WO2004023001A1 - 制振装置及び建設機械のバケット - Google Patents

制振装置及び建設機械のバケット Download PDF

Info

Publication number
WO2004023001A1
WO2004023001A1 PCT/JP2003/011181 JP0311181W WO2004023001A1 WO 2004023001 A1 WO2004023001 A1 WO 2004023001A1 JP 0311181 W JP0311181 W JP 0311181W WO 2004023001 A1 WO2004023001 A1 WO 2004023001A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
side plate
vibration damping
damping device
bottom plate
Prior art date
Application number
PCT/JP2003/011181
Other languages
English (en)
French (fr)
Inventor
Kazuya Imamura
Kuniaki Nakada
Taizou Nakagawa
Original Assignee
Komatsu Ltd.
Maruei Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd., Maruei Ltd. filed Critical Komatsu Ltd.
Priority to US10/526,224 priority Critical patent/US7681689B2/en
Priority to JP2004569802A priority patent/JP3982584B2/ja
Priority to DE10393242T priority patent/DE10393242T5/de
Publication of WO2004023001A1 publication Critical patent/WO2004023001A1/ja
Priority to US12/071,525 priority patent/US7743881B2/en
Priority to US12/782,012 priority patent/US8438759B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/40Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S37/00Excavating
    • Y10S37/904Vibration means for excavating tool

Definitions

  • the present invention relates to a vibration damping device that suppresses vibration generated in a base material and reduces noise radiated from the base material, and a packet for a construction machine.
  • a laminated plate 20 is formed by laminating a plurality of thin steel plates 21 (hereinafter, referred to as thin plates 21) on the side plate 11 of the bucket.
  • a relatively thick steel plate 30 hereinafter referred to as the protective plate 30
  • the protective plate 30 that protects the thin plate 21 is layered, and the surrounding 20a (see Fig.
  • the laminated plate 20 is made of steel, which is a highly durable, inflammable, and inexpensive material, it can solve the problems of the conventional viscous material.
  • the laminated plate 20 suppresses the vibration generated in the side plate 11 and reduces the noise radiated from the side plate 11 is described in the above-mentioned publication, but will be described with reference to FIGS. 4A and 4B. I do. That is, when the side plate 11 vibrates, the vibration is transmitted to the laminated plate 20, and the thin plates 21 and 21 ′ constituting the laminated plate 20 are deformed. In the laminated plate 20 in which the thin plates 21 and 21 'are multiplexed, the amount of deformation differs for each layer. That is, the adjacent thin plates 21 and 21 'have different radii of curvature from r1 and r2, respectively.
  • the thin plates 2 1 and 2 1 ′ whose displacement was originally X change their displacements to X + ⁇ 2 and ⁇ + ⁇ 1, respectively, due to small deformation due to vibration.
  • a relative displacement between '1' and ⁇ 2— ⁇ 1 occurs.
  • the relative displacement ⁇ 2— ⁇ 1 generates a frictional force (hereinafter, interlayer frictional force) between the thin plates 21 and 21 '.
  • Vibration energy generated in the side plate 11 is converted into heat energy by the interlayer frictional force. Thereby, the vibration generated in the side plate 11 is suppressed, and the noise radiated from the side plate 11 is reduced. Therefore, as shown in Fig.
  • the thin plates 21 and 21 ' are deformed independently to produce a relative displacement ⁇ 2- ⁇ 1, which is the condition for vibration suppression. Therefore, conversely, if the two thin plates 21 and 21 'are fixed and function as an integral unit, independent deformation is impeded, and no relative displacement is generated or is extremely small, resulting in a vibration damping effect. Is not obtained or very little.
  • This will be described with reference to FIG. Conventionally, around the laminate 20 20 a is fixed to the side plate 11 by welding or the like. However, in order to obtain a high vibration-damping effect without hindering the independent deformation of each layer, the inside of the laminate 20 (used in the sense of the part excluding the surrounding 20a) is fixed to the side plate 11 What was not was the conventional general structure.
  • the types of buckets for construction machinery vary widely depending on the size, specifications, work use, etc. of the construction machinery.
  • the present inventors conducted tests on various buckets having different sizes, shapes, dimensions, and the like, and confirmed the effect of attaching the laminated board to the side plate. The knowledge that the effect differs depending on the type of the bucket. was found. In other words, depending on the type of packet, In some cases, the noise contribution of the panels is high, while in others the noise contribution of the side panels is low and the noise contribution of the bottom panel is high. In this case, the following countermeasures can be considered.
  • a vibration damping device using a laminated plate in which a plurality of plates are partially connected is known as a compact and durable vibration damping device having an effect of reducing noise of a machine.
  • a partial connection bolting, plug welding, or full circumference welding is used (for example, Japanese Patent Application Laid-Open No. 200-48188, page 3-5, And Fig. 18).
  • the laminated plate is partially connected to the noise generating section (vibrating section). Therefore, when the noise generating section vibrates, the space between the vibrating section and the laminated plate and the laminated plate are formed. Gaps occur between the moving plates.
  • the bucket 101 is formed by welding side plates 103, 103 to both sides of a bottom plate 102, which is curved into a substantially C shape, and further, caps are attached to the side plates 103, 103 and the bottom plate 102.
  • Plates 104, 104, and 105 are welded to each other to form openings of bucket 101.
  • ⁇ Base plate 105 has a plurality of bases 106 mounted thereon. Have been. At the end of the bottom plate 102 opposite to the base mounting portion, a pin boss 107 connected to a working machine of a hydraulic shovel is installed.
  • a wear-resistant plate 108 is provided around the outer peripheral surface of the side plate 103 along the bottom plate 102. Outside of side plate 103 A laminate 150 is attached to the surface so as to be surrounded by the base plate 104 and the wear-resistant plate 108. As shown in FIG. 30, the laminated plate 150 is formed by laminating a predetermined number of thin steel plates, and the inner plate 151 is laminated outside the inner plate 151 to protect the inner plate 151. And an outer plate 152 having a predetermined thickness for holding down. The side plate 103, the inner plate 151, and the outer plate 152 are attached to the side plate 103 so as to be substantially adhered to each other.
  • a gap d1 is provided between the laminated plate 150 and the wear-resistant plate 108 as a margin for welding the laminated plate 150 and the wear-resistant plate 108 to the side plate 103.
  • d 2 is provided. Both gaps d 1 and d 2 are filled by repeating fillet welding twice, for example, as shown in FIGS. 32A and 32B. That is, the laminate 150 is attached to the side surface of the bucket 101 by full circumference welding.
  • the inner plate 151 of the laminated plate 150 dissipates vibration energy as heat energy, so that noise during excavation work can be reduced. Furthermore, the laminated plate 150 provided on the side of the bucket 101 prevents the infiltration of rainwater into the laminated plate by full-circumferential welding, preventing the generation of mackerel between the plates and damping performance. Ability can be maintained. In addition, the base plate 104 and the wear-resistant plate 108 protect this welded part from collision with rocks etc. during excavation work, so that it is possible to prevent damage to the welded part of the laminated plate 150. The durability of the laminate 150 can be improved.
  • the entire periphery of the inner plate 151 of the laminated plate 150 is constrained by welding the entire periphery, and the damping performance is reduced.
  • rainwater infiltrates into the inside of the laminate thereby causing ⁇ .
  • a laminated plate 160 (provided with a predetermined number of inner plates 161 and outer plates 162) is crushed by a crusher 1. It may be attached to a 70-degree phono and a 17 1-inclination plate 172. In this case, it is conceivable to use full circumference welding to prevent foreign substances such as water from entering the inside of the laminate. In this case as well, as in the above (1), the inner plate 161 of the laminated plate 160 is welded all around the periphery, so that the entire periphery is restrained. Conversely, if the periphery of the laminated board 160 is intermittently welded in order to reduce the restraining points and improve the vibration damping performance, water and the like will enter the inside of the laminated board 160, causing ⁇ . Disclosure of the invention
  • the present invention has been made in order to solve the problems of the conventional technology. By fixing an optimum portion inside the laminate, "lift" occurs due to thermal distortion during manufacturing and external force during use. It is an object of the present invention to provide a vibration damping device capable of maintaining a high vibration damping effect by preventing loss of the vibration damping effect by preventing the thin plates constituting the laminated plate from being independently deformed. .
  • the first aspect of the vibration damping device according to the present invention includes: a laminated plate in which at least an internal part is fixed to a base material that emits noise; It is a part other than the part that becomes the antinode of the vibration mode when vibrating in the vibration mode of the frequency.
  • the distribution of the amplitude due to the vibration is as shown in Fig. 5A.
  • a part with a large amplitude that is, a part that is an antinode of vibration mode 1 (PH in FIG. 5A)
  • a part with a small amplitude that is, a part that is a node of vibration mode 1 (PL in FIG. 5A).
  • the deformation of the thin plates 21 and 21 'constituting the laminated plate 20 is large, and the interlayer frictional force is large.
  • the laminated plate 20 is fixed to the base material 11 at the site E which is the antinode of the vibration mode 1, the independent deformation of the thin plates 21 and 21 'constituting the laminated plate 20 is assumed. And the interlayer frictional force is completely eliminated or extremely reduced. For this reason, the vibration damping effect of the laminated board 20 cannot be obtained, or it can be obtained very little. Therefore, the laminate 20 is fixed to the base material 11 at a portion other than the portion E serving as the antinode of the vibration mode 1, specifically, at a portion G serving as a node of the vibration mode 1.
  • the portion G serving as a node of the vibration mode '1 is a portion where deformation of the thin plates 21 and 21' constituting the laminate 20 is small or hardly present. Therefore, even if this place is fixed, the vibration damping effect that is lost is extremely small or almost nonexistent. Since they are equal, the adverse effect on the vibration damping effect by fixing the laminate 20 can be minimized.
  • the optimum portion G inside the laminated plate 20 is fixed, so that “floating” occurs due to thermal distortion during manufacturing and external force during use, resulting in a vibration damping effect. Will not be lost. Further, independent deformation of the thin plates 21 constituting the laminated plate 20 is not hindered, and a high vibration damping effect can be maintained.
  • the second type of damping device is to provide a laminate in which at least the inner part is fixed to the noise-emitting base material; the inner part is when the base material is vibrated in each of the vibration modes of a plurality of frequencies.
  • the other part is a part other than the part that becomes an antinode for a plurality of vibration modes.
  • the base material 11 when the base material 11 is fixed to the laminate 20, the base material 11 is subjected to each of the vibration modes 1 and 2 having a plurality of frequencies. Fix the inner part G other than the antinode part and the plural vibration modes 1, 2, 3, and 4 when vibrating at, 3, and 4. For each of the vibration modes 1, 2, 3, and 4 at multiple frequencies, the portions G of the thin plates 21 and 21 'constituting the laminated plate 20 where the deformation was small or almost nonexistent were fixed. It is possible to minimize the adverse effect on the vibration damping effect by fixing the laminated plate 20 over the frequency, and to reduce noise in which a plurality of frequency components are mixed.
  • the third type of the vibration damping device includes: a laminated plate having at least an inner portion fixed to a side plate of a bucket of a construction machine; the inner portion has: i) a substantially circular arc shape in at least a portion of one side.
  • a line connecting the arc center C of the side plate and the point A where the bucket transitions from the substantially arc shape to another shape on the side where the bucket is attached to the construction machine connects the point B where the CA intersects the laminated plate and the arc center C
  • the side plate 11 when the side plate 11 is vibrated in each of the vibration modes 1, 2, 3, and 4 of a plurality of frequencies, the vibration is generated at any frequency.
  • the region other than the antinode in the motion mode was confirmed to be region G as shown in FIG.
  • the side plate 11 is a specific example of the base material 11. According to the third configuration, if the portion D in the region G is fixed to the side plate 11, the adverse effect on the vibration damping effect by fixing the laminated plate 20 can be minimized.
  • the first of the buckets of the construction machine includes: a side plate; a bottom plate at least partially connected to the side plate; a laminated plate attached to the side plate; a height H s of the side plate and a width W p of the bottom plate.
  • W p / H s is 1.47 or more, at least a part of the connection between the side plate and the bottom plate is reinforced.
  • a criterion for which noise countermeasures are required for the bottom plate is as follows: ⁇
  • the ratio Wp / Hs between the side plate height Hs and the bottom plate width Wp is 1.47 or more.
  • the plan is to reinforce the bottom plate according to this standard. As a result, it is possible to perform noise control with only a minimum amount of effort without performing a noise test or the like, for only those buckets that require noise control on the bottom plate among various buckets.
  • the second bucket of construction equipment comprises: a side plate; a bottom plate connected at least partially to the side plate; and a laminated plate attached to the side plate; a ratio W between the height H s of the side plate and the width W p of the bottom plate.
  • p / Hs is 1.47 or more, the portion that connects the side plate and the bottom plate, which is the antinode of the vibration mode, is reinforced.
  • the bottom plate is reinforced in accordance with the standard that requires noise countermeasures on the bottom plate. Noise countermeasures can be taken.Furthermore, among the parts where the side plate and the bottom plate are connected, the part that becomes the antinode of the vibration mode is reinforced, so the bottom plate needs to be reinforced only to the minimum necessary. The adverse effect on the performance of the construction machine can be minimized.
  • the third of the buckets of construction machinery is: side plates; bottom plates connected at least partially to the side plates; laminated plates attached to the side plates; height of the side plates H s and bottom plate
  • the ratio Wp / Hs to the width Wp is 1.47 or more
  • the ratio Wp '/ Hs between the height Hs and the substantial width Wp' of the bottom plate is greater than 1.47.
  • a connecting member for connecting the side plate and the bottom plate so as to reduce the size.
  • the third configuration of the bucket similarly to the first configuration of the bucket, noise countermeasures can be taken with a minimum required effort.
  • the sound radiated from the bottom plate is reduced by attaching a connecting member so that the ratio W p ′ / H s becomes smaller than 1.47.
  • the laminated board is attached to the side plate to reduce the sound radiated from the side plate, so the noise radiated from the bucket Can be reduced most efficiently to the maximum.
  • the fourth of the buckets of construction machinery comprises: a side plate; a bottom plate at least partially connected to the side plate; a laminated plate attached to the outside of the side plate; inside the side plate and the bottom plate, the side plate and the bottom plate; At least a part of the connecting part is reinforced.
  • the sound radiated from the bottom plate is reduced, so that not only the noise on the side of the bucket but also the noise in front of the bucket is reduced.
  • side noise is further reduced than before reinforcement by increasing the rigidity of the entire bucket.
  • the weight increase of the reinforcement material is smaller than in the case where reinforcement material such as a wear-resistant plate is provided on the outside of the bucket.
  • the fourth type of the vibration damping device includes: a laminated plate formed by laminating a predetermined number of inner plates and an outer plate provided outside the predetermined number of inner plates; Therefore, a predetermined number of inner plates are sealed. According to this configuration, the predetermined number of inner plates do not have a welded portion for restraining the deformation, and since the inner plates are hermetically sealed, there is no generation due to rainwater intrusion, so that good vibration damping performance can be obtained. Can be
  • a laminated plate formed by laminating a predetermined number of inner plates and an outer plate provided outside the predetermined number of inner plates and having a shape different from the inner plate; Abuts against the member of the machine to be vibrated; And bonding the laminate to the components of the machine.
  • the outer plate of the laminated plate is continuously welded (full circumference welding), so that rainwater can be prevented from entering, and generation of mackerel between the plates can be prevented.
  • the vibration damping device When the laminated plate is joined to a member of the machine, intermittent welding consisting of a plurality of weldings may be performed on the peripheral portion of the inner plate. According to this configuration, the degree of restraint of the inner plate is suppressed by using intermittent welding at the peripheral portion of the inner plate, so that a vibration damping device having excellent vibration damping characteristics and a remarkable noise reduction effect is obtained. can get.
  • the machine member has a contact member capable of contacting the end of the laminated plate;
  • the inner plate has a contact portion protruding from the outer edge of the outer plate and contacting the contact member. Continuous welding covering the contact portion of the inner plate may be performed between the peripheral edge of the outer plate and the contact member. According to this configuration, the predetermined number of inner plates can be easily positioned by contacting the contact portion of the inner plate with a contact member on the machine side. In addition, there is no need for temporary attachment for preventing floating and deformation due to thermal distortion during continuous welding, thereby reducing manufacturing man-hours and costs.
  • the inner plate is provided with a plurality of protrusions on the periphery that match the periphery of the outer plate; by continuously welding the periphery of the outer plate, multiple protrusions on the inner plate are intermittent Welding; According to this configuration, intermittent welding can be configured by welding the protruding portion of the inner plate by the continuous welding process of the outer plate, so that the manufacturing process is simple and the cost is low.
  • the protruding portion of the inner plate substantially matches the peripheral shape of the outer plate, by using these portions for positioning each plate of the laminated plate, the positioning work between each inner plate and the outer plate is easy. Thus, a low-cost vibration damping device can be obtained.
  • the length of the contact portion of the inner plate is between 100 and 280 thighs; According to this configuration, the intermittent welding pitch at the peripheral portion of the inner plate is set to a value between 100 and 280 mm based on the test result, so that a very excellent noise reduction effect can be obtained.
  • the vibration damping device the plurality of protrusions of the inner plate are provided at intervals of 100 to 280. According to this configuration, since the intermittent welding pitch at the peripheral portion of the inner plate is set between 100 and 280 based on the test result, a very excellent noise reduction effect can be obtained.
  • FIG. 1 is a side view of a bucket showing a side plate of the bucket according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a cross section of a side plate of the packet of FIG.
  • FIG. 3 is a diagram for explaining the first embodiment, showing the amount of deformation of the laminated plate corresponding to antinodes and nodes of the vibration mode.
  • FIGS. 4A and 4B are explanatory diagrams of deformation of a thin plate in the first embodiment
  • Figure 4A shows the side plate without vibration.
  • Figure 4B shows the side plate vibrating.
  • FIG. 5A to FIG. 5D are distribution diagrams of the amplitude when the side plate is vibrated in each vibration mode in the first embodiment, where PL is a “node” and PH Is “belly”, PM is "middle” (ie, not a node, but small in amplitude), and
  • FIG. 1 shows vibration mode
  • FIG. 5C shows vibration mode
  • FIG. 5D shows vibration mode 4.
  • FIG. 6 is a perspective view of a bucket according to the second embodiment of the present invention.
  • FIG. 7 is an explanatory view corresponding to a section taken along line 7-7 of FIG. 6, and is a view showing dimensions of each part of the bucket.
  • FIGS. 8A and 8B show a bucket to which a connecting member is attached according to the second embodiment.
  • FIG. 8A is a view corresponding to the section 8 A—8 A in FIG.
  • FIG. 8B is a perspective view of the inside of the bucket.
  • FIG. 9 is a diagram showing the relationship between the ratio of the side plate height to the bottom plate width and the noise contribution amount in the second embodiment.
  • FIG. 10 is a distribution diagram of the magnitude of the amplitude when the bucket is vibrated in the vibration mode of the predetermined frequency in the second embodiment.
  • FIGS. 11A and 11B show how a hydraulic excavator equipped with a bucket performs loading work on a truck in an example of the second embodiment, and FIG. 11A is a side view,
  • FIG. 11B is an explanatory top view.
  • FIG. 12 is a perspective view of a bucket according to the third embodiment of the present invention.
  • FIG. 13 is a side view of a bucket according to the third embodiment.
  • FIG. 14 is a perspective view of a laminate according to the third embodiment.
  • FIG. 15A is a cross-sectional view of a main part corresponding to the 15A—15A cross section in FIG.
  • FIG. 15B is a sectional view of a main part corresponding to the section 15 B—15 B in FIG.
  • FIG.16A, FIG.16B and FIG.16C are cross-sectional views of relevant parts showing a welding state according to the third embodiment
  • Fig. 16 shows the case of intermittent welding in the gap shown in Fig. 15A
  • Fig. 16B shows the case of continuous welding in the gap shown in Fig. 15A
  • Fig. 16C shows the case of continuous welding in the gap shown in Fig. 15B. This shows the case of welding.
  • FIG. 17 shows measurement data of the relationship between the welding pitch of the inner plate and the generated noise level according to the third embodiment.
  • FIG. 18 is an explanatory diagram of the welding pitch of the third embodiment.
  • FIG. 19A shows another example according to the third embodiment.
  • FIG. 19B is a sectional view taken along line 19B-19B in FIG. 19A.
  • FIG. 20 is a side view of a self-propelled crushing apparatus according to a fourth embodiment of the present invention.
  • FIG. 21 is a perspective view of the hob according to the fourth embodiment.
  • FIG. 22 is a plan view of an inclined wall surface according to the fourth embodiment.
  • FIG. 23A is a cross-sectional view of FIG.
  • FIG. 23B is a cross-sectional view of 23B—23B in FIG.
  • FIG. 24 is an explanatory diagram of the welding pitch of the fourth embodiment.
  • FIG. 25A to FIG. 28 are plan views of another embodiment of a laminated plate which is a modification of the third and fourth embodiments,
  • Figure 25A shows an example of a waveform with a notch.
  • FIG. 25B is an example in which a plurality of holes for plug welding are provided on the peripheral portion of the inner plate
  • FIG. 25C is an example in which a plurality of holes for welding both the inner plate and the outer plate to the side plate are provided.
  • Fig. 26 shows an example in which the base plate side end of the inner plate is protruded from the outer plate peripheral edge, and a notch is provided in the protruding portion.
  • Fig. 27 shows an example in which a plurality of protrusions and notches are provided at the end of the inner plate on the base plate side.
  • Fig. 28 shows an example in which the end of the inner plate is protruded from the periphery of the outer plate, a plurality of notches are provided in the protruding portion, and the protrusion is filled with welding.
  • FIG. 29 is a perspective view of a bucket according to the prior art.
  • FIG. 30 is a cross section taken along line 30—30 of FIG. 29 before welding.
  • FIG. 31 is a cross-sectional view of 31-31 of FIG. 29 before welding.
  • FIG.32A and FIG.32B are cross-sectional views of a main part of FIG. 29 showing a welding process according to the related art.
  • Fig. 32 A shows after the first welding
  • Figure 32B shows the state after the second welding.
  • FIG. 33 is a perspective view of a crusher according to the related art.
  • FIG. 34 is a perspective view of a bucket in an example in which the third and fourth embodiments are combined.
  • FIG. 35 is a chart showing the noise energy reduction rate of the bucket in the embodiment and the example of the present invention.
  • FIG. 36 shows a bucket in an example in which the first to third embodiments are combined.
  • FIG. 37A, FIG. 37B, and FIG. 37C are cross-sectional views showing an embodiment in which a machine to be damped and an outer plate are coupled so as to hermetically seal a predetermined number of inner plates.
  • FIG. 1 shows a side plate 11 of a bucket 10 to be damped in the first embodiment
  • FIG. 2 shows a cross section of the side plate 11.
  • a plurality of thin steel plates 21 are laminated to form a laminated plate 20.
  • a relatively thick steel protective plate 30 for protecting the thin plate 21 is overlaid, and as shown by hatching in FIG. It is fixed to the side plate 11 by meat welding.
  • the protection plate 30 is provided to prevent the thin plate 21 from being worn by earth and sand.
  • the protective plate 30 is not provided on the laminated plate 20 .
  • a method of fixing the periphery (peripheral portion) 20 a of the laminated plate 20 to the side plate 11 other than the method of fixing the entire circumference by fillet welding as described above, intermittent fillet welding, or It can be fixed by any fixing method such as intermittent plug welding or bolting.
  • fixing methods are described in, for example, Japanese Patent Application Laid-Open No. 2000-219,168, US Patent No. 6,332,509, and Japanese Patent Application Laid-Open No. 200-48,188. No., published in US Pat.
  • the laminated plate 20 suppresses the vibration generated in the side plate 11 and reduces the noise radiated from the side plate 11.
  • the vibration is transmitted to the laminated plate 20 and the thin plates 21 and 21 ′ constituting the laminated plate 20 are deformed.
  • the laminated board 20 in which the thin boards 2 1 and 2 1 ′ are multiplexed deformation The amount is different. That is, since the adjacent thin plates 2 1 and 2 1 ′ have different radii of curvature from rl and r 2, respectively, the thin plates 2 1 and 2 1 ′ whose displacement was originally X (see FIG.
  • the thin plates 21 and 2 1 ′ are deformed independently as shown in FIG. 4A, and a relative displacement ⁇ 2— ⁇ 1 is a condition for vibration suppression.
  • a relative displacement ⁇ 2— ⁇ 1 is a condition for vibration suppression.
  • FIG. 3 shows the amount of deformation of the laminated plate 20 corresponding to antinodes and nodes of the vibration mode 1 when the base material 11 is vibrated in the vibration mode 1 of a predetermined frequency.
  • Fig. 5 ⁇ shows the distribution of the magnitude of the amplitude caused by the vibration when the base material 11 is vibrated in the above vibration mode 1, and each part has a different pattern according to the magnitude of the amplitude. Indicated by.
  • the part indicated by PH is the part of the belly where the amplitude is a dog
  • the part indicated by PL is the part of the amplitude of 0, that is, the node.
  • the magnitude of the amplitude differs depending on the part, and there is a part with a large amplitude, that is, a part that is an antinode of the vibration mode 1, and a part with a small amplitude, that is, a node of the vibration mode 1.
  • the laminated plate 20 is fixed to the base material 11 at a portion E which is an antinode of the vibration mode 1.
  • the independent change of the thin plates 21, 21 ′ constituting the laminated plate 20 is performed.
  • the shape is disturbed, and the interlayer friction force is completely eliminated or extremely small.
  • the vibration damping effect by the laminated board 20 is not obtained or only a very slight vibration damping effect is obtained. Therefore, in the first embodiment, the laminated plate 20 is fixed to the base material 11 at a portion other than the portion E which is the antinode of the vibration mode 1, specifically, at a portion G which is a node of the vibration mode 1. .
  • the point A at which the arc center C of the side plate 11 which has a substantially arc shape on a part of the lower side (one side) and the transition from the substantially arc shape to another shape on the side where the bucket 10 is attached to the construction machine A Is a line segment CA, a point where the line segment CA intersects the laminated plate 20 is B, and a line connecting the point B and the arc center C is a line segment BC.
  • the region G is defined as: the midpoint d of the line segment BC and the region D near the midpoint d, the midpoint of the line segment CA; the region F near the midpoint f and the region F, and the region between the region D and the region F. Become.
  • FIG. 2 shows an example of a method of fixing the portion G of the laminate 20 to the side plate 11.
  • a hole 50 is formed so as to penetrate the protective plate 30 and the laminated plate 20 to the side plate 11, and plug welding is performed so that the welding material 51 is filled in the hole 50. Is carried out.
  • the portion G serving as a node of the vibration mode 1 is a portion where the thin plates 21 and 2 1 ′ constituting the laminated plate 20 have a small or almost no deformation. For this reason, even if this place is fixed, the vibration damping effect that is lost is very small or almost nil, so that the adverse effect on the vibration damping effect by fixing the laminate 20 can be minimized.
  • the optimum portion G inside the laminated plate 20 is fixed, so that “floating” occurs due to thermal distortion during manufacturing or external force during use, and the vibration damping effect is reduced. Will not be lost.
  • independent deformation of the thin plates 21 constituting the laminated plate 20 is not hindered, and a high damping effect can be maintained.
  • a portion other than the antinode is fixed for one vibration mode at one frequency. However, a part other than the belly may be fixed for each vibration mode of a plurality of frequencies.
  • FIGS. 5A to 5D show the amplitude distributions when the side plate 11 is vibrated in the vibration modes 1, 2, 3, and 4 of different frequencies.
  • the region other than the antinode of the vibration mode was the region G at any frequency.
  • the region G is composed of a region D, a region F, and a region between the region D and the region F. Therefore, when the laminated plate 20 is fixed to the side plate 11 of the bucket 10, if the portion D in the region G is fixed, for example, the adverse effect on the vibration damping effect by fixing the laminated plate 20 is minimized. Can be reduced to
  • the fixed portion in the interior when the laminated plate 20 is fixed to the side plate 11 is determined in consideration of the vibration mode, but the side plate 11 is not fixed except for the periphery of the laminated plate 20. It only needs to be fixed at the site. By doing so, it is possible to prevent lifting or the like caused by the application of heat.
  • both the part (part G or region G) other than the periphery (inside) and the peripheral part 20 a of the laminate 20 are fixed to the side plate (or base material) 11. As a result, it is possible to more reliably prevent lifting and the like, and to maintain a high damping effect.
  • the side plate 11 of the bucket 10 of the construction machine is targeted for vibration damping.
  • the present invention can be applied to a case where an arbitrary base material is targeted for vibration damping. That is, the present invention may be applied to a case where a boom or an arm other than a bucket is damped among members constituting a working machine of a construction machine. In the case of a construction machine equipped with a blade, the present invention may be applied to dampen a blade. In addition, the present invention can be applied to a crushing machine having a hopper or the like to control a hopper that is a noise source. In addition, the present invention can be applied to the case where a crawler track, a track frame, and the like constituting a leg around a construction machine are damped.
  • the laminate 20 on components such as engines and hydraulic pumps. And dampen vibrations.
  • noise generated by the pulsation generated by the hydraulic pump being transmitted to the piping becomes a problem.
  • the frequencies of concern for hydraulic pumps are the frequency of the pulsation and its harmonics. Therefore, as in the first embodiment, the distribution of the magnitude of the amplitude is determined for each vibration mode of the pulsation frequency and the frequency of the overtone, and a portion other than the antinode of each vibration mode is specified, and the portion is fixed. By doing so, it is possible to reduce noise due to pulsation generated by the hydraulic pump.
  • FIG. 6 is a perspective view of a bucket 10 to be damped in the second embodiment
  • FIG. 7 shows a cross section of the bucket 10.
  • a plurality of thin steel plates are laminated to form a laminated plate 20.
  • the periphery 20 a of the laminate 20 is fixed to the side plate 11 by fillet welding all around.
  • intermittent fillet welding, intermittent plug welding, or bolting is used as a method of fixing the laminated plate 20 to the side plate 11, other than the method of fixing by the fillet welding as described above.
  • intermittent fillet welding, intermittent plug welding, or bolting is used. It can be fixed by any fixing method such as.
  • a base plate 13 is attached to the upper end of the side plate 11, and the opening of the bucket 10 is reinforced.
  • the bottom plate 12 is provided with a base 18 and a bracket 19.
  • An arm 41 shown in FIG. 11A is attached to the bracket 19.
  • a reinforcing member 14 is fixed to a corner inside the bucket 10 where the side plate 11 and the bottom plate 12 are connected. The reinforcing member 14 is provided to secure the strength of the bucket 10 and improve the rigidity.
  • the side plate 11 and the bottom plate 12 are connected to a specific part K (see Fig. 10) of the corners inside the bucket 10 where the side plate 11 and the bottom plate 12 are connected.
  • a beam-shaped connecting member 15 is attached.
  • the connecting member 15 is provided for connecting the side plate 11 and the bottom plate 12 to reinforce the bottom plate 12 to secure rigidity and reduce noise radiated from the bottom plate 12. Have been.
  • FIG. 9 shows the ratio Wp / Hs between the height Hs of the side plate 11 and the width Wp of the bottom plate 12 on the horizontal axis, and the vertical axis shows the noise contributions Tl and ⁇ 2 of the side plate 11 and the bottom plate 12 on the vertical axis.
  • FIG. 9 shows the result of measuring the noise contribution in a state where the laminate 20 and the connecting member 15 are not attached to the bucket 10.
  • the width Wp of the bottom plate 12 of the bucket 10 and the height Hs of the side plate 11 are defined in FIG.
  • the noise contribution T 2 of the bottom plate 12 is smaller than the noise contribution T 1 of the side plate 11. That is, the noise contribution T 2 of the bottom plate 1 2 is smaller than the noise contribution T 1 of the side plate 11, and the noise radiated from the side plate 11 is dominant.
  • the noise radiated from the bucket 10 can be reduced just by attaching the 0. Even if the bottom plate 12 is reinforced, the bottom plate 12 does not need to be reinforced because it hardly contributes to the noise reduction of the bucket 10. Therefore, for the bucket 10 having the ratio Wp / Hs of less than 1.47, only the laminated plate 20 is attached to the side plate 11 and the attachment of the connecting member 15 is omitted.
  • the noise contribution T2 of the bottom plate 12 is more than the noise contribution T1 of the side plate 11.
  • the noise radiated from the bottom plate 12 is more dominant, it is not sufficient to simply attach the laminated plate 20 to the side plate 11, and if the noise radiated from the bottom plate 12 is not reduced, the bucket The noise radiated from 10 cannot be reduced. Therefore, for the packet 10 having the ratio Wp / Hs of 1.47 or more, besides attaching the laminated plate 20 to the side plate 11, as shown in FIG. 8A and FIG. A connecting member 15 is attached to a corner 16 connecting the bottom plate 12.
  • the criterion for which noise countermeasures are required for the bottom plate 12 is defined as ⁇ the ratio Wp / Hs between the side plate height Hs and the bottom plate width Wp is 1.47 or more. Yes, and reinforce bottom plate 1 and 2 according to this standard Like that.
  • ⁇ the ratio Wp / Hs between the side plate height Hs and the bottom plate width Wp is 1.47 or more.
  • Example 1 The connecting member 15 is attached over the entire area of the corner portion 16.
  • Example 2 The main source of noise radiated from the bottom plate 12 is specified, and the connecting member 15 is attached only to that portion.
  • a vibration mode analysis of the bucket 10 is performed at a frequency in a frequency band where a large peak is generated, and a main source of noise radiated from the bottom plate 12 is searched.
  • FIG. 10 shows the distribution of the magnitude of the amplitude of the typical vibration mode of the bucket 10, and each part is shown by shading corresponding to the magnitude of the amplitude. Note that FIG. 10 shows the mounting positions of the base 18 and the bracket 19 in order to clarify the correspondence with FIG.
  • the magnitude of the amplitude differs depending on the part.
  • Some parts have a large amplitude, that is, a part of the antinode of the vibration mode, and some parts have a small amplitude, that is, a node of the vibration mode.
  • the part of the corner 16 that is the antinode of the vibration mode is the main source of the sound radiated from the bottom plate 12. Therefore, from the amplitude distribution in FIG. 10, a portion K which is the antinode of the vibration mode in the corner portion 16 is searched, and the connecting member 15 is attached to the portion K.
  • the connecting member 15 is attached and reinforced only at the position K which is the antinode of the vibration mode.
  • Bottom plate 1 2 Reinforcement is required to a minimum and adverse effects on the performance of construction machinery can be minimized.
  • the connecting member 15 is attached so that the ratio Wp '/ 113 of the height Hs of the side plate 11 to the substantial width Wp' of the bottom plate 12 is smaller than 1.47.
  • connecting members 15 are attached to both corners 16 of the bottom plate 12, and the length of the line connecting the connecting portions 12 a of the connecting members 15 is set to “substantial”.
  • Bottom plate width Wp '" As shown in FIG. 9, the value of the ratio Wp / Hs before the connecting member 15 is attached is J2, and the noise contribution T2 of the bottom plate 12 is in the region Q where the noise contribution T2 is more dominant.
  • Attachment of the connecting member 15 in the region Q and reduction of the sound radiated from the bottom plate 12 are the most efficient in reducing the noise of the bucket 10.
  • the ratio Wp '/ Hs can be changed from the value J2 to the value J1, and it can be shifted to the region N where the noise contribution T1 of the side plate 11 is more dominant. it can.
  • the region N is a region where the sound radiated from the bottom plate 12 hardly matters and the sound radiated from the side plate 11 becomes problematic. Attachment of the laminated plate 20 to the side plate 11 in the region N is most efficient in reducing the noise of the bucket 10.
  • the radiation sound from the bottom plate 12 is reduced by attaching the connecting member 15 so that the ratio Wp ′ / Hs is smaller than 1.47.
  • the laminated plate 20 is attached to the side plate 11 to reduce the sound radiated from the side plate 11, so that the radiated sound from the bucket 10 is emitted. Noise can be reduced most efficiently to the maximum.
  • Example 4 It is also possible to combine Example 2 and Example 3. That is, from the amplitude distribution in FIG. 10, a portion K which is the antinode of the vibration mode is searched for in the corner portion 16 and connected to the portion K in such a manner that the ratio Wp '/ Hs becomes smaller than 1.47. Attach member 15.
  • Example 5 In Examples 1 to 4 described above, the beam-shaped connecting member 15 was used. In this case, the corners 16 of the bottom plate 12 are reinforced, but it is only necessary to reinforce the corners 16 shown by broken lines in Fig. 8A, and it is necessary to use the beam-like connecting members 15 There is no. For example, it is possible to fill the corner 16 with a reinforcing member without opening a gap, and to attach a reinforcing material to the outside of the bucket 10 instead of the inside as in the conventional wear-resistant plate. It is.
  • Embodiment 6 In Embodiments 1 to 5 described above, it is assumed that the bucket 10 having the ratio Wp / Hs of 1.47 or more is reinforced. However, regardless of the value of the ratio W p / H s, the inner side of the bucket 10, that is, the side opposite to the mounting surface of the laminated plate 20, is connected to the side plate 11 and the bottom plate 12. It is also possible to attach a reinforcing material such as the connecting member 15 to the site. In this case, the reinforcing material may be provided over the entire inner connection portion between the side plate 11 and the bottom plate 12 or may be provided on a part of the inner connection portion.
  • FIGS. 11A and 11B show a state in which the bucket 10 is attached to the arm 41 of the excavator 40 and the excavator 40 performs a loading operation on the truck 42. It is assumed that the laminated plate 20 is attached to the bucket 10, but the bottom plate 12 is not reinforced by the connecting member 15 or the like. In this case, the radiated sound from the side plate 11 is significantly reduced by the laminated plate 20, but the radiated sound from the bottom plate 12 is still large. Therefore, a sufficient noise reduction effect cannot be obtained for the noise in front S of the bucket 10.
  • the laminated plate 20 is attached to the bucket 10 and the bottom plate 12 is reinforced by the connecting members 15 and the like.
  • the bottom plate 1 2 is reinforced by the connecting member 1 5 etc.
  • the amplitude of vibration which causes noise is reduced, from the bottom plate 1 2 emission sound buckets bets 1 0 t for this reduction
  • a sufficient noise reduction effect can be obtained for the noise in front S.
  • the sound radiated from the bottom plate 12 also affects the noise on the side R of the bucket 10. For this reason, noise is generated in all directions including the side R of the bucket 10. Is sufficiently reduced.
  • the weight of the reinforcing material can be reduced less than in the case where a reinforcing material such as a wear-resistant plate is provided outside the bucket 10.
  • a bucket 101 which is a work arrangement for a hydraulic excavator, includes side plates 103, 103 on both left and right sides of a bottom plate 102, which is curved in a substantially C shape. It is welding each. Further, base plates 104, 104, and 105 are welded to the side plates 103, 103 and the bottom plate 102, respectively, to form openings of the bucket 101.
  • the base plates 104, 104, and 105 are members that are attached to parts that are heavily worn by digging, and the thickness of the members is set to be thicker than the bottom plate 102 and the side plates 103. Have been.
  • a plurality of bases 106 are mounted on the base plate 105.
  • a pin boss 107 connected to a working machine of a hydraulic shovel is fixedly provided on an outer surface of an end of the bottom plate 102 opposite to the space mounting portion.
  • a wear-resistant plate 108 is fixedly provided around the outer surface of the side plate 103 along the bottom plate 102.
  • the laminated plate 110 includes an inner plate 111 made of a predetermined number of laminated thin steel plates, and an outer plate 112 laminated outside the inner plate 111. ing.
  • the outer plate 1 12 has a predetermined thickness to hold down the inner plate 1 11 and protect the inner plate 1 11 from collision with rocks and wear during excavation.
  • each inner plate 1 1 1 is substantially the same as the inner circumference of the wear-resistant plate 1 08, and the rectangular notch 1 1 1 a of a predetermined width w is substantially arc-shaped. It is provided at a plurality of places including both circumferential ends of the side end.
  • a plurality of contact portions 111b contacting the inner periphery of the wear-resistant plate 108 are formed by being divided into the notch portions 111a.
  • the depth of the notch 1 1 1 a is equal to the gap d 1 between the outer plate 1 12 and the wear-resistant plate 108.
  • Substantially arc-shaped side of outer plate 1 1 2 The shape of the end portion is a shape in which a gap d1 is formed as a welding allowance with the inner periphery of the wear-resistant plate 108. Due to the above shape, in the notch 1 11 1a, as shown in FIG. 15A, the laminated plate 110 forms a gap d1 with the wear-resistant plate 108 and separates it. I have. In the contact portion 1 1 1b, as shown in Fig. 15B, the laminated plate 110 has the inner plate 1 11 in contact with the wear-resistant plate 108 and the outer plate 1 1 2 has the wear-resistant plate The plate 108 is separated from the plate 108 by forming a gap d1.
  • Each inner plate 1 1 1 and outer plate 1 1 2 has a shape (substantially straight line) in which a gap d 2 (not shown, but similar to Fig. 3 1) is formed as a margin for welding with the base plate 10 4 It is.
  • the step of attaching the laminate 110 to the side surface of the bucket 101 is as follows. First, a predetermined number of inner plates 111 are stacked, and the contact portion 111b is brought into contact with the wear-resistant plate 108 to position the inner plate 111. Next, the outer plate 112 is positioned using the cutout portion 111a of the inner plate 111. After the positioning of the laminated plate 110 (the inner plate 111 and the outer plate 112) has been completed, the notched portion 111a is filled with welding as shown in Fig. 16A, also serving as a temporary attachment. Thereby, each inner plate 111 is attached to the bucket 101 by intermittent welding. Next, the gap d1 between the notch portion 11a and the contact portion 11b is filled by continuous welding as shown in Figs.
  • the gap d2 between the laminated plate 110 and the base plate 104 is filled by continuous welding. That is, in the laminated plate 110, each inner plate 111 is attached to the side surface of the packet 101 by intermittent welding on the wear-resistant plate 108 side, and the outer plate 112 is continuously welded. I have.
  • the holes 110a are plug-welded to prevent the laminated plates 110 from floating due to thermal distortion or the like.
  • the laminated plate 110 is attached to the side plate 103 so that the side plate 103, the inner plate 111, and the outer plate 112 are in close contact with each other.
  • each plate vibrates according to the restraint condition and generates a small relative displacement between the plates, thereby causing friction and collision between the plates. Vibration energy is converted to heat energy by the friction and collision, so that the vibration that causes noise can be attenuated.
  • friction between the plates is mainly used rather than a collision phenomenon caused by a gap between the plates, and the vibration can be more efficiently attenuated.
  • the laminated plate 110 prevents the infiltration of rainwater into the laminated plate 110 by continuous welding of the outer plate 112, thereby preventing generation of mackerel between the plates and improving the vibration damping performance. Can be maintained.
  • Wear-resistant plate 1 0 8 protects this continuous welded portion from collision with rocks during excavation work-abrasion, preventing wear and damage of welded portion of laminated plate 1 10
  • the durability of the laminate 110 can be improved.
  • the inner plate 111 is an intermittent weld made up of a plurality of notched parts 111a, and has a lower degree of restraint than continuous weld such as full circumference welding, so it has excellent vibration damping characteristics. Thus, a vibration damping device having a remarkable noise reduction effect can be obtained.
  • the predetermined number of inner plates 1 1 1 can be positioned simply by abutting the contact portion 11 lb against the wear-resistant plate 108, and the gap of the welding allowance with the wear-resistant plate 108 There is no need to secure d1. Accordingly, since the outer plate 112 can be easily positioned by using the cutout portion 111a of the inner plate 111, a low-cost vibration damping device can be obtained in which the positioning operation is easy. Welding between the wear-resistant plate 108 and intermittent welding by welding the notch 111a and continuous welding of the outer periphery of the outer plate 112 are completed, so the welding amount is small and welding man-hours are reduced. A low-cost vibration damping device can be obtained.
  • the noise reduction effect of a vibration damping device using a laminated plate is basically larger as the number of points that restrain the laminated plate is smaller, that is, as the length of the welded portion is shorter. This is because, as can be seen from the above description of operation, relative displacement easily occurs between the layers, and a larger frictional force is generated. Therefore, it seems that the larger the welding pitch of the inner plate, the better. However, if the welding pitch is too large, there is a contradictory problem that the inner plates strike each other due to local vibration of the inner plate peripheral portion and generate a tapping sound. Therefore, the relationship between the inner plate welding pitch and the generated noise level was measured.
  • Figure 17 shows the measurement results. According to Fig. 17, as the welding pitch is increased, the noise level gradually decreases, and the noise generated becomes the lowest at a pitch of about 170 wakes. It can be seen that if the pitch is made larger than this, the noise gradually increases due to the tapping sound, and converges to a substantially constant level at a pitch of approximately 280. This converging level is approximately equal to the noise level at a pitch of 100 mm. Therefore, if the pitch is smaller than 10 Omm, the effect is lower than when the pitch is larger than 17 Omm and a tapping sound is generated. Further, even when it is desired to increase the welding pitch from the viewpoint of cost reduction, if the welding pitch is increased beyond 28 O mm, the noise reduction effect is reduced due to the tapping sound. As a result of the above, it is preferable that the welding pitch of the inner plate be set between 10 O mm and 28 O mm.
  • the welding pitch of the inner plate 111 in the third embodiment that is, the circumferential length L1 of the contact portion 111b is 10 Omii! It is preferable to set it between 280 and thigh.
  • the circumferential length L1 of the contact portion 1 1 1b is defined as shown in FIG.
  • the peripheral portion of the inner plate 111 is intermittently welded by welding notches 111a provided at predetermined intervals to the peripheral portion of the inner plate 111 to the side plate 103. It has a configuration.
  • the present invention is not limited to this.
  • a laminated plate configuration of another embodiment as shown in FIGS. 19A and 19B may be adopted.
  • FIG. 19A is a perspective view of a laminated board of another embodiment
  • FIG. 19B is a cross-sectional view of 19B-19B.
  • the outer peripheral end of a semi-circular shape substantially equal to the inner peripheral shape of the wear-resistant plate 108 of the bucket 101 is provided, and a notch is formed in the peripheral edge.
  • Laminate a plurality of inner plates 1 1 A not provided.
  • An outer plate 112 having a diameter smaller by a predetermined length d1 than the diameter of the inner plate 111A is laminated on the outer side of the plurality of laminated portions to form a laminated plate 111OA.
  • the laminated plate 110A is adhered to the outer surface of the side plate 103 of the packet 101 so as to be surrounded by the base plate 104 and the wear-resistant plate 108.
  • the outer edge of the outer plate 112 and the wear-resistant plate 108 and the base plate 104 By continuously welding between the outer edge of the outer plate 112 and the wear-resistant plate 108 and the base plate 104, the outer edge of the outer plate 112 and the outermost inner plate 111A are welded. Only are bound. Even in this case, not all the plates are restrained, so that the restraint degree is low and excellent vibration damping characteristics can be obtained. In addition, rainwater can be prevented from entering the interior of the laminate, preventing generation of mackerel between the boards and maintaining the damping characteristics for a long time.
  • the laminated plate is applied to a hopper of a self-propelled crusher.
  • the self-propelled crushing device 120 is equipped with a power unit 123 at the rear of a base 122 equipped with a crawler type traveling device 121, and a base 1 A crusher 1 2 4 is mounted in the center of 22.
  • Crushed materials for example, rock, concrete glass, wood, construction waste, etc.
  • It is unloaded rearward by an unloading device 126 extending rearward from the lower part of the base 122.
  • a feeder 127 is provided at the center of the hopper 125 to transport the material to be crushed to the crusher 124.
  • the inclined wall surfaces 1 28, 1 28, and 1 29 of the hopper 1 25 form an upward opening so as to surround the 1 27.
  • Laminated plates 130, 130, and 140 are respectively adhered to the inclined wall surfaces 128, 128, and 129 of the hopper 125.
  • Each of the laminates 130, 130, and 140 has a different shape but the same structure, and thus the laminate 130 will be described below as an example.
  • the laminate 130 has an outer shape slightly smaller than the inclined wall 128, and is attached to the center of the inclined wall 128. At a predetermined position of the laminated plate 130, a hole 130a for plug welding is provided.
  • the laminated plate 130 includes an inner plate 131 formed of a predetermined number of laminated thin steel plates, and an outer plate 132 laminated outside the inner plate 131.
  • the outer plate 132 has a predetermined thickness to hold down the inner plate 131, and to protect the inner plate 131 from collision with the crushed object and abrasion when the crushed object is charged.
  • the outer shape of the outer plate 13 2 is the same as the outer shape of the laminated plate 13 0, and the inner plate 1 3 1 has a plurality of protrusions 1 3 1 a on the peripheral edge that match the peripheral shape of the outer plate 1 3 2. It has a plurality of notches 13b which are recessed with respect to the peripheral shape of the outer plate 132.
  • the bonding process of the laminated board 130 to the inclined wall surface 128 of the hopper 125 is as follows. First, a predetermined number of inner plates 13 1 are stacked on a work table (not shown) provided with a jig (not shown) that abuts two adjacent sides of the laminated plate 130, and After stacking the outer plates 1 and 2, all the plates are brought into contact with the jig for positioning, and temporary welding is performed at several locations around the periphery. Next, the temporarily welded laminated plate 130 is arranged at a predetermined position on the inclined wall surface 128, and the laminated plate 130 is joined to the inclined wall surface 128 by continuous welding (all around). As a result, as shown in FIGS.
  • the outer plate 13 2 is continuously welded, while the inner plates 13 1 are notched at the notched portions 13 1 b.
  • the intermittent welding that is not welded and is welded to the inclined wall 128 only at the plurality of protrusions 131a is performed.
  • the distance between the protrusions 13 a of the inner plate 13 1 in the fourth embodiment that is, the circumferential length L 2 of the notch 13 b is , 10 O mn! It is preferable to set between ⁇ 280 thighs.
  • Notch 1 3 The circumferential length L 2 of lb is defined as shown in FIG.
  • the laminated plate 130 is continuously welded to the outer plate 132, thereby preventing rainwater from entering the inside of the laminated plate 130, preventing generation of mackerel between the plates, and improving vibration damping performance. Can be maintained.
  • the inner plate 13 1 is intermittent welding, and the degree of restraint is lower than that of continuous welding (full circumference welding), so that excellent vibration damping characteristics can be obtained and a vibration damping device with a remarkable noise reduction effect can be obtained. .
  • intermittent welding can be configured by welding the protruding portions 13a of the inner plate 131 by the continuous welding process of the outer plate 132, so that the manufacturing process is simplified and the cost is reduced. Also, since the projections 1 3 1 a of the predetermined number of inner plates 13 1 match the outer shape of the outer plates 13 2, the positioning work between each inner plate 13 1 and the outer plates 13 2 becomes easy. Thus, a low-cost vibration damping device can be obtained.
  • the present invention is not limited to the third and fourth embodiments, and changes and modifications may be made within the scope of the present invention.
  • five constrained portions that is, notched portions 111a
  • the wear-resistant plate 108 side of the inner plate 111 formed by intermittent welding are provided at five places. What is necessary is just to select suitably according to the frequency band of the noise to be made.
  • the present invention is not limited to a rectangular shape, and as shown in FIG. 25A, a waveform notch 1 1 1 c May be provided.
  • the cutout 13b of the inner plate 131 of the fourth embodiment may have a waveform.
  • the peripheral edge of the inner plate 1 1 Hole 1 may be provided, and each inner plate 111 may be restricted to the side plate 103 by plug welding. The periphery of the inner plate 111 is intermittently welded by plug welding of the hole 111d. As shown in Fig.
  • the inner plate 1 1 1 and the outer plate 1 1 2 are welded together with the outer plate 1 1 2 to the side plate 1 0 3 without providing a constraint location for only the inner plate 1 1 1 a may be provided in plurality.
  • the inner plate 111 and the outer plate 112 are intermittently welded by plug welding of the hole 110a, and the same effect as in the above embodiment can be obtained.
  • the gap d2 between the laminated plate 110 and the base plate 104 was an example in which continuous welding was performed. May be restricted. That is, as shown in FIG. 26, the end of the base plate 104 of the inner plate 111 is protruded from the periphery of the outer plate 112, and a cutout portion 111a is provided in this protruding portion. Intermittent welding may be configured by welding to fill the notch 1 1 a. According to this, the number of restrained portions of the inner plate 1 1 1 is reduced, so that it is possible to obtain a vibration damping device having more excellent vibration damping performance.
  • the technology of the fourth embodiment can be added to the third embodiment. is there. That is, as shown in FIG.
  • a plurality of notches 1 1 1 f recessed with respect to the outer shape of 1 2 are provided. Accordingly, even if continuous welding is performed on the end of the base plate 104 of the laminated plate 110 on the side of the base plate 104, the inner plate 111 becomes intermittent welding in which only the protruding portion 111e is welded. According to this, since the restrained portions of the inner plate 11 are reduced, it is possible to obtain a vibration damping device having further excellent vibration damping performance.
  • the technology of the third embodiment can be added to the fourth embodiment. That is, as shown in FIG. 28, a substantially L-shaped wear-resistant plate 1338, which can be in contact with two sides adjacent to the laminated plate 130, is attached to the inclined wall surface 128, and the resistance is increased. The end of the inner plate 1 3 1 facing the wear plate 1 3 8 protrudes from the periphery of the outer plate 1 3 2 so as to contact the wear-resistant plate 1 3 8, and a cutout 1 3 1 c Are provided.
  • the protruding portion is divided into notches 13 c to form a plurality of contact portions 13 1 d that contact the wear-resistant plate 13 8 ⁇
  • the outer plate 1 32 is continuously welded, and the laminated plate 1 30 is attached to the inclined wall 1 2 8 Is done. According to this, positioning can be performed by abutting each inner plate 13 1 on the inclined wall surface 1 28 against the wear-resistant plate 1 38. Since the wear-resistant plate 1338 protects the welded part of the wear-resistant plate 1338 from collision and friction with the crushed material to be injected, wear-damage of the welded part of the laminated plate 130 can be prevented. The durability of the laminate 130 can be improved.
  • the thickness of the laminated plates 110 and 130 that is, the total height of the laminated plates of the inner plate and the outer plate is substantially equal to the height of the wear-resistant plates 108 and 138.
  • the same configuration example has been described.
  • Hydraulic shovel bucket 101 (including each component such as side plate 3) and hopper 1 2 5 of self-propelled crusher 120 (inclined wall 12) 8 etc.), but it can be applied to wheel loader packets and hoppers of fixed crushing equipment, as well as any machine parts that want to reduce noise.
  • continuous welding of the outer plates of the laminated plates prevents infiltration of rainwater, thereby preventing generation of mackerel between the plates, and restraining the inner plates of the laminated plates by intermittent welding. Since the degree is suppressed to a low level, a vibration damping device having excellent vibration damping characteristics and a remarkable noise reduction effect can be obtained.
  • the bucket 200 is similar to the first embodiment, and the laminated plate 220 is attached to the side plate 211 by full-round fillet welding 230, as shown in FIG.
  • the inside of the laminated plate 220 and the side plate 211 are plug-welded 250 (optimization of plug welding).
  • the packet 200 is attached to the specific portion K (see FIG. 10) of the corner portion where the side plate 211 and the bottom plate 212 are connected, as in the second embodiment.
  • a beam-like connecting member 2 15 for connecting the 1 to the bottom plate 2 1 2 is attached.
  • the relationship between the height Hs of the side plate 211 and the width Wp of the bottom plate 212 in the embodiment is in the region Q in FIG. 9 (that is, the ratio Wp / Hs is 1.47 or more).
  • the reinforcing member 2 14 is fixed at the corner where the side plate 2 11 and the bottom plate 12 are connected, but the use of the reinforcing member 2 14 may be omitted. .
  • the noise energy after one installation is calculated as E2) / E1] X100 (%).
  • the side plate contribution and the bottom plate contribution indicate the reduction rate of the sound radiated from the side plate and the bottom plate, respectively.
  • "Overall" in Fig. 35 is the total value after multiplying each reduction rate of the side plate and the bottom plate by the contribution rate.
  • the side plate contribution ratio is 39%
  • the bottom plate contribution ratio is 61%. This is the case where the contribution of radiated sound is large.
  • the noise energy reduction rate E d is measured for some configurations other than the present embodiment, and the bucket configuration outline of each item No. is as follows.
  • the bucket serving as a base is a bucket before the noise reduction member such as the laminated board 220 and the connecting member 215 is attached.
  • Laminated plate 220 is fillet welded 230 around the entire circumference and plug welded at the "belly" position in vibration mode (not shown).
  • Laminate plate 220 is full-length fillet welded 230, and plug weld 250 is applied at the position corresponding to site D.
  • Item 3 When performing the fillet welding 230 on the perimeter of the laminated plate 220 to the side plate 211, ignore the extremely high manufacturing cost and avoid the "floating" of the laminated plate 220. Manufactured (without plug welding).
  • Item 4 Attach the connecting member 215 to the part K (without laminated board).
  • Item 5 Item 2 and Item 4 are used together. '
  • Item 6 The noise energy reduction rates of Item 2 and Item 4 are arithmetically added ( Item 7: Item 1 and Item 4 are used together.
  • Item 3 is the ideal mounting condition of the laminated plate 220, but it is extremely expensive to manufacture and has a problem of floating due to impact during use of the bucket, which is not suitable for practical use.
  • item 2 adopting the first embodiment can achieve a reduction rate substantially close to the ideal mounting state.
  • the reduction rate is low and the effect on the bottom plate 212 is not obtained. This is probably because the vibration energy of the bottom plate 212 was not sufficiently dissipated due to the lack of the damping effect.
  • Item 4 is an example conducted to examine the effect of only the connection member 215, but the reduction rate of the side plate contribution is 7%.
  • Item 5 is a case where both the first embodiment (item 2) and the second embodiment (item 4) are adopted (that is, the present example in FIG. 34). If item 2 and item 4 act independently, the reduction rate is simply an addition, and item 6 results. Therefore, item 5 has more than additive effects due to the synergistic effect. When plug welding is performed on the belly (item 1), the effect of the laminated plate on the bottom plate is ineffective, so the effect is reduced even if the connecting member is attached (item 7).
  • the ratio Wp / Hs of the height Hs of the side plate 211 to the width WP of the bottom plate 212 is 1.47 or more is described, but the ratio Wp / Hs is 1. Even less than 47 is useful. That is, the noise energy of the side plate 211 having a large contribution ratio by the laminated plate 220 is sufficiently reduced, and Even in the case where the contribution of the bottom plate 2 12 is high, the noise energy reduction effect can be obtained.
  • the bucket 300 of the present embodiment shown in FIG. 36 is different from the embodiment of FIG. 34 in that i) the laminated plate 320 is formed by the notch portion 111 a and the contact portion shown in FIG. Inner plate with cutout 311a and abutment 311b, similar to laminate 1110 with inner plate 1 1 1 and outer plate 1 1 2 with part 1 1 lb It has 311 and an outer plate 312. a) As in the third embodiment, the inner plate 311 is intermittently welded and the outer plate 312 is fillet welded all around.
  • the noise energy reduction rate E d is also measured for configurations other than this embodiment, and will be described with reference to FIG.
  • the outline of the bucket configuration in items 8 to 12 is as follows, but the bucket serving as the base is the bucket before the noise reduction member is attached, as described above.
  • Item 8 As in the third embodiment, the inner plate 311 of the laminated plate 3200 is intermittently welded and the outer plate 312 is welded to the entire periphery, but the manufacturing cost is extremely high. Manufactured so that "floating" does not occur in laminate 320, ignoring its high cost (no plug welding).
  • Item 9 As in the third embodiment, the inner plate 3 1 1 of the laminated plate 3 20 is intermittently welded, and the outer plate 3 1 2 is welded by fillet filleting, and the position of the “belly” in the vibration mode Plug welding (not shown) is performed.
  • Item 10 As in the third embodiment, the inner plate 3 11 of the laminated plate 3 20 is intermittently welded, and the outer plate 3 12 is welded to the entire periphery, and item 2 is also used.
  • Item 11 Item 10 and Item 4 are used together.
  • Item 1 2 The noise energy reduction rates of items 10 and 4 are arithmetically added.
  • Item 8 is the same as item 3, and although the reduction rate is high, the practicality is low due to the problem of manufacturing cost / floating.
  • the reduction rate has been significantly reduced because plug welding was performed on the belly.
  • Item 1 1 ′ (that is, the present example in FIG. 36) further includes a connecting member 2 15 attached to item 10 in the same manner as in the second embodiment, so that a very large reduction rate can be obtained.
  • item 1 has more than additive effects due to the synergistic effect.
  • the plurality of cutouts 1 1 1 a and the plurality of protrusions are formed in the inner plates 11 1 and 13 1 of the laminated plates 110 and 130.
  • the notch 1 1 1 a and the plurality of protrusions 1 3 1 a are connected to the side plate 10 3 and the hopper 1 2 5
  • the inner plates 1 1 and 1 3 1 are intermittently welded by welding to the inclined wall 1 2 8.
  • the inner plate may be hermetically sealed by the outer plate and the machine to be damped, and the laminated plate may be coupled to the machine to be damped.
  • the laminated plate 910 shown in FIG. 37A includes a predetermined number of inner plates 912 stacked on the vibration damping target machine 901, and a further outer side of the predetermined number of inner plates 912.
  • the outer plate 911 is laminated and has an area larger than the inner plate 911.
  • a predetermined number of inner plates 9 1 2 are sandwiched between the damping target machine 9 0 1 and the outer plate 9 1 1, and the machine 9 1 and the outer plate 9 1 1 are welded all around. (The entire circumference is indicated by 913).
  • the vibration damping target machine 91 and the outer plate 911 are coupled so that a predetermined number of inner plates 912 are hermetically sealed.
  • the predetermined number of inner plates 9 12 does not have a welded portion for restraining its deformation, and there is no generation of mackerel due to infiltration of rainwater by full-circumferential welding. Is obtained.
  • the outer plate 911 is directly coupled to the vibration damping target machine 911, but may be coupled to the vibration damping target machine 91 via a connecting member. That is, similarly to FIG. 37A, the laminated plate 910 shown in FIG. 37B has a predetermined number of inner plates 912 laminated on the vibration damping machine 901, and An outer plate 911 is laminated further outside the plate 911 and has a larger area than the inner plate 912. As a result, a predetermined number of inner plates 9 12 are sandwiched between the damping target machine 9 1 and the outer plate 9 11. Further, a connecting member 914 is arranged all around the outer plate 911.
  • the outer plate 911 and the connecting member 914 are joined by full circumference welding (the entire circumference welded portion is indicated by 916), and furthermore, the connecting member 914 and the vibration suppression target machine 9101 are completely connected. It is joined by girth welds (all girth welds are shown at 915). As a result, the vibration damping target machine 90 1 and the outer plate 9 11 are connected via the connecting member 9 14 so that the predetermined number of inner plates 9 12 are hermetically sealed.
  • the predetermined number of inner plates 9 12 do not have a welded portion for restraining the deformation, and there is no generation of ⁇ due to infiltration of rainwater by full-circumferential welding. Is obtained.
  • a predetermined number of inner plates 9 12 and outer plates 9 11 are connected in advance by plug welding (a plug welding portion is indicated by 9 17), and the connecting members 9 15 If welding is performed, the positioning of the laminated plate 910 with respect to the vibration damping target machine 901 can be easily performed, and the manufacturing cost can be reduced. Further, by performing plug welding, it is possible to prevent the laminated plate 910 from floating.
  • the connecting member as a jig for positioning the laminated plate.
  • the laminated plate 910 shown in FIG. 37C has a predetermined number of inner plates 912 stacked on the vibration damping target machine 901, and a further outer side of the predetermined number of inner plates 912.
  • An outer plate 911 having the same area and the same shape as the inner plate 912 is laminated.
  • the predetermined number of inner plates 9 12 are sandwiched between the damping target machine 9 1 and the outer plate 9 11.
  • a connecting member 918 is arranged all around the outer plate 911. A predetermined number of inner plates 912 and outer plates 911 are brought into contact with the inner wall of the connecting member 911, whereby the laminated plate 910 is positioned.
  • the outer plate 911 and the connecting member 918 are joined by full-circumferential welding (the entire-circumferential weld is indicated by 920). It is joined by girth welds (all girth welds are indicated by 9 19). As a result, the damping target machine 91 and the outer plate 911 are connected via the connecting member 918 so that a predetermined number of inner plates 912 are hermetically sealed.
  • the predetermined number of inner plates 9 12 does not have a welded portion for restraining its deformation, and there is no generation of mackerel due to infiltration of rainwater by full-circumferential welding. Is obtained.
  • connection member 918 makes it possible to easily position the laminated plate 910 on the vibration damping target machine 901, thereby further reducing the manufacturing cost.
  • connection is made by welding, but it is also possible to use an adhesive or a sealing material instead of welding.
  • the vibration damping target machine 91 of FIGS. 37A, 37B and 37C is, for example, a packet The side plate 103, the sloped wall 128 of the hopper 125, and the like.
  • the laminated plate 910 of FIGS. 37A, 37B, and 37C has been described in the first embodiment, the second embodiment, the third embodiment, and the fourth embodiment. It may be carried out in combination with the embodiment. Industrial applicability
  • the present invention is useful as a vibration damping device that suppresses vibration generated in a base material, a side plate, and the like to reduce noise radiated from the base material, and a bucket of a construction machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Body Structure For Vehicles (AREA)
  • Shovels (AREA)

Abstract

高い制振効果を維持できる制振装置及び建設機械のバケットを提供する。このために、制振装置は、騒音を放射する母材(11)に少なくとも内部の部位が固定される積層板(20)を備え、内部の部位は、母材(11)を所定の周波数の振動モードで振動させるときに振動モードの腹となる部位以外の部位(G)である。

Description

明 細 書 制振装置及び建設機械のバケツト 技 術 分 野
本発明は、 母材で発生する振動を抑制し母材から放射される騒音を低 減させる制振装置、 及び建設機械のパケッ トに関する。 背 景 技 術
近年、 建設機械には、 特に夜間作業、 住宅地において低騒音が要求さ れており、 騒音を一定レベル以下に規制する騒音の法規制も各国で施行 されている。 例えば、 バケツ トを含む作業機が備えられている油圧ショ ベルなどの建設機械の場合には、 バケツ トが、 騒音の主要な発生源であ ることが実験等によって確認されている。 この作業機から放射される騒 音のうち、 約 8 0 %はバケツ トからの放射音であるといわれている。 そこでバケツ ト、 とりわけバケツ 卜の側板で発生する振動を抑制し、 側板から放射される騒音を低減させるベく、 制振材をバケツ トに取り付 ける試みがなされている。 制振材として一般的なものはゴム、 樹脂、 ァ スフアルトなどの粘弾性材と呼ばれるものである。
しかし建設機械は、 作業機が土砂等に曝されるなど、 過酷な状況で作 業を行うことが多く、 粘弾性材からなる制振材を建設機械の作業機に取 り付けたとすると、 耐久性に乏しいという問題が発生する。 また粘弾性 材は一般的に金属板によって拘束されるが、 この金属板を溶接によって 補修する際に粘弾性材が燃えてしまうという問題も発生している。 この 粘弾性材は高価であり騒音対策に費やされるコス 卜が大きいという問 題もある。
そこで耐久性が高く補修時に燃えることもない低コス トな制振装置 開発の要請に対し、 本願の譲受人は積層板を開発し既に特許出願してお り、 日本特開 2 0 0 0 - 2 1 9 1 6 8号公報 (又は米国特許 6 3 3 2 5 09号公報)、 日本特開 2002 - 48 188号公報などにより公知に なっている。 上記公報に関し、 図 2を流用して説明する。 バケツトの側 板 1 1の上に、 薄い鋼板 2 1 (以下、 薄板 2 1) を複数枚積層して積層 板 20を構成する。 積層板 20の更に上に、 薄板 2 1を保護する比較的 厚い鋼板 30 (以下、 保護板 30) を重ね、 その周囲 20 a (図 1参照) を全周隅肉溶接又は断続的な隅肉溶接を行う、 あるいは間欠的な栓溶接 を行う、 あるいはボルト締めによって固定するなどが記載されている。 積層板 20は、 鋼という耐久性が高く燃えにくく安価な材料で構成され ているため、 従来の粘弹性材が有していた問題点を解決することができ る。
積層板 20が側板 1 1で発生する振動を抑制し、 側板 1 1から放射さ れる騒音を低減するメカニズムは、 上記公報に記載されているが、 図 4 A及び図 4 Bを流用して説明する。 即ち側板 1 1が振動すると、 その振 動が積層板 20に伝わり、 積層板 20を構成する薄板 21、 2 1' が変 形する。 薄板 21、 2 1 ' が多重に重ねられた積層板 20では、 層毎に 変形量が異なる。 即ち隣り合う薄板 2 1、 21' は、 それそれ曲率半径 が r 1、 r2と異なる。このため、元々変位が Xであった薄板 2 1、 2 1 ' は (図 4A参照)、 振動による微小変形によって、 変位がそれぞれ X + ΔΧ2、 Χ + ΔΧ1 に変化し、 両薄板 2 1, 2 1' 間で相対変位厶 Χ2— ΔΧ1が生じる。 相対変位 ΔΧ2—ΔΧ1は薄板 2 1、 2 1 ' 間で摩擦力 (以下、 層間摩擦力) を生じさせる。 側板 1 1で発生する振動エネルギ は、 この層間摩擦力による熱エネルギに変換される。 これにより側板 1 1で発生する振動が抑制され側板 1 1から放射される騒音が低減する。 したがって薄板 2 1、 2 1' は図 4Βに示すように、 独立して変形し 相対変位 ΔΧ2—ΔΧ1を生じることが制振を行うための条件である。そ のため、 逆に、 両薄板 2 1、 2 1' が固定され一体のものとして機能す ると、 独立した変形が阻害され、 相対変位が全く生じないか極めて少な いものとなり、 制振効果は得られないか極めて少ししか得られない。 これに関し、 図 1を流用して説明する。 従来では、 積層板 20の周囲 2 0 aは溶接等によって側板 1 1に固定することにしている。 しかし、 各層の独立した変形を阻害せずに高い制振効果を得るために、 積層板 2 0の内部 (周囲 2 0 aを除いた部分の意味で使用する) は側板 1 1に固 定していないのが、 従来の一般的な構造であった。 しかし積層板 2 0の 内部を固定しないと、 つぎのような問題が生じることが明らかになった。 まず第一に、 製造時の溶接工程で発生する熱歪みによって、 積層板 2 0を構成する薄板 2 1、 2 1 ' 間に隙間が生じたり、 側板 1 1と積層板 2 0の間に隙間が生じる。 これにより、 側板 1 1の振動時に薄板 2 1、 2 1 ' 間で本来発生するはずである層間摩擦力は発生しないか殆ど発 生しないこととなり、 制振効果が全くなくなるか極めて少ないものとな ο
第二に、 建設機械の実際の作業時には、 パケットが岩石にぶつけられ るなどして側板 1 1に過大な外力が加わることが多い。 このため内部は 固定されておらず周囲 2 0 aしか固定されていない積層板 2 0は、 過大 な外力によって容易に 「浮き上がって」 しまう。 つまり積層板 2 0が側 板 1 1から離れたり、薄板 2 1 , 2 1 ' 同士が離れてしまう。その結果、 側板 1 1の振動時に薄板 2 1、 2 1 ' 間で発生するはずである層間摩擦 力が発生しないか殆ど発生しないこととなり、 制振効果が全くなくなる か極めて少ないものとなる。
このように、 高い制振効果を得るためには、 薄板 2 1の変形を阻害し ないように、 積層板 2 0の内部を固定しないことが望ましい。 しかし、 積層板 2 0の内部を固定しないと、 バケツ ト製作時の熱歪みやバケツ ト 使用時の外力によって 「浮き」 が生じ、 制振効果が失われるという問題 があった。
また、 建設機械のバケツ トの種類は、 建設機械の大きさ、 仕様、 作業 の用途などに応じて多岐に渡る。 本発明者らは、 大きさ、 形状、 寸法な どが異なる各種バケツ トについて試験を行い、 積層板を側板に取り付け たことによる効果を確認したところ、 バケツ トの種類によってその効果 が異なるという知見を見いだした。 即ちパケットの種類によっては、 側 板が占める騒音寄与量が高いものもあれば側板の騒音寄与量が低く底 板の騒音寄与量が高いものがある。 この場合つぎの対策が考えられる。
( 1 ) 各種バケツ トについて騒音寄与量を測定し、 底板の騒音寄与量 が高いものについては底板についても騒音対策を施す。
( 2 ) 全種類のバケツ卜について一律に底板に騒音対策を施す。
しかし上記 ( 1 ) の方法をとるときはバケツトが新たに設計される毎 に、 騒音実験等を行う必要があり煩に耐えない。 また上記 ( 2 ) の方法 をとるときは、 騒音対策が不要なバケツ トについても騒音対策用の部品 を追加する必要があり、 コストが上昇する。
したがって底板について騒音対策が必要となる基準を、 明確に定め、 各種バケツ トのうち必要最小限のバケツ トについて、 騒音実験などを行 うことなく必要最小限の労力で騒音対策を施すことが望まれる。 一方で、 バケツトの底板に騒音対策を施す場合には、 側板と異なり積層板を取り 付けることができないという事情がある。 即ち建設機械の作業中に、 バ ケッ トの底板は岩石に衝突するなどの機会が多く、 側板と比較して過大 な外力が作用し激しく摩耗する。 このため底板に取り付けられている積 層板が破壊されたり外れたりするおそれがあり、 耐久性に乏しい。 また 積層板を底板に取り付けることでコス トが上昇するという問題も発生 する。
そこで、 こうした事態を避けるために、 底板を補強材によって補強す ることで底板の剛性を高めつつ制振を行うことが考えられる。パケッ ト の種類によっては、 バケツ トの側板のうち底板に近い部分に耐摩耗板と いう板厚の大きな補強材が取り付けられたものがあり、 耐摩耗板の板厚 を増し底板の制振を行うことが考えられる。 しかし耐摩耗板の板厚を増 すことはバケツ トの重量増加につながり、 建設機械の性能に悪影響を与 える。 即ちバケツトの重量が増加すると作業機の慣性モ一メントが大き くなり、 その分、 カウン夕ウェイ トを大きくする必要がある。 カウン夕 ウェイ トを大きくすると建設機械の旋回半径が大きくなるという問題 が発生する。 このためパケッ トの底板の補強を、 必要最小限の重量増加 11181
で行うことが望まれている。
また、 機械の騒音低減に効果を有し、 コンパク トで耐久性に優れた制 振装置として、 複数の板を部分的に結合した積層板を用いた制振装置が 知られている。 そして、 部分的な結合としては、 ボルト締め、 栓溶接又 は全周溶接が用いられている (例えば、 上記日本特開 2 0 0 2 - 4 8 1 8 8号公報の第 3— 5頁、 及び第 1一 8図参照)。 積層板を用いた制振 装置においては、 積層板を騒音発生部 (振動部) に部分的に結合したの で、 騒音発生部が振動すると、 振動部と積層板との間及び積層板を構成 する板同士の間に微小な位置ズレゃ隙間が生じる。 この微小な位置ズレ や隙間は常に変化しながら次々に生起されるので、 板間の摩擦や衝突が 繰り返される。 したがって、 騒音発生部の振動エネルギは、 これらの摩 擦や衝突により熱エネルギに変換され、 消散していくので、 振動を減少 させることができ、 騒音を低減できる。
しかしながら、 かかる従来技術においては、 以下に述べるような問題 点がある。 即ち、 油圧ショベルのバケツ トの側板に適用する場合、 側板 と積層板との部分結合にボルト締め又は栓溶接を用いると、 積層板端面 から雨水が浸入し板間に鯖が発生して、 制振性能が低下してしまう。 鲭 防止のために側板と積層板との部分結合として積層板端面の全周溶接 を用いると、 積層板を構成する板同士を拘束し、 微少な位置ずれなどの 発生を阻害するため、 制振性能が低下してしまう。
積層板の溶接部を保護することのできる例として、 図 2 9に示すよう な積層板のバケツ ト側板への適用が考えられる。 バケツト 1 0 1は、 略 C形に湾曲させた底板 1 0 2の両側に側板 1 0 3 , 1 0 3をそれそれ溶 接し、 さらに側板 1 0 3 , 1 0 3及び底板 1 0 2に口金板 1 0 4 , 1 0 4 , 1 0 5をそれそれ溶接してバケヅ ト 1 0 1の開口部を形成している < 口金板 1 0 5には複数個のヅ一ス 1 0 6が装着されている。 底板 1 0 2 のヅース取付部と反対側の端部には、 油圧ショベルの作業機に連結する ピンボス 1 0 7を設置している。 側板 1 0 3の外側面周部には、 底板 1 0 2に沿うように耐摩耗板 1 0 8が設けられている。側板 1 0 3の外側 面には、 口金板 1 0 4及び耐摩耗板 1 0 8に囲まれるように積層板 1 5 0が貼着されている。 図 3 0に示すように、 積層板 1 5 0は、 所定枚数 を積層した薄い鋼板よりなる内板 1 5 1と、 内板 1 5 1の外側に積層し て内板 1 5 1を保護し押さえる所定厚さを有する外板 1 5 2とを備え ている。 側板 1 0 3、 内板 1 5 1及び外板 1 5 2それそれの間が、 略密 着するように側板 1 0 3に貼着されている。 積層板 1 5 0と耐摩耗板 1 0 8との間には、 積層板 1 5 0及び耐摩耗板 1 0 8を側板 1 0 3に溶接 する溶接代として隙間 d 1が設けられている。 また、 図 3 1に示すよう に、 積層板 1 5 0と口金板 1 0 4との間には、 積層板 1 5 0及び口金板 1 0 4を側板 1 0 3に溶接する溶接代として隙間 d 2が設けられてい る。 両隙間 d 1 , d 2は、 例えば図 3 2 A及び図 3 2 Bに示すように、 隅肉溶接を 2回繰り返すことにより埋められる。 即ち、 積層板 1 5 0は 全周溶接によりバケツ ト 1 0 1の側面に貼着されている。
上記構成によると、 積層板 1 5 0の内板 1 5 1が振動エネルギを熱ェ ネルギとして消散することにより掘削作業時の騒音を低減できる。 さら に、 バケツ ト 1 0 1の側面に設けられた積層板 1 5 0は、 全周溶接によ り積層板内部への雨水の浸入を防止して板間の鯖の発生を防ぎ制振性 能を維持できる。 しかも、 口金板 1 0 4ゃ耐摩耗板 1 0 8がこの溶接部 を掘削作業時の岩石等との衝突 '摩擦から保護するので、 積層板 1 5 0 の溶接部の摩耗'損傷を防止でき、積層板 1 5 0の耐久性を向上できる。
しかしながら、 上記耐摩耗板 1 0 8を用いる場合であっても、 以下の ような問題点がある。
( 1 ) 振動エネルギを板同士の摩擦による熱エネルギに変換して消散 する積層板は、 拘束点が少ないほど制振性能が向上する。 しかし、 積層 板 1 5 0の内板 1 5 1は、 周囲を全周溶接することで全周を拘束され、 制振性能が低下している。 逆に、 拘束点を減らして制振性能を向上する ために、 積層板 1 5 0の周囲を断続溶接する場合、 内部への雨水の浸入 により鲭が発生してしまう。
( 2 ) 製造時、 積層板 1 5 0と耐摩耗板 1 0 8との間に、 所定の隙間 d lを確保しなければ、 十分な溶接品質を得ることができない。 隙間 d 1を確保しての内板 1 5 1及び外板 1 5 2の位置決めには多大な工数 を要し、 コスト高となる。
( 3 ) 溶接部の体積が大きいため、 工数を要すると共にコスト高とな る。 逆に、 溶接量を減少するために、 積層板 1 5 0の周囲を断続溶接す ると、 上記 ( 1 ) と同様に内部への雨水の浸入により鯖が発生してしま
Ό。
( 4 ) 連続溶接時の熱歪みによる浮きや変形防止のため、 積層板 1 5 0と側板 1 0 3を非常に多くの点で仮付けしておくことが必要であり、 工数を要しコスト高である。
また、 積層板を貼着する他の適用例として、 例えば図 3 3に示すよう に、 積層板 1 6 0 (所定枚数の内板 1 6 1及び外板 1 6 2を備える) を 破碎機 1 7 0のホヅノ、° 1 7 1の傾斜板 1 7 2に貼着することがある。 こ の場合、 積層板内部への水等の異物の侵入を防止するため、 全周溶接を 用いることが考えられる。 この場合も、 上記 ( 1 ) と同様に積層板 1 6 0の内板 1 6 1は周囲を全周溶接することで全周を拘束されるため、 制 振性能が低下する。逆に、拘束点を減らして制振性能を向上するために、 積層板 1 6 0の周囲を断続溶接すると、 内部への水等の浸入により鑌が 発生してしまう。 発 明 の 開 示
本発明は、 かかる従来技術の問題点を解消するためになされたもので、 積層板の内部の最適な部位を固定することで、 製造時の熱歪みや使用時 の外力によって 「浮き」 が生じて制振効果が失われることをなくすよう にするとともに、 積層板を構成する薄板の独立した変形を阻害しないよ うにして高い制振効果を維持できる制振装置を提供することを目的と する。 また、 バケツ トについて、 騒音実験などを行うことなく必要最小 限の労力で騒音対策を施すことができるようにし、 更にバケツトの底板 の補強を、 必要最小限の重量増加で行うことができる建設機械のバケツ トを提供することを目的とする。 更には、 制振性能に優れると共に、 内 部の鯖の発生を防止できる制振装置を提供することを目的としている。 上記の目的を達成するため、 本発明に係る制振装置の第 1は:騒音を 放射する母材に少なくとも内部の部位が固定される積層板を備え;内部 の部位は、 母材を所定の周波数の振動モードで振動させるときに振動モ ードの腹となる部位以外の部位である ; としている。
以下、 本発明の構成による作用効果の一部について、 分かりやすくす るために図面及び図面参照符号を記載して説明する。 但し、 図面及び図 面参照符号は単に一例を示すものであり、 本発明を限定するものではな い。 上記第 1構成によれば、 図 3に示すように、 母材 1 1に積層板 2 0 を固定する際に、 母材 1 1を所定の周波数の振動モード 1で振動させた ときに振動モード 1の腹となる部位 E以外の部位 Gを、 固定する。
母材 1 1を所定周波数の振動モード 1で振動させたとき、 その振動に よる振幅の分布をとると、 図 5 Aに示すように、 同一構造のものであつ ても部位によって振幅の大きさが異なる。 即ち、 振幅の大きな部位つま り振動モード 1の腹となる部位 (図 5 Aの P H ) もあれば、 振幅の小さ な部位つまり振動モード 1の節となる部位 (図 5 Aの P L ) もある。 振 幅が大きな部位では積層板 2 0を構成する薄板 2 1 , 2 1 ' の変形量も 大きく、 層間摩擦力も大きい。
ここで仮に、 振動モ一ド 1の腹となる部位 Eで積層板 2 0を母材 1 1 に固定したとすると、 積層板 2 0を構成する薄板 2 1、 2 1 ' の独立し た変形が阻害され、 層間摩擦力が全くなくなるか極めて小さなものとな る。 このため積層板 2 0による制振効果が得られないか、 極めて僅かし か得られないことになる。 そこで振動モード 1の腹となる部位 E以外の 部位、 具体的には振動モード 1の節となる部位 Gで、 積層板 2 0を母材 1 1に固定する。
振動モ一ド' 1の節となる部位 Gは、 元々、 積層板 2 0を構成する薄板 2 1、 2 1 ' の変形が小さいか殆ど無い部位である。 このため、 この場 所を固定したとしても失われる制振効果は極めて少ないか殆ど無いに 等しいので、 積層板 2 0を固定することによる制振効果への悪影響を最 小限に抑えることができる。 以上のように第 1構成によれば、 積層板 2 0の内部の最適な部位 Gを固定するようにしたので、 製造時の熱歪みや 使用時の外力によって 「浮き」 が生じて制振効果が失われることがなく なる。 更に、 積層板 2 0を構成する薄板 2 1の独立した変形が阻害され ることがなく、 高い制振効果を維持できる。
制振装置の第 2は:騒音を放射する母材に少なくとも内部の部位が固 定される積層板を備え;内部の部位は、 母材を複数の周波数の各振動モ —ドで振動させるときに複数の振動モードについて腹となる部位以外 の部位である ; としている。
かかる第 2構成によれば、 図 5 A〜図 5 Dに示すように、 母材 1 1を 積層板 2 0に固定する際に、 母材 1 1を複数の周波数の各振動モード 1、 2、 3、 4で振動させたとき複数の振動モード 1、 2、 3、 4について 腹となる部位、 以外の内部の部位 Gを、 固定する。 複数の周波数の各振 動モード 1、 2、 3、 4について、 積層板 2 0を構成する薄板 2 1、 2 1 ' の変形が小さいか殆ど無い部位 Gを固定するようにしたので、 複数 の周波数に渡り積層板 2 0を固定することによる制振効果への悪影響 を最小限に抑えることができ、 複数の周波数成分が混じった騒音を低減 することができる。
制振装置の第 3は:建設機械のバケツ トの側板に少なくとも内部の部 位が固定される積層板を備え ;内部の部位は、 i )一側の少なくとも一 部に略円弧形状を有してなる側板の円弧中心 Cとバケツ トの建設機械 への取り付け側で略円弧形状から他の形状に移行する点 Aとを結ぶ線 分 C Aが積層板に交わる点 Bと円弧中心 Cとを結ぶ線分 B Cの中点 d および中点 d近傍からなる部位 Dと、 ii ) 線分 C Aの中点 f 及び中点 f 近傍からなる部位 Fと、 iii ) 部位 Dと部位 Fとの間の領域と、 からなる 領域 G内である ; としている。
即ち図 5 A〜図 5 Dに示すように、 側板 1 1を複数の周波数の各振動 モード 1、 2、 3、 4で振動させたとき、 いずれの周波数についても振 動モードの腹以外となっている部位は、 図 1に示すように、 領域 Gであ ることが確認された。 ここで、 側板 1 1は、 母材 1 1の具体的な一例で ある。 第 3構成により、 側板 1 1に、 領域 G内のたとえば部位 Dを固定 すれば、 積層板 2 0を固定することによる制振効果への悪影響を最小限 に抑えることができる。
本発明に係る建設機械のバケツ トの第 1は:側板と ;少なくとも一部 が側板に接続する底板と ;側板に取り付けられる積層板とを備え ;側板 の高さ H sと底板の幅 W pとの比 W p /H sが 1 . 4 7以上である場合、 側板と底板とが接続する部位の少なくとも一部の部位が、 補強されてい る ; としている。
かかるバケツ トの第 1構成によれば、 底板について騒音対策が必要と なる基準を、 「側板高さ H sと底板幅 W pとの比 W p /H sが 1 . 4 7以 上である」 と明確に定め、 この基準にしたがい底板を補強するようにし ている。 これにより、 各種バケツ トのうち底板に騒音対策が必要なバケ ッ トのみについて、 騒音実験等を行うことなく必要最小限の労力で騒音 対策を施すことができる。
建設機械のバケツ トの第 2は:側板と ;少なくとも一部が側板に接続 する底板と ;側板に取り付けられる積層板とを備え;側板の高さ H sと 底板の幅 W pとの比 W p / H sが 1 . 4 7以上である場合、 側板と底板 とが接続する部位の内、 振動モードの腹となる部位が、 補強されてい る ; としている。
かかるバケツ トの第 2構成によれば、 上記バケツ トの第 1構成と同様 に、 底板に いて騒音対策が必要となる基準に従って、 底板を補強する ようにしているので、 必要最小限の労力で騒音対策を施すことができる 更に、 側板と底板とが接続している各部位のうち振動モ一ドの腹となる 部位を補強するようにしているので、 底板の補強が必要最小限で済み、 建設機械の性能に及ぼす悪影響を最小限に抑えることができる。
建設機械のバケツ トの第 3は:側板と ;少なくとも一部が側板に接続 する底板と ;側板に取り付けられる積層板と ;側板の高さ H sと底板の 幅 W pとの比 W p /H sが 1 . 4 7以上である場合、 高さ H sと底板の 実質的な幅 W p ' との比 W p ' /H sが 1 . 4 7よりも小さくなるよう に側板と底板とを連結する連結部材とを備える ; としている。
かかるバケツ トの第 3構成によれば、 上記バケツトの第 1構成と同様、 必要最小限の労力で騒音対策を施すことができる。 また、 比 W p ' /H sが 1 . 4 7よりも小さくなるように、 連結部材を取り付けることで底 板からの放射音を低減させている。 Hに、 比 W p ' /H sが 1 . 4 7よ りも小さくなった状態で、 側板に積層板を取り付け側板からの放射音を 低減させるようにしたので、 バケツ 卜から放射される騒音を最も効率的 に最大限に低減させることができる。
建設機械のバケツ トの第 4は:側板と ;少なくとも一部が側板に接続 する底板と ;側板の外側に取り付けられる積層板とを備え;側板及び底 板の内側であって、 側板と底板とが接続する部位の少なくとも一部の部 位が、 補強されている ; としている。
かかる第 4構成によれば、 底板からの放射音が低減するので、 バケツ トの側方の騒音のみならず、 バケツトの前方の騒音が低減する。 また側 方の騒音はバケツ ト全体の高剛性化により、 補強前より更に低減する。 またバケツ トの内側接続部のみを補強したので、 バケツ トの外側に耐摩 耗板のような補強材を設ける塲合と比較して、 補強材の重量増加が少な くて済む。
制振装置の第 4は、 :所定枚数の内板と、 所定枚数の内板の外側に設 けられた外板とを積層してなる積層板を備え;外板と制振対象機械とに よって所定枚数の内板を密閉に封じる;としている。この構成によれば、 所定枚数の内板には、 その変形を拘束する溶接部が無く、 密閉に封じら れることによって雨水の侵入による鑌の発生もないため、 良好な制振性 能が得られる。
更に望ましくは、 :所定枚数の内板と、 所定枚数の内板の外側に設け られて、 内板とは異なる形状を有する外板とを積層してなる積層板を備 え;内板が制振対象機械の部材に当接され;外板の周縁部に連続溶接を 施して、 積層板を機械の部材に結合させてなる ; とする。 この構成によ れば、 積層板の外板を連続溶接 (全周溶接) することにより、 雨水の浸 入を防止して板間の鯖の発生を防止できる。
制振装置において :積層板を機械の部材に結合させるとき、 更に、 内 板の周縁部には複数箇所の溶接よりなる断続溶接が施される; としても よい。 この構成によれば、 内板の周縁部には断続溶接を用いて、 内板の 拘束度合いを低く抑えているので、 優れた制振特性が得られ顕著な騒音 低減効果を有する制振装置が得られる。
制振装置において :機械の部材は、 積層板の端部に当接可能な当接部 材を有し;内板は、 外板の周縁から突出し当接部材に当接する当接部を 有し;外板の周縁と当接部材との間に、 内板の当接部に被さる連続溶接 を施す; としてもよい。 この構成によれば、 所定枚数の内板は、 機械側 の当接部材に内板の当接部を当接することにより位置決めを容易に行 なうことができる。 また、 連続溶接時の熱歪みによる浮きや変形防止の ための仮付けが不要となり、製作工数及びコストを低減できる。さらに、 機械側の当接部材は積層板の溶接部を保護するので、 異物との衝突 -摩 擦から溶接部の損傷 ·摩耗を防止して積層板の耐久性を向上できる。 制振装置において :内板は周縁部に、 外板の周縁形状に一致する複数 の突出部を設け;外板の周縁部に連続溶接を施すことにより、 内板の複 数の突出部を断続溶接する ; としてもよい。 この構成によれば、 外板の 連続溶接工程により内板の突出部を溶接して断続溶接を構成できるの で、 製造工程が簡素で低コストとなる。 また、 内板の突出部は外板の周 縁形状に略一致しているので、 これらの部位を積層板の各板の位置決め に用いることにより、 各内板と外板との位置決め作業が容易となり、 低 コストの制振装置が得られる。
制振装置において:内板の当接部の長さは、 1 0 0 ~ 2 8 0腿の間で ある ; としてもよい。 この構成によれば、 内板の周縁部の断続溶接ピッ チがテスト結果に基づく 1 0 0〜2 8 0 mmの間に設定されるので、非常 に優れた騒音低減効果が得られる。 制振装置において:内板の複数の突出部は、 1 0 0〜2 8 0顧の間隔 で設けられる ; としてもよい。 この構成によれば、 内板の周縁部の断続 溶接ピッチがテスト結果に基づく 1 0 0〜2 8 0醒 の間に設定される ので、 非常に優れた騒音低減効果が得られる。 図面の簡単な説明
図 1は、 本発明の第 1実施形態に係るバケツトの側板を示すバケツ ト の側面図である。
図 2は、 図 1のパケットの側板の断面を示す図である。
図 3は、 第 1実施形態を説明するための、 振動モードの腹と節に対応 して積層板の変形量を示す図である。
図 4 A及び図 4 Bは、 第 1実施形態における、 薄板の変形の説明図で あって、
図 4 Aは側板の非振動時を示し、
図 4 Bは側板の振動時を示す。
図 5 A〜図 5 Dは、 第 1実施形態における、 各振動モードで側板を振 動させたときの振幅の大きさの分布図であって、 図中の P Lは "節" で あり、 P Hは "腹" であり、 P Mは "中間 (即ち、 節ではないが振幅が 小さい)" であり、
図 5 Aは振動モード 1を示し、
図 5 Bは振動モード 2を示し、
図 5 Cは振動モード 3を示し、
図 5 Dは振動モード 4を示す。
図 6は本発明の第 2実施形態に係るバケッ トの斜視図である。
図 7は図 6の 7— 7断面に相当する説明図であって、 バケツ ト各部の 寸法を示す図である。
図 8 A及び図 8 Bは、 第 2実施形態における、 連結部材が取り付けら れたバケツ トを示し、
図 8 Aは図 6の 8 A— 8 A断面に相当する図であり、 図 8 Bはバケットの内側の斜視図である。
図 9は第 2実施形態における、 側板高さと底板幅との比と、 騒音寄与 量との関係を示す図である。
図 10は第 2実施形態における、 所定周波数の振動モードでバケツ ト を振動させたときの振幅の大きさの分布図である。
図 11 A及び図 1 1 Bは、 第 2実施形態の実施例における、 バケツ ト を備える油圧ショベルがトラックへの積込み作業を行う様子を示し、 図 1 1 Aは側面説明図であり、
図 1 1 Bは上面説明図である。
図 12は本発明の第 3実施形態に係るバケツトの斜視図である。
図 13は第 3実施形態に係るバケツトの側面図である。
図 14は第 3実施形態に係る積層板の斜視図である。
図 1 5Aは図 13の 1 5A— 1 5 A断面に対応する要部断面図であ ο
図 1 5 Bは図 1 3の 1 5 B— 1 5 B断面に対応する要部断面図であ 0
図 16 A、 図 16 B及び図 16 Cは第 3実施形態に係る溶接状態を示 す要部断面図であって、
図 16 は図15 Aに示される隙間に断続溶接する場合を示し、 図 16 Bは図 15 Aに示される隙間に連続溶接する場合を示し、 図 16 Cは図 15 Bに示される隙間に連続溶接する場合を示す。
図 17は第 3実施形態に係る、 内板の溶接ピッチと発生騒音レベルと の関係の測定データである。
図 18は第 3実施形態の溶接ピッチの説明図である。
図 19 Aは第 3実施形態に係る他の実施例である。
図 19Bは図 19Aの 19B— 19 B断面図である。
図 20は本発明の第 4実施形態に係る自走式破砕装置の側面図であ る ο
図 21は第 4実施形態に係るホツバの斜視図である。 図 2 2は第 4実施形態に係る傾斜壁面の平面図である。
図 2 3 Aは図 2 2の 2 3 A— 2 3 A断面図である。
図 2 3 Bは図 2 2の 2 3 B— 2 3 B断面図である。
図 2 4は第 4実施形態の溶接ピッチの説明図である。
図 2 5 A〜図 2 8は第 3及び第 4実施形態の変形例となる別態様の 積層板の平面図であって、
図 2 5 Aは切欠き部が波形の例であり、
図 2 5 Bは内板の周縁部に栓溶接用の孔を複数設ける例であり、 図 2 5 Cは内板及び外板を共に側板に溶接する孔を複数設ける例であ 、
図 2 6は内板の口金板側端部を外板周縁から突出させ、 突出部に切欠き 部を設ける例であり、
図 2 7は内板の口金板側端部に、 複数の突出部及び切欠き部を設ける例 であり、
図 2 8は内板の端部を外板の周縁から突出させ、 突出部に切欠き部を複 数設けて溶接で埋める例である。
図 2 9は従来技術に係るバケツ トの斜視図である。
図 3 0は溶接前の図 2 9の 3 0— 3 0断面図である。
図 3 1は溶接前の図 2 9の 3 1— 3 1断面図である。
図 3 2 A及び図 3 2 Bは従来技術に係る溶接工程を示す図 2 9の要 部断面図であって、
図 3 2 Aは 1回目溶接後を示し、
図 3 2 Bは 2回目溶接後を示す。
図 3 3は従来技術に係る破砕機の斜視図である。
図 3 4は第 3及び第 4実施形態を組み合わせた実施例におけるバケ ットの斜視図である。
図 3 5は本発明の実施形態及び実施例におけるバケツ トの騒音エネ ルギ低減率を示す図表である。
図 3 6は第 1〜第 3実施形態を組み合わせた実施例におけるバケツ トの側面図である。
図 3 7 A、 図 3 7 B、 図 3 7 Cは所定枚数の内板を密閉に封じるよう に制振対象機械と外板とが結合された実施例を示す断面図である。 発明を実施するための最良の形態
以下図面を参照して本発明の好ましい実施形態について説明する。 な お実施形態では、 主として、 パケットを含む作業機が備えられた油圧シ ョベルなどの建設機械を想定している。
第 1実施形態として、 建設機械のバケツ トの側板で発生する振動を抑 制し、 側板から放射される騒音を低減させる場合を説明する。 図 1は、 第 1実施形態の制振対象であるバケツ ト 1 0の側板 1 1を、 図 2は側板 1 1の断面を示している。 図 2に示すようにバケヅ ト 1 0の側板 1 1上 には、 鋼の薄板 2 1が複数枚積層されており、 積層板 2 0を構成してい る。 積層板 2 0の更に上には、 薄板 2 1を保護する比較的厚い鋼の保護 板 3 0が重ねられており、 図 1にてハッチングにて示すように周囲 2 0 aが全周、 隅肉溶接にて側板 1 1に固定されている。 保護板 3 0は、 薄 板 2 1が土砂等によつて摩耗することを防止するために設けられてい る。 なお積層板 2 0の上に保護板 3 0を設けない実施も可能である。 ま た積層板 2 0の周囲 (周辺部) 2 0 aを側板 1 1に固定する方法として は、 上述したように全周隅肉溶接によって固定する方法以外に、 断続的 な隅肉溶接、 あるいは間欠的な栓溶接、 あるいはボルト締めなどの任意 の固定方法で固定することができる。 これらの固定方法は、 例えば日本 特開 2 0 0 0 - 2 1 9 1 6 8号公報、 米国特許 6 3 3 2 5 0 9号公報及 び日本特開 2 0 0 2 - 4 8 1 8 8号公報に記載されている。
図 4 A及び図 4 Bを参照して、 積層板 2 0が側板 1 1で発生する振動 を抑制し側板 1 1から放射される騒音を低減させるメカニズムについ て説明する。 図 4 Bに示すように、 側板 1 1が振動すると、 その振動が 積層板 2 0に伝わり、 積層板 2 0を構成する薄板 2 1、 2 1 ' が変形す る。 薄板 2 1、 2 1 ' が多重に重ねられた積層板 2 0では、 層毎に変形 量が異なる。即ち隣り合う薄板 2 1、 2 1' はそれぞれ曲率半径が rl、 r2 と異なるので、 元々変位が Xであった薄板 2 1、 2 1 ' は (図 4 A 参照)、 振動による微小変形によって、 変位がそれそれ Χ + ΔΧ2、 Χ + △ XI に変化する。 これにより、 両薄板 2 1、 2 1 ' 間で、 相対変位△ Χ2-ΔΧ1 が生じる。 相対変位 ΔΧ2— ΔΧ1 は薄板 2 1、 2 1' 間で 摩擦力 (以下層間摩擦力) を生じさせる。 側板 1 1で発生する振動エネ ルギは、 この層間摩擦力による熱エネルギに変換される。 これにより側 板 1 1で発生する振動が抑制され側板 1 1から放射される騒音が低減 する。
したがって薄板 2 1、 2 1' は図 4Βに示すように独立して変形し、 相対変位 ΔΧ2— ΔΧ1 を生じることが、 制振を行うための条件である。 逆に、 両薄板 2 1、 2 1' が固定され一体のものとして機能すると、 独 立した変形が阻害され相対変位 ΔΧ2—Δ XI が全く生じないか極めて 少ないものとなり、 制振効果は得られないか、 極めて小さな制振効果し か得られない。
図 3は、 母材 1 1を所定周波数の振動モード 1で振動させたときに、 振動モード 1の腹、節に対応させて、積層板 20の変形量を示している。 図 5 Αは母材 1 1を上記振動モード 1で振動させたとき、 その振動によ る振幅の大きさの分布をとつたものであり、 各部位を、 振幅の大きさに 応じた異なる模様で示している。 図 5Aにおいて、 PHで示す部位は振 幅が犬となっている腹の部位であり、 : P Lで示す部位は振幅が 0つまり 節の部位である。 このように同一構造のものであっても部位によって振 幅の大きさが異なり、 振幅の大きな部位つまり振動モード 1の腹となる 部位もあれば、 振幅の小さな部位つまり振動モ一ド 1の節となる部位も ある。
図 3に示すように振幅が大きな腹の部位 Eでは積層板 20を構成す る薄板 2 1、 2 1 ' の変形量も大きく層間摩擦力も大きい。ここで仮に、 振動モード 1の腹となる部位 Eで積層板 20を母材 1 1に固定したと する。 この場合、 積層板 20を構成する薄板 2 1, 2 1' の独立した変 形が阻害され、 層間摩擦力が全くなくなるか極めて小さなものとなる。 このため積層板 2 0による制振効果が得られないか極めて僅かな制振 効果しか得られないことになる。 そこで第 1実施形態では、 振動モード 1の腹となる部位 Eを避けそれ以外の部位、 具体的には振動モード 1の 節となる部位 Gで、 積層板 2 0を母材 1 1に固定する。
一方、側板 1 1中で、振動モード 1の節となる部位を確かめたところ、 図 1に示す領域 Gであった。 下側 (一側) の一部に略円弧形状を有して なる側板 1 1の円弧中心 Cとバケツ ト 1 0の建設機械への取り付け側 で略円弧形状から他の形状に移行する点 Aとを結ぶ線を線分 C Aとし、 線分 C Aが積層板 2 0と交わる点を Bとし、 点 Bと円弧中心 Cとを結ぶ 線を線分 B Cとする。 領域 Gは、 線分 B Cの中点 dおよび中点 d近傍の 部位 D、 線分 C Aの中点; f および中点 f近傍の部位 F、 並びに部位 Dと 部位 Fとの間の領域、 からなる。
そこで、 バケツ ト 1 0の側板 1 1に積層板 2 0を固定する際に、 領域 G内のたとえば部位 Dを固定する。 図 2は積層板 2 0の部位 Gを側板 1 1に固定する方法の一例を示している。図 2に示すように、保護板 3 0、 積層板 2 0を側板 1 1に至るまで貫くように孔 5 0を穿設して、 孔 5 0 に溶接材 5 1が満たされるように栓溶接を実施する。 なお栓溶接以外に ポルト締め等任意の固定手段によって固定してもよい。
振動モード 1の節となる部位 Gは、 元々、 積層板 2 0を構成する薄板 2 1、 2 1 ' の変形量が小さいか殆ど無い部位である。 このため、 この 場所を固定したとしても失われる制振効果は極めて少ないか殆ど無い に等しいので、 積層板 2 0を固定することによる制振効果への悪影響を 最小限に抑えることができる。 このように第 1実施形態によれば、 積層 板 2 0の内部の最適な部位 Gを固定するようにしたので、 製造時の熱歪 みや使用時の外力によって 「浮き」 が生じて制振効果が失われることが なくなる。 しかも、 積層板 2 0を構成する薄板 2 1の独立した変形が阻 害されることがなく、 高い制振効果を維持できる。 尚、 第 1実施形態で は、 一の周波数の一の振動モードについて腹以外の部位を固定している が、 複数の周波数の各振動モ一ドについて腹以外の部位を固定してもよ い。
図 5 A〜図 5 Dはそれそれ、 異なる周波数の振動モード 1、 2、 3、 4で側板 1 1を振動させたときの振幅の大きさの分布を示している。振 動モード 1、 2、 3、 4で側板 1 1を振動させたとき、 いずれの周波数 についても、振動モードの腹以外となっている部位は、領域 Gであった。 領域 Gは、 図 1に示されるように、 部位 D、 部位 F、 及び部位 Dと部位 Fとの間の領域、 からなる。 従って、 バケヅ ト 1 0の側板 1 1に積層板 2 0を固定する際、 領域 G内のたとえば部位 Dを固定すれば、 積層板 2 0を固定することによる制振効果への悪影響を最小限に抑えることが できる。
なお第 1実施形態では、 振動モードを考慮して、 側板 1 1に積層板 2 0を固定する際の内部における固定部位を定めているが、 側板 1 1を積 層板 2 0の周辺以外の部位で固定できればよい。 このようにすることで、 熱が加わることにより生じる浮き上がり等を防止することができる。 特 に、 積層板 2 0の、 周辺以外 (内部) の部位 (部位 G又は領域 G ) 及び 周辺部 2 0 aが共に、 側板 (又は母材) 1 1に固定されることが好まし い。 これにより、 浮き上がり等をより確実に防止でき、 かつ高い制振効 果を維持できる。
第 1実施形態では建設機械のバケツ ト 1 0の側板 1 1を制振対象と しているが、 本発明は任意の母材を制振対象とする場合に適用すること ができる。 即ち建設機械の作業機を構成する部材の内でバケツト以外の ブーム、 アームを制振する場合に、 本発明を適用してもよい。 またブレ ―ドを備えた建設機械の場合には、 ブレードを制振するために本発明を 適用してもよい。 またホッパを備えた破砕作業機械などに本発明を適用 して、 騒音発生源であるホッパを制振することもできる。 また建設機械 の脚回りを構成する履帯、 トラックフレームなどを制振する場合に本発 明を適用することができる。
また、 エンジンや油圧ポンプなどのコンポ一ネントに積層板 2 0を取 付け、 制振を行うことができる。 特に油圧ポンプの場合には、 油圧ボン プで発生する脈動が配管に伝わることで発生する騒音が問題となる。 油 圧ポンプで問題となる周波数は、 脈動の周波数とその倍音の周波数であ る。 そこで第 1実施形態と同様に、 脈動周波数とその倍音の周波数の各 振動モードについて振幅の大きさの分布を求め、 各振動モ一ドの腹以外 となる部位を特定して、 その部位を固定するようにすれば、 油圧ポンプ で発生する脈動による騒音を低減させることができる。
次に、 第 2実施形態として、 建設機械のバケツ トで発生する振動を抑 制し側板及び底板から放射される騒音を低減させる場合を説明する。 図 6は、 第 2実施形態の制振対象であるバケツ ト 1 0の斜視図であり、 図 7はバケツ ト 1 0の断面を示している。 図 6に示すようにバケツ ト 1 0 の側板 1 1上には、 鋼の薄板が複数枚積層されており積層板 2 0を構成 して る。 積層板 2 0の周囲 2 0 aは全周、 隅肉溶接にて側板 1 1に固 定されている。 なお積層板 2 0を側板 1 1に固定する方法としては、 上 述したように全周隅肉溶接によって固定する方法以外に、 断続的な隅肉 溶接、 あるいは間欠的な栓溶接、 あるいはボルト締めなどの任意の固定 方法で固定することができる。
側板 1 1の上端には口金板 1 3が取り付けられており、 バケツ ト 1 0 の開口部が補強されている。底板 1 2にはヅ一ス 1 8が取り付けられて いるとともに、 ブラケッ ト 1 9が取り付けられている。 ブラケッ ト 1 9 には、 図 1 1 Aに示すアーム 4 1が取り付けられる。 バケッ ト 1 0の内 側にあって、 側板 1 1と底板 1 2とが接続しているコーナ部には、 補強 部材 1 4が固定されている。補強部材 1 4はバケツ ト 1 0の強度を確保 し剛性を向上させるために設けられている。
バケヅト 1 0の内側にあって、 側板 1 1と底板 1 2とが接続している コーナ部のうち、 特定の部位 K (図 1 0参照) には、 側板 1 1と底板 1 2とを連結する梁状の連結部材 1 5が取り付けられている。連結部材 1 5は側板 1 1と底板 1 2とを連結することで、 底板 1 2を補強して剛性 を確保しつつ、 底板 1 2から放射される騒音を低減させるために設けら れている。
底板 1 2に連結部材 1 5を取り付ける基準について説明する。 図 9は、 側板 1 1の高さ H sと底板 1 2の幅 Wpとの比 Wp/H sを横軸にとり、 縦軸に側板 1 1、 底板 1 2の各騒音寄与量 Tl、 Τ2をとつている。 図 9 はバケツ ト 1 0に積層板 2 0や連結部材 1 5が取り付けられていない 状態で騒音寄与量を測定した結果を示している。 バケツ ト 1 0の底板 1 2の幅 Wp、 側板 1 1の高さ H sは図 7で定義される。
図 9に示すように比 Wp/H sが 1. 47未満の領域 Nでは、 底板 1 2の騒音寄与量 T 2 が側板 1 1の騒音寄与量 T1 よりも小さくなつてい る。 つまり、 底板 1 2の騒音寄与量 T 2 が側板 1 1の騒音寄与量 T1 よ りも小さく、 側板 1 1から放射される騒音の方が支配的であるので、 側 板 1 1に積層板 2 0を取り付けるだけでバケツ ト 1 0から放射される 騒音を低減することができる。底板 1 2を補強したとしてもバケツ ト 1 0の騒音低減に殆ど寄与しないので、 底板 1 2を補強する必要はない。 そこで、 比 Wp/H sが 1. 47未満となっているバケヅ ト 10につい ては、 側板 1 1に積層板 20のみを取り付けることとし、 連結部材 1 5 の取り付けは省略される。
これに対して比 Wp/H sが 1. 47以上の領域 Qでは、 底板 1 2の 騒音寄与量 T2 が側板 1 1の騒音寄与量 T1 以上となっている。 つまり 底板 1 2から放射される騒音の方が支配的であるので、 側板 1 1に積層 板 2 0を取り付けるだけでは足りず、 底板 1 2から放射される騒音を低 減しなければ、 バケツ ト 1 0から放射される騒音を低減することができ ない。 そこで、 比 Wp/H sが 1. 47以上となっているパケッ ト 1 0 については、 側板 1 1に積層板 2 0を取り付ける以外に、 図 8A及び図 8 Bに示すように側板 1 1と底板 1 2 とを接続しているコーナ部 1 6 に、 連結部材 1 5が取り付けられる。
以上のように第 2実施形態によれば、 底板 1 2について騒音対策が必 要となる基準を、 「側板高さ H sと底板幅 Wpとの比 Wp/H sが 1. 4 7以上である」 と明確に定め、 この基準にしたがい底板 1 2を補強する ようにしている。 これにより、 各種バケツ トのうち必要最小限のバケツ トについて、 騒音実験等を行うことなく必要最小限の労力で騒音対策を 施すことができる。 このためバケツトの設計、 製造に費やされるコスト が飛躍的に低減する。 また新たにバケツ トを設計する際に設計段階の各 部の寸法から、 底板 1 2を補強すべきか否かを判断でき騒音実験等によ る確認が不要となるので設計から製造までの工程の短縮化を図ること が可能になる。
つぎに連結部材 1 5の取り付け位置、 取り付け方法について各実施例 を挙げて説明する。
(実施例 1 ) 連結部材 1 5をコーナ部 1 6全域に渡り、取り付ける。 (実施例 2 ) 底板 1 2から放射される騒音の主要な発生源を特定し その部位のみに連結部材 1 5を取り付ける。 建設機械の実作業時におけ る騒音の周波数スぺクトルを分析したとき、 大きなピ クが発生してい る周波数帯の騒音を低減することが重要となる。 そこで、 大きなピーク が発生している周波数帯の周波数で、 バケツト 1 0の振動モード解析を 実施し、 底板 1 2から放射される騒音の主要な発生源を探索する。 図 1 0はバケッ ト 1 0の代表的な振動モ一ドの振幅の大きさの分布をとつ たものであり、 各部位を、 振幅の大きさに応じた濃淡で示している。 な お図 1 0では、 図 6との対応を明確にするために、 ヅース 1 8、 ブラケ ット 1 9の取付位置を示している。
図 1 0に示すように同一構造のものであっても部位によって振幅の 大きさが異なり、 振幅の大きな部位つまり振動モードの腹となる部位も あれば、 振幅の小さな部位つまり振動モードの節となる部位もある。 コ —ナ部 1 6のうち振動モードの腹となっている部位が、 底板 1 2からの 放射音の主要な発生源であると考えられる。 そこで図 1 0の振幅の分布 からコーナ部 1 6のうち振動モードの腹となっている部位 Kを探索し、 部位 Kに連結部材 1 5を取り付ける。 実施例 2によれば、 側板 1 1と底 板 1 2とが接続しているコーナ部 1 6のうち、 振動モ一ドの腹となる部 位 Kのみに連結部材 1 5を取り付け補強するようにしたので、 底板 1 2 の補強が必要最小限で済み、 建設機械の性能に及ぼす悪影響を最小限に 抑えることができる。
(実施例 3) 側板 1 1の高さ Hsと底板 12の実質的な幅 Wp' と の比 Wp' /113が1. 47よりも小さくなる態様で、 連結部材 15を 取り付ける。 図 8 A及び図 8 Bに示すように、 底板 12の両コ一ナ部 1 6にそれそれ連結部材 15を取り付け、 連結部材 15の連結部位 12 a 同士を結ぶ線分の長さを 「実質的な底板幅 Wp' 」 とする。 ここで図 9 に示すように、連結部材 1 5を取り付ける前の比 Wp/H sの値が J2で あり、 底板 12の騒音寄与量 T2の方が支配的となっている領域 Qにあ つたとする。 領域 Qで連結部材 15を取り付け底板 12からの放射音を 低減することは、 バケツ ト 10の騒音を低減させる上で最も効率的であ 。
連結部材 15が取り付けられると、 比 Wp' /H sを値 J2から値 J1 にすることができ、 側板 1 1の騒音寄与量 T1 の方が支配的になってい る領域 Nに移行させることができる。 領域 Nは底板 12からの放射音が 殆ど問題にならず側板 1 1からの放射音が問題になる領域である。 領域 Nで側板 1 1に積層板 20を取り付けることは、 バケツ ト 10の騒音を 低減させる上で最も効率的である。
このように実施例 3によれば、 比 Wp ' /H sが 1. 47よりも小さ くなるように連結部材 15を取り付けることで、 底板 12からの放射音 を低減させる。 比 Wp ' /H sが 1. 47よりも小さくなつた状態で、 側板 1 1に積層板 20を取り付けて側板 1 1からの放射音を低減させ るようにしたので、 バケツ ト 10から放射される騒音を最も効率的に最 大限に低減させることができる。
(実施例 4) 実施例 2と実施例 3とを組み合わせる実施も可能であ る。即ち図 10の振幅の分布からコーナ部 16の内で振動モードの腹と なっている部位 Kを探索し、 部位 Kに、 比 Wp' /H sが 1. 47より も小さくなる態様で、 連結部材 15を取り付ける。
(実施例 5) 上述した実施例 1〜4では、 梁状の連結部材 15を用 いて底板 1 2のコーナ部 1 6の補強を行うようにしているが、 図 8 Aに 破線で示すコーナ部 1 6を補強できさえすればよく、 必ずしも梁状の連 結部材 1 5を用いる必要はない。 たとえばコーナ部 1 6に隙間が開くこ となく補強部材を充填する実施も可能であり、 従来の耐摩耗板と同様に バケツ ト 1 0の内側ではなく外側に補強材を'張り付ける実施も可能で ある。
(実施例 6 ) 上述した実施例 1〜 5では、 比 W p / H sが 1 . 4 7 以上となっているバケッ ト 1 0について補強する場合を想定している。 しかし比 W p / H sの数値いかんにかかわらず、 バケヅ ト 1 0の内側つ まり積層板 2 0の取付面とは反対側であって、 側板 1 1と底板 1 2とが 接続している部位に、 連結部材 1 5等の補強材を取り付ける実施も可能 である。 この場合、 補強材は側板 1 1と底板 1 2との内側接続部全域に わたり設けてもよく、 内側接続部の一部に設けてもよい。
実施例 6の効果について図 1 1 A及び図 1 1 Bを参照して説明する。 図 1 1 A及び図 1 1 Bは、 バケヅ ト 1 0が油圧ショベル 4 0のアーム 4 1に取り付けられ、 油圧ショベル 4 0がトラック 4 2への積込み作業を 行う様子を示している。 バケツ ト 1 0に積層板 2 0が取り付けられては いるが、 連結部材 1 5等によって底板 1 2が補強されていない場合を想 定する。 この場合、 積層板 2 0によって側板 1 1からの放射音は著しく 低減するが、 底板 1 2からの放射音は依然として大きいままである。 し たがってバケツ ト 1 0の前方 Sの騒音に対しては、 十分な騒音低減効果 が得られない。
これに対してバケヅ ト 1 0に積層板 2 0が取り付けられるとともに、 連結部材 1 5等によって底板 1 2が補強された場合を想定する。 この場 合、 底板 1 2が連結部材 1 5等により補強されることによって、 騒音の 原因となる振動の振幅が小さくなり、 底板 1 2からの放射音が低減する t このためバケツ ト 1 0の前方 Sの騒音に対して十分な騒音低減効果が 得られる。 また底板 1 2からの放射音はバケツト 1 0の側方 Rの騒音に も影響を与える。 このためバケツ ト 1 0の側方 Rも含めた全方向で騒音 が十分に低減する。 更に、 バケツト 1 0の内側接続部のみを補強したの で、 バケツ ト 1 0の外側に耐摩耗板のような補強材を設ける場合と比較 して、 補強材の重量増加が少なくて済む。
次に、 図 1 2〜図 1 6 Cを用いて、 第 3実施形態について説明する。 図 1 2に示すように、 油圧ショベルの作業用ァ夕ヅチメントであるバケ ヅ ト 1 0 1は、 略 C形に湾曲させた底板 1 0 2の左右両側に側板 1 0 3 , 1 0 3をそれそれ溶接している。 さらに、 側板 1 0 3, 1 0 3及び底板 1 0 2に口金板 1 0 4 , 1 0 4, 1 0 5をそれそれ溶接して、 バケヅ ト 1 0 1の開口部を形成している。 口金板 1 0 4 , 1 0 4 , 1 0 5は、 掘 削に伴う摩耗の激しい部位に装着される部材であり、 その部材の厚さは 底板 1 0 2や側板 1 0 3よりも厚く設定されている。 口金板 1 0 5には 複数個のヅ一ス 1 0 6が装着されている。 底板 1 0 2のヅ一ス取付部と 反対側の端部外面には、 油圧ショベルの作業機に連結するピンボス 1 0 7を固設している。 側板 1 0 3の外側面周部には、 底板 1 0 2に沿うよ うに耐摩耗板 1 0 8が固設されている。
バケヅ ト 1 0 1の側板 1 0 3の外側面には、 図 1 3にも示すように、 口金板 1 0 4及び耐摩耗板 1 0 8に囲まれるように略半円形-状の積層 板 1 1 0が貼着されている。 積層板 1 1 0の内部には、 栓溶接用の孔 1 1 0 aが設けられている。 積層板 1 1 0は、 図 1 4に示すように、 所定 枚数を積層した薄い鋼板よりなる内板 1 1 1と、 内板 1 1 1の外側に積 層する外板 1 1 2とを備えている。 外板 1 1 2は、 内板 1 1 1を押さえ ると共に掘削時の岩石との衝突や摩耗から内板 1 1 1を保護するべく 所定厚さを有する。
各内板 1 1 1の略円弧状側の端部形状は耐摩耗板 1 0 8の内周に略 一致する形状であり、 所定幅 wの矩形の切欠き部 1 1 1 aが略円弧状側 端部の周方向両端を含む複数箇所に設けられている。 切欠き部 1 1 1 a に区切られることにより、 耐摩耗板 1 0 8の内周に当接する複数個の当 接部 1 1 1 bが形成されている。 切欠き部 1 1 1 aの奥行きは、 外板 1 1 2と耐摩耗板 1 0 8との隙間 d 1に等しい。 外板 1 1 2の略円弧状側 の端部形状は、 耐摩耗板 1 0 8の内周との間に溶接代として隙間 d 1が 形成される形状である。 上記形状となっているので、 切欠き部 1 1 1 a においては、 図 1 5 Aに示すように、 積層板 1 1 0は耐摩耗板 1 0 8と 隙間 d 1を形成して離間している。 当接部 1 1 1 bにおいては、 図 1 5 Bに示すように、 積層板 1 1 0は内板 1 1 1が耐摩耗板 1 0 8に当接し、 かつ外板 1 1 2が耐摩耗板 1 0 8と隙間 d 1を形成して離間している。 即ち、 当接部 1 1 1 bは外板 1 1 2の周縁から隙間 d l ほど突出してい る。 各内板 1 1 1及び外板 1 1 2は、 口金板 1 0 4との間に溶接代とし て隙間 d 2 (図示しないが、 図 3 1と同様) が形成される形状(略直線) である。
バケツ ト 1 0 1の側面への積層板 1 1 0の貼着工程は以下のように なる。 まず、 所定枚数の内板 1 1 1を重ね、 当接部 1 1 l bを耐摩耗板 1 0 8に当接させて内板 1 1 1の位置決めを行う。 次に、 内板 1 1 1の 切欠き部 1 1 1 aを利用して外板 1 1 2の位置決めを行う。 積層板 1 1 0 (内板 1 1 1及び外板 1 1 2 ) の位置決めが完了した後、 切欠き部 1 1 1 aを仮付けを兼ねて図 1 6 Aに示すように溶接で埋める。 これによ り、各内板 1 1 1は断続溶接によりバケツ ト 1 0 1に取着される。次に、 切欠き部 1 1 1 a及び当接部 1 1 1 bの隙間 d 1を、 図 1 6 B及び図 1 6 Cに示すように連続溶接により埋める。 また、 積層板 1 1 0と口金板 1 0 4との隙間 d 2を、連続溶接により埋める。即ち、積層板 1 1 0は、 各内板 1 1 1が耐摩耗板 1 0 8側で断続溶接により、 また外板 1 1 2が 連続溶接により、 パケット 1 0 1の側面に貼着されている。 なお、 好ま しくは、 孔 1 1 0 aには栓溶接が施され、 熱歪等に起因して発生する積 層板 1 1 0の各板の浮きを防止している。 これにより積層板 1 1 0は、 側板 1 0 3、 内板 1 1 1及び外板 1 1 2それそれの間が略密着するよう に側板 1 0 3に貼着されている。
次に、 上記構成による作動について説明する。 側板 1 0 3が弾性変形 によって振動すると、 溶接部よりこれが伝わって各内板 1 1 1も弾性変 形によって振動し、 側板 1 0 3と内板 1 1 1との間及び内板 1 1 1同士 の間で伝播遅れや剛性の差による微小な位置ズレゃ隙間を生じながら 摺動する。 振動が持続する限り、 この微小な位置ズレゃ隙間は常に変化 しながら次々に生起されるので、 それそれの間で摩擦や衝突が繰り返さ れる。 すると、 側板 1 0 3の振動エネルギは、 これらの摩擦や衝突によ り熱エネルギに変換されて消散していく。 したがって、 側板 1 0 3の振 動を減少させることができ、 ひいては側板 1 0 3から放射される騒音を 低減できる。
言い換えるならば、 各板はその拘束条件に応じて振動し、 板間の微小 な相対変位を生じるので,板同士の摩擦や衝突が生起される。 この摩擦 や衝突により、 振動エネルギが熱エネルギに変換されるため、 騒音の原 因となる振動を減衰させることができる。 特に板の密着度が高くなれば、 板と板との間に隙間が生じることによる衝突現象よりも、 板間の摩擦が 主となり、 より効率よく振動を減衰させることができる。
本実施形態による効果を説明する。 本実施形態によれば、 積層板 1 1 0は外板 1 1 2の連続溶接により積層板 1 1 0内部への雨水の浸入を 防止して板間の鯖の発生を防ぎ、 制振性能を維持できる。 口金板 1 0 4 ゃ耐摩耗板 1 0 8がこの連続溶接部を掘削作業時の岩石等との衝突 -摩 擦から保護するので、 積層板 1 1 0の溶接部の摩耗 ·損傷を防止でき、 積層板 1 1 0の耐久性を向上できる。 さらに、 内板 1 1 1は複数の切欠 き部 1 1 1 aの溶接により構成された断続溶接であり、 全周溶接等の連 続溶接に比べて拘束度合いが低いので、 優れた制振特性が得られ顕著な 騒音低減効果を有する制振装置が得られる。
製造上の効果として、 所定枚数の内板 1 1 1は、 当接部 1 1 l bを耐 摩耗板 1 0 8に突き当てるだけで位置決めができ、 耐摩耗板 1 0 8との 溶接代の隙間 d 1を確保する必要はない。 これにより、 外板 1 1 2も内 板 1 1 1の切欠き部 1 1 1 aを利用して容易に位置決めできるので、 位 置決め作業が容易で低コストの制振装置が得られる。耐摩耗板 1 0 8と の間の溶接が、 切欠き部 1 1 1 aの溶接による断続溶接と外板 1 1 2の 外周の連続溶接とにより完了するので、 溶接量が少なく溶接工数を短縮 でき、 低コストの制振装置が得られる。 熱歪みの発生を防止するため、 従来では多くの仮付けを実施していた。 しかし、 本発明では切欠き部 1 1 1 aの溶接が仮付けを兼ねるため、 仮付け工程が省略できる上、 連続 溶接も少ないので、 仮付けを兼用する切欠き部 1 1 1 aの溶接箇所が少 なくても熱歪みの発生が少ない。
ここで、 騒音低減効果と内板 1 1 1の溶接ピッチとの関係の確認テス トの結果について説明する。 積層板を用いた制振装置の騒音低減効果は、 基本的に、 積層板を拘束する点が少ないほど、 つまり溶接部の長さが短 いほど、 大きい。 これは、 前述の作動説明からも分かるように、 層間に 相対変位を生じ易く、 より大きな摩擦力が発生するためである。 したが つて、 内板 1 1 1の溶接ピッチは大きいほど良いと思われる。 しかしな がら、 溶接ピッチが大き過ぎると、 内板周縁部の局所的な振動によって 内板同士が叩き合い、 叩き音を発生するという相反する問題が生じる。 そこで、 内板の溶接ピッチと発生騒音レベルとの関係を測定した。 図 1 7は、 その測定結果である。 図 1 7によると、 溶接ピッチを大きくす ると徐々に騒音レベルが低下し、およそ 1 7 0醒のピヅチで発生騒音が 最も小さくなる。 それよりもピッチを大きくすると前記叩き音によって 騒音が徐々に大きくなり、およそピッチ 2 8 0腿で略一定レベルに収束 することが分かる。 この収束するレベルは、 ピッチ 1 0 0 mmの時の騒音 レベルに略等しい。 従って、 ピヅチを 1 0 O mmよりも小さくすると、 そ の効果は、ピッチが 1 7 O mmよりも大きくて叩き音が発生しているとき よりも低下してしまう。 また、 コスト低減の観点から溶接ピッチを大き くしたいときでも、 2 8 O mmを越えて大きくすると、 叩き音によって騒 音低減効果は小さくなつてしまう。 以上の結果、 内板の溶接ピッチは 1 0 O mm~ 2 8 O mmの間に設定することが好ましい。
したがって、 第 3実施形態における内板 1 1 1の溶接ピッチ、 つまり 当接部 1 1 1 bの周方向長さ L 1は、 1 0 O mii!〜 2 8 0腿の間に設定す ることが好ましい。 当接部 1 1 1 bの周方向長さ L 1は、 図 1 8に示す ように定義される。 第 3実施形態では、 内板 1 1 1の周縁部に所定間隔で設けた切欠き部 1 1 1 aを側板 1 0 3に溶接することによって、 内板 1 1 1の周縁部を 断続溶接する構成としている。 しかし、 これに限定されず、 例えば図 1 9 A及び図 1 9 Bに示すような他の実施例の積層板構成としてもよい。 ここで、 図 1 9 Aは他実施例の積層板の斜視図で、 図 1 9 Bはその 1 9 B— 1 9 B断面図である。
図 1 9 A及び図 1 9 Bにおいて、 バケヅ ト 1 0 1の耐摩耗板 1 0 8の 内周形状に略等しい略半円形状の外周端部を有し、 該周縁部に切欠き部 を設けていない内板 1 1 1 Aを複数枚積層する。 この複数枚積層部の外 側に、 内板 1 1 1 Aの径よりも所定長さ d 1だけ小さい径を有する外板 1 1 2を積層して、 積層板 1 1 O Aを構成する。 積層板 1 1 O Aを、 パ ケヅ ト 1 0 1の側板 1 0 3の外側面に、 口金板 1 0 4及び耐摩耗板 1 0 8に囲まれるように貼着する。 外板 1 1 2の周縁部と耐摩耗板 1 0 8及 ぴ口金板 1 0 4との間を連続溶接することによって、 外板 1 1 2及び最 外側の内板 1 1 1 Aの周縁部のみが拘束される。 この場合においても、 全ての板が拘束されるわけではないので、 拘束度合いが低くなり、 優れ た制振特性を得ることができる。 また、 積層板内部への雨水の侵入を防 止して、 板間の鯖の発生を防ぎ、 制振特性を長期間維持できる。
次に、 図 2 0〜図 2 3 Bを用いて、 第 4実施形態について説明する。 第 4実施形態は、 積層板を自走式破砕装置のホッパに適用したものであ る。 図 2 0に示すように、 自走式破砕装置 1 2 0は、 履帯式の走行装置 1 2 1を備えた基台 1 2 2の後部に動力装置 1 2 3を搭載すると共に、 基台 1 2 2の中央部に破砕機 1 2 4を搭載している。 基台 1 2 2の前部 に設けられたホッパ 1 2 5に投入される被破砕物 (例えば、 岩石、 コン クリートガラ、 木材、 建築廃材等) は、 破砕機 1 2 4により所定サイズ に破碎され、 基台 1 2 2の下部から後方に延設される搬出装置 1 2 6に より後方に搬出される。
図 2 1に示すように、 ホヅパ 1 2 5の中央部には投入される被破砕物 を破砕機 1 2 4に搬送するフィーダ 1 2 7が設けられており、 フィーダ 1 2 7を囲むように、 ホヅパ 1 2 5の傾斜壁面 1 2 8 , 1 2 8 , 1 2 9 が上方への開口部を形成している。 ホヅパ 1 2 5の傾斜壁面 1 2 8 , 1 2 8 , 1 2 9には、 積層板 1 3 0 , 1 3 0, 1 4 0がそれそれ貼着され ている。 各積層板 1 3 0, 1 3 0 , 1 4 0は、 形状が異なるが構造は同 様であるので、 積層板 1 3 0を例に挙げて以下に説明する。
図 2 2に示すように、 積層板 1 3 0は傾斜壁面 1 2 8よりも一回り小 さい外形形状であり、 傾斜壁面 1 2 8の中央部に貼着されている。 積層 板 1 3 0の所定位置には、 栓溶接用の孔 1 3 0 aが設けられている。 積 層板 1 3 0は、 所定枚数を積層した薄い鋼板よりなる内板 1 3 1と、 内 板 1 3 1の外側に積層する外板 1 3 2とを備えている。 外板 1 3 2は、 内板 1 3 1を押さえると共に被破砕物投入時の被破砕物との衝突や摩 耗から内板 1 3 1を保護すべく、 所定厚さを有する。 外板 1 3 2の外形 は積層板 1 3 0の外形となっており、 内板 1 3 1は周縁部に、 外板 1 3 2の周縁形状に一致する複数の突出部 1 3 1 aと、 外板 1 3 2の周縁形 状に対して引っ込んだ複数の切欠き部 1 3 1 bとを備えている。
ホヅパ 1 2 5の傾斜壁面 1 2 8への積層板 1 3 0の貼着工程は以下 のようになる。 まず、 積層板 1 3 0の隣接する 2辺に当接する治具 (図 示せず) が設けられた作業台 (図示せず) 上で、 所定枚数の内板 1 3 1 を重ね、 その上に外板 1 3 2を重ねた後、 全ての板を治具に当接させて 位置決めを行い、 周縁の数箇所に仮溶接を施す。 次に、 仮溶接した積層 板 1 3 0を傾斜壁面 1 2 8の所定位置に配置し、 連続溶接 (全周) によ り積層板 1 3 0を傾斜壁面 1 2 8に結合する。 これにより、 図 2 3 A及 び図 2 3 Bに示すように、 外板 1 3 2は連続溶接が行われるのに対し、 各内板 1 3 1は、 切欠き部 1 3 1 bにおいては溶接されず、 かつ複数の 突出部 1 3 1 aにおいてのみ傾斜壁面 1 2 8に溶接される断続溶接が 行われることになる。
図 1 7に示した測定デ一夕によると、 第 4実施形態における内板 1 3 1の突出部 1 3 1 a間の間隔、 即ち切欠き部 1 3 1 bの周方向長さ L 2 は、 1 0 O mn!〜 2 8 0腿の間に設定することが好ましい。切欠き部 1 3 l bの周方向長さ L 2は、 図 2 4に示すように定義される。
積層板 1 3 0による騒音低減の作動は第 3実施形態と同様であるの で、 その説明は省略する。 第 4実施形態による効果を説明する。 本実施 形態によれば、 積層板 1 3 0は外板 1 3 2の連続溶接により、 積層板 1 3 0内部への雨水の浸入を防止して板間の鯖の発生を防ぎ制振性能を 維持できる。 内板 1 3 1は断続溶接であり、 連続溶接 (全周溶接) に比 ベて拘束度合いが低いので、 優れた制振特性が得られ、 顕著な騒音低減 効果を有する制振装置が得られる。 製造上の効果として、 外板 1 3 2の 連続溶接工程により内板 1 3 1の突出部 1 3 1 aを溶接して断続溶接 を構成できるので、 製造工程が簡素で低コストとなる。 また、 所定枚数 の内板 1 3 1の突出部 1 3 1 aは、 外板 1 3 2の外形に一致するので、 各内板 1 3 1と外板 1 3 2との位置決め作業が容易となり、 低コストの 制振装置が得られる。
なお、 本発明は第 3及び第 4実施形態に限定するものではなく、 本発 明の範囲内において変更や修正を加えても構わない。 例えば、 断続溶接 による内板 1 1 1の耐摩耗板 1 0 8側の拘束個所 (即ち切欠き部 1 1 1 a ) を 5箇所設ける例にて説明したが、 必要とされる強度や、 低減させ たい騒音の周波数帯域に応じて適宜選択すればよい。
内板 1 1 1に矩形の切欠き部 1 1 1 aを設ける例にて説明したが、 矩 形に限定するものではなく、 図 2 5 Aに示すように波形の切欠き部 1 1 1 cを設けてもよい。 同様に、 第 4実施形態の内板 1 3 1の切欠き部 1 3 1 bを波形としてもよい。 夕レツ トパンチプレス等で内板 1 1 1を製 作する場合には、 端部に生じるかえりにより各内板 1 1 1間に隙間が発 生し制振性能が低下するため、 通常、 内板 1 1 1はレーザ加工により製 作される。 このため、 切欠き形状が波形であっても製作に支障はなく、 さらに、 強度的な要求により断続溶接の個所を多く要する場合には、 矩 形よりも波形のほうがレーザ切断長さが短くなり、 生産性が向上する。 内板 1 1 1に矩形の切欠き部 1 1 1 aを設ける代わりに、 図 2 5 Bに 示すように、 内板 1 1 1の耐摩耗板 1 0 8側の周縁部に栓溶接用の孔 1 1 1 dを複数設けて、 栓溶接により各内板 1 1 1を側板 1 0 3に拘束す るように構成してもよい。 孔 1 1 1 dの栓溶接により、 内板 1 1 1の周 縁部が断続溶接される。 図 2 5 Cに示すように、 内板 1 1 1のみの拘束 個所を設けずに、 内板 1 1 1を外板 1 1 2と共に側板 1 0 3に溶接する 栓溶接用の孔 1 1 0 aを複数個設けるようにしてもよい。 孔 1 1 0 aの 栓溶接により、 内板 1 1 1と外板 1 1 2が断続溶接され、 上記実施形態 と同様の効果が得られる。
積層板 1 1 0においては、 積層板 1 1 0と口金板 1 0 4との隙間 d 2 には、 連続溶接を施す例であつたが、 この部分においても内板 1 1 1を 断続溶接にて拘束するようにしてもよい。 即ち、 図 2 6に示すように、 内板 1 1 1の口金板 1 0 4側端部を外板 1 1 2の周縁から突出させ、 こ の突出部に切欠き部 1 1 1 aを設け、 切欠き部 1 1 1 aを埋める溶接に より断続溶接を構成すればよい。 これによると、 内板 1 1 1の拘束個所 が減少するので、 さらに制振性能の優れた制振装置を得ることができる 第 4実施形態の技術を第 3実施形態に付加することも可能である。 即 ち、 図 2 7に示すように、 内板 1 1 1の口金板 1 0 4側端部に、 外板 1 1 2の外形に一致する複数の突出部 1 1 1 eと、 外板 1 1 2の外形に対 して引っ込んだ複数の切欠き部 1 1 1 f とを設ける。 これにより、 積層 板 1 1 0の口金板 1 0 4側端部に連続溶接を施しても内板 1 1 1は突 出部 1 1 1 eが溶接されるだけの断続溶接となる。 これによると、 内板 1 1 1の拘束個所が減少するので、 さらに制振性能の優れた制振装置を 得ることができる。
さらに、 第 3実施形態の技術を第 4実施形態に付加することも可能で ある。 即ち、 図 2 8に示すように、 傾斜壁面 1 2 8に積層板 1 3 0の隣 接する 2辺に当接可能な略 L字形状の耐摩耗板 1 3 8を取着すると共 に、 耐摩耗板 1 3 8に対向する内板 1 3 1の端部を耐摩耗板 1 3 8に当 接するように外板 1 3 2の周縁から突出させ、 この突出部に切欠き部 1 3 1 cを複数設ける。 突出部には切欠き部 1 3 1 cに区切られることに より、 耐摩耗板 1 3 8に当接する複数個の当接部 1 3 1 dが形成される < この複数の切欠き部 1 3 1 cを溶接で埋めることにより断続溶接を構 成した後、 外板 1 3 2を連続溶接することにより、 積層板 1 3 0が傾斜 壁面 1 2 8に貼着される。 これによると、 傾斜壁面 1 2 8上で各内板 1 3 1を耐摩耗板 1 3 8に突き当てることにより位置決めすることがで きる。 耐摩耗板 1 3 8が耐摩耗板 1 3 8側の溶接部を投入される被破砕 物との衝突 ·摩擦から保護するので、 積層板 1 3 0の溶接部の摩耗 -損 傷を防止でき、 積層板 1 3 0の耐久性を向上できる。
上記第 3及び第 4実施形態では、 積層板 1 1 0 , 1 3 0の厚さ、 即ち 内板と外板との積層合計高さを耐摩耗板 1 0 8 , 1 3 8の高さと略同じ にする構成例で説明した。 しかし、 積層合計高さを耐摩耗板 1 0 8 , 1 3 8の高さ以下に設定する方が好ましく、 耐摩耗板により積層板の溶接 部の摩耗 ·損傷をより確実に防止できる。 積層板を貼着する機械の部材 として、 油圧ショベルのバケヅ ト 1 0 1 (側板 3などの各構成部材も含 む) 及び自走式破砕装置 1 2 0のホッパ 1 2 5 (傾斜壁面 1 2 8などの 各構成部材も含む) を例に挙げたが、 ホイールローダのパケットや固定 式の破砕設備のホッパに適用してもよいのは勿論のこと、 騒音を低減し たい任意の機械の部材に適用できる。 以上説明したように、 積層板の外 板を連続溶接することにより、 雨水の浸入を防止して板間の鯖の発生を 防止できると共に、 積層板の内板を断続溶接して内板の拘束度合いを低 く抑えているので、 優れた制振特性が得られ顕著な騒音低減効果を有す る制振装置が得られる。
第 1実施形態と第 2実施形態とを組み合わせる実施例も可能である。 即ち、 図 3 4に示すように、 バケツ ト 2 0 0は第 1実施形態と同様、 側 板 2 1 1に積層板 2 2 0を全周隅肉溶接 2 3 0によって取り付けると 共に、 図 1の部位 Dに相当する位置にて積層板 2 2 0の内部と側板 2 1 1とが栓溶接 2 5 0されている (栓溶接の最適化)。 しかも、 パケッ ト 2 0 0は第 2実施形態と同様、 側板 2 1 1と底板 2 1 2とが接続してい るコーナ部のうち、 特定の部位 K (図 1 0参照) に、 側板 2 1 1と底板 2 1 2とを連結する梁状の連結部材 2 1 5が取り付けられている。本実 施例における側板 2 1 1の高さ H sと底板 2 1 2の幅 W pとの関係は、 図 9の領域 Q (即ち、 比 W p /H sが 1 . 4 7以上) にある。 尚、 図 3 4では、 側板 2 1 1と底板 1 2とが接続しているコーナ部に、 補強部材 2 1 4を固定しているが、 補強部材 2 1 4の使用を省略してもよい。
かかる組合せ実施例による騒音エネルギ低減率について、 図 3 5で説 明する。 ここで、 騒音エネルギ低減率 E dは、 積層板 2 2 0及び/又は 連結部材 2 1 5取り付け前後の発生騒音エネルギを実験的に測定し、 E d = [ (取り付け前の発生騒音エネルギ E 1一取り付け後の発生騒音ェ ネルギ E 2 ) / E 1 ] X 1 0 0 ( % ) として算出している。 側板寄与分 及び底板寄与分とは、 側板及び底板からそれそれ放射される音の低減率 を示す。 図 3 5中の "全体" とは、 側板及び底板の各低減率に寄与率を 乗じた後、 合計した値である。 本実施例での積層板 2 2 0などの取り付 け前のバケツ ト 2 0 0において、 側板寄与率は 3 9 %、 また底板寄与率 は 6 1 %であり、 従って底板 2 1 2からの放射音の寄与が大きいケース である。
図 3 5では、 本実施例以外のいくつかの構成についても騒音エネルギ 低減率 E dを測定しており、 各項目 N o . のバケツ ト構成概要は次のと おりである。 ここで、 ベースとなるバケツトは、 積層板 2 2 0及び連結 部材 2 1 5などの騒音低減部材取り付け前のバケツ トである。
項目 1 : 積層板 2 2 0を全周隅肉溶接 2 3 0し、振動モードの "腹" の位置にて栓溶接 (図示せず)。
項目 2 : 積層板 2 2 0を全周隅肉溶接 2 3 0し、 部位 Dに相当する 位置にて栓溶接 2 5 0を施す。
項目 3 : 積層板 2 2 0を側板 2 1 1に全周隅肉溶接 2 3 0する際、 製造コストが極めて高いことを無視して、 積層板 2 2 0に "浮き" が生 じないようにして製造 (栓溶接なし)。
項目 4 部位 Kに、 連結部材 2 1 5を取り付け (積層板なし)。
項目 5 項目 2と項目 4とを併用。 '
項目 6 項目 2及び項目 4の各騒音エネルギ低減率を算術的に加算 ( 項目 7 : 項目 1と項目 4とを併用。
上記各項目のバケッ トにおける騒音エネルギ低減率に όいて比較説 明する。 項目 3は、 理想的な積層板 220の取り付け状態であるが、 極 めて高い製造コストであり、 しかもバケツ ト使用中の衝撃による浮き発 生の問題があり、 実用には適さない。 一方、 第 1実施形態を採用した項 目 2であれば、 理想的取付状態にほぼ近い低減率を達成出来ることが分 かる。 尚、 実施形態 1とは異なる項目 1では、 低減率が低い上に、 底板 2 12に対する効果も得られていない。 これは、 減衰効果の不足によつ て、 底板 2 12の振動エネルギを十分に消散できていないためと考えら れる。 項目 4は、 連結部材 2 15のみの効果を調べるために実施した例 であるが、 側板寄与分の低減率が 7%となっている。 これは、 底板 2 1 2の補強も兼ねる連結部材 2 15により、 側板 2 1 1周縁部の振動振幅 が小さくなつたためと推察される。 以上のように、 底板 2 12の補強に よって騒音が低減されるのは、 バケヅ ト 200の剛性 Υが高くなるため であり、 積層板 220によって騒音が低減されるのはバケツト 200の 減衰率 が大きくなるためである。 一定時間内の振動エネルギ Ε Vは "1 {2 Y^ - ( 1 -S) 1/2}" に比例することが知られており、 剛 性向上と減衰性向上を同時に施せば、 足し算以上の効果がある。
項目 5は、 第 1実施形態 (項目 2) と第 2実施形態 (項目 4) を共に 採用した場合 (即ち、 図 34の本実施例) である。 項目 2及び項目 4が それそれ独立に作用した場合、 低減率は単なる足し算となり項目 6にな る。 従って、 項目 5は、 相乗効果によって足し算以上の効果が得られて いる。 なお、 腹に栓溶接を実施した場合 (項目 1) は底板に対する積層 板の効果が無いため、 連結部材を取り付けても効果が少なくなる (項目 7)。
本実施例 (図 34) では、 側板 2 1 1の高さ Hsと底板 2 12の幅 W Pとの比 Wp/Hsが 1. 47以上の場合について述べたが、 比 Wp/H sが 1. 47未満であっても、 有用である。 即ち、 積層板 220によつ て寄与率の大きい側板 2 1 1の騒音エネルギが十分に下がり、 相対的に 底板 2 1 2の寄与が高くなるような場合も、 騒音エネルギ低減効果が得 られる。
更に、第 1〜第 3実施形態を組み合わせる実施例も可能である。即ち、 図 3 6に示す本実施例のバケヅ ト 3 0 0は、図 3 4の実施例に対し、 i ) 積層板 3 2 0が、 図 1 3の切欠き部 1 1 1 a及び当接部 1 1 l bを有す る内板 1 1 1と外板 1 1 2とを備える積層板 1 1 0と同様に、 切欠き部 3 1 1 a及び当接部 3 1 1 bを有する内板 3 1 1と外板 3 1 2とを備 え、 a ) 第 3実施形態と同様に、 内板 3 1 1を断続溶接し、 かつ外板 3 1 2を全周隅肉溶接している。
かかる実施例以外の構成についても騒音エネルギ低減率 E dを測定 しており、 図 3 5にて説明する。 項目 8〜 1 2におけるバケツト構成概 要は次のとおりであるが、 ベースとなるバケツトは、 上記と同様、 騒音 低減部材取り付け前のバケツ トである。
項目 8 : 第 3実施形態のように、 積層板 3 2 0の内板 3 1 1を断続 溶接し、 かつ外板 3 1 2を全周隅肉溶接するが、 溶接の際、 製造コスト が極めて高いことを無視し、 積層板 3 2 0に "浮き" が生じないように して製造 (栓溶接なし)。
項目 9 : 第 3実施形態のように、 積層板 3 2 0の内板 3 1 1を断続 溶接し、 かつ外板 3 1 2を全周隅肉溶接し、 更に振動モードの "腹" の 位置での栓溶接 (図示せず) を施す。
項目 1 0 : 第 3実施形態のように、 積層板 3 2 0の内板 3 1 1を断 続溶接し、 かつ外板 3 1 2を全周隅肉溶接し、 更に項目 2を併用。
項目 1 1 : 項目 1 0と項目 4とを併用。
項目 1 2 : 項目 1 0及び項目 4の各騒音エネルギ低減率を算術的に 加算。
上記項目 8〜 1 2のバケツ トにおける騒音エネルギ低減率について 比較説明する。 項目 8は、 項目 3と同様であり、 低減率が高いものの、 製造コストゃ浮きの問題により実用性が低い。 項目 9では、 栓溶接を腹 に実施したため、 低減率が大幅に小さくなつている。 項目 9に対し、 実 施形態 1と同様に部位 Dに栓溶接 2 5 0を施した項目 1 0場合、 栓溶接 の位置が最適化され、 低減率を小さくすることなく、 実用的な構造とな る。 項目 1 1 '(即ち、 図 3 6の本実施例) は、 項目 1 0に対し、 さらに 第 2実施形態と同様に連結部材 2 1 5を取り付けており、 非常に大きな 低減率が得られる。項目 1 1は、項目 1 2と比較すれば明らかなように、 相乗効果によって足し算以上の効果が得られている。
ところで、 上述した第 3の実施形態、 第 4の実施形態では、 積層板 1 1 0、 1 3 0の内板 1 1 1、 1 3 1に複数の切欠部 1 1 1 a、 複数の突 出部 1 3 1 aを設け、 これら複数の切欠部 1 1 1 a、 複数の突出部 1 3 1 aを、 制振対象機械であるバケツ ト 1 0 1の側板 1 0 3、 ホッパ 1 2 5の傾斜壁面 1 2 8に溶接することで、 内板 1 1 1、 1 3 1を断続溶接 するようにしている。
しかし内板を断続溶接することなく外板を連続溶接することのみで、 外板と制振対象機械とによって内板を密閉に封じて、 積層板を制振対象 機械に結合させてもよい。
すなわち図 3 7 Aに示す積層板 9 1 0は、 制振対象機械 9 0 1上に積 層される所定枚数の内板 9 1 2と、 これら所定枚数の内板 9 1 2の更に 外側に積層され、 内板 9 1 2よりも大きな面積を有する外板 9 1 1とか らなる。 所定枚数の内板 9 1 2は、 制振対象機械 9 0 1と外板 9 1 1と によって挟まれた状態で、 制振対象機械 9 0 1と外板 9 1 1とが全周溶 接 (全周溶接部を 9 1 3で示す) される。 これにより所定枚数の内板 9 1 2が密閉に封じられるように制振対象機械 9 0 1と外板 9 1 1 とが 結合される。
この実施例によれば、 所定枚数の内板 9 1 2には、 その変形を拘束す る溶接部が無く、 全周溶接によって雨水の侵入による鯖の発生もないた め、 良好な制振性能が得られる。
図 3 7 Aでは、 外板 9 1 1を制振対象機械 9 0 1に直接結合させてい るが、 連結部材を介在させて制振対象機械 9 0 1に結合させてもよい。 すなわち図 3 7 Bに示す積層板 9 1 0は、 図 3 7 Aと同様に、 制振対 象機械 9 0 1上に積層される所定枚数の内板 9 1 2と、 これら所定枚数 の内板 9 1 2の更に外側に積層され、 内板 9 1 2よりも大きな面積を有 する外板 9 1 1とからなる。 これによつて所定枚数の内板 9 1 2は、 制 振対象機械 9 0 1と外板 9 1 1とによって挟まれる。 更に外板 9 1 1の 全周には、 連結部材 9 1 4が配置される。 そして外板 9 1 1と連結部材 9 1 4とが全周溶接 (全周溶接部を 9 1 6で示す) によって結合され、 更に連結部材 9 1 4と制振対象機械 9 0 1とが全周溶接 (全周溶接部を 9 1 5で示す) によって結合される。 これにより所定枚数の内板 9 1 2 が密閉に封じられるように制振対象機械 9 0 1 と外板 9 1 1とが連結 部材 9 1 4を介して結合される。
この実施例によれば、 所定枚数の内板 9 1 2には、 その変形を拘束す る溶接部が無く、 全周溶接によって雨水の侵入による鑌の発生もないた め、 良好な制振性能が得られる。
また、 たとえば栓溶接 (栓溶接部を 9 1 7で示す) によって事前に所 定枚数の内板 9 1 2と外板 9 1 1とを結合させておいた上で、 連結部材 9 1 5の溶接を行うようにすれば、 積層板 9 1 0の制振対象機械 9 0 1 への位置決めを容易に行うことができ、 製造コストを低減させることが できる。 また栓溶接の実施により積層板 9 1 0の浮きを防止することが できる。
更に連結部材を、 積層板を位置決めするための治具として使用する実 施も可能である。
すなわち図 3 7 Cに示す積層板 9 1 0は、 制振対象機械 9 0 1上に積 層される所定枚数の内板 9 1 2と、 これら所定枚数の内板 9 1 2の更に 外側に積層され、 内板 9 1 2と同じ面積で同じ形状を有する外板 9 1 1 とからなる。 これによつて所定枚数の内板 9 1 2は、 制振対象機械 9 0 1と外板 9 1 1とによって挟まれる。 更に外板 9 1 1の全周には、 連結 部材 9 1 8が配置される。 連結部材 9 1 8の内壁に、 所定枚数の内板 9 1 2、外板 9 1 1が当接されることで、積層板 9 1 0が位置決めされる。 そして外板 9 1 1と連結部材 9 1 8とが全周溶接 (全周溶接部を 9 2 0 で示す) によって結合され、 更に連結部材 9 1 8と制振対象機械 9 0 1 とが全周溶接 (全周溶接部を 9 1 9で示す) によって結合される。 これ により所定枚数の内板 9 1 2が密閉に封じられるように制振対象機械 9 0 1と外板 9 1 1とが連結部材 9 1 8を介して結合される。
この実施例によれば、 所定枚数の内板 9 1 2には、 その変形を拘束す る溶接部が無く、 全周溶接によって雨水の侵入による鯖の発生もないた め、 良好な制振性能が得られる。
また、 連結部材 9 1 8を用いて、 積層板 9 1 0の制振対象機械 9 0 1 への位置決めを容易に行うことができ、 製造コストを更に低減させるこ とができる。
なお図 3 7 、図3 7 8、図3 7 Cでは溶接によって結合しているが、 溶接の代わりに接着剤やシール材を使用する実施も可能である。
また図 3 7 A、 図 3 7 B、 図 3 7 Cの制振対象機械 9 0 1は、 第 3の 実施形態、 第 4の実施形態で説明したのと同様に、 たとえばパケット 1 0 1の側板 1 0 3、 ホヅパ 1 2 5の傾斜壁面 1 2 8などである。
また図 3 7 A、 図 3 7 B、 図 3 7 Cの積層板 9 1 0を、 第 1の実施形 態、 第 2の実施形態、 第 3の実施形態、 第 4の実施形態で説明した実施 態様と適宜組み合わせて実施してもよい。 産業上の利用可能性
本発明は、 母材、 側板などで発生する振動を抑制し母材などから放射 される騒音を低減させる制振装置、 及び建設機械のバケツ トとして有用 である。

Claims

請 求 の 範 囲
1 . 騒音を放射する母材(11 )に少なくとも内部の部位が固定される積 層板(20)を備え、
前記内部の部位は、 前記母材(11 )を所定の周波数の振動モードで振動 させるときに振動モ一ドの腹となる部位以外の部位(G)である
ことを特徴とする制振装置。
2 . 騒音を放射する母材(11 )に少なくとも内部の部位が固定される積 層板(20)を備え、
前記内部の部位は、 前記母材(11 )を複数の周波数の各振動モードで振 動させるときに複数の振動モードについて腹となる部位以外の部位(G) である
ことを特徴とする制振装置。
3 . 建設機械のバケツト(10)の側板(11 )に少なくとも内部の部位が固 定される積層板(20)を備え、
前記内部の部位は、 i )一側の少なくとも一部に略円弧形状を有して なる前記側板(11 )の円弧中心 Cと前記バケツ ト(10)の前記建設機械へ の取り付け側で前記略円弧形状から他の形状に移行する点 Aとを結ぶ 線分 C Aが前記積層板(20)に交わる点 Bと前記円弧中心 Cとを結ぶ線 分 B Cの中点 dおよび前記中点 d近傍からなる部位 Dと、 ii ) 前記線分 C Aの中点 fおよび前記中点 f近傍からなる部位 Fと、 Mi ) 前記部位 D と前記部位 Fとの間の領域と、 からなる領域 G内である
ことを特徴とする制振装置。
4 . 側板(11 )と、
少なくとも一部が前記側板( 11 )に接続する底板( 12 )と、
前記側板(11)に取り付けられる積層板(20)とを備え、 前記側板(11)の高さ H sと前記底板(12)の幅 Wpとの比 Wp/H sが 1. 47以上である場合、 前記側板(11)と前記底板(12)とが接続する部 位の少なくとも一部の部位(16)が、 補強されている
ことを特徴とする建設機械のバケツト。
5. 側板(11)と、
少なくとも一部が前記側板( 11 )に接続する底板( 12 )と、
前記側板(11)に取り付けられる積層板(20)とを備え、
前記側板(11)の高さ H sと前記底板(12)の幅 Wpとの比 Wp/H sが 1. 47以上である場合、 前記側板(11)と前記底板(12)とが接続する部 位の内、 振動モードの腹となる部位 (K)が、 補強されている
ことを特徴とする建設機械のバケヅ ト。
6. 側板(11)と、
少なくとも一部が前記側板( 11 )に接続する底板( 12 )と、
前記側板(Π)に取り付けられる積層板(20)と、
前記側板(11)の高さ H sと前記底板(12)の幅 Wpとの比 Wp/H sが 1. 47以上である場合、 高さ H sと前記底板(12)の実質的な幅 Wp' との比 Wp' /H sが 1. 47よりも小さくなるように前記側板(11)と 前記底板(12)とを連結する連結部材(15)とを備える
ことを特徴とする建設機械のバケツ ト。
7. 側板(11)と、
少なくとも一部が前記側板(11)に接続する底板(12)と、
前記側板(11)の外側に取り付けられる積層板(20)とを備え、
前記側板( 11 )及び前記底板( 12 )の内側であって、 前記側板( 11 )と前記 底板(12)とが接続する部位の少なくとも一部の部位(16)が、 補強されて いる
ことを特徴とする建設機械のバケツト。
8. 請求の範囲 1又は 2記載の制振装置において、
前記母材(11)は建設機械のバケツ ト(200)の側板(211)であり、 さらに 少なくとも一部が前記側板( 211 )に接続する底板( 212 )を備え、 前記側板(211)の高さ H sと前記底板(212)の幅 Wpとの比 Wp/H s が 1. 47以上である場合、 前記側板(211)と前記底板(212)とが接続す る部位の少なくとも一部の部位(K)が、 補強されている
ことを特徴とする制振装置。
9. 請求の範囲 3記載の制振装置において、
少なくとも一部が前記側板(211)に接続する底板(212)を備え、 前記側板(211)の高さ H sと前記底板(212)の幅 Wpとの比 Wp/H s が 1. 47以上である場合、 前記側板(211)と前記底板(212)とが接続す る部位の少なくとも一部の部位(K)が、 補強されている
ことを特徴とする制振装置。
10. 請求の範囲 1又は 2記載の制振装置において、
前記母材(11)は建設機械のバケツ ト(200)の側板(211)であり、 さらに 少なくとも一部が前記側板(211)に接続する底板(212)を備え、 前記側板(211)の高さ H sと前記底板(212)の幅 Wpとの比 Wp/H s が 1. 47以上である場合、 前記側板(211)と前記底板(212)とが接続す る部位の内、 振動モードの腹となる部位(K)が、 補強されている ことを特徴とする制振装置。
1 1. 請求の範囲 3記載の制振装置において、
少なくとも一部が前記側板(211)に接続する底板(212)を備え、 前記側板(211)の高さ H sと前記底板(212)の幅 Wpとの比 Wp/H s が 1. 47以上である場合、 前記側板(211)と前記底板(212)とが接続す る部位の内、 振動モードの腹となる部位 (K)が、 補強されている ことを特徴とする制振装置。
12. 請求の範囲 1又は 2記載の制振装置において、
前記母材(11)は建設機械のバケツ ト(200)の側板(211)であり、 さらに 少なくとも一部が前記側板(211)に接続する底板(212)と、
前記側板(211)の高さ H sと前記底板(212)の幅 Wpとの比 Wp/H s が 1. 47以上である場合、 高さ H sと前記底板(212)の実質的な幅 W p f との比 Wp' /H sが 1. 47よりも小さくなるように前記側板 (211)と前記底板(212)とを連結する連結部材(215)とを備える
ことを特徴とする制振装置。
13. 請求の範囲 3記載の制振装置において、
少なくとも一部が前記側板(211)に接続する底板(212)と、
前記側板(211)の高さ H sと前記底板(212)の幅 Wpとの比 Wp/H s が 1. 47以上である場合、 高さ H sと前記底板(212)の実質的な幅 W p ' との比 Wp ' /H sが 1. 47よりも小さくなるように前記側板 (211)と前記底板(212)とを連結する連結部材(215)とを備える
ことを特徴とする制振装置。
14. 請求の範囲 1又は 2記載の制振装置において、
前記母材(11)は建設機械のバケット(200)の側板(211)であり、 前記積層板(220)は前記側板(211)の外側に取り付けられ、 さらに 少なくとも一部が前記側板(211)に接続する底板(212)を備え、 前記側板(211)及び前記底板(212)の内側であって、 前記側板(211)と 前記底板(212)とが接続する部位の少なくとも一部の部位(K)が、 補強さ れている
ことを特徴とする制振装置。
15. 請求の範囲 3記載の制振装置において、 前記積層板( 220 )は前記側板( 211 )の外側に取り付けられ、 さらに 少なくとも一部が前記側板(211)に接続する底板(212)を備え、 前記側板(211)及び前記底板(212)の内側であって、 前記側板(211)と 前記底板(212)とが接続する部位の少なくとも一部の部位(K)が、 補強さ れている
ことを特徴とする制振装置。
1 6. 所定枚数の内板(912)と、 前記所定枚数の内板(912)の外側に設 けられた外板(911)とを積層してなる積層板(910)を備え、
前記外板(911)と制振対象機械(901)とによって前記所定枚数の内板 (912)を密閉に封じた
ことを特徴とする制振装置。
1 7. 請求の範囲 1又は 2記載の制振装置において、
前記積層板(910)は、 所定枚数の内板(912)と、 前記所定枚数の内板
(912)の外側に設けられた外板(911)とを積層してなり、
前記外板(911)と制振対象機械(901)とによつて前記所定枚数の内板
(912) を密閉に封じた
ことを特徴とする制振装置。
18. 請求の範囲 17記載の制振装置において、
前記制振対象機械(901)は建設機械のバケツ ト(300)の側板(211)であ 前記積層板( 910 )は前記側板(211)の外側に取り付けられ、 さらに 少なくとも一部が前記側板( 211 )に接続する底板( 212 )を備え、 前記側板(211)及び前記底板(212)の内側であって、 前記側板(211)と 前記底板(212)とが接続する部位の少なくとも一部の部位(K)が、 補強さ れている
ことを特徴とする制振装置。
1 9. 請求の範囲 3記載の制振装置において、
前記積層板(910)は、 所定枚数の内板(912)と、 前記所定枚数の内板 (912)の外側に設けられた外板(911)とを積層してなり、
前記外板(911)と前記側板(211)とによって前記所定枚数の内板(912) を密閉に封じた
ことを特徴とする制振装置。
20. 請求の範囲 19記載の制振装置において、
前記積層板( 910 )は前記側板( 211 )の外側に取り付けられ、 さらに 少なくとも一部が前記側板(211)に接続する底扳(212)を備え、 前記側板(211)及び前記底板(212)の内側であって、 前記側板(211)と 前記底板(212)とが接続する部位の少なくとも一部の部位(K)が、 補強さ れている
ことを特徴とする制振装置。
2 1. 請求の範囲 7記載の建設機械のバケツトにおいて、
前記積層板(910)は、 所定枚数の内板(912)と、 前記所定枚数の内板
(912)の外側に設けられた外板(911)とを積層してなり、
前記外板(911)と前記側板(211)とによつて前記所定枚数の内板(912) を密閉に封じた
ことを特徴とする建設機械のバケツ ト。
22. 請求の範囲 1 6記載の制振装置において、
前記積層板(110, 130) は、 所定枚数の内板(111, 131)と、 前記所定枚 数の内板(111, 131)の外側に設けられて、 前記内板(111, 131)とは異なる 形状を有する外板(112, 132)とを積層してなり、
前記内板(111, 131)が制振対象機械の部材(103, 128)に当接され、 前記外板(112, 132)の周縁部に連続溶接を施して、 前記積層板 (110, 130)を前記機械の部材(103, 128)に結合させてなる ことを特徴とする制振装置。
23. 請求の範囲 1 6記載の制振装置において、
前記積層板(110, 130)を前記機械の部材(103,128)に結合させるとき、 更に、 前記内板(111, 131)の周縁部には複数箇所の溶接よりなる断続溶 接が施される
ことを特徴とする制振装置。
24. 請求の範囲 1 6又は 23記載の制振装置において、
前記機械の部材(103)は、 前記積層板(110)の端部に当接可能な当接部 材(108)を有し、
前記内板(111)は、 前記外板(112)の周縁から突出し前記当接部材 (108)に当接する当接部(111b)を有し、
前記外板(112)の周縁と前記当接部材(108)との間に、 前記内板(111) の当接部(111b)に被さる連続溶接を施す
ことを特徴とする制振装置。
2 5. 請求の範囲 1 6又は 23記載の制振装置において、
前記内板(131)は周縁部に、 前記外板(132)の周縁形状に一致する複数 の突出部(131a)を設け、
前記外板(132)の周縁部に連続溶接を施すことにより、 前記内板(131) の複数の突出部(131a)を断続溶接する
ことを特徴とする制振装置。
2 6. 請求の範囲 24記載の制振装置において、
前記内板(111)の当接部(111b)の長さは、 1 00〜2 8 0腿の間であ る
ことを特徴とする制振装置。
27. 請求の範囲 2 5記載の制振装置において、
前記内板(131)の複数の突出部(131a)は、 1 00〜 2 8 Ommの間隔で 設けられる
ことを特徴とする制振装置。
2 8. 所定枚数の内板(912)と、 前記所定枚数の内板(912)の外側に設 けられ、 前記所定枚数の内板(912)とは異なる形状を持った外板(911)と を積層してなる積層板(910)と、 前記外板(912)と制振対象機械(901)を 連結する部材(914, 918)とを備え、 前記外板(911)と前記制振対象機械 (901)とが前記連結部材(914,918)とを介して結合される
ことを特徴とする制振装置。
PCT/JP2003/011181 2002-09-02 2003-09-02 制振装置及び建設機械のバケット WO2004023001A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/526,224 US7681689B2 (en) 2002-09-02 2003-09-02 Vibration damping device and bucket for construction machine
JP2004569802A JP3982584B2 (ja) 2002-09-02 2003-09-02 制振装置
DE10393242T DE10393242T5 (de) 2002-09-02 2003-09-02 Schwingungsdämpfungsvorrichtung und Baggerlöffel für Baumaschine
US12/071,525 US7743881B2 (en) 2002-09-02 2008-02-21 Vibration damping device and bucket for construction machine
US12/782,012 US8438759B2 (en) 2002-09-02 2010-05-18 Vibration damping device and bucket for construction machine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-256826 2002-09-02
JP2002256826 2002-09-02
JP2002-330854 2002-11-14
JP2002330854 2002-11-14
JP2003-78931 2003-03-20
JP2003078931 2003-03-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10526224 A-371-Of-International 2003-09-02
US12/071,525 Division US7743881B2 (en) 2002-09-02 2008-02-21 Vibration damping device and bucket for construction machine

Publications (1)

Publication Number Publication Date
WO2004023001A1 true WO2004023001A1 (ja) 2004-03-18

Family

ID=31982134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011181 WO2004023001A1 (ja) 2002-09-02 2003-09-02 制振装置及び建設機械のバケット

Country Status (5)

Country Link
US (3) US7681689B2 (ja)
JP (1) JP3982584B2 (ja)
CN (1) CN100400925C (ja)
DE (1) DE10393242T5 (ja)
WO (1) WO2004023001A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106809A (ja) * 2006-10-24 2008-05-08 Honda Motor Co Ltd 制振プレート
JP2020537068A (ja) * 2017-10-12 2020-12-17 エスエスアーベー テクノロジー アーベー 掘削機のバケットおよび製造方法
US11274415B2 (en) 2018-09-10 2022-03-15 Komatsu Ltd. Bucket and work vehicle

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793257B2 (ja) * 2006-12-26 2011-10-12 トヨタ自動車株式会社 振動抑制構造
US20100095562A1 (en) * 2008-10-16 2010-04-22 Medel Marco Bucket doors used in large mechanical shovels
CN102587440A (zh) * 2012-03-09 2012-07-18 上海三一重机有限公司 一种减振降噪结构的铲斗及其安装方法
CA2895922C (en) * 2012-04-12 2017-06-20 Mine To Mill Equipment Pte Ltd. A method for installing a liner plate and the liner plate
JP5362074B2 (ja) 2012-05-29 2013-12-11 株式会社小松製作所 建設機械の掘削バケット
US9080314B1 (en) * 2013-02-20 2015-07-14 Robert R. Rossi, Jr. Excavating machinery with bucket for screening and/or mixing excavated material
EP2770114B1 (en) * 2013-02-25 2023-08-16 Liebherr-Mining Equipment Colmar SAS Excavator bucket and earth moving machine
US9611623B2 (en) * 2014-03-20 2017-04-04 Matthew Sager Apparatuses for use with an excavator for separating liquids and solids
CL2014001727A1 (es) * 2014-06-26 2016-08-12 Ansar Diseño Limitada Un balde para pala de cable
US10024027B2 (en) 2016-08-23 2018-07-17 Caterpillar Inc. Multi-component shell profile for a bucket
WO2018116340A1 (ja) * 2016-12-19 2018-06-28 三菱電機株式会社 空気調和装置
WO2018213863A1 (en) * 2017-05-23 2018-11-29 Austin Engineering Ltd Bucket
EP3663468B1 (en) * 2018-12-07 2022-06-01 SSAB Technology AB A bucket for an earth-working or materials-handling machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655061U (ja) * 1979-10-04 1981-05-13
JPS56159457U (ja) * 1980-04-26 1981-11-27
JPS57119851U (ja) * 1981-01-14 1982-07-26
WO2000031436A1 (fr) * 1998-11-26 2000-06-02 Bando Chemical Industries, Ltd. Dispositif d'isolation sismique
JP2001032210A (ja) * 1999-05-19 2001-02-06 Mitsui Eng & Shipbuild Co Ltd 橋梁の制振施工方法
JP2002048188A (ja) * 2000-08-03 2002-02-15 Komatsu Ltd 制振装置
JP2003176543A (ja) * 2001-12-11 2003-06-24 Komatsu Ltd バケット

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2011988A (en) * 1932-04-13 1935-08-20 Continental Motors Corp Motor vehicle
US2541159A (en) * 1946-01-22 1951-02-13 Paul H Geiger Sound deadener for vibratory bodies
US2764136A (en) * 1954-01-27 1956-09-25 Gen Motors Corp Engine oil pan
US3102722A (en) * 1961-12-11 1963-09-03 Hugh C Hamontre Self damping shock and vibration mount
DK118598B (da) * 1967-09-28 1970-09-07 Svenska Hymas Ab Graveskovl.
US3648828A (en) * 1970-12-31 1972-03-14 Horace Mccaffrey Jr Vibratory conveyor
US3853232A (en) * 1972-09-11 1974-12-10 Caterpillar Tractor Co Bucket reinforcement structure
FR2288247A2 (fr) * 1974-10-17 1976-05-14 Ferodo Sa Perfectionnements apportes aux organes de freins tels que machoires et patins
US4938152A (en) * 1975-08-28 1990-07-03 Railway Engineering Associates, Inc. Flexible railway car truck
FR2323920A2 (fr) * 1975-09-12 1977-04-08 Ferodo Sa Perfectionnements apportes aux organes de freins
US4045057A (en) * 1976-02-02 1977-08-30 Burgess Industries Incorporated Vibration barrier/structural connector for conduits and the like
JPS53165446U (ja) * 1977-05-27 1978-12-25
DE2838574C3 (de) * 1978-09-05 1981-02-26 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Antriebsaggregat für ein Kraftfahrzeug
US4250760A (en) * 1979-04-02 1981-02-17 The Gurries Company Drive assembly for pavement planing apparatus
JPS5655061A (en) 1979-10-11 1981-05-15 Hitachi Ltd Integrated semiconductor device
JPS56159457A (en) 1980-05-14 1981-12-08 Sekisui House Kk Strong wall and establishing method thereof
JPS57119851A (en) 1981-01-16 1982-07-26 Asahi Denka Kogyo Kk Method of delaying hydration reaction of quicklime, etc.
BR8207723A (pt) * 1981-06-01 1983-05-10 Fruit Export Holdings Ltd Maquinas para manipulacao de material
US4467539A (en) * 1981-10-20 1984-08-28 Resonant Technology Company Resonance aided front end loader
JPS59159457A (ja) 1983-02-26 1984-09-10 Aisin Warner Ltd Vベルト式無段変速機の制御方法
US4516658A (en) * 1983-02-28 1985-05-14 Rensselaer Polytechnic Institute Coulome friction noise and vibration damping
US4560113A (en) * 1984-06-27 1985-12-24 Rexnord Inc. Convertible vertical shaft impact crusher
FR2602256A1 (fr) * 1986-07-30 1988-02-05 Koehl Jean Marie Appareil de terrassement, remblaiement, compactage, battage, arrachage, decoupe d'enrobes a monter sur pelle hydraulique
US5195865A (en) * 1988-05-30 1993-03-23 Jean Koehl Rapid interchangeability device for earth-moving devices carrying vibrators
US5240221A (en) * 1988-06-03 1993-08-31 Delta Tech Research, Inc. Viscoelastic damping system
US5160034A (en) * 1990-06-01 1992-11-03 Potter Robert J Vibrating bucket screen for beaches
US5517909A (en) * 1990-06-20 1996-05-21 Kabushiki Kaisha Komatsu Seisakusho Press machine having reinforced side frames
JP2585095Y2 (ja) * 1991-02-04 1998-11-11 日野自動車工業株式会社 自動車部品の騒音防止装置
EP0539232A3 (en) * 1991-10-24 1994-05-18 Fernandes Co Ltd An electric stringed instrument having a device for sustaining the vibration of a string and an electromagnetic driver for the device
US5307570A (en) * 1993-04-20 1994-05-03 Dennis Brown Damping device for dirt scrapers
DE4337162C2 (de) * 1993-10-30 1996-11-28 Daimler Benz Aerospace Ag Schwingungsabsorber zur Körperschalldämpfung
US5526591A (en) * 1993-12-13 1996-06-18 Otwell; William C. Excavation bucket and method of digging
US5583324A (en) * 1994-02-08 1996-12-10 Tekna Sonic, Inc. Vibration damping device
US5629503A (en) * 1994-02-08 1997-05-13 Tekna Sonic, Inc. Vibration damping device
US5435083A (en) * 1994-05-16 1995-07-25 Thompson; John L. Aquatic weed eradicator
US5691516A (en) * 1994-06-21 1997-11-25 Tekna Sonic, Inc. Tunable vibration absorber
DE19509389C1 (de) * 1995-03-15 1996-08-14 Daimler Benz Aerospace Ag Körperschalldämpfer für Laufräder
FI98847C (fi) * 1995-04-13 1997-08-25 Tapani Koivuranta Tärykauhajärjestely
US6177173B1 (en) * 1998-07-01 2001-01-23 3M Innovative Properties Company Damped laminates having welded through holes and/or edges with decreased spring back and improved fastener force retention and, a method of making
JP2000048188A (ja) 1998-07-29 2000-02-18 Hitachi Telecom Technol Ltd 画像データ変換装置
JP3326421B2 (ja) * 1998-11-26 2002-09-24 バンドー化学株式会社 免震装置
US6230424B1 (en) * 1998-12-08 2001-05-15 Caterpillar Inc. Base edge protection assembly for an implement of a work machine
US6279679B1 (en) * 1998-12-29 2001-08-28 Leonard N. Thomasen Selectively tuned vibration absorber
JP4215329B2 (ja) 1999-01-29 2009-01-28 株式会社小松製作所 建設機械の騒音低減装置
US6173805B1 (en) * 1999-02-22 2001-01-16 Tekna Sonic, Inc. Variably tuned vibration absorber
JP2000279890A (ja) * 1999-03-31 2000-10-10 Daisho Juken:Kk 土砂ふるい落し装置
US6318007B1 (en) * 1999-06-16 2001-11-20 Gary W. Morlock Heated bucket system
US6536555B1 (en) * 1999-10-12 2003-03-25 Seagate Technology Llc Multilayer acoustic damper for a disc drive
JP4465868B2 (ja) * 2000-12-12 2010-05-26 横浜ゴム株式会社 自動車ホイール用制振板
KR20020080212A (ko) * 2001-04-12 2002-10-23 한국과학기술연구원 진동감쇄능이 우수한 복층 금속판재
JP2003105794A (ja) * 2001-10-01 2003-04-09 Katsuyuki Hasegawa 操作アームの制振機構
US7296654B1 (en) * 2004-09-29 2007-11-20 United States Of America As Represented By The Secretary Of The Army Tunable stacked plate vibration isolator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655061U (ja) * 1979-10-04 1981-05-13
JPS56159457U (ja) * 1980-04-26 1981-11-27
JPS57119851U (ja) * 1981-01-14 1982-07-26
WO2000031436A1 (fr) * 1998-11-26 2000-06-02 Bando Chemical Industries, Ltd. Dispositif d'isolation sismique
JP2001032210A (ja) * 1999-05-19 2001-02-06 Mitsui Eng & Shipbuild Co Ltd 橋梁の制振施工方法
JP2002048188A (ja) * 2000-08-03 2002-02-15 Komatsu Ltd 制振装置
JP2003176543A (ja) * 2001-12-11 2003-06-24 Komatsu Ltd バケット

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106809A (ja) * 2006-10-24 2008-05-08 Honda Motor Co Ltd 制振プレート
JP2020537068A (ja) * 2017-10-12 2020-12-17 エスエスアーベー テクノロジー アーベー 掘削機のバケットおよび製造方法
JP6997304B2 (ja) 2017-10-12 2022-01-17 エスエスアーベー テクノロジー アーベー 掘削機のバケットおよび製造方法
US11391010B2 (en) 2017-10-12 2022-07-19 Ssab Technology Ab Excavator bucket and manufacturing method
US11274415B2 (en) 2018-09-10 2022-03-15 Komatsu Ltd. Bucket and work vehicle

Also Published As

Publication number Publication date
US8438759B2 (en) 2013-05-14
US20100218403A1 (en) 2010-09-02
US7681689B2 (en) 2010-03-23
US7743881B2 (en) 2010-06-29
US20080222928A1 (en) 2008-09-18
DE10393242T5 (de) 2013-10-02
CN100400925C (zh) 2008-07-09
JPWO2004023001A1 (ja) 2006-02-09
US20050268500A1 (en) 2005-12-08
CN1678842A (zh) 2005-10-05
JP3982584B2 (ja) 2007-09-26

Similar Documents

Publication Publication Date Title
US7743881B2 (en) Vibration damping device and bucket for construction machine
US7987942B2 (en) Upper frame for excavator
KR20190003777A (ko) 작업 차량
JP2007024315A (ja) 制振装置及び建設機械のバケット
JP2009013778A5 (ja)
CN101240554B (zh) 减振装置
JP2000219168A (ja) 建設機械の騒音低減装置
JP2001173017A (ja) 建設機械
JP2010053625A (ja) 騒音抑制装置
JP2002048188A (ja) 制振装置
JP2003176543A (ja) バケット
CN115003928A (zh) 用于挖掘机的减振装置
JPH11254351A (ja) 油圧ブレーカ用ブラケット
JP2001182098A (ja) 建設機械用キャブ
JP2001271371A (ja) 油圧ショベルの作業装置
KR200340958Y1 (ko) 브레이커의 소음방지구조
KR102383283B1 (ko) 중장비 공구용 방진장치의 결합구조
KR20100056926A (ko) 발파 진동 및 소음 저감용 발파매트
JP2003020607A (ja) ずれ止め付きコンクリート製覆工板及び固定装置
JPH11229445A (ja) バケット
KR20210051284A (ko) 중장비 공구용 방진장치
JP2014043733A (ja) 旋回式建設機械
JP2020045735A (ja) 作業機および作業車両
JP2003239322A (ja) 建設機械のキャビン
KR20040098846A (ko) 지반 진동 저감을 위한 방진벽

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10526224

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038208474

Country of ref document: CN

Ref document number: 2004569802

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642