WO2004028720A1 - ビード付き円筒形リングの製造方法及びその方法に用いる金型 - Google Patents

ビード付き円筒形リングの製造方法及びその方法に用いる金型 Download PDF

Info

Publication number
WO2004028720A1
WO2004028720A1 PCT/JP2003/012372 JP0312372W WO2004028720A1 WO 2004028720 A1 WO2004028720 A1 WO 2004028720A1 JP 0312372 W JP0312372 W JP 0312372W WO 2004028720 A1 WO2004028720 A1 WO 2004028720A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
molding
cylindrical
molding surface
mold
Prior art date
Application number
PCT/JP2003/012372
Other languages
English (en)
French (fr)
Inventor
Yoshihaya Imamura
Noritake Eguchi
Takeo Sakurai
Hiroshi Tanimoto
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to DE60325765T priority Critical patent/DE60325765D1/de
Priority to AU2003272900A priority patent/AU2003272900A1/en
Priority to US10/528,430 priority patent/US7487655B2/en
Priority to EP03753961A priority patent/EP1563924B1/en
Publication of WO2004028720A1 publication Critical patent/WO2004028720A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/14Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces applying magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/16Making other particular articles rings, e.g. barrel hoops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49803Magnetically shaping

Definitions

  • Japanese Patent Application Laid-Open No. Hei 6-31122226 discloses that this electromagnetic molding is applied to the processing of a cylindrical member (hollow material).
  • an electromagnetic molding coil is inserted inside a hollow material made of aluminum extruded material, and at the outer peripheral side of a hollow material E corresponding to the existence range of the electromagnetic molding coil, An expanded tube forming mold is placed, and in this state, an instantaneous large current is applied to the electromagnetic forming coil to press the outer peripheral surface of the hollow material against the expanded tube forming mold, and the outer peripheral surface is formed into a mold. Form on the outer peripheral surface of the corresponding shape. In this way, a hollow material whose cross section changes in the longitudinal direction is manufactured.
  • the method for manufacturing a cylindrical ring with beads according to the present invention is characterized in that a side facing the cylindrical material ring is a molding surface on an outer peripheral side or an inner peripheral side of the closed metal cylindrical material ring.
  • a molding die in which a groove for bead molding is formed along the direction is arranged, and an electromagnetic molding coil is arranged on the side opposite to the mold with respect to the cylindrical raw material ring.
  • a large instantaneous current is applied to the electromagnetic forming coil, the cylindrical material ring is deformed and pressed against the molding surface of the molding die, and the magnet is formed into a shape corresponding to the molding surface. It is an improved version.
  • the term “bead” means a ridge that projects in the outer diameter direction of the cylindrical ring.
  • the present invention includes a beaded cylindrical ring referred to in the present invention, for example, a reinforcement ring of a ranflat tire.
  • an electromagnetic molding die in which an inner surface is a ring-shaped molding surface and a groove portion for bead molding is formed along a circumferential direction of the molding surface, or a ring-shaped molding surface on the outer surface side A bead forming protrusion is formed along the circumferential direction of the forming surface, and an electromagnetic forming die having grooves formed on both sides of the protrusion is used.
  • the divided molds are arranged with a gap in the axial direction.
  • the mold has a slit formed over the entire circumference in the groove, and the problem of the depression is completely solved.
  • the axial direction means the axial direction of the molding surface of the mold (or cylindrical material ring).
  • the beaded cylindrical ring is subjected to a straightening process such as a roll straightening process, and a bead is formed.
  • a straightening process such as a roll straightening process
  • Improve the dimensional accuracy of each part That is, an inner mouth and an outer roll finished to the accuracy required for the outer shape are prepared, and the cylindrical ring with beads after being electromagnetically formed into a shape corresponding to the molding surface is attached to the inner mouth.
  • the straightening is performed by rotating the roll while sandwiching it between the outer gap and the outer gap.
  • the dimensional accuracy can be improved by repeating the process of applying a momentary large current to the electromagnetic forming coil a plurality of times.
  • electromagnetic shaping diameter expansion
  • electromagnetic shaping diameter reduction
  • the second or subsequent electromagnetic forming has the meaning of correction.
  • a circular cutting blade is arranged between each molding surface corresponding to the cylindrical ring with a bead of the mold, and the cylindrical material ring is pressed when the cylindrical material ring is pressed against the molding surface of the mold. Can be cut.
  • electromagnetic forming diameter expansion, diameter reduction
  • the mold must have a plurality of sets of molding surfaces corresponding to the cylindrical ring with beads in the axial direction, and the electromagnetic molding coil body must also have a corresponding axial length.
  • each bead into a cylindrical ring with beads it is possible to separate each bead into a cylindrical ring with beads at the same time as the electromagnetic forming, thereby improving productivity.
  • a ring having a large number of holes formed in a peripheral wall thereof is used as the cylindrical material ring. It is desirable that these holes are regularly arranged on the peripheral wall. By forming a large number of holes in the peripheral wall, it is possible to reduce the weight of the cylindrical ring with beads.
  • a cylindrical material ring in which holes are regularly formed on almost the entire surface of the peripheral wall is highly effective for light weight. As this kind of cylindrical material ring, for example, punched metal is ring-shaped and its ends are joined, or it is spirally wound to melt the seam. And those in contact.
  • holes are formed in the cylindrical material ring for positioning during electromagnetic molding.
  • a large number of protrusions are formed along the circumferential direction at the point of the smallest inner diameter of the molding surface of the mold, and the cylindrical material ring is formed with the protrusions.
  • a number of holes are formed in the corresponding places along the circumferential direction, and when the mold is arranged on the outer peripheral side of the cylindrical material ring, the projections are fitted into the holes.
  • the protrusion is formed at an axial center position of the molding surface of the mold, between adjacent grooves on the molding surface, and the hole is formed at an axial center of the cylindrical material ring. Preferably, it is formed at a location.
  • a large number of protrusions are formed along the circumferential direction at the point where the outer diameter is largest on the molding surface of the mold, and the protrusions are formed on the cylindrical ring.
  • a number of holes are formed along the circumferential direction at locations corresponding to the above, and when the mold is arranged on the inner peripheral side of the cylindrical ring, the projections are fitted into the holes.
  • the protrusion is formed at an axial center position of the molding surface of the mold and formed on a ridge of the molding surface, and that the hole is formed at an axial center position of the cylindrical material ring.
  • the cylindrical material ring is accurately positioned in the mold, and the material of the cylindrical material ring does not move axially at the position of the positioning hole even during electromagnetic molding.
  • the outer diameter at the axial center position of the molding surface of the mold is set to be the largest, and the inner peripheral surface of the cylindrical material ring and the molding surface of the mold at that location. May be set so as to be in contact with each other. In any case, it is desirable to match the axial center position of the molding surface of the mold with the axial center position of the cylindrical material ring.
  • the holes formed in the cylindrical material ring can be used for connection with other members in the cylindrical ring with beads after molding.
  • resin is attached to both ends in the axial direction of the capturing ring. At this time, the resin enters the hole, and the connection between the o-ring and the resin is more reliably performed.
  • a beaded cylindrical ring formed by electromagnetic forming can be cut and separated in the circumferential direction as necessary.
  • the cutting direction is desirably, for example, parallel or oblique to the axial direction of the cylindrical ring with beads.
  • the cylindrical ring with the bead is Since the two can be fitted through the eye, it has the advantage of occupying less space for storage and transportation.
  • this beaded cylindrical ring can be joined to the closed ring again, if necessary, at the point of separation. When joining is performed by welding, butt welding is preferred, and laser welding with a small excess is particularly preferable.
  • FIG. 1 is a side view (a) and a front view (b) of a cylindrical material ring before electromagnetic forming.
  • FIG. 2 is a cross-sectional view (a), a side view '(b), and a front view (c) of a cylindrical ring with beads after electromagnetic forming.
  • FIG. 3 is a cross-sectional view (a) before forming and (b) a cross-sectional view illustrating a method of manufacturing a cylindrical ring with beads by electromagnetic forming.
  • FIG. 4 is a side view (a), a cross-sectional view (b), and a partially enlarged view (c) showing an example of a mold structure of an electromagnetic molding mold.
  • FIG. 5 is a cross-sectional view (a) before forming and (b) a cross-sectional view illustrating a method of manufacturing a cylindrical ring with beads by electromagnetic forming.
  • FIG. 6 is a side sectional view (a) and a front sectional view (b) showing a method of correcting a cylindrical ring with a bead.
  • FIG. 7 shows a method of straightening a cylindrical ring with a bead, and is a sectional view (a) before straightening and a sectional view (b) after straightening.
  • FIG. 8 shows a multi-stage molding method for a cylindrical ring with beads, a cross-sectional view before molding (a), a cross-sectional view after one-stage molding (b), and a cross-sectional diagram after two-stage molding (c). It is.
  • FIG. 9 is a cross-sectional view showing a method of forming a plurality of cylindrical rings with beads.
  • FIG. 10 is a side sectional view (a) and a front sectional view (b) showing a method of separating and correcting a plurality of connected cylindrical rings with beads.
  • FIG. 11 is a front view of another cylindrical material ring used in the present invention. '
  • FIG. 13 is a cross-sectional view (a) before molding and a cross-sectional view (b) after molding, for explaining a method of manufacturing a cylindrical ring with a bead using the cylindrical material ring.
  • FIG. 15 illustrates a method for manufacturing a cylindrical ring with beads using the cylindrical material ring, and is a sectional view (a) before molding and a sectional view (b) after molding.
  • FIG. 16 is a front view of still another cylindrical material ring used in the present invention.
  • Fig. 19 is a perspective view of a cylindrical ring with beads that has been separated and joined again by welding.
  • FIG. 20 After separation, with bead joined by rivet again It is a side view (a) of a cylindrical ring and its AA sectional view (b).
  • FIG. 24 is a cross-sectional view (a) before forming and a cross-sectional view (b) after forming, illustrating a method of manufacturing a cylindrical ring with beads by electromagnetic forming.
  • FIG. 25 is a diagram illustrating a method for manufacturing a cylindrical material ring. BEST MODE FOR CARRYING OUT THE INVENTION
  • the cylindrical ring 17 with a bead is a substantially rotating body, and is substantially plane-symmetric with a plane perpendicular to the axial direction at the axial center position as a plane of symmetry.
  • the material of the cylindrical material ring 1 is drawn into the grooves 3 to 5 with electromagnetic forming, and the As a result, the axial width of the beaded cylindrical ring 17 is smaller than the axial width of the cylindrical material ring 1.
  • 37 is a bolt for fixing the split molds 25 to 28, and 38 is a nut.
  • the top of the bead of the beaded cylindrical ring is formed in this gap 32 to 34 (the bottom of the groove 22 to 24).
  • the width of the gaps 32 to 34 air can be evacuated without any trouble.
  • the divided molds adjacent to each other with the gaps 32 to 34 interposed therebetween Can be deformed to a shape almost along the extrapolated curve (see phantom line E in Fig. 4 (c)).
  • the obtained cylindrical ring with beads is substantially a rotating body, and is substantially plane-symmetric with respect to a plane perpendicular to the axial direction at the axial center position as a plane of symmetry.
  • each of the ridges 4 1 and 4 2 formed on the molding surface of the mold 4 4 faces outward in the radial direction, and each of the grooves 43 a to 43 c has an opening facing outward in the radial direction.
  • 1, 42 and the groove portions 43a to 43c are connected to each other in a waveform, and the ends of the groove portions 43a and 43c are connected to the end parallel portions 46 and 47 of the molding surface, respectively.
  • the molding surface of the mold 44 substantially forms a rotating surface, and is substantially plane-symmetric with a plane perpendicular to the axial direction at the axial center position as a plane of symmetry. Further, the axial center position of the molding surface of the mold 44 and the axial center position of the cylindrical material ring 1 are matched.
  • a hole or a slit 48 for venting air is formed at the bottom of each of the grooves 43a to 43c, as in FIG.
  • Beaded cylinder consisting of two circumferential beads 5 3 and 5 4 (grooves 55 a to 55 c are formed on both sides and are connected to each bead 5 3 and 5 4 ′)
  • Shaped ring 5 6 The beaded cylindrical ring 56 is substantially a rotating body, and is substantially plane-symmetric with respect to a plane perpendicular to the axial direction at the axial center position as a plane of symmetry. With the electromagnetic forming, the material of the cylindrical material ring 1 is drawn into the grooves 43 a to 43 c, and as a result, the axial width of the cylindrical ring 56 with the bead is the same as that of the cylindrical material ring 1. It is smaller than the axial width.
  • Figure 6 shows the cylindrical ring with beads after electromagnetic forming (expansion and reduction).
  • Fig. 3 shows a method of correcting a knurl for improving dimensional accuracy.
  • the cylindrical material ring 1 When a large instantaneous current is applied to the electromagnetic molding coil body 75 in the state of FIG. 8A, the cylindrical material ring 1 instantaneously expands in diameter and is pressed against the molding surface of the mold 74. However, at this time, the electric energy applied to the electromagnetic forming coil body 75, that is, the magnetic repulsive force generated in the cylindrical material ring 1 is, as shown in FIG. It is set so that it is not large enough to form a shape sufficiently along the molding surface (particularly, the grooves 7 1 to 7 3). That is, the cylindrical material ring 1 is drawn into the grooves 71 to 73 and protrudes from the groove.
  • bead forming grooves 84 to 86 are formed along the circumferential direction, and two sets of the grooves 84 to 86 are formed in the axial direction.
  • a circular cutting blade 87 is formed inward at the intermediate position.
  • a large number of holes or slits 88 for venting air are formed along the circumferential direction.
  • the mold 82 is composed of a plurality of divided pieces divided in the circumferential direction.
  • cylindrical ring with bead Are formed to form a cylindrical ring with beads.
  • FIG. 11 shows a cylindrical material ring 101 in which a large number of holes 102 are formed on the entire peripheral wall.
  • This cylindrical material ring 101 is formed by winding and bending a rectangular metal plate (for example, an aluminum alloy plate) in which holes 102 are regularly formed in a grid pattern, that is, punching metal into a cylindrical shape. It can be obtained by joining the parts by welding or the like.
  • the cylindrical material ring 101 is electromagnetically formed using, for example, a mold 6 and an electromagnetic forming coil 7 shown in FIG. 3, a lighter cylindrical ring with beads can be formed. Since a large number of holes 1 ⁇ 2 are formed on the entire surface of the peripheral wall of the cylindrical material ring 101, air vent holes and slits formed in the mold 6, etc., and the mold 2 1 ( There is no need for the air vent clearance formed in Figure 4).
  • FIG. 12 shows a cylindrical material ring 103 in which a large number of holes 102 are formed symmetrically along the circumferential direction on the peripheral walls at both ends in the axial direction.
  • These holes 102 constitute two rows of holes (the outer row is 102 a and the inner row is 102 b) that make a round on the peripheral wall at each end in the axial direction.
  • the holes 102 are greased at equal intervals.
  • the shaped material ring 103 is made of a rectangular metal plate (for example, an aluminum alloy plate) in which a large number of holes 102 are formed in two rows near the long side edge and parallel to the long side. It can be obtained by winding and joining the ends by welding or the like.
  • FIG. 13 shows the electromagnetic forming method using this cylindrical material ring 103.
  • a groove 104 for bead forming is formed on the outer peripheral side of the cylindrical material ring 103 along the circumferential direction of the forming surface.
  • the molded mold 106 (comprising a plurality of divided pieces divided in the circumferential direction in the same manner as the mold 6) is arranged, and the coil member for electromagnetic forming is formed on the inner peripheral side of the cylindrical material ring 103. 107 is arranged.
  • the molding surface of the mold 106 substantially forms a rotating surface, and is substantially plane-symmetric with a plane perpendicular to the axial direction at the axial center position as a plane of symmetry.
  • the axial center position of the molding surface of the mold 106 and the axial center position of the cylindrical material ring 103 are made to coincide with each other.
  • the cylindrical ring 1 13 with a bead is substantially a rotating body (it cannot be said to be a rotating body in a strict sense due to the formation of a hole 102, etc.). It can be regarded as a rotating body if viewed), and the plane is substantially symmetric with respect to the plane perpendicular to the axial direction at the axial center position.
  • the material of the cylindrical material ring 103 becomes the groove part 104, 1 As a result, the material at the end of the cylindrical material ring 103 located outside the grooves 104 and 105 in the axial direction flows into the grooves 104 and 105.
  • the holes 102 of the cylindrical material ring 103 were located outside the grooves 104 and 105 on the molding surface of the mold 106 in both hole rows (hole rows 102a and 102b). As the material at the end of the material ring 103 flows into the grooves 104, 105, the row of holes 102b is positioned in the grooves 104, 105 '.
  • the axial row 'inner hole row 102b is located on the beads 1 1 1 and 1 12 and the axial outer hole row 102a is the parallel section 108 and 109.
  • the cylindrical shape without holes is formed.
  • the contact area between the molding surface of the mold 106 and the cylindrical ring 103 is reduced due to the formation of the hole 102 as compared with the ring 1 etc., and the frictional resistance between the two is reduced.
  • the cylindrical ring 103 Flow into the grooves 104 and 105 becomes smooth, and electromagnetic molding can be performed with high accuracy. This effect can be obtained similarly in the case of forming the cylindrical ring 101.
  • FIG. 14 shows a cylindrical material ring 1 15, which is formed at a central position in the axial direction with a large number of holes 102 in one row along the circumferential direction at equal intervals.
  • This cylindrical ring material 1 15 is obtained by winding a rectangular metal plate (for example, an aluminum alloy plate) having a large number of holes 102 in a row into a cylindrical shape, and joining the ends by welding or the like. be able to.
  • a rectangular metal plate for example, an aluminum alloy plate
  • Fig. 15 shows an electromagnetic forming method using this cylindrical material ring 115.
  • Fig. 15 (a) it is placed on the outer peripheral side of the cylindrical material ring 115.
  • the mold 1 16 (composed of a plurality of divided pieces circumferentially divided in the same manner as the mold 6) has a molding surface on the inner surface side and is formed along the circumference of the molding surface. Grooves 1 17 and 1 18 are formed, and an intermediate portion 1 19 of the grooves 1 17 and 1 18 protrudes toward the inner diameter side, and a projection 1 2 1 is formed at the vertex where the inner diameter is the smallest. They are formed at equal intervals along the circumferential direction.
  • the molding surface of the mold 1 16 is substantially a rotating surface (there is a projection surface 121 and the like, so it is not a rotating surface in a strict sense, but the function of the molding surface is substantially a rotating surface.
  • the plane is substantially symmetric with respect to the plane perpendicular to the axial direction at the axial center position as a plane of symmetry.
  • the distance between adjacent protrusions 1 2 1 on the mold 1 1 6 and the distance between adjacent holes 1 0 2 on the cylindrical material ring 1 1 5 are the same, and the circumference of the cylindrical material ring 1 1 5
  • the inside diameter of the vertex of the intermediate portion 1 19 is almost the same as the outer shape of the cylindrical material ring 1 15, and the protrusion 1 2 1 is fitted into the hole 10 2
  • the molding surface of the mold 116 is in contact with the outer peripheral surface of the cylindrical material ring 115 at the vertex of the intermediate portion 119.
  • the cylindrical ring with beads 127 is substantially a rotating body, and is substantially plane-symmetric with respect to a plane perpendicular to the axial direction at the axial center position as a plane of symmetry.
  • the cylindrical material ring 1 1 5 is accurately positioned in the mold 1 1 6 Therefore, during electromagnetic forming, the material does not move in the axial direction at the center of the cylindrical material ring 115, so that the molding is performed with high precision.
  • the protrusions that fit into the holes 1 0 2 of the cylindrical material ring 1 15 It is formed at the point where the outer diameter of the molding surface of the mold is the largest. It is desirable that the projection is formed at the center position in the axial direction, similarly to the mold 116.
  • the outer diameter of the molding surface is substantially the same as the inner diameter of the cylindrical material ring 115.
  • the cylindrical material ring 101 can also use the holes 102 formed in the circumferential direction (especially the hole row at or near the center) for positioning.
  • Figure 16 shows the cylindrical material ring 1 31, a large number of holes 102 are formed in a row at equal intervals along the circumferential direction at both ends in the axial direction.
  • This cylindrical material ring 13 1 was electromagnetically molded using a mold 10 6 shown in FIG. 13 to obtain a cylindrical ring 13 3 with beads (solid line) shown in FIG. 17 (a). Part).
  • the imaginary line in Fig. 17 (a) when the resin 13 3 is melted and attached to both axial ends of the cylindrical ring 13 3 with beads, the shape shown in Fig. 17 (b) is obtained.
  • the lug 13 enters the hole 102, and the beaded cylindrical ring 13 2 and the resin 13 3 are firmly connected.
  • Figures 18 (a) and (b) show a cylindrical ring with a bead formed by electromagnetic forming, which is cut in the circumferential direction.
  • the cutting direction is parallel to the axial direction (a) and oblique to the axial direction (b) ′.
  • the cylindrical rings 1 3 4 and 1 3 5 The two can be fitted together through cuts 1 3 6 and 1 3 7). If necessary, the cylindrical ring with a bead 13 4, 1, 35 can be joined again by welding or the like to form a closed ring.
  • Figures 19 (a) and (b) show the beaded cylindrical rings 1 34, 1 35 joined by welding (welded sections 1 38, 1 39).
  • the cylindrical rings with beads 13 4 and 13 5 may be used either circumferentially separated (see Figure 18) or rejoined (see Figure 19). In some applications it may be desirable to cut diagonally to the axial direction. For example, when a cylindrical ring with beads is used as a reinforcing ring for a run-flat tire, the circumferential length t 1 of the cut 1 3 7 or the weld 1 3 9 in the cylindrical ring 1 3 If the width in the circumferential direction of the ground contact surface is set to be larger than t0, the whole vehicle weight is not applied to the relatively weak cut 1337 or the welded portion 1339 at once.
  • the hole 102 can be used for joining. This will be described using a cylindrical ring 13 with a bead as an example.
  • Fig. 20 shows a cylindrical ring with bead 1332 cut off in the circumferential direction, and the ends are partially overlapped and joined with rivets 1441.
  • the rivets 14 1 penetrate through the overlapped holes 102 and join the ends.
  • Fig. 21 shows a cylindrical ring with bead 1332 cut off in the circumferential direction, the ends are partially overlapped, and the ends are joined with molten resin 142.
  • the resin 142 enters the overlapped holes 102, solidifies, and joins the ends.
  • Figure 22 shows the cylindrical ring with bead 13 2 cut off in the circumferential direction, the cut 14 3 was opened, and this was joined with the molten resin 14 4 Things.
  • the resin 144 enters the hole 102 at the end and solidifies, and joins the end. In this case, the cuts 144 may be closed and joined by the resin 144.
  • the arrangement of the large number of holes 102 is as shown in Fig. 23 (a ) (See the cylindrical ring with beads 101 in Fig. 11), the zigzag arrangement shown in Fig. 23 (b) Is shifted by half a pitch). This is because, as shown in Figs. 23 (a) and (b), when oblique hole rows composed of a large number of holes 102 are seen, the distance between the hole rows is hi) More staggered arrangement (h
  • FIG. 24 shows a mold 1 56 similar to the mold 106 (divided in the circumferential direction like the mold 6). This figure shows a method of electromagnetically forming a cylindrical material ring 1 using a plurality of divided pieces).
  • the mold 1556 has a molding surface on the inner surface side, and grooves 151, 152 for bead molding are formed along the circumferential direction of the molding surface, and an intermediate portion between the two grooves 151, 152. 15 3 protrudes toward the inner diameter side, and the inner diameter of the molding surface is the smallest at the intermediate portion 15 3.
  • the molding surface of the mold 156 substantially forms a rotating surface, and is substantially plane-symmetric with respect to a plane perpendicular to the axial direction at the center position of the mold 156 in the axial direction.
  • a cylindrical raw material ring 1 is arranged inside a mold 106, and a magnetic core member 157 for electromagnetic molding is arranged on the circumference thereof.
  • Outer diameter of cylindrical material ring 1 and middle part of mold 1 06 1 5 ⁇ 3 inner diameter Are approximately the same, and the molding surface of the mold 156 and the outer peripheral surface of the cylindrical material ring 1 are in contact with each other at the intermediate portion 153. Also, the axial center position of the molding surface of the mold 156 and the axial center position of the cylindrical material ring 1 are matched. '
  • the cylindrical ring with beads 164 is substantially a rotating body, and is substantially symmetric with respect to a plane perpendicular to the axial direction at the axial center position as a plane of symmetry.
  • the axial center position of the cylindrical material ring 1 is the position of the intermediate portion 153 where the inner diameter of the molding surface of the mold 156 is the smallest (the axial center position of the molding surface). In), a more uniform molding can be realized because the shape is positioned.
  • Fig. 25 (a) to (d) show the method of manufacturing a cylindrical material ring.
  • the cylindrical material ring 17 1 shown in (a) is abutted against the cylindrical material ring 1 shown earlier.
  • the difference is that the joint (weld bead) 172 formed by joining is formed obliquely to the axial direction. Since the joint portion 172 is oblique, the circumferential weight balance of the cylindrical material 171 is improved as compared with the cylindrical material 1 in which the joint portion 2 is formed parallel to the axial direction.
  • the cylindrical material ring 173 shown in Fig. 25 (b) is made by rolling a rolled sheet material into a spiral and joining the seams. Just one lap.
  • the cylindrical material ring 173 has a long joint portion, but has an excellent circumferential weight balance.
  • FIG. 25 (c) shows a spirally wound rolled sheet material, joining the seams, manufacturing a spiral tube in advance, cutting this into a predetermined length (the cutting position is indicated by virtual lines), and A method for manufacturing the cylindrical material ring 173 will be described.
  • FIG. 25 (d) shows a case where a spiral tube having a joint 176 formed densely is manufactured, cut into a predetermined length (the cutting position is indicated by a virtual line), and each cylindrical material ring 175 is formed. The manufacturing method will be described.
  • This cylindrical material ring 175 has an excellent balance of weight S in the circumferential direction and the force S at which the joint 176 becomes longer.
  • a cylindrical material ring similar to that shown in Fig. 1 was formed from an aluminum alloy plate, and this was electromagnetically molded to produce a cylindrical ring with beads.
  • the material aluminum alloy plate is an extruded plate (6061-F material), which is formed into a cylindrical shape by roll bending using three rolls so that the extrusion direction is the feed direction of roll bending.
  • the ends were butt-welded (the joint was parallel to the center axis of the ring).
  • the cylindrical ring had a thickness of 2.2 mm, an inner diameter of 494 mm, and an axial width of 222 mm.
  • Laser welding and MIG welding laser welding, output 40 kW, speed 3 m / min, wire A53 56WY, ⁇ 1.2 mm, feeding speed 4 m / min, atmosphere Ar 100%, Mig welding was performed at a current of 80 A, voltage of 18 V, wire A5356WY, ⁇ 1.2 mm, feed rate of 60 cmZ, atmosphere of Ar 100%, and supply rate of 15 1 / Min.
  • this cylindrical material ring was subjected to electromagnetic molding (diameter expansion) using the same mold and the coil for electromagnetic molding as shown in FIG.
  • the minimum diameter of the molding surface of the mold (the diameter of the parallel part at both ends) 504mm, the diameter of the electromagnetic molding coil body 490 mm, the length of the magnetic field stabilization area of the electromagnetic molding coil body (the area where almost the same magnetic flux density is obtained) is 25 O mm, and the cylindrical ring is placed at the center of this magnetic field stabilization area.
  • the energy was 45 kJ.
  • Figure 2 shows a cylindrical ring with beads that has been electromagnetically formed.
  • Each of the welding methods has an inside diameter of 500 mm, an outside diameter of 570 mm, an end thickness of 2 mm, and an axial width of 192 mm, and the bead has no dents and follows the molding surface of the mold. It was molded into a shape.
  • the cylindrical ring with a bead with high precision can be manufactured with low cost and high productivity by electromagnetic molding.
  • the cylindrical ring with beads formed by expanding the diameter has excellent characteristics particularly for reinforcing rings of flat tires. , ⁇

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Tires In General (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Powder Metallurgy (AREA)

Description

明 細 書 ビード付き円筒形リングの製造方法及びその方法に用いる金型 技術分野 ,
本発明は、例えばランフラットタイヤの補強リング等として利用でき るビード付き円筒形リングの製造方法およびその方法に用いる金型に 関する。 背景技術
電磁成形は、 コイルに瞬間的に大電流を流して強力な磁界を作り、 そ の中に置いた被成形体 (導体) に発生する渦電流と磁界の相互作用で成 形する方法である。 例えば、 特開平 6— 3 1 2 2 2 6号公報、 特開平 9 - 1 6 6 1 1 1号公報及び特開昭 5 8 - 4 6 0 1号公報等に記載され ているように公知技術である。 瞬間大電流とは、 例えば 1 0 k A以上の レベルの電流値である。
特開平 6— 3 1 2 2 2 6号公報には、 この電磁成形を円筒形の部材 ( 中空素材) の加工に応用することが開示されている。 その公報の記載に よれば、 アルミ二ゥム押出材製の中空素材の内部に電磁成形用コィルを 揷入配置すると共に、電磁成形用コイルの存在範囲に対応する中空素材 Eの外周側に、 拡管形状成形用型を配置し、 その状態で、 電磁成形用コ ィルに瞬間大電流を流すことにより、 中空素材の外周面を上記拡管形状 成形用型に押し付け、'該外周面を型に対応する形状の外周面に成形する 。 このようにして長さ方向に横断面が変化した中空材が製造される。 し力 し、 上記公報に記載の方法を単にビード付き円筒形リングの製造 方法に適用しても、 製品の寸法精度が十分に得られず、 且つ生産効率を 上げることもできなかつた。 電磁成形によるビード付き円筒形リングの 製造方法を実用化しようとすれば、 更に様々な工夫が必要とされてきた 本発明は、従来のビード付き円筒形リングの製造方法の問題点に鑑み てなされたもので、 精度が高いビード付き円筒形リングを、 低コストで 、 力つ高い生産性のもとで製造することを目的とする。 ·' 発明の開示
本発明に係るビード付き円筒形リングの製造方法は、閉じた金属製の 円筒形素材リングの外周側あるいは内周側に、 前記円筒形素材リングに 対向する側が成形面とされ前記成形面の周方向に沿ってビード成形用 の溝部が形成された成形用の金型を配置し、 前記円筒形素材リングに対 して前記金型と反対側に電磁成形用コィルを配置し、 その状態で前記電 磁成形用コイルに瞬間大電流を流し、 前記円筒形素材リングを変形させ て前記成形用金型の成形面に押し付け、 前記成形面に対応した形状に竃 磁成形することを基本とし、 これに改良を加えたものである。
はじめに、 本発明の前提となる電磁成形によるビード付き円筒形リン グの製造について述べる。
本発明においてビードとは、 円筒形リングの外径方向に突出する突条 を意味する。 本発明で言うビード付き円筒形リング、 例えば、 ランフラ ットタイヤの補強リングを含む。
前述の基本的方法は次の 2つの方法を含む。 すなわち、 閉じた金属製 の円筒形素材リングの外周側に、 内面側が成形面とされ前記成形面の周 方向に沿ってビード成形用の溝部が形成された金型を配置し、前記円筒 形素材リングの内周側に電磁成形用コイルを配置し、 その状態で前記電 磁成形用コイルに瞬間大電流を流し、 前記円筒形素材リングを拡径して 前記成形用金型の成形面に押し付け、前記成形面に対応した形状に電磁 成形する方法 (いわいる拡径加工方法)、 および閉じた金属製の円筒形 素材リングの内周側に、 外面側が成形面とされ前記成形面の周方向に沿 つてビード成形用の突条が形成された金型を配置し、 前記円筒形素材リ ングの外周側に電磁成形用コィルを配置し、 その状態で前記電磁成形用 コイルに瞬間大電流を流し、 前記円筒形素材リングを縮径して前記成形 用金型の成形面に押し付け、前記成形面に対応した形状に電磁成形方法 (いわいる縮径加工方法)。
電磁成形用金型としては、 内面側がリング状の成形面とされ、 該成形 面の周方向に沿ってビード成形用の溝部が形成された電磁成形用金型、 又は外面側がリング状の成形面とされ、 該成形面の周方向に沿ってビー ド成形用の突条が形成され、該突条の両側に溝部が形成ざれた電磁成形 用金型が用いられる。
円筒形素材リングの素材の種類としては、 導電性の良好な鲖又は銅合 金若しくはアルミニウム又はアルミェゥム合金が望ましい。 また、 これ らの素材の質としては、 焼鈍材 (アルミニウム又はアルミニウム合金で あれば、 J I S H 0 0 0 1に規定される O材) や熱間,上がり材 (同じく J I S H 0 0 0 1に規定される F材) が望ましい。 これら焼鈍材ゃ熱間 上がり材は共に導電性が良好であり、 また熱間上がり材はさらに低コス トで供給できる利点がある。 アルミニウム合金は一般に導電率が良好で 比較的比強度が高く、 特に J I S 6 0 0 0系アルミニウム合金、 なかで も 6 0 6 3、 6 0 6 1等が望ましい。 5 0 0 0系であれば特に 5 0 5 2 等が望ましい。
電磁成形に供される前記円筒形素材リングとして、圧延板材又は押出 板材をリング状に曲げカ卩ェし、 端部を接合したもの、 あるいは円筒形断 面に押し出し、 それを所定長さ (押出軸方向の長さ) に切断したものが 利用できる。 押出板材の場合、 断面の肉厚を任意に設定することができるため、 電 磁成形により拡径又は縮径したとき薄肉化する箇所'(拡径する場合はビ 一ドが形成される箇所及びその近傍、縮径する場合はビードの両側の溝 部が形成される箇所及びその近傍) を予め比較的肉厚としておけば、 電 磁成形後のビード付き円筒リングの肉厚を均一化することができる。 また、圧延板材又は押出板材をスパイラル管を製造する要領で螺旋状 に巻き、 その継ぎ目を接合した'ものを円筒形素材リングとして利用する こともできる。 この場合、 長尺のスパイラル管を製造し、 これを円筒形 素材リングとして必要な長さに切断してもよい。
溶接により円筒形リングを形成する場合、重ね溶接では板の重なり部 分にどうしても微小な隙間ができ、電磁成形時にそこにスパークが発生 して正常な電磁成形を妨げるおそれがあるため、重なり部分ができない 突合せ溶接が望ましい。 ,
溶接方法として抵抗溶接、 ミグ溶接、 レーザ溶接、 F SW (摩擦撹拌 溶接) 等、 各種方法を利用することができ、 突合せ継手の開先形状とし ても各種形状が利用できるが、全周にわたり均一な厚みとすることが望 ましく、 特に接合後、 接合部の肉厚が薄くなるのは望ましくない。 逆に 、 余盛が余りに多い場合はそれを切除する必要がある。 このため、 余盛 りが少ないレーザ溶接が好適である。 . 電磁成形は、 ごく短時間に被加工物に繰り返し負荷がかかる特性を有 するので、 形状凍結性が優れ (スプリングバックが少ない)、 ビード付 き円筒形リングを高精度で成形することができ、真円度を精密に出しゃ すい。 特に放射状に拡径して成形する場合、 縮径して成形する場合より 高い真円度を実現できる。 また、 電磁成形が上記特†生を有するため、 従 来の加工方法に比べて加工硬ィヒが大きく、 ビード (特にビード頂部) は 加工硬化により強化される。 ビード付き円筒形リングの用途として、 ランフラットタイヤの補強リ ングが挙げられる。 ランフラットタイヤの捕強リングは高い真円度が必 要で、 かつ踏面 (タイヤを介して接地する部分) がビード頂部になるた め、 真円度が高くビードが強化された (つまり拡径により電磁成形され た) ビード付き円筒形リングは、 前記補強リングとして特に適する。 な お、 ランフラットタイヤの補強リングとして、 板厚 3 mm以下のアルミ ' ニゥム又はアルミニウム合金が用いられる。
前記ビード付き円筒形リングは、素材として円筒形の押出材を用いた 場合は接合部がないが、 通常は少なくとも 1箇所の接合部、 望ましくは 突合せ溶接による接合部を有する。 この接合部は、 軸方向に平行又は斜 めに形成される。
次に、本発明に係るビード付き円筒形リングの製造方法の特徴につい て述べる。
前記金型の成形面は、軸方向の中心位置における軸方向に垂直な平面 を対称面として面対称とする。 さらに、 前記円筒形素材リングの軸方向 の中心位置を前記金型の成形面の軸方向の中心位置に合わせることが 望ましい。 円筒形素材リングが電磁成形により拡径又は縮径して成形さ れるとき、 軸方向長さが短縮するが (成形面の溝部に材料が引き込まれ るため)、 上記のような成形面にすることにより、 円筒形素材リングの より均等な短縮及び成形が行われる可能性が高まるからである。 なお、 金型の成形面の軸方向と円筒形素材リングの軸方向は一致させる。
あるいは、 本発明の金型の溝部には、 溝部の外と連通する穴を設けて おく。 すなわち、 エア抜きのための穴又はスリットを形成しておく。 電 磁成形は数 1 0 0 s e c前後のごく短時間で成形が完了するため、成 形時に金型と円筒形素材リングの隙間に存在するエアが逃げるために 十分な時間は無い。 そのため、 そのエアは前記溝部において金型とそこ に押し付けられる材料との間に閉じ込められて高圧化する。 その高圧ェ ァが前記溝部において材料が成形面に押し付けられるのを妨げるので、 電磁成形後のビード表面に凹みが形成されるなどの問題がある。 エア抜 きのための穴又はスリットを形成しておくことにより、 この問題が解消 される。
あるいは、 本発明の金型は、 円周方向に分割された複数個の分割片か らなる。 このような構成により、 成形完了後のビード付き円筒形リング を金型から取り出すことが容易となる。
あるいは、 本発明の金型構造は、 内面側がリング状の成形面とされ、 該成形面の周方向に沿ってビード成形用の溝部が形成された電磁成形 用金型の場合、前記溝部において軸方向に分割された複数個の分割金型 からなり.、 該分割金型同士が軸方向に隙間を置いて配置されている。 外 面側がリング状の成形面とされ、 該成形面の周方向に沿ってビード成形 用の突条とその両側に'溝部が形成された電磁成形用金型の場合、 前記溝 部において軸方向に分割された複数個の分割金型からなり、該分割金型 同士が軸方向に隙間を置いて配置されている。 このような構成により、 前記金型は溝部に全周に渡るスリットが形成されることになり、 前記凹 みの問題が完全に解消される。 ここで、 軸方向とは、 金型の成形面 (又 は円筒形素材リング) の軸方向を意味する。
あるいは、 電磁成形 (拡径、 縮径) によりビード付き円筒形リングを 成形した後、 仮に寸法精度が不十分であるとき、 当該ビード付き円筒形 リングに例えばロール矯正等の矯正工程を施し、 ビード等、 各部の寸法 精度を向上させる。 すなわち、 外形が要求する精度に仕上げられた内側 口ールぉよび外側ロールを用意し、 前記成形面に対応した形状に電磁成 形された後のビード付き円筒形リングを、 前記内側口ールと前記外側口 ールとの間に挟んでロールを回転させることにより矯正する。 あるいは、 電磁成形用コイルに瞬間大電流を流す工程を複数回繰り返 すことによって寸法精度を向上させることもできる。 この場合、 電磁成 形 (拡径) を行った後、 電磁成形 (縮径) を行い、 又はその逆の順で行 うこと、 あるいは拡径又は縮径の同種の電磁成形を複数回繰り返して行 うことも可能である。 いずれの場合も、 2回目以降の電磁成形は矯正の 意味をもつ。
あるいは、金型のビード付き円筒形リングに対応する各成形面の間に 、 円形の切断刃を配置し、 円筒形素材リングが前記金型の成形面に押し 付けられた時に前記円筒形素材リングを切断可能とする。 これにより、 電磁成形 (拡径、 縮径) において、 ビード付き円筒形リングの複数個取 り (一度に複数個のビード付き円筒形リングを成形) が実現できる。 こ の場合、金型はビード付き円筒形リングに対応する成形面を軸方向に複 数組有する必要があり、 電磁成形用コイル体もそれに対応する軸方向長 さをもたなくてはならない。 この場合、 電磁成形と同時に各ビード付き 円筒形リングに分離することが可能となり、 生産性が向上される。 あるいは、複数個取りを行う場合において、 ビード付き円筒形リング を電磁成形金型内で分離しない場合、 切断刃付きのロールを用い、 口一 ル矯正の要領で、 ロール矯正と同時に各ビード付き円筒形リングに分離 する。
あるいは、 本発明において、 前記円筒形素材リングとして、 その周壁 に多数の穴を形成したものを用いる。 この穴は周壁に規則的に配置され ていることが望ましい。 周壁に多数の穴を形成することにより、 ビード 付き円筒形リングの軽量ィ匕を図ることができる。 周壁のほぼ全面に規則 的に穴を形成した円筒形素材リングであれば、 軽量ィ匕の効果が高い。 こ の種の円筒形素材リングとして、 例えばパンチングメタルをリング状 ίこ 曲げ加工して端部を接合したもの、 あるいは螺旋状に巻いて継ぎ目を溶 接したものが挙げられる。
電磁成形時には、 円筒形素材リングの材料が金型の成形面の溝部に押 し込まれ、 それに伴い、 円筒形素材リングの材料が金型の成形面に沿つ て軸方向に移動し、 このとき金型の成形面と円筒形素材リングの間に強 い摩擦抵抗が生じる。 前記円筒形素材リングに多数の穴を形成すること により、電磁成形時に接触する金型と円筒形素材リングの接触面積を減 らしその間の摩擦抵抗を低減させることができる。 この結果、 金型の成 形面の溝部外から溝部内への材料の流入をスムーズとし、 より精度の高 い成形を行うことができる。 特に、 円筒形素材リングの周壁のうち電磁 成形時に金型の成形面の溝部外から溝部内に流入する箇所に、 円周方向 に沿って多数の穴を形成しておくことが有効である。 この箇所は、 一般 には円筒形素材リングの軸方向両端部である。
あるいは、 電磁成形時の位置決め用として、 円筒形素材リングに穴を 形成する。 電磁成形による拡径によってビード付き円筒形リングを成形 する場合、金型の成形面の最も内径の小さい箇所に周方向に沿って多数 の突起を形成し、 前記円筒形素材リングには前記突起に対応する箇所に 円周方向に沿って多数の穴を形成し、金型を前記円筒形素材リングの外 周側に配置したとき、 前記突起が前記穴にはめ込まれるようにする。 こ の場合、 前記突起は前記金型の成形面の軸方向の中心位置で、 前記成形 面の隣接する溝部と溝部の間に形成され、 かつ前記穴は前記円筒形素材 リングの軸方向の中心位置に形成されるのが望ましい。
電磁成形による縮径によってビード付き円筒形リングを成形する場 合、金型の成形面の最も外径の大きい箇所に周方向に沿って多数の突起 を形成し、前記円筒形リングには前記突起に対応する箇所に円周方向に 沿って多数の穴を形成し、金型を前記円筒形リングの内周側に配置した とき、 前記突起が前記穴にはめ込まれるようにする。 この場合、 俞記突 起は前記金型の成形面の軸方向の中心位置で、 前記成形面の突条に形成 され、 力つ前記穴は前記円筒形素材リングの軸方向の中心位置に形成さ れるのが望ましい。
このような構成により、金型内に円筒形素材リングが正確に位置決め され、 電磁成形時にも、 この位置決め用穴の位置では円筒形素材リング の材科の軸方向移動が生じない。
あるいは、 金型の成形面の軸方向中心位置において、 円筒形素材リン グと前記金型の前記成形面とが接するようにして電磁成形を行う。すな わち、 拡径による場合、 前記金型の成形面の軸方向の中心位置の内径を 最も小さく設定し、 かつ当該箇所において前記円筒形素材リングの外周 面と前記金型の成形面が接するように設定すると、 円筒形素材リングは 成形時に前記箇所において位置決めされた形になるので、 より均等な成 形が実現される。 逆に縮径による場合、 前記金型の成形面の軸方向の中 心位置の外径を最も大きく設定し、 かつ当該箇所において前記円筒形素 材リングの内周面と前記金型の成形面が接するように設定すればよい。 いずれの場合も、 金型の成形面の軸方向の中心位置と円筒形素材リング の軸方向の中心位置を一致させることが望ましい。
一方、 円筒形素材リングに形成された穴は、 成形後のビード付き円筒 形リングにおいて他部材との連結に利用できる。 例えばランフラットタ ィャの補強リングであれば、 該捕強リングの軸方向.両端に樹脂を取り付 ける。 この際に前記穴に樹脂が入り込み、 前記 ¾¾虽リングと樹脂の連結 がより確実に行われる。
また一方、電磁成形により成形したビード付き円筒形リングは、必 要に応じて、 切断して円周方向に切り離すことができる。 切断の方向は 、例えばビード付き円筒形リングの軸方向に平行又は前記軸方向に対し 斜めが望ましい。 このビード付き円筒形リングは切り離した箇所 (切れ 目)'を通して 2つをはめ合わせることができるので、 保管や運搬の際に 占有スペースが小さくなる利点がある。 さらに、 このビード付き円筒形 リングは、 必要に応じて、 切り離した箇所を接合して再び閉じたリング にすることができる。 接合を溶接により行う場合、 突き合わせ溶接が望 ましく、 特に余盛りが少ないレーザ溶接が好適である 図面の簡単な説明
【図 1】 電磁成形前の円筒形素材リングの側面図 (a) 及び正面 図 (b) である。
【図 2】 電磁成形後のビード付き円筒形リングの断面図 ( a )、 側面図 '(b) 及び正面図 (c) である。
【図 3】 電磁成形によるビード付き円筒形リングの製造方法を説 明するもので、 成形前の断面図 (a) 及び成形後の断面図 (b) である
【図 4】 電磁成形用金型の金型構造の一例を示す側面図 (a)、 断面図 (b) 及びその一部拡大図 (c) である。
【図 5】 電磁成形によるビード付き円筒形リングの製造方法を説 明するもので、 成形前の断面図 (a) 及び成形後の断面図 (b) である
【図 6】 ビード付き円筒形リングの矯正方法を示すもので、 側面 断面図 (a) 及び正面断面図 (b) である。
【図 7】 ビード付き円筒形リングの矯正方法を示すもので、 矯正 前の断面図 (a) 及び矯正後の断面図 (b) である。
【図 8】 ビード付き円筒形リングの多段階成形法を示すもので、 成形前の断面図 (a)、 1段成形後の断面図 (b) 及び 2段成形後の断 面図 (c) である。 【図 9】 ビード付き円筒形リングの複数個取り成形方法を示す断 面図である。
【図 1 0】 複数個連接したビード付き円筒形リングの分離及び矯 正方法を示すもので、 側面断面図 (a ) 及び正面断面図 (b ) である。
【図 1 1】 本発明に使用する他の円筒形素材リングの正面図であ る。 '
【図ュ 2】 本発明に使用するさらに他の円筒形素材リングの正面 図である。 '
【図 1 3】 その円筒形素材リングを使用したビ一ド付き円筒形リ ングの製造方法を説明するもので、 成形前の断面図 (a ) 及び成形後の 断面図 (b ) である。
【図 1 4】 本発明に使用するさらに他の円筒形素材リングの正面 図である。
【図 1 5】 その円筒形素材リングを使用したビード付き円筒形リ ングの製造方法を説明するもので、 成形前の断面図 (a ) 及び成形後の 断面図 (b ) である。
【図 1 6】 本発明に使用するさら 他の円筒形素材リングの正面 図である。
,【図 1 7】 その円筒形素材リングを使用して成形したビード付き 円筒形リングの正面図 (a ) 及び樹脂結合後の様子を説明する断面図 ( b ) である。
【図 1 8】 円周方向に切り離したビード付き円筒形リングの斜視 図である。
【図 1 9】 切り離し後、 再び溶接により接合したビード付き円筒 形リングの斜視図である。
【図 2 0】 切り離し後、 再びリベットにより接合したビード付き 円筒形リングの側面図 (a ) 及びその A - A断面図 (b ) である。
【図 2 1】 切り離し後、 再び樹脂により接合したビード付き円筒 形リングの側面図 (a ) 及ぴその A-A断面図 (b ) である。
【図 2 2】 切り離し後、 再び樹脂により接合したビード付き円筒 形リングの側面図 (a ) 及びその A- A断面図 (b ) である。
【図 2 3】 多数の穴が形成されたビード付き円筒形リングを円周 方向に切り離すとき、 穴の配置と穴列同士の間隔について説明する模式 図である。
【図 2 4】 電磁成形によるビード付き円筒形リングの製造方法を 説明するもので、 成形前の断面図 (a ) 及び成形後の断面図 (b ) であ る。
【図 2 5】 円筒形素材リングの製造方法を説明する図である。 発明を実施するための最良の形態
下、 図 1〜図 2 5を参照して、 本発明に係るビード付き円筒形リング の製造方法及びそれにより製造されたビード付き円筒形リングについ て具体的に説明する。
図 1に示す円筒形素材リング 1は、例えばアルミニウム合金板を曲げ 加工し、 端部を突合せ溶接したものである。 2は突合せ接合による接合' 部である。
図 3は、 この円筒形素材リング 1を電磁成形 (拡径) する方法を示す もので、 図 3 ( a ) において、 円筒形素材リング 1の外周側に、 内面側 が成形面とされ該成形面の円周方向に沿ってビード成形用の溝部 3〜 5が形成された金型 6が配置され、 円筒形素材リング 1の内周側に電磁 成形用コィル体 7が配置されている。 この金型 6の成形面は実質的に回 転面をなし (後述する穴 1 1が形成されていること等もあり厳密な意味 では回転面ではないが、成形面の機能として実質的に回転面とみなして 差し支えない)、 軸方向の中心位置における軸方向に垂直な平面を対称 面として実質的に面対称である。 また、 金型 6の成形面の軸方向の中心 位置と円筒形素材リング 1の軸方向の中心位置は一致させている。 円筒 形素材リング 1の外周面と金型 6の內周面の間、 及び円筒形素材リング 1の内周面と電磁成形用コィル体 7の間には若干の隙間が形成されて いる。
金型 6は導電率の低い金属、 例えばステンレス鋼等からなるのが望ま しい。 金属以外のネ才科、 例えば繊維強化プラスチックやべ一クライトな どの導電性のない構造材を用いることもできる。 金型 6の成形面に形成 された各溝部 3〜 5は開口を半径方向内側に向けて互いに波形に連な り、 溝部 3、 5の端部はそれぞれ成形面の端部平行部 8、 9に連なって いる。 また、 各溝部 3〜 5の底部には、 エア抜き用の穴 1 1が円周方向 に沿って多数形成されている。 この穴 1 1は円周方向に長く形成された スリットでもよい。 電磁成形用コィル体 7は、 電気絶縁体内に成形用コ ィル 7 aが埋め込まれたものである。
図 3 ( a ) の状態で電磁成形用コイル体 7に瞬間大電流を流すと、 円 筒形素材リング 1に磁気反発力が生じ、 円筒形素材リング 1は瞬間的に 拡径して金型 6の成形面に押し付けられ、 図 3 ( b ) に示すように、 当 該成形面に沿った形状に成形され、 軸方向両端に短い平行部 1 2、 1 3 とその間で半径方向外側に膨出する円周方向の 3つのビード 1 4〜 1 6 (各ビード 1 4〜 1 6は波形に連なつている) からなるビード付き円 筒形リング 1 7となる (詳細な形状は図 2を参照)。 このビード付き円 筒形リング 1 7は実質的な回転体であり、 軸方向の中心位置における軸 方向に垂直な平面を対称面として実質的に面対称である。 電磁成形に伴 い円筒形素材リング 1の材料は前記溝部 3〜5内に引き込まれ、 その結 果、 ビード付き円筒形リング 1 7の軸方向幅は、 円筒形素材リング 1の 軸方向幅より小さくなっている。
なお、 成形後、 金型 6からビード付き円筒形リング 1 7が取り出せる ように、 金型 6は円周方向に分割された複数個の分割片 (図 4の分割金 型 2 5を構成する分割片 2 5 a、 2 5 bを参照) からなつている。 図 4は、 軸方向に分割された複数個の分割金型からなる金型構造の例 である。 この金型 2 1は、 内面側が成形面とされ該成形面の周方向に沿 つてビード成形用の溝部 2 2〜 2 4が形成されたもので、該溝部 2 2〜
2 4において軸方向に分割された複数個のリング状の分割金型 2 5〜 2 8力 らなり、 各分割金型 2 5〜 2 8はリング状のスぺーサ 2 9〜 3 1 を介して配置され、 その結果、 隣接する分割金型 2 5〜 2 8間には隙間
3 2〜3 4が形成される。
また、 分割金型 2 5 (分割金型 2 6〜2 8も同じであるが) は、 円周 方向に分割された複数個の分割片 2 5 a、 2 5 b (場合によっては 2個 以上の分割片) からなり、 これらがボルト 3 5及び係止片 3 6により連 結され分割金型 2 5を構成している。
なお、 図 4において、 3 7は分割金型 2 5〜2 8を固定するボルト、 3 8はナットである。
この金型 2 1において、各分割金型 2 5〜 2 8にはそれぞれ溝部 2 2 〜 2 4の一部を構成する湾曲した成形面が形成され、 当該成形面が中央 部 (溝部 2 2〜 2 4の底部) に位置する隙間 3 2〜 3 4とともに前記溝 部 2 2〜 2 4を構成している。 すなわち、 溝部 2 2は隣接する分割金型 2 5、 2 6の湾曲した成形面と中央部の隙間 3 2から構成され、 溝部 2 3は隣接する分割金型 2 6、 2 7の湾曲した成形面と中央部の隙間 3 3 から構成され、 溝部 2 4は隣接する分割金型 2 7 , 2 8の湾曲した成形 面と中央部の隙間 3 4から構成される。 金型 2 1の成形面は実質的に回 転面をなし、 軸方向の中心位置における軸方向に垂直な平面を対称面と して実質的に面対称である。 隙間 3 2〜 3 4は各溝部 2 2〜 2 4の全周 にわたつて存在し、 電磁成形時にはエア抜き用のスリットとして機能す る。
この金型 2 1の内面側に、金型 2 1の成形面の軸方向の中心位置と円 筒形素材リングの軸方向の中心位置が一致するように該円筒形素材リ ングを配置し、 さらにその内面側に電磁成形用コイル体を配置して、 電 磁成形を行うと、 図 1及び図 3を参照して説明したと同様に、 円筒形素 材リングは瞬間的に拡径して金型 2 1 (分割金型 2 5 - 2 8 ) の成形面 に押し付けられ、 該成形面に沿った形状に成形され、 一方、 隙間 3 2〜 3 4 (溝部 2 2〜 2 4の底部) では、 円筒形素材リングは加えられる負 荷に応じて自由変形する。 つまり、 ビード付き円筒リングのビードの頂 部はこの隙間 3 2〜 3 4 (溝部 2 2〜 2 4の底部) において成形される 。 前記隙間 3 2〜 3 4の幅を適正に設定することにより、 エア抜きを支 障なく行い、 かつこの隙間 3 2〜 3 4において、 該隙間 3 2〜 3 4を挟 んで隣接する分割金型の成形面を外挿した曲線 (図 4 ( c ) の仮想線 E 参照) にほぼ沿った形状に変形させることができる。 得られたビード付 き円筒形リングは実質的に回転体であり、 軸方向の中心位置における軸 方向に垂直な平面を対称面として実質的に面対称である。
図 5は、 円筒形素材リング 1を電磁成形 (縮径) する方法を示すもの で、 図 5 ( a ) において、 円筒形素材リング 1の内周.側に、 外面側が成 形面とされ該成形面の円周方向に沿つてビード成形用の突条 4 1、 4 2 が形成され、 その両側に溝部 4 3 a〜4 3 cが形成された金型 4 4が配 置され、 円筒形素材リング 1の外周側に電磁成形用コイル体 4 5が配置, されている。 円筒形素材リング 1の内周面と金型 4 4の外周面の間、 及 び円筒形素材リング 1の外周面と電磁成形用コイル体 4 5の間には若 干の隙間が形成されている。
金型 4 4の成形面に形成された各突条 4 1、 4 2は半径方向外側を向 き、 各溝部 4 3 a〜4 3 cは開口を半径方向外側に向け、 これらの突条 4 1 , 4 2及び溝部 4 3 a〜 4 3 cは互いに波形に連なり、 溝部 4 3 a 、 4 3 cの端部はそれぞれ成形面の端部平行部 4 6、 4 7に連なってい る。 金型 4 4の成形面は実質的に回転面をなし、 かつ軸方向の中心位置 における軸方向に垂直な平面を対称面として実質的に面対称である。 ま た、金型 4 4の成形面の軸方向の中心位置と円筒形素材リング 1の軸方 向の中心位置は一致させている。 なお、 各溝部 4 3 a〜4 3 cの底部に , は、 図 3と同様にエア抜き用の穴又はスリット 4 8が形成されている。
図 5 ( a ) の状態で電磁成形用コィル体 4 5に瞬間大電流を流すと、 円筒形素材リング 1に磁気反発力が生じ、 円筒形素材リング 1は瞬間的 に縮径して金型 4 4の成形面に押し付けられ、 図 5 ( b ) に示すように 、 当該成形面に沿った形状に成形され、 端部に短い平行部 5 1、 5 2と その間で半径方向外側に突出する円周方向の 2つのビード 5 3、 5 4 ( その両側には溝部 5 5 a〜 5 5 cが形成され、 各ビード 5 3、 5 4 'と波 形に連なっている) からなるビード付き円筒形リング 5 6となる。 この ビード付き円筒形リング 5 6は実質的に回転体であり、軸方向の中心位 置における軸方向に垂直な平面を対称面として実質的に面対称である。 電磁成形に伴レ、円筒形素材リング 1の材料は前記溝部 4 3 a〜 4 3 c 内に引き込まれ、 その結果、 ビード付き円筒形リング 5 6の軸方向幅は 、 円筒形素材リング 1の軸方向幅より小さくなつている。
なお、 成形後、 金型 4 4からビード付き円筒形リング 5 4が取り出せ るように、 金型 4 4は円周方向に分割された複数個の分割片からなって いる。
図 6は、 電磁成形 (拡径、 縮径) 後のビード付き円筒形リング 5マの 寸法精度を向上させるための口ール矯正方法を示すものである。 えば
、 エア抜きが不十分でビードに凹みが発生するとき、 あるいは図 4に示 すタイプの金型を用いて電磁成形し、 自由変形したビードの頂部の精度 が劣るときなどに行うとよレ、。
ビード付き円筒形リング 5 7を、 外形が要求される精度に仕上げられ た內側口一ル 5 8及ぴ外側口ール 5 9、 5 9の間に挟み、 内側ロール 5 8の押し込み量を調整し、 かつ各ロールを回転して口ール矯正を行う。 図 7は、 電磁成形 (拡径) 後のビード付き円筒形リング 6 1の寸法精 度を向上させるため、 さらに電磁成形 (縮径) を う矯正方法を示すも のである。 エア抜きが不十分でビードに凹みが発生するとき、 あるいは 図 4に示すタイプの金型を用いて電磁成形し、 自由変形したビードの頂 部の精度が劣るときなどに行うとよい。 この場合、 ビード付き円筒形リ ング 6 1は最終形状よりやや拡径状態に成形されている。
図 7 ( a ) に示すように、 予め電磁成形 (拡径) されたビード付き円 筒形リング 6 1の内周側に、外面側が前記最終形状に対応する成形面と され該成形面の円周方向に沿って矯正用の突部 6 2〜6 4が形成され た金型 6 5が配置され、 ビード付き円筒形リング 6 1の外周側に電磁成 形用コイル体 6 6が配置されている。 金型 6 5の成形面は実質的に回転 面をなす。 6 7はエア抜きのための穴又はスリットである。 また、 金型 6 5はこれまでの金型と同様、 円周方向に分割された複数個の分割片か らなっている。 ' その状態で電磁成形用コイル 6 6に瞬間大電流が流ざれると、 図 ( b ) に示すように、 図 5で説明したと同様に電磁成形 (縮径) が行われ 、 ビード付き円筒形リング 6 1は金型.6 5の成形面に沿った形状に成形 、 すなわち矯正され、 寸法精度の高いビード付き円筒形リング 6 9とな る。 図 8は電磁成形を繰り返すことにより、 寸法精度の高いビード付き円 筒形リングを得ようとしたものである。
まず、 図 8 ( a ) に示すように、 円筒形素材リング 1の外周側に、 内 面側が成形面とされ該成形面の円周方向に沿ってビード成形用の溝部' 7 1〜マ 3が形成された金型 7 4が配置され、 円筒形素材リング 1の內 周側に電磁成形用コイル体 7 5が配置される。 金型 7 4の成形面は実質 的に回転面をなす。 各溝部 7 1〜7 3の底部にはエア抜き用の穴又はス 'リット 7 6が円周方向に沿って多数形成されている。 また、 金型 7 4は 円周方向に分割された複数個の分割片からなっている。
図 8 ( a ) の状態で電磁成形用コイル体 7 5に瞬間大電流を流すと、 ' 円筒形素材リング 1は瞬間的に拡径して金型 7 4の成形面に押し付け られる。 ただし、 このとき電磁成形用コイル体 7 5に与えられる電気工 ネルギー、 すなわち円筒形素材リング 1に生じる磁気反発力は、 図 8 ( b ) に示すように、 該円筒形リング 1を金型 7 4の成形面 (特に溝部 7 1 ~ 7 3 ) に十分沿った形状に成形するほど大きくないように設定され ている。 すなわち、 円筒形素材リング 1は溝部 7 1〜7 3に引き込まれ て月彭出するが、成形後のビード付き円筒形リング 7 7と金型 7 4の成形 面 (特に溝部 7 1〜 7 3 ) との間には隙間が積極的に残されて 、る。 そ のため、仮にエア抜きが不十分で当該隙間にエアが閉じ込められたとし ても、 極度の高圧とならず、 凹みの問題が軽減されている。
続いて、 図 8 ( c ) に示すように、 もう一度電磁成形を行い、 今度は ビード付き円筒形リング 7 7を金型 7 4の成形面 (特に溝部 7 1〜 7 3 ) に沿った形状、 すなわち最終形状に成形する。 この成形は一種の矯正 ということもできる。
この例では、 コイル径が大きくされた電磁成形用コィ/レ体 7 8を用い て、 より効率的に磁気反発力を生じさせている。 成形後のビード付き円 筒形リング 7 9は金型 7 4の成形面に沿った形状となり、 両者はほぼ密 着しているが、 円筒形素材リング 1の状態から一気にこのビード付き円 筒形リング 7 9に成形する場合に比べ、?冓部 7 1〜7 3内に閉じ込めら れる可能性のあるエア量自体が少ないため、仮にエア抜きが不十分であ つたとしても余り高圧化せず、 凹みの問題は解消される。
なお、 この例では、 同じ金型 7 4を用いて 2段階成形を行ったが、 別 の金型 (予成形用金型と仕上げ金型) を用いることも'できる。 その場合 、 1回目の成形で予成形金型の成形面に沿った形状に成形してもよい。 図 9は、 複数個 (この例では 2個) 分のビード付き円筒形リングを一 度に成形する方法を示すものである。 2個分の長さの円筒形素材リング 8 1の外周側に、 内面側が成形面とされた金型 8 2が配置され、 円筒形 素材リング 8 1の内周側に電磁成形用コイル体 8 3が配置されている。 前記金型 8 2の成形面には、 円周方向に沿つてビード成形用の溝部 8 4 〜 8 6が形成され、 かつその溝部 8 4〜 8 6が軸方向に並んで 2組形成 され、 その中間位置に 内向きに円形の切断刃 8 7が形成されている。 各溝部 8 4〜8 6の底部にはエア抜き用の穴又はスリット 8 8が円周 方向に沿って多数形成されている。 また、 金型 8 2は円周方向に分割さ れた複数個の分割片からなつている。
図 9の状態で電磁成形用コィル体 8 3に瞬間大電流を流すと、 円筒形 素材リング 8 1に磁気反発力が生じ、 円筒形素材リング 1は瞬間的に拡 径して金型 8 2の成形面に押し付けられ、 当該成形面に沿った形状に成 形され、 同時に切断刃により中間位置で分離される。 これにより、 図 3 ( b ) に示すビード付き円筒形リング 1 7と同じものを 2つ同時に成形 できる。
図 9に示す金型 8 2において切断刃 8 7がない場合、 ビード付き円筒 形リング が複数個連なったビード付き円筒形リングが形成される。
図 1 0は、 このように複数個 (2個) のビード付き円筒形リングが連 なったビード付き円筒形リング 9 1の寸法精度を向上させ同時に複数 個 (2個) に分離するためのロール矯正切断方法を示すものである。 口 ール矯正は基本的に図 6の方法と同じ考え方であるが、 この場合、 内側 ロール 9 2の中間位置に円形の切断刃 9 3力 S形成され、外側ロール 9 4 、 9 4の対応箇所に切断刃 9 3の受け刃 9 5が形成されている。 ビード 付き円筒形リング 9 1を、 内側ロール 9 3及び外側ロール 9 4、 9 4の 間に挟み、 各ロールを回転しかつ内側ロール 9 3を押し込んで、 ロール 矯正及び切断を行う。
図 1 1は円筒形素材リング 1 0 1を示すもので、 その周壁の全面に多 数の穴 1 0 2が形成されている。 この円筒形素材リング 1 0 1は、 穴 1 0 2が碁盤 g状に規則的に形成された矩形状の金属板(例えばアルミエ ゥム合金板)、 すなわちパンチングメタルを円筒状に巻き曲げ、 端部を 溶接等により接合して得ることができる。
円筒形素材リング 1 0 1を例えば図 3に示す金型 6及ぴ電磁成形用 コイル 7を用いて電磁成形すると、 より軽量なビード付き円筒形リング を成形することができる。 なお、 円筒形素材リング 1 0 1の周壁には多 数の穴 1◦ 2が全面に形成されているため、金型 6等に形成されたエア 抜き用の穴やスリット、 金型 2 1 (図 4参照) に形成されたエア抜き用 の隙間が不要である。
図 1 2は円筒形素材リング 1 0 3を示すもので、多数の穴 1 0 2が軸 方向両端部の周壁に円周方向に沿って左右対称的に形成されている。 こ れらの穴 1 0 2は、軸方向各端部において周壁上を一周する 2つの穴列 (外側の列が 1 0 2 a、 内側の列が 1 0 2 b ) を構成し、 各穴列 1◦ 2 a、 1 0 2 bにおいて各穴 1 0 2は等間隔に g&釁されている。 この円简 形素材リング 1 0 3は、 多数の穴 1 0 2が各長辺側端縁近傍に該長辺に 平行に 2列に形成された矩形状の金属板 (例えばアルミニウム合金板) を円筒状に卷き曲げ、 端部を溶接等により接合して得ることができる。 この円筒形素材リング 1 0 3を使用した電磁成形方法を図 1 3に示 す。 図 1 3 ( a ) において、 円筒形素材リング 1 0 3の外周側に、 内面 側が成形面とされ該成形面の円周方向に沿ってビード成形用の溝部 1 0 4, 1 0 5が形成された金型 1 0 6 (金型 6と同様に円周方向に分割 された複数個の分割片からなる) が配置され、 円筒形素材リング 1 0 3 の内周側に電磁成形用コイル体 1 0 7が配置されている。 この金型 1 0 6の成形面は実質的に回転面をなし、 軸方向の中心位置における軸方向 に垂直な平面を対称面として実質的に面対称である。 また、 金型 1 0 6 の成形面の軸方向の中心位置と円筒形素材リング 1 0 3の軸方向の中 心位置は一致させている。,
図 1 3 ( a ) の状態で電磁成形用コイル体 1 0 7に瞬間大電流を流す と、 円筒形素材リング 1 0 3に磁気反発力が生じ、 円筒形素材リング 1 0 3は瞬間的に拡径して金型 1 0 6の成形面に押し付けられ、 図 1 3 ( b ) に示すように、 当該成形面に沿った形状に成形され、 軸方向両端に 短い平行部 1 0 8、 1 0 9とその間で半径方向外側に膨出する円周方向 の 2つのビード 1 1 1、 1 1 2 (両ビード 1 1 1、 1 1 2は波形に連な つている) 力、らなるビード付き円筒形リング 1 1 3となる。 このビード 付き円筒形リング 1 1 3は実質的に回転体であり (穴 1 0 2が形成され ていること等もあり、 厳密な意味では回転体といえないが、 円筒形リン グの輪郭をみれば実質的に回転体とみて差し支えない)、 軸方向の中心 位置における軸方向に垂直な平面を対称面として実質的に面対称であ る。
電磁成形に伴い円筒形素材リング 1 0 3の材料が前記溝部 1 0 4 , 1 05内に押し込まれ、 その結果、 前記溝部 104、 105より軸方向外 側に位置していた円筒形素材リング 103の端部の材料が、 前記溝部 1 04, 105内に流入する。 成形前は円筒形素材リング 103の穴 10 2は両方の穴列 (穴列 102 a、 102 b) とも、 金型 106の成形面 の溝部 104、 105より外側に位置していたが、 円筒形素材リング 1 03の端部の材料が該溝部 104、 105内に流入するのに伴い、 穴列 102 bが溝部 104、 105'内に位置するようになっている。 すなわ ち、 ビード付き円筒形リング 113において、 軸方向'内側の穴列 102 bはビード 1 1 1、 1 12上に位置し、 軸方向外側の穴列 102 aは平 行部 108、 109とビード 11 1、 1 12の境界付近に位置している 円筒形素材リング 103の端部が金型 1 06の端部平行部から溝部 104、 105に流入するとき、 穴が形成されていない円筒形リング 1 等に比べて、 穴 102が形成されている分、 金型 106の成形面と円筒 形リング 103の接触面積が減って両者間の摩擦抵抗が低減され、 その 結果、 円筒形リング 103の溝部 104、 105への流入がスムーズに なり、 精度よく電磁成形を行うことができる。 なお、 この効果は前記円 筒形リング 101の成形の場合も、 同様に得ることができる。
【0045】
図 14は円筒形素材リング 1 1 5を示すもので、'軸方向の中央位置に 円周方向に沿って多数の穴 102力 S 1列に等間隔で形成されている。 こ の円筒形リング素材 1 1 5は多数の穴 1 02が 1列に形成された矩形 状の金属板 (例えばアルミニウム合金板) を円筒状に巻き曲げ、 端部を 溶接等により接合して得ることができる。
この円筒形素材リング 1 15を使用した電磁成形方法を図 15に示 す。 図 15 (a) において、 円筒形素材リング 1 15の外周側に配置さ れた金型 1 1 6 (金型 6と同様に円周方向に分割された複数個の分割片 からなる) は、 内面側が成形面とされ該成形面の円周方向に沿ってビー ド成形用の溝部 1 1 7, 1 1 8が形成され、 溝部 1 1 7, 1 1 8の中間 部 1 1 9が内径側に突出して、 内径が最も小さくなつているその頂点に 突起 1 2 1が周方向に沿って等間隔で形成されている。 この金型 1 1 6 の成形面は実質的に回転面(突起 1 2 1が形成されていること等もあり 厳密な意味では回転面ではないが、成形面の機能として実質的に回転面 とみなして差し支えない) をなし、 軸方向の中心位置における軸方向に 垂直な平面を対称面として実質的に面対称である。
金型 1 1 6の隣接する突起 1 2 1同士の間隔と円筒形素材リング 1 1 5の隣接する穴 1 0 2同士の間隔は同じとされ、 かつ、 円筒形素材リ ング 1 1 5の周囲に金型 1 1 6を配置したとき、 前記中間部 1 1 9の頂 点の内径が円筒形素材リング 1 1 5の外形とほぼ同じで、 突起 1 2 1が 穴 1 0 2にはめ込まれ、 かつ前記中間部 1 1 9の頂点において金型 1 1 6の成形面と円筒形素材リング 1 1 5の外周面が接触している。
図 1 5 ( a ) の状態で電磁成形用コイル体 1 2 2に瞬間大電流を流す と、 円筒形素材リング 1 1 5に磁気反発力が生じ、 円筒形素材リング 1 1 5は瞬間的に拡径して金型 1 1 6の成形面に押し付けられ、 図 1 5 ( b ) に示すように、 当該成形面に沿った形状に成形され、 軸方向両端に 短い平行部 1 2 3、 1 2 4とその間で半径方向外側に膨出する円周方向 の 2つのビード 1 2 5、 1 2 6 (両ビード 1 2 5、 1 2 6は波形に連な つている) からなるビード付き円筒形リング 1 2 7となる。 このビード 付き円筒形リング 1 2 7は実質的に回転体であり、軸方向の中心位置に おける軸方向に垂直な平面を対称面として実質的に面対称である。
金型 1 1 6の突起 1 2 1を円筒形素材リング 1 1 5の穴 1ひ 2には め込むことで、 円筒形素材リング 1 1 5が金型 1 1 6内に正確に位置決 めされ、 電磁成形時にも、 円筒形素材リング 1 1 5の中央部では材料の 軸方向移動が生じないため、 成形が精度よく行われる。
円筒形素材リング 1 1 5を電磁成形により縮径する場合(金型は円筒 形リング 1 1 5の内側に配置される)、 円筒形素材リング 1 1 5の穴 1 0 2にはまる突起は、 金型の成形面の外径が最も大きくなつている箇所 に形成される。 その突起は前記金型 1 1 6と同様に、 軸方向の中央位置 に形成することが望ましい。 また、 円筒形素材リング 1 1 5の内側に金 型を配置したとき、 前記成形面の外径が円筒形素材リング 1 1 5の内径 とほぼ同じとされる。
なお、 円筒形素材リング 1 0 1でも、 円周方向に形成した穴 1 0 2 ( 特に中央又はその近傍の穴列) を位置決めに利用することが可能である 図 1 6は円筒形素材リング 1 3 1を示すもので、 軸方向両端部に円周 方向に沿って多数の穴 1 0 2が 1列に等間隔で形成されている。 この円 筒形素材リング 1 3 1を図 1 3に示す金型 1 0 6を用いて電磁成形し て得たのが、 図 1 7 ( a ) に示すビード付き円筒形リング 1 3 2 (実線 部分) である。 図 1 7 ( a ) に仮想線で示すように、 この,ビード付き円 筒形リング 1 3 2の軸方向両端部に樹脂 1 3 3を溶融して取り付ける と、 図 1 7 ( b ) に示すように樹月旨 1 3 3が穴 1 0 2に入り込み、 ビー ド付き円筒形リング 1 3 2と樹脂 1 3 3が強固に連結される。
なお、 この効果は円筒形リング 1 0 1、 1 0 3を使用した場合でも、 同様に得ることができる。
図 1 8 ( a )、 ( b ) は、 電磁成形により成形したビード付き円筒形リ ングを切断して、 円周方向に切り離したものである。 切断の方向は、 軸 方向に平行 (a ) 及び前記軸方向に対し斜め (b ) 'とされている。 この ビード付き円筒形リング 1 3 4、 1 3 5は、 それぞれ切り離した箇所 ( 切れ目 1 3 6、 1 3 7 ) を通して 2つをはめ合わせることができる。 このビード付き円筒形リング 1 3 4、 1, 3 5は、 必要に応じて、 切り 離した箇所を溶接等により接合して再び閉じたリングにする'ことがで きる。 溶接により接合 (溶接部 1 3 8、 1 3 9 ) したビード付き円筒形 リング 1 3 4、 1 3 5を図 1 9 ( a )、 ( b ) に示す。
ビード付き円筒形リング 1 3 4、 1 3 5は、 円周方向に切り離した状 態 (図 1 8参照)、 あるいは再び接合した状態 (図 1 9参照) のいずれ で使用してもよいが、 用途によっては軸方向に対して斜めに切断するこ とが望ましい場合がある。 例えばビード付き円筒形リングをランフラッ トタイヤの補強リングとして用いる場合、斜めに切断したビード付き円 筒形リング 1 3 5において切れ目 1 3 7又は溶接部 1 3 9の円周方向 長さ t 1を、 接地面の円周方向幅 t 0より大きくしておけば、 比較的強 度の弱い前記切れ目 1 3 7又は溶接部 1 3 9に一度に全車重がかから ない。
多数の穴が形成されたビード付き円筒形リングを円周方向に切り離 し、 その後再び接合する場合、 前記穴 1 0 2を接合に利用することがで きる。 これを、 ビード付き円筒形リング 1 3 2を例に説明する。
図' 2 0はビード付き円筒形リング 1 3 2を円周方向に切り離した後、 端部を一部重ね合わせ、 リベット 1 4 1により接合したものである。 リ ベット 1 4 1は重ね合わせた穴 1 0 2を貫通し、 端部を接合する。 図 2 1はビード付き円筒形リング 1 3 2を円周方向に切り離した後、 端部を一部重ね合わせ、 そこを溶融した樹脂 1 4 2で結合したものであ る。 樹脂 1 4 2は重ね合わせた穴 1 0 2内に入り込んで固化し、 端部を 接合する。
図 2 2はビード付き円筒形リング 1 3 2を円周方向に切り離した後、 切れ目 1 4 3を開けた状態とし、 そこを溶融した樹脂 1 4 4で結合した ものである。 樹脂 1 44は端部の穴 1 02内に入り込んで固化し、 端部 を接合する。 この場合、 切れ目 1 4 3を閉じた状態として樹脂 144で 結合してもよい。
多数の穴が形成されたビード付き円筒形リングを円周方向に切り離 す場合において、 特に切断線を軸方向に対し斜めに形成する場合、 多数 の穴 1 02の配置は、 図 23 (a) に示す碁盤目状配置 (図 1 1のビー ド付き円筒形リング 1 0 1参照) より、 図 23 (b) に示す千鳥配置 ( 隣接する穴列において穴 1 0 2の位置が円周方向に半ピッチ分ずれて いる) の方が望ましいときがある。 これは、 図 2 3 (a), (b) に示す ように、 多数の穴 1 0 2によって構成される斜めの穴列をみた場合、 穴 列同士の間隔は、 碁盤目状配置のとき (h i) より千鳥配置のとき (h
2) の方が、 広くとれる (h 2 >h 1) からである。 これにより、 千鳥 配置の方が切断しやすく、 かつ再び接合する場合は溶接もしゃすくなる 図 24は前記金型 1 06に類似する金型 1 56 (金型 6と同様に円周 方向に分割された複数個の分割片からなる) を用いて、 円筒形素材リン グ 1を電磁成形する方法を示すものである。金型 1 5 6は内面側が成形 面とされ該成形面の円周方向に沿ってビード成形用の溝部 1 5 1、 1 5 2が形成され、 両溝部 1 5 1、 1 5 2の中間部 1 5 3が内径側に突出し 、 該中間部 1 5 3において成形面の内径が最も小さくなつている。 この 金型 1 56の成形面は実質的に回転面をなし、金型 1 5 6の軸方向の中 央位置における軸方向に垂直な平面を対称面として実質的に面対称で ある。
図 24 (a) に示すように、 金型 1 06の内側に円筒形素材リング 1 が配置され、 さらにその內周側に電磁成形用コィノレ体 1 5 7が配置され ている。 円筒形素材リング 1の外径と金型 1 06の中間部 1 5·3の内径 はほぼ同じ程度で、 該中間部 1 5 3·において金型 1 5 6の成形面と円筒 形素材リング 1の外周面が接している。 また、 金型 1 5 6の成形面の軸 方向の中心位置と円筒形素材リング 1の軸方向の中心位置は一致させ ている。'
図 2 4 ( a ) の状態で電磁成形用コイル体 1 5 7に瞬間大電流を流す と、 円筒形素材リング 1に磁気反発力が生じ、 円筒形素材リング 1は瞬 間的に拡径して金型 1 5 6の成形面に押し付けられ、 図 2 4 ( b ) に示 すように、 当該成形面に沿った形状に成形され、 軸方向両端に短い平行 部 1 5 8、 1 5 9とその間で半径方向外側に膨出する円周方向の 2つの ビード 1 6 1、 1 6 2 (両ビード 1 6 1、 1 6 2は小径部 1 6 3により 略波形に連なっている) 力 らなるビード付き円筒形リング 1 6 4となる 。 このビード付き円筒形リング 1 6 4は実質的に回転体であり、 軸方向 の中心位置における軸方向に垂直な平面を対称面として実質的に面対 称である。
この方法の場合、 円筒形素材リング 1の軸方向中央位置が、 金型 1 5 6の成形面の最も内径が小さくなっている中間部 1 5 3の位置 (前記成 形面の軸方向中央位置) において、 位置決めされた形になるため、 より 均等な成形が実現できる。
図 2 5 ( a ) 〜 (d ) は円筒形素材リングの製造方法を示すもので、 ( a ) に示す円筒形素材リング 1 7 1は、 先に示した円筒形素材リング 1とは、 突き合わせ接合による接合部 (溶接ビード) 1 7 2が軸方向に 対して斜めに形成されている点で異なる。接合部 1 7 2が斜めであるこ とにより、 円筒形素材 1 7 1の周方向の重量バランスが、 接合部 2が軸 方向に対して平行に形成された円筒形素材 1より改善される。
図 2 5 ( b ) に示す円筒形素材リング 1 7 3は、 圧延板材を螺旋状に 卷いて継ぎ目を接合したもので、 接合部 (溶接ビード) 1 7 4が円筒を ちょうど 1周している。 この円筒形素材リング 173は接合部が長くな るが、 周方向の重量パランスが優れている。
図 25 (c) は、 圧延板材を螺旋状に卷いて継ぎ目を接合し、 予めス パイラルチューブを製造し、 これを所定長さに切断して (切断位置を仮 想線で示す)、 個々の円筒形素材リング 173を製造する方法を示す。 図 25 (d) は、 接合部 176が密に形成されたスパイラルチューブ を製造し、 これを所定長さに切断して (切断位置を仮想線で示す)、 個 々の円筒形素材リング 175を製造する方法を示す。 この円筒形素材リ ング 1 75はさらに接合部 1 76が長くなる力 S、周方向の重量バランス が優れている。
【実施例】
アルミユウム合金板から図 1に示すと同様の円筒形素材リングを成 形し、 これを電磁成形してビード付き円筒形リングを製造した。 . 素材のアルミニウム合金板は押出板 (6061— F材) であり、 これ を 3本ロールを用いたロール曲げ成形により、押出方向がロール曲げの 送り方向になるようにして円筒形に成形し、 端部を突合せ溶接した (接 合部はリングの中心軸方向に平行)。 円筒形リングは厚さ 2. 2 mm, 内径 494mm, 軸方向幅 222mmであった。.溶接はレーザ溶接とミ グ溶接を、 レーザ溶接は、 出力 40 kW、 速度 3 m/分、 ワイヤ A 53 56WY, φ 1. 2 mm, 送給速度 4 m/分、 雰囲気 A r 100%、 供 給量 25 Γ/分の条件で行い、 ミグ溶接は、 電流 80A、 電圧 18 V、 ワイヤ A5356WY、 φ 1 · 2 mm、 送給速度 60 c mZ分、 雰囲気 Ar 100%、 供給量 1 5 1 /分の条件で行った。
続いて、 この円筒形素材リングを図 4に示すと同様の金型及び電磁成 形用コイル体を用いて電磁成形 (拡径) した。 金型の成形面の最小直径 (両端の平行部の直径) 504mm、 電磁成形用コイル体の直径 490 mm、 電磁成形用コイル体の磁場安定化領域 (ほぼ同じ磁束密度が得ら れる領域) の長さ 2 5 O mmであり、 円筒形リングはこの磁場安定化領 域の中心に配置され、 投入エネルギーは 4 5 k Jであった。
図 2に電磁成形されたビード付き円筒形リングを示す。 いずれの溶接 方法のものも、 内径 5 0 0 mm、 外径 5 7 0 mm、 端部厚さ 2 mm、 軸 方向幅 1 9 2 mmとなり、 ビードには凹みがなく金型の成形面に沿った 形状に成形されていた。 産業上の利用可能性
本発明によれば、電磁成形により精度が高いビード付き円筒形リング を低コストで、 かつ高い生産性のもとで製造することができる。 また、 拡径により成形したビード付き円筒形リングは、特にフラットタイヤの 補強リング用として優れた特性を有する。 , ·

Claims

請 求 の 範 囲
1 . 閉じた金属製の円筒形素材リングの外周側あるいは内周側に、前記 円筒形素材リングに対向する側が成形面とされ前記成形面の周方向に 沿ってビード成形用の溝部が形成された成形用の金型を配置し、 前記円筒形素材リングに対して前記金型と反対側に電磁成形用コイル を配置し、
その状態で前記電磁成形用コイルに瞬間大電流を流し、
前記円筒形素材リングを変形させて前記金型の成形面に押し付け、 前記 成形面に対応した形状に電磁成形するビード付き円筒形リングの製造 方法であって、
前記金型の成形面が、軸方向の中心位置における軸方向に垂直な平面を 対称面として実質的に面対称であることを特徴とするビード付円筒形 リングの製造方法。
2 .前記円筒形素材リングの軸方向の中心位置を前記金型の軸方向の中 心位置に一致させることを特徴とする請求項 1に記載のビード付き円 筒形リングの製造方法。
3 . 閉じた金属製の円筒形素材リングの外周側あるいは内周側に、前記 円筒形素材リングに対向する側が成形面とされ前記成形面の周方向に 沿ってビード成形用の溝部が形成された成形用の金型を配置し、 前記円筒形素材リングに対して前記金型と反対側に電磁成形用コィル を配置し、
その状態で前記電磁成形用コイルに瞬間大電流を流し、
前記円筒形素材リングを変形させて前記金型の成形面に押し付け、前記 成形面に対応した形状に電磁成形するビード付き円筒形リングの製造 方法であって、 前記金型の前記溝部に、前記溝部の外と連通する穴が設けられているこ とを特徴とするビード付き円筒形リングの製造方法。
4 . 閉じた金属製の円筒形素材リングの外周側あるいは內周側に、前記 円筒形素材リングに対向する側が成形面とされ前記成形面の周方向に 沿ってビード成形用の溝部が形成された成形用の金型を配置し、 前記円筒形素材リングに対して前記金型と反対側に電磁成形用コイル を配置し、
その状態で前記電磁成形用コイルに瞬間大電流を流し、
前記円筒形素材リングを変形させて前記金型の成形面に押し付け、 前記 成形面に対応した形状に電磁成形するビード付き円筒形リングの製造 方法であって、
前記金型は円周方向に分割された複数個の分割片からなることを特徴 とするビード付き円筒形リングの製造方法。
5 . 閉じた金属製の円筒形素材リングの外周側あるいは内周側に、前記 円筒形素材リングに対向する側が成形面とされ前記成形面の周方向に 沿ってビード成形用の溝部が形成された成形用の金型を配置し、 前記円筒形素材リングに対して前記金型と反対側に電磁成形用コイル を配置し、
その状態で前記電磁成形用コイルに瞬間大電流を流し、
前記円筒形素材リングを変形させて前記金型の成形面に押し付け、 前記 成形面に対応した形状に電磁成形するビード付き円筒形リングの製造 方法であって、
前記金型は前記溝部において軸方向に分割された複数個の分割金型か らなり、前記分割金型同士が軸方向に隙間を置いて配置されていること を特徴とするビード付き円筒形リングの製造方法。
6 . 閉じた金属製の円筒形素材リングの外周側あるいは内周側に、前記 円筒形素材リングに対向する側が成形面とされ前記成形面の周方向に 沿ってビード成形用の溝部が形成された成形用の金型を配置し、 前記円筒形素材リングに対して前記金型と反対側に電磁成形用コイル を配置し、
その状態で前記電磁成形用コイルに瞬間大電流を流し、
前記円筒形素材リングを変形させて前記金型の成形面に押し付け、 前記 成形面に対応した形状に電磁成形するビード付き円筒形リングの製造 方法であって、
外形が要求する精度に仕上げられた内側口ールぉよび外側口一ルを用 意し、前記成形面に対応した形状に電磁成形された後のビード付き円筒 形リングを、前記内側口ールと前記外側ロールとの間に挟んで口ールを 回転させることにより矯正することを特徴とするビード付き円筒形リ ングの製造方法。 *
7 . 閉じた金属製の円筒形素材リングの外周側あるいは内周側に、前記 円筒形素材リングに対向する側が成形面とされ前記成形面の周方向に 沿ってビード成形用の溝部が形成された成形用の金型を配置し、 , 前記円筒形素材リングに対して前記金型と反対側に電磁成形用コイル を配置し、
その状態で前記電磁成形用コイルに瞬間大電流を流し、
前記円筒形素材リングを変形させて前記金型の成形面に押し付け、 前記 成形面に対応した形状に電磁成形するビード付き円筒形リングの製造 方法であって、
前記電磁成形用コィルに瞬間大電流を流す工程を複数回繰り返して行 うことを特徴とするビード付き円筒形リングの製造方法。
8 . 閉じた金属製の円筒形素材リングの外周側あるいは内周側に、前記 円筒形素材リングに対向する側が成形面とされ前記成形面の周方向に 沿つてビード成形用の溝部が形成された成形用の金型を配置し、 前記円筒形素材リングに対して前記金型と反対側に電磁成形用コイル を配置し、
その状態で前記電磁成形用コイルに瞬間大電流を流し、
前記円筒形素材リングを変形させて前記金型の成形面に押し付け、 前記 成形面に対応した形状に電磁成形するビード付き円筒形リングの製造 方法であって、
前記金型に、 その軸方向に垂直に円形の切断刃を設け、 前記円筒形素材 リングが前記金型の成形面に押し付けられた時に前記切断刃が前記円 筒形素材リングを切断することを特徴とするビード付き円筒形リング の製造方法。
9 . 前記内側ロールと前記外側ロールの少なくとも一方に切断刃を設け 、前記ビード付円筒形リングが前記切断刃を有するロールに押し付けら れた時に前記切断刃が前記ビード付円筒形リングを切断することを特 徴とする請求項 6に記載のビード付き円筒形リングの製造方法。
1 0 . 閉じた金属製の円筒形素材リングの外周側あるいは内周側に、 前 記円筒形素材リングに対向する側が成形面とされ前記成形面の周方向 に沿ってビード成形用の溝部が形成された成形用の金型を配置し、 前記円筒形素材リングに対して前記金型と反対側に電磁成形用コイル を配置し、
その状態で前記電磁成形用コイルに瞬間大電流を流し、
前記円筒形素材リングを変形させて前記金型の成形面に押し付け、 前記 成形面に対応した形状に電磁成形するビード付き円筒形リングの製造 方法であって、
前記円筒形素材リングは、 その周壁に多数の穴が形成されていることを 特徴とするビード付き円筒形リングの製造方法。
1 1 . 前記多数の穴が電磁成形時に前記溝部の外から前記溝部の内に流 入する箇所に前記円筒形素材リングの円周方向に沿って形成されてい ることを特徴とする請求項 1 0に記載に記載のビード付き円筒形リン グの製造方法。
1 2 . 前記多数の穴が前記円筒形素材リングの軸方向两端部にその円周 方向に沿って形成されていることを特徴とする請求項 1 0に記載のビ 一ド付き円筒形リングの製造方法。
1 3 . 閉じた金属製の円筒形素材リングの外周側あるいは内周側に、 前 記円筒形素材リングに対向する側が成形面とされ前記成形面の周方向 に沿ってビード成形用の溝部が形成された成形用の金型を配置し、 前記円筒形素材リングに対して前記金型と反対側に電磁成形用コイル を配置し、
その状態で前記電磁成形用コイルに瞬間大電流を流し、 ' 前記円筒形素材リングを変形させて前記金型の成形面に押し付け、前記 成形面に対応した形状に電磁成形するビード付き円筒形リングの製造 方法であって、
前記金型の成形面の最も前記円筒形素材リングに近い箇所に周方向に 沿って多数の突起が形成され、前記円筒形素材リングには前記突起に対 応する箇所に円周方向に沿って多数の穴が形成され、前記金型が配置さ れたとき、前記突起が前記大にはめ込まれることを特徴とするビード付 き円筒形リングの製造方法。
1 4 . 前記突起は前記金型の成形面の軸方向の中心位置で、 成形面の隣 接する溝部と溝部の間に形成され、 かつ前記穴は前記円筒形素材リング の軸方向の中心位置に形成されていることを特徴とする請求項 1 3に 記載に記載の七、'一ド付き円筒形リングの製造方法。
1 5 . 閉じた金属製の円筒形素材リングの外周側あるいは內周側に、 前 記円筒形素材リングに対向する側が成形面とされ前己成形面の周方向 に沿ってビード成形用の溝部が形成された成形用の金型を配置し、 前記円筒形素材リングに対して前記金型と反対側に電磁成形用コイル を配置し、
その状態で前記電碎成形用コイルに瞬間大電流を流し、
前記円筒形素材リングを変形させて前記金型の成形面に押し付け、前記 成形面に対応した形状に電磁成形するビード付き円筒形リングの製造 方法であって、
前記金型の前記成形面の軸方向中心位置において、前記円筒形素材リン グと前記金型の前記成形面とが接していることを特徴とするビード付 き円筒形リングの製造方法。
1 6 . 内面側または外面側がリング状の成形面とされ、 前記成形面の周 方向に沿ってビード成形用の溝部が形成されたビード付き円筒形リン グの電磁成形用金型であって、 前記金型は前記溝部に、 前記溝部の外と 連通する穴が設けられていることを特徴とするビード付き円筒形リン グの電磁成形用金型。
1 7. 内面側または外面側がリング'状の成形面とされ、 前記成形面の周 方向に沿ってビード成形用の溝部が形成されたビード付き円筒形リン グの電磁成形用金型であって、前記金型は前記成形面の円周方向に分割 された複数個の分割片からなることを特徴とするビード付き円筒形リ ングの電磁成形用金型。
1 8 . 内面側または外面側がリング状の成形面とされ、 前記成形面の周 方向に沿ってビード成形用の溝部が形成されたビード付き円筒形リン グの電磁成形用金型であって、 前記金型は前記溝部において前記成形面 の軸方向に分割された複数個の分割金型からなり、 前記分割金型同士が 前記成形面の軸方向に隙間を置いて配置されていることを特徴とする ビード付き円筒形リングの電磁成形用金型。
1 9 . 内面側または外面側がリング状の成形面とされ、 前記成形面'の周 方向に沿ってビード成形用の溝部が形成されたビード付き円筒形リン グの電磁成形用金型であって、前記金型は前記成形面の軸方向に垂直に 、 円形の切断刃が設けられていることを特徴とするビード付き円筒形リ ングの電磁成形用金型。
2 0 . 内面側または外面側がリング状の成形面とされ、 前記成形面の周 方向に沿ってビード成形用の溝部が形成されたビード付き円筒形リン グの電磁成形用金型であって、前記金型はさらに前記成形面の中で最も 成形対象の円筒形素材リングに接近する箇所に、位置決め用の突起が周 方向に沿って多数個形成されていることを特徴とするビード付き円筒 形リングの電磁成形用金型。
2 1 . 内面側または外面側がリング状の成形面とされ、 前記成形面の周 方向に沿ってビード成形用の溝部が形成されたビード付き円筒形リン グの電磁成形用金型であって、前記金型は前記成形面の軸方向中心位馇 において、 前記成形面が最も突出していることを特^^とするビード付き 円筒形リングの電磁成形用金型。
PCT/JP2003/012372 2002-09-27 2003-09-26 ビード付き円筒形リングの製造方法及びその方法に用いる金型 WO2004028720A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60325765T DE60325765D1 (de) 2002-09-27 2003-09-26 Herstellungsverfahren für einen hohlring mit kügelchen und gussform zur verwendung dafür
AU2003272900A AU2003272900A1 (en) 2002-09-27 2003-09-26 Process for producing tubular ring with beads and die for use therein
US10/528,430 US7487655B2 (en) 2002-09-27 2003-09-26 Process for producing tubular ring with beads and die for use therein
EP03753961A EP1563924B1 (en) 2002-09-27 2003-09-26 Process for producing tubular ring with beads and die for use therein

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-283953 2002-09-27
JP2002283953 2002-09-27
JP2003-165732 2003-06-10
JP2003165732A JP4136802B2 (ja) 2002-09-27 2003-06-10 ビード付き円筒形リングの製造方法

Publications (1)

Publication Number Publication Date
WO2004028720A1 true WO2004028720A1 (ja) 2004-04-08

Family

ID=32044640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012372 WO2004028720A1 (ja) 2002-09-27 2003-09-26 ビード付き円筒形リングの製造方法及びその方法に用いる金型

Country Status (7)

Country Link
US (1) US7487655B2 (ja)
EP (1) EP1563924B1 (ja)
JP (1) JP4136802B2 (ja)
AT (1) ATE419934T1 (ja)
AU (1) AU2003272900A1 (ja)
DE (1) DE60325765D1 (ja)
WO (1) WO2004028720A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861932A (zh) * 2014-04-01 2014-06-18 湖南大学 一种热塑性玻璃纤维增强铝合金层板的成形装置与方法
CN106807825A (zh) * 2017-04-12 2017-06-09 华中科技大学 一种电磁渐进柔性复合成形方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112985A1 (ja) * 2003-06-17 2004-12-29 Honda Motor Co., Ltd. ホイールリム、ホイール及びその製造方法
WO2005046976A1 (ja) * 2003-11-12 2005-05-26 Bridgest0Ne Corporation ランフラットタイヤ支持体の製造方法、ランフラットタイヤ支持体および空気入りランフラットタイヤ
JP4616678B2 (ja) * 2005-03-25 2011-01-19 株式会社神戸製鋼所 包装容器およびその製造方法
JP4444222B2 (ja) 2005-04-12 2010-03-31 三菱重工業株式会社 超伝導加速空洞の製造方法
JP5013711B2 (ja) * 2005-12-27 2012-08-29 株式会社神戸製鋼所 自動車用ホイールリムの成形方法
EP2065105A1 (en) * 2006-09-08 2009-06-03 Fundacion Labein Electromagnetic device and method for the geometric rectification of stamped metal parts
JP5094333B2 (ja) * 2007-10-24 2012-12-12 株式会社神戸製鋼所 電磁拡管方法
US20090196049A1 (en) * 2008-02-01 2009-08-06 Buschmann Jeffrey P Lamp, lamp body and method of making lamp
US8099989B2 (en) * 2008-07-31 2012-01-24 GM Global Technology Operations LLC Electromagnetic shape calibration of tubes
TWI351325B (en) * 2008-12-09 2011-11-01 Metal Ind Res & Dev Ct Device for producing patterns and a method thereof
JP5178624B2 (ja) * 2009-05-11 2013-04-10 株式会社日立製作所 解析モデル生成装置
CN101590501B (zh) * 2009-07-03 2011-05-11 武汉理工大学 镁合金板材温热电磁成形方法
US8567223B2 (en) * 2009-09-21 2013-10-29 Ford Global Technologies, Llc Method and tool for expanding tubular members by electro-hydraulic forming
US7905129B1 (en) 2009-09-21 2011-03-15 Ford Global Technologies, Llc Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming
CN102451869A (zh) * 2010-10-28 2012-05-16 财团法人金属工业研究发展中心 金属板件成形装置
DE102013106547B4 (de) * 2013-06-24 2017-05-11 Witzenmann Gmbh Leitungselement und Verfahren zu dessen Herstellung, sowie Umformwerkzeug
CN103861933B (zh) * 2014-04-01 2015-11-25 湖南大学 一种波纹管成形装置及用该装置加工的波纹管
US10875073B2 (en) * 2014-05-04 2020-12-29 Belvac Production Machinery, Inc. Systems and process improvements for high speed forming of containers using porous or other small mold surface features
JP7038615B2 (ja) 2018-06-28 2022-03-18 ユニバーサル製缶株式会社 缶の成形装置、缶の成形装置の中子、および成形方法
CN110000271B (zh) * 2019-05-21 2020-06-16 哈尔滨工业大学 一种波纹管电磁脉冲成形装置及方法
CN110814147B (zh) * 2019-09-29 2021-08-17 中南大学 一种设有随形组合式线圈的大尺寸板料成型装置及方法
DE102020100102A1 (de) * 2020-01-06 2021-07-08 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Herstellung eines dünnwandigen Bauteils
CN111531031B (zh) * 2020-06-04 2021-04-09 南京航空航天大学 基于磁流变弹性体的复杂曲面构件成形装置及方法
CN112246951B (zh) * 2020-06-09 2021-07-30 北京航空航天大学 一种航空发动机封严环双向同步加载液压成形设备
CN111842586A (zh) * 2020-06-18 2020-10-30 上海航天设备制造总厂有限公司 一种铝合金波纹管电磁脉冲成形方法及装置
CN112387843B (zh) * 2020-10-27 2021-11-16 三峡大学 圆环电磁胀形分析、控制方法及胀形装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4520599Y1 (ja) * 1966-03-01 1970-08-18
FR2488163A1 (fr) * 1980-08-08 1982-02-12 Stephanois Rech Mec Bobine destinee a la mise en oeuvre generalisee du procede de magneto formage, et les procedes et moyens de fabrication de cette bobine
DE3215029A1 (de) * 1981-04-24 1982-12-09 Gépipari Technológiai Intézet, Budapest Aluminiumrad, insbesondere fahrzeugrad, sowie verfahren und vorrichtung zu seiner herstellung
JPS5964125A (ja) * 1982-10-01 1984-04-12 Agency Of Ind Science & Technol 電磁力によるパイプの切断方法
JPH04197524A (ja) * 1990-11-27 1992-07-17 Yuno Kogyo Kk スチールホイールの形状修正方法
JPH0810864A (ja) * 1994-06-29 1996-01-16 Honda Motor Co Ltd 電磁成形装置
JPH0824969A (ja) * 1994-07-07 1996-01-30 Japan Steel Works Ltd:The 拡管用電磁成形器および管状成形品の製造方法
WO1997045216A1 (en) * 1996-05-29 1997-12-04 Northrop Grumman Corporation Method and forming die for fabricating torque joints
JP2001310602A (ja) * 2000-04-26 2001-11-06 Bridgestone Corp 空気入りタイヤ用リム

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976907A (en) * 1958-08-28 1961-03-28 Gen Dynamics Corp Metal forming device and method
BE664918A (ja) * 1964-06-11 1900-01-01
US3501828A (en) * 1968-08-05 1970-03-24 Gen Motors Corp Method of manufacturing a tie rod assembly
US3581456A (en) * 1968-11-18 1971-06-01 American Can Co Applying a threaded closure by magnetic impulse
US3590464A (en) * 1969-03-07 1971-07-06 Gulf Energy & Environ Systems Threaded fastener and method of making the same
FR2320148A1 (fr) 1975-08-05 1977-03-04 Leroy Maurice Procede et dispositif pour le formage d'une piece par champ magnetique ou onde de choc
FR2570303B1 (fr) 1984-09-19 1993-12-03 Leroy Maurice Dispositifs pour former des materiaux en utilisant des champs magnetiques intenses et pulses et un fluide
US4702543A (en) * 1986-04-30 1987-10-27 G & H Technology, Inc. Environmental seal and alignment means for an electromagnetically formed backshell
JPH0739050B2 (ja) 1986-05-26 1995-05-01 松下電工株式会社 スパイラル管用切断装置
FR2610715A1 (fr) * 1987-02-11 1988-08-12 Munitions Ste Fse Projectile perforant a noyau dur et guide ductile
JPH0663251A (ja) 1992-08-20 1994-03-08 Toshiba Corp 舞台吊り物制御装置
US5353617A (en) * 1992-12-14 1994-10-11 Xerox Corporation Method of sizing metal sleeves using a magnetic field
JPH06312226A (ja) 1993-04-28 1994-11-08 Showa Alum Corp 長さ方向に横断面が変化した中空材の製造方法
FR2723329B1 (fr) * 1994-08-02 1996-09-13 Inst Francais Du Petrole Methode et dispositif pour fabriquer un tube metallique ondule
JP2756430B2 (ja) 1994-08-31 1998-05-25 正昭 西 タイヤ組立体用リム
JPH09166111A (ja) 1995-12-13 1997-06-24 Showa Alum Corp 金属製中空材同士の接合方法
DE19602951C2 (de) * 1996-01-27 2000-12-07 Steingroever Magnet Physik Verfahren und Vorrichtung zum Aufweiten von Rohren oder rohrförmigen Teilen durch das Magnetfeld eines Strom-Impulses
US5730016A (en) * 1996-03-22 1998-03-24 Elmag, Inc. Method and apparatus for electromagnetic forming of thin walled metal
JP3782853B2 (ja) 1996-08-22 2006-06-07 日清紡績株式会社 パンチプレス装置における多数穿孔金属板の製造方法
US5826320A (en) 1997-01-08 1998-10-27 Northrop Grumman Corporation Electromagnetically forming a tubular workpiece
DE19707090A1 (de) 1997-02-24 1998-08-27 Continental Ag Luftbereiftes Fahrzeugrad
US6065317A (en) * 1997-04-12 2000-05-23 Magnet-Physik Dr. Steingroever Gmbh Apparatus and procedure for manufacturing metallic hollow bodies with structural bulges
JP2002113626A (ja) 2000-10-05 2002-04-16 Torai Engineering Kk 治具装置およびワークの加工方法
US6751994B2 (en) * 2002-05-28 2004-06-22 Magna International Inc. Method and apparatus for forming a structural member
KR100527482B1 (ko) * 2003-11-10 2005-11-09 현대자동차주식회사 전자기 성형을 이용한 결합장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4520599Y1 (ja) * 1966-03-01 1970-08-18
FR2488163A1 (fr) * 1980-08-08 1982-02-12 Stephanois Rech Mec Bobine destinee a la mise en oeuvre generalisee du procede de magneto formage, et les procedes et moyens de fabrication de cette bobine
DE3215029A1 (de) * 1981-04-24 1982-12-09 Gépipari Technológiai Intézet, Budapest Aluminiumrad, insbesondere fahrzeugrad, sowie verfahren und vorrichtung zu seiner herstellung
JPS5964125A (ja) * 1982-10-01 1984-04-12 Agency Of Ind Science & Technol 電磁力によるパイプの切断方法
JPH04197524A (ja) * 1990-11-27 1992-07-17 Yuno Kogyo Kk スチールホイールの形状修正方法
JPH0810864A (ja) * 1994-06-29 1996-01-16 Honda Motor Co Ltd 電磁成形装置
JPH0824969A (ja) * 1994-07-07 1996-01-30 Japan Steel Works Ltd:The 拡管用電磁成形器および管状成形品の製造方法
WO1997045216A1 (en) * 1996-05-29 1997-12-04 Northrop Grumman Corporation Method and forming die for fabricating torque joints
JP2001310602A (ja) * 2000-04-26 2001-11-06 Bridgestone Corp 空気入りタイヤ用リム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861932A (zh) * 2014-04-01 2014-06-18 湖南大学 一种热塑性玻璃纤维增强铝合金层板的成形装置与方法
CN106807825A (zh) * 2017-04-12 2017-06-09 华中科技大学 一种电磁渐进柔性复合成形方法
CN106807825B (zh) * 2017-04-12 2018-07-06 华中科技大学 一种电磁渐进柔性复合成形方法

Also Published As

Publication number Publication date
DE60325765D1 (de) 2009-02-26
JP2004160542A (ja) 2004-06-10
ATE419934T1 (de) 2009-01-15
EP1563924A4 (en) 2007-04-04
EP1563924B1 (en) 2009-01-07
EP1563924A1 (en) 2005-08-17
AU2003272900A1 (en) 2004-04-19
JP4136802B2 (ja) 2008-08-20
US20060107715A1 (en) 2006-05-25
US7487655B2 (en) 2009-02-10

Similar Documents

Publication Publication Date Title
WO2004028720A1 (ja) ビード付き円筒形リングの製造方法及びその方法に用いる金型
JP5244075B2 (ja) 筒状部材の製造方法
JP4713471B2 (ja) 縦方向にスロットを有し、そして、異なる断面を有するいくつかの縦方向セグメントを備えている中空形材を、金属シートから製造する方法
JP2010149182A5 (ja)
US5734142A (en) Method of welding electrically conductive metal profiles
US4266417A (en) Steel flanged wheel rims for motorized bicycles or two-wheeled vehicles and a process for producing the rims
JP5425148B2 (ja) クランプリング
JPH0747438A (ja) スエージング用リングとその製造方法
JPWO2017122656A1 (ja) スピニング装置およびスピニング方法
JP2005152920A (ja) フランジ付き管状部材及びその製造方法
EP1504844B1 (en) Method of manufacturing annular body
US4345360A (en) Method of forming a metal wheel
US7441335B2 (en) Methods of electromagnetic forming aluminum alloy wheel for automotive use
JP4429117B2 (ja) アルミニウム合金製自動車用ホイールリムの製造方法
JP4628343B2 (ja) ビード付き円筒形リングの製造方法
JP5749708B2 (ja) 車両用ホイールリムの製造方法
JP2006305587A (ja) アルミニウム製管材の端部拡管方法
US1991988A (en) Method for forming axle housings
CN113665291A (zh) 一种车轮轮辋及其加工工艺
US5832609A (en) Method for producing a variable thickness rim for a vehicle wheel
JP3791977B2 (ja) 自動車ホイール用リムの製造方法
JPH0819816A (ja) 円筒部材の製造方法
JPH0839178A (ja) 中間膨出部に窓穴を有する管状製品の製造方法
US6584824B1 (en) Apparatus for producing a vehicle wheel rim
JPH0455029A (ja) ホイール用リムの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003753961

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003753961

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006107715

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10528430

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10528430

Country of ref document: US