WO2004036565A1 - 光記録媒体原盤露光装置及び光記録媒体原盤の露光方法 - Google Patents

光記録媒体原盤露光装置及び光記録媒体原盤の露光方法 Download PDF

Info

Publication number
WO2004036565A1
WO2004036565A1 PCT/JP2003/013130 JP0313130W WO2004036565A1 WO 2004036565 A1 WO2004036565 A1 WO 2004036565A1 JP 0313130 W JP0313130 W JP 0313130W WO 2004036565 A1 WO2004036565 A1 WO 2004036565A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
recording medium
light source
optical recording
light
Prior art date
Application number
PCT/JP2003/013130
Other languages
English (en)
French (fr)
Inventor
Sakuya Tamada
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to EP03808900A priority Critical patent/EP1553573A4/en
Priority to US10/498,693 priority patent/US7551537B2/en
Priority to JP2004544947A priority patent/JP4506466B2/ja
Publication of WO2004036565A1 publication Critical patent/WO2004036565A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/128Modulators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1398Means for shaping the cross-section of the beam, e.g. into circular or elliptical cross-section
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming

Definitions

  • the present invention relates to an optical recording medium master exposure apparatus and an optical recording medium that perform pattern exposure corresponding to recorded information by irradiating light from an exposure light source onto an optical recording medium master coated with a photo resist.
  • the present invention relates to a method for exposing a medium master. Itoda
  • the optical recording medium master is, for example, a disk-shaped master substrate.
  • a photo resist is adhered on the upper surface, and a concavo-convex pattern corresponding to recorded information is formed on the surface by exposure and development, that is, a so-called cutting is formed.
  • narrow down the diffraction-limited spots on the master on which the resist was applied via an objective lens narrow down the diffraction-limited spots on the master on which the resist was applied via an objective lens. Exposure is performed by irradiation.
  • optical recording media are required to have finer processing dimensions of pits or groups in accordance with higher densities in order to increase the recording capacity.
  • the processing dimensions of the pits are required to be less than 0.25 wm, the wavelength of the gas laser used in the above-mentioned optical recording medium master exposure apparatus will condense light. Even if the numerical aperture NA of the lens is close to 1, the laser beam cannot be sufficiently stopped down. For this reason, at present, it is extremely difficult to accurately fabricate the optical recording medium master to a dimension of 0.25 / m or less.
  • a semiconductor laser pumped high-power green laser with a wavelength of 532 nm is used as a pumping light source and a wavelength of 266 nm using a second harmonic generator with an external resonator structure.
  • Non-linear optical crystals such as ( ⁇ ⁇ ⁇ )
  • the method using an electron beam requires a vacuum device, and is a large-scale device such as having a high-precision and high-speed rotation mechanism of a glass master in a vacuum.
  • the repetition frequency R of this ultrashort pulse laser light source is determined by the cavity length.
  • R cZ2L (c: speed of light)
  • a traveling wave type For example, in the case of a ring type optical path
  • the oscillator at high repetition frequency of 2 GH Z is the example in practical use have been reported.
  • the resonator length L is 15 cm in the case of a ring type (for example, Satoshi Kawada, Spectroscopy Society of Japan Measurement Method Series 38 “Super-resolution optics”). , Societies Publishing Center, March 20, 1999, p. 79).
  • This T i S apphire ultrashort pulse laser light source is excited by a semiconductor laser-excited high-power green laser, oscillates at a center wavelength of 760 nm to 840 nm, for example, 800 nm, and averages.
  • Output 1 W, pulse width (FWHM: Full Width at Half Maximum) Force 1 0 0 fs (1 0 0 X 10 15 seconds) or less, for example, 2 3 fs is obtained stably.
  • the transverse mode of the beam is TEM00 and has excellent performance with a noise of 0.1% or less.
  • Tsunami series from Spectra Physics, Mira series from Coherent, etc. with a repetition frequency of 80 MHz and a pulse width (FWHM) of 100 fs or less and an average output of 1 W or more are practical.
  • FWHM pulse width
  • a two-photon absorption process is generated using such an ultrashort pulse laser light source, and a pattern finer than the diffraction limit due to the super-resolution characteristic using the nonlinear optical effect is formed.
  • Satoshi Kawata Spectroscopy Society of Japan Series 38, “Resolution Optics”, Gakkai Shuppan Center, March 20, 1999, page 79, and S. Kawata et a ⁇ : Fine features for functional microdevices, Nature, 2001, Vol.412, p.697.
  • a dot shape with a width of 120 nm was obtained using a laser with a wavelength of 780 nm, a repetition frequency of 76 MHz, a pulse width of 100 fs, and an objective lens with a numerical aperture of NA 1.4. Examples of forming patterns have been reported.
  • the present invention has been made in view of the above situation, and has an optical recording medium master exposure apparatus and optical recording medium capable of forming fine pits with high accuracy and greatly improving productivity. The purpose is to provide a method for exposing a medium. Disclosure of the invention
  • the present invention provides a modulating means for performing light intensity modulation of light from an exposure light source corresponding to recording information, and a collecting means for condensing the light modulated by the modulating means on a photo resist on an optical recording medium master.
  • Optical optics and An optical recording medium master exposing device that performs pattern exposure on a resist in accordance with recording information.
  • the exposure light source uses an ultrashort repetition frequency that is an integer multiple of 1 to 20 times the clock frequency of the recording information. It is composed of a pulse laser, and the resonator length of this ultra-short pulse laser is made variable.
  • the repetition frequency of the ultra-short pulse laser is synchronized with the clock frequency of the recorded information, and the pulse is oscillated.
  • An external synchronization mechanism is provided.
  • the wavelength is shortened by wavelength conversion using a non-linear optical element between the exposure light source and the modulating means using an ultrashort pulse laser light source as an excitation light source.
  • High harmonic generation means for emitting light is provided.
  • light from an exposure light source is subjected to light intensity modulation corresponding to recording information, and the light modulated by the modulating means is condensed on a photo resist on an optical recording medium master,
  • An exposure method for an optical recording medium master that exposes the photo resist in a pattern according to the recording information.
  • the exposure light source is repeated at an integer multiple of 1 to 20 times the clock frequency of the recording information. It is composed of an ultrashort pulse laser with a frequency, and an external synchronization mechanism is provided to change the resonator length of the ultrashort pulse laser, and the repetition frequency of the ultrashort pulse laser is synchronized with the clock frequency. To generate pulse oscillation.
  • the optical recording medium master exposure apparatus includes a modulating means for performing light intensity modulation of light from an exposure light source in accordance with recording information, and a light modulated by the modulating means on the optical recording medium master.
  • a light condensing optical system for condensing light on a resist is provided, and in an optical recording medium master exposure apparatus that exposes a photo resist in a pattern according to recording information, an exposure light source is set to a clock frequency of the recording information. It consists of an ultrashort pulse laser with a repetition frequency of 10 times or more and 20 times or less.
  • the present invention provides the above-mentioned configuration, wherein In between, high-order harmonic generation means for emitting light whose wavelength has been shortened by wavelength conversion using a nonlinear optical element with an ultrashort pulse laser light source as an excitation light source is provided.
  • light from an exposure light source is subjected to light intensity modulation in accordance with recording information, and the light modulated by the modulating means is condensed on a photo resist on an optical recording medium master to form a photo resist.
  • An exposure method for an optical recording medium master that exposes a resist in a pattern according to recorded information, wherein the exposure light source is an ultrashort repetition frequency of 10 to 20 times the clock frequency of the recorded information. Pulsed laser.
  • the present invention provides a method for exposing a master optical recording medium as described above, wherein the light emitted from the exposure light source is used as a high-order harmonic generation means using the exposure light source as an excitation light source, and a nonlinear optical element is used. The wavelength is converted to a shorter wavelength and emitted.
  • an ultrashort pulse laser light source is used as an exposure light source, and the repetition frequency is set to be 1 to 20 times the clock frequency of recorded information.
  • An external synchronization mechanism that makes the cavity length of this ultrashort pulse laser variable is provided.
  • the clock frequency of the recording information signal of the optical disk is 4.3 MHz for a CD and 26 MHz for a DVD.
  • Blu-ray Disc which has been attracting attention as a high-density disc in recent years and has been developed with a playback light wavelength ⁇ of 405 nm and an objective lens numerical aperture NA of 0.85
  • 6 6 MH since z is the case of 0 for example Blu-ray Disc is a 6 6 MH z, since it is substantially the same as the repetition frequency of the ultrashort pulse laser, the information data signal and Thailand Mi pulsed laser It is necessary to match the ring.
  • an external synchronization mechanism for adjusting the resonator length of the ultrashort pulse laser light source used as the exposure light source is provided, whereby the resonator length is adjusted.
  • the repetition frequency is adjusted so that the repetition frequency is an integral multiple of 1 or more and 20 or less of the channel clock, that is, 1 time, 2 times, 3 times... 20 times.
  • the light from the ultrashort pulse laser beam source is used as the exposure light source, and the pattern is synchronized with the information signal recorded on various optical recording media such as CD, DVD and Blu-ray Disc. Exposure can be performed reliably.
  • the other present invention described above uses an ultrashort pulse laser light source as an exposure light source of an optical recording medium master exposure apparatus, and sets the frequency to be 10 times or more and 20 times or more the clock frequency of recorded information.
  • the following repetition frequency is used.
  • the peak of the recording information signal of the optical recording medium is 4.3 MHz for a CD, 26 MHz for a DVD, and 66 MHz for a Blu-ray Disc. .
  • the pulse interval can be made sufficiently smaller than the signal interval when recording information signals on the optical recording medium. Because each pulse can be integrated and averaged, and the deviation of the pattern such as a pit signal can be suppressed without affecting the reproduced signal, the continuous oscillation of the prior art can be suppressed. It can be treated in the same way as light, and the signal jitter value during reproduction can be reduced to 10% or less.
  • the repetition frequency is set to 20 times or less.
  • the peak output of the ultrashort pulse laser beam can be maintained at an output sufficient for performing fine pattern exposure.
  • Fine pattern exposure can be performed with high accuracy.
  • the pulse oscillation is performed at an extremely high repetition frequency. Another advantage is that exposure can be performed without adjusting the timing of the information recording signal with the optical modulator with high precision.
  • the optical recording medium has a higher cut-off frequency than the Blu-ray Disc described above, if the repetition frequency of the ultrashort pulse laser is set to 10 times or more, sufficient peak output cannot be obtained. There is fear. If the peak power is not sufficient, the two-photon absorption process described later will not occur easily, and it may be difficult to perform exposure with the target small spot diameter.
  • an external synchronization mechanism is provided as described above, and the repetition frequency of the ultrashort pulse laser is set to an integral multiple of 1 to 10 times the cut-off frequency of the optical recording medium. It is desirable to adopt a configuration that synchronizes with the clock signal.
  • a high-order harmonic generation means is provided between the exposure light source and the modulation means, and the short-wavelength laser is used as an excitation light source and a short-wavelength conversion is performed by using a nonlinear optical element. By emitting the converted light, an exposure light source having a shorter wavelength can be obtained.
  • the exposure light source that emits an ultrashort pulse laser beam having a high repetition frequency that can be regarded as being substantially equivalent to continuous light
  • an ultrashort pulse laser beam whose wavelength has been shortened by a high-order harmonic generation means using this as an excitation means is emitted and modulated by a light intensity modulation means.
  • Light is condensed to a diffraction-limited spot size by a predetermined condensing optical system and irradiated to the photo resist, thereby exposing a concavo-convex pattern such as a fine pattern pit compared to the conventional method. be able to.
  • the photo resist is exposed by a two-photon absorption process.
  • an ultrashort pulse laser light source with a very high peak output (peak output) as an exposure light source and condensing the beam with a condensing optical system
  • the two-photon absorption process in the registry happens very efficiently.
  • the repetition frequency is 1 GHz and the average power of the laser after emission from the objective lens is 10 mW
  • the light intensity in the beam spot on the surface of the photo resist is set to a peak output of 10 O up to GW / cm 2.
  • the two-photon absorption process is one of the nonlinear optical phenomena, and the exposure of the resist is given by the square of the intensity distribution of the beam spot.
  • the two-photon absorption cross section of the resist is as small as about 10 — 46 to 10 — 47 cm 4 s / photon, and although the sensitivity of the resist is low, several percent absorption occurs.
  • the peak power of the ultrashort pulse laser light In order to generate two-photon absorption with high efficiency, the peak power of the ultrashort pulse laser light must be high.
  • the pulse oscillation at a high repetition frequency is used, and the pulse width (FWHM) is set to at least lps (1 ⁇ 10 12 seconds) or less.
  • the light absorption distribution of the light source in the resist plane is proportional to the beam intensity distribution for normal absorption, and proportional to the square of the beam intensity distribution for two-photon absorption.
  • Figure 5 shows the light absorption distribution.
  • I indicates the beam intensity distribution, This corresponds to the case of absorption.
  • I 2 indicates the square of the beam intensity distribution, corresponding to the case of two-photon absorption.
  • Airy spot diameter d is
  • the spot shape of the laser light emitted from the focusing optical system and focused on the photo resist is defined as: It has an oval shape extending in the scanning direction of the laser beam.
  • the pulse interval (the reciprocal of the repetition frequency) and the scanning speed (the linear speed in the case of a disc-shaped optical recording medium master) are optimized according to the sensitivity of the resist. There must be. However, since the pulse interval is uniquely fixed by the channel clock, it is difficult to expose a linear pattern.
  • the beam spot emitted from the focusing optical system and focused on the resist is elongated in the beam scanning direction, the distribution of the irradiated light amount is spread and averaged, A linear pattern such as a group can be easily obtained.
  • the absorption peak wavelength of the photo resist is set to be equal to or less than half the wavelength of the exposure light source.
  • the two-photon absorption resist is less efficient than the two-photon absorption by setting the absorption peak wavelength to less than half the wavelength of the exposure light source. And the finer pattern exposure can be performed.
  • the ultra-pulse laser is used as the exposure light source and the beam is further narrowed down to the diffraction limit by the focusing optical system.
  • the photosensitivity of the resist is given by the square of the intensity distribution of the beam spot due to the two-photon absorption process, and it has a super-resolution characteristic using the nonlinear effect. As a result, it is possible to record a smaller pit which is finer than the diffraction limit.
  • FIG. 1 is a schematic configuration diagram of an example of an optical recording medium master disc exposure apparatus according to the present invention
  • FIG. 2A is an explanatory diagram of an example of a pulse waveform of a short-pulse laser beam
  • FIG. FIG. 2C is an explanatory diagram of an example of a pulse waveform of an ultrashort pulse laser beam
  • FIG. 2C is an explanatory diagram of an example of a pulse waveform of a clock signal
  • FIG. 3 is an explanatory diagram of an external synchronization mechanism.
  • FIG. 4A is a diagram illustrating an example of a pulse waveform of an ultra-pulse laser beam
  • FIG. 4A is a diagram illustrating an example of a pulse waveform of an ultra-pulse laser beam
  • FIG. 4B is a diagram illustrating an example of a waveform of an information signal and a pulse waveform of an ultra-short pulse laser beam
  • FIG. 5 is a schematic diagram of an example of a high-order harmonic generation means
  • FIG. 6 is an absorption amount of an air leak port in a photo resist.
  • FIG. 1 shows a schematic configuration diagram of an example of an optical recording medium master exposure apparatus according to the present invention.
  • a modulating means 3 for performing light intensity modulation of light from an exposure light source 1 in accordance with recording information, and a light modulated by the modulating means 3, in the example shown in FIG.
  • a condensing optical system 9 for condensing light on a photo resist 12 on 11 is provided, and the photo resist 12 is subjected to pattern exposure according to recorded information.
  • the pulsed laser light emitted from the exposure light source 1 is reflected by a mirror la via a high-order harmonic generation means 2 and a chirp correction optical system 4, which will be described in detail later, and The light is reflected by the mirror lb through the modulating means 3 and guided to the condensing optical system 9 via the beam expander 5.
  • the laser light passes through a quarter-wave plate 7 via an auto-focusing optical system 6, which will be described in detail in an embodiment to be described later, and further passes through a mirror 1c. Is reflected by the optical recording medium master 11 through the objective lens 8a whose distance from the optical recording medium master 11 is precisely adjusted by the electromagnetic actuators 8b and 8c.
  • the optical recording medium master 11 is fixed to the mounting table 10.
  • the mounting table 10 is rotated by the rotating means 14 as shown by the arrow a, and the condensing optical system 9 is arranged on a movable optical table (not shown), for example.
  • the optical recording medium master 11 is moved in the radial direction so that exposure light can be applied to the entire surface of the optical recording medium master.
  • the exposure light source 1 is used as a clock for recording information. It consists of an ultrashort pulse laser with a repetition frequency of an integer multiple of 1 to 20 times the frequency.
  • Fig. 2A shows a schematic waveform of a pulse signal generated by the ultrashort pulse laser light source
  • Fig. 2A shows a schematic waveform of a state in which the pulse signal is superimposed on the signal waveform S of recording information by the modulation means 3 described above. 2 B shown.
  • the interval of the pulse P is appropriately selected, and the frequency is an integer multiple of 1 to 20 times the clock signal C of the recorded information shown in Fig. 2C.
  • the frequency is made to be 1 times, and is superimposed on the signal s of the recording information as shown in FIG. 2B.
  • the pulse waveform is shown as a broken line P ′. This makes it possible to perform exposure in synchronism with the recording information, and to perform a photo resist / turn exposure corresponding to the recording information.
  • the present invention includes, for example, an external synchronization mechanism shown in FIG. In Figure 3,
  • Reference numeral 30 denotes an ultrashort / less laser light source using, for example, T i: Sapphire, and 50 denotes an external synchronization mechanism.
  • an excitation light L i O such as a semiconductor laser (not shown) is applied to an ultrashort pulse laser light source 30 via a lens 31 and a spherical mirror 32 to a laser medium 34 such as Ti: Sapphire. Is incident on.
  • the light emitted from the laser medium 34 is reflected by the spherical mirror 33, further reflected by the high-reflection mirror 35, and then incident on the dispersion compensation prisms 36a and 36b. Then, the light is reflected by the high reflection mirror 38 via the slit 37.
  • the laser beam passes through the reproducing slit 37 and enters the laser medium 34 through the dispersion compensation prism 36b and 36a, the high-reflection mirror 35, and the spherical mirror 33. Will be returned.
  • the light returned from the laser medium 34 to the spherical mirror 32 is output through the output window (output power puller) 39 and the beam splitter 40 as Li 2. To the outside.
  • a part of the output light is detected by the beam splitter 40 by the photodetector 41 composed of a high-speed photodiode or the like. Then, the output from the photodetector 41, that is, the electric signal generated by the laser pulse oscillation, and the output from the clock signal generator 42 of the information signal output device for recording on the optical recording medium are compared with the phase detector 43. Compare the phases with.
  • the clock signal is an integer multiple of 2 or more, the phase of the clock signal is compared with a clock signal that is an integral multiple of the signal of the clock signal generator 42.
  • the signal output from the phase detector 43 is input to the control unit 44 including a PLL (Phase Lock Loop) circuit and the like, and the control signal converted into a predetermined control amount is input to the piezo drive unit 45.
  • the piezo element 46 fixed to the above-mentioned watt reflection mirror 38 is slightly moved in the optical axis direction, so that the resonator length of the laser resonator can be finely adjusted.
  • the cavity length in the example is the optical path length from the spherical mirror — 32 to the highly reflective mirror — 38.
  • the jitter between the clock signal of the recording information and the oscillation pulse of the laser can be reduced to 1 ps or less.
  • the optical modulator driving signal of the information recording signal is also transmitted in synchronization with the clock signal, timing can be taken from the pulse oscillation of the ultrashort pulse laser.
  • the repetition frequency of the ultrashort pulse laser light source is one time that of the clock signal, that is, when the clock signal is synchronized, for example, when recording using a (1,7) modulation code, 2 Two pulses are applied to the shortest pit.
  • the optical system in the ultrashort pulse laser device may be arranged so that 111111 (c is the speed of light), and 4 pulses are applied to the 2T shortest pit.
  • the repetition frequency of the ultrashort pulse laser is set to be 10 times or more of the clock frequency, the jitter can be suppressed to within 10% as described above.
  • an external synchronizing mechanism may be provided to increase the integer multiple in order to more reliably suppress the jitter.
  • the value be an integer multiple of 8 or less in order to obtain a peak output value required for generating multiphoton absorption such as two-photon absorption.
  • the number be an integer multiple of 4 or less.
  • the clock frequency is an integer multiple of 1 to 4 times
  • the number of pulses in one recording mark becomes small and jitter may become a problem, it is shown in FIG.
  • recording compensation in which the laser output is partially adjusted within one recording mark, instead of rectangular wave recording as described above, the distribution of the integrated value of the light amount is finely adjusted, and The shape can be corrected, thereby suppressing a decrease in timing jitter or the like.
  • the exposure light source 1 is changed to an ultrashort pulse having a repetition frequency of 10 to 20 times the clock frequency of the recorded information. Consists of a laser.
  • Fig. 4A shows a schematic waveform of a pulse signal generated by the ultrashort pulse laser light source
  • Fig. 4A shows a schematic waveform of a state in which the pulse signal is superimposed on the signal waveform S of recording information by the modulation means 3 described above. 4 B shown.
  • the interval pt of the pulse p is appropriately selected, and the frequency is 10 times or more of the clock signal C of the recorded information shown in Fig. 2C.
  • pw is the width of the panel.
  • the repetition frequency of the ultrashort pulse laser light source should be set to 20 times or less the frequency of the clock signal.
  • a wavelength conversion using a non-linear optical element with an ultrashort pulse laser light source as an excitation light source And a high-order harmonic generation means 2 for emitting light having a shorter wavelength.
  • FIG. 5 shows a schematic configuration of an example of the high-order harmonic generation means 2.
  • reference numeral 26 denotes a second harmonic (SHG) generator
  • 27 denotes a delay line unit
  • 28 denotes a third harmonic (THG) generator.
  • the light L i incident on the second harmonic generation unit 26 enters the nonlinear optical crystal 20 via the condenser lens 19 a, and passes through the condenser lens 19 b to the harmonic separator 21.
  • the force reflected by a is taken out as L 2-1, or is incident on the delay light unit 27 if this harmonic separator 21 a is not provided.
  • the light incident on the delay line unit 27 is split into a fundamental wave L1 and a second harmonic L2-2 by a harmonic separator 2lb.
  • the fundamental wave is reflected by the mirrors 22a and 22b and is incident on the third harmonic generation unit 28, and the second harmonic L2-2 is transmitted through the half-wave plate 23.
  • the light is reflected by the mirrors 22 c, 22 d, and 21 c and is incident on the third harmonic generation unit 28.
  • the polarization planes of the fundamental wave and the second harmonic are rotated 90 °, so for example, as shown in Fig. 5, the type I
  • the polarization plane of the second harmonic L 2-2 can be changed. Can be adjusted to the fundamental wave.
  • the second harmonic L 2-2 is emitted behind the fundamental wave L 1, so that the delay line unit 27 described above
  • the fundamental wave L 1 is delayed before entering the second nonlinear optical crystal 24.
  • Means for delaying is performed by separating both waves by the harmonic separator 2 lb, lengthening only the optical path length of the fundamental wave L 1 by a length corresponding to the delay time, and multiplexing again. (See C. Rul ⁇ lere ed. Femtosecond Laser Pulses, Springer, p. 170
  • the multiplexed light is made to enter the nonlinear optical crystal 24, and the third harmonic L3 is emitted to the outside by sum frequency mixing.
  • Reference numerals 19c and 19d denote condenser lenses, 2Id denotes a mirror, 25 denotes a beam stopper, and Lo denotes unnecessary light.
  • the lenses 19a to 19d increase the beam intensity in the crystal. Combs are arranged to improve conversion efficiency.
  • the peak power is very high, and the conversion efficiency of the second harmonic generation, which is the second-order nonlinear optical phenomenon, increases in proportion to the laser intensity.
  • High efficiency can be obtained even if the optical path is set to pass once through the nonlinear optical crystal.
  • the group velocity dispersion of the nonlinear optical crystal causes group velocity mismatch when the crystal is thick, which is effective.
  • Wavelength conversion is not performed.
  • the crystal length of LBO must be 1.5 mni or less when the pulse width is 100 fs and the center wavelength is 800 nm.
  • a fundamental wave having a center wavelength of 800 nm and a second harmonic having a center wavelength of 400 nm emitted from the high-order harmonic generation means for example.
  • ultra-short pulse laser light with a center wavelength of 267 nm, a pulse width of 11.5 fs, and an average output of about 100 mW can be obtained by sum frequency mixing (SFM).
  • SFM sum frequency mixing
  • This sum frequency mixing is a second-order nonlinear optical phenomenon like the second harmonic generation.
  • the critical phase matching of type I of the nonlinear optical crystal BBO can be used.
  • the length is also based on the above reasons.
  • the light source is applied to the optical recording medium master exposure apparatus and the method of exposing the optical recording medium master according to the present invention with sufficient average output power up to the fourth harmonic light as the wavelength. Can be used.
  • BBO nonlinear optical crystal
  • the pulse width (FWHM) must be at least lppm. s it is an (1 X 1 0- 12 sec) below, by the child defines a pulse width cormorants this good, efficient two-photon absorption could and Okosuko.
  • the following effects can be obtained by setting the absorption peak wavelength of the photo resist to half or less of the wavelength of the exposure light source.
  • an exposure light source and a light source having an absorption coefficient of about several percent of the absorption coefficient at the absorption peak wavelength when exposing a master for a CD or the like having a photoresist thickness of about 100 nm, an exposure light source and a light source having an absorption coefficient of about several percent of the absorption coefficient at the absorption peak wavelength.
  • a photo resist When a photo resist is selected, two-photon absorption is not performed only in the vicinity of the surface of the resist, and absorption over the entire thickness can be caused.
  • a master for Blu-ray Discs with a photo resist thickness of about 40 nm by selecting an exposure light source and a photo resist having an absorption coefficient of about 10%, Similarly, absorption occurs over the entire thickness of the resist, so that pattern exposure that exposes the surface of the master substrate after development can be performed.
  • the pulse width (FWHM) ⁇ of the ultrashort pulsed laser beam is, for example, a pulse width ⁇ t power S 100 fs and a sech 2 type
  • the beam spot emitted from the focusing optical system and focused on the resist is elongated in the beam scanning direction, so that the distribution of the irradiated light amount is expanded and averaged.
  • O Linear patterns such as groups can be easily obtained.o
  • the beam extractor described in FIG. It is sufficient that the beamer 5 has an anamorphic optical system, that is, the beam diameter in the direction perpendicular to the beam scanning direction is larger.
  • modulation means for light intensity modulation described in FIG. 1 described above, light is reflected by ultrasonic waves in a reverberation optical element driven by a piezoelectric element modulated by a recording information signal.
  • An acousto-optic effect utilizing diffraction or an electro-optic modulator utilizing the Pockles effect modulated by a recorded information signal is suitable.
  • a negative chirp is given to the ultrashort pulse light emitted from the exposure light source in advance. By offsetting this, It is necessary to obtain the shortest pulse on the register.
  • a dispersive prism pair, a grating pair, or a chirp mirror can be used as the chirp correcting optical system 4.
  • the pulse width required for adjusting the pulse width can be measured by an autocorrelator using the conventional second harmonic generation method. (Example 1)
  • an exposure light source 1 consisting of a T i: S apphire ultrashort pulse laser light source, high-order harmonic generation means 2 using this ultrashort pulse laser as an excitation light source, and pulses output from these lights
  • a chirp correcting optical system 4 having a negative group velocity dispersion for preliminarily correcting a positive group velocity dispersion caused when the light passes through various optical parts, and an electric light corresponding to data supplied with light emitted therefrom.
  • Modulating means 3 as a modulating means for performing light intensity modulation by switching at a high speed with a pulse signal, and condensing the light modulated by this modulating means 3 into a spot size of diffraction limit to obtain a photo resist.
  • a converging optical system 9 and a beam expander 5 for irradiating the optical recording medium master 11 coated with the substrate 12 are provided.
  • the ultrashort pulse laser light source has a repetition frequency of 66 MHz, the same as the clock frequency of the Blu-ray Disc described above, a center wavelength of 81.6 nm, a pulse width of 80 fs, and an average output of 1.5.
  • An ultrashort-pulse laser using T i: S apphire laser of W, that is, T i: S apphire as the laser medium 34 described in FIG. 2 was used.
  • the second harmonic having a wavelength of 408 nm or the third harmonic having a wavelength of 272 m was generated.
  • a type I phase-matched LBO crystal was used as the nonlinear optical crystal 20 of the second harmonic generation unit 26 shown in FIG.
  • the nonlinear optical crystal 2 of the third harmonic generator 28 Type 4 BBO was used.
  • the various lenses 19a to l9d are arranged to increase the beam intensity in the crystal and improve the conversion efficiency.
  • the second harmonic light has an average output of 60 O mW and a pulse width (FWHM) of 100 fs
  • the third harmonic light has an average output of 120 mW and a pulse width of 120 fs or less with 1 ps or less. It was possible to extract the emitted light.
  • a blue star prism pair was used as the chip capturing optical system 4.
  • the emitted light is reflected by the mirror 1 a at 90 ° and sent to the modulation means 3.
  • an electro-optical element EOM having a signal modulation band of 80 MHz was used.
  • the modulation means 3 is supplied with a pit recording signal from a so-called formatter, not shown, in which data to be recorded on the master optical recording medium generates an electrical pulse signal. Light is modulated according to this data.
  • the light thus modulated is reflected at 90 ° by the mirror 1b and is reflected by the beam spreader 5 and the autofocus optical system 6, for example, through a polarizing beam splitter (hereinafter, referred to as PBS) 6a.
  • PBS polarizing beam splitter
  • Examples of the photo resist 12 include an i-line resist (JSR Corporation PFRIX 111 G), a Kr laser mastering register (Nihon Zeon Corporation DVR-1). 0 etc.) can be used.
  • the objective lens 8a is made of synthetic quartz, fluorite, etc., whose material is sufficiently transparent to light in this wavelength range.
  • An achromatized objective lens was used.
  • the optical recording medium master 11 is fixed on a mounting table 10 which is rotated in a direction indicated by an arrow a by a rotating means 13 such as a spindle motor.
  • the optical path of this light is also an optical path passing through each of the above-described optical elements, and is applied to the optical recording medium master 11.
  • the return light reflected from the optical recording medium master 11 is incident on the PBS 6a via the objective lens 8a, the mirror lc, and the ⁇ wavelength plate 7.
  • this return light has passed twice through the 14-wavelength plate 7, it is reflected by the PBS 6a.
  • the PBS 6a of the auto-force optical system 6 sends the returning light to the focus error detection element 6c via the wavelength selection element 6b.
  • the wavelength selection element 6b is for blocking the light of the exposure wavelength by using a multilayer interference film or the like because a considerable amount of the light of the third harmonic as the exposure wavelength is also reflected by the PBS 6a.
  • the focus error amount detection element 6c optically detects the amount of displacement from the best focus position when the exposure light is focused on the optical recording medium master 11 using, for example, an astigmatism method. And converts this detection amount into an electric signal.
  • the detected electric signal is supplied to a drive control unit 6 d which forms a part of the autofocus servo system 6.
  • the above-mentioned astigmatism method is a method in which a cylindrical lens is disposed behind a detection lens, and the astigmatism is positively used for detection by a photodetector.
  • This cylindrical lens has a lens action only in a single direction, and has only the same action as a parallel flat plate in a direction orthogonal to the single direction. Therefore, the cylindrical lens has a position other than the focusing position of the detection lens and the cylindrical lens. Does not converge, and the focus error signal is detected by forming a narrow beam image. This focus error signal is The focus of the objective lens is maintained at the optimal position by controlling the mouth.
  • the drive control section 6d generates a drive signal for correcting the displacement based on the electric signal, and outputs the drive signal to the electromagnetic actuators 8b and 8c for finely moving the objective lens 8a up and down.
  • the electromagnetic actuators 8b and 8c move the objective lens 8a in a vertical direction indicated by an arrow b by a drive signal, that is, in a direction in which the objective lens 8a approaches or separates from the photo-register, and thereby moves the optical recording medium.
  • the spot shape is enlarged in the running direction of the beam so as to be elongated.
  • the group width was able to expose the group notation as a finer pattern than in the past.
  • the laser beam thus formed is rotated and scanned on the optical recording medium master 11 by the rotating means 13, and at the same time, the optical system including the objective lens is moved radially from the center of the disk (center of the master). According to this, the beam is scanned spirally on the master and the photo resist is exposed to form a pit at 13 ⁇ 4Hz.
  • a positive-type register for g-line can be used in addition to the above-described register for i-line. Since the resist exposure is photon mode recording, the repetition rate is high. Even in the case of a number of ultrashort pulsed light, the exposure is determined by the integrated amount of photons per unit area. According to the present invention, unlike the case of continuous light irradiation, there is almost no need to go through the thermal mode. That is, it is possible to suppress the expansion and the change in the reaction rate due to unnecessary temperature rise of the resist, and it is possible to form finer pits. .
  • the center wavelength is 8 16 nm.
  • the Ti: Sapphire ultrashort pulse laser can oscillate from about 760 nm, and in this case, the same means ( The central design wavelength needs to be changed altogether), and the second harmonic light of 38 O nm and the third harmonic light of 2553 nm can be used.
  • the efficiency drops somewhat, it is necessary to increase the output of the excitation green laser that excites the laser medium of the ultrashort pulse laser light source.
  • a nonlinear optical crystal for example, BBO
  • a fourth harmonic wavelength 204 nm, average output 12 mW
  • an air-V spot of 0.28 ⁇ m was obtained using an aberration-free objective lens having a numerical aperture of NA 0.9.
  • the high-order harmonic generating means is
  • the high-order harmonic generation means described in FIG. 5 uses the exposure light source because the second high-frequency generation unit and the sum-frequency mixing unit are separated independently from each other. It can also be used as In this case, the conversion efficiency of the second r3 ⁇ 413 ⁇ 4 generation is higher than that of the third harmonic generation, and the laser beam for the same excitation has a higher exposure power. Not only can a color be obtained, but also the wavelength of the laser light is close to the visible light range, various types of glass materials can be used, lens design is easy, and restrictions on optical elements are reduced.
  • the material and configuration of the optical recording medium master exposure apparatus were exactly the same as those in Example 1 described above, but the laser power intensity of the exposure light source was increased by about 10 times. '
  • the exposure light source has a repetition frequency of 66 MHz, a center wavelength of 816 nm, and a pulse width of 80 fs, but the average output is 2 W.
  • a short pulse laser light source was used.
  • the wavelength conversion efficiency is increased by making the beam spot diameter in the crystal smaller, and the electric field strength of the excitation light is increased, and the laser power intensity of the third harmonic is increased.
  • the power was about 10 times that of Example 1. However, the pulse width has become slightly wider.
  • the photo resist for the ArF laser was used as the photo resist.
  • irradiation was performed on a fluororesin-based resist.
  • the light intensity in the beam spot on the resist surface reaches 100 GW / cm 2 in peak output, and two-photon absorption occurs remarkably, resulting in a few% absorption, that is, the exposure process of the resist.
  • the light reaction was able to proceed.
  • the photosensitivity of the resist is given by the square of the intensity distribution of the beam spot.
  • normal absorption does not occur because it is transparent to light with a wavelength of 269 nm. Only the two-photon absorption process occurs locally only at high intensity distributions.
  • a r F laser wavelength 1 9 3 nm
  • F 2 laser for fluorine ⁇ -based cash register be sampled of the current development in progress It is also possible to substitute with.
  • the beam width is made larger by using an anamorphic optical system for the beam expander 5 to make the spot shape expanded and elongated in the beam scanning direction.
  • the group pattern was exposed as a fine pattern.
  • the second harmonic (wavelength 4003) can be obtained by configuring the high-order harmonic generation means as shown in Fig. 5 in which the second harmonic generation and the sum frequency mixing unit are separated independently from each other. nm) can also be used as the exposure light source.
  • the photo resist used is, for example, a register for an ArF laser (eg, ZARF001 of Zeon Corporation) or a register for a KrF laser (eg, KRFM89, a JSR Corporation). It is desirable to use Y).
  • the two-photon absorption cross-section is a very small value
  • an organic dye having a high two-photon absorption cross-section added to the resist as a sensitizer should be used to increase the sensitivity of the resist. Can be.
  • the selection range of applicable photo registers is expanded.
  • the exposure light source 1 consisting of a T i: S apphire ultrashort pulse laser light source, the high-order harmonic generation means 2 using the ultrashort pulse laser as an excitation light source, and the output from these lights
  • a group correction optical system 4 having a negative group velocity dispersion that captures in advance the positive group velocity dispersion incurred when the applied pulse passes through various optical components
  • Modulating means 3 as a modulating means for performing light intensity modulation by switching at high speed with a corresponding electric pulse signal, and condensing the light modulated by this modulating means 3 to a spot size of diffraction limit.
  • a beam expander 5 and an objective lens 8a are provided as a condensing optical system 9 for irradiating the optical recording medium master 11 coated with the photo resist 12 with the photo resist 12.
  • the ultrashort pulse laser light source has a repetition frequency of 750 MHz, which is at least 10 times the clock frequency (66 MHz) of the Blu-ray Disc described above, a center wavelength of 816 nm, and a pulse width of A Ti: Sapphire laser with 80 fs and an average power of 1.5 W was used.
  • the second harmonic having a wavelength of 408 nm or the third harmonic having a wavelength of 272 m was generated using the high-order harmonic generation means 3 described with reference to FIG.
  • a type I phase-matched LBO crystal was used as the nonlinear optical crystal 20 of the second harmonic generation unit 26 shown in FIG.
  • Type I BBO was used for the nonlinear optical crystal 24 of the third harmonic generation unit 28.
  • the various lenses 19a to 19d are arranged to increase the beam intensity in the crystal and improve the conversion efficiency.
  • the second harmonic light has an average output of 2 O mW and a pulse width of 100 fs.
  • the third harmonic light has an average output of 4 mW and a pulse width (FWHM) of less than lps. I was able to.
  • a Brewster prism pair was used as the chirp correcting optical system 4 shown in FIG.
  • the light emitted from the chip capturing optical system 4 is reflected 90 ° by the mirror 1 a and sent to the light intensity modulation means 3.
  • the light intensity modulator 3 uses an electro-optical element EOM with a signal modulation band of 5 MHz, and the information recorded on the master optical recording medium via the input terminal generates an electrical pulse signal.
  • the light is supplied as a pit recording signal from a so-called formatter, and the light is modulated according to the recording information. .
  • the light thus modulated is reflected at 90 ° with a mirror lb as described above, and the beam expander 5, the focus detection control system 6, for example, a polarization beam splitter (PBS) 6a, 1Z4
  • the optical recording medium master is coated with the photo resist 12 beforehand through the objective lens 8a having a high aperture ratio NA. 1 Irradiate 1.
  • Examples of the photo resist 12 include an i-line resist (JSR Corporation PFRIXI 110 G, etc.) and a Kr laser mastering (Zeon Corporation DVR-100, etc.) ) Can be used.
  • the optical path of this light is also an optical path passing through each of the above-described optical elements, and is applied to the optical recording medium master 11.
  • Other configurations were the same as those in the first embodiment.
  • the laser beam formed in this way is rotated on a disk by a disk rotating mechanism, and at the same time, the optical system including the objective lens is moved from the center of the disk in the radial direction, thereby forming a spiral beam.
  • the photo resist By scanning the disk on a disk and exposing the photo resist, pits can be formed at high density.
  • a positive resist for g-line or i-line was used for the photo resist. Since the photosensitivity of the resist is photon mode recording, even in the case of ultrashort pulse light with a high repetition frequency, the photosensitivity is determined by the integrated amount of photons per unit area. According to the present invention, unlike the case of continuous light irradiation, there is almost no need to go through the thermal mode. That is, expansion and reaction rate change due to unnecessary temperature rise of the resist can be suppressed, and finer pits can be formed.
  • the center wavelength is 8 16 nm.
  • the T i: S apphire ultrashort pulse laser can oscillate from about 760 nm.
  • the same means as described above (center design wavelength) All of them need to be changed), and the second harmonic light of 380 nm and the third harmonic light of 253 nm can be used.
  • the efficiency is slightly reduced, it is necessary to increase the output of the green laser for excitation.
  • the use of fourth harmonic generation (around 200 nm wavelength) can be considered.
  • the average output is slightly lower, about several tens, but the laser power of the light source is reduced by lowering the scanning speed of the exposure light, that is, the rotation speed of the optical recording medium master. It is also possible to solve low problems.
  • the third harmonic generation means is described as an example of the high harmonic generation means.
  • the high harmonic generation means described in FIG. Since the wave generation section and the sum frequency mixing section are independently separated from each other, the second harmonic can be used as an exposure light source.
  • the conversion efficiency of the second harmonic generation is higher than that of the third harmonic generation, so that not only a high exposure power can be obtained with the same excitation laser power, but also that the wavelength of the laser light is in the visible light range. Because of this, various types of glass materials can be used, lens design is easy, and restrictions on optical elements are reduced.
  • the material and the configuration of the optical recording medium master exposure apparatus are exactly the same as those in the third embodiment, but in order to increase the laser power intensity of the higher-order harmonics, before each nonlinear optical crystal, The focal length of a certain condenser lens has been made shorter, and the beam spot diameter has been reduced to increase the wavelength conversion efficiency.
  • a T i: Sapphire ultrashort pulse laser with a repetition frequency of 75 MHz, a center wavelength of 816 nm, a pulse width of 80 fs, and an average output of 1.5 W was used as the exposure light source 1. .
  • Ultrashort pulse light with a wavelength of 272 nm and a pulse width of 1 s or less and a power of 1 fs or less, emitted from the third harmonic generation means, is applied to an ArF laser photo resist, for example, a fluororesin.
  • an ArF laser photo resist for example, a fluororesin.
  • the light intensity of Bimusupo' the bets on the registry surface spans 1 0 O GW / cm 2 in the peak output
  • the two-photon absorption is significantly Oko Ri few percent of absorption, i.e. the registration be sampled
  • the photoreaction which is an exposure process, proceeds.
  • the resist exposure is given by the square of the intensity distribution of the beam spot. That is, in this case as well, ordinary absorption does not occur in the resist because it is transparent to light having a wavelength of 272 nm, and only the two-photon absorption process occurs locally only in a portion where the intensity distribution is high. And in this case A r F laser (wavelength 1 9 3 nm) for registry (Nippon Zeon Co., Ltd., etc. ZARF 0 0 1) not only, is currently being developed F 2 laser fluororesin-based registry in progress It is also possible to substitute with.
  • the second harmonic (wavelength (0.33 nm) can be used as the exposure light source.
  • the photoresist to be used is, for example, a registry for an ArF laser (eg, ZARF001 of Zeon Corporation) or a registry for a KrF laser (eg, KRFM89Y of JSR Corporation). It is desirable to use it.
  • a dye obtained by adding an organic dye having a high two-photon absorption cross section to the resist as a sensitizer can be used.
  • the range of applicable photo-registers is expanded.
  • the repetition frequency of the ultrashort pulse laser is set to be at least 10 times the clock frequency of the recording information on the optical recording medium, so that the clock of the recording information on the optical recording medium is adjusted.
  • the deviation from the frequency was set to 1Z10 or less of the clock, and the jitter was suppressed to 10% or less.
  • the exposure is considered in consideration of the maximum output of the currently available ultrashort pulse laser light source and the clock frequency of various optical recording media under development as the upper limit. It is selected to be less than about 20 times the clock frequency of the optical recording medium to be used.
  • the T i: Sapphire ultrashort pulse laser is taken as an example of the light source means, but other various ultrashort pulse laser light sources may be used. it can.
  • an Nd: Vanadete ultrashort pulse laser can be pumped by a semiconductor laser, uses a semiconductor saturable absorption mirror (SES AM), has a center wavelength of 1064 nm, a pulse width of 7 ps, and an average output power of W Repetition frequencies from 25 MHz to 1 GHz are commercially available. One with a central wavelength of 917 nm is also available.
  • the laser medium Nd: YAG, Nd: YLF, or the like can be used.
  • Ultra-short pulse lasers using solid-state laser media such as Cr: Li SAF and Nd: G1ass have a pulse width of 100 fs or less, a center wavelength of 850 nm, and 1058 nm. is there.
  • high-order harmonic generation means include sum-frequency mixing, second-harmonic generation, and fourth-harmonic generation.
  • Non-linear crystal optical elements include KD P, KTP, LN and their periodic polarization in addition to BBO. inverting ⁇ ⁇ ⁇ ( ⁇ ⁇ ⁇ ⁇ ⁇ ) or PPLN, LBO, L i I 0 3, CBO Hitoshigaa Ru.
  • the present invention provides an exposure apparatus and an exposure apparatus for a disc-shaped optical recording medium master.
  • the method is not limited to the exposure method.
  • the ultrashort pulse laser light output from the exposure light source or the short wavelength output from the higher harmonic generation means using this as an excitation light source is used.
  • the exposure of the photo resist is performed by adjusting the pulse repetition frequency of the ultra-short pulse laser beam to an integer multiple of 1 to 20 times the clock frequency of the information signal to be recorded on the optical recording medium.
  • the pulse width of the ultrashort pulse laser is 1 XI 0 to 12 seconds or less, the two-photon absorption process can be generated more efficiently, and the finer than the diffraction limit of the wavelength of the exposure light source can be obtained. It enables the formation of accurate pits.
  • a signal of a pattern extending in the running direction of a group or the like is also excellent. Pattern exposure can be performed with the shape.
  • an ultrashort pulse laser beam output from an exposure light source or an ultrashort pulse laser beam having a short wavelength output from a high-order harmonic generation means using the same as an excitation light source is used to reduce the repetition frequency.
  • the frequency should be 10 times or more and 20 times or less the clock frequency of the recorded information, modulated by the modulation means that modulates the light intensity, collected by the condensing optical system to the spot size of the diffraction limit, and photo-registered By performing this exposure, it is possible to perform finer pattern exposure than before.
  • a two-photon absorption process is generated, and further, by using an ultrashort pulse laser having a shorter wavelength by means of high-order harmonic generation means, a fine pattern of 0.25 ⁇ or less can be precisely formed. Exposure is good.
  • the two-photon absorption process can be generated more efficiently by setting the pulse width of the ultrashort pulse laser to 1 XI 0 to 12 seconds or less.
  • the diffraction limit of the wavelength of the exposure light source The following finer pits can be formed.
  • a field optical system is adopted instead of a 2-field optical system using a high numerical aperture SIL as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

露光光源1からの光を記録情報に対応する光強度変調を行う変調手段3と、この変調手段3で変調された光を光記録媒体原盤11上のフォトレジスト12上に集光する集光光学系9とが設けられて、フォトレジスト12を記録情報に応じてパターン露光する光記録媒体原盤露光装置であって、露光光源1が、記録情報のクロック周波数の1倍以上20倍以下の整数倍の繰り返し周波数の超短パルスレーザよりなり、この超短パルスレーザの共振器長を可変として、超短パルスレーザの繰り返し周波数をクロック周波数に同期してモードロックし、パルス発振させる外部同期機構を設けることにより、微細なピットを高精度に形成する。

Description

光記録媒体原盤露光装置及び光記録媒体原盤の露光方法 技術分野
本発明は、 露光光源からの光をフォ ト レジス トが塗布された光 記録媒体原盤上に照射するこ とによ り記録情報に対応するパター ン露光を行う光記録媒体原盤露光装置及び光記録媒体原盤の露光 方法に関する。 糸田
背景技術
C D (Compact Disc)、 M D (Mini Disc) 、 D V D (Digital Versatile Disc)等の各種光ディスク、 光磁気ディスクなどの光記 録媒体を製造する際の光記録媒体原盤は、 例えば円盤状の原盤用 基板上にフォ ト レジス トが被着され、 その表面に記録情報に対応 する凹凸パターンが露光及び現像によ り形成され、 即ちいわゆる カツティ ングされて形成される。
このカツティ ングを行うマスタ リ ング装置、 すなわち光記録媒 体原盤露光装置は、 露光光源から出射される波長が 4 0 0 n m前 後のレーザ光、 例えば K r レーザ ( λ = 4 1 3 n m) や A r レー ザ ( λ = 3 5 1 n m) 等の紫外波長域の連続発振固体レーザ光源 を用いて対物レンズを介してレジス トが塗布された原盤上に回折 限界の微小スポッ トに絞り込んで照射することによって露光処理 を行っている。
上述したよ う な各種の光記録媒体は、 その記録容量を高めるた めの高密度化に伴ってピッ トまたはグループの加工寸法を微細化 することが求められている。 ところが、 このピッ トの加工寸法と して 0 . 2 5 w m以下の寸法が要求されるよ う になると、 上述し た光記録媒体原盤露光装置で使用する気体レーザの波長では集光 レンズの開口数 NAを 1 に近いレンズにしてもレーザ光を十分に 絞り込むこ とができなく なる。 このため、 現状では光記録媒体原 盤の作成において 0. 2 5 / m以下の寸法に精度良く加工するこ とが極めて困難である。
例えば、 微細パターンを加工する技術と して、 波長 5 3 2 n m の半導体レーザ励起高出力グリーン レーザを励起光源と して外部 共振器構造の第 2高調波発生装置を用いて波長 2 6 6 n mの紫外 レーザ光を発生し、 ビームスポッ トサイズと しては開口数 NA = 0. 9の無収差対物レンズを用いて 0. 3 6 μ παのエアリースポ ッ トを得た例が報告されている (例えば、 特開平 7 _ 9 8 8 9 1 号公報参照。)。
近年、 光デイ スクの高密度化の傾向はさ らに加速し、 現在はよ り微小なピッ ト の形成、 例えば 、 0 • 2 μ m以下が必須となり、 よ り短波長の光源が求められている o 光記録媒体原盤露光装置に 利用可能な安定性 、 低ノイズ、 ビ ム品質を有する連続発振のレ 一ザ光源と しては 、 ァノレゴンガスレ一ザの共振器内に B a B 2 04
( Β Β Ο ) 等の非線形光学結晶が am
置された D e e p U V発振 水冷アルゴンガスレーザ (波長 2 2 9 n mで出力 4 0 mW、 波長
2 3 8 n mで出力 1 0 0 m Wが得られる) が市販されている。 し かしながら 、 波長比は 2 2 9 / 2 6 6 = 0. 8 6であり、 0. 2 μ m以下の分解能を得る為には 、 よ り高 NAの対物レンズなどを 併用する必要がある。 かつ、 多量の冷却水を用いるこ とから、 組 み込みの機器内での振動を回避する対策を要する不便さもある。
さ らに高 N Aの光学系と してヽ N A > 1 のソ リ ッ ドィマージョ ンレンズ ( S I L ) を用いた二ァフィ一ルド光学系を利用する手 段の技術検討がなされている。 しかしながら、 ワーキングデイ ス タンスは 1 0 0 n m以下、 例えば数 1 0 n mと非常に狭く 、 埃や 塵の混入や 、 光 nd録媒体原盤の 面平滑性等に十分に注意しなけ ればならず、 光記録媒体原盤の回転数もあま り高く上げることが できないという問題がある。
別の高分解能化の手段と して最近では電子ビーム露光装置を用 いた微小ピッ ト加工法が提案されている (例えば、 特許第 3 2 3 3 6 5 0号公報参照。)。
しかしながら電子ビームを用いる方法では、 真空装置を.必要と し、 ガラス原盤の高精度高回転機構を真空中で有するなど大掛か り な装置になる。
一方、 近年、 負の群速度分散を有するチヤープ補正誘電体ミ ラ 一が開発されたこ とから、 プリ ズムペアやグレーティ ングペアを 用いることなく 、 非常にコ ンパク トな構成でカーレンズモー ド口 ック方式の高繰り返し周波数を実現した T i : S a p p h i r e (チタニウム · サファイア) よ り なる超短パルス レーザ光源がい く つか実用化されている。
この超短パルス レーザ光源の繰り返し周波数 Rは共振器長 で 決ま り、 定在波型 (例えば Z字型の光路の場合) では R= c Z 2 L ( c : 光速)、 また進行波型 (例えばリ ング型の光路の場合) で は R - c / Lで与えられる。
一例と して、 2 G H Z の高繰り返し周波数での発振器が実用化 された例が報告されている。 例えば 2 G H z の繰り返し周波数.を 得たい時には、リ ング型の場合で共振器長 Lは 1 5 c mとなる(例 えば河田聡編、 日本分光学会測定法シリーズ 38「超解像の光学」、 学会出版センター、 1999年 3月 20 日、 第 79頁参照。)。
この T i : S a p p h i r e超短パルス レーザ光源は、 半導体 レーザ励起高出力グリーン レーザで励起され、中心波長 7 6 0 n mから 8 4 0 n mの間、 たとえば 8 0 0 n mでパルス発振し、 平 均出力 1 W、 パルス幅 ( FWHM : Full Width at Half Maximum, 半値全幅) 力 1 0 0 f s ( 1 0 0 X 1 0 15秒) 以下、 例えば 2 3 f s のものが安定に得られる。 ビームの横モー ドは T E M 00でノ ィ ズも 0 . 1 %以下の優れた性能を有する。 さ ら に、 例えば Spectra Physics 社の Tsunami シ リ ーズ、 Coherent社の Mira シ リーズなど、 繰り返し周波数 8 0 M H z でパルス幅 ( F W H M ) 1 0 0 f s以下、 平均出力 1 W以上のものが実用化されている。 またこ のよ う な超短パルス レーザ光源を用いて 2光子吸収過程 を発生させ、 非線形光学効果を利用した超解像特性による回折限 界よ り も微細なパターンを形成するこ とが報告されている (例え ば、 河田聡編、 日本分光学会測定法シリ ーズ 38「超解像の光学」、 学会出版センター、 1999年 3月 20 日、 第 79頁、 及ぴ S. Kawata et a丄: Fine features for functional microdevices , Nature , 2001, Vol.412, p.697参照。)。
上記文献においては、 波長 7 8 0 n m、 繰り返し周波数 7 6 M H z 、 パルス幅 1 0 0 f s の レーザ、 開口数 N A 1 . 4 の対物レ ンズを用いて、 幅 1 2 0 n mの ドッ ト状パターンを形成した例が 報告されている。
しかしながら、現状では光記録媒体用の記録情報の変調信号を、 2光子吸収過程を利用してパターン露光によ り レジス ト上に形成 し、光記録媒体原盤の露光に利用する技術は実現化されていない。 本発明は、 上述したよ う な実情に鑑みてなされたものであり、 微細なピッ トを高精度に形成でき、 生産性を大幅に向上させるこ とができる光記録媒体原盤露光装置及び光記録媒体の露光方法の 提供を目的とする。 発明の開示
本発明は、 露光光源からの光を記録情報に対応する光強度変調 を行う変調手段と、 この変調手段で変調された光を光記録媒体原 盤上のフォ ト レジス ト上に集光する集光光学系とを設けて、 フォ ト レジス トを記録情報に応じてパターン露光する光記録媒体原盤 露光装置であって、 露光光源を、 記録情報のクロ ック周波数の 1 倍以上 2 0倍以下の整数倍の繰り返し周波数の超短パルス レーザ よ り構成し、 この超短パルス レーザの共振器長を可変と して、 超 短パルス レーザの繰り返し周波数を記録情報のクロ ック周波数に 同期してモー ドロ ック し、 パルス発振させる外部同期機構を設け る構成とする。
また本発明は、 上述の光記録媒体原盤露光装置において、 露光 光源と変調手段との間に、 超短パルス レーザ光源を励起光源と し て非線形光学素子を用いた波長変換によって短波長化された光を 出射する高次高調波発生手段を設ける構成とする。
また更に本発明は、 露光光源からの光を記録情報に対応して光 強度変調を行い、 この変調手段で変調された光を光記録媒体原盤 上のフォ ト レジス ト上に集光して、 フォ ト レジス トを記録情報に 応じてパターン露光する光記録媒体原盤の露光方法であって、 露 光光源を、 記録情報のクロ ック周波数の 1倍以上 2 0倍以下の整 数倍の繰り返し周波数の超短パルス レーザよ り構成し、 こ の超短 パルス レーザの共振器長を可変とする外部同期機構を設け、 超短 パルスレーザの繰り返し周波数をク 口 ック周波数に同期してモー ドロ ック し、 パルス発振させる。
また本発明に係る光記録媒体原盤露光装置は、 露光光源からの 光を記録情報に対応する光強度変調を行う変調手段と、 この変調 手段で変調された光を光記録媒体原盤上のフォ ト レジス ト上に集 光する集光光学系とを設けて、 フォ ト レジス トを記録情報に応じ てパターン露光する光記録媒体原盤露光装置にあって、 露光光源 を、 記録情報のクロ ック周波数の 1 0倍以上 2 0倍以下の繰り返 し周波数の超短パルス レーザよ り構成する。
更に本発明は、 上述の構成において、 露光光源と変調手段との 間に、 超短パルス レーザ光源を励起光源と して非線形光学素子を 用いた波長変換によって短波長化された光を出射する高次高調波 発生手段を設ける構成とする。
また本発明は、 露光光源からの光を記録情報に対応して光強度 変調を行い、 変調手段で変調された光を光記録媒体原盤上のフォ ト レジス ト上に集光して、 フォ ト レジス トを記録情報に応じてパ ターン露光する光記録媒体原盤の露光方法であって、露光光源を、 記録情報のクロ ック周波数の 1 0倍以上 2 0倍以下の繰り返し周 波数の超短パルス レーザとする。
更にまた本発明は、 上述の各光記録媒体原盤の露光方法におい て、 露光光源から出射された光を、 この露光光源を励起光源と し た高次高調波発生手段によって、 非線形光学素子を用いた波長変 換によつて,短波長化して出射させる。
上述したよ う に、 一の本発明は、 露光光源と して超短パルス レ 一ザ光源を用いる と ともに、 その繰り返し周波数を、 記録情報の ク ロ ッ ク周波数の 1倍以上 2 0倍以下の整数倍と し、 かつ、 こ の 超短パルス レーザの共振器長を可変とする外部同期機構を設ける ものである。
光ディスクの記録情報信号のクロ ック周波数は、 C Dの場合 4. 3 MH z、 D V Dの場合 2 6 MH z である。 また近年高密度ディ スク と して注目 され、 再生光の波長 λが 4 0 5 n m、 対物レンズ の開口数 NAが 0. 8 5 と されて開発が進められているいわゆる Blu-ray Disc の場合で 6 6 M H z である 0 例えば Blu-ray Disc の場合 6 6 MH z であるから、 超短パルスレーザの繰り返し周波 数とほぼ同程度である為、 情報データ信号と レーザのパルス発振 のタイ ミ ングを合わせる必要がある。
本発明においては露光光源と して用いる超短パルス レーザ光源 の共振器長を調整する外部同期機構を設け、 これによ り共振器長 の調整を行い、 繰り返し周波数がチャンネルクロ ックの 1以上 2 0以下の整数倍すなわち 1倍、 2倍、 3倍 ·· ·· 2 0倍となるよ う にする。
このよ う にして同期させるこ とによって、 超短パルス レーザ光 源からの光を露光光源と して、 C D、 D V D、 Blu-ray Disc など の各種光記録媒体に記録する情報信号に同期したパターン露光を 確実に行う ことができる。
一方、 上述した他の本発明は、 光記録媒体原盤露光装置の露光 光源と して超短パルス レーザ光源を用いる と共に、その周波数を、 記録情報のクロ ック周波数の 1 0倍以上 2 0倍以下の繰り返し周 波数とするものである。
光記録媒体の記録情報信号のク口 ックは、 上述したよ う に C D の場合 4. 3 MH z、 D V Dの場合 2 6 MH z 、また Blu- ray Disc の場合で 6 6 MH zである。 これら周波数の 1 0倍程度以上の高 繰り返し周波数で発振する超短パルス レーザ光を用いれば、 光記 録媒体の情報信号記録の際に、 パルス間隔を信号の間隔に比して 十分小さ くするこ とができるこ とから、 各パルスは積分平均化さ れ、 またピッ ト信号などのパターンのずれを再生信号に影響を与 えるこ となく抑制することができることから、 従来技術の連続発 振光と同様に扱う ことができ、 再生時の信号ジッター値を 1 0 % 以下にすることができる。
この場合、 外部同期機構などによってパルス レーザ光と記録情 報のクロ ック信号等を同期させる必要がなく 、 装置構成の複雑化 を回避するこ とができる。
またこのとき、 繰り返し周波数を 2 0倍以下とするこ とによつ て、 超短パルス レーザ光の尖頭出力を微細なパターン露光を行う に十分な出力に保持することができて、 従来に比し微細なパター ン露光を精度良く行う ことができる。 上述の光記録媒体のう ち最も周波数の高い B lu- ray D i s cの場合 を例にと ると、 6 6 X I 0 = 6 6 O M H z以上の高繰り返し周波 数で発振する超短パルス レーザを用いればよいことになる。
つま り、 このよ う にクロ ック周波数の 1 0倍以上の繰り返し周 波数とする場合は、 非常に高い繰り返し周波数でパルス発振して いる為、 従来方法の連続発振レーザ光を用いる場合と同様に情報 記録信号の光変調器とのタイ ミ ングを精度良く調整することなく 露光することが可能となる という利点を有する。
尚、 光記録媒体のク口 ック周波数が上述の Blu-ray Disc よ り も更に高く なる場合、 超短パルス レーザの繰り返し周波数を 1 0 倍以上とする と尖頭出力が十分得られなく なる恐れがある。 尖頭 出力が十分でないと後述する 2光子吸収過程を起こ しにく く なつ て、 目的とする微小なスポッ ト径による露光を行い難く なる恐れ もある。
この場合においては、 前述したよ う に外部同期機構を設けて、 超短パルス レーザの繰り返し周波数を光記録媒体のク口 ック周波 数の 1倍以上 1 0倍以下の整数倍と して、 クロ ック信号に同期さ せる構成とするこ とが望ましい。
また、上述の各本発明において、露光光源と変調手段との間に、 高次高調波発生手段を設け、 超短パルス レーザ光源を励起光源と して非線形光学素子を用いた波長変換によって短波長化された光 を出射させることによって、 よ り短波長の露光光源を得るこ とが できる。
このよ う に本発明に係る光記録媒体原盤露光装置及び光記録媒 体原盤露光方法によれば、 擬似的に連続光と同等にみなせる繰り 返し周波数の高い超短パルス レーザ光を出射する露光光源、 また はこれを励起手段とする高次高調波発生手段によ り短波長化され た超短パルス レーザ光を出射して、 光強度変調手段で変調された 光を所定の集光光学系によ り回折限界のスポッ トサイズに集光し てフォ ト レジス トに照射することによって、 従来と比較して微細 なパターンのピッ トなどの凹凸パターンの露光を行う こ とができ る。
さ らに本発明は、 上述の光記録媒体原盤露光装置または光記録 媒体原盤の露光方法において、 フォ ト レジス ト の露光を、 2光子 吸収過程によってなされるこ と とする。 尖頭出力 (ピーク出力) が非常に高い超短パルス レーザ光源を露光光源と して用い、 かつ 集光光学系によってビームを集光するこ とによ り 、 レジス ト内で は 2光子吸収過程が非常に効率的に起こる。 例えば繰り返し周波 数が 1 G H z で、 対物レンズ出射後のレーザの平均パワーが 1 0 mWである時、 フォ ト レジス トの表面上のビームスポッ ト内の光 強度は尖頭出力にして 1 0 O GW/ c m2 に及ぶ。
2光子吸収過程は非線形光学現象の一つであり、 レジス トの露 光は、ビームスポッ トの強度分布の 2乗で与えられることになる。 レ ジス ト の 2 光子吸収断面積は 1 0 — 46 〜 1 0 — 47 c m 4 s / photon程度と小さな値であり、 レジス ト の感度は低いが、 数%の 吸収が起こる。
このよ う に高効率で 2光子吸収を起こす為には超短パルス レー ザ光の尖頭出力が高く なければならない。
本発明においては、 高繰り返し周波数のパルス発振を用いる と 共に、 そのパルス幅 ( FWHM) を少なく とも l p s ( 1 X 1 0 一12秒) 以下とするものであるが、 こ のよ う にパルス幅を規定する こ とによって、 効率よく 2光子吸収を起こすこ とができた。
レジス ト の露光の過程で、 レジス ト面内における光源の光の吸 収分布は、 通常の吸収の場合、 ビーム強度分布に比例し、 2光子 吸収の場合はビーム強度分布の 2乗に比例する。 光の吸収分布を 図 5 に示す。 図 5 において、 I はビーム強度分布を示し、 通常の 吸収の場合に相当する。 I 2 はビーム強度分布の 2乗を示し、 2 光子吸収の場合に対応する。 エアリースポッ ト径 dは、
d = l . 2 2 λ / N A
となる。 対物レンズの開口数 N Aが、 N A = 0 . 9、 波長え = 2 6 7 n mの時、 スポッ トサイズは 0 . 3 6 μ πιであるが、 2光子吸 収の場合、 ほぼ 1 Ζ 2 = 0 . 7倍のビームスポッ ト、 即ち、 波 長 1 9 0 n mの露光光源を用いた通常の露光時のビームスポッ ト サイズに相当する。 これによ り、 記録線密度は 1光子の (通常の) 露光の場合の約 1 . 4倍になる。
また、 本発明は、 上述の各光記録媒体原盤露光装置及び光記録 媒体原盤の露光方法において、 集光光学系から出射され、 フォ ト レジス トに集光されたレーザ光のスポッ ト形状を、 レーザ光の走 査方向に延在する長円状とするものである。
例えばグループなどの線状のパターンを露光する為には、 パル ス間隔 (繰り返し周波数の逆数)、 走査速度 (円盤状の光記録媒体 原盤の場合線速) がレジス トの感度に合わせ最適化されなければ ならない。 と ころが、 パルス間隔はチャ ンネルク ロ ッ クによって 一義的に固定されているので、 線状のパターンを露光するのは難 しい。
上述の本発明によれば、 集光光学系から出射されレジス トに集 光されたビームスポッ トをビーム走査方向に長円化しているこ と から、 照射される光量分布が拡がり平均化されて、 グループなど の線状のパターンが容易に得られること となる。
更にまた本発明においては、 フォ ト レジス ト の吸収ピーク波長 を露光光源の波長の半分以下とする。
このよ う に、 フォ ト レジス ト と して露光光源の波長域では透明 で、 その半分の波長において吸収を有するよ うな材料を用いるこ とによって、 通常の吸収 ( 1光子吸収) を効率よく抑制するこ と ができ る。
2光子吸収では光子を 2個同時吸収し 、 光子 1個の挎っェネル ギ一の 2倍のエネルギ一だけ上の準位にレジス トの電子を遷移さ せる。 吸収スぺク 卜ルで言えば露光光源の波長の半分の波長の光
( 1光子) で励起する場合に相当するこ とから、 2光子吸収用の レジス トは吸収ピ一ク波長を露光光源の波長の半分以下とするこ とによ り、 効率よ < 2光子吸収を発生させ、 よ り微細なパターン 露光を行う ことがでさ 0
このよ う に、 本発明においては、 超 パルス レーザを露光光源 と して用いて、 さ らに集光光学系でビ一ムを回折限界まで絞るこ とから、 高効率に 2光子吸収を行わせるこ とができること と、 2 光子吸収過程によ り レジス トの感光はビ一ムスポッ ト の強度分布 の 2乗で与えられるこ とになり、 非線形効果を利用した超解像特 性を有するこ とになり 、 回折限界よ り さ らに微細なよ り小さな ピッ トの記録が可能になる。 図面の簡単な説明
図 1 は 、 本発明に係る光記録媒体原盤露光装置の一例の模式的 構成図であり、 図 2 Aは 短パルス レーザ光のパルス波形の一例 の説明図であり 、 図 2 Bは情報信号の波形及ぴ超短パルス レーザ 光のパルス波形の一例の 明図であり、 図 2 Cはクロ ック信号の パルス波形の一例の説明図であり、 図 3は外部同期機構の説明図 であり、 図 4 Aは超 パルス レーザ光のパルス波形の一例の説明 図であり 、 図 4 Bは情報信号の波形及び超短パルス レーザ光のパ ルス波形の一例の説明図であり、 図 4 Cはクロ ック信号のパルス 波形の一例の説明図であり 、 図 5は高次高調波発生手段の一例の 模式的構成図であり、 図 6 はフォ ト レジス ト におけるエア リ ース ポッ トの吸収量を示す図でめる。 発明を実施するための最良の形態
以下、 本発明に係る光ディスク原盤露光装置の一実施の形態に ついて、 図面を参照しながら説明する。
図 1 に、 本発明による光記録媒体原盤の露光装置の一例の模式 的な構成図を示す。 この例においては、 露光光源 1 からの光を記 録情報に対応する光強度変調を行う変調手段 3 と、 この変調手段 3で変調された光を、 図示の例ではデイスク状の光記録媒体原盤 1 1上のフォ ト レジス ト 1 2上に集光する集光光学系 9 とを設け て、 フォ ト レジス ト 1 2 を記録情報に応じてパターン露光するも のである。
図 1 に示すよ う に、 露光光源 1 から出射されたパルス レーザ光 は、 後段で詳細に説明する高次高調波発生手段 2、 更にチヤープ 補正光学系 4 を介してミ ラー l aで反射され、 変調手段 3 を経て ミ ラー l bで反射されて、 ビームエキスパンダ 5 を介して集光光 学系 9 に導かれる。 この集光光学系 9において、 レーザ光は、 後 段の実施例においてその一例を詳細に説明するオー ト フォーカス 光学系 6 を介して、 1 / 4波長板 7 を通過し、 更にミ ラー 1 c に よ り反射されて、 電磁ァクチユエータ 8 b及ぴ 8 c によ り光記録 媒体原盤 1 1 からの距離を精度良く調整された対物レンズ 8 a を 介して、 光記録媒体原盤 1 1上の例えば所定の記録トラック位置 上に照射される。 また、 光記録媒体原盤 1 1 は、 載置台 1 0に固 定される。 載置台 1 0は、 この例では回転手段 1 4によ り矢印 a で示すよ う に回転されて、 また集光光学系 9が、 図示しないが例 えば移動光学テーブル上に配置されることによって光記録媒体原 盤 1 1 の半径方向に移動するよ う になされて、 光記録媒体原盤上 の全面にわたって、露光用光が照射され得るよ う になされている。
そして本発明においては、 露光光源 1 を、 記録情報のクロ ック 周波数の 1倍以上 2 0倍以下の整数倍の繰り返し周波数の超短パ ルス レーザよ り構成する。
この超短パルス レーザ光源によるパルス信号の模式的な波形を 図 2 Aに、 またパルス信号を上述の変調手段 3 によって、 記録情 報の信号波形 Sに重畳させた状態の模式的な波形を図 2 B示す。 図 2 Aに示すよ う に、 パルス Pの間隔を適切に選定して、 その周 波数を図 2 Cに示す記録情報のクロ ック信号 Cの 1倍以上 2 0倍 以下の整数倍 、 図示の例では 1倍の周波数と して 、 図 2 Bに示す よ つ に、 記録情報の信号 sに重畳させる。 図 2 Bにおいては、 パ ルス波形を破線 P ' と して示す。 これによ りヽ 記録情報と同期し た露光を行つて、 記録情報に対応してフォ ト レジス トの/ ターン 露光を行う ことができる。
こ のよ う に 、 露光光源の超短パルス レーザの繰り返し周波数を 記録情報のクロ ック周波数の整数倍に合わせるために、 本発明に おいては例えば図 3 に示す外部同期機構を設ける 。図 3において、
3 0 は例えば T i : S a p p h i r e を利用した超短ノ /レスレ— ザ光源、 5 0は外部同期機構を示す。
まず、 超短パルス レーザ光源 3 0 には、 半導体レーザ (図示せ ず) 等の励起光 L i O がレンズ 3 1 、 球面ミ ラー 3 2 を介して T i : S a p p h i r e等のレーザ媒質 3 4に入射される。 レーザ 媒質 3 4から出射された光は球面ミ ラー 3 3に反射され、 さ らに 高反射ミ ラー 3 5 に反射された後分散補償プリ ズム 3 6 a及び 3 6 b に入射される。 そしてス リ ッ ト 3 7を介して高反射ミ ラー 3 8 によって反射される。 そして再ぴス リ ッ ト 3 7 を通過して、 分 散捕償プリ ズム 3 6 b及ぴ 3 6 a、 高反射ミ ラー 3 5、 球面ミ ラ 一 3 3 を介してレーザ媒質 3 4 に戻される。 露光用光と しては、 レーザ媒質 3 4から球面ミ ラー 3 2に戻った光を出力窓 (出力力 プラー) 3 9、 ビームスプリ ッタ 4 0 を介して出射光 L i 2 と し て外部に取り 出す。
そして本発明においては、 ビームスプリ ッタ 4 0で一部の出力 光を高速のフォ トダイオー ド等よ り なる光検出器 4 1 で検出する。 そして、 この光検出器 4 1 からの出力、 すなわちレーザパルス発 振による電気信号と、 光記録媒体に記録する情報信号出力装置の クロ ック信号発生器 4 2の出力とを位相検出器 4 3で位相比較す る。 ここで、 クロ ック信号の 2以上の整数倍とする場合は、 クロ ック信号発生器 4 2の信号の整数倍のクロ ック信号との位相比較 を行う。そして、位相検出器 4 3から出力した信号を P L L (Phase Lock Loop) 回路等よ り なる制御部 4 4に入力して、 所定の制御量 に変換した制御信号を、 ピエゾ駆動部 4 5 に入力して 、 刖述の咼 反射ミ ラー 3 8 に固定したピェゾ素子 4 6 を光軸方向に微小移動 させて 、 レーザ共振器の共振器長を微調整するこ とができる。 な お、 の例における共振器長は、 球面ミ ラ — 3 2から高反射ミ ラ 一 3 8にいたる光路の長さ となる。
このよ うな構成とすることによって、 記録情報のクロック信号 と レーザの発振パルス と の間のジッターは 1 p s以下にするこ と ができる。
そして情報記録信号の光変調器駆動信号も、 クロ ック信号に同 期して送信されるので、 超短パルス レーザのパルス発振とはタイ ミ ングが取れるこ と となる。 超短パルス レーザ光源の繰り返し周 波数をク ロ ック信号の 1倍、 すなわち同期させる場合、 フオ ト レ ジス トには例えば( 1, 7 )変調コー ドを用いて記録される時は、 2 T最短ピッ トには 2 パルスが照射される。 もしクロ ック信号の 2倍の周波数、 前述の Blu- ray Discの場合 1 3 2 M H z に外部同 期させる ときは、 共振器長1 を 1^ = £:ノ 2 し = 1 1 3 6 111111 ( c は光速) となるよ う に超短パルス レーザ装置内の光学系を配置す ればよく 、 2 T最短ピッ トには 4パルスが照射されることになる。 尚、 超短パルス レーザの繰り返し周波数をクロ ック周波数の 1 0倍以上とする ときは、 前述したよ う にジッターを 1 0 %以内に 抑えられるため、 外部同期機構を設けて整数倍と しなくてもよい が、 よ り確実にジッターを抑えるためには、 外部同期機構を設け て整数倍と してもよいことはレヽうまでもない。
また用いる超短パルスレーザの出力によるが、 2光子吸収等多 光子吸収の発生に必要な尖頭出力値を得るためには、 8倍以下の 整数倍とするこ とが望ましい。
特に、 上述の Blu-ray Disc、 或いはそれ以上の高いクロ ック周 波数の光記録媒体に適用する場合は、 4倍以下の整数倍とするこ とが望ましい。
更に、ク ロ ック周波数の 1 〜 4倍の整数倍とする場合において、 1記録マーク内のパルス数が少なく なり、 ジッターが問題となる 恐れがある場合は、 前述の図 2 Bにおいて示すよ うな矩形波状の 記録ではなく 、 1記録マーク内で部分的にレーザ出力を調整する いわゆる記録捕償を行う こ とによ り 、 光量の積算値の分布を微調 整し、 形成されるピッ ト の形状を補正するこ とができて、 これに よ り タイ ミ ングジッター等の低下を抑制するこ とができる。
また他の本発明においては、 上述の図 1 に示す光記録媒体原盤 露光装置において、 露光光源 1 を、 記録情報のクロ ック周波数の 1 0倍以上 2 0倍以下の繰り返し周波数の超短パルス レーザよ り 構成する。
この超短パルス レーザ光源によるパルス信号の模式的な波形を 図 4 Aに、 またパルス信号を上述の変調手段 3によって、 記録情 報の信号波形 Sに重畳させた状態の模式的な波形を図 4 B示す。 図 4 Aに示すよ う に、 パルス p の間隔 p t を適切に選定して、 図 2 Cに示す記録情報のクロ ック信号 Cの 1 0倍以上の周波数と し て、 図 4 Bに示すよ う に、 記録情報の信号に重畳させる。 これに よ り、 擬似的に連続光と見なせる露光を行って、 記録情報に対応 してフォ ト レジス トのパターン露光を行う こ とができ る。 図 4 A におレヽて p w はパノレス幅である。
なお、 レーザ発振の繰り返し周波数を高く して行く と、 平均出 力は同じでもパルスの尖頭出力が低下してしま う為、 後段の高次 高調波発生やレジス トの 2光子吸収の効率が低下してしま う ので、 超短パルス レーザ光源の繰り返し周波数は、 クロ ック信号の周波 数の 2 0倍以下とする。
また本発明は、 上述の構成において、 +露光光源 1 と変調手段 3 と の間に、 図 1 に示すよ う に、 超短パルス レーザ光源を励起光源 と して非線形光学素子を用いた波長変換によって短波長化された 光を出射する高次高調波発生手段 2 を設ける構成とする。
この高次高調波発生手段 2の一例の模式的な構成を図 5 に示す。 図 5 において、 2 6 は第 2高調波 ( S H G) 発生部、 2 7はデ ィ レーライ ンユニッ ト、 2 8 は第 3高調波 (T H G) 発生部をそ れぞれ示す。 第 2高調波発生部 2 6 に入射された光 L i は、 集光 用レンズ 1 9 a を介して非線形光学結晶 2 0に入射し、 集光レン ズ 1 9 b を介してハーモニックセパレータ 2 1 aで反射されて L 2-1 と して取り 出される力 、 またはこのハーモニックセパレータ 2 1 a を設けない場合はディ レーライ ンュニッ ト 2 7 に入射され る。
ディ レーラインュニッ ト 2 7に入射された光は、 ハーモニック セパ レータ 2 l b によ り基本波 L 1 と第 2高調波 L 2-2 とに分割 される。 基本波はミ ラー 2 2 a、 2 2 b によ り反射されて第 3高 調波発生部 2 8 に入射され、 第 2高調波 L 2- 2 は、 1 / 2波長板 2 3 を介してミ ラー 2 2 c、 2 2 d、 2 1 c によ り反射されて第 3高調波発生部 2 8 に入射される。
例 X. ば 、 F. Rotermund, et al: Generation of the fourth harmonic of a femtosecond Ti - Sapphire laser" Optics Letters, July 1, 1998, Vol.23, No.13, pi 040 ίこあるよ う ίこ、 前述の 中心波長力 S 8 0 0 n mの T i : S a p p h i r e超短パルス レー ザ(く り返し周波数 8 2 MH z 、 パルス幅 8 5 f s 、平均出力 1 . 9 W) を用い、 非線形光学結晶 L i B 3 O 5 ( L B O ) のタィプ I のク リ ティカル位相整合を用いた第 2高調波発生 ( S H G ) 装置 を用いるこ とで、 中心波長が 4 0 0 n m、 パルス幅は群速度分散 によ り多少拡がるが例えば 1 0 0 f s 、 平均出力 6 0 0 m Wの超 短パルス レーザ光を得るこ とができる。
第 2高調波発生においてタイプ I の位相整合を用いる場合は、 基本波と第 2高調波の偏光面は 9 0 ° 回転している為、 例えば図 5 に一例を示すよ う に、 タイプ I の位相整合を用いる第 2 の非線 形光学結晶 2 4に入射する前に基本波 L 1 に揃える 1 / 2波長板 2 3 を設けるこ と によって、 第 2高調波 L 2-2 の偏光面を基本波 に合わせるこ とができる。
また、 第 1 の非線形光学結晶 2 0内での波長分散によ り、 基本 波 L 1 に遅れて第 2高調波 L 2-2 が出射する為、 上述のディ レー ライ ンュニッ ト 2 7 によって、 第 2 の非線形光学結晶 2 4 に入射 する前に基本波 L 1 を遅延させる。 遅延させる手段はハーモニッ クセパレータ 2 l b によって両波を分離し、 基本波 L 1 の光路長 のみを遅延時間に相当する長さだけ長く して再び合波することに よ っ て な さ れ る 。 ( C. Rul丄 lere ed. Femtosecond Laser Pulses , Springer, p.170参照
そして図 5 に示すよ う に、 第 3高調波発生部 2 8 において、 合 波を非線形光学結晶 2 4に入射させて、 和周波混合によ り第 3次 高調波 L 3 を外部に出射させる。 1 9 c及び 1 9 dは集光レンズ、 2 I dはミ ラー、 2 5はビームス ト ッパ、 L o は不要光を示す。 なお、 各レンズ 1 9 a 〜 1 9 dは、 結晶内でのビーム強度を高 く し、 変換効率を向上させる為に配置されている。
超短パルス レーザ光の場合尖頭出力は非常に高く、 2次の非線 形光学現象である第 2高調波発生はレーザの強度に比例してその 変換効率が大きく なるので、 シングルパス、 則ち非線形光学結晶 を 1 回通過する光路設定でも、 高い効率が得られる。 伹し、 例え ば 1 0 0 f s以下の超短パルス レーザを用いた高次高調波発生の 場合、 非線形光学結晶の群速度分散がある為、 結晶が厚いと群速 度不整合が生じ、 有効な波長変換が行われない。 例えば L B Oの 結晶長は、パルス幅が 1 0 0 f s 、中心波長が 8 0 0 n mの場合、 1 . 5 mni以下とする必要がある。
さ らに上述の第 3高調波発生部 2 8 において、 例えば中心波長 8 0 0 n mの基本波と上述の高次高調波発生手段から出射される 例えば中心波長 4 0 0 n mの第 2高調波との和周波混合( S F M ) によって、 中心波長 2 6 7 n m、 パルス幅 1 1 5 f s 、 平均出力 l O O mW程度の超短パルス レーザ光を得ることができる。 この 和周波混合は第 2高調波発生と同様、 2次の非線形光学現象であ り、 例えば非線形光学結晶 B B Oのタィプ I のク リティカル位相 整合を用いることができるが、 その結曰
曰曰長さも上述の理由によ り
0 . 4 mm以下とすることが必要となる o
更に和周波混合用の非線形光学結晶 ( B B O) を追加するこ と によって 4次高調波発生が可能であり 波長 2 0 4 n mの光源を 得ることが可能となる。 パルス幅 3 4 0 f s 、 平均出力 1 5 m W が得られている。したがって、波長と しては 4次高調波の光まで、 十分な平均出力パワーをも って、 本発明の光記録媒体原盤露光装 置及び光記録媒体原盤の露光方法に適用して露光光源と して用い るこ とができる。
上述したよ う に本発明においては、 高繰り返し周波数のパルス 発振を用いる場合、 そのパルス幅 ( FWHM) を少なく と も l p s ( 1 X 1 0— 12秒) 以下とするものであるが、 このよ う にパルス 幅を規定するこ とによって、 効率よく 2光子吸収を起こすこ とが できた。
なお、 本発明において、 フォ ト レジス ト の吸収ピーク波長を露 光光源の波長の半分以下とすることによって次のよ うな効果が得 られる。
すなわち、フォ ト レジス ト と して露光光源の波長域では透明で、 その半分の波長において吸収を有するよ うな材料を用いるこ とに よって、 通常の吸収を効率よく抑制するこ とができる。
そして更に、 フォ ト レジス ト の全厚さにわたる露光を行う場合 は、 露光光源の半分の波長がフォ ト レジス トの吸収ピークよ りや や長波長側に存在することが望ま しい。
例えばフォ ト レジス ト の厚さを 1 0 0 n m程度とする C D用等 の原盤を露光する場合、 吸収ピーク波長での吸収係数に対して、 数%程度の吸収係数となる露光光源およぴフォ ト レジス トを選定 する と レジス トの表面近傍のみで 2光子吸収されず、 全厚さにわ たる吸収を生じさせることができる。 また、 フォ ト レジス ト の厚 さが、 40 n m程度と される Blu— ray Disc用等の原盤では、 1 0 % 程度の吸収係数となる露光光源及びフォ ト レジス トを選定するこ とによって、 同様にレジス ト の全厚さにわたる吸収を生じさせ、 現像後に原盤用基板の表面を露出させるパターン露光を行う こ と ができるこ と となる。
なお、 前述のいずれの光源を用いるにせよ注意するべき点と し て、 超短パルス レーザ光のパン ド幅 ( F W H M ) δ は、 例えば パルス幅 δ t 力 S 1 0 0 f s で、 s e c h 2形のフーリエ変換限界 パルスである場合、 s i ' s t = o. 3 1 5 - λ 2 y c ( c : 光 速) であり、 δ λ = 6 . 7 n mとなる。 従って、 N A 0. 5以上 の高 N Aレンズを用いる場合、 対物レンズには色消しレンズ例え ば顕微鏡等で用いられるァポクロマ ー 卜 レンズを用いる必要があ る。 また、 色収差は屈折系でのみ起こるもので、 非球面の凹面鏡 を用いた集光光学系を用いることでも上記の問題は回避するこ と ができる。
また本発明においては、 集光光学系から出射されレジス トに集 光されたビームスポッ トをビ一ム走查方向に長円化す れに よ り 、 照射される光量分布が拡がり平均化されて、 グループなど の線状のパターンが容易に得られるこ と となる o
ビ一ムスポッ トを長円状とするためには 、 例えば図 1 において 説明したビームエキスノヽ。ンダ 5がアナモルフイ ツクな光学系 、 即 ち、 ビームの走査方向に対し垂直な方向のビ一ム径の方がよ り拡 大されるものであればよい o
具体的には、 シ リ ン ド リ 力ノレレンズ、 シ V ン ド リ カル凹面鏡、 アナモルフィ ックプリ ズムなどを用いてビ一ム拡大率の比を数倍 程度にするこ とが望ま しい o
また、 前述の図 1 において説明した光強度変調用の変調手段と しては、 記録情報信号によつて変調された圧電素子で駆動された 立響光学素子内の超音波で光がブラ ッグ回折するこ とを利用した 音響光学効果、 あるいは、 記録情報信号によつて変調されたポッ クルス効果を利用する電気光学変調素子が適している o
刖述のレンズ、 波長板、 光変調器など全ての光学素子は正の群 速度分散を有する為、 露光光源を出射した時点でパルス幅が最小 になるよ う に調整されていても、 これらを 過しに超短パルスレ 一ザ光は光記録媒体原盤のフォ ト レジス トに照射される時には必 ずチヤープし、 パルス幅が拡がってしま う o
そこで、 図 1 に示すチヤ一プ補正光学系 4 と して、 負の群速度 分散を有するチヤープ補正光学系を用いて 、 露光光源出射後の超 短パルス光に事前に負にチヤープを与え、これを相殺するこ とで、 レジス ト上で最短パルスが得られるよ うにする必要がある。 この チヤープ補正光学系 4 と しては、 分散プリ ズムペアやグレーティ ングペア、 チヤープミ ラーを用いるこ とができる。
またパルス幅の調整の際必要なパルス幅の計測には、 従来の 2 次高調波発生法を用いた自己相関器によって行う ことができる。 〔実施例 1〕
次に、 本発明の光記録媒体原盤露光装置の一例について図 1 を 参照しながら説明する。 この例は、 T i : S a p p h i r e超短 パルス レーザ光源よ り なる露光光源 1 と、 こ の超短パルス レーザ を励起光源とする高次高調波発生手段 2 と、 これらの光から出力 されたパルスが各種の光学部品を通過する際に被る正の群速度分 散を予め補正する負の群速度分散を有するチヤープ補正光学系 4 と、 これからの出射光を供給されるデータに応じた電気的なパル ス信号で高速にスイ ッチングして光強度変調を行う変調手段と し ての変調手段 3 と、 この変調手段 3で変調された光を回折限界の スポッ トサイ ズに集光してフォ ト レジス ト 1 2 が塗布された光記 録媒体原盤 1 1上に照射する集光光学系 9 と ビームエキスパンダ 5が設けられている。
超短パルス レーザ光源には、 繰り返し周波数が前述の Blu- ray Disc のク ロ ッ ク周波数と同 じ 6 6 MH z で、 中心波長 8 1 6 n m、 パルス幅 8 0 f s 、 平均出力 1 . 5 Wの T i : S a p p h i r e レーザ、 すなわち T i : S a p p h i r e を図 2 において説明し たレーザ媒質 3 4 と して用いる超短パルス レーザを用いた。
そして前述の図 5 において説明した高次高調波発生手段 3 を用 いて、 波長 4 0 8 n mの第 2高調波または波長 2 7 2 mの第 3高 調波を発生させた。 この例では、 図 5 に示す第 2高調波発生部 2 6 の非線形光学結晶 2 0 と しては、 タイプ I の位相整合する L B O結晶を用いた。 また第 3高調波発生部 2 8 の非線形光学結晶 2 4にはタイプ I の B B Oを用いた。各種レンズ 1 9 a〜 l 9 dは、 結晶内でのビーム強度を高く し、 変換効率を向上させる為に配置 されている。 第 2高調波光は平均出力 6 0 O mW、 パルス幅 ( F WHM) 1 0 0 f s 、 第 3高調波光は平均出力 1 2 0 mW、 パル ス幅は 1 p s以下の 1 2 0 f s と して出射光を取り 出すこ とがで きた。
チヤ一プ捕正光学系 4 と しては、 ブルースタープリ ズムペアを 用いた。
図 1 に示すよ う に、 出射光はミ ラー 1 aで 9 0 ° 反射されて変 調手段 3に送られる。 変調手段 3の光強度変調器と しては、 信号 変調帯域 8 0 MH z の電気光学素子 E OMを用いた。 この変調手 段 3には、 図示しないが光記録媒体原盤に記録するデータが電気 的なパルス信号を発生する、 いわゆるフォーマッタからピッ ト記 録信号が供給される。 このデータに応じて光が変調される。
この光変調された光がミ ラー 1 bで 9 0 ° 反射されビームェキ スパンダ 5、 ォー トフォーカス光学系 6の例えば偏光ビームスプ リ ツタ (以下、 P B S という) 6 a を介して 1 Z 4波長板 7 を通 過させ、 ミ ラー l cで 9 0 ° 反射させた後、 高い開口率 NAを有 する対物レンズ 8 a を透過させて予めフォ ト レジス ト 1 2が塗布 された光記録媒体原盤 1 1 に照射される。
フォ ト レジス ト 1 2 と しては、 例えば、 i線用レジス ト ( J S R (株) P F R I X 1 1 1 0 Gなど)、 K r レーザマスタ リ ング用 レジス ト (日本ゼオン (株) D V R— 1 0 0など) を用いること ができる。
このと き、 対物レンズ 8 a は入射光、 例えば波長 λ = 2 6 7 η m用に収差捕正された高開口数 Ν Α値を有するレンズを用い、 回 折限界までビームを絞って照射している。この対物レンズ 8 a は、 材質がこの波長領域の光を十分透過する合成石英や螢石等で構成 された色消し対物レンズを用いた。また、光記録媒体原盤 1 1 は、 スピン ドルモータ等の回転手段 1 3 によ り矢印 a で示す方向に回 転する载置台 1 0上に固定される。
一方、 高次高調波発生手段 2は、 波長 = 2 7 2 n mの第 3高 調波光を出射する と共に、 第 2高調波の波長; 1 = 4 0 8 n mの光 を同時に出射している。 この光の光路も上述した各光学素子を通 過する光路であり 、 光記録媒体原盤 1 1 に照射される。
光記録媒体原盤 1 1 から反射された戻り光は、対物レンズ 8 a、 ミ ラー l c、 1 / 4波長板 7を介して P B S 6 a に入射される。 ここで、この戻り光は、 1 4波長板 7を 2回通過しているため、 P B S 6 a で反射されてしま う。 これによつて、 オー トフォー力 ス光学系 6 の P B S 6 a は、 戻り光を、 波長選択素子 6 b を介し てフォーカス誤差量検出素子 6 c に送る。 波長選択素子 6 b は、 露光波長である第 3高調波の光も P B S 6 aで相当量反射される ので多層干渉膜等を利用して露光波長の光を遮断するためのもの である。
フォーカス誤差量検出素子 6 c は、 例えば非点収差法等を用い て露光用の光が光記録媒体原盤 1 1上に合焦する ときのべス ト フ オーカス位置からの位置ずれ量を光学的に検知し、 この検知量を 電気信号に変換する。 この検出した電気信号がオー トフォーカス サーボ系 6の一部をなす駆動制御部 6 dに供給される。
ここで、 上述の非点収差法では、 円筒レンズを検出レンズの後 方に配置する構成にして非点収差を積極的に利用して光検出器で 検出する方法である。 この円筒レンズは、 単一方向のみのレンズ 作用を有し、 この単一方向と直交する方向に対して平行平板と同 じ作用しか持たないので、 検出レンズと この円筒レンズの合焦位 置以外では収束せず、 細いビーム像が結像するこ とによ り フォー カスエラー信号を検出している。 このフォーカスエラー信号をゼ 口にするよ う に制御するこ とによって対物レンズのフォーカスを 最適な位置に保つよ う にしている。
駆動制御部 6 dでは、 電気信号に基づいて位置ずれを捕正する 駆動信号を生成して対物レンズ 8 a を上下に微動させる電磁ァク チユエータ 8 b、 8 c に出力する。 電磁ァクチユエータ 8 b、 8 c は、 駆動信号で対物レンズ 8 a を矢印 bで示す上下方向に、 す なわちフォ ト レジス トに近接または離間する方向に微小移動させ るこ とによって、 光記録媒体原盤 1 1 の合焦位置を最適な位置に 自動的に調整して損失を抑えて露光するこ とができる。
ここで、 例えばレーザ光のスポッ トサイズが対物レンズと して 開口数 N A = 0 . 9の無収差レンズを使用した場合、 エアリーディ スグ ( a iry d i s c ) と しては 0 . 3 6 μ ηιまで絞るこ とができた。 したがつて、 2光子吸収過程を発生させる > - とによつて 、 0 . 3
6 X ( 1 / 2 ) ^ 0 . 2 5 ( μ m ) のスホク 卜サイズに相当す る露光を行う こ とができた o
またこのとき、 上述したよ う にビームェキスパンダ 5をアナモ ルフィ ックな光学系とするこ とによって、 ビ一ムの走查方向に ム 大して長円化されたスポッ ト形状とするこ とによつて 、 グループ 幅は従来と比較して微細なパターンと してグル一プノ タ一ンを露 光するこ とができた。
このよ う に形成したレーザ光を回転手段 1 3によ り光記録媒体 原盤 1 1上で回転走査させ 、 同時に対物レンズを含む光学系をデ ィスク中心( 原盤中心) から半径方向に移動させるこ とによ り 、 スパイラル状にビームを原盤上で走査させヽ フォ ト レジス トを露 光して 1¾ hz.にピッ トを形成するこ とがでさる ο
なお 、 フォ ト レジス ト 1 2 と しては、 上述の i 線用レジス トな どのほか、 g線用のポジ型レジス トを用い - る とがでさる 。 レジ ス トの感光はフォ トンモー ド記録であるこ とから高繰り し周波 数の超短パルス光の場合も単位面積当たり フオ ト ン数の積算量で 感光量は決定される。 本発明によれば、 連続光照射の場合と異な り 、 サーマルモー ドを介することがほとんどない。 即ち、 不要な レジス ト の温度上昇による膨張や反応速度変化を抑制するこ とが でき、 よ り微細なピッ ト の形成が可能になる。 .
上述の実施例 1 では、 中心波長 8 1 6 n mの場合に関して述べ たが、 T i : S a p p h i r e超短パルス レーザは 7 6 0 n m程 度から発振可能で、 この場合、 前述と同様な手段 (中心設計波長 は全て変更する必要有り) で、 3 8 O n mの第 2高調波光、 2 5 3 n mの第 3高調波光を利用するこ と ができ る。 但し効率は多少 低下する為、 超短パルス レーザ光源のレーザ媒質を励起する励起 用グリーンレーザの出力を上げる必要がある。
また、 さ らに和周波混合用の非線形光学結晶 (例えば B B O ) を追加するこ とによって、 4次高調波 (波長 2 0 4 n m、 平均出 力 1 2 m W ) を発生させる - とができた。 この場合、 ビームのス ポッ トサイズと しては、 開 Π数 N A 0 . 9 の無収差対物レンズを 用いて 0 . 2 8 μ mのエア V一スポッ トが得られた。
したがって、 0 . 2 8 X ( 1 / 2 ) = 0 . 2 ( μ m ) スポッ トサイズに相当する露光を行つ こ と力 sできる o
この場合、 高感度のレジス ト と して 、 κ r F レーザ (波長 2 4
8 n m ) または A r F レ一ザ (波長 1 9 2 n m ) 用のレジス トを 適用することができる。
また上述の実施例 1 においては、 高次高調波発生手段と して第
3高調波発生手段を例に説明したが、 図 5 において説明した高次 高調波発生手段は 、 第 2高 波発生部と和周波混合部がそれぞれ 独立に分離されているのでゝ 波を露光光源と して用いる こ ともできる。 この場合第 2 r¾ 1¾波 生のほうが第 3高調波発生 に比べ変換効率が高く 、 同じ励起用の レ―ザパヮ一で高い露光パ ヮーを得ることができるだけでなく 、 レーザ光の波長が可視光域 に近く 、 多種の硝材を用いることができ、 レンズ設計が容易であ り、 また光学素子の制限も低減する。
〔実施例 2〕
次に、 本発明にかかる実施例 2について説明する。
この例では、 光記録媒体原盤露光装置の材料、 構成は上述の実 施例 1 の場合と全く 同様であるが、 露光光源のレーザパワー強度 を 1 0倍程度高く して用いた。 '
すなわちこの例において露光光源と して繰り返し周波数 6 6 M H z、 中心波長 8 1 6 n m、 パルス幅 8 0 f s であるが、 平均出 力は 2 Wの T i : S a p p h i r e をレーザ媒質と した超短パル ス レーザ光源を用いた。
さ らに高次高調波のレーザパワー強度を高める為に、 各非線形 光学結晶 2 0、 2 4 の前後にある集光レンズ 1 9 a 、 1 9 b 、 1 9 c 、 1 9 dの焦点距離をよ り短く し、 結晶内におけるビームス ポッ ト径を小さ く して励起光の電場強度を大き くすることで波長 変換効率を高めて、 第 3高調波のレーザパワー強度を高く し、 お よそ実施例 1 の 1 0倍程度のパワーを得た。 伹し、 パルス幅は多 少広く なった。
第 3高調波発生部 2 8から出射された 2 7 2 n m、 パルス幅が 1 3 0 f s の超短パルス光を用いて、 フォ ト レジス ト と して A r F レーザ用フォ ト レジス トの例えばフッ素樹脂系レジス トに照射 した。
レジス ト面上のビームスポッ ト内の光強度は尖頭出力にして 1 0 0 GW/ c m2 に及び、 2光子吸収が顕著に起こ り数%の吸 収、 即ち、 レジス ト の露光過程である光反応を進行させることが できた。 そしてこの例においては、 対物レンズと して N A = 0 . 9 の無収差対物レンズを用いて 0 . 3 6 /z mのエア リ ースポッ ト を得ることができ、 2光子吸収過程を生じさせることによ り、 0 . 3 6 X { 1 / 2 ) = 0. 2 5 /x mのエア リ ースポッ トサイズの 露光を行う こ とができた。
レジス トの感光はビームスポッ トの強度分布の 2乗で与えられ る。 上述のレジス トでは通常の吸収は、 波長 2 6 9 n mの光に対 して透明であるので起こ らない。 2光子吸収過程のみが強度分布 の高い所のみで局所的に起こる。 これは、 A r F レーザ (波長 1 9 3 n m) 用レジス ト (日本ゼオン (株) Z A R F 0 0 1 など) のみならず、 現在開発が進行中の F 2 レーザ用フッ素榭脂系レジ ス トで代用するこ とも可能である。
またこの場合においても、 ビームエキスパンダ 5 をアナモルフ ィ ックな光学系とすることによって、 ビームの走査方向に拡大し て長円化されたスポッ ト形状とするこ とによって、 グループ幅は 従来と比較して微細なパターンと してグループパターンを露光す ることができた。
更にこの例においても、 高次高調波発生手段を第 2高調波発生 と和周波混合部がそれぞれ独立に分離された図 5 に示す構成とす ることによって、 第 2高調波 (波長 4 0 3 n m) を露光光源と し て用いること もできる。 この場合使用するフォ ト レジス トは例え ば A r F レーザ用レジス ト (日本ゼオン (株) Z A R F 0 0 1 な ど) や、 又は例えば K r F レーザ用レジス ト ( J S R (株) K R F M 8 9 Yなど) を用いるのが望ま しい。
また、 2光子吸収断面積は非常に小さい値であるので、 レジス トの感度を高める為、 2光子吸収断面積の高い有機色素を增感剤 と してレジス トに添加したものを用いるこ とができる。 実施例 1 の場合と同様の長所があるほか、 適用可能なフォ ト レジス トの選 択範囲も広がる。
〔実施例 3〕 次に、 他の本発明による光記録媒体原盤露光装置の一例につい て図 1 を参照しながら説明する。 この例においても、 T i : S a p p h i r e超短パルス レーザ光源よ り なる露光光源 1 と、 こ の 超短パルス レーザを励起光源とする高次高調波発生手段 2 と、 こ れらの光から出力されたパルスが各種の光学部品を通過する際に 被る正の群速度分散を予め捕正する負の群速度分散を有するチヤ ープ補正光学系 4 と、 これからの出射光を供給されるデータに応 じた電気的なパルス信号で高速にスイ ッチングして光強度変調を 行う変調手段と しての変調手段 3 と、 この変調手段 3で変調され た光を回折限界のスポッ トサイズに集光してフォ ト レジス ト 1 2 が塗布された光記録媒体原盤 1 1上に照射する集光光学系 9 と し てビームエキスパンダ 5、 対物レンズ 8 a と を有している。
超短パルス レーザ光源には、 繰り返し周波数が前述の Blu-ray Discのク ロ ック周波数 ( 6 6 MH z ) の 1 0倍以上の 7 5 0 MH z、 中心波長 8 1 6 n m、 パルス幅 8 0 f s 、 平均出力 1 . 5 W の T i : S a p p h i r e レーザを用いた。
前述の図 5 において説明した高次高調波発生手段 3 を用いて、 波長 4 0 8 n mの第 2高調波または波長 2 7 2 mの第 3高調波を 発生させた。 この例では、 図 5に示す第 2高調波発生部 2 6の非 線形光学結晶 2 0 と しては、 タイプ I の位相整合する L B O結晶 を用いた。 また第 3高調波発生部 2 8の非線形光学結晶 2 4には タイプ I の B B Oを用いた。 各種レンズ 1 9 a〜 1 9 dは、 結晶 内でのビーム強度を高く し、 変換効率を向上させる為に配置され ている。第 2高調波光は平均出力 2 O mW、パルス幅 1 0 0 f s 、 第 3高調波光は平均出力 4 mW、 パルス幅 ( FWHM) は l p s 以下の 1 3 0 f s と して出射光を取り 出すこ とができた。
またこの例においても、 図 1 に示すチヤープ補正光学系 4 と し ては、 ブルースタープリズムペアを用いた。 図 1 に示すよ う に、 チヤ一プ捕正光学系 4から出射された光は、 ミ ラー 1 aで 9 0 ° 反射されて光強度の変調手段 3 に送られる。 変調手段 3の光強度 変調器には信号変調帯域 5 O MH z の電気光学素子 E OMを用レ、、 入力端子を介して光記録媒体原盤に記録する情報が電気的なパル ス信号を発生する、 いわゆるフォーマッタからピッ ト記録信号と して供給して、 こ の記録情報に応じて光を変調させる。 .
こ の光変調された光を、 上述したよ う にミ ラー l bで 9 0 ° 反 射させビームエキスパンダ 5、 フォーカス検出制御系 6の例えば 偏光ビームスプリ ッタ ( P B S ) 6 a 、 1 Z 4波長板 7を通過さ せ、 ミ ラー 1 c で 9 0 ° 反射させた後、 高い開口率 N Aを有する 対物レンズ 8 a を透過させて予めフォ ト レジス ト 1 2が塗布され た光記録媒体原盤 1 1 に照射させる。
フォ ト レジス ト 1 2 と しては、 例えば i 線用レジス ト ( J S R (株) P F R I X I 1 1 0 Gなど)、 K r レーザマスタ リ ング用(日 本ゼオン (株) D V R— 1 0 0など) を用いることができる。
この とき、 対物レンズ 8 a は入射光、 例えば波長 λ = 2 7 2 η m用に収差補正された高開口数 NA値を有するレンズを用い、 回 折限界までビームを絞って照射している。 またこの対物レンズ 8 a と しては、 材質がこの波長領域の光を十分透過する合成石英や 螢石等で構成された色消し対物レンズを用いた。
高次高調波発生手段 2は、 波長; = 2 7 2 n mの第 3高調波光 を出射する と共に、 第 2高調波の波長 λ = 4 0 8 n mの光を同時 に出射している。 この光の光路も上述した各光学素子を通過する 光路であり、光記録媒体原盤 1 1 に照射される。その他の構成は、 前述の実施例 1 と同様と した。
この例においても、 レーザ光のスポッ トサイズは、 対物レンズ と して開口数 NA= 0. 9の無収差レンズを使用した場合、 エア リーディスク (airy disc ) と しては 0. 3 6 μ πι まで絞るこ と ができる。 従って、 0 . 3 6 X ( 1 ΛΓ 2 ) = 0 . 2 5 ( μ m) のスポッ トサイズに相当する露光を行う ことができた。
このよ う に形成したレーザ光をディスク回転機構によ りデイス ク上で回転走查させ、 同時に対物レンズを含む光学系をディスク 中心から半径方向に移動させることによ り、 スパイ ラル状にビー ムをディスク上で走査させ、 フォ ト レジス トを露光して高密度に ピッ トを形成することができる。 フォ ト レジス トには g線用ある いは i線用のポジ型レジス トを用いた。 レジス トの感光はフォ ト ンモー ド記録であるこ とから高繰り返し周波数の超短パルス光の 場合も単位面積当たり フォ ト ン数の積算量で感光量は決定される。 本発明によれば、 連続光照射の場合と異なり、 サーマルモー ドを 介するこ とがほとんどない。 即ち、 レジス トの不要な温度上昇に よる膨張や反応速度変化を抑制するこ とができ、 よ り微細なピッ トの形成が可能になる。
実施例 3では中心波長 8 1 6 n mの場合に関して述べたが、 T i : S a p p h i r e超短パルス レーザは 7 6 0 n m程度から発 振可能で、 この場合、 前述と同様な手段 (中心設計波長は全て変 更する必要有り) で、 3 8 0 n mの第 2高調波光、 2 5 3 n mの 第 3高調波光を利用することができる。 但し効率は多少低下する 為、 励起用グリーン レーザの出力を上げる必要がある。
また、 さ らに和周波混合用の非線形光学結晶 (B B O ) を追加 することによって、 4次高調波発生 (波長 2 0 0 n m近辺) の利 用も考えられる。 この場合、 ビームスポッ トサイズと しては N A 0 . 9の無収差レンズを用いて 0 . 2 8 μ πιのエアリースポッ ト が得られる。 従って、 0 . 2 8 X ( 1 2 ) = 0 . 2 ( β m) のスポッ トサイズに相当する露光を行う こ とができる。 平均出力 は数 1 0 程度と少し低いが、 露光用光の走査速度、 すなわち 光記録媒体原盤の回転数を落とすこ とで、 光源のレーザパワーが 低い問題を解決するこ とも可能である。
また、 上述の実施例 3 においては、 高次高調波発生手段と して 第 3高調波発生手段を例に説明したが、 上述の図 5 において説明 した高次高調波発生手段は、 第 2高調波発生部と和周波混合部が それぞれ独立に分離されているので、 第 2高調波を露光光源と し て用いることもできる。 この場合第 2高調波発生のほうが第 3高 調波発生に比べ変換効率が高く 、 同じ励起用のレーザパワーで高 い露光パワーを得るこ とができるだけでなく 、 レーザ光の波長が 可視光域に近く 、 多種の硝材を用いるこ とができ、 レンズ設計が 容易であり、 また光学素子の制限も低減する。
〔実施例 4〕
次に、 本発明に係る実施例 4について説明する。
こ の例では、 光記録媒体原盤露光装置の材料、 構成は実施例 3 の場合と全く 同様であるが、 高次高調波のレーザパワー強度を高 めるために、 各非線形光学結晶の手前にある集光レンズの焦点距 離をよ り短く し、 ビームスポッ ト径を小さ く して波長変換効率を 高めている。
この例においても露光光源 1 と して繰り返し周波数 7 5 0 MH z、 中心波長 8 1 6 n m、 パルス幅 8 0 f s 、 平均出力 1 . 5 W の T i : S a p p h i r e超短パルス レーザを用いた。
第 3高調波発生手段から出射された波長 2 7 2 n m、 パルス幅 力 1 s以下の 1 3 0 f s の超短パルス光を、 A r F レーザ用フ ォ ト レジス トの例えばフッ素系樹脂に照射した時、 レジス ト面上 のビームスポッ ト内の光強度は尖頭出力にして 1 0 O GW/ c m 2 に及ぶため、 2光子吸収が顕著に起こ り数%の吸収、 即ちレジ ス ト の露光過程である光反応が進行する。 この例においては、 対 物レンズと して NA= 0. 9の無収差レンズを用いて 0. 3 6 μ mのエアリースポッ トを得るこ とができ、 0. 3 6 X ( 1 Z 2 ) = 0. 2 5 /i mのエアリースポッ トサイズの露光を行う こ とがで きた。
上述したよ う にレジス トの感光はビームスポッ トの強度分布の 2乗で与えられる。 すなわちこの場合もレジス トでは通常の吸収 は、 波長 2 7 2 n mの光に対して透明であるので起こ らず、 2光 子吸収過程のみが強度分布の高い所のみで局所的に起こる。 そし てこの場合も A r F レーザ (波長 1 9 3 n m) 用レジス ト (日本 ゼオン (株) Z A R F 0 0 1など) のみならず、 現在開発が進行 中の F 2 レーザ用フッ素樹脂系レジス トで代用するこ とも可能で ある。
また、 この例においても、 高次高調波発生手段を第 2高調波発 生部と和周波混合部がそれぞれ独立に分離された図 5 に示す構成 を用いるこ とによって、 第 2高調波 (波長 4 0 3 n m) を露光光 源と して用いるこ ともできる。 この場合使用するフォ トレジス ト は例えば A r F レーザ用レジス ト (日本ゼオン (株) Z A R F 0 0 1 など)、 あるいは K r F レーザ用レジス ト ( J S R (株) K R FM 8 9 Yなど) を用いるのが望ま しい。
また、 この場合においても、 レジス ト の感度を高める為、 2光 子吸収断面積の高い有機色素を増感剤と して レジス トに添加した ものを用いることができる。 実施例 3の場合と同様の長所がある ほか、 適用可能なフォ ト レジス トの選択範囲も広がる。
上述の各実施例 3及び 4 においては、 超短パルス レーザの繰り 返し周波数を、 光記録媒体の記録情報のクロ ック周波数の 1 0倍 以上とすることによって、 光記録媒体の記録情報のクロック周波 数とのずれをクロ ックの 1 Z 1 0以下と し、 ジッターを 1 0 %以 下に抑えるこ とができた。
また上述したよ う に、 繰り返し周波数を高く しすぎるとパルス の尖頭出力が低下してしまい、 2光子吸収を発生させにく く なり 、 解像度の高いパターン露光を行えない。 従って、 上述の本発明に おいては、 その上限と して、 現状で得られる超短パルス レーザ光 源の最大出力や開発中の各種光記録媒体のクロ ック周波数を考慮 して、 露光を行う光記録媒体のクロ ック周波数の 2 0倍程度以下 に選定するものである。
また、 上述の実施の形態及び各実施例においては、 光源手段と して、 T i : S a p p h i r e超短パルス レーザを例にとったが、 他にも様々な超短パルスレーザ光源を用いることができる。
例えば N d : V a n a d e t e超短パルス レーザは半導体レー ザ励起可能で、 半導体可飽和吸収ミ ラー ( S E S AM) を採用し た中心波長 1 0 6 4 n m、 パルス幅 7 p s 、 平均出力数 Wで繰り 返し周波数 2 5 MH z から 1 GH z のものが市販されている。 中 心波長 9 1 7 n mのものも入手可能である。レーザ媒質と しても、 N d : Y A Gや、 N d : Y L F等を用いるこ とができる。 また、 C r : L i S A F、 N d : G 1 a s s などの固体レーザ媒質を用 いた超短パルス レーザでは、 パルス幅 1 0 0 f s 以下、 中心波長 8 5 0 n m、 1 0 5 8 n mである。
また、 高次高調波発生手段において、 和周波混合や第 2高調波 発生、 第 4高調波発生等を含み非線形結晶光学素子には、 B B O の他に KD P、 K T P、 L Nまたこれらの周期分極反転型 Κ Τ Ρ ( Ρ Ρ Κ Τ Ρ ) や P P L N、 L B O、 L i I 03 、 C B O等があ る。
さ らに、 これまで微小ピッ ト及びグループの露光を例に説明を 行ってきたが、 従来方法の連続光光源と同様に扱う こ とができる こ とから、 微小ピッ ト及ぴグループの形成のみならず、 音響光学 効果あるいはポッケルス効果を利用した光偏向器を用いてゥォブ リ ングァ ド レス の形成なども同様に行う ことが可能である。
さ らに、 本発明.はディスク状の光記録媒体原盤用の露光装置及 ぴ露光方法に限るものではなく 、 図 1 において示す回転手段 1 3 に代えて、 高精度のリ ニァァクチユエータを用いた X— Y直線走 查系のレーザ描画装置や、 これらの回転系や X— Y直線走查系に 加え z方向のスライ ド機構を備えた 3次元微細加工装置にも適用 されるものである。
本発明に係る光記録媒体原盤露光装置及び光記録媒体の露光方 法では、 露光光源から出力された超短パルス レーザ光またはこれ を励起光源と した高次高調波発生手段から出力される短波長の超 短パルス レーザ光を、 光記録媒体に記録する情報信号のクロ ック 周波数の 1倍以上 2 0倍以下の整数倍にパルスの繰り返し周波数 を調節してフォ ト レジス ト の露光を行う こ とによ り、 2光子吸収 過程を発生させて、 従来に比し微細な 0 . 2 5 μ ιη以下程度のピ ッ トを高精度に形成するこ とができる。
また、 超短パルス レーザのパルス幅を 1 X I 0—12秒以下とする こ とで 2光子吸収過程をよ り効率よく発生させることができ、 露 光光源の波長の回折限界以下のよ り微細なピッ ト形成を可能とす る。
さ らに、 上述の本発明において、 光記録媒体原盤に照射する レ 一ザ光のビームスポッ トを長円状とすることによって、 グループ 等の走查方向に延在するパターンの信号も、良好な形状をもって、 パターン露光するこ とができる。
また他の本発明において、 露光光源から出力された超短パルス レーザ光またはこれを励起光源と した高次高調波発生手段から出 力される短波長の超短パルス レーザ光を、 その繰り返し周波数を 記録情報のクロ ック周波数の 1 0倍以上 2 0倍以下と し、 光強度 変調を行う変調手段で変調し集光光学系で回折限界のスポッ トサ ィズに集光してフォ ト レジス トの露光を行う ことによ り、 従来に 比し微細なパターン露光を行う ことができる。 特にこの場合、 2光子吸収過程を生じさせ、 更に、 高次高調波 発生手段によってよ り短波長の超短パルス レーザを用いるこ とに よって、 0 . 2 5 μ πι以下の微細なパターンを精度良く露光する こ とができる。
更にまた上述の本発明において、 超短パルス レーザのパルス幅 を 1 X I 0— 12秒以下とするこ とによって 2光子吸収過程をよ り 効率よく発生させる とができヽ 露光光源の波長の回折限界以下 のよ り微細なピッ 卜形成が可能とな Ό。
また更に上述の各本発明においては、 前述したよ う な高開口数 の S I Lを用いた二ァフ ィ ール ド、光学系ではなく 、 フ ァーフ ィ一 ルド光学系を採用でさる 、 フ一キングデイスタンスを十分広く 取るこ とができ露光時の回転数を高くすることによ り、 生産性を 大幅に向上させる とができる

Claims

請 求 の 範 囲
1 . 露光光源からの光を記録情報に対応する光強度変調を行う 変調手段と、 該変調手段で変調された光を光記録媒体原盤上のフ ォ ト レジス ト上に集光する集光光学系とが設けられて、 前記フォ ト レジス トを前記記録情報に応じてパターン露光する光記録媒体 原盤露光装置であって、
上記露光光源が、 前記記録情報のクロ ック周波数の 1倍以上 2 0倍以下の整数倍の繰り返し周波数の超短パルス レーザよ り なり、 前記超短パルスレーザの共振器長を可変と して、 前記超短パル スレーザの繰り返し周波数を前記クロ ック周波数に同期してモー ドロ ッ ク し、 パルス発振させる外部同期機構が設けられてなるこ とを特徴とする光記録媒体原盤露光装置。
2 . 前記露光光源と前記変調手段との間に、 前記超短パルス レ 一ザ光源を励起光源と して非線形光学素子を用いた波長変換によ つて短波長化された光を出射する高次高調波発生手段が設けられ るこ とを特徴とする請求の範囲第 1項記載の光記録媒体原盤露光 装置。
3 . 前記フォ ト レジス ト の露光が、 2光子吸収過程によってな されるこ とを特徴とする請求の範囲第 1項記載の光記録媒体原盤 露光装置。
4 . 前記フォ ト レジス ト の露光が、 2光子吸収過程によってな されるこ とを特徴とする請求の範囲第 2項記載の光記録媒体原盤 露光装置。
5 . 前記露光光源のパルス幅が 1 X I 0 12秒以下であるこ とを 特徴とする請求の範囲第 3項記載の光記録媒体原盤露光装置。
6 . 前記露光光源のパルス幅が 1 X I 0— 12秒以下であるこ とを 特徴とする請求の範囲第 4項記載の光記録媒体原盤露光装置。
7 . 前記集光光学系から出射され、 前記フォ ト レジス トに集光 されたレーザ光のスポッ ト形状が、 前記レーザ光の走査方向に延 在する長円状と されることを特徴とする請求の範囲第 3項記載の 光記録媒体原盤露光装置。
8 . 前記集光光学系から出射され、 前記フォ ト レジス ト に集光 されたレーザ光のスポッ ト形状が、 前記レーザ光の走査方向に延 在する長円状と されることを特徴とする請求の範囲第 4項記載の 光記録媒体原盤露光装置。
9 . 露光光源からの光を記録情報に対応して光強度変調を行い、 該変調手段で変調された光を光記録媒体原盤上のフォ ト レジス ト 上に集光して、 前記フォ ト レジス トを前記記録情報に応じてパタ ーン露光する光記録媒体原盤の露光方法であって、
前記露光光源が 、 m記記録情報のク クク周波数の 1倍以上 2
0倍以下の整数倍の繰り返し周波数の 短ノヽ °ノレス レ一ザよ りなり、 目 IJ ,己超短ノヽ °ノレス レ一ザの共振器長を可変とする外部同期機構を 設け、 前記超短パルス レーザの繰り返し周波数を刖 H己クロ ック周 波数に同期してモ一 ドロ ック し、 パノレス発振させるこ とを特徴と する光記録媒体原盤の露光方法。
1 0 . 前記露光光源から出射された光を 、 刖 gd露光光源を励起 光源と した高次高 波発生手段によつて 非線形光学素子を用い た波長変換によつて短波長化して出射させることを特徴とする請 求の範囲第 9項記載の光記録媒体原盤の露光方法 o
1 1 . 前記集光光学系から出射され 、 刖記フォ 卜 レジス トに集 光されたレーザ光のスポッ ト形状を、 刖記レ一ザ光の走查方向に 延在する長円状とすることを特徴とする P冃求の範囲第 9項記載の 光記録媒体原盤の露光方法。
1 2 . 前記集光光学系から出射され 、 記フォ 卜レジス トに集 光されたレーザ光のスポッ ト形状を、 記レ一ザ光の走查方向に 延在する長円状とすることを特徴とするョ主求の範囲第 1 0項記载 の光記録媒体原盤の露光方法。
1 3 . 露光光源からの光を記録情報に対応する光強度変調を行 う変調手段と、 該変調手段で変調された光を光記録媒体原盤上の フォ ト レジス ト上に集光する集光光学系とが設けられて、 前記フ ォ ト レジス トを前記記録情報に応じてパターン露光する光記録媒 体原盤露光装置であって、
上記露光光源が、 前記記録情報のクロ ック周波数の 1 0倍以上 2 0倍以下の繰り返し周波数の超短パルス レーザよ り なることを 特徴とする光記録媒体原盤露光装置。
1 4 . 前記露光光源と前記変調手段との間に、 前記超短パルス レーザ光源を励起光源と して非線形光学素子を用いた波長変換に よって短波長化された光を出射する高次高調波発生手段が設けら れるこ とを特徴とする請求の範囲第 1 3項記載の光記録媒体原盤 "露光装置。
1 5 . 前記フォ ト レジス トの露光が、 2光子吸収過程によって なされるこ とを特徴とする請求の範囲第 1 3項記載の光記録媒体 原盤露光装置。
1 6 . 前記フォ ト レジス ト の露光が、 2光子吸収過程によって なされることを特徴とする請求の範囲第 1 4項記載の光記録媒体 原盤露光装置。
1 7 . 前記露光光源のパルス幅が 1 X I 0 12秒以下であること を特徴とする請求の範囲第 1 5項記載の光記錄媒体原盤露光装置。
1 8 . 前記露光光源のパルス幅が 1 X I 0 12秒以下であるこ と を特徴とする請求の範囲第 1 6項記載の光記録媒体原盤露光装置。
1 9 . 露光光源からの光を記録情報に対応して光強度変調を行 い、 該変調手段で変調された光を光記録媒体原盤上のフォ ト レジ ス ト上に集光して、 前記フォ ト レジス トを前記記録情報に応じて パターン露光する光記録媒体原盤の露光方法であって、 前記露光光源が、 前記記録情報のクロ ック周波数の 1 0倍以上 2 0倍以下の繰り返し周波数の超短パルス レーザよ り なることを 特徴とする光記録媒体原盤の露光方法。
2 0 . 前記露光光源から出射された光を、 前記露光光源を励起 光源と した高次高調波発生手段によって、 非線形光学素子を用い た波長変換によって短波長化して出射させることを特徴とする請 求の範囲第 1 9項記載の光記録媒体原盤の露光方法。
PCT/JP2003/013130 2002-10-15 2003-10-14 光記録媒体原盤露光装置及び光記録媒体原盤の露光方法 WO2004036565A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03808900A EP1553573A4 (en) 2002-10-15 2003-10-14 OPTICAL RECORDING MEDIUM MASTER EXPOSURE DEVICE AND OPTICAL RECORDING MEDIUM MASTER EXPOSURE METHOD
US10/498,693 US7551537B2 (en) 2002-10-15 2003-10-14 Method and apparatus for making master optical disk
JP2004544947A JP4506466B2 (ja) 2002-10-15 2003-10-14 光記録媒体原盤露光装置及び光記録媒体原盤の露光方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-300839 2002-10-15
JP2002300839 2002-10-15
JP2002-300840 2002-10-15
JP2002300840 2002-10-15

Publications (1)

Publication Number Publication Date
WO2004036565A1 true WO2004036565A1 (ja) 2004-04-29

Family

ID=32109455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013130 WO2004036565A1 (ja) 2002-10-15 2003-10-14 光記録媒体原盤露光装置及び光記録媒体原盤の露光方法

Country Status (7)

Country Link
US (1) US7551537B2 (ja)
EP (1) EP1553573A4 (ja)
JP (1) JP4506466B2 (ja)
KR (1) KR20050047502A (ja)
CN (1) CN1324586C (ja)
TW (1) TWI264718B (ja)
WO (1) WO2004036565A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211844A (ja) * 2009-03-09 2010-09-24 Fujifilm Corp 2光子吸収記録媒体記録再生装置
WO2015107669A1 (ja) * 2014-01-17 2015-07-23 株式会社日立製作所 情報記録装置及び情報記録方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450307B2 (en) * 2003-09-09 2008-11-11 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP4222296B2 (ja) * 2004-11-22 2009-02-12 住友電気工業株式会社 レーザ加工方法とレーザ加工装置
JP4822737B2 (ja) * 2005-04-22 2011-11-24 ミヤチテクノス株式会社 レーザ溶接方法及びレーザ溶接装置
JP2010509706A (ja) * 2006-11-10 2010-03-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. アポクロマートレンズを利用した媒体上での光データ記録及び画像形成
WO2008061030A1 (en) * 2006-11-10 2008-05-22 Hewlett-Packard Development Company, L.P. Optical data recording and imaging on media using apochromatic lenses and a light separating means
AT506455B1 (de) * 2008-02-18 2011-10-15 Femtolasers Produktions Gmbh Laserkristalleinrichtung
JP2009238285A (ja) * 2008-03-26 2009-10-15 Sony Corp 光記録方法及び光記録装置
JP4605236B2 (ja) * 2008-03-26 2011-01-05 ソニー株式会社 光記録再生装置および光記録再生方法
JP2009245536A (ja) * 2008-03-31 2009-10-22 Fujifilm Corp 光記録ディスクの記録・再生方法、情報が記録された光記録ディスクの製造方法および光記録ディスクの記録装置
JP2010258120A (ja) * 2009-04-23 2010-11-11 Fujifilm Corp 超短波パルス光源およびそれを備えた2光子吸収記録媒体記録装置
JP2011204914A (ja) * 2010-03-25 2011-10-13 Sony Corp 光発振装置及び記録装置
JP5870509B2 (ja) * 2011-05-30 2016-03-01 ソニー株式会社 光源装置、光学ピックアップ、記録装置
CN102551884B (zh) * 2012-02-10 2014-12-17 北京天助畅运医疗技术股份有限公司 超声显像微波治疗仪
JP2014142978A (ja) * 2013-01-22 2014-08-07 Sony Corp 制御装置および制御方法、ならびに原盤作製装置
EP2762261A1 (de) * 2013-02-01 2014-08-06 Bystronic Laser AG Schneidoptik für eine Laserschneidanlage, mit Korrektur oder gezielten Beeinflussung der chromatischen Aberration ; Laserschneidanlage mit solcher Optik
US9265284B2 (en) 2014-01-17 2016-02-23 R.J. Reynolds Tobacco Company Process for producing flavorants and related materials
FR3053155B1 (fr) * 2016-06-27 2019-09-06 Universite d'Aix-Marseille (AMU) Procedes et systemes de fonctionnalisation optique d'un echantillon en materiau semi-conducteur
CN113985707B (zh) * 2021-10-25 2023-08-04 之江实验室 一种可控脉冲展宽与延时的超分辨激光直写装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798891A (ja) 1993-09-29 1995-04-11 Sony Corp 光ディスク原盤露光装置
JP2000033487A (ja) 1998-07-17 2000-02-02 Sony Corp レーザカッティング装置
US6285002B1 (en) 1999-05-10 2001-09-04 Bryan Kok Ann Ngoi Three dimensional micro machining with a modulated ultra-short laser pulse

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153682B2 (ja) * 1993-08-26 2001-04-09 松下電工株式会社 回路板の製造方法
JPH09128818A (ja) * 1995-11-02 1997-05-16 Sony Corp 露光装置
JPH10289475A (ja) * 1997-04-16 1998-10-27 Sony Corp 露光装置
JPH10334503A (ja) * 1997-05-28 1998-12-18 Sony Corp 光ディスク原盤の露光装置
JP3997450B2 (ja) * 1998-03-13 2007-10-24 ソニー株式会社 波長変換装置
JP4081702B2 (ja) * 1999-07-29 2008-04-30 ソニー株式会社 露光装置及び露光方法
TW476957B (en) * 1999-09-08 2002-02-21 Mitsubishi Chem Corp Rewritable compact disk and manufacturing method thereof
EP1154414B1 (en) * 2000-05-10 2007-11-21 Sony Corporation Optical recording medium, master disc for the preparation of the optical recording medium and optical recording and/or reproducing apparatus
JP2002216395A (ja) * 2001-01-18 2002-08-02 Sony Corp 光記録媒体、光記録媒体用原盤、光記録媒体原盤の製造装置、光記録再生装置
JP4024047B2 (ja) * 2001-01-29 2007-12-19 ソニー株式会社 光記録媒体及び光記録媒体製造用原盤
JP2002312936A (ja) * 2001-04-19 2002-10-25 Matsushita Electric Ind Co Ltd 光記録媒体の記録方法および情報が記録された光記録媒体
JP4006994B2 (ja) * 2001-12-18 2007-11-14 株式会社リコー 立体構造体の加工方法、立体形状品の製造方法及び立体構造体
JP4465429B2 (ja) * 2002-02-21 2010-05-19 株式会社リコー レーザ加工方法
JP2004039011A (ja) * 2002-06-28 2004-02-05 Sony Corp 光記録媒体、光記録媒体製造用原盤、記録再生装置および記録再生方法
TWI251233B (en) * 2002-11-19 2006-03-11 Hitachi Maxell Optical information recording medium and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798891A (ja) 1993-09-29 1995-04-11 Sony Corp 光ディスク原盤露光装置
JP2000033487A (ja) 1998-07-17 2000-02-02 Sony Corp レーザカッティング装置
US6285002B1 (en) 1999-05-10 2001-09-04 Bryan Kok Ann Ngoi Three dimensional micro machining with a modulated ultra-short laser pulse

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1553573A4
TOKYO, JP, SOCIETY OF APPLIED PHYSICS, vol. 38, no. 3B, 1 March 1999 (1999-03-01), pages 1837

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211844A (ja) * 2009-03-09 2010-09-24 Fujifilm Corp 2光子吸収記録媒体記録再生装置
WO2015107669A1 (ja) * 2014-01-17 2015-07-23 株式会社日立製作所 情報記録装置及び情報記録方法
JPWO2015107669A1 (ja) * 2014-01-17 2017-03-23 株式会社日立製作所 情報記録装置及び情報記録方法
US9773521B2 (en) 2014-01-17 2017-09-26 Hitachi, Ltd. Information recording device and information recording method

Also Published As

Publication number Publication date
CN1324586C (zh) 2007-07-04
EP1553573A4 (en) 2008-10-08
JP4506466B2 (ja) 2010-07-21
CN1685406A (zh) 2005-10-19
TWI264718B (en) 2006-10-21
KR20050047502A (ko) 2005-05-20
US7551537B2 (en) 2009-06-23
TW200423116A (en) 2004-11-01
JPWO2004036565A1 (ja) 2006-02-16
US20050180302A1 (en) 2005-08-18
EP1553573A1 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP4506466B2 (ja) 光記録媒体原盤露光装置及び光記録媒体原盤の露光方法
US6818855B2 (en) Laser cutting apparatus
JP4124417B2 (ja) ピコ秒レーザーによるホログラムの製造方法
KR20060083896A (ko) 원반 제조 장치, 원반 제조 방법 및 광기록 매체
JP4196634B2 (ja) 光記録媒体原盤露光装置及び光記録媒体原盤の露光方法
Takeda et al. Deep UV mastering using an all-solid-state 266 nm laser for an over 20 Gbytes/layer capacity disk
JP2000033487A (ja) レーザカッティング装置
JPH08203134A (ja) 光ディスク原盤記録装置
JP3406338B2 (ja) 円盤状記録媒体の製造装置
JP4560968B2 (ja) 露光方法及び露光装置
JPH0798891A (ja) 光ディスク原盤露光装置
JPH08124226A (ja) 光ディスク製造方法及び光ディスク製造装置
JPH0520709A (ja) 光学式信号記録再生装置および光学式信号記録方法
JPH09161298A (ja) 光記録原盤のマスタリング装置および方法
JP3887688B2 (ja) 超解像近接場露光法
JP2001319383A (ja) 光記録媒体製造用原盤の製造方法及び製造装置、並びに、光記録媒体製造用原盤、光記録媒体
JP2001195791A (ja) 光ディスク原盤の製造方法及び光ディスク原盤の現像装置
JPH0830974A (ja) 情報記録再生方法および装置
JPH06124474A (ja) 光学的情報記録装置
JP2005182923A (ja) 光軸修正装置及び光ディスク用原盤露光装置
JPH07129998A (ja) 光ディスク原盤の製造方法
JPH04360043A (ja) 光ディスク原盤の作成装置
JP2006099876A (ja) 光情報記録媒体用原盤の製造方法、光情報記録媒体用スタンパ及び光情報記録媒体
JPH11296923A (ja) 露光装置及び露光方法
JPH09185840A (ja) 光学記録方法、光学記録装置及び光学記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2004544947

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047009177

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003808900

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A01425

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10498693

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003808900

Country of ref document: EP