガスで置換するという方法を用いて、 反応基質の重水素化と触媒の活性 化を同時に行えば、 予め触媒を活性化するという煩雑な工程を必要とし ないため、 炭素一炭素二重結合及び/又は三重結合を含んでいるものを 除いた一般式 [ 1 ] で示される化合物の重水素化を更に効率よく行うこ とが出来る。
更にまた、 予め水素ガス或いは重水素ガスで活性化した触媒を密封状 態の重水素化に用いる場合には、 重水素化の反応系に水素ガス又は重水 素ガスが存在しないので、 炭素一炭素二重結合及び Z又は三重結合を含 むような基質等の一般的に水素ガス等で還元されやすい基質であっても 、 還元されることなく重水素化のみが進行する。
本発明に於ける、 活性化された触媒としては、 上記した如きパラジゥ ム触媒、 白金触媒、 ロジウム触媒、 ルテニウム触媒、 ニッケル触媒及び コバルト触媒が挙げられ、 中でもパラジウム触媒、 白金触媒、 ロジウム 触媒が好ましく、 更にはパラジウム触媒及び白金触媒が好ましく、 特に パラジウム触媒が好ましい。 これら触媒は、 単独でも或いは適宜組み合 わせて用いても本発明の重水素化方法に有効に使用し得る。
パラジウム触媒としては、 パラジウム原子の原子価が通常 0〜 4価、 好ましくは 0〜 2価、 より好ましくは 0価のものが挙げられる。
白金触媒としては、 白金原子の原子価が通常 0〜 4価、 好ましくは 0 〜 2価、 より好ましくは 0価のものが挙げられる。
ロジウム触媒としては、 ロジウム原子の原子価が通常 0又は 1価、 好 ましくは 0価のものが挙げられる。
ルテニウム触媒としては、 ルテニウム原子の原子価が通常 0〜 2価、 好ましくは 0価のものが挙げられる。
ニッケル触媒としては、 ニッケル原子の原子価が通常 0〜 2価、 好ま しくは 0価のものが挙げられる。 コバルト触媒としては、 コバルト原子の原子価が通常 0又は 1価、 好 ましくは 1価のものが挙げられる。
上記した如き触媒は、 金属そのものでも、 それら金属の酸化物、 ハロ ゲン化物、 酢酸塩、 或いは配位子が配位しているものでもよく、 またそ れら金属、 金属酸化物、 ハロゲン化物、 酢酸塩、 金属錯体等が種々の担 体に担持されてなるものでもよい。
以下、 担体に担持されている触媒を 「担体担持金属触媒」 、 担体に担 持されていない触媒を 「金属触媒」 と略記することがある。
本発明の重水素化方法に係る触媒のうち、 配位子が配位していてもよ い金属触媒の配位子としては、 例えば 1, 5-シク口才クタジェン(COD)、 ジベンジリデンアセトン(DBA)、 ビピリジン(BPY)、 フエナント口リン(P HE)、 ベンゾニトリル (PhCN) 、 イソシアニド (RNC) 、 トリェチルアル シン(As(Et)3)、 ァセチルァセトナト(acac:)、 例えばジメチルフエニル ホスフィン (P(CH3)2Ph) , ジフエニルホスフィノフエロセン (DPPF) , トリメチルホスフィン(P(CH3)3), トリェチルホスフィン(PEt3), ト リ tert-ブチルホスフィン(PlBu3), トリシクロへキシルホスフィン(PCy 3), トリメ 卜キシホスフィン(P (0CH3 ) 3 ) , 卜リエトキシホスフィン(P (0 Et)3), トリ tert-ブトキシホスフィン (0 1)3), トリフエニルホスフ イ ン(PPh3), 1, 2-ビス(ジフエニルホスフイノ)ェタン(DPPE), トリフエ ノキシホスフィン(P(0Ph)3)、 0-トリルホスフィン (0- tolyl)3)等の有 機ホスフィン配位子等が挙げられる。
パラジウム金属触媒の具体例としては、 例えば Pd、 例えば?(1(011)2等 の水酸化パラジウム触媒、 例えば PdO等の酸化パラジウム触媒、 例えば P dBr2、 PdCl2、 Pdl2等のハロゲン化パラジウム触媒、 例えばパラジウム アセテート(Pd(0Ac)2), パラジウムトリフルォロアセテート(Pd(0C0CF3 )2)等のパラジウム酢酸塩触媒、 例えば Pd(RNC)2Cl2, Pd(acac)2, ジァ セテートビス(トリフエニルホスフィ ン)パラジウム [Pd(0Ac)2 (PPh3)2] , Pd(PPh3)4, Pd2 (dba)3, Pd(NH3)2Cl2, Pd (CH3 CN) 2 Cl2 , ジクロロビス (ベンゾニトリル)パラジウム [Pd(PhCN)2Cl2], Pd(dppe)Cl2 , Pd(dppf)C 12, Pd[PCy3]2 Cl2 , Pd(PPh3)2 Cl2 , Pd [P (o-tolyl) 3 ] 2 Cl2 , Pd(cod)2 Cl2 , Pd(PPh3) (CH3CN)2 Cl2等の配位子に配位されたパラジウム金属錯体触 媒等が挙げられる。
白金金属触媒の具体例としては、 例えば Pt、 例えば Pt02、 PtClい PtC 1い K2PtCl4等の白金触媒、 例えば PtCl2 (cod)、 PtCl2 (dba)、 PtCl2 (PCy 3)2、 PtCl2 (P(OEt)3)2、 PtCl2 (P(0'Bu)3)い PtCl2 (bpy)、 PtCl2 (phe)、 Pt(PPh3)い Pt(cod)2、 Pt(dba)2、 Pt(bpy)2、 Pt(phe)2等の、 配位子に 配位された白金触媒等が挙げられる。
ロジウム金属触媒の具体例としては、 例えば Rh、 例えば RhCl (PPh3)3 等の、 配位子に配位されたロジウム触媒等が挙げられる。
ルテニウム金属触媒の具体例としては、 例えば Ru、 例えば RuCl2 (PPh3 )3 等の、 配位子に配位されたルテニウム触媒等が挙げられる。
ニッケル金属触媒の具体例としては、 例えば Ni、 例えば NiCl2、 NiO等 のニッケル触媒、 例えば NiCl2 (dppe)、 NiCl2 (PPh3)2 Ni (PPh3)4 , Ni (P (0Ph)3)4、 Ni(cod)2等の、 配位子に配位されたニッケル触媒等が挙げら れる。
コバルト金属触媒の具体例としては、 例えば Co(C3H5) {P(0CH3)3}3等 の配位子に配位されたコバルト金属錯体触媒等が挙げられる。
上記した如き触媒が、 担体に担持されたものである場合の担体として は、 例えばカーボン、 アルミナ、 シリカゲル、 ゼォライ ト、 モレキユラ ーシーブス、 イオン交換樹脂、 ポリマー等が挙げられ、 中でもカーボン が好ましい。
担体として用いられるイオン交換樹脂としては、 本発明の重水素化に 悪影響を及ぼさないものであればよく、 例えば陽イオン交換樹脂、 陰ィ オン交換樹脂が挙げられる。 陽イオン交換樹脂としては、 例えば弱酸性陽イオン交換樹脂、 強酸性 陽イオン交換樹脂が挙げられ、 陰イオン交換樹脂としては、 例えば弱塩 基性陰イオン交換樹脂、 強塩基性陰イオン交換樹脂等が挙げられる。
イオン交換樹脂は一般に骨格ポリマーとして二官能性モノマーで架橋 したポリマーを含んでおり、 これに酸性基又は塩基性基が結合され、 夫 々種々の陽イオン又は陰イオン (対イオン) で交換されている。
弱酸性陽イオン交換樹脂の具体例としては、 例えばジビニルベンゼン で架橋したァクリル酸エステル又はメタクリル酸エステルのポリマーを 加水分解して得られるもの等が挙げられる。
強酸性陽イオン交換樹脂の具体例としては、 例えばスチレン一ジビニ ルベンゼンのコポリマーをスルホン化したものが挙げられる。
強塩基性陰ィオン交換樹脂としては、 例えばスチレン—ジビュルベン ゼンのコポリマーの芳香環にアミノ基が結合したものが挙げられる。 塩基性陰イオン交換樹脂の塩基性の強さは、 結合しているアミノ基が 、 第 1級ァミノ基、 第 2級ァミノ基、 第 3級ァミノ基、 第 4級アンモニ ゥム塩になるに従い順に強くなる。
尚、 市販のイオン交換樹脂も上記した如きイオン交換樹脂と同様に本 発明の重水素化に係る触媒の担体として使用可能である。
また、 担体として用いられるポリマーとしては、 本発明の重水素化に 悪影響を及ぼさないものであれば特に限定されないが、 その様なポリマ 一の例として、 例えば下記一般式 [ 2 ] で示されるモノマーが重合或い は共重合して得られるもの等が挙げられる。
一般式 [ 2 ]
Figure imgf000020_0001
(式中、 R 3 は水素原子、 低級アルキル基、 力ルポキシル基、 カルポキ シアルキル基、 アルキルォキシカルポニル基、 ヒドロキシアルキルォキ シカルポニル基、 シァノ基又はホルミル基を表し、 R 4 は水素原子、 低 級アルキル基、 力ルポキシル基、 アルキルォキシカルポニル基、 ヒドロ キシアルキルォキシカルボニル基、 シァノ基又はハロゲン原子をし、 R 5 は水素原子、 低級アルキル基、 ハロアルキル基、 ヒドロキシル基、 置 換基を有していてもよいァリール基、 脂肪族へテロ環基、 芳香族へテロ 環基、 ハロゲン原子、 アルキルォキシカルボ二ル基、 ヒドロキシアルキ ルォキシカルポニル基、 スルホ基、 シァソ基、 含シァノアルキル基、 ァ ルォキシ基、 カルボキシル基、 カルポキシアルキル基、 アルデヒ ド基 、 アミノ基、 アミノアルキル基、 力ルバモイル基、 N-アルキルカルバモ ィル基、 ヒドロキシアルキル基、 また、 R 4 と R 5 とが結合し、 隣接す る- C=C -と一緒になつて脂肪族環を形成していてもよい。 )
一般式 [ 2 ] に於いて、 R 3 〜R 5 で示される低級アルキル基として は、 直鎖状、 分枝状、 環状の何れにてもよく、 例えば炭素数 1〜 6のァ ルキル基が挙げられ、 具体的にはメチル基、 ェチル基、 n-プロピル基、 イソプロピル基、 n-ブチル基、 イソブチル基、 t e r t -ブチル基、 s e c -ブ チル基、 n-ペンチル基、 イソペンチル基、 t e r t -ペンチル基、 卜メチル ペンチル基、 n-へキシル基、 イソへキシル基、 シクロプロピル基、 シク 口ペンチル基、 シクロへキシル基等が挙げられる。
R 3 及び R 4 で示されるカルポキシアルキル基としては、 例えば上記 した如き低級アルキル基の水素原子の一部が力ルポキシル基に置換され たもの等が挙げられ、 具体的には例えばカルポキシメチル基、 カルポキ シェチル基、 カルポキシプロピル基、 カルポキシブチル基、 カルポキシ ペンチル基、 力ルポキシへキシル基等が挙げられる。
R 3 〜R 5 で示されるアルキルォキシカルボニル基としては、 例えば 炭素数 2〜 1 1のものが好ましく、 具体的には例えばメ トキシカルポ二 ル基、 エトキシカルポニル基、 プロポキシカルポニル基、 ブトキシカル ポニル基、 ペンチルォキシカルポニル基、 へキシルォキシ力ルポニル基 、 ヘプチルォキシカルボ二ル基、 2-ェチルへキシルォキシ力ルポニル基 、 ォクチルォキシカルポニル基、 ノニルォキシカルポニル基、 デシルォ キシカルボニル基等が挙げられる。
R 3 〜R 5 で示されるヒドロキシアルキルォキシカルポニル基として は、 上記した如き炭素数 2〜. l 1のアルキルォキシカルボニル基の水素 )1子の一部がヒドロキ,シル基に置換されたものが挙げられ、 具体的には 、 例えばヒドロキシメチルォキシカルポニル基、 ヒ ドロキシェチルォキ シカルポニル基、 ヒドロキシプロピルォキシカルボニル基、 ヒドロキシ ブチルォキシカルポニル基、 ヒドロキシペンチルォキシカルボ二ル基、 ヒドロキシへキシルォキシカルポニル基、 ヒドロキシヘプチルォキシカ ルポニル基、 ヒドロキシォクチルォキシカルボニル基、 ヒ ドロキシの二 ルォキシカルポニル基、 ヒドロキシデシルォキシカルボニル基等が挙げ られる。
R 4 及び R 5 で表されるハロゲン原子としては、 例えばフッ素、 塩素 、 臭素、 ヨウ素等が挙げられる。
R 5 で表されるハロアルキル基としては、 例えば R 3 〜R 5 で表され る上記低級アルキル基がハロゲン化 (例えばフッ素化、 塩素化、 臭素化 、 ヨウ素化等) された、 炭素数 1〜 6のものが挙げられ、 具体的には、 例えばクロロメチル基、 ブロモメチル基、 トリフルォロメチル基、 2 -ク ロロェチル基、 3-クロ口プロピル基、 3-ブロモプロピル基、 3, 3 , 3-トリ フルォロプロピル基、 4-クロロブチル基、 5-クロ口ペンチル基、 6-クロ 口へキシル基等が挙げられる。
置換基を有していてもよいァリール基のァリール基としては、 例えば フエニル基、 トリル基、 キシリル基、 ナフチル基等が挙げられ、 また、 該置換基としては、 例えばアミノ基、 ヒドロキシル基、 低級アルコキシ 基、 力ルポキシル基等が挙げられる。 置換ァリール基の具体例としては 、 例えばァミノフエ二ル基、 トルイジノ基、 ヒドロキシフエニル基、 メ トキシフエ二ル基、 t e r卜ブトキシフエニル基、 カルポキシフエニル基 等が挙げられる。
脂肪族へテロ環基としては、 例えば 5員環又は 6員環であり、 異性原 子として 1〜 3個の例えば窒素原子、 酸素原子、 硫黄原子等のへテロ原 子を含んでいるもの等が好ましく、 具体的には、 例えばピロリジル -2 - オン基、 ピペリジル基、 ピペリジノ基、 ピペラジニル基、 モルホリノ基 等が挙げられる。
芳香族へテロ環基としては、 例えば 5員環又は 6員環であり、 異性原 子として 1〜 3個の例えば窒素原子、 酸素原子、 硫黄原子等のへテロ原 子を含んでいるもの等が好ましく、 具体的には、 例えばピリジル基、 ィ ミダゾリル基、 チアゾリル基、 フラニル基、 ピラエル基等が挙げられる 含シァノアルキル基としては、 例えば上記した如き低級アルキル基の 水素原子の一部がシァノ基に置換されたものが挙げられ、 具体的には、 例えばシァノメチル基、 2-シァノエチル基、 2-シァノプロピル基、 3 -シ ァノプロピル基、 2-シァノブチル基、 4-シァノブチル基、 5-シァノペン チル基、 6-シァノへキシル基等が挙げられる。
ァシルォキシ基としては、 例えば炭素数 2〜 2 0のカルボン酸由来の ものが挙げられ、 具体的には、 例えばァセチルォキシ基、 プロピオニル ォキシ基、 プチリルォキシ基、 ペン夕ノィルォキシ基、 ノナノィルォキ シ基、 デカノィルォキシ基、 ベンゾィルォキシ基等が挙げられる。
アミノアルキル基としては、 上記した如き低級アルキル基の水素原子 の一部がァミノ基に置換されたものが挙げられ、 具体的には、 例えばァ ミノメチル基、 アミノエチル基、 ァミノプロピル基、. アミノブチル基、 アミノペンチル基、 アミノへキシル基等が挙げられる。
N -アルキル力ルバモイル基としては、 力ルバモイル基の水素原子の一 部がアルキル基で置換されたものが挙げられ、 具体的には、 例えば N -メ チルカルバモイル基、 N-ェチルカルバモイル基、 N- n-プロピルカルバモ ィル基、 N-イソプロピルカルパモイル基、 N-n -プチルカルバモイル基、 N -卜プチルカルバモイル基等が挙げられる。
ヒドロキシアルキル基としては、 上記した如き低級アルキル基の水素 原子の一部がヒドロキシル基に置換されたものが挙げられ、 具体的には 、 例えばヒドロキシメチル基、 ヒドロキシェチル基、 ヒドロキシプロピ ル基、 ヒドロキシブチル基、 ヒドロキシペンチル基、 ヒドロキシへキシ ル基等が挙げられる。
また、 R 4 と R 5 とが結合し、 隣接する _C=C -と一緒になつて脂肪族 環を形成している場合の脂肪族環としては、 例えば炭素数 5〜 1 0の不 飽和脂肪族環が挙げられ、 環は単環でも多環でもよい。 これら環の具体 例としては、 例えばノルボルネン環、 シクロペンテン環、 シクロへキセ ン環、 シクロォクテン環、 シクロデセン環等が挙げられる。
一般式 [ 2 ] で示されるモノマーの具体例としては、 例えばエチレン , プロピレン, プチレン, イソプチレン等の炭素数 2〜 2 0のエチレン 性不飽和脂肪族炭化水素類、 例えばスチレン, 4-メチルスチレン, 4 -ェ チルスチレン, ジビニルベンゼン等の炭素数 8〜 2 0のエチレン性不飽 和芳香族炭化水素類、 例えばギ酸ビニル, 酢酸ビュル, プロピオン酸ビ ニル, 酢酸ィソプロぺニル等の炭素数 3〜 2 0のアルケニルエステル類 、 例えば塩化ビニル, 塩化ビニリデン, フッ化ビニリデン, テトラフル ォロエチレン等の炭素数 2〜 2 0の含ハロゲンエチレン性不飽和化合物 類、 例えばアクリル酸, メタクリル酸, ィタコン酸, マレイン酸, フマ ル酸, クロ トン酸, ビニル酢酸, ァリル酢酸, ビエル安息香酸等の炭素 数 3〜 2 0のエチレン性不飽和カルボン酸類 (これら酸類は、 例えばナ トリウム, カリウム等のアルカリ金属塩やアンモニゥム塩等、 塩の形に なっているものでもよい。 ) 、 例えばメタクリル酸メチル, メタクリル 酸ェチル, メタクリル酸プロピル, メタクリル酸プチル, メ夕クリル酸 2 -ェチルへキシル, アクリル酸メチル, アクリル酸ェチル, アクリル酸 プロピル, アクリル酸プチル, アクリル酸 2 -ェチルへキシル, メタクリ ル酸ラウリル, アクリル酸ステアリル, ィタコン酸メチル, ィタコン酸 ェチル, マレイン酸メチル, マレイン酸ェチル, フマル酸メチル, フマ ル酸ェチル、 クロ トン酸メチル, クロ トン酸ェチル、 3-ブテン酸メチル 等のエチレン性不飽和カルボン酸エステル類、 例えばァクリロニトリル , メ夕クリロ二トリル, シアン化ァリル等の炭素数 3〜 2 0の含シァノ エチレン性不飽和化合物類、 例えばアクリルアミ ド, メタクリルアミ ド 等の炭素数 3〜 2 0のエチレン性不飽和アミ ド化合物類、 例えばァク口 レイン, クロ トンアルデヒド等の炭素数 3〜 2 0のエチレン性不飽和ァ ルデヒド類、 例えばピリルスルホン酸, 4-ビニルベンゼンスルホン酸等 の炭素数 2〜 2 0のエチレン性不飽和スルホン酸類 (これら酸類は、 例 えばナトリウム, カリウム等のアルカリ金属塩等、 塩の形になっていて いるものでもよい。 ) 、 例えばビニルァミン, ァリルアミン等の炭素数 2〜 2 0のエチレン性不飽和脂肪族ァミン類、 例えばビニルァニリン等 'の炭素数 8〜 2 0のエチレン性不飽和芳香族アミン類、 例えば N-ビニル ピロリ ドン, ビニルピペリジン等の炭素数 5〜 2 0のエチレン性不飽和 脂肪族へテロ環状アミン類、 例えばァリルアルコール, クロチルアルコ ール等の.3〜 2 0のエチレン性不飽和アルコール類、 例えば 4-ビニルフ ェノール等の炭素数 8〜 2 0のエチレン性不飽和フエノール類等が挙げ られる。
上記した如きポリマー等を担体として使用する場合には、 本発明の重 水素化により担体自体が重水素化され難いものを使用することが望まし いが、 それ自体重水素化される担体に担持された触媒も本発明の重水素 化に用いることが出来る。
本発明の重水素化方法に於いては、 担体に担持された触媒の中でも、 担体担持パラジウム触媒、 担体担持白金触媒或いは担体担持ロジウム触 媒を用いることが好ましく、 その中でも担体担持パラジウム触媒が好ま しく、 具体的には特にパラジウム力一ボンが好ましい。
担体に担持された触媒に於いて、 触媒金属であるパラジウム、 白金、 ロジウム、 ルテニウム、 ニッケル又はコバルトの割合は、 通常全体の 1 〜99重量%、 好ましくは 1〜50重量%、 より好ましくは 1〜30重量%、 更 に好ましくは 1〜20重量%、 特に好ましくは 5〜1 0重量%である。
本発明の重水素化方法に於いて、 活性化された触媒或いは活性化され ていない触媒の使用量は、 それが担体等に担持されているか否かに拘わ らず、 反応の基質として用いられる一般式 [ 1 ] で示される化合物に対 して、 通常所謂触媒量、 次いで順に好ましく 0. 01〜200重量%、 0. 0 1〜1 00重量%、 0. 01〜50重量%、 0. 01〜20重量%、 0. 1〜20重量%、 1〜20重 量%、 1 0 ~ 20重量%となる量であり、 また、 該触媒全体に含まれる触媒 金属量の上限が、 順に好ましく 20重量%、 1 0重量%、 5重量%、 2重量% であり、 下限が、 順に好ましぐ 0. 0005重量%、 0. 005重量%、 0. 05重量 %、 0. 5重量%となる量である。
尚、 上記一般式 [ 1 ] で示される化合物を重水素化する際、 触媒とし て上記した如き種々の触媒を 2種以上適宜組み合わせて使用することが 可能であり、 そのような触媒の組合せの使用によつて重水素化率が向上 する場合もある。 例えば、 一般式 [ 1 ] で示される化合物の内、 Xがヒ ドロキシメチレン基である化合物を'重水素化する場合の重水素化率が向 上するような触媒の組合せとしては、 例えばパラジウム触媒と白金触媒 、 ルテニウム触媒又はロジウム触媒との組合せ、 例えば白金触媒とルテ ニゥム触媒又はロジウム触媒との組合せ、 例えばルテニウム触媒と口ジ ゥム触媒との組合せが挙げられ、 中でもパラジウム触媒と白金触媒の組 合せが好ましく、 それらの一方或いは両方が担体に担持されているもの でもよい。 好ましい具体例としては、 例えばパラジウム力一ボンと白金 カーボンの組み合わせが挙げられる。 触媒を 2種以上組み合わせて使用する場合の触媒使用量は、 触媒の合 計が上記した如き触媒の使用量となるように設定すればよい。 尚、 各触 媒の使用量の割合は特に限定されないが、 例えば上記した如きパラジゥ ムカーボンと白金カーボンを組み合わせて使用する場合には、 触媒中の パラジウムの重量が白金の重量に対して通常 0.01〜100倍、 好ましくは 0 .1〜10倍、 より好ましくは 0.2〜 5倍となるように触媒の使用量を設定す ればよい。
活性化されていない触媒を本発明の反応に用いる場合であって、 触媒 を活性化させる為に反応系に水素を存在させる際の該水素の使用量は、 多すぎると重水素源となる重水素化された溶媒が水素化されたり、 重水 素源となる重水素の反応系中の割合が小さくなり本発明の重水素化反応 に悪影響を及ぼすため、 触媒の活性化に必要な程度の量であればよく、 その量は、 通常触媒に対して 1〜20000当量、 好ましくは 10〜700当量と なる量である。
また、 触媒を活性化させる為に反応系に重水素を存在させる場合の重 水素の使用量は、 触媒の活性化に必要な程度の量であればよく、 その量 は、 通常触媒に対して 1〜20000当量、 好ましくは 10〜700当量となる量 であるが、 該重水素が本発明の重水素源としても使用し得ることから、 使用量が多くても問題なく、 本発明の重水素化を行うことが出来る。 本発明の重水素化方法の反応温度は、 下限が通常 1 0 °Cから、 順によ り好ましく 2 0 、 4 0 t:、 6 0 °C、 8 0 °C、 1 1 0 、 1 4 0 T:、 1 6 0 °Cであり、 上限が通常 3 0 0 から、 順により好ましく 2 0 0 °C、 1 8 0 °Cである。
本発明の重水素化方法の反応時間は、 通常 3 0分〜 7 2時間、 好まし くは 1〜 4 8時間、 より好ましくは 3〜 3 0時間、 更に好ましくは 6〜 2 4時間である。
本発明の重水素化方法を、 重水素源として重水を用い、 活性化されて いない触媒としてパラジウム力一ボン (Pd/C) (Pd含有率 10%) を用い た場合を例にとって具体的に説明する。
即ち、 例えば、 その構造中に炭素一炭素二重結合或いは炭素一炭素三 重結合を含まない一般式 [ 1 ] で示される化合物 (基質) 1モル及び該 基質に対して 0.01〜200重量%の活性化されていない Pd/Cを、 該基質の 重水素化可能な水素原子に対して 1 0〜 1 5 0倍モルの重水素原子が含 まれるような量の重水に加え、 密封した反応容器の気層部分を水素置換 した後、 油浴中約 1 1 0〜 2 0 0 °Cで約 1〜 4 8時間撹拌反応させる。 反応終了後、 生成物が重水素化された溶媒に可溶な場合は、 反応液を濾 過して触媒を除き、 濾液を濃縮後、 生成物を単離して1 H-腿 R、 2H-NMR及 び Massスぺク トル測定して構造解析を行う。
また、 生成物が重水素化された溶媒に難溶な場合は、 反応液から生成 物を単離してから1 H-薩 R、 2H- NMR及び Massスぺク トルを測定して構造解 析を行う。 尚、 生成物の反応液からの単離が困難な場合は、 適当な内標 準物質を用いて濾液をそのまま1 H-NMRで測定し、 生成物の構造解析を行 えばよい。
生成物が重水素化された溶媒に難溶な場合に、 反応液から生成物を単 離するには、 例えば生成物が溶解する有機溶媒等により反応液から生成 物を抽出し、 更に濾過により触媒を除く といった公知の精製方法に従つ て精製を行えばよい。
次ぎに、 本発明の重水素化方法のうち、 重水素源として重水を用い、 予め活性化された触媒として、 水素ガスで活性化されたパラジウムカー ボン (Pd含有量 10%) を用いた場合を例にとって具体的に説明する。 即ち、 例えばその構造中に炭素一炭素二重結合或いは炭素—炭素三重 結合を含む一般式 [ 1 ] で示される化合物 (基質) 1モル及び該基質に 対して 01〜 200重量%の予め水素ガスに接触させて活性化させておい た Pd/Cを、 該基質の重水素化可能な水素原子に対して 1 0〜 1 5 0倍モ ルの重水素原子が含まれるような量の重水に加え、 反応容器を密封して 気層部分を不活性ガスで置換し、 油浴中約 1 1 0〜2 0 0 °Cで約 1〜4 8時間撹拌反応させる。 反応終了後、 生成物が重水素化された溶媒に可 溶な場合は、 反応液を濾過して触媒を除き、 濾液を濃縮後、 生成物を単 離して 'Η-匪]、 2H-NMR及び Massスペク トル測定して構造解析を行う。
また、 生成物が重水素化された溶媒に難溶な場合は、 反応液から生成 物を単離してから1 H-匪 R、 2H- NMR及び Massスぺク トルを測定して構造解 析を行う。 尚、 生成物の反応液からの単離が困難な場合は、 適当な内標 準物質を用いて濾液をそのまま1 H-龍 Rで測定し、 生成物の構造解析を行 えばよい。 尚、 反応液から生成物を単離するには、 活性化されていない 触媒を用いる本発明の重水素化方法に於ける単離方法と同様にしてこれ を行えばよい。 また、 生成物が重水素化された溶媒に難溶な場合である 場合には、 例えば生成物が溶解する有機溶媒等を用いて反応液から生成 物を抽出し、 更にこれを濾過することにより触媒を除く といった公知の 精製方法に従って精製を行えばよい。
また、 本発明の重水素化方法の中でも、 例えばパラジウムカーボンと 白金力一ボンを組み合わせて使用することによって、 重水素化率が通常 6 0 %以上、 順に好ましく 7 0 %以上、 7 8 %以上、 8 0 %以上、 8 5 %以上、 8 8 %以上、 8 9 %以上、 9 0 %以上である卜リシクロ [5.2. 1.02'6] デカン- 8 -オールが容易に得られる。 このようにして得られた重 水素化トリシクロ [5.2.1.02'6] デカン- 8-オールは、 例えば光ファイバ 一用ポリマー用の重水素化メタクリル酸エステルの原料として非常に有 用な化合物である。
上記した如く、 活性化された触媒として、 予め活性化させておいた触 媒を用い、 且つ重水素源として重水素化された溶媒を用いて本発明の重 水素化方法を行えば、 一般式 [ 1 ] で示される化合物が炭素一炭素二重 結合或いは炭素一炭素三重結合を有している場合でも、 これら二重、 三 重結合が水添により還元されることなく、 また、 該化合物が例えばニト 口基、 シァノ基等の置換基を有している場合でも、 それら置換基は還元 されることなく、 目的とする重水素化のみが行われる。
尚、 一般式 [ 1 ] で示される化合物が、 炭素一炭素二重或いは三重結 合を有しているものであって、 それら結合が本発明の重水素化反応に於 いて重合し易い場合には、 重合反応を抑制するために、 重水素化反応の 反応系に例えば重合禁止剤等を添加してもよい。
上記した如く、 一般式 [ 1 ] で示される化合物を、 活性化された触媒 の共存下、 重水素源と反応させるという本発明の重水素化方法によれば 、 力ルポ二ル基を有する化合物及び第 2アルコール化合物を、 それら化 合物中の二重、 三重結合の有無、 置換基等の有無やその種類に拘わらず 、 効率よく重水素化 (ジユウテリゥム化及びトリチウム化) することが 可能となる。
また、 本発明の重水素化方法によれば、 特に酸或いは塩基条件にする ことなく重水素化反応を行うことができることから、 作業環境が向上す るだけでなく、 高温や酸或いは塩基条件で分解し易い基質の重水素化に も応用が可能となった。
更にまた、 本発明の重水素化方法によれば、 一般式 [ 1 ] で示される 化合物の Xがカルポニル基である化合物に於いて、 カルポニル基に近い 位置に存在する水素原子だけでなく、 カルポニル基から遠い位置に存在 する水素原子をも効率的に重水素化することが可能となる。
また、 本発明の重水素化方法によれば、 一般式 [ 1 ] で示される化合 物の Xがヒドロキシメチレン基である化合物に於いて、 ヒドロキシル基 から遠い位置に存在する水素原子だけでなく、 ヒドロキシル基に近い位 置に存在する水素原子をも効率的に重水素化し得る。
また、 本発明の重水素化方法によれば、 一般式 [ 1 ] で示される化合 物の中でも特にトリシクロ [ 5 . 2. 1 . 02' 6] デカン- 8-オールについては、 従来法では得ることの出来なかった重水素化率の高いものを得ることが 可能となる。
以下に実施例を挙げて本発明を更に具体的に説明するが、 本発明はこ れらにより何等限定されるものではない。
尚、 実施例ではパラジウムカーボン(Pd/C)は P d含量 10%、 白金力一 ボン(Pt/C)は P t含量 5%、 ルテニウムカーボン(Ru/C)は R u含量 5%、 口ジゥムカーボン(Rh/C)は R h含量 5%のものを使用した。 実施例
実施例 1 .
4-ヘプ夕ノン (基質) 500mgとパラジウム力一ボン 50mgとを重水 (D20 ) 17mLに懸濁させ、 反応系を水素置換した後、 油浴中 160°Cで約 24時間 反応させた。 反応終了後、 反応液をエーテルで抽出して得られた抽出液 から触媒を濾去し、 濾液を減圧濃縮した後、 得られた化合物の1 H-NMR、 2H-丽 R及び Massスペク トルを測定して構造解析を行ったところ、 目的物 の単離収率は 46%であり、 基質の重水素化率は 97%であつた。
実施例 2.
アセトン (基質) 500mgとパラジウムカーボン 50mgとを重水 17mLに懸 濁させ、 反応系を水素置換した後、 油浴中 110°Cで約 24時間反応させた 。 反応終了後、 反応液を濾過し、 触媒を除去後、 内部標準物質としてジ ォキサンを加え1 H- NMRを測定し、 構造解析を行ったところ、 重水素化率 は 99%であった。
実施例 3〜: L 5 .
以下の表 1に示した重水素化の対象となる基質及び触媒を用い、 表 1 に示した反応温度で行った以外は実施例 1 と同様にして重水素化反応を 行った。 得られた化合物の単離収率及び重水素化率を表 1に示す。 尚、 表 1 に於いて、 2-ブ夕ノン、 2 -ノルポルナノン、 トリシクロ [5.2.1.02' 6]デカン- 8-オン、 ノルポルネオール、 トリシクロ [5.2.1.02' 6]- 3-デセ ン- 8-オール( (ヒドロキシジシクロペン夕ジェン) 及びシクロへキサノ ールの重水素化率は、 下記各化学式に付した数字の位置の重水素化率を 示し、 それ以外の化合物の重水素化率は、 重水素化され得る水素原子全 体の平均重水素化率を表す。 また、 表 1に於いて、 単離収率が一となつ ているものは、 重水素化の後、 目的物を単離せずに重水素化率を測定し たことを示す。
く 2-ブ夕ノン >
(2) (1) (1)
CD3— CD2— C— CD,
3 2 II 3
O
<2 -ノルポルナノン>
Figure imgf000032_0001
くトリシクロ [5.2.1.02' 6 ]デカン- 8-オン >
Figure imgf000032_0002
ぐノルボルネオール >
Figure imgf000032_0003
くトリシクロ [5· 2.1.02' 6 ]-3-デセン- 8-オール (又はヒドロキシジシク 口ペン夕ジェン) >
Figure imgf000033_0001
<シク口へキサノール >
Figure imgf000033_0002
<表 1 >
Figure imgf000033_0003
実施例 1 6
トリシクロ [5.2.1.02'6] デカン- 8-オール (基質) 500mgとパラジゥ ムカーボン 50mgとを重水 17mLに懸濁させ、 反応系を水素置換した後、 油 浴中 180°Cで約 24時間反応させた。 反応終了後、 反応液をエーテルで抽 出して触媒を濾過し、 濾液を減圧濃縮した後、 得られた化合物の1 H-NMR 、 2H_NMR及び Massスペク トルを測定して構造解析を行ったところ、 目的 物の単離収率は 60%であり、 重水素化率は 45%であった。 結果を表 2に 示す。 表 2に於いて、 金属量 (重量%) とは、 基質に対する担体担持触 媒中に存在する触媒金属量の割合であり、 表 2の重水素化率は重水素化 され得る水素原子全体の平均重水素化率を表す。 但し、 (1)は下記化学 式の(1)を付した位置の重水素化率を示し、 その他は(1)以外の部分の平 均重水素化率を表す。
くトリシクロ [5.2.1.02'6] デカン- 8-オール >
Figure imgf000034_0001
実施例 1 7〜 2 6
表 2に示した触媒を表 2に示した量使用し、 表 2に示した反応時間反 応させた以外は実施例 1 6と同様にしてトリシクロ [5.2.1.02'6] デカ ン- 8 -オールの重水素化を行った。 結果を表 2に併せて示す。
<表 2 >
Figure imgf000034_0002
実施例 2 6 .
パラジウムカーボンを重水 17mLに懸濁させ、 水素置換した後、 室温 で 3h撹拌し、 パラジウムカーボンを活性化した。 活性化終了後、 メタ クリル酸ナトリウム (基質) 500mgを投入し、 反応系を窒素置換した 後、 油浴中 180°Cで約 24時間反応させた。 反応終了後、 反応液を濾過 して触媒を除去し、 減圧濃縮した後、 得られた化合物の1 H-匪 R, 2 H- N MRを測定して構造解析を行ったところ、 基質の単離収率は 1 00 %であ り、 重水素化率は 99 %以上であった。 結果を表 3に示す。
実施例 2 7〜 3 2 .
以下の表 3に示した重水素化の対象となる基質及び触媒を用い、 表 3 に示した反応温度で行った以外は実施例 2 6 と同様にして重水素化反応 を行った。 得られた化合物の単離収率及び重水素化率を表 3に併せて示 す。 尚、 表 3に於いて、 単離収率の一は、 表 1のそれと同様の意味であ る。
<表 3 >
Figure imgf000035_0001
比較例 1 .
メ夕クリル酸を基質とし、 触媒として活性化されていなぃパラジウム カーボンを使用した以外は実施例 2 6と同様に重水素化を行い、 得られ た化合物の1 H- NMR, 2 H- NMRを測定して構造解析を行ったところ、 基質の 重水素化率は 75 %であった。
比較例 2 . ^
メ夕クリル酸を基質とし、 重水素源として重水素ガスを用いた以外は 実施例 2 6と同様に重水素化を行い、 得られた化合物の1 H-画 R, 2 H-NMR を測定して構造解析を行ったところ、 重水素化はされているものの、 メ タクリル酸の炭素一炭素二重結合が還元されていることが確認された。 実施例 1〜 3 2より明らかなように、 本発明の重水素化方法によれば 、 力ルポ二ル基を有する化合物或いはヒドロキシル基を有する化合物を 効率的に重水素化し得ることが分かる。 実施例 1〜 2 5より明らかなように、 炭素一炭素二重結合を含まない 化合物を重水素化する場合には、 反応系に於いて触媒の活性化と重水素 化反応を効率よく同時に行うことが出来る。
実施例 2 4及び 2 5からは、 触媒を組み合わせて使用しても重水素化 し得ることが分かる。
実施例 2 4では、 パラジウム力一ボンと白金カーボンを組合せた触媒 を使用しており、 これは基質に対する触媒金属量が 2重量%であるにも 拘わらず、 実施例 2 1及び 2 2のようにパラジゥムカーボン単独の触媒 であって触媒金属量が 4重量%或いは 5重量%と比較的多い触媒を使用 した実施例と比べても明らかに重水素化率が高いことが分かる。
更に、 実施例 2 1 と 2 5の結果を比較すると、 基質に対する触媒金属 量が 4重量%と同じであっても、 触媒としてパラジウムカーボンのみを 使用して重水素化を行った実施例 2 1よりパラジウム力一ボンと白金力 一ボンとを組み合わせた混合触媒を用いて重水素化を行った実施例 2 5 の方が、 重水素化率が高いことが判る。
また、 実施例 2 6〜 3 2と比較例 2を比較することにより、 本発明の 重水素化方法によれば、 炭素—炭素二重結合或いは三重結合を含むカル ポニル化合物又は第 2アルコールでも、 該二重、 三重結合が還元される ことなく、 目的とする重水素化のみが進行することが分かる。
実施例 3 2と比較例 1 とを比較すれば明らかなように、 活性化された 触媒を使用するという本発明の重水素化方法によれば、 活性化されてい ない触媒を使用した場合に比べ、 重水素化率が高いことが分かる。
また、 実施例 1〜 3 2から明らかなように、 本発明の重水素化方法に よれば、 反応液を塩基性条件にすることなく効率的に重水素化し得るこ とが分かる。 産業上の利用の可能性 活性化された触媒の共存下、 一般式 [ 1 ] で示される化合物を重水素 源と反応させるという本発明の重水素化 (ジユウテリゥム化及び卜リチ ゥム化) 方法によれば、 従来塩基条件下等の過酷な条件下で行われてい た重水素化を中性条件で行うことが出来ることから、 作業環境が著しく 向上する。 また、 本発明の重水素化方法によれば、 一般式 [ 1 ] で示さ れる化合物が炭素一炭素二重結合或いは炭素一炭素三重結合を含むもの であっても、 該二重結合、 三重結合を還元することなく目的とする重水 素化を効率的に行うことが可能となる。

Claims

請 求 の 範 囲
' 1. 一般式 [ 1 ]
Figure imgf000038_0001
(R 1 は、 炭素一炭素二重結合及び/又は三重結合を有していてもよい アルキル基又はァラルキル基を表し、 R2 は、 炭素一炭素二重結合及び Z又は三重結合を有していてもよいアルキル基、 ァリール基、 ァラルキ ル基、 アルコキシ基、 ァリールォキシ基又はヒドロキシル基を表し、 X は力ルポニル基又はヒドロキシメチレン基を表す。 また、 R1 と R2 と が結合して Xに含まれる炭素原子と共に脂肪族環を形成していてもよい 。 伹し、 Xがヒドロキシメチレン基の場合には、 R2 は、 炭素—炭素二 重結合及び Z又は三重結合を有していてもよいアルキル基、 ァリール基 又はァラルキル基を表す。 ) で示される化合物を、 活性化された、 パラ ジゥム触媒、 白金触媒、 ロジウム触媒、 ルテニウム触媒、 ニッケル触媒 及びコバルト触媒より選ばれる触媒の共存下、 重水素源と反応させるこ とを特徴とする、 一般式 [ 1 ] で示される化合物の重水素化方法。
2. 一般式 [ 1 ] に於いて、 Xがカルボニル基である請求項 1に記載の 重水素化方法。
3. —般式 [ 1 ] に於いて、 Xがヒドロキシメチレン基である請求項 1 に記載の重水素化方法。
4. 重水素源が、 重水素化された溶媒である請求項 1〜 3の何れかに記 載の重水素化方法。
5. 重水素化された溶媒が、 重水 (D20) である請求項 4に記載の重 水素化方法。
6. 活性化された、 パラジウム触媒、 白金触媒、 ロジウム触媒、 ルテニ ゥム触媒、 ニッケル触媒及びコバルト触媒より選ばれる触媒が、 活性化 されていない、 パラジウム触媒、 白金触媒、 ロジウム触媒、 ルテニウム 触媒、 ニッケル触媒及びコバルト触媒より選ばれる触媒を水素ガス又は 重水素ガスと接触させて活性化させたものである請求項 1〜 5の何れか に記載の重水素化方法。
7 . 活性化されていない、 パラジウム触媒、 白金触媒、 ロジウム触媒、 ルテニウム触媒、 ニッケル触媒及びコバルト触媒より選ばれる触媒と水 素ガス又は重水素ガスとの接触を、 重水素化の反応系内で行うことを特 徴とする請求項 6に記載の重水素化方法。
8 . 活性化された、 パラジウム触媒、 白金触媒、 ロジウム触媒、 ルテニ ゥム触媒、 ニッケル触媒及びコバルト触媒より選ばれる触媒が、 活性化 されたパラジウム触媒を含んで成る触媒である請求項 1〜 7の何れかに 記載の重水素化方法。
9 . 活性化されたパラジウム触媒が、 活性化されたパラジウムカーボン である請求項 8に記載の重水素化方法。
1 0 . 活性化されたパラジウム触媒を含んで成る触媒が、 活性化された パラジウム触媒と活性化された白金触媒とから成る触媒である請求項 8 に記載の重水素化方法。
1 1 . 一般式 [ 1 ] で示される化合物がトリシクロ [ 5. 2. 1 . 02' 6] デカ ン -8 -オールであり、 活性化された、 パラジウム触媒、 白金触媒、 ロジ ゥム触媒、 ルテニウム触媒、 ニッケル触媒及びコバルト触媒より選ばれ る触媒がパラジウムカーボンと白金カーボンとから成る触媒である請求 項 1 に記載の重水素化方法。
1 2 . 重水素化率が 6 0 %以上である トリシク口 [ 5. 2. 1 . 02· 6] デカン- 8—オール。
PCT/JP2003/014182 2002-12-27 2003-11-07 重水素化方法 WO2004060831A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004564469A JP4396522B2 (ja) 2002-12-27 2003-11-07 重水素化方法
CA002511885A CA2511885A1 (en) 2002-12-27 2003-11-07 Method of deuteration
AU2003277596A AU2003277596A1 (en) 2002-12-27 2003-11-07 Method of deuterization
EP03814536A EP1577280A4 (en) 2002-12-27 2003-11-07 DEUTERATION PROCESS
US10/539,188 US20060116535A1 (en) 2002-12-27 2003-11-07 Method of deuteration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002378932 2002-12-27
JP2002-378932 2002-12-27

Publications (1)

Publication Number Publication Date
WO2004060831A1 true WO2004060831A1 (ja) 2004-07-22

Family

ID=32708357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014182 WO2004060831A1 (ja) 2002-12-27 2003-11-07 重水素化方法

Country Status (10)

Country Link
US (1) US20060116535A1 (ja)
EP (1) EP1577280A4 (ja)
JP (1) JP4396522B2 (ja)
KR (1) KR20050089979A (ja)
CN (1) CN100384792C (ja)
AU (1) AU2003277596A1 (ja)
CA (1) CA2511885A1 (ja)
RU (1) RU2005123810A (ja)
TW (1) TW200413274A (ja)
WO (1) WO2004060831A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097239A (ja) * 2003-08-20 2005-04-14 Kyoto Univ 重水素化された炭化水素系化合物の製造方法
WO2008066158A1 (fr) * 2006-12-01 2008-06-05 Wako Pure Chemical Industries, Ltd. Procédé de deutérisation d'alcane
WO2009005069A1 (ja) * 2007-07-05 2009-01-08 Wako Pure Chemical Industries, Ltd. ルテニウム触媒を用いた重水素化方法
WO2011129314A1 (ja) * 2010-04-13 2011-10-20 和光純薬工業株式会社 糖類の重水素化方法
WO2014006433A2 (en) 2012-07-06 2014-01-09 Debreceni Egyetem Process for the activation of the c-h bond of organic compounds and a reactions system serving the process
JP2014524888A (ja) * 2011-05-23 2014-09-25 サノフイ N−アルキル基を含有するジュウテリウム化化合物の製造方法
JP2016516727A (ja) * 2013-03-15 2016-06-09 デューテリア アグロケミカルズ, リミテッド ライアビリティー カンパニーDeuteria Agrochemicals, LLC 重水素富化アルデヒド
JP2019501135A (ja) * 2015-11-23 2019-01-17 レトロトップ、 インコーポレイテッドRetrotope, Inc. 1,4−ジエン系の部位特異的同位体標識
US10539321B2 (en) 2013-11-29 2020-01-21 No Eul Kim Plastic hot water boiler
US11779910B2 (en) 2020-02-21 2023-10-10 Biojiva Llc Processes for isotopic modification of polyunsaturated fatty acids and derivatives thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200404054A (en) * 2002-07-26 2004-03-16 Wako Pure Chem Ind Ltd Method for deuteration of aromatic ring
KR100846334B1 (ko) * 2003-07-24 2008-07-15 후지필름 홀딩스 가부시끼가이샤 중-수소화된 노르보닐 (메트)아크릴레이트, 그 제조 방법,그 중합체 및 광학 부재
CN1906143A (zh) * 2004-01-23 2007-01-31 和光纯药工业株式会社 使用混合催化剂的重氢化方法
CN102020522A (zh) * 2009-09-21 2011-04-20 陈松源 氘代药物的制备方法和应用
TW201114735A (en) * 2009-10-26 2011-05-01 Du Pont Method for preparing deuterated aromatic compounds
CN109422731A (zh) * 2017-08-24 2019-03-05 正大天晴药业集团股份有限公司 氘代喹啉衍生物
CN111039767B (zh) * 2018-10-12 2022-05-24 中国人民大学 一种三唑卡宾催化制备氘代醛的方法
KR101978651B1 (ko) * 2018-10-30 2019-05-15 머티어리얼사이언스 주식회사 중수소화 유기 화합물의 제조 방법 및 이의 제조 방법에 의해 제조된 중수소화 유기 화합물
CN112778072A (zh) * 2020-12-31 2021-05-11 徐州亚兴医疗科技有限公司 一种氘代苯的催化生产工艺
CN113499771B (zh) * 2021-09-09 2021-12-07 苏州欣诺科生物科技有限公司 钌炭催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4517402B1 (ja) * 1965-02-01 1970-06-16
EP0203588A2 (en) * 1985-05-29 1986-12-03 Mitsubishi Rayon Co., Ltd. Process for the production of deuterated acrylic acid or deuterated methacrylic acid
JPS63198638A (ja) * 1987-01-17 1988-08-17 ヘキスト・アクチエンゲゼルシャフト 重水素化した有機化合物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849458A (en) * 1966-01-21 1974-11-19 Incentive Res & Dev Ab Method for deuterating organic compounds
DE3484047D1 (de) * 1983-10-24 1991-03-07 Hitachi Chemical Co Ltd Optische elemente enthaltend polymere von (meth)acrylat-estern.
JPS61148141A (ja) * 1984-12-21 1986-07-05 Mitsubishi Rayon Co Ltd 重水素化アクリル酸メチルまたは重水素化メタクリル酸メチルの製造法
US5221768A (en) * 1985-05-29 1993-06-22 Mitsubishi Rayon Co., Ltd. Process for the production of deuterated acid or deuterated methacrylic acid
FR2603280B1 (fr) * 1986-08-29 1988-10-28 Cird Nouveau compose marque au tritium, sa preparation et son application notamment dans la determination de l'affinite des retinoides pour leur recepteur cellulaire
US5830763A (en) * 1996-11-06 1998-11-03 Junk; Thomas Process for preparing deuterium tagged compounds
US6794522B2 (en) * 2001-03-22 2004-09-21 The Regents Of The University Of California Process for preparing a deuterated or tritiated compound
US7126023B2 (en) * 2002-06-06 2006-10-24 Wako Pure Chemical Industries, Ltd. Method for deuteration of an inert methylene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4517402B1 (ja) * 1965-02-01 1970-06-16
EP0203588A2 (en) * 1985-05-29 1986-12-03 Mitsubishi Rayon Co., Ltd. Process for the production of deuterated acrylic acid or deuterated methacrylic acid
JPS63198638A (ja) * 1987-01-17 1988-08-17 ヘキスト・アクチエンゲゼルシャフト 重水素化した有機化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1577280A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097239A (ja) * 2003-08-20 2005-04-14 Kyoto Univ 重水素化された炭化水素系化合物の製造方法
WO2008066158A1 (fr) * 2006-12-01 2008-06-05 Wako Pure Chemical Industries, Ltd. Procédé de deutérisation d'alcane
JP5549077B2 (ja) * 2006-12-01 2014-07-16 和光純薬工業株式会社 アルカンの重水素化方法
WO2009005069A1 (ja) * 2007-07-05 2009-01-08 Wako Pure Chemical Industries, Ltd. ルテニウム触媒を用いた重水素化方法
JP5454140B2 (ja) * 2007-07-05 2014-03-26 和光純薬工業株式会社 ルテニウム触媒を用いた重水素化方法
JP5803907B2 (ja) * 2010-04-13 2015-11-04 和光純薬工業株式会社 糖類の重水素化方法
WO2011129314A1 (ja) * 2010-04-13 2011-10-20 和光純薬工業株式会社 糖類の重水素化方法
JP2014524888A (ja) * 2011-05-23 2014-09-25 サノフイ N−アルキル基を含有するジュウテリウム化化合物の製造方法
WO2014006433A2 (en) 2012-07-06 2014-01-09 Debreceni Egyetem Process for the activation of the c-h bond of organic compounds and a reactions system serving the process
JP2016516727A (ja) * 2013-03-15 2016-06-09 デューテリア アグロケミカルズ, リミテッド ライアビリティー カンパニーDeuteria Agrochemicals, LLC 重水素富化アルデヒド
US10539321B2 (en) 2013-11-29 2020-01-21 No Eul Kim Plastic hot water boiler
JP2019501135A (ja) * 2015-11-23 2019-01-17 レトロトップ、 インコーポレイテッドRetrotope, Inc. 1,4−ジエン系の部位特異的同位体標識
JP2022046501A (ja) * 2015-11-23 2022-03-23 レトロトップ、 インコーポレイテッド 1,4-ジエン系の部位特異的同位体標識
JP7048976B2 (ja) 2015-11-23 2022-04-06 レトロトップ、 インコーポレイテッド 1,4-ジエン系の部位特異的同位体標識
JP7355801B2 (ja) 2015-11-23 2023-10-03 レトロトップ、 インコーポレイテッド 1,4-ジエン系の部位特異的同位体標識
US11779910B2 (en) 2020-02-21 2023-10-10 Biojiva Llc Processes for isotopic modification of polyunsaturated fatty acids and derivatives thereof

Also Published As

Publication number Publication date
JPWO2004060831A1 (ja) 2006-05-11
RU2005123810A (ru) 2006-01-27
EP1577280A4 (en) 2006-08-23
CN1732135A (zh) 2006-02-08
AU2003277596A1 (en) 2004-07-29
TW200413274A (en) 2004-08-01
JP4396522B2 (ja) 2010-01-13
CN100384792C (zh) 2008-04-30
KR20050089979A (ko) 2005-09-09
CA2511885A1 (en) 2004-07-22
EP1577280A1 (en) 2005-09-21
US20060116535A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
WO2004060831A1 (ja) 重水素化方法
JP4475119B2 (ja) 芳香環の重水素化方法
JP4525349B2 (ja) 複素環の重水素化方法
US9403159B2 (en) Dehydrogenation catalyst, and carbonyl compound and hydrogen production method using said catalyst
JP4839839B2 (ja) 混合触媒を用いた重水素化方法
JP2013532691A (ja) 選択的非対称ヒドロホルミル化のための配位子
WO1996020202A1 (fr) Diphosphines optiquement actives, leur preparation par dedoublement du melange racemique
WO2000041997A1 (fr) Procede de preparation d&#39;amino-alcools optiquement actifs
WO2008135386A1 (fr) Ligands chiraux de type carbenes n-heterocycliques pour la catalyse asymetrique
EP0395546B1 (fr) Procédé de préparation d&#39;acides beta,gamma-insaturés
JP4308155B2 (ja) δ−イミノマロン酸誘導体の製造方法、及びそのための触媒
Murai Transition metal catalyzed manipulation of non-polar carbon–hydrogen bonds for synthetic purpose
JPH01156941A (ja) 或るアクリル酸誘導体のヒドロホルミル化方法
JPWO2006001236A1 (ja) ハロアクリル酸又はその塩の重水素化方法
JP4472917B2 (ja) アミノオキシ化合物、ヒドロキシアミノ化合物又はヒドロキシケトン化合物の製造方法
JP4860510B2 (ja) β位に不斉点を有するカルボン酸の製造及び求核剤
JP2019151586A (ja) 錯体化合物、炭素炭素三重結合を有する化合物の製造方法、当該方法の中間体の製造方法及びこれらの方法に用いるキット
JP4732180B2 (ja) 1,3−アミノアルコール誘導体の立体選択的製造方法
JP2002241344A (ja) 光学活性アルコールの製造方法
EP0433190B1 (fr) Procédé de préparation d&#39;acides hexènedioiques-1,6
WO2012121350A1 (ja) 嵩高い水酸基含有化合物由来のエステルの製造方法
EP0433189A1 (fr) Procédé de préparation de diesters de l&#39;acide hexènedioique
JPS62114928A (ja) 弗素化されたカルボン酸、カルボン酸エステルおよびカルボン酸アミドの製法
EP1676830A1 (en) Carbonylation of alpha-chloroketones to beta-keto esters using palladium carbene catalysts
FR2734823A1 (fr) Nouveaux complexes metalliques optiquement actifs et leur utilisation en catalyse asymetrique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004564469

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003814536

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006116535

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10539188

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2511885

Country of ref document: CA

Ref document number: 1020057011819

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A74835

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1449/KOLNP/2005

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2005123810

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020057011819

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003814536

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10539188

Country of ref document: US