WO2003097544A1 - Borosilicatglas mit uv-blockung und seine verwendung sowie fluoreszenzlampe - Google Patents

Borosilicatglas mit uv-blockung und seine verwendung sowie fluoreszenzlampe Download PDF

Info

Publication number
WO2003097544A1
WO2003097544A1 PCT/EP2003/003112 EP0303112W WO03097544A1 WO 2003097544 A1 WO2003097544 A1 WO 2003097544A1 EP 0303112 W EP0303112 W EP 0303112W WO 03097544 A1 WO03097544 A1 WO 03097544A1
Authority
WO
WIPO (PCT)
Prior art keywords
borosilicate glass
glasses
weight
glass according
blocking
Prior art date
Application number
PCT/EP2003/003112
Other languages
English (en)
French (fr)
Inventor
Jörg Fechner
Franz Ott
Rainer Haspel
Ralf Diezel
Original Assignee
Schott Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10253756A external-priority patent/DE10253756B4/de
Application filed by Schott Ag filed Critical Schott Ag
Priority to AU2003214255A priority Critical patent/AU2003214255A1/en
Priority to JP2004505280A priority patent/JP2005529048A/ja
Priority to US10/512,716 priority patent/US7517822B2/en
Priority to CNB038108038A priority patent/CN1307116C/zh
Publication of WO2003097544A1 publication Critical patent/WO2003097544A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel

Definitions

  • the invention relates to a borosilicate glass with UV blocking and its use.
  • the invention also relates to a fluorescent lamp.
  • backlighting for example displays z. B. from personal computers, laptops, pocket calculators, vehicle navigation systems, fluorescent lamps, so-called “backlights" are used.
  • Typical sizes for such miniaturized lamps are outside diameters between 2 and 5 mm.
  • Typical inner diameters are between 1, 8 and 4.8 mm.
  • the glasses used must be capable of being melted in a vacuum-tight manner with a metal or a metal alloy used in lamp manufacture. To do this, they must have a thermal expansion matched to the thermal expansion behavior of the metal or metal alloy.
  • tungsten with the thermal expansion coefficient ⁇ 20/3 oo of W of 4.4 x 10 "6 / K glasses with ⁇ 20/3 oo between 3.4 x 10 " 6 / K and .4.3 x 10 "6 / K are very suitable.
  • glasses with ⁇ 20 / 3oo are between 4.3 x 10 " 6 / K and 6.0 x 10 "6 / K well suited.
  • the glasses should have rather low processing temperatures VA, i.e. V A ⁇ 1200 ° C, so that they can be processed at rather low temperatures.
  • the transformation temperature T g should be adapted to the melting behavior of the metal or metal alloy to be melted. In the case of a fusion with Kovar, it should preferably be between 440 ° C and 530 ° C. A T g up to 580 ° C is well suited for a fusion with tungsten.
  • the transmission curve is essential for the glasses. In the visible, the highest possible light transmittance is required in order to obtain a high luminous efficacy of the lamp, in the UV range no or only a low transmission is desired in order to let as little of the harmful UV radiation pass through.
  • the requirements for UV blocking depend on the uses of the glasses. For example, the Hg line at 253 nm should be blocked when used as lamp glasses for fluorescent lamps.
  • a high UV blocking ⁇ 253 nm is desired for backlights in order to protect irradiated plastic parts, e.g. B. in laptops, do not yellow and become brittle. This is achieved by glasses with a UV transmission at ⁇ ⁇ 254 nm ⁇ of ⁇ 0.1%, measured on 0.2 mm thick samples. For other uses, a UV transmission ⁇ ⁇ 0.1% at ⁇ ⁇ 240 nm is sufficient.
  • the transition from the opaque to the transmissive wavelength range should be as short as possible, i.e. the transmission curve should be as steep as possible in this range.
  • the minimum requirement for transmission in the visible wavelength range is a transmission of 90% at ⁇ > 400 ' nm and a sample thickness of 0.2 mm. So ⁇ (> 400 nm; 0.2 mm)> 90% is required. ,
  • Another essential property of glasses for fluorescent lamps, in particular for "backlights” is the resistance to solarization, which is necessary in order to enable the lamps to have a long service life, that is to say a luminous efficiency that is as constant as possible after a 15-hour HOK-4 irradiation, i.e. an irradiation with a high-pressure mercury lamp with a main emission at 365 nm and an irradiance of 850 ⁇ W / cm 2 at 200 to 280 nm at a distance of 1 m, on a 0.2 mm thick glass sample show a transmission drop of at most 5% at 300 nm.
  • a 15-hour HOK-4 irradiation i.e. an irradiation with a high-pressure mercury lamp with a main emission at 365 nm and an irradiance of 850 ⁇ W / cm 2 at 200 to 280 nm at a distance of 1 m, on a 0.2 mm thick glass sample show a transmission
  • the borosilicate glass for discharge lamps described in JP 8-12369 A contains a total of 0.03 to 3% by weight of at least two of the four components V 2 O 5 , Fe 2 O 3 , TiO 2 and CeO 2 for UV blocking. With these components, with partial high individual units and their combinations a high transmission 'and a high solarization is not adjustable.
  • No. 5,747,399 describes a glass for miniaturized fluorescent lamps which is said to maintain its solarization stability and its UV impermeability through TiO 2 and / or PbO and / or Sb 2 O 3 .
  • doping with TiO 2 in particular at high contents, leads to a coloration of the glass.
  • PbO should be avoided because of the environmental problems.
  • the object is achieved by a borosilicate glass according to the main claim.
  • a glass with the desired transmission properties consists of the basic glass system (in% by weight based on oxide): 55 to 80 SiO 2 , 8 to 25 B 2 O 3 , 0.5 to 10 Al 2 O 3 , 1 to 16 Li 2 O + Na 2 O + K 2 O, 0 to 6 MgO + CaO + SrO + BaO, 0 to 3 ZnO and 0 to 5 ZrO 2 .
  • Essential to the invention is the presence of M0O 3 and / or Bi 2 ⁇ 3, namely from a total of 0.01 to 5% by weight with 0 to 3% by weight M0O 3 and 0 to 5
  • the minimum content of M0O 3 and / or Bi 2 O 3 is necessary to achieve the high UV blocking. Higher levels of M0O 3 and / or B. 2 O 3 would lead to a coloring of the glass. A minimum sum of 0.1% by weight, in particular a minimum sum of 0.2% by weight, and a maximum sum of 3% by weight is preferred. A minimum content of 0.4% by weight M0O 3 or a minimum content of 1.0% by weight Bi 2 O 3 is particularly preferred. B- 2 O 3 also greatly improves the solarization stability of the glass. Especially in the particularly preferred embodiments, UV blocking up to 254 nm, ie a ⁇ ⁇ 0.1% at ⁇ ⁇ 254 nm with a sample thickness of 0.2 mm, can be achieved. A minimum M0O 3 content of 0.6% by weight or a minimum B 2 O 3 content of 1.3% by weight is very particularly preferred.
  • the glass preferably consists of the glass system (in% by weight on an oxide basis): SiO 2 55-79, B 2 O 3 10-25, Al 2 O 3 0.5-10, Li 2 O + Na 2 O + K 2 0 1 - 16, MgO + CaO + SrO + BaO 0 - 6, ZnO 0 - 3, ZrO 2 0 - 1; Bi 2 O 3 0-5, M0O 3 0-3; with BiO 2 + MoO 3 0.1 - 5.
  • the glass consists of the following glass system: Si0 2 55-79; B 2 O 3 8-12.5; Al 2 O 3 0.5-10; Li 2 O + Na 2 O + K 2 O 1-16; MgO + CaO + SrO + BaO 0-6; ZnO 0-3; ZrO 2 0-3; Bi 2 O 3 0-5; M0O 3 0-3; with Bi 2 O 3 + M0O 3 0.01 - 5.
  • Glasses from the composition ranges mentioned with a content of 70-80% by weight SiO have thermal expansion coefficients 020/300 between 3.4 x 10 "6 / K and 4.3 x 10 " 6 / K and are therefore particularly good for Suitable for fusion with tungsten.
  • Glasses from the composition range are SiO 2 73-79, B 2 O 3 12.5-25 for the fusion with tungsten; Al 2 O 3 0.5-10; Li 2 O + Na 2 O + K 2 O 1-11; MgO + CaO + SrO + BaO 0-6; ZnO 0-3; ZrO 2 0-5; Bi 2 O 3 0-5; MoO 3 0-3; with Bi 2 O 3 + MoO 3 0.01-5 particularly preferred.
  • Glasses from the composition ranges mentioned with a content of 55-75% by weight SiO 2 have coefficients of thermal expansion between 4.3 x 10 "6 / K and 6.0 x 10 " 6 / K and are therefore particularly good for fusing with Suitable for Kovar.
  • Glasses from the composition range are SiO 2 55-73 for the fusion with Kovar; B 2 O 3 15-25; Al 2 O 3 1-10; Li 2 O + Na 2 O + K 2 O 4 - 16; MgO + CaO + SrO + BaO 0-6; ZnO 0-3; ZrO 2 0
  • the glass can contain customary refining agents in customary amounts, e.g. B. Evaporation Lautstoff such as CI " and F " , but also redoxic acid agents, which are effective due to their polyvalent cations, for. B. SnO 2 and Sb 2 ⁇ 3 .
  • the glass contains 0 - 1 wt .-% Sb 2 O 3, 0 - 1 wt .-% As 2 O 3, 0 - 1 wt .-% SnO2, 0 - 1 wt .-% CeO 2, 0 - 0.5 wt% CI, 0-1 wt% F, 0-0.5 sulfate, expressed as SO 3 .
  • CeO 2 supports refining, but can have a negative impact on solarization stability if the contents are too high.
  • the glass can further contain 0-5% by weight of TiO 2 , preferably 0-1% by weight of TiO 2 , and 0
  • TiO 2 supports MoO 3 and Bi 2 O 3 by shifting the UV edge, ie the transition between absorption and transmission, into the longer-wave range.
  • UV blocking can be achieved not only up to 240 nm, but also up to 254 nm and beyond.
  • TiO 2 can be dispensed with entirely or it can be added in such small amounts that its disruptive coloring does not play a role.
  • the glass can contain up to 1% by weight of Fe 2 O 3 without disadvantages.
  • F ⁇ 2 ⁇ 3 also contributes to the shift of the absorption edge in the longer-wave range.
  • the glass can also contain V 2 ⁇ 5, Nb 2 O ⁇ and WO 3 in small proportions which do not impair the glass system.
  • the well-homogenized batch was melted, refined and homogenized in a silica glass crucible at 1600 ° C. The glass was then poured and cooled at 20 K / h.
  • the table shows thirteen examples of glasses according to the invention (A1 to A13) and two comparative examples (V1, V2) with their compositions (in% by weight on an oxide basis) and their essential properties.
  • UV blocking Wavelength at which ⁇ is a maximum of 0.1% (with a sample thickness of 0.2 mm)
  • compositions in% by weight based on oxide
  • Comparative example V1 has a UV edge that is too low, i.e. it does not block the UV range sufficiently.
  • the comparative example V2 containing TiO 2 shows good UV blocking, as is also achieved by the glasses doped according to the invention without the addition of TiO 2 .
  • the exemplary embodiments A1, A3, A7, A9 and A10 show purely Bi 2 ⁇ 3 -doped glasses.
  • A2, A4, A8, A11 and A12 show pure MoO 3 -doped glasses.
  • A6 and A13 are examples of mixed doping with Bi 2 ⁇ 3 and M0O 3 .
  • A5 illustrates the supportive effect of the optional component TiO 2 or, compared to V2, the improvement in the blocking by the invention without an increase in the TiO 2 content being necessary.
  • the inventive glasses have high solarization, expressed by ⁇ - ⁇ 5 ⁇ (300 nm; 0.2 mm) of ⁇ 5%, a high transmission in the visible expressed by ⁇ (> 400 nm; 0.2 mm)> 90%, and good UV blocking, in particular expressed by ⁇ ( ⁇ 240 nm; 0.2 mm) ⁇ 0.1% or by specifying the highest wavelength at which ⁇ is a maximum of 0.1% (sample thickness 0.2 mm) , It is 240 nm or more.
  • the glasses have a UV transmission at ⁇ ⁇ 254 nm of ⁇ ⁇ 0.1%.
  • the glasses have a processing temperature V A ⁇ 1200 ° C, which makes them easy to process.
  • the glasses have transformation temperatures T g between 440 ° C and 580 ° C. They are therefore well suited for fusion with Kovar, for which the glasses with T g between 440 and 530 ° C. are preferably used, or with tungsten, for which the glasses with higher T g are preferably used.
  • the glasses have a thermal expansion coefficient o- 2 o / 3 oo between 3.4 x 10 "6 / K and 6.0 x 10 " 6 / K. They are therefore sufficiently well adapted to the thermal expansion behavior of tungsten or Kovar, ie they can be fused in a vacuum-tight manner with one of these materials.
  • glasses are very well suited for the production of fluorescent lamps.
  • the glasses have a high resistance to crystallization.
  • the glasses are ideally suited for pipe pulling, especially for pulling pipes with the small diameters mentioned.
  • the glasses for fluorescent lamps are therefore also very well suited for the production of miniaturized fluorescent lamps, for example for Backlighting of displays, e.g. B. of personal computers, laptops, notebooks, calculators, car navigation systems, scanners, but also of mirrors and images.
  • the fluorescent lamps produced with the glasses according to the invention in particular miniaturized fluorescent lamps, meet the requirements placed on such lamps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Die Erfindung betrifft ein Borosilicatglas mit einer Zusammensetzung (in Gew.-auf Oxidbasis) von SiO2 55 - 80; B2O3 8 - 25; Al2O3 0,5 - 10; Li2O + Na2O + K2O 1 - 16; MgO + CaO + SrO + BaO 0 - 6; ZnO 0 - 3; ZrO2 0 - 5; Bi2O3 0 - 5; MoO3 0 - 3; mit Bi2O3 + MoO3 0,01 - 5. Die Erfindung betrifft auch eine Fluoreszenzlampe, insbesondere eine miniaturisierte Fluoreszenzlampe.

Description

Borosilicatglas mit UV-Blockung und seine Verwendung sowie Fluoreszenzlampe
Die Erfindung betrifft ein Borosilicatglas mit UV-Blockung und seine Verwendung. Die Erfindung betrifft auch eine Fluoreszenzlampe.
Als Hintergrundbeleuchtung von beispielsweise Displays z. B. von Personalcomputern, Laptops, Taschenrechnern, Fahrzeugnavigationssystemen, werden Fluoreszenzlampen, sogenannte „Backlights" verwendet.
Typische Größen für solche miniaturisierten Lampen sind Außendurchmesser zwischen 2 und 5 mm. Typische Innendurchmesser liegen zwischen 1 ,8 und 4,8 mm.
Während übliche Leuchtstoffröhren aus einem Weichglas bestehen, das eine sehr geringe Solarisationsstabiiität aufweist, werden für Backlights, deren Aufbau prinzipiell dem von Leuchtstoffröhren entspricht, um eine Langzeitfunktionalität zu gewährleisten, solarisationsstabilere Gläser gebraucht.
Aufgrund des Aufbaus der Backlights müssen die verwendeten Gläser mit einem Metall oder einer Metalllegierung, das bei der Lampenherstellung verwendet wird, vakύumdicht verschmelzbar sein. Dafür müssen sie eine an das thermische Ausdehnungsverhalten des Metalls oder der Metalllegierung ange- passte thermische Dehnung aufweisen. Bei der Verwendung von beispielsweise Wolfram sind mit dem thermischen Ausdehnungskoeffizienten α20/3oo von W von 4,4 x 10"6/K Gläser mit α20/3oo zwischen 3,4 x 10"6/K und, 4,3 x 10"6/K gut geeignet. Bei der Verwendung von beispielsweise Kovar, einer Fe- Co-Ni-Legierung, sind Gläser mit α20/3oo zwischen 4,3 x 10"6/K und 6,0 x 10"6/K gut geeignet.
Die Gläser sollen eher niedrige Verarbeitungstemperaturen VA, das heißt VA < 1200 °C, besitzen, damit sie bei eher niedrigen Temperaturen verarbeitet werden können. Die Transformationstemperatur Tg soll an das Schmelzverhalten des zu verschmelzenden Metalls oder Metallegierung angepasst sein. So soll sie bei einer Verschmelzung mit Kovar vorzugsweise zwischen 440 °C und 530 °C liegen. Für eine Verschmelzung mit Wolfram ist ein Tg bis 580 °C gut geeignet.
Wesentlich für die Gläser ist ihr Transmissionsverlauf. Im Sichtbaren ist eine möglichst hohe Lichtdurchlässigkeit gefordert, um eine hohe Lichtausbeute der Lampe zu erhalten, im UV-Bereich ist keine oder nur eine geringe Transmission gewünscht, um möglichst wenig der schädlichen UV-Strahlung durchzulassen. Die Anforderungen an die UV-Blockung hängen von den Verwen- dungen der Gläser ab. So soll bei Verwendung als Lampengläser für Fluoreszenzlampen insbesondere die Hg-Linie bei 253 nm geblockt werden.
So ist für Backlights eine hohe UV-Blockung < 253 nm gewünscht, um bestrahlte Kunststoffteile, z. B. in Laptops, nicht vergilben und verspröden zu lassen. Dies erfüllen Gläser mit einer UV-Transmission bei λ < 254 nm τ von ≤ 0,1 %, gemessen an 0,2 mm dicken Proben. Für andere Verwendungen ist bereits eine UV-Transmission τ ≤ 0,1 % bei λ < 240 nm ausreichend. Auf jeden Fall soll der Übergang vom undurchlässigen zum durchlässigen Wellenlängenbereich möglichst kurz sein, das heißt die Transmissionskurve soll in diesem Bereich möglichst steil verlaufen.
Die Mindestanforderung an die Transmission im sichtbaren Wellenlängenbereich ist bei λ > 400' nm und einer Probendicke von 0,2 mm eine Transmission von 90 %. Gefordert ist also τ (> 400 nm; 0,2 mm) > 90 %. .
Eine weitere wesentliche Eigenschaft von Gläsern für Fluoreszenzlampen, insbesondere für „Backlights", ist die Solarisationsbeständigkeit, die nötig ist, um eine lange Lebensdauer der Lampen, dass heißt eine möglichst konstantbleibende Lichtausbeute zu ermöglichen. Unter „solarisationsstabil" sollen hier Gläser verstanden werden, die nach einer 15-stündigen HOK-4-Bestrahlung, also einer Bestrahlung mit einer Hg-Hochdrucklampe mit einer Hauptemission bei 365 nm und einer Bestrahlungsstärke von 850 μW/cm2 bei 200 bis 280 nm in 1 m Abstand, an einer 0,2 mm dicken Glasprobe einem Transmissionsabfall von höchstens 5 % bei 300 nm zeigen.
In der Patentliteratur sind bereits verschiedene Schriften bekannt, die mehr oder weniger UV-geblockte Gläser, insbesondere Lampengläser, beschreiben. Diese Gläser zeigen aber Nachteile, insbesondere eine den heutigen hohen Anforderungen nicht genügende UV-Blockung.
Das in JP 8-12369 A beschriebene Borosilicatglas für Entladungslampen enthält zur UV-Blockung insgesamt 0,03 bis 3 Gew.-% von wenigstens zwei der vier Komponenten V2O5, Fe2θ3, TiO2 und CeO2. Mit diesen Komponenten mit teilweisen hohen Einzelanteilen und ihrer Kombinationen ist eine hohe Transmission' und eine hohe Solarisationsbeständigkeit nicht einstellbar.
US 5,747,399 beschreibt ein Glas für miniaturisierte Fluoreszenzlampen, das seine Solarisationsstabilität und seine UV-Undurchlässigkeit durch TiO2 und/oder PbO und/oder Sb2O3 erhalten soll. Jedoch führt eine Dotierung mit TiO2, insbesondere bei hohen Gehalten, zu einer Färbung des Glases. Auf PbO sollte schon wegen der Umweltproblematik verzichtet werden.
Es ist daher Aufgabe der vorliegenden Erfindung, ein Glas mit hoher Transmission im Sichtbaren (> 400 nm) und hoher Blockung im UV (< 240 nm) so- wie mit einer an das Ausdehnungsverhalten von Wolfram oder Kovar ange- passten thermischen Dehnung bereitzustellen.
Die Aufgabe wird durch ein Borosilicatglas gemäß dem Hauptanspruch gelöst.
Ein Glas mit den gewünschten Transmissionseigenschaften besteht aus dem Grundglassystem (in Gew.-% auf Oxidbasis): 55 bis 80 SiO2, 8 bis 25 B2O3, 0,5 bis 10 AI2O3, 1 bis 16 Li2O + Na2O + K2O, 0 bis 6 MgO + CaO + SrO + BaO, 0 bis 3 ZnO und 0 bis 5 ZrO2.
Erfindungswesentlich ist das Vorhandensein von M0O3 und/oder Bi2θ3, und zwar von in Summe 0,01 bis 5 Gew.-% bei 0 bis 3 Gew.-% M0O3 und 0 bis 5
Figure imgf000004_0001
Der Mindestgehalt an M0O3 und/oder Bi2O3 ist nötig, um die hohe UV- Blockung zu erzielen. Höhere Gehalte an M0O3 und/oder B.2O3 würden zu einer Färbung des Glases führen. Bevorzugt ist eine Mindestsumme von 0,1 Gew.-%, insbesondere eine Mindestsumme von 0,2 Gew.-%, und eine Höchstsumme von 3 Gew.-%. Besonders bevorzugt ist ein Mindestgehalt von 0,4 Gew.-% M0O3 oder ein Mindestgehalt von 1 ,0 Gew.-% Bi2O3. B-2O3 verbessert auch sehr die Solarisationsstabiiität des Glases. Vor allem in den besonders bevorzugten Ausführungsformen kann eine UV-Blockung bis 254 nm, d.h. ein τ < 0,1 % bei τ < 254 nm bei einer Probendicke von 0,2 mm, erreicht werden. Ganz besonders bevorzugt ist ein Mindestgehalt an M0O3 von 0,6 Gew.-% oder ein Mindestgehalt an B-2O3 von 1 ,3 Gew.-%.
Das Glas besteht vorzugsweise aus dem Glassystem (in Gew.-% auf Oxidbasis) : SiO2 55 - 79, B2O3 10 - 25, AI2O3 0,5 - 10, Li2O + Na2O + K20 1 - 16, MgO + CaO + SrO + BaO 0 - 6, ZnO 0 - 3, ZrO2 0 - 1 ; Bi2O3 0-5, M0O3 0-3; mit BiO2 + MoO3 0,1 - 5.
Es ist besonders bevorzugt, dass das Glas aus dem folgenden Glassystem besteht: Si02 55 - 79; B2O3 8 - 12,5; AI2O3 0,5 - 10; Li2O + Na2O + K2O 1 - 16; MgO + CaO + SrO + BaO 0 - 6; ZnO 0 - 3; ZrO20 - 3; Bi2O3 0 - 5; M0O3 0 - 3; mit Bi2O3 + M0O30,01 - 5.
Es ist bevorzugt, auf den Zusatz von ZrO2 zu verzichten, so dass das Glas bis auf unvermeidliche Verunreinigungen durch Rohstoffe oder Wannen korrosion ZrO2-frei ist.
Gläser aus den genannten Zusammensetzungsbereichen' mit einem Gehalt von 70 - 80 Gew.-% SiO besitzen thermische Ausdehnungskoeffizienten 020/300 zwischen 3,4 x 10"6/K und 4,3 x 10"6/K und sind damit besonders gut für Verschmelzung mit Wolfram geeignet. Für die Verschmelzung mit Wolfram sind Gläser aus dem Zusammensetzungsbereich (in Gew.-% auf Oxidbasis) SiO2 73 - 79, B2O3 12,5 - 25; AI2O3 0,5 - 10; Li2O + Na2O + K2O 1 - 11 ; MgO + CaO + SrO + BaO 0 - 6; ZnO 0 - 3; ZrO20 - 5; Bi2O3 0 - 5; MoO30 - 3; mit Bi2O3 + MoO3 0,01 - 5 besonders bevorzugt.
Gläser aus den genannten Zusammensetzungsbereichen mit einem Gehalt von 55 - 75 Gew.-% SiO2 besitzen thermische Ausdehnungskoeffizienten zwischen 4,3 x 10"6/K und 6,0 x 10"6/K und sind damit besonders gut für die Verschmelzung mit Kovar geeignet.
Für die Verschmelzung mit Kovar sind Gläser aus dem Zusammenssetzungs- bereich (in. Gew.-% auf Oxidbasis) SiO2 55 - 73; B2O3 15 - 25; AI2O3 1 - 10; Li2O + Na2O + K2O 4 - 16; MgO + CaO + SrO + BaO 0 - 6; ZnO 0 - 3; ZrO20
- 5; Bi2O3 0 - 5; MoO30 - 3; mit Bi2O3,+ MoO30,01 - 5 besonders bevorzugt.
Das Glas kann übliche Läutermittel in üblichen Mengen enthalten, so z. B. Verdampfungsläutemnittel wie CI" und F", aber auch Redoxiäutermittel, die aufgrund ihrer polyvalenten Kationen wirksam sind, z. B. SnO2 und Sb2θ3. Vorzugsweise enthält das Glas 0 - 1 Gew.-% Sb2O3, 0 - 1 Gew.-% As2O3, 0 - 1 Gew.-% SnO2, 0 - 1 Gew.-% CeO2, 0 - 0,5 Gew.-% CI, 0 - 1 Gew.-% F, 0 - 0,5 Sulfat, angegeben als SO3.
CeO2 unterstützt die Läuterung, kann sich jedoch bei zu hohen Gehalten negativ auf die Solarisationsstabilität auswirken.
Das Glas kann weiter 0 - 5 Gew.-% TiO2, bevorzugt 0 - 1 Gew.-% TiO2, und 0
- 3 Gew.-% PbO enthalten. TiO2 unterstützt MoO3 und Bi2O3, indem es die UV- Kante, d.h. den Übergang zwischen Absorption und Transmission, in den längerwelligen Bereich verschiebt. So können auch schon mit den genannten geringen Anteilen an M0O3 und/oder Bi2θ3 UV-Blockungen nicht nur bis 240 nm, sondern auch bis 254 nm und darüber hinaus erzielt werden. Aufgrund der erfindungsgemäßen Dotierung kann, verglichen mit der TiO2-Dotierung des Standes der Technik, auf TiO2 ganz verzichtet werden oder es in so geringen Mengen zugegeben werden, dass seine störende Färbung keine Rolle spielt.
Das Glas kann ohne Nachteile bis zu 1 Gew.-% Fe2O3 enthalten. Auch Fβ2θ3 trägt zur Verschiebung der Absorptionskante in dem längerwelligen Bereich bei.
Das Glas kann auch noch in geringen Anteilen, die das Glassystem nicht beeinträchtigen, V2θ5, Nb2Oδ und WO3 enthalten.
Die Summe aus Fe2O3, CeO2, V2O5, Nb2O5, WO3 TiO2, PbO, As203> Sb2O3 soll 5 Gew.-% nicht überschreiten, da ansonsten eine zu starke Färbung des Glases im Sichtbaren auftritt. Ausführungsbeispiele:
Zur Herstellung der Beispielgläser und der Vergleichsgläser wurden übliche Rohstoffe eingesetzt.
Das gut homogenisierte Gemenge wurde im Labor in einem Kieselglas-Tiegel bei 1600 °C geschmolzen, geläutert und homogenisiert. Anschließend wurde das Glas gegossen und mit 20 K/h gekühlt.
Die Tabelle zeigt dreizehn Beispiele erfindungsgemäßer Gläser (A1 bis A13) und zwei Vergleichsbeispiele (V1 , V2) mit ihren Zusammensetzungen (in Gew.-% auf Oxidbasis) und ihren wesentlichen Eigenschaften.
Folgende Eigenschaften sind in der Tabelle angegeben:
der thermische Ausdehnungskoeffizient 0:20/300 [10"6/K] die Transformationstemperatur Tg [°C] die Verarbeitungstemperatur VA [°C] die Erweichungstemperatur Ew [°C] zur Dokumentation der Blockung im UV-Bereich die Angabe der höchsten
Wellenlänge, bei der τ maximal 0,1 % (bei einer Probendicke von 0,2 mm) ist („UV-Blockung")
P 1785/1 07.11.2002
Tabelle
Zusammensetzungen (in Gew. % auf Oxidbasis) und wesentliche Eigenschaften von erfindungsgemäßen Gläsern (A) und von Vergleichsgläsern (V)
Figure imgf000007_0001
P 1785/1 07.11.2002
Figure imgf000008_0001
Das Vergleichsbeispiel V1 hat eine zu niedrigwellige UV-Kante, d.h. es blockt den UV-Bereich nicht ausreichend.
Das TiO2-haltige Vergleichsbeispiel V2 zeigt eine gute UV-Blockung, wie sie auch von den erfindungsgemäß dotierten Gläsern ohne TiO2-Zusatz erreicht wird.
Die Ausführungsbeispiele A1 , A3, A7, A9 und A10 zeigen rein Bi2θ3-dotierte Gläser. A2, A4, A8, A11 und A12 zeigen rein MoO3-dotierte Gläser. A6 und A13 sind Beispiele für eine Mischdotierung mit Bi2θ3 und M0O3. A5 verdeutlicht die unterstützende Wirkung der fakultativen Komponente TiO2 oder, verglichen mit V2, die Verbesserung der Blockung durch die Erfindung, ohne dass eine Erhöhung des TiO2-Gehalt nötig geworden wäre.
Die erfindungsgemäßen Gläser besitzen eine hohe Solarisationsbeständigkeit, ausgedrückt durch Δ-ι5τ (300nm; 0,2mm) von < 5 %, eine hohe Transmission im Sichtbaren, ausgedrückt durch τ (> 400 nm; 0,2mm) > 90 %, und eine gute UV-Blockung, insbesondere ausgedrückt durch τ (< 240 nm; 0,2 mm) < 0,1 % bzw. durch die Angabe der höchsten Wellenlänge, bei der τ maximal 0,1 % ist (Probendicke 0,2 mm). Sie beträgt 240 nm oder mehr.
In bevorzugten Ausführungsformen besitzen die Gläser eine UV-Transmission bei λ < 254 nm von τ < 0,1 %.
Weiter besitzen die Gläser eine Verarbeitungstemperatur VA < 1200 °C, wodurch sie gut verarbeitbar sind.
Die Gläser besitzen Transformationstemperaturen Tg zwischen 440 °C und 580 °C. Sie sind damit gut geeignet für die Verschmelzung mit Kovar, wofür vorzugsweise die Gläser mit Tg zwischen 440 und 530 °C verwendet werden, oder mit Wolfram, wofür vorzugsweise die Gläser mit höherem Tg verwendet werden.
Weiter besitzen die Gläser einen thermischen Ausdehnungskoeffizienten o-2o/3oo zwischen 3,4 x 10"6/K und 6,0 x 10"6/K. Sie sind damit ausreichend gut an das thermische Ausdehnungsverhalten von Wolfram bzw. Kovar ange- passt, sind also mit einem dieser Materialien vakuumdicht verschmelzbar.
Mit diesen Eigenschaften und mit τ ≤ 0,1 % bei λ < 254 nm sind Gläser sehr gut geeignet für die Herstellung von Fluoreszenzlampen.
Die Gläser besitzen eine hohe Kristallisationsbeständigkeit. So sind die Gläser hervorragend geeignet für den Rohrzug, insbesondere auch für das Ziehen von Rohren mit den genannten geringen Durchmessern. Damit sind die Gläser für Fluoreszenzlampen auch sehr gut geeignet für die Herstellung von miniaturisierten Fluoreszenzlampen, beispielsweise für die Hintergrundbeleuchtung von Displays, z. B. von Personalcomputern, Laptops, Notebooks, Taschenrechnern, Fahrzeugnavigationssystemen, Scannern, aber auch von Spiegeln und Bildern.
Die mit den erfindungsgemäßen Gläsern hergestellten Fluoreszenzlampen, insbesondere miniaturisierte Fluoreszenzlampen, erfüllen die an solche Lampen gestellten Anforderungen.

Claims

PATENTANSPRÜCHE
1 ) Borosilicatglas mit einer Zusammensetzung (in Gew.-% auf Oxidbasis) von
SiO2 55-80
B2O3 8-25
AI2O3 0,5-10
Li2O + Nä2O + K2O 1 -16
MgO + CaO + SrO + BaO 0-6
ZnO 0-3
ZrO2 0-5
Figure imgf000011_0001
mit Bi2O3 + M0O3 0,01 -5
2) Borosilicatglas nach Anspruch 1 , gekennzeichnet durch eine Zusammensetzung (in Gew.-% auf Oxidbasis) von
SiO2 , 55-79
B2O3 10-25
AI2O3 0,5-10
Li20 + Na2O + K2O 1 -16
MgO + CaO' + SrO + BaO 0-6
ZnO 0-3
ZrO2 .0-1
Bi2O3 0-5
M0O3 0-3 mit Bi2O3 + M0O3 0,1-5
3) Borosilicatglas nach Anspruch 1 , gekennzeichnet durch eine Zusammensetzung (in Gew.-% auf Oxidbasis) von
SiO2 73 - 79
B203 12,5-25 AI2O3 0,5-10
Li2O + Na2O + K2O 1 -11
MgO + CaO + SrO + BaO 0-6
ZnO 0-3
ZrO2 0-5
Bi2O3 0-5
MoO3 0-3
Figure imgf000012_0001
4) Borosilicatglas nach Anspruch 1, gekennzeichnet durch eine Zusammensetzung (in Gew.-% auf Oxidbasis) von
SiO2 55-73
B2O3 15-25
Figure imgf000012_0002
Li2O + Na2O + K2O 4-16
MgO + CaO + SrO + BaO 0-6
ZnO 0-3
ZrO2 0-5
Bi2O3 0-5
Figure imgf000012_0003
5) Borosilicatglas nach Anspruch 1 , gekennzeichnet durch eine Zusammensetzung (in Gew.-% auf Oxidbasis) von
SiO2 55-79
B2O3 8-12,5
AI2O3 0,5-10
Li20 + Na2O + K2O 1-16
MgO + CaO + SrO + BaO 0-6
ZnO 0-3
ZrO2 0-3
Bi2O3 .0-5
M0O3 0-3
Figure imgf000012_0004
6) Borosilicatglas nach wenigstens einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass die Summe aus Bi2O3 und M0O3 zwischen 0,1 Gew.-% und 5 Gew. %, bevorzugt zwischen 0,2 Gew.-% und 3 Gew.-% beträgt.
7) Borosilicatglas nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es zusätzlich enthält (in Gew.-% auf Oxidbasis):
Fe2O3 0 - - 1
CeO2 0 - - 1
TiO2 0 - - 5
PbO 0 - - 3
As2O3 0 - - 1
Sb2O3 0 - - 1 mit Fe2θ3 + CeO2 + TiO2 + PbO +
As2O3 + Sb2O; 3 + V2O5 + Nb2O5 + WO3 0 - 5
SnO2 0 - - 1
F 0 - - 1
CI 0 - - 0,5
SO3 0 - - 0,5
8) Borosilicatglas nach wenigstens einem der Ansprüche 1 bis 7 mit einer Transformationstemperatur Tg zwischen 440 °C und 580 °C, mit einem thermischen Ausdehnungskoeffizienten 0.20/300 zwischen 3,4 x 10"6/K und 6,0 x 10/K, einer Transmission τ bei λ < 240 nm von < 0,1% (bei 0,2 mm Probendicke).
9) Borosilicatglas nach wenigstens einem der Ansprüche 1 bis 7 mit einer Transformationstemperatür Tg zwischen 440 °C und 580 °C, mit einem thermischen Ausdehnungskoeffizienten α2o/3oo zwischen 3,4 x 10"6/K und 6,0 x 10"6/K, einer Transmission τ bei λ < 254 nm von < 0,1% (bei 0,2 mm Probendicke).
10) Verwendung eines Glases nach Anspruch 9 für die Herstellung von Fluoreszenzlampen. 11 ) Verwendung eines Glases nach Anspruch 9 für die Herstellung von miniaturisierten Fluoreszenzlampen.
12) Fluoreszenzlampe, hergestellt aus einem Glas nach Anspruch 9.
13) Miniaturisierte Fluoreszenzlampe nach Anspruch 12.
PCT/EP2003/003112 2002-05-16 2003-03-26 Borosilicatglas mit uv-blockung und seine verwendung sowie fluoreszenzlampe WO2003097544A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003214255A AU2003214255A1 (en) 2002-05-16 2003-03-26 Uv-blocking borosilicate glass, the use of the same, and a fluorescent lamp
JP2004505280A JP2005529048A (ja) 2002-05-16 2003-03-26 紫外線遮蔽遮断ホウケイ酸ガラス、その使用、および蛍光ランプ
US10/512,716 US7517822B2 (en) 2002-05-16 2003-03-26 UV-blocking borosilicate glass, the use of the same, and a fluorescent lamp
CNB038108038A CN1307116C (zh) 2002-05-16 2003-03-26 防uv硼硅玻璃、其应用以及一种荧光灯

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10221747 2002-05-16
DE10221747.5 2002-05-16
DE10253756.9 2002-11-19
DE10253756A DE10253756B4 (de) 2002-05-16 2002-11-19 Borosilicatglas mit UV-Blockung und seine Verwendung

Publications (1)

Publication Number Publication Date
WO2003097544A1 true WO2003097544A1 (de) 2003-11-27

Family

ID=29550928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/003112 WO2003097544A1 (de) 2002-05-16 2003-03-26 Borosilicatglas mit uv-blockung und seine verwendung sowie fluoreszenzlampe

Country Status (7)

Country Link
US (1) US7517822B2 (de)
JP (1) JP2005529048A (de)
KR (1) KR20050025182A (de)
CN (1) CN1307116C (de)
AU (1) AU2003214255A1 (de)
TW (1) TWI264422B (de)
WO (1) WO2003097544A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089342A (ja) * 2004-09-24 2006-04-06 Asahi Techno Glass Corp 蛍光ランプ用ガラス
WO2006072449A2 (de) * 2005-01-04 2006-07-13 Schott Ag Glas für leuchtmittel mit aussenliegenden elektroden
WO2006106660A1 (ja) * 2005-04-01 2006-10-12 Matsushita Electric Industrial Co., Ltd. ランプ用ガラス組成物、ランプ、バックライトユニットおよびランプ用ガラス組成物の製造方法
US11046609B2 (en) 2017-10-23 2021-06-29 Corning Incorporated Glass-ceramics and glasses
US11214511B2 (en) 2016-06-17 2022-01-04 Corning Incorporated Transparent, near infrared-shielding glass ceramic
US11312653B2 (en) 2017-12-13 2022-04-26 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US11351756B2 (en) 2017-12-15 2022-06-07 Corning Incorporated Laminate glass ceramic articles with UV-and NIR-blocking characteristics and methods of making the same
WO2023285693A1 (en) * 2021-07-16 2023-01-19 Pemco Belgium Bv Pyro light enamel coating
US11746041B2 (en) 2017-12-04 2023-09-05 Corning Incorporated Glass-ceramics and glass-ceramic articles with UV- and NIR-blocking characteristics

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515436A (ja) * 2000-12-05 2004-05-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無鉛アンバー着色ランプ
DE20220582U1 (de) * 2002-08-24 2003-11-13 Schott Glas, 55122 Mainz Borosilicatglas
DE102004027120B4 (de) * 2003-06-06 2013-01-31 Schott Ag Verwendung eines UV-Strahlung absorbierenden Neutralglases, insbesondere für Fluoreszenzlampen
DE102005000663B4 (de) * 2005-01-04 2010-08-05 Schott Ag Verfahren zur Trübung eines Glases, insbesondere eines Borosilikatglases, Glasrohr und dessen Verwendung
DE202005004459U1 (de) * 2004-07-12 2005-11-24 Schott Ag Glas für Leuchtmittel mit außenliegenden Elektroden
DE102005023702B4 (de) * 2005-05-23 2012-01-26 Schott Ag Hydrolysebeständiges Glas, ein Verfahren zu seiner Herstellung sowie dessen Verwendung
DE102008001496A1 (de) * 2008-04-30 2009-11-05 Schott Ag Borosilikatglas mit UV-Blockung für Pharmaverpackungen
DE102008043317B4 (de) * 2008-10-30 2013-08-08 Schott Ag Verwendung eines solarisationsbeständigen Glases mit einer definierten Steigung der UV-Kante für einen Strahler für Bewitterungsanlagen
US9371247B2 (en) 2009-05-29 2016-06-21 Corsam Technologies Llc Fusion formable sodium free glass
IT1397100B1 (it) * 2009-12-24 2012-12-28 Gerresheimer Pisa Spa Composizione di vetro per collettori solari termici tubolari provvisti di una giunzione vetro-metallo.
CN101838106B (zh) * 2010-05-14 2012-01-04 北京工业大学 一种光热发电用硼硅酸盐玻璃管
CN101882553B (zh) * 2010-06-25 2011-12-28 孙德春 荧光灯、用该荧光灯作光源的光动力降醇仪及其使用方法
CN102351419A (zh) * 2011-07-01 2012-02-15 湖北戈碧迦光电科技股份有限公司 一种k9光学玻璃及其制备方法
JP2013110086A (ja) * 2011-10-24 2013-06-06 Harison Toshiba Lighting Corp 光照射装置、光照射方法、メタルハライドランプ
CN102617041A (zh) * 2012-03-20 2012-08-01 江苏同辉照明科技有限公司 一种护眼灯灯管玻璃的制备方法
DE102012219614B3 (de) * 2012-10-26 2013-12-19 Schott Ag Solarisationsbeständiges Borosilikatglas und seine Verwendung zur Herstellung von Glasrohren und Lampen sowie in Bestrahlungseinrichtungen
CN103011587A (zh) * 2012-12-24 2013-04-03 潘慧敏 一种节能环保玻璃
KR101493941B1 (ko) 2013-11-29 2015-02-16 한국세라믹기술원 Led 전등 디퓨저용 컬러유리 조성물, led 전등 디퓨저 및 그 제조방법
EP3197841B1 (de) 2014-09-25 2021-12-08 Corning Incorporated Uv-blockierung für gläser mit verbesserter durchlässigkeit
JP6694229B2 (ja) * 2014-10-08 2020-05-13 株式会社オハラ ガラス
CN105776854A (zh) * 2016-03-01 2016-07-20 苏州云舒新材料科技有限公司 一种透明耐寒玻璃及其制备方法
CN105776856A (zh) * 2016-03-01 2016-07-20 苏州云舒新材料科技有限公司 一种纳米透明耐刮玻璃及其制备方法
CN107572781A (zh) * 2017-08-29 2018-01-12 安徽光为智能科技有限公司 一种防紫外线的变色车用玻璃
US10829408B2 (en) 2017-12-13 2020-11-10 Corning Incorporated Glass-ceramics and methods of making the same
CN118702407A (zh) * 2018-11-14 2024-09-27 Agc株式会社 高频器件用玻璃基板、液晶天线和高频器件
CA3117986A1 (en) 2018-11-26 2020-06-04 Owens Corning Intellectual Capital, Llc High performance fiberglass composition with improved specific modulus
DK3887329T3 (da) 2018-11-26 2024-04-29 Owens Corning Intellectual Capital Llc Højydelsesglasfibersammensætning med forbedret elasticitetskoefficient
CN112028478B (zh) * 2020-08-04 2022-09-20 杭州康明光电有限责任公司 一种硅酸盐系的防眩晕钕玻璃及其制备方法
DE112022002228T5 (de) * 2021-06-30 2024-02-29 AGC Inc. Glasplatte, laminiertes glas, fensterscheibe für fahrzeuge und fensterscheibe für gebäude
CN113831013A (zh) * 2021-08-31 2021-12-24 甘肃旭康材料科技有限公司 中性硼硅玻璃组合物、中性硼硅玻璃及其制备方法与应用
CN118221350A (zh) * 2024-04-07 2024-06-21 中建材光子科技有限公司 强杂光吸收防光晕光电玻璃及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US968315A (en) * 1909-04-14 1910-08-23 William Beckert Combined jack and truck.
CN1171376A (zh) * 1996-07-18 1998-01-28 郭律明 荧光探伤灯泡泡壳
US5976999A (en) * 1992-07-01 1999-11-02 Proceram Unleaded transparent vitreous ceramic compositions
JP2002338296A (ja) * 2001-03-08 2002-11-27 Nippon Electric Glass Co Ltd 蛍光ランプ用外套管

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499775A (en) 1966-07-01 1970-03-10 Owens Illinois Inc Ultraviolet-absorbing glass compositions containing cerium and molybdenum oxides
US4222781A (en) * 1979-08-16 1980-09-16 Corning Glass Works Optically clear copper halide photochromic glass articles
DE3206227C2 (de) 1982-02-20 1986-07-17 Schott Glaswerke, 6500 Mainz Optisches Glas im System SiO&darr;2&darr;-B&darr;2&darr;O&darr;3&darr;-(Al&darr;2&darr;O&darr;3&darr;-)Alkalioxid-Erdalkalioxid-TiO&darr;2&darr;-(ZrO&darr;2&darr;-)F/SnO&darr;2&darr; mit Brechwerten &ge; 1,56, Abbezahlen &ge; 40 und Dichten &lE; 2,70 g/cm&uarr;3&uarr;
GB2115403B (en) * 1982-02-20 1985-11-27 Zeiss Stiftung Optical and opthalmic glass
JPH01122937A (ja) * 1987-11-04 1989-05-16 Nakashima:Kk ガラス溶射用フリット
JP2670516B2 (ja) * 1989-01-13 1997-10-29 株式会社ナカシマ ガラス溶射用材料
US5244848A (en) * 1990-04-12 1993-09-14 Cookson Group Plc Glaze compositions
GB9008386D0 (en) * 1990-04-12 1990-06-13 Cookson Group Plc Glass frit compositions
GB9108257D0 (en) * 1991-04-17 1991-06-05 Cookson Group Plc Glaze compositions
US5447891A (en) * 1993-09-29 1995-09-05 Ferro Corporation Lead-free glaze or enamel for use on ceramic bodies
JPH0812369A (ja) 1994-07-04 1996-01-16 Toshiba Glass Co Ltd Hidランプ用ガラス
JPH0859289A (ja) * 1994-08-22 1996-03-05 Asahi Glass Co Ltd 高輝度光源用紫外線シャープカットガラスの製造法
TW346478B (en) 1995-09-14 1998-12-01 Nippon Electric Glass Co Glasses for fluorescent lamp
DE10000837C1 (de) * 2000-01-12 2001-05-31 Schott Glas Alkalifreie Aluminoborosilicatgläser und ihre Verwendungen
JP2002056808A (ja) * 2000-05-30 2002-02-22 Asahi Techno Glass Corp 蛍光ランプ用ガラス管及びそれに適したガラス
JP3818571B2 (ja) * 2000-06-16 2006-09-06 旭テクノグラス株式会社 Fe−Ni−Co系合金の封着に適したガラス
JP3771429B2 (ja) * 2000-08-17 2006-04-26 旭テクノグラス株式会社 紫外線吸収ガラス及びそれを用いた蛍光ランプ用ガラス管
JP2002060241A (ja) * 2000-08-18 2002-02-26 Asahi Techno Glass Corp タングステン封着用ガラス
JP2002060240A (ja) * 2000-08-18 2002-02-26 Asahi Techno Glass Corp タングステン封着用ガラス
DE10134374B4 (de) * 2001-07-14 2008-07-24 Schott Ag Kochfeld mit einer Glaskeramikplatte als Kochfläche und Verfahren zur Herstellung der Glaskeramikplatte
DE102004027119A1 (de) * 2003-06-06 2004-12-30 Schott Ag UV-Strahlung absorbierendes Glas mit geringer Absorption im sichtbaren Bereich, ein Verfahren zu seiner Herstellung sowie dessen Verwendung
JP7112928B2 (ja) 2018-09-28 2022-08-04 株式会社ジャパンディスプレイ 表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US968315A (en) * 1909-04-14 1910-08-23 William Beckert Combined jack and truck.
US5976999A (en) * 1992-07-01 1999-11-02 Proceram Unleaded transparent vitreous ceramic compositions
CN1171376A (zh) * 1996-07-18 1998-01-28 郭律明 荧光探伤灯泡泡壳
JP2002338296A (ja) * 2001-03-08 2002-11-27 Nippon Electric Glass Co Ltd 蛍光ランプ用外套管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200308, Derwent World Patents Index; Class L03, AN 2002-657937, XP002252537 *
DATABASE WPI Section Ch Week 200331, Derwent World Patents Index; Class L01, AN 2003-314152, XP002252538 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089342A (ja) * 2004-09-24 2006-04-06 Asahi Techno Glass Corp 蛍光ランプ用ガラス
WO2006072449A2 (de) * 2005-01-04 2006-07-13 Schott Ag Glas für leuchtmittel mit aussenliegenden elektroden
WO2006072449A3 (de) * 2005-01-04 2007-01-25 Schott Ag Glas für leuchtmittel mit aussenliegenden elektroden
WO2006106660A1 (ja) * 2005-04-01 2006-10-12 Matsushita Electric Industrial Co., Ltd. ランプ用ガラス組成物、ランプ、バックライトユニットおよびランプ用ガラス組成物の製造方法
CN101151221A (zh) * 2005-04-01 2008-03-26 松下电器产业株式会社 灯用玻璃组合物、灯、背光照明单元以及灯用玻璃组合物的制造方法
US11214511B2 (en) 2016-06-17 2022-01-04 Corning Incorporated Transparent, near infrared-shielding glass ceramic
US11629091B2 (en) 2016-06-17 2023-04-18 Corning Incorporated Transparent, near infrared-shielding glass ceramic
US11046609B2 (en) 2017-10-23 2021-06-29 Corning Incorporated Glass-ceramics and glasses
US11643359B2 (en) 2017-10-23 2023-05-09 Corning Incorporated Glass-ceramics and glasses
US11746041B2 (en) 2017-12-04 2023-09-05 Corning Incorporated Glass-ceramics and glass-ceramic articles with UV- and NIR-blocking characteristics
US11312653B2 (en) 2017-12-13 2022-04-26 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US11912609B2 (en) 2017-12-13 2024-02-27 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US11351756B2 (en) 2017-12-15 2022-06-07 Corning Incorporated Laminate glass ceramic articles with UV-and NIR-blocking characteristics and methods of making the same
US11890833B2 (en) 2017-12-15 2024-02-06 Corning Incorporated Laminate glass ceramic articles with UV-and NIR-blocking characteristics and methods of making the same
WO2023285693A1 (en) * 2021-07-16 2023-01-19 Pemco Belgium Bv Pyro light enamel coating

Also Published As

Publication number Publication date
AU2003214255A1 (en) 2003-12-02
TWI264422B (en) 2006-10-21
CN1653007A (zh) 2005-08-10
TW200404048A (en) 2004-03-16
US7517822B2 (en) 2009-04-14
KR20050025182A (ko) 2005-03-11
US20050151116A1 (en) 2005-07-14
JP2005529048A (ja) 2005-09-29
CN1307116C (zh) 2007-03-28

Similar Documents

Publication Publication Date Title
WO2003097544A1 (de) Borosilicatglas mit uv-blockung und seine verwendung sowie fluoreszenzlampe
DE102005023702B4 (de) Hydrolysebeständiges Glas, ein Verfahren zu seiner Herstellung sowie dessen Verwendung
DE102008043317B4 (de) Verwendung eines solarisationsbeständigen Glases mit einer definierten Steigung der UV-Kante für einen Strahler für Bewitterungsanlagen
DE10238930C1 (de) Borosilicatglas und seine Verwendungen
DE10108992C2 (de) Solarisationsstabiles Borosilicatglas und seine Verwendungen
DE19739912C1 (de) Alkalifreies Aluminoborosilicatglas und dessen Verwendung
EP0588000B1 (de) Chemisch und thermisch hochbelastbares, mit Wolfram verschmelzbares Borosilikatglas
DE102004027120B4 (de) Verwendung eines UV-Strahlung absorbierenden Neutralglases, insbesondere für Fluoreszenzlampen
DE19842942C2 (de) Borosilicatglas hoher chemischer Beständigkeit und dessen Verwendung
DE10133763C1 (de) Bleifreie optische Schwerflint-Gläser
EP0913366B1 (de) Erdalkalialuminoborosilicatglas für Lampenkolben und dessen Verwendung
DE102011081532B4 (de) Borosilikatglaszusammensetzung für die Herstellung von Glasrohren und seine Verwendung für die Herstellung von Glasrohren und als Hüllrohr für Lampen
DE102009021115B4 (de) Silicatgläser mit hoher Transmission im UV-Bereich, ein Verfahren zu deren Herstellung sowie deren Verwendung
EP1138641A1 (de) Bleifreie bismuthaltige Silicatgläser und ihre Verwendungen
EP1480918A2 (de) Erdalkalialuminosilicatglas und verwendung
DE10253756B4 (de) Borosilicatglas mit UV-Blockung und seine Verwendung
DE102004007436B4 (de) Verwendung eines B2O3 - freien kristallisationsstabilen Aluminosilikatglases und dessen Herstellung
DE3439163C2 (de) Glas für eine Mehrstärken-Brillenglaslinse im System SiO&amp;darr;2&amp;darr;-B&amp;darr;2&amp;darr;O&amp;darr;3&amp;darr;-PbO-BaO
DE102011084543B4 (de) Borosilicatglas mit hoher hydrolytischer Beständigkeit
DE10133521C1 (de) Bleifreie Optische Gläser
EP1146019B1 (de) Thermisch hochbelastbares Glas für Lampenkolben
DE19631581C1 (de) Blei- und lanthanfreie Bariumflintgläser
DE102011081533B4 (de) Borosilikatqlaszusammensetzung und ihre Verwendunq zur Herstellung von Glasrohren und Lampen
DE102013011918A1 (de) Optisches Glas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10512716

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004505280

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047018226

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038108038

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047018226

Country of ref document: KR

122 Ep: pct application non-entry in european phase