WO2003081558A1 - Systeme et appareil d'information routiere et procede de generation d'information routiere - Google Patents

Systeme et appareil d'information routiere et procede de generation d'information routiere Download PDF

Info

Publication number
WO2003081558A1
WO2003081558A1 PCT/JP2003/003875 JP0303875W WO03081558A1 WO 2003081558 A1 WO2003081558 A1 WO 2003081558A1 JP 0303875 W JP0303875 W JP 0303875W WO 03081558 A1 WO03081558 A1 WO 03081558A1
Authority
WO
WIPO (PCT)
Prior art keywords
road
road information
information
information providing
value
Prior art date
Application number
PCT/JP2003/003875
Other languages
English (en)
French (fr)
Inventor
Shinya Adachi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CA002480474A priority Critical patent/CA2480474A1/en
Priority to EP03745012A priority patent/EP1489576A4/en
Priority to US10/508,923 priority patent/US20050171649A1/en
Priority to AU2003236157A priority patent/AU2003236157A1/en
Priority to KR10-2004-7015206A priority patent/KR20040102056A/ko
Publication of WO2003081558A1 publication Critical patent/WO2003081558A1/ja
Priority to US12/048,630 priority patent/US7747381B2/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096805Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route
    • G08G1/096827Systems involving transmission of navigation instructions to the vehicle where the transmitted instructions are used to compute a route where the route is computed onboard
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3691Retrieval, searching and output of information related to real-time traffic, weather, or environmental conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096716Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information does not generate an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096758Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where no selection takes place on the transmitted or the received information
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096791Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is another vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096855Systems involving transmission of navigation instructions to the vehicle where the output is provided in a suitable form to the driver
    • G08G1/096872Systems involving transmission of navigation instructions to the vehicle where the output is provided in a suitable form to the driver where instructions are given per voice

Definitions

  • the present invention relates to a method for generating traffic information indicating traffic congestion conditions, travel time, and the like, a system for providing the traffic information, and a device constituting the system. It is intended to efficiently provide road information with a wealth of information by converting it into data in a simple format. Background art
  • VICS Vehicle Traffic Information and Communication System
  • vehicle navigation systems collects and edits road traffic information, and transmits traffic congestion information and required time through FM multiplex broadcasting TV. It transmits traffic congestion information, such as travel time information, which indicates traffic congestion.
  • the current VICS information expresses the current traffic information as follows.
  • Traffic congestion includes traffic congestion (general road: 10 km / h 'highway: ⁇ 20 km / h), congestion (general road: 10-20 km / h ⁇ highway: 20-40 km / h) and quiet (general road: ⁇ 20 km / h, expressway: ⁇ 40 km / h).
  • the traffic congestion information indicating the traffic congestion status is obtained when the entire VICS link (location information identifier used in VICS) is in the same congestion status.
  • V Ics link number + condition (congestion / congestion / quiet Z unknown)
  • the link travel time information indicating the travel time of each link is
  • increase / decrease trend flags indicating four states of “increase trend / decrease trend Z no change / unknown” are added to the current information and displayed.
  • VICS traffic information displays traffic information by specifying the road by link number, and the receiving side of this traffic information grasps the traffic condition of the corresponding road on its own map based on the link number. .
  • the transmitting side and receiving side share the link number and node number to specify the location on the map.
  • the link number and node number are newly established or modified whenever a road is newly established or changed.
  • the digital map data of each company must be updated, which requires a large social cost for its maintenance.
  • Patent Document 1 the inventors of the present invention disclosed in Patent Document 1 and the like that the transmitting side arbitrarily set a plurality of nodes on a road shape and represented the positions of the nodes by a data string.
  • a method of transmitting a “shape vector data sequence” and the receiving side performing map matching using the shape vector data sequence to specify a road on a digital map.
  • Patent Document 2 a method of compressing data by Fourier coefficient approximation is described in Patent Document 2 below, and data obtained by performing statistical processing on this data and concentrating it around ⁇ 0
  • a method of compressing data by variable-length coding after converting to has been proposed in Japanese Patent Application No. 2001-134334.
  • the following methods can be used to correct the shape vector displayed by the relative position. Display and encode the position of nodes included in the shape vector relatively In such cases, accumulated errors accumulate. This accumulated error is likely to accumulate when the shape vector has a long distance and has a “smooth shape” such as National Road No. 246 or National Highway No. 1. In order to prevent this, as shown in the bold line in Fig. 40, the shape vector was once bent at an intersecting road or the like, and the shape was extracted so as to return to the main line. Set the "points characterizing the shape" as a reference node to cancel the accumulated error.
  • the distance between the reference nodes of the shape vector indicated by the dotted line obtained by decoding the received data and the distance between the reference nodes of the shape vector indicated by the thick line are compared. Correct the relative position.
  • the reference node that is selected and installed in such a manner that the accumulated error can be corrected is hereinafter referred to as a “relative position correction reference node”.
  • the traffic information currently provided has the following problems.
  • Road information that is, traffic information, information on the wayside, etc.
  • congestion information has extreme extremes in the resolution of information expression.
  • the congestion information can be displayed in 10-meter units with respect to its position, but the number of traffic information expression states is only three states: congestion, congestion, and lightness.
  • traffic information related to link travel time can be expressed in fine units of 10 seconds, but the positional resolution is only ⁇ link units '', and it is not possible to express the detailed speed distribution in the link .
  • PC leakage 75 As shown in Fig. 41, one person observes the display of the traffic congestion area (section of 10 kmZh or less) on link A of the traffic information providing route, and finds that the traffic congestion is only 50 Om. I thought that it would not take much time because there was no traffic, so I passed the congested section, but the car was tightly packed and did not move at all, and it took 25 minutes to get through this 50 Om congestion Occurs.
  • link A actually took time only in the congested area near the intersection (25 minutes), except for the congested area in 5 minutes, and the traffic information displayed in the navigation system If you use a dotted road that is not provided, you will be able to get through in about 7 minutes.
  • Fig. 42 when the number of states that can express traffic information (traffic expression resolution) is plotted on the vertical axis and the position (or section) resolution is plotted on the horizontal axis, the traffic information is positioned as a link. In travel time, traffic expression resolution is high, but position resolution is low, and traffic congestion information has high position resolution, but traffic expression resolution is low. With the current traffic congestion information and link travel time information, it is not possible to express an intermediate resolution as indicated by a circle in 1214.2.
  • this circle when collecting traffic information, it is possible to collect information within this circle, and in the case of a probe car that collects data from actual traveling vehicles, this circle depends on the purpose of information collection and the amount of transmitted data. Information at each level can be collected at the center (for example, if the speed is measured up to 120 km / h in 3 km / h increments every 30 Om, the position resolution will be 3 OO m, the number of states The resolution is 40).
  • the original information collected by existing sensors before editing is also an intermediate level of traffic information, depending on the sensor density and other factors.
  • the position resolution and the traffic expression resolution are fixed, so if the data volume is large, the transmission path capacity will be exceeded as shown in Fig. 43 (a). In this case, data that exceeds the transmission path capacity is lost, and even if this data has high importance, it is not transmitted to the receiving side.
  • Fig. 44 (a) when there is room in the transmission path, traffic information is expressed with high position resolution and traffic expression resolution, and when the amount of information increases near the transmission path capacity, As shown in Fig. 44 (b), the position resolution for information on routes of low importance is reduced, the resolution of traffic representation for information on routes distant from the information provision point is reduced, and It is desirable to reduce the amount of information by reducing the location resolution and traffic expression resolution of the forecast information, and continue to display the information of the most recent important route at a high resolution.
  • the current traffic information expression format is not suitable for expressing traffic forecast information.
  • the current traffic information only provides data indicating “increase / decrease trend” as forecast information. If you try to send prediction information for traffic congestion information in the current traffic information representation format, the data volume will increase proportionally to the number of prediction time zones. On the other hand, when observing the situation of congestion, if a certain time zone is congested, there are many cases of congestion in the next time zone, so data will be duplicated and transmitted, which is inefficient. Disclosure of the invention ⁇ Object of the present invention>
  • the present invention is intended to solve such problems in conventional traffic information, and it is possible to arbitrarily set position resolution and traffic expression resolution, and to change position resolution and traffic expression resolution at any time according to the importance of information.
  • a traffic information generation method that can flexibly cope with the “prediction service” that is expected to occur in the future, a system that provides the traffic information, and a device that constitutes the system. And is intended to provide.
  • a road information providing system of the present invention includes: a road information providing device that provides a state quantity of road information that changes along a road as a function of a distance from a reference point of the road; A road information utilization device that reproduces road information on the road is provided.
  • the state quantity of the road information that changes along the road is sampled in the distance direction of the road at intervals corresponding to the position resolution of the road information, and the state quantity at each sampling point is expressed in the road information.
  • a road information providing device that quantizes according to the traffic expression resolution representing the number of possible states and encodes and provides the obtained value; and decodes the coded value to reproduce road information of the road.
  • a road information utilization device e.g., the state quantity of the prediction information of the road information that changes along the road is sampled in the distance direction of the road, the state quantity at each sampling point is quantized, and the obtained value is encoded and provided.
  • a road information providing device and a road information using device that decodes the encoded value and reproduces prediction information of road information of the road.
  • the state quantity of road information or prediction information that changes along the road is sampled in the distance direction of the road, and the state quantity at each sampling point is converted into a statistically biased value.
  • a road information providing device that provides the information by encoding, and a road information utilization device that decodes the encoded value to reproduce road information or prediction information of the road.
  • the state quantity of the prediction information of the road information that changes along the road is sampled in the distance direction of the road, and the state quantity at each sampling point is calculated at the sampling point in the adjacent time zone.
  • the difference value is quantized, and the quantized value is encoded.
  • a road information providing device for decoding the coded value to reproduce predicted information of road information on the road.
  • a state quantity of road information or prediction information that changes along the road is sampled in a distance direction of the road, and the state quantity at each sampling point is converted into a coefficient value of a frequency component by orthogonal transformation.
  • a road information providing device that encodes and provides coefficient values, and a road information utilization device that decodes the encoded coefficient values to reproduce road information or prediction information of roads is provided.
  • the state quantity of the prediction information of the road information that changes along the road is sampled in the distance direction of the road, and the state quantity at each sampling point is calculated at the sampling point in the adjacent time zone.
  • a road information providing device that expresses the difference value into a coefficient value of a frequency component by orthogonal transformation, encodes and provides the coefficient value, and decodes the encoded coefficient value.
  • a road information utilization device that reproduces predicted information of road information.
  • the road information generation device of the present invention includes a process of sampling a state quantity of road information that changes along a road at intervals corresponding to a position resolution of the road information in a distance direction of the road;
  • a road information conversion unit that performs a process of quantizing the state quantity at the quantization point using a quantization table, and an encoding processing unit that encodes data processed by the road information conversion unit using a code table.
  • a quantization unit determining unit that determines an interval corresponding to the position resolution according to a collection state of road information, and selects a quantization table used by the road information conversion unit and a code table used by the encoding processing unit.
  • an information transmitting unit for transmitting data encoded by the encoding processing unit.
  • the road information utilization device of the present invention includes an information receiving unit that receives road information represented by a function of a distance from a reference node of a shape vector indicating a road and data representing the shape vector.
  • a map matching unit that performs map matching using the data representing the shape vector and specifies the target road of the road information is provided.
  • the state quantity of the road information that changes along the road is sampled at intervals corresponding to the position resolution of the road information in the distance direction of the road, and at each sampling point.
  • a traffic table showing the number of states that can express the state quantity of the road information PC leakage 75 Quantizes according to the current resolution, converts the obtained value into a statistically biased value, and encodes the converted value to generate road information.
  • the state quantity of the road information that changes along the road is sampled in the distance direction of the road at intervals corresponding to the position resolution of the road information, and the state quantity at each sampling point is subjected to a frequency component by orthogonal transformation. Then, the coefficient value is quantized so as to be statistically biased, and the quantized coefficient value is encoded to generate road information.
  • the program of the present invention includes a computer that determines the interval at the time of sampling road information and the coarseness of quantization at the time of quantization according to the collection state of the road information; Sampling the state quantity of the road information in the distance direction of the road at the interval, and using the quantization table corresponding to the quantization roughness to calculate the state quantity at each sampling point. A procedure for quantization and a procedure for encoding and compressing the quantized value are performed.
  • the computer determines the interval at which the road information is sampled and the coarseness of the quantization at the time of quantization according to the collection state of the road information, and the amount of state of the collected road information.
  • a procedure for encoding and compressing the quantized value is performed by the quantized value.
  • the recording medium that provides the road information includes road information data representing a state quantity of the road information that changes along the road as a function of a distance from a reference point on the road, and specifies the road.
  • Road section reference data is recorded.
  • the position resolution and the traffic expression resolution can be arbitrarily set, and the resolution of the information expression can be changed at any time according to the importance of the road information.
  • it can flexibly cope with “prediction service” of road information.
  • FIG. 1 shows a method of calculating a statistical prediction difference value of traffic information according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a correlation used in generating traffic information according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a traffic information quantization table according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a code table of statistical prediction difference values according to the first embodiment of the present invention.
  • FIG. 5 is a system configuration diagram according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing the operation of the system according to the first embodiment of the present invention.
  • FIG. 7 is a data configuration diagram of the original information according to the first embodiment of the present invention.
  • FIG. 8 is a data configuration diagram of shape vector data and traffic information according to the first embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a quantization unit determination procedure according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing a quantization unit determination table according to the first embodiment of the present invention.
  • FIG. 11 is a flowchart showing a quantization unit determination procedure based on the distance from the recommended route in the first embodiment of the present invention.
  • FIG. 12 is a flowchart showing a pre-processing procedure in the first embodiment of the present invention.
  • FIG. 13 is a diagram showing peaks and dips in the first embodiment of the present invention.
  • FIG. 14 is a flowchart showing a processing procedure of peak and dip deletion in the first embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a differential expression of prediction information according to the second embodiment of the present invention.
  • FIG. 16 shows the calculation of the statistical prediction difference value of the prediction information according to the second embodiment of the present invention. It is a figure showing a method.
  • FIG. 17 is a diagram showing a code table of statistical prediction difference values and prediction information according to the second embodiment of the present invention.
  • FIG. 18 is a system configuration diagram according to the second embodiment of the present invention.
  • FIG. 19 is a flowchart showing the operation of the system according to the second embodiment of the present invention.
  • FIG. 20 is a data configuration diagram of shape vector data and traffic information according to the second embodiment of the present invention.
  • FIG. 21 is a diagram illustrating a change in the information expression resolution of prediction information according to the second embodiment of the present invention.
  • FIG. 22 is a diagram illustrating a process of changing the information expression resolution of prediction information according to the second embodiment of the present invention.
  • FIG. 23 is a diagram illustrating a quantization table of prediction information according to the second embodiment of the present invention.
  • FIG. 24 is a data configuration diagram of traffic information in which the information expression resolution of prediction information is changed according to the second embodiment of the present invention.
  • FIG. 25 is a diagram illustrating another example of a statistical prediction value according to the second embodiment of the present invention.
  • FIG. 26 is a diagram showing a quantization procedure using FFT in the third embodiment of the present invention.
  • FIG. 27 is a diagram illustrating a quantization procedure using FFT when the quantization table is changed in the third embodiment of the present invention. .
  • FIG. 28 is a flowchart showing the operation of the system according to the third embodiment of the present invention.
  • FIG. 29 is a data configuration diagram of traffic information expressed in FFT according to the third embodiment of the present invention.
  • FIG. 30 is a diagram illustrating a code table of FFT coefficients according to the third embodiment of the present invention.
  • FIG. 31 is a data configuration diagram of traffic information according to the fourth embodiment of the present invention.
  • FIG. 32 is a diagram illustrating a procedure for transmitting traffic information according to the fourth embodiment of the present invention.
  • FIG. 33 is a system configuration diagram according to the fourth embodiment of the present invention.
  • FIG. 34 is a data configuration diagram of traffic information according to the fifth embodiment of the present invention.
  • FIG. 35 is a system configuration diagram according to the sixth embodiment of the present invention.
  • FIG. 36 is an explanatory diagram of an interactive system according to the seventh embodiment of the present invention.
  • FIG. 37 is a data configuration diagram of request information in the seventh embodiment of the present invention.
  • FIG. 38 is a flowchart showing the operation of the system according to the seventh embodiment of the present invention.
  • FIG. 39 is a system configuration diagram according to the seventh embodiment of the present invention.
  • FIG. 40 is an explanatory diagram of a conventional relative position correction method using a reference node.
  • FIG. 41 is an explanatory diagram for explaining a problem of conventional traffic information.
  • Fig. 42 is an explanatory diagram for explaining a problem in the information display resolution of the conventional traffic information.
  • FIG. 43 is an explanatory diagram for explaining a problem at the time of transmitting conventional traffic information.
  • FIG. 44 is a diagram for explaining how the information display resolution should be.
  • FIG. 45 is a diagram showing road section reference data.
  • FIG. 46 is a block diagram showing a configuration of the probe car information collecting system according to the eighth embodiment of the present invention.
  • Sensor A ultrasonic vehicle sensor
  • Sensor B AVI sensor
  • Sensor C probe car
  • the expression format (that is, the number of the position resolution and the number of state resolutions) of the “travel time information” and the “congestion information” that are the “traffic congestion indexes” is different, but the vehicle traveling speed is fundamental. There is no difference in that it is traffic information that changes continuously along the road, and both are considered to be essentially the same.
  • traffic information that continuously changes along the road is captured as a function of the distance (length) from the start end of the target road or a reference node defined in the target road section. .
  • the provider of the traffic information must use this function or the function
  • the number and the road section reference data specifying the target road are transmitted to the receiving side, and the receiving side reproduces the function from the received information, specifies the target road from the road section reference data, and follows the target road. Play continuously changing traffic information.
  • the reference nodes of the target road (shape vector) for which the traffic information is provided are resampled at equal intervals and sampled in the distance direction.
  • the value of the traveling speed (or travel time, traffic congestion information) is calculated, and the traffic information is represented by a data string of this value.
  • the road section reference data various data can be used as described later.
  • the case where the target road is specified using the shape vector indicating the road shape will be described. I do.
  • traffic information is schematically represented by a graph in which the horizontal axis indicates the distance on the shape vector and the vertical axis indicates the time axis.
  • One cell on the horizontal axis indicates the unit section length of the quantization unit (distance-direction quantization unit) set by sampling, and one cell on the vertical axis is separated at a fixed time interval.
  • traveling speed information corresponding to the distance from the reference node (start point) ′ and the elapsed time from the current time is recorded.
  • the reference node for relative position correction is set to the reference node on the horizontal axis.
  • this graph is divided into (a) the area where driving speed is ranked as congestion (general road: ⁇ 10 km / h ⁇ highway: ⁇ 20 kmXh) and (b) congestion. Areas to be ranked (general roads: 10 to 20 km / h ⁇ highways: 20 to 40 km / h) (c) Area classified as deserted (general road: ⁇ 20 km / h ⁇ expressway: ⁇ 40 km /) and (d) unknown area.
  • the actual traffic situation obtained from past observations of traffic conditions can be expressed as the following law of correlation that indicates the correlation between frames.
  • Correlation law A The correlation between the frames adjacent in the distance direction is high (if a point is congested, the adjacent point is also congested) (Fig. 2, (1))
  • Correlation rule B The correlation between frames adjacent in the time direction is high (if there is a traffic jam at a certain time, the times before and after it are also traffic jams).
  • Correlation law C Correlation to change in time direction is high (when the traffic starts, all roads are almost completely crowded at the same time) (Fig. 2, (3))
  • Correlation law D Bottleneck intersection (Start point of congestion) Traffic speed, and the reverse propagation speed of traffic congestion on highways is almost constant ((in Figure 2).
  • the data amount can be reduced by using such a correlation law.
  • Figure 1 shows the process of performing statistical processing on traffic information data (state quantity) and converting this data into data concentrated around ⁇ 0 when the traffic information at the current time is variable-length coded. ing.
  • the shape vector of distance X m is sampled from the reference node at equal intervals by the unit block length (for example, 50 to 500 m).
  • the average speed of the vehicle passing through each sampling point is determined.
  • the calculated velocity value is shown in the frame representing the quantization unit set by sampling. In this case, instead of the average speed, the average travel time and the congestion rank of vehicles passing through the sampling point interval may be obtained.
  • this speed value is converted to a quantization amount using the traffic information quantization table in FIG.
  • this traffic information quantization table since the user seeks detailed information during congestion, if the speed is less than 10 km / h, the quantization amount is incremented in 1 km / h steps. The quantization increases in increments of 2 kmZh in the speed range of 10 to 19 kmZh, and increases in increments of 5 km / h in the range of speeds of 20 to 49 km / h. In addition, when the speed is over 50 kin // h, the quantization amount is set to increase in increments of 10 kmZh. The value quantized using this traffic information quantization table is shown in Fig. 1 (c).
  • the quantized value is expressed as a difference from the statistical prediction value.
  • the quantized speed Vn of the quantization unit of interest the quantized speed Vn- ⁇ of the upstream quantization unit is used as the statistical prediction value S, and the difference is calculated by (Vn — Vn-l) .
  • the calculation result is shown in Fig. 1 (d).
  • the frequency of occurrence of values around ⁇ 0 is calculated by the correlation law A (the traffic conditions of adjacent quantization units are similar). Will be higher.
  • Variable-length coding is performed on the data that has been subjected to such processing. This variable-length encoding process is similar to that shown in Japanese Patent Application No. 2001-134318.
  • a code table for encoding the statistical prediction difference of traffic information as shown in Fig. 4 is created, and the value of Fig. Is encoded.
  • +2 is encoded as "1111000”
  • -2 is encoded as "1111001”.
  • 0s are continuous like 00000, it is encoded as "100”.
  • the code table includes a block length change code for indicating a change in the unit block length from a certain point when the unit block length is switched from a certain point, and a traffic information quantization table from a certain point.
  • the traffic information quantization table change code ⁇ to indicate the change of the traffic information quantization table from that point
  • the reference node corresponding point identification code to indicate the reference node. Is set as a special code.
  • traffic information is quantized, converted to statistical prediction difference values, and the frequency of occurrence of values around ⁇ 0 is increased, so that variable-length coding (Huffman / arithmetic code / Shannon-Fano etc.) and run length Compression (run-length encoding) improves data compression effectiveness I do.
  • variable-length coding Huffman / arithmetic code / Shannon-Fano etc.
  • run length Compression run-length encoding
  • the run length compression effect is increased by processing such as setting all quantization speeds above the legal speed to a fixed quantization amount in the traffic information quantization table (Fig. 3).
  • the speed Vn-1 of the quantization unit on the upstream side is used as the statistical prediction value, but another statistical prediction value may be used.
  • the statistical prediction value S a Vn-1 + b Vn_2 + c Vn-3 (where a + b
  • FIG. 5 shows a broadcast-type traffic information providing system that generates and provides traffic information.
  • This system consists of a traffic information measurement device 10 that measures traffic information using sensor A (ultrasonic vehicle sensor) 21, sensor B (AVI sensor) 22, and sensor C (probe car) 23, and encodes traffic information.
  • Code table creating unit 50 for creating a code table for performing traffic information
  • a traffic information transmitting unit 30 that encodes and transmits traffic information and information of a target section thereof, and a receiving device such as a car navigation system that receives the transmitted information. Consists of 60.
  • the traffic information measurement device 10 includes a sensor processing unit A (11), a sensor processing unit B (12), and a sensor processing unit C (13) that process data acquired from each of the sensors 21, 22, and 23.
  • a traffic information calculator 14 that generates traffic information using the data processed by the units 11, 12, and 13, and outputs the traffic information data and data indicating the target section; It has.
  • the code table creation unit 50 includes a plurality of types of traffic information quantization tables 53 used for quantization of traffic information, a distance quantization unit parameter table 54 for specifying a plurality of types of sampling point intervals (unit section lengths), and
  • the code table calculation unit 51 that creates a code table classifies the past traffic conditions acquired from the traffic information measurement device 10 into patterns, and performs a traffic information quantization table 53 and sampling for all patterns. Create various code tables 52 corresponding to all combinations of point intervals.
  • the traffic information transmission unit 30 determines the traffic condition based on the collected traffic information and the traffic information collection unit 31 that collects traffic information from the traffic information measurement device 10, and determines the sampling point interval (distance direction quantization). Unit length of the unit), and the quantization unit determination unit 32 that determines the quantization table and code table to be used, and the sampling point interval and traffic information quantization table 53 determined by the quantization unit determination unit 32.
  • the traffic information conversion unit 33 performs quantization of traffic information and conversion processing to statistical prediction difference values using the traffic information conversion unit, and converts the shape vector data of the target section to statistical prediction difference values.
  • An encoding processing unit 34 performs encoding processing of traffic information using the code table 52 determined by the determining unit 32, and performs an encoding processing of a shape vector of the target section. Information transmission for transmitting shape vector data And parts 35, and a digital map data base over scan 36 the traffic information converting unit 3 3 refers.
  • the receiving device 60 includes an information receiving unit 61 that receives the information provided from the traffic information transmitting unit 30, a decoding processing unit 62 that decodes the received information to reproduce the traffic information and the shape vector, and a digital Map matching of shape vectors using data from the map database 65 to determine the target section of traffic information and the map matching and section determination unit 63, and the received traffic information to the link cost table 66 for the target section data
  • a traffic information reflecting unit 64 that reflects the traffic on the vehicle, a vehicle position determining unit 68 that determines the vehicle position using the GPS antenna 69 and the jay mouth 70, and a link cost table for searching for routes from the vehicle position to the destination
  • An information utilization unit 67 that utilizes the information 66 , and a guidance device 71 that provides voice guidance based on the route search result.
  • the code table calculation unit 51 of the code table creation unit 50 and the quantum table calculation unit 51 of the traffic information transmission unit 30 The functions of the coding unit determination unit 32, traffic information conversion unit 33, coding processing unit 34, information transmission unit 35, etc. are realized by causing a computer built in the device on the traffic information providing side to perform the processing specified by the program.
  • the functions of the decryption processing unit 62, the map matching and section determination unit 63, the traffic information reflection unit 64, the own vehicle position determination unit 68, and the information utilization unit 67 of the reception-side device 60 are as follows. It can be realized by causing a computer (CPU) built in the receiving device 60 to perform the processing specified by the program.
  • FIG. 7 shows a data structure of map data (a) indicating a target section of traffic information output by the traffic information measuring device 10, and traffic information data (b).
  • the flowchart in FIG. 6 shows the operation of each part of the system.
  • the code table calculating unit 51 of the code table creating unit 50 analyzes the past traffic information sent from the traffic information measuring device 10 and totals the traffic information in the traffic condition of the pattern L (Step 1), and calculates the distance.
  • a direction quantization unit (sampling point interval) M is set (step 2), and a traffic information quantization table N is set (step 3).
  • the statistical prediction difference value of this traffic information is calculated according to the statistical prediction value calculation formula (step 4).
  • the distribution of statistical prediction difference values is calculated (step 5), and the run length distribution (continuous distribution of the same value) is calculated (step 6).
  • a code table is created based on the statistical prediction difference value and the run length distribution (step 7), and a code table for case L-M_N is completed (step 8). This process is repeated until all L, M, and N cases are completed (step 9). In this way, a large number of code tables that can correspond to various traffic situation patterns and resolutions of information expression are created and held in advance.
  • the traffic information transmitting unit 30 collects traffic information and determines a traffic information providing section.
  • Step 10 For one traffic information provision section V (Step 11), a shape vector around the traffic information provision section V is generated, and a reference node is set (Step 12). Then, the shape vector is reversible. Or perform lossy coding compression (step 13).
  • the method of encoding and compressing is described in detail in Japanese Patent Application No. 2000-1134.
  • the quantization unit determination unit 32 determines the traffic situation, and determines the sampling point interval (unit section length of the quantization unit in the distance direction) and the quantization level (step 14). This processing will be described later in detail.
  • the traffic information conversion unit 33 performs sampling in the distance direction from the reference node of the shape vector with the determined unit block length, divides the traffic information provision section (step 15), and Calculate traffic information (step 16). Next, preprocessing is performed to enhance the compression effect of the encoding (step 17). This pre-processing will be described later in detail.
  • the traffic information conversion unit 33 quantizes the traffic information using the traffic information quantization table 53 determined by the quantization unit determination unit 32 based on the quantization level (step 18), and converts the quantized traffic information. Convert to statistical prediction difference value (step 19).
  • the encoding processing unit 34 performs variable-length encoding and compression of the quantized traffic information using the code table 52 determined by the quantization unit determination unit 32 (step 20). Further, the unit section length is corrected using the relative position correction reference node (step 21).
  • the information transmitting unit 35 converts the encoded data into transmission data (step 24), and transmits the data together with the code table (step 25).
  • FIG. 8 shows an example of the data structure of the shape vector data string information (a) and the traffic information (b) transmitted from the traffic information transmitting unit 30.
  • a code table of the shape vector In addition to the above information, a code table of the shape vector, a traffic information quantization table (FIG. 3), a code table of the statistical prediction difference value of the traffic information (FIG. 4), and the like are simultaneously provided. (Or via another route).
  • the traffic information (Fig. 8 (b)) has a data item of "the number of quantized unit sections", but instead of this data, the EOD (code table) that indicates the end of the data in a code table is used.
  • EOD code table
  • (End of Data) code may be set as a special code to indicate the end of the distance direction quantization unit in the encoded traffic information data string.
  • the information receiving unit 61 receives the data (step 30), for each traffic information providing section V (step 31), the receiving device 60 62, the shape vector is decoded, and the map matching and section determination section 63 performs map matching on its own digital map database 65 to specify the target road section (step 32). Also, use the reference node for relative position correction. To determine the unit section length (Step 33).
  • the decoding processing section 62 decodes the traffic information with reference to the code table (step 34).
  • the traffic information reflecting unit 64 reflects the decrypted travel time on the link cost of the own system (step 35). Such processing is performed for all traffic information provision sections (steps 36 and 37).
  • the information utilization unit 67 displays the required time and executes route guidance using the provided travel time (step 38). How to determine the quantization unit>
  • the quantization unit determination unit 32 of the traffic information transmission unit 30 determines the traffic condition and determines the sampling point interval (unit length of the quantization unit in the distance direction) and the quantization level in the process of FIG. Step 14) will be described.
  • the quantization unit determination unit 32 determines the traffic condition and determines the resolution of the information expression so that the amount of traffic information transmission data does not exceed the transmission path capacity of the traffic information transmission unit 30. As shown in Fig. 44, the resolution of the information representation is based on the position resolution and the traffic expression resolution, and the position resolution is the interval between the sampling points when sampling (the unit of the quantization unit in the distance direction).
  • the traffic expression resolution is determined by the quantization level, which indicates the coarseness of the quantization, which is determined by the selected quantization table.
  • the quantization unit determination unit 32 determines the sampling point interval and the quantization template as part of determining the resolution of the information expression.
  • the traffic information will be detailed, but the data volume will be large. Conversely, if the sampling point interval is large, the traffic information will be coarse, but the data volume will be small. Similarly, if the state quantity of traffic information is quantized using a finely divided quantization table, the traffic information can be expressed in detail, but the data amount increases. Conversely, using a coarse quantization template will give a rough overview of traffic information but will require less data.
  • the quantization unit determination unit 32 predicts the transmission data amount of traffic information from the current traffic situation, and adjusts the resolution of the information expression so that the transmission data amount does not exceed the transmission path capacity. At this time, the quantization unit determination unit 32 determines the sampling point interval and the quantization table that represent the traffic information of each route in consideration of the importance of the traffic information of each route, In addition, as a code table used for encoding, a code table corresponding to the sampling point interval and the quantization table and the traffic situation pattern is determined.
  • the flowchart of FIG. 9 shows an example of the processing of the quantization unit determination unit 32.
  • the quantization unit determination unit 32 determines the target data size based on the transmission path capacity so that the transmission data amount does not exceed the transmission path capacity of the traffic information transmission unit 30 (Step 40). Next, the data size of the original information (FIGS. 7 (a) and (b)) sent from the traffic information measuring device 10 in the previous cycle and the transmission data (FIG. 8 (a) ) And (b)), the data size of the original information (Fig. 7 (a) and (b)) sent from the traffic Calculate whether the data size will be about the size, and determine the expansion rate (or reduction rate) of the target data based on that (Step 41).
  • the traffic situation pattern L is determined from the current traffic situation (step 42).
  • one traffic information providing section W around the transmission point where the traffic information transmitting section 30 is transmitting traffic information is extracted (steps 43 and 44), and the map data link of the traffic information providing section W is extracted. Attributes (road type / road number / number of intersections per unit length, etc.), road structure such as road width, traffic volume, traffic conditions (congestion occurrence status, etc.), and center of gravity and transmission point of traffic information providing section W The information importance of the traffic information provision section W is determined based on the distance from the road (step 45).
  • Fig. 10 (a) calculate the increase / decrease value in the column where the information importance obtained in step 45 and the expansion rate (or reduction rate) of the target data obtained in step 41 intersect, and calculate the information importance.
  • the quantization unit rank is calculated by adding the increase / decrease value to the default value of the corresponding information expression rank (quantization unit rank).
  • the sampling point interval (distance-direction quantization unit) M w and the traffic information quantization table N w corresponding to the quantization unit rank are determined from the table of FIG. 10 (b) (step 46).
  • a code table of L—M w —N w is used to encode the traffic information of the traffic information provision section W.
  • This process is performed for all traffic information provision sections around the transmission point (steps 47 and 48).
  • the sampling point interval and the quantization level can be dynamically changed.
  • information in Tokyo is provided in a fine detail
  • information in neighboring prefectures is coarse
  • information in beacons is not provided.
  • the sampling point interval and quantization level can be changed according to the distance from the information providing point or the information providing area, for example, the information around the location of the beacon is finer and coarser as the distance from the point increases.
  • the center calculates the recommended route and provides the recommended route and the traffic information around it
  • the resolution of the traffic information on the recommended route is reduced and the recommended route is
  • the resolution of the traffic information in the deviated surrounding area indicates a method of roughening according to the distance from the recommended route.
  • the quantization unit determination unit 32 collects the recommended route information (step 50), determines the traffic situation pattern L from the current traffic situation (step 51), and ranks 1 from the table of FIG. 10 (b). Distance direction quantization unit M 0 and traffic information quantization table N of corresponding recommended route. Is determined (step 52).
  • One traffic information provision section W around the recommended route is extracted (steps 53 and 54), the center of gravity of the traffic information provision section W is calculated, and the perpendicular distance from the center of gravity to the recommended route is calculated (step 55). From this perpendicular distance, the distance direction quantization unit Mw of the traffic information providing section W and the traffic information quantization table Nw are determined (step 56).
  • This process is performed for all traffic information provision sections around the recommended route (steps 57 and 58).
  • the quantization unit determination unit 32 determines the resolution of the information expression according to the importance of the traffic information to be provided.
  • the traffic information conversion unit 33 performs a process of equalizing (leveling) the data before quantizing the traffic information before the quantization of the traffic information so as to increase the compression effect.
  • the flow chart of FIG. 12 shows the procedure of the pre-processing process for equalizing the data by taking the weighted average of the data in the adjacent N sections. Focusing on the section p in order from the beginning of the distance direction quantization unit (steps 60 and 61), the section! ), And traffic information Tp for each section for a total of N sections including the preceding and following sections around p (step 62). Next, the traffic information ⁇ of the section; is replaced with the weighted average of the traffic information of the section ⁇ ⁇ calculated by the following equation (step 63).
  • Such pre-processing represents the overall trend of microscopically changing traffic conditions. By performing this pre-processing, the statistical prediction difference value after quantization is concentrated around 0, and the compression effect in encoding is enhanced.
  • Fig. 13 (a) when the data of some section is larger than the data of the section before and after it and the difference is more than the specified value, this is called peak, and Fig. 13 As shown in (b), when the data in some sections is smaller than the data in the preceding and following sections and the difference is greater than or equal to the specified value, this is called a dip. If the section between the peak and dip is short, that information can be ignored.
  • the flowchart of FIG. 14 shows the pre-processing method in this case.
  • the traffic information Tp in each section from the section p to the N section is collected (Step 71) by focusing on the section: (Steps 70 and 71) in order from the first section of the distance direction quantization unit (Step 71).
  • a peak and a dip in the section between p and p + N are searched (step 72). If the width of the peak and dip is less than the specified value, replace the peak and dip with the average value of the traffic information in the preceding and following sections (step 73).
  • the search for peaks and dips can be performed, for example, in the following procedure.
  • Tp + i is determined to be a peak or dip.
  • the sampling point interval (unit length of the quantization unit in the distance direction) for quantizing traffic information
  • the distance from the reference node of the shape vector has been set.
  • the case of sampling at equal intervals (fixed value intervals) in the direction has been described, but the number of divisions between the start and end of the shape vector is specified, and the interval between the start and end is equally divided by the number of divisions , And a distance direction quantization unit may be set.
  • the traffic information data (Fig. 8 (b)) includes the data of the reference node number at the end, the reference node number at the start, and the number of divisions from the start to the end.
  • the receiving side that has received this calculates the unit section length of the distance direction quantization unit by using (distance between start and end reference nodes / division number).
  • a section between component points such as nodes and interpolation points included in the shape vector can be used as a distance direction quantization unit of the traffic information.
  • the interval between the positions of the component points after the compression encoding of the shape vector is defined as a section in the distance direction quantization unit.
  • the distance quantization units are not equally spaced, variable-length coding is possible by expressing the travel time (or travel speed) as a difference from the traffic information of adjacent distance quantization units.
  • the shape vector data sequence was sent to the receiving side.
  • the receiving side identifies the target road section of traffic information by referring to this shape vector data string has been described, but the data for identifying the road section (road section reference data) is not included.
  • Use other than the shape vector data sequence is also possible. For example, as shown in Fig. 45 (a), unified road section identifiers (link numbers) and intersection identifiers (node numbers) may be used.
  • the providing side transmits the latitude-longitude data to the receiving side, and the receiving side can specify the road section based on this data.
  • intermittent nodes P1 extracted from intersections and roads in the middle of links P1 ⁇ Latitude / longitude data may be transmitted to the receiving side to convey the target road.
  • Pl link midpoint
  • P2 intersection
  • P3 link midpoint
  • P4 link midpoint.
  • the receiving side first specifies the positions of Pl, P2, P3, and P4 as shown in Fig. 45 (c), and then connects the sections by route search. Identify the target road section.
  • the target road section of the traffic information may be specified by using these road section reference data, using the kilopost, the road name, the address, the postal code, and the like provided in the area.
  • the first method is a method of calculating the difference in the distance direction in the traffic information (a) in the time zone N + 1 (d), and encoding the information of this difference (change point). This is the first [0303875] This is the same as the current information encoding method described in the embodiment.
  • the second method extracts the difference between traffic information (a) in time zone N + 1 and traffic information (b) in time zone N before that (c), and further calculates the difference in the distance direction of this difference. This is a method of calculating and encoding (e).
  • Ordinary traffic congestion can be caused by "the bottleneck intersection (Harajuku intersection or the Hadano bus stop of Tomei Expressway) and the tail stretches and shrinks", and "Even if the time difference between time zones N to N + 1 is small, There are many places where the end of congestion does not move. "Therefore, the second method is more advantageous overall. However, in the case of “congestion before and after congestion” or “when both the beginning and end of congestion change”, the total number of change points is larger in the second method (e), and the first method (d ) Is advantageous. In other words, it is considered case-by-case, and switching between the first method and the second method for each traffic information provision section is considered to be the most effective depending on the time difference up to the predicted time zone and the traffic change situation. .
  • the second embodiment will describe the generation of traffic information by the second method.
  • Figure 16 (a) shows the current information in each distance direction quantization unit and the traffic information in the prediction information for the next time zone.
  • the traffic information in the current information and the prediction information is quantized using a quantization table ( Figure 16 (b)).
  • the prediction information is expressed as the difference from the current information (Fig. 16 (c)).
  • the value of the prediction information is concentrated around ⁇ 0 due to the correlation law B.
  • the value of the current information is expressed as a difference from the statistical prediction value, using the value of the adjacent quantization unit in the distance direction as the statistical prediction value.
  • the prediction information is also represented by the difference from the statistical prediction value (Fig. 16 (d)). At this time, most of the statistical prediction difference values of the prediction information are concentrated around ⁇ 0 by the correlation law C. Inside.
  • the statistical prediction difference value between the current information and the prediction information thus obtained is encoded using a code table.
  • the code table for coding the statistical prediction difference value of the current information is the same as in the case of the first embodiment (FIG. 4).
  • the code table that encodes the statistical prediction difference value of the prediction information is the same as the current information code table except that there is no special code, as shown in Fig. 17 (b).
  • Figure 18 shows a broadcast-type traffic information providing system that generates and provides traffic information including forecast information.
  • the traffic information measuring device 10 of this system generates the current information of the traffic information using the data processed by each of the sensor processing units 11, 12, and 13, and generates the prediction information using the statistical information 16,
  • a traffic information / prediction information calculation unit 15 that outputs the traffic information data and the data indicating the target section is provided.
  • Other configurations are the same as those of the first embodiment (FIG. 5).
  • the flow chart of FIG. 19 shows the operation of each part of this system.
  • the process of the code table creation unit is different from the process of the code table creation unit (step 104 to step 08) in that the process of creating the code table used for encoding the prediction information is added.
  • the difference is that the processing of the traffic information transmitting unit encodes the data of the prediction information together with the current information in the processing of steps 116 to 120. Others are the same.
  • FIG. 20 shows an example of the data structure of the shape vector data string information (a) and the traffic information (b) transmitted from the traffic information transmitting unit 30.
  • the shape vector data string information (a) is the same as that of the first embodiment (FIG. 8A).
  • traffic information (b) the data indicated by stars is different from that in the first embodiment (Fig. 8 (b)), and the identification code that specifies the code table of the prediction information and the valid time zone of the prediction information are changed.
  • Information, prediction information encoded data, etc. are added. For forecast information, when enabled A plurality of data with different interzones are included.
  • a code table of the shape vector From the traffic information transmitting unit 30, in addition to the shape vector data sequence information (a) and the traffic information (b), a code table of the shape vector, a traffic information quantization table, and a statistical prediction difference value of the traffic information.
  • the code table (Fig. 17 (a)) and the code table of prediction information (Fig. 17 (b)) are transmitted simultaneously (or by another route). Changing the resolution of prediction information>
  • the prediction accuracy decreases as the far future is predicted.
  • FIG. 21 (b) schematically shows how the position resolution is reduced and the traffic expression resolution is reduced according to the future time from the original information (FIG. 21 (a)).
  • multiple distance-direction quantization units are combined into one distance-direction quantization unit, and the average value of the data in each distance-direction quantization unit is used as the combined data in the distance-direction quantization unit.
  • data is quantized using a coarse quantization table.
  • Fig. 22 shows a case where the position resolution is reduced from the original prediction information (a), and the traffic expression resolution is reduced by using the quantization table with multiple levels of roughness shown in Fig. 23. An example is shown in which a statistical prediction difference value of prediction information is obtained. In Figure 22 (b), the position resolution is reduced by half. Traffic information values are averaged and rounded up.
  • the prediction information and the current information are quantized using the quantization table of "quantization amount (current)" in Fig. 23.
  • the prediction information is further quantized using the quantization table of "quantization amount (prediction 1)" in Fig. 23, and the traffic expression resolution of the prediction information is reduced.
  • the difference in the time direction between the current information quantized using the quantization table of the quantization amount (prediction 1) J and the predicted information in Fig. 22 (d) is extracted. .
  • Fig. 22 (f) the prediction information obtained in Fig. 22 (e) and the prediction information obtained in Fig. 22 (c) are shown.
  • the statistical prediction difference value is calculated using the value of the adjacent quantization unit as the statistical prediction value.
  • the position resolution of the prediction information is reduced by half (that is, the unit section length is doubled).
  • the unit section length can be set to an arbitrary value of 1.0 times or more. is there. (However, setting it to 1.5 times or 1.25 times is appropriate for practical use because the calculation is troublesome.)
  • the traffic expression resolution of the prediction information was reduced to half, but it can be set arbitrarily as long as the direction becomes rougher (however, the calculation becomes cumbersome). Since the calculation of the fraction at the end of the distance direction is troublesome, it is realistic to calculate the “unit length of the coarsest state” in advance and divide it into 2N based on that section length. Conceivable.
  • the decoding procedure is shown by 1 to 1 on the right side of FIG. Fig. 24 shows the data structure of traffic information when the resolution of prediction information is changed.
  • a position resolution identification code (a code indicating that the unit section length is doubled!)
  • a quantization table number are added.
  • the resolution of the information expression can be changed according to the future time at which the prediction is performed, and the transmission data amount can be reduced.
  • the traffic information represented by a function of the distance from the reference node is subjected to orthogonal transform to be decomposed into frequency components, and the traffic information is represented by coefficients of each frequency component. The method will be described.
  • FFT Fast Fourier Transform
  • DCT Discrete Cosine Transform
  • Wavelet Transform and the like are known as methods for performing orthogonal transform on time-series data and converting them into frequency component coefficients.
  • FFT Fast Fourier Transform
  • DCT Discrete Cosine Transform
  • Wavelet Transform and the like are known as methods for performing orthogonal transform on time-series data and converting them into frequency component coefficients.
  • FFT Fast Fourier Transform
  • DCT Discrete Cosine Transform
  • Wavelet Transform Wavelet Transform
  • the Fourier transform is a transform that obtains Fourier coefficients using a finite number of discrete values (sample values). For a discrete value represented by a complex function f, a complex function C is
  • FFT Fast Fourier Transform
  • Figure 26 shows an example of an experiment in which traffic information was actually represented by Fourier coefficients.
  • 1 “Original traffic information data” indicates the state quantity of traffic information at each sampling point (corresponding to the data in Fig. 1 (b)).
  • FFT two pieces of information can be sent simultaneously using the real part and imaginary part of the complex function, so here, "speed information” is set for the real part, and “congestion information” is set for the imaginary part. are doing.
  • the data in (1) is expressed as an imaginary number (the number suffixed with “i” indicates an imaginary coefficient), and the FFT conversion processing is performed, and the obtained FFT coefficients are shown.
  • the quantization table is equivalent to the “traffic information quantization table” at the time of encoding and compression.
  • the (2) FFT coefficient is divided by the value of the quantization table (that is, quantized), and “(4) transmission data” Get.
  • the FFT coefficients are described as follows: ⁇ The higher the coefficient described at the top of the row, the lower the frequency, and the lower one is the coefficient of the high frequency. '' The value of “3Quantization table” is set small so that it can be expressed in detail, and the value of “3Quantization table” is set so that the higher the frequency, the coarser the value.
  • Transmission data is obtained by quantizing the FFT coefficient of (2) using the quantization table (3).
  • the value of the quantization table is 64, the real and imaginary parts of the FFT coefficient are divided by 64, and the decimal part is rounded.
  • 4Transmission data is coarsely quantized for higher frequency components, so the values after the sixth line from the top are relatively small, and values are concentrated around “0”.
  • This transmission data is transmitted after being subjected to variable-length coding and compression as described later (note that FFT coefficients do not have regularity, so that processing such as statistical difference is not performed). By concentrating the values in the vicinity, the compression effect of variable length coding will be achieved.
  • (3) quantization table is also transmitted to the receiving side as table information necessary for decoding.
  • 5Inverse FFT transformation is the process of inverse FFT transformation of the received Fourier coefficients (4).
  • each coefficient of the real part integer imaginary part integer of the received data is quantized. (If the value in the quantization table is 64, multiply the real part and imaginary part of the received data by 64 and round off the decimal point.)
  • the value is subjected to inverse FFT transformation.
  • 6Reconstructed traffic information data is obtained by rounding off the real part of the inverse FFT coefficient obtained by the inverse FFT transformation and the coefficient value of the imaginary part, and restoring the real number to speed information and the imaginary part to congestion information.
  • Fig. 27 shows the same measurement data as in Fig. 26, (3) setting the quantization table in detail and transmitting the data in a form close to the raw data.
  • the transmission data has a wider range of high-frequency components compared to Fig. 26 (variation centered on soil 0 is large), and the amount of information to be transmitted is larger and variable. The effect of the long coding compression is lost.
  • Flow diagram of c Figure 2 8 system configuration of the same as Figure 5 provides convert the traffic information to the FFT coefficient shows a processing procedure in this system.
  • the code table creator performs the FFT to obtain the FFT coefficients (step 204), quantizes the FFT coefficients to calculate the quantization coefficients (step 205), and calculates the distribution of the quantization coefficients (step 207). ), Calculate the run length distribution (Step 207), and create a code table based on them (Step 208).
  • the traffic information transmitting unit adjusts the level of the traffic information set in the real part and the imaginary part (step 218), performs an FFT, converts the Fourier coefficient into a Fourier coefficient (step 219), and converts the Fourier coefficient into a code table. And performs variable-length coding and compression (step 220). Further, the receiving side device performs inverse Fourier transform with reference to the code table to decode the traffic information (step 234).
  • FIG. 30 shows a code table used for encoding
  • FIG. 29 shows a data configuration example of traffic information transmitted from the traffic information transmitting unit.
  • the traffic quantization table identification code corresponds to the identification number of 3 quantization table in Figure 26.
  • the code table identification code indicates the identification code of the code table in FIG.
  • the number of data to be transmitted (corresponding to the number of rows X 2 in the table in FIG. 27) is usually twice the number of section divisions between reference nodes 2 N. However, when transmitting by cutting high-frequency components, the number will differ. This is identified by the EOD code in the code table. At this time, the receiving side regards the Fourier coefficient of the high-frequency component as 0 and performs the decoding process.
  • traffic information is sampled in the distance direction of the shape vector indicating the road, the function of traffic information represented by the state quantity at each sampling point is decomposed into frequency components, and the coefficient value of each frequency is encoded.
  • the traffic information can be restored at the receiving device.
  • This method can be similarly applied to prediction information of traffic information.
  • prediction information the difference between the state quantity of traffic information in time zone N and the state quantity of traffic information (prediction information) in temporally adjacent time zone N + 1 is calculated, and each sample is taken.
  • Orthogonal transformation may be applied to the difference state quantity at the conversion point to convert the coefficient into the coefficient value of each frequency component, and the obtained coefficient value may be encoded.
  • the coefficient value of the high frequency component is quantized so as to have a bias in the statistical occurrence frequency, and the coefficient value of each frequency after the quantization is encoded. By doing so, the amount of data can be significantly reduced.
  • the coding may be performed by deleting the coefficient value.
  • traffic information is transmitted by a method according to the progressive transmission method of image information.
  • the transmitting side In the progressive transmission method of image information, the transmitting side
  • the receiving side can almost determine what kind of image is before receiving all the data, so that it is possible to determine “whether it is necessary” at an early stage.
  • This data transmission method can also be applied to traffic information that has been converted to frequency components and represented by coefficient values for each frequency.
  • This data transmission method can be realized by dividing the coefficient values of each frequency representing traffic information by frequency, dividing the data into layers, and transmitting the divided data.
  • Figure 31 shows the data structure when traffic information is divided.
  • Fig. 31 (a) shows basic information and FFT coefficient information of low-frequency components, which are transmitted at the beginning. This includes the “division number of traffic information”, which indicates how many low-frequency components to high-frequency components are divided, and the “number of this information”, which indicates the number of this information. I will.
  • Figure 31 (b) shows the FFT of the high-frequency component that is one of the divided traffic information.
  • T JP03 / 03875 Shows coefficient information. This also includes the “number of traffic information divisions” and “this information number”, but the data items that are duplicated in Fig. 31 (a) are omitted.
  • this traffic information transmission method is applied to the provision of traffic information from the Internet or the like, if the user wants to view various traffic information on the Internet or the like, the user will likely see the summary information and skip it. Then you can see: In addition, when referring to traffic information while scrolling along the highway on the Internet or the like, scrolling can be advanced one after another if it is likely to be possible to skip the information by looking at the summary information. '
  • the coefficient value of the frequency in a plurality of roads that offer information in the order indicated by the arrow in FIG. 3 2 (b), may be transmitted from the low frequency in the order of frequency.
  • Figure 32 (a) shows the normal transmission order for comparison. Completion with multiple transmission media>
  • each frequency representing traffic information When the coefficient values of each frequency representing traffic information are hierarchized by frequency and divided into low-frequency components and high-frequency components as shown in Fig. 31, traffic information can be sent separately from multiple media for each layer. Will be possible.
  • terrestrial digital broadcasting provides shape vector data (location information) and rough traffic information (low-frequency components of FFT coefficients) of all target roads in a wide area, and a beacon installed on the side of the road Provides information (high-frequency components of FFT coefficients) that details the traffic information provided by terrestrial digital broadcasting around the installation location.
  • wide-area broadcasting media can provide public overview information and leave the provision of detailed information on the area to beacons.
  • FIG. 33 shows a configuration diagram of the system in this case.
  • the traffic information transmitting section 30 includes an information transmitting section A (135) for providing traffic information through the wide area media A, and an information transmitting section B (235) for providing traffic information through a beacon (media B).
  • the PC leakage device 75 includes the information receiving unit A (161) for receiving the information provided by the wide area media A, and the information receiving unit B (261) for receiving the information provided from the beacon.
  • the receiving device 60 reproduces the traffic information using the traffic information received by the information receiving unit A (161) and the traffic information received by the information receiving unit B (261).
  • the wide area media and the beacon complement each other to provide traffic information
  • the wide area media does not need to send detailed information, so it is possible to transmit a wider range of traffic information.
  • the receiving device can reproduce the necessary traffic information based on the information obtained from the wide area media and the detailed information obtained from the local beacon while traveling.
  • beacons It is also possible to provide detailed information from beacons as return information to vehicles that provided probe information through beacons, thereby facilitating the provision of probe information.
  • the media that establishes the complementary relationship may be another combination, or may be another media such as a mobile phone instead of the beacon.
  • the method used to calculate the prediction information arranged in time series on the time axis of the future time (that is, the difference with the previous time zone, and the difference with the adjacent point is calculated, and the difference is calculated) Value encoding method) is applied to calculate the latest information of each time zone arranged in chronological order on the real time axis, and when calculating the latest information of the current time zone, the previous time The difference with the latest information of the band is obtained, and the difference with the adjacent point is obtained, and the difference value is encoded.
  • the forecast information for each time zone could be displayed and transmitted in the traffic information data format shown in Fig. 20 (b). If the time does not come, data cannot be sent. Therefore, the data format of the traffic information shown in Fig. 20 (b) is, as shown in Fig. 34, the base traffic information (Fig. 34 (a)) and the data format of each time zone. The data format is divided into the data format of the traffic information (Fig. 34 (b)) representing the forecast information, and when real time arrives, the latest information at that time is shown in the data format of the traffic information in Fig. 34 (b). To send. '
  • the number of divisions is N— 1
  • the basic traffic information from the next cycle to the N-1 cycle is transmitted in the data format shown in Fig. 34 (a) together with the shape vector data string information.
  • the latest traffic information represented by the difference value from the information in the first cycle is transmitted in the data format shown in Fig. 34 (b).
  • the latest traffic information represented by the difference value from the information in the second cycle is transmitted in the data format shown in Fig. 34 (b).
  • the traffic information that will be the basis for the next and subsequent times is transmitted along with the shape vector data string information in the data format shown in Fig. 34 (a).
  • the total amount of information can be small. Also, on the receiving side, the number of map matchings is reduced, and the overall performance of the entire system is improved.
  • the traffic information generated by the present invention has been mainly described as being transmitted by communication. However, this traffic information is stored in a storage medium such as a hard disk, a CD, or a DVD, or stored in a storage medium. It is also possible to transfer to other terminals through the media.
  • FIG. 35 shows a system configuration diagram in this case.
  • Traffic information conversion and recording apparatus 330 includes a data storage unit 33 5 for storing traffic information which is encoded, information accumulation unit 335, the internal recording media traffic information encoding unit 34 encodes 331 and external storage media 332.
  • the traffic information reference / utilization device 3S0 includes a decoding processing unit 362 for decoding encoded data.
  • the decoding processing unit 362 is stored in the external recording medium 332 or the internal recording medium 361. Reads and decodes traffic information. How to use the decrypted traffic information is the same as in Figure 5.
  • the traffic information generated by the method of the present invention can be stored in a storage medium and used.
  • the client specifies the range of traffic information and the amount of data (no more data is needed), sends request information requesting traffic information, and the server Provide traffic information on request.
  • the client side device can be a car navigation system, a personal computer, a portable terminal, or the like.
  • FIG 39 shows the configuration of this system in a block diagram.
  • the client device 460 includes an input operation unit 463 for the user to input a request, a display range and a data size determination unit 462 for determining a requested display range and data size based on the input operation, and request information for transmitting the request.
  • a transmitting unit 461 a response information receiving unit 464 for receiving response information, a decoding processing unit 465 for decoding encoded data, a traffic information utilization unit 466 for utilizing reproduced traffic information, Information Utilization Department It has a digital map database 467 referenced by 4SS.
  • the server device 430 includes a request information receiving unit 431 for receiving the request information.
  • PC leakage 75 transmitted traffic information area for determining the area and detail of traffic information to be transmitted ⁇ Detailedness determination unit 432, and traffic information quantization 433 for encoding traffic information data 433 using code table data 434434 It comprises an encoding unit 435 and a response information transmitting unit 436 for transmitting the encoded traffic information.
  • the flow chart in Figure 38 shows the operation procedure of this system.
  • the client device 460 determines the range of traffic information and the desired data size required for processing such as display and route search (step 310), and transmits request information to the server 430 (step 311).
  • the server device 430 was waiting for a request from the client (step 300), upon receiving the request information from the client (step 3 01), to determine the level of detail of the traffic information to be transmitted to request information or client from (Step 302), the traffic information is quantized and encoded (Step 303), and the encoded traffic information and code table are transmitted to the client (Step 304). At this time, the server device 430 transmits the data shown in FIGS. 8 and 20 to the client.
  • the client device 460 Upon receiving the response information from the server 430 (step 312), the client device 460 decodes the traffic information represented by the code with reference to the code table (step 313), and converts the position information (shape vector, etc.). Based on this, map matching is performed, the position of the received traffic information is specified (step 314), and the traffic information is used.
  • FIG. 37 shows an example of this request information.
  • the “desired maximum data size” may be the communication charge or communication time in the case of the packet charge system.
  • the range of the request is as follows: “the latitude and longitude of the lower left corner of the rectangle Z and the upper right corner of the rectangle” "center point” "prefecture / municipal code” "road designation” "start and end latitude and longitude for route search request” "current location latitude and longitude + traveling direction” Any of them may be specified, or a combination of them may be specified.
  • Transmission traffic information area Detailed level judgment unit 432, when the traffic information is requested by “route search request start / end latitude / longitude”, details the traffic information on the recommended route and increases the distance from the recommended route. The degree of detail of traffic information is determined so as to be coarse.
  • the PC Rankomo 875 if the traffic information is requested by the "current position latitude and longitude + traveling direction" is, around the current position traffic information on the traveling direction ⁇ Pi traveling road information, so rough as far, Determine the level of detail of traffic information.
  • the resolution of the information expression in the traffic information can be finely adjusted according to the request.
  • the prediction information around the estimated arrival time is fine, and it is possible to make adjustments such as providing coarser prediction information as the distance from the expected arrival time deviates.
  • the traffic information providing device (traffic information transmitting unit) which is the center has been described as providing traffic information to a traffic information utilizing device such as a car navigation system, but a probe for providing travel data is provided.
  • the in-vehicle device of the car becomes a traffic information providing device
  • the center that collects information from the in-vehicle device of the probe car becomes a traffic information utilization device
  • the in-vehicle device of the probe car takes various types of traffic information, such as running speed and fuel consumption.
  • the traffic information generation method of the present invention can also be applied to a system that provides the measurement information to the center. In an eighth embodiment of the present invention, such a probe car system will be described.
  • this system consists of a probe car on-board unit 90 that measures and provides data during traveling and a probe car collection system 80 that collects this data.
  • a codebook receiver 94 that receives a codebook used for encoding transmission data from the prop car collection system 80, a sensor A106 for detecting speed, a sensor B107 for detecting power output, and a sensor 108 for detecting fuel consumption.
  • a sensor information collection unit 98 that collects the detection information of the vehicle, a reception information received by the GPS antenna 101, a vehicle position determination unit 93 that determines the vehicle position using the information of the gyro 102, a traveling locus of the vehicle, A trajectory measurement information storage unit 96 that stores the measurement information of sensors A, B, and C, a measurement information data conversion unit 97 that generates sampling data of the measurement information, and measurement information using the received code table data 95. Signing of sampling data and traveling locus data The system includes an encoding processing unit 92 for reducing the PC leakage and a traveling trajectory transmission unit 91 for transmitting the encoded data to the probe car collection system 80.
  • the probe car collection system 80 includes a traveling trajectory receiving unit 83 that receives traveling data from the on-board probe car device 90, an encoded data decoding unit 82 that decodes received data using the code table data 86, A measurement information data inverse conversion unit 87 that restores measurement information using the decrypted data, a traveling trajectory measurement information utilization unit 81 that uses the restored measurement information and traveling trajectory data, and the current position of the probe car.
  • a code table selecting unit 85 for selecting a code table to be given to the probe car on-board unit 90 according to the condition, and a code table transmitting unit 84 for transmitting the selected code table to the probe car.
  • the own vehicle position determination unit 93 of the probe car vehicle 90 identifies the own vehicle position using information received by the GPS antenna 101 and information of the gyro 102. Further, the sensor information collecting unit 98 collects measured values such as the speed information detected by the sensor A 106, the engine load detected by the sensor B 107, and the gasoline consumption detected by the sensor C 108. The measurement information collected by the sensor information collection unit 98 is stored in the traveling locus measurement information storage unit 96 in association with the own vehicle position identified by the own vehicle position determination unit 93.
  • the measurement information data conversion unit 97 represents the measurement information accumulated in the traveling trajectory measurement information accumulation unit 96 as a function of the distance from the measurement start point (reference position) of the traveling road, and generates sampling data of the measurement information.
  • the encoding processing unit 92 performs orthogonal transform on the sampled data to convert the measurement information into coefficient values of frequency components, and encodes the travel locus data and the converted coefficient values using the received code table data 95. I do.
  • the encoded traveling locus data and measurement information are sent to the probe car collection system 80 through the traveling locus transmitting unit 91.
  • the encoded data decoding unit 82 decodes the encoded traveling trajectory data and measurement information using the code table data 86.
  • the measurement information data inverse transform unit 87 performs orthogonal inverse transform using the decoded coefficient values to restore the measurement information.
  • the running track measurement information utilization unit 81 The measurement information is used to create traffic information on the road on which the probe car ran.
  • the traffic information generating method of the present invention can also be used for generating information to be uploaded from a probe car vehicle.
  • the position resolution and the traffic expression resolution can be arbitrarily set, and the resolution of the information expression is changed at any time according to the importance of the traffic information. be able to. In addition, it can flexibly cope with the “prediction service” of traffic information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)

Description

明 細 書 道路情報提供システム及び装置と道路情報生成方法 技術分野
本発明は、 渋滞状況や旅行時間などを表す交通情報の生成方法と、 その交通情 報を提供するシステムと、 そのシステムを構成する装置に関し、 特に、 渋滞状況 や旅行時間などの交通情報を新たな形態でデータ化し、 豊富な情報内容の道路情 報を効率的に提供できるようにするものである。 背景技術
<現在の V I C S交通情報〉
現在、 カーナビなどに道路交通情報提供サービスを実施している V I C S (道 路交通情報通信システム) は、 道路交通情報を収集 '編集し、 F M多重放送ゃビ 一コンを通じて、 渋滞情報や、 所要時間を表す旅行時間情報などの交通混雑情報 を伝送している。
現行の V I C S情報では、 交通の現在情報を次のように表現している。
交通の混雑状況は、渋滞(一般道: 1 0 k m/ h '高速道:≤ 2 0 k m/ h )、 混雑 (一般道: 1 0〜 2 0 k m/ h■高速道: 2 0〜 4 0 k m/ h )、 閑散 (一般 道:≥ 2 0 k m/ h ,高速道: ≥ 4 0 k m/ h ) の 3段階に区分して表示してい る。
渋滞状況を表す渋滞情報は、 V I C Sリンク (V I C Sで用いられている位置 情報識別子) 全体が同一混雑状況の場合、
「v I c sリンク番号 +状態 (渋滞/混雑/閑散 Z不明)」
と表示され、 また、 リンク内の一部だけが渋滞しているときは、
「V I C Sリンク番号 +渋滞先頭距離 (リンク始端からの距離) +渋滞末尾 距離 (リンク始端からの距離) +状態 (渋滞)」
と表示される。 この場合、 渋滞がリンク始端から始まるときには、 渋滞先頭距離 が Oxff と表示される。 リンク内に異なる混雑状態が共存する場合は、各混雑状況 がこの方法でそれぞれ記述される。
また、 各リンクの旅行時間を表すリンク旅行時間情報は、
「V I C Sリンク番号 +旅行時間」
と表示される。
また、 交通状況の今後の変化傾向を表す予測情報として、 「増加傾向/低減傾 向 Z変化なし/不明」 の 4状態を表す増減傾向フラグが、 現在情報に付して表示 される。
< V I C Sリンク番号に依存しない道路位置の伝達〉
V I C S交通情報は、 リンク番号で道路を特定して交通情報を表示しており、 この交通情報の受信側は、 リンク番号に基づいて自己の地図における該当する道 路の交通状況を把握している。 し力 し、 送信側 ·受信側がリンク番号やノード番 号を共有して地図上の位置を特定する方式は、 道路の新設や変更がある度にリン ク番号やノード番号を新設したり、 修正したりする必要があり、 それに伴い、 各 社のデジタル地図のデータも更新しなければならないため、 そのメンテナンスに 多大な社会的コストが掛かることになる。
こうした点を改善するため、本発明の発明者等は、下記特許文献 1等において、 送信側が、 道路形状の上に複数のノードを任意に設定して、 このノードの位置を データ列で表した 「形状ベク トルデータ列」 を伝送し、 受信側が、 その形状べク トルデータ列を用いてマップマッチングを行い、 デジタル地図上の道路を特定す る方式を提案している。 また、 この形状べクトルデータ列のデータ量を削減する ため、データをフーリェ係数近似により圧縮する方式を下記特許文献 2で、また、 このデータに統計的処理を施して ± 0付近に集中するデータに変換した後、 可変 長符号化してデータを圧縮する方式を特願 2 0 0 1— 1 3 4 3 1 8号で提案して いる。
また、 相対位置で表示する形状ベクトルの補正手法として、 次のような手法が 可能である。 形状べクトルに含まれるノードの位置を相対的に表示して符号化す る場合には、 累積誤差が蓄積する。 この累積誤差は、 形状べク トルが長い距離を 有し、 かつ、 国道 2 4 6号や国道 1号のように 「なだらかな形状」 の場合に蓄積 し易い。 それを防ぐため、 形状ベク トルとして、 図 4 0に太線で示すように、 交 差する道路等で一旦曲げ、 また本線に戻すように形状を抽出し、 前記交差点部分 や曲率の大きなカーブ等 「形状を特徴付けるポイント」 を基準ノードに設定して 、 累積誤差をキャンセルする。 また、 受信側では、 受信データを複号化して得た 点線で示す形状べク トルの基準ノード間の距離と、 太線で示す形状べク トルの基 準ノード間の距離とを比較することにより、 相対位置を補正する。 このように累 積誤差が補正できるような位置を選んで設置した基準ノードを、 以下、 「相対位 置補正用基準ノード」 と呼ぶことにする。
こうした方式により、 リンク番号やノード番号を用いずに道路位置を伝達する ことが可能になる。 .
[特許文献 1 ]
特開 2 0 0 1— 4 1 7 5 7号公報
[特許文献 2 ]
特開 2 0 0 2— 2 2 8 4 6 7号公報 し力 し、 現在提供されている交通情報は、 次のような課題を有しており、 道路 情報、 つまり、 交通情報、 沿線の情報、 該当道路に沿った交通情報に対する多様 な要求に柔軟に対応することができない。
<現在の交通情報の課題 1 >
現在の交通情報は、 情報表現の分解能が両極端なものとなっている。 渋滞情報 は、 その位置に関して 1 0 m単位の細かさで表示できるが、 交通情報の表現状態 数は、 渋滞 ·混雑 ·閑散の 3状態のみである。
また、 リンク旅行時間に関する交通情報の表現は、 1 0秒単位の細かい表現が 可能であるが、 位置分解能は 「リンク単位」 のみであり、 リンク内の細かな速度 分布までは表現することができない。
こうしたことから、 次のような問題が生じ得る。 PC漏細 75 図 4 1に示すように、 ある人が、 交通情報提供路線のリンク Aにおける渋滞区 間 (1 0 k mZ h以下の区間) の表示を見て、 渋滞は 5 0 O mしかないので時間 は掛からないと思い、 その渋滞区間を通ったが、 車がぎっしり詰まって全く動か ず、 この 5 0 O mの渋滞を通り抜けるのに 2 5分も掛かってしまった、 と言う事 態が発生する。
また、 ある人が、 「リンク A旅行時間 == 3 0分」 の表示を見て、 リンク Aは時 間が掛かると思い、 これを避けて交通情報提供路線の迂回路を 2 3分かけて廻つ たが、 リンク Aで実際に時間が掛かるのは、 交差点直近の渋滞部のみ (2 5分) であり、 渋滞部以外は 5分で通過でき、 また、 ナビに表示されている交通情報非 提供路線の点線の道路を使えば、 7分程度で通り抜けることができた、 と言う事 態が発生する。
図 4 2に示すように、縦軸に、交通情報の表現可能な状態数(交通表現分解能) を取り、 横軸に位置 (または区間) 分解能を取ったグラフで交通情報を位置付け た場合、 リンク旅行時間は、 交通表現分解能が高いものの、 位置分解能が低く、 渋滞情報は、位置分解能が高いものの、交通表現分解能が低いと言う状況にある。 現在の渋滞情報及びリンク旅行時間情報では、 121 4 2に円で示すような中間的 な分解能の表現ができない。
一方、 交通情報の収集は、 この円内の情報を集めることが可能であり、 実際の 走行車両からデータを収集するプロープカーの場合では、 情報収集の目的や送信 データ量に応じて、 この円の各レベルにおける情報をセンターで集めることがで きる (例えば、 3 0 O m毎に 3 k m/ h単位に 1 2 0 k m/ hまで速度を計測す れば、位置分解能は 3 O O m,状態数分解能は 4 0となる)。 また、既存センサー で収集している編集前の元情報も、 センサー密度等による程度の差こそあれ、 こ のような中間的なレベルの交通情報である。
理想的には、 図 4 2のグラフ上の全てが表現でき、 ソースデータに合わせて、 位置分解能及び交通表現分解能ともに任意に変更できる交通情報の表現方法が望 ましい。 <現在の交通情報の課題 2 >
現在の交通情報の提供方式では、 位置分解能及び交通表現分解能が固定されて いるため、 データ量が多い場合には、 図 4 3 ( a ) に示すように、 伝送パス容量 を超えてしまう。 この場合、 伝送パス容量を超えたデータは欠損し、 このデータ の重要度が高くても、 受信側には伝わらない。
理想的には、 図 4 3 ( b ) に示すように、 データ量が伝送パス容量を超えそう な場合に、 データを欠損させるのでは無く、 重要度が低い情報から順に分解能を 「粗く」 して、 データ量を削減することが望ましい。
即ち、 図 4 4 ( a ) に示すように、 伝送パスに余裕があるときは、 高い位置分 解能及び交通表現分解能で交通情報を表現し、 情報量が伝送パス容量近くに増え たときは、 図 4 4 ( b ) に示すように、 重要度が低い路線の情報に関する位置分 解能を低減したり、 情報提供地点から遠い路線の情報に関する交通表現分解能を 低減したり、 さらに、 遠い未来の予測情報に関する位置分解能及び交通表現分解 能を低減して情報量を削減し、 直近の重要路線の情報については、 高い分解能で 表示し続けることが望ましい。
<現在の交通情報の課題 3 >
現在の交通情報の表現形式は、 交通予測情報の表現に適さない。
交通予測の手法は、 シミュレーション法など、 種々開発されている。 また、 今 後の交通情報提供事業者の進展に伴って、 交通予測情報のサービス提供は盛んに なるものと予想される。
しかし、 現在の交通情報は、 予測情報として 「増減傾向」 を示すデータしか提 供していない。 現在の交通情報の表現形式で、 渋滞情報の予測情報を送ろうとす ると、 予測時間帯数の分だけデータ量が比例して増えることになる。 一方、 渋滞 の状況を観察すると、 ある時間帯が渋滞であれば、 次の時間帯も渋滞であるケー スが多く、 そのため、 データを重複して送ることになり、 非効率である。 発明の開示 <本発明の目的 >
本発明は、 こうした従来の交通情報における課題を解決するものであり、 位置 分解能及び交通表現分解能を任意に設定することができ、 情報の重要度に応じて 位置分解能や交通表現分解能を随時変えることができ、 また、 今後発生が予想さ れる 「予測サービス」 にも柔軟に対応することができる交通情報の生成方法を提 供し、 また、 その交通情報を提供するシステムと、 そのシステムを構成する装置 とを提供することを目的としている。
そこで、 本発明の道路情報提供システムには、 道路に沿って変化する道路情報 の状態量を、 前記道路の基準点からの距離の関数で表して提供する道路情報提供 装置と、 前記関数から前記道路における道路情報を再現する道路情報利用装置と を設けている。
また、 道路に沿って変化する道路情報の状態量を、 前記道路の距離方向に前記 道路情報の位置分解能に対応する間隔で標本化し、 各標本化点での前記状態量を 前記道路情報の表現可能な状態数を表す交通表現分解能に応じて量子化し、 得ら れた値を符号化して提供する道路情報提供装置と、 前記符号化されている前記値 を復号化して道路の道路情報を再現する道路情報利用装置とを設けている。 また、 道路に沿って変化する道路情報の予測情報の状態量を、 前記道路の距離 方向に標本化し、 各標本化点での前記状態量を量子化し、 得られた値を符号化し て提供する道路情報提供装置と、 符号化されている前記値を復号化して道路の道 路情報の予測情報を再現する道路情報利用装置とを設けている。
また、 道路に沿って変化する道路情報または予測情報の状態量を、 道路の距離 方向に標本化し、 各標本化点での前記状態量を統計的に偏りを持つ値に変換し、 前記値を符号化して提供する道路情報提供装置と、 符号化されている前記値を復 号化して道路の道路情報または予測情報を再現する道路情報利用装置とを設けて いる。
また、 道路に沿って変化する道路情報の予測情報の状態量を、 前記道路の距離 方向に標本化し、 各標本化点での前記状態量を、 隣接する時間帯の前記標本化点 での状態量との差分値で表し、 前記差分値を量子化し、 量子化した値を符号化し て提供する道路情報提供装置と、 符号化されている前記値を複号化して道路の道 路情報の予測情報を再現する道路情報利用装置とを設けている。
また、 道路に沿って変化する道路情報または予測情報の状態量を、 前記道路の 距離方向に標本化し、 各標本化点での前記状態量を直交変換により周波数成分の 係数値に変換し、 前記係数値を符号化して提供する道路情報提供装置と、 符号化 されている前記係数値を復号化して道路の道路情報または予測情報を再現する道 路情報利用装置とを設けている。
また、 道路に沿って変化する道路情報の予測情報の状態量を、 前記道路の距離 方向に標本化し、 各標本化点での前記状態量を、 隣接する時間帯の前記標本化点 での状態量との差分値で表し、 前記差分値を直交変換により周波数成分の係数値 に変換し、 前記係数値を符号化して提供する道路情報提供装置と、 符号化されて いる前記係数値を復号化して道路の道路情報の予測情報を再現する道路情報利用 装置とを設けている。
また、 本発明の道路情報生成装置には、 道路に沿って変化する道路情報の状態 量を、 前記道路の距離方向に前記道路情報の位置分解能に対応する間隔で標本化 する処理と、 各標本化点での前記状態量を量子化テーブルを用いて量子化する処 理とを行う道路情報変換部と、 道路情報変換部が処理したデータを符号表を用い て符号化する符号化処理部と、 道路情報の収集状態に応じて、 前記位置分解能に 対応する間隔を決定し、 道路情報変換部が使用する量子化テーブル及び符号化処 理部が使用する符号表を選択する量子化単位決定部と、 符号化処理部が符号化し たデータを送信する情報送信部とを設けている。
また、 本発明の道路情報利用装置には、 道路を示す形状べク トルの基準ノード からの距離の関数で表された道路情報と前記形状べクトルを表すデータとを受信 する情報受信部と、 この形状べクトルを表すデータを用いてマップマッチングを 行い道路情報の対象道路を特定するマップマツチング部とを設けている。
また、 本発明の道路情報生成方法では、 道路に沿って変化する道路情報の状態 量を、 前記道路の距離方向に前記道路情報の位置分解能に対応する間隔で標本化 し、 各標本化点での前記状態量を前記道路情報の表現可能な状態数を表す交通表 PC漏麵 75 現分解能に応じて量子化し、 得られた値を統計的に偏りを持つ値に変換し、 変換 した前記値を符号化して道路情報を生成している。
また、 道路に沿って変化する道路情報の状態量を、 前記道路の距離方向に前記 道路情報の位置分解能に対応する間隔で標本化し、 各標本化点での前記状態量を 直交変換により周波数成分の係数値に変換し、 前記係数値を統計的に偏りを持つ ように量子化し、 量子化後の前記係数値を符号化して道路情報を生成している。 また、 本発明のプログラムは、 コンピュータに、 道路情報を標本化する際の間 隔と量子化する際の量子化の粗さとを、 道路情報の収集状態に応じて決定する手 順と、 収集された前記道路情報の状態量を、 道路の距離方向に前記間隔で標本化 する手順と、 各標本化点での前記状態量を前記量子化の粗さに対応する量子化テ 一ブルを用いて量子化する手順と、 量子化した値を符号化圧縮する手順とを行わ せる。
また、 コンピュータに、 道路情報を標本化する際の間隔と量子化する際の量子 化の粗さとを、 道路情報の収集状態に応じて決定する手順と、 収集された道路情 報の状態量を、 道路の距離方向に前記間隔で標本化する手順と、 各標本化点での 前記状態量に直交変換を施して周波数成分の係数値を求める手順と、 前記係数値 を前記量子化の粗さに対応する量子化テーブルを用いて量子化する手順と、 量子 化した値を符号化圧縮する手順とを行わせる。
また、 道路情報を提供する記録媒体には、 道路に沿って変化する道路情報の状 態量を前記道路の基準点からの距離の関数で表した道路情報のデータと、 前記道 路を特定する道路区間参照データとが記録されている。
そのため、 本発明の道路情報提供システムでは、 位置分解能及び交通表現分解 能を任意に設定することができ、 道路情報の重要度に応じて情報表現の分解能を 随時変えることができる。 また、 道路情報の 「予測サービス」 にも柔軟に対応す ることができる。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態における交通情報の統計予測差分値の算出方 法を示す図である。
図 2は、 本発明の第 1の実施形態における交通情報の生成で利用する相関関係 を示す図である。
図 3は、 本発明の第 1の実施形態における交通情報量子化テーブルを示す図で める。
図 4は、 本発明の第 1の実施形態における統計予測差分値の符号表を示す図で める。
図 5は、 本発明の第 1の実施形態におけるシステム構成図である。
図 6は、 本発明の第 1の実施形態におけるシステムの動作を示すフロー図であ る。
図 7は、 本発明の第 1の実施形態における元情報のデータ構成図である。 図 8は、 本発明の第 1の実施形態における形状べク トルデータ及び交通情報の データ構成図である。
図 9は、 本発明の第 1の実施形態における量子化単位決定手順を示すフロー図 である。
図 1 0は、 本発明の第 1の実施形態における量子化単位決定テーブルを示す図 である。
図 1 1は、 本発明の第 1の実施形態における推奨経路からの距離に基づく量子 化単位決定手順を示すフロー図である。
図 1 2は、 本発明の第 1の実施形態における前加工処理手順を示すフロー図で ある。
図 1 3は、 本発明の第 1の実施形態におけるピーク及びディップを示す図であ る。
図 1 4は、 本発明の第 1の実施形態におけるピーク及びディップ削除の処理手 順を示すフロー図である。
図 1 5は、 本発明の第 2の実施形態における予測情報の差分表現を説明する図 である。
図 1 6は、 本発明の第 2の実施形態における予測情報の統計予測差分値の算出 方法を示す図である。
図 1 7は、 本発明の第 2の実施形態における統計予測差分値及び予測情報の符 号表を示す図である。
図 1 8は、 本発明の第 2の実施形態におけるシステム構成図である。
図 1 9は、 本発明の第 2の実施形態におけるシステムの動作を示すフロー図で める。
図 2 0は、 本発明の第 2の実施形態における形状べクトルデータ及び交通情報 のデータ構成図である。
図 2 1は、 本発明の第 2の実施形態における予測情報の情報表現分解能の変更 を説明する図である。
図 2 2は、 本発明の第 2の実施形態における予測情報の情報表現分解能の変更 過程を示す図である。
図 2 3は、 本発明の第 2の実施形態における予測情報の量子化テーブルを示す 図である。
図 2 4は、 本発明の第 2の実施形態における予測情報の情報表現分解能を変更 した交通情報のデータ構成図である。
図 2 5は、 本発明の第 2の実施形態における他の統計予測値の例を示す図であ る。
図 2 6は、 本発明の第 3の実施形態における F F T利用の量子化手順を示す図 である。
図 2 7は、 本発明の第 3の実施形態での量子化テーブルを変えたときの F F T 利用の量子化手順を示す図である。 .
図 2 8は、 本発明の第 3の実施形態におけるシステムの動作を示すフロー図で ある。
図 2 9は、 本発明の第 3の実施形態における F F T表現した交通情報のデータ 構成図である。
図 3 0は、 本発明の第 3の実施形態における F F T係数の符号表を示す図であ る。 図 3 1は、 本発明の第 4の実施形態における交通情報のデータ構成図である。 図 3 2は、 本発明の第 4の実施形態における交通情報の送信手順を示す図であ る。
図 3 3は、 本発明の第 4の実施形態におけるシステム構成図である。
図 3 4は、 本発明の第 5の実施形態における交通情報のデータ構成図である。 図 3 5は、 本発明の第 6の実施形態におけるシステム構成図である。
図 3 6は、 本発明の第 7の実施形態における対話型システムの説明図である。 図 3 7は、 本発明の第 7の実施形態におけるリクエスト情報のデータ構成図で める。
図 3 8は、 本発明の第 7の実施形態におけるシステムの動作を示すフロー図で ある。
図 3 9は、 本発明の第 7の実施形態におけるシステム構成図である。
図 4 0は、 従来の基準ノードを利用する相対位置補正方法の説明図である。 図 4 1は、 従来の交通情報の課題を説明する説明図である。
図 4 2は、 従来の交通情報の情報表示分解能における課題を説明する説明図で あ o。
図 4 3は、 従来の交通情報の伝送時の課題を説明する説明図である。
図 4 4は、 情報表示分解能の有り方を説明する図である。
図 4 5は、 道路区間参照データを示す図である。
図 4 6は、 本発明の第 8の実施形態におけるプローブカー情報収集システムの 構成を示すプロック図である。
なお、 図中の符号は以下のとおりである。
10 交通情報計測装置
11 センサー処理部 A
12 センサー処理部 B
13 センサー処理部 C
14 交通情報算出部
15 交通情報 ·予測情報算出部 統計情報
センサー A (超音波車両センサー) センサー B ( A V Iセンサー) センサー C (プローブカー) 交通情報送信部
交通情報収集部
量子化単位決定部
交通情報変換部
符号化処理部
情報送信部
デジタノレ地図データベース 符号表作成部
符号表算出部
符号表
交通情報量子化テーブル
距離量子化単位パラメータテーブル 受信側装置
情報受信部
複号化処理部
マップマッチング及び区間確定部 交通情報反映部
リンクコストテープノレ
情報活用部
自車位置判定部
G P Sアンテナ
ジャイロ
ガイダンス装置
プローブカー収集システム 81 走行軌跡計測情報活用部 82 符号化データ復号部 83 走行軌跡受信部
84 符号表送信部
85 符号表選出部
86 符号表データ
87 計測情報データ逆変換部 90 プローブカー車載機 91 走行軌跡送信部
92 符号化処理部
93 自車位置判定部
94 符号表受信部
95 符号表データ
96 走行軌跡計測情報蓄積部 97 計測情報データ変換部 98 センサ情報収集部
101 G P Sアンテナ
102 ジャイロ
106 センサ A
107 センサ B
108 センサ C
135 情報送信部 A
161 情報受信部 A
235 情報送信部 B
261 情報受信部 B
330 交通情報変換 '記録装置 331 内部記録,
332 外部記憶, 335 情報蓄積部
360 交通情報参照 ·活用装置
361 内部記憶メディア
362 複号化処理部
430 サーバ装置
431 リクエス ト情報受信部
432 送信交通情報ェリ了 ·詳細度判定部
433 交通情報データ
434 符号表データ
435 交通情報量子化 ·符号化部
436 レスポンス情報送信部
460 クライアント装置
461 リクエス ト情報送信部
462 表示範囲 ·データサイズ決定部
463 入力操作部
464 レスポンス情報受信部
465 復号化処理部
466 交通情報活用部
467 デジタノレ地図データベース 発明を実施するための最良の形態
本発明では、 「交通混雑指標」 である 「旅行時間情報」 及び 「渋滞情報」 につ いて、 表現形式 (即ち、 位置分解能と状態数分解能との数) は異なるが、 車両走 行速度が基礎になる交通情報であり、 道路に沿って連続的に変化する交通情報で ある点で違いはなく、 両者は本質的に同じものと見る。
そして、 本発明では、 道路 (対象道路) に沿って連続的に変化する交通情報を 、 対象道路の始端、 または、 対象道路区間中に定義した基準ノードからの距離 ( 長さ) の関数として捉える。 交通情報を提供する側は、 この関数または関数の係 数と、 対象道路を特定する道路区間参照データとを受信側に伝え、 受信側は、 受 信情報から関数を再現し、 道路区間参照データから対象道路を特定して、 対象道 路に沿つて連続的に変化する交通情報を再生する。
こうすることにより、 「旅行時間情報」 及び 「渋滞情報」 は、 同一思想 ·同一 ルールで統一的に表現し、 伝送することが可能になる。
交通情報を関数化するため、 本発明の実施形態では、 交通情報を提供する対象 道路 (形状べク トル) の基準ノード間を等間隔にリサンプルして距離方向に標本 化し、 各標本化点での走行速度 (あるいは旅行時間、 渋滞情報) の値を求め、 交 通情報を、 この値のデータ列により表現する。
なお、 道路区間参照データとしては、 後述するように、 種々のものを用いるこ とができるが、 以下の実施形態では、 道路形状を示す形状べク トルを用いて対象 道路を特定する場合について説明する。
(第 1の実施形態)
<交通情報生成方法 >
本発明の第 1の実施形態では、 各標本化点での交通情報 (渋滞情報及び旅行時 間情報) の状態量を量子化した後、 可変長符号化して、 提供情報を生成する場合 について説明する。
図 2では、 交通情報 (渋滞情報及び旅行時間情報) を、 横軸に形状ベク トル上 の距離を取り、 縦軸に時間軸を取ったグラフで模式的に表している。 横軸の 1マ スは標本化によって設定した量子化単位 (距離方向量子化単位) の単位区画長を 示し、 縦軸の 1マスは一定の時間間隔で区切っている。 このグラフの各コマには 、 基準ノード (開始点)'からの距離と現在時刻からの経過時間とに対応する走行 速度情報が記録される。 なお、 横軸上の基準ノードには、 相対位置補正用基準ノ ードを設定する。
図 2では、 便宜上、 このグラフを、 (a ) 走行速度が渋滞にランクされる領域 (一般道:≤ 1 0 k m/ h ·高速道:≤ 2 0 k mX h ) と、 (b ) 混雑にランク される領域 (一般道: 1 0〜 2 0 k m/ h ·高速道: 2 0〜4 0 k m/ h ) と、 ( c ) 閑散にランクされる領域 (一般道: ≥ 2 0 k m/ h ·高速道:≥ 4 0 k m / ) と、 (d ) 不明の領域とに区分している。
交通情報を図 2のように表示した場合、 交通状況の過去の観測から得られてい る交通実態は、 コマ同士の相関を示す次のような相関法則として表すことができ る。
相関法則 A:距離方向に隣り合うコマ同士の相関は高い (ある地点が渋滞であ れば、 その隣接地点も渋滞) (図 2の①)
相関法則 B :時間方向に隣り合うコマ同士の相関は高い (ある時刻に渋滞であ れば、 その前後の時刻も渋滞) (図 2の②)
相関法則 C :時間方向の変更に対しての相関は高い (混み始めるときは、 どの 道路もほぼ同時に全体的に混んでいく) (図 2の③) 相関法則 D :ボトルネック交差点 (渋滞の起点になる交差点、 「綾瀬バス停」 等) を先頭にした渋滞の伸び速度、 及び、 高速道路での渋滞の逆 伝播速度はほぼ一定 (図 2の④)
交通情報を可変長符号化する場合には、 こうした相関法則を利用することによ り、 データ量を削減することができる。
図 1は、 現在時刻の交通情報を可変長符号化する場合に、 交通情報のデータ ( 状態量) に統計的処理を施し、 このデータを ± 0付近に集中するデータに変換す る処理を示している。
まず、 図 1 ( a ) に示すように、 距離 X mの形状ベク トルを基準ノードから単 位区画長の長さ (例: 5 0〜5 0 0 m) で等間隔に区切って標本化し、 図 1 ( b ) に示すように、 各標本化点を通過する車両の平均速度を求める。 図 1 ( b ) で は、 標本化によって設定した量子化単位を表すコマの中に、 求めた速度の値を示 している。 なお、 この場合、 平均速度の代わりに、 標本化点間隔を通過する車両 の平均旅行時間や渋滞ランクを求めても良い。
次に、 この速度の値を、 図 3の交通情報量子化テーブルを用いて量子化量に変 換する。 この交通情報量子化テーブルでは、 ユーザが渋滞時の詳しい情報を求め ていることから、 速度が 1 0 k m/ h未満の場合、 1 k m/ hの刻みで量子化量 が増加し、 速度が 1 0〜1 9 kmZhの範囲では 2 kmZhの刻みで量子化量が 増加し、 速度が 20~49 km/hの範囲では 5 k m/ hの刻みで量子化量が増 加し、 速度が 50 k in// h以上の範囲では 10 kmZhの刻みで量子化量が増加 するように設定している。 この交通情報量子化テーブルを用いて量子化した値を 図 1 (c) に示している。
次に、 量子化した値を統計予測値からの差分で表現する。 ここでは、 着目する 量子化単位の量子化した速度 Vnに対し、 上流側の量子化単位の量子化した速度 Vn-Ιを統計予測値 Sとして、 (Vn — Vn-l) により差分を算出する。 算出結 果を図 1 (d) に示している。
このように、 量子化した速度を統計予測値からの差分で表現した場合には、 相 関法則 A (隣り合う量子化単位の交通状況は似通っている) により、 ±0周辺の 値の発生頻度が高くなる。
こうした処理を施したデータに対して可変長符号化を実施する。 この可変長符 号化の処理は特願 200 1 - 1 343 1 8号で示したものと同様である。
即ち、 過去の交通情報を分析して、 図 4に示すような、 交通情報の統計予測値 差分を符号化するための符号表を作成し、 この符号表を用いて図 1 (d) の値を 符号化する。 例えば、 + 2は "1111000" と符号化され、 —2は "1111001" と符 号化される。 また、 00000のように 0が連続する場合は " 100" と符号化さ れる。
また、 符号表には、 単位区画長の長さをある地点から切り換えた場合に、 その 地点からの単位区画長の変更を示すための区画長変更コードや、 ある地点から交 通情報量子化テーブル (図 3) を切り換えた場合に、 その地点からの交通情報量 子化テーブルの変更を示すための交通情報量子化テーブル変更コードゃ、 基準ノ 一ドを示すための基準ノード対応地点識別コ一ドが、 特殊コードとして設定され ている。
このように、 交通情報を量子化し、 統計予測差分値に変換して、 ±0周辺の値 の発生頻度を高めることにより、 可変長符号化 (ハフマン/算術符号/シャノン -ファノ等) や連長圧縮 (ランレングス符号化) によるデータ圧縮の効果が向上 する。 特に、 渋滞情報を、 従来のように 4段階のランクで表示する場合には、 多 くの量子化単位における統計予測値差分が 0になるため、 連長圧縮による効果が 極めて高くなる。
また、 旅行時間情報に関しても、 交通情報量子化テーブル (図 3 ) において、 法定速度以上の速度を全て一定の量子化量に設定する等の処理により、 連長圧縮 効果が高まる。
また、 形状べクトルを標本化する単位区画長の長さを変更したり、 交通情報量 子化テーブルを切り換えたりすることにより、 交通情報の位置分解能や交通表現 分解能を変更することが可能であり、 交通情報の量や、 情報提供メディアの伝送 パス容量、 要求される精度などに応じて、 交通情報の交通表現分解能及び位置分 解能を適切に制御することが容易に実行できる。
なお、 ここでは、 統計予測値として、 上流側の量子化単位の速度 Vn-1を用い ているが、 統計予測値は、 別のものでも構わない。 例えば、 上流側の 3つ前まで の量子化単位における速度の加重平均を統計予測値 Sとして用いる場合には、 統計予測値 S = a Vn-1 + b Vn_2+ c Vn-3 (但し a + b + c = l ) の式により統計予測値 Sを算出する。
<システム構成 >
図 5は、 交通情報を生成して提供する放送型の交通情報提供システムを示して いる。 このシステムは、 センサー A (超音波車両センサー) 21、 センサー B (A V Iセンサー) 22及びセンサー C (プローブカー) 23を用いて交通情報を計測す る交通情報計測装置 10と、交通情報を符号化するための符号表を作成する符号表 作成部 50と、交通情報及びその対象区間の情報を符号化して送信する交通情報送 信部 30と、 送信された情報を受信するカーナビ等の受信側装置 60とから成る。 交通情報計測装置 10は、 各センサー 21、 22、 23から取得したデータを処理す るセンサー処理部 A (11)、 センサー処理部 B (12) 及びセンサー処理部 C (13) と、各センサー処理部 11、12、13で処理されたデータを用いて交通情報を生成し、 その交通情報データと対象区間を示すデータとを出力する交通情報算出部 14 と を備えている。
符号表作成部 50は、交通情報の量子化に用いる複数種類の交通情報量子化テー ブル 53と、複数種類の標本化点間隔 (単位区画長) を規定する距離量子化単位パ ラメータテーブル 54とを備えており、 符号表を作成する符号表算出部 51は、 交 通情報計測装置 10がら取得した過去の交通状況をパターン分けし、全てのパター ンについて、交通情報量子化テーブル 53及び標本化点間隔の全ての組み合わせに 対応する各種の符号表 52を作成する。
交通情報送信部 30は、 交通情報計測装置 10から交通情報を収集する交通情報 収集部 31と、収集された交通情報を基に交通状況を判.定し、標本化点間隔 (距離 方向量子化単位の単位区画長) を決定し、 使用すべき量子化テーブルや符号表を 決定する量子化単位決定部 32と、 量子化単位決定部 32が決定した標本化点間隔 や交通情報量子化テーブル 53 を用いて交通情報の量子化や統計予測差分値への 変換処理を行い、 また、 対象区間の形状べクトルデータの統計予測差分値への変 換を行う交通情報変換部 33と、量子化単位決定部 32が決定した符号表 52を用い て交通情報の符号化処理を行い、 また、 対象区間の形状べクトルの符号化処理を 行う符号化処理部 34と、符号化された交通情報データ及び形状べクトルデータを 送信する情報送信部 35と、 交通情報変換部 33が参照するデジタル地図データべ ース 36とを備えている。
受信側装置 60は、 交通情報送信部 30から提供された情報を受信する情報受信 部 61と、受信情報を復号化して交通情報及び形状べク トルを再生する複号化処理 部 62と、 デジタル地図データベース 65のデータを用いて形状べクトルのマップ マツチングを行い、 交通情報の対象区間を決定するマップマツチング及び区間確 定部 63と、 受信した交通情報をリンクコストテーブル 66の対象区間のデータに 反映させる交通情報反映部 64と、 G P Sアンテナ 69やジャィ口 70を用いて自車 位置を判定する自車位置判定部 68と、自車位置から目的地までのルート探索等に リンクコス トテーブル 66を活用する情報活用部 67と、 ル一ト探索結果に基づい て音声での案内を行うガイダンス装置 71とを備えている。
なお、 符号表作成部 50の符号表算出部 51、 並びに、 交通情報送信部 30の量子 化単位決定部 32、交通情報変換部 33、符号化処理部 34及び情報送信部 35などの 機能は、 交通情報提供側の装置に内蔵されたコンピュータにプログラムで規定し た処理を行わせて実現することができ、また、受信側装置 60の復号化処理部 62、 マップマツチング及び区間確定部 63、 交通情報反映部 64、 自車位置判定部 68及 び情報活用部 67などの機能は、 受信側装置 60に内蔵されたコンピュータ (C P U) にプログラムで規定した処理を行わせて実現することができる。
図 7は、交通情報計測装置 10が出力する交通情報の対象区間を示す地図データ ( a ) と、 交通情報データ (b ) とのデータ構造を示している。
図 6のフロー図は、 このシステムの各部の動作を示している。
符号表作成部 50の符号表算出部 51は、交通情報計測装置 10から送られて来た 過去の交通情報を解析してパターン Lの交通状況における交通情報を集計し (ス テツプ 1 )、 距離方向量子化単位 (標本化点間隔) Mを設定し (ステップ 2 )、 交 通情報量子化テーブル Nを設定する (ステップ 3 )。 次に、統計予測値算出式に従 い、 この交通情報の統計予測差分値を算出する (ステップ 4 )。 次に、 統計予測差 分値の分布を計算し (ステップ 5 )、 ランレングスの分布 (同一値の連続分布) を 計算する (ステップ 6 )。統計予測差分値及びランレングスの分布を基に符号表を 作成し (ステップ 7 )、 ケース L一 M_ Nの符号表を完成する (ステップ 8 )。 こ の処理を全ての L、 M、 Nのケースが終了するまで繰り返す (ステップ 9 )。 こうして、 各種の交通状況パターン及び情報表現の分解能に対応可能な多数の 符号表があらかじめ作成され、 保持される。
次に、交通情報送信部 30は、交通情報を収集し、交通情報提供区間を決定する
(ステップ 10)。 1つの交通情報提供区間 Vを対象として (ステップ 11)、その交 通情報提供区間 Vの周辺の形状ベク トルを生成し、 基準ノードを設定した後 (ス テツプ 12)、 形状べク トルの可逆または不可逆符号化圧縮を行う (ステップ 13)。 この符号化圧縮の方法は特願 2 0 0 1— 1 3 4 3 1 8号に詳述している。
量子化単位決定部 32は、交通状況を判定し、標本化点間隔(距離方向量子化単 位の単位区画長) 及び量子化のレベルを決定する (ステップ 14)。 この処理につ いては、 後に詳述する。 交通情報変換部 33は、決定された単位区画長で形状べク トルの基準ノードから 距離方向の標本化を行い、 交通情報提供区間を分割して (ステップ 15)、 各距離 方向量子化単位の交通情報を算出する (ステップ 16)。 次いで、 符号化の圧縮効 果を高めるための前加工処理を行う (ステップ 17)。 この前加工処理については 後に詳述する。
交通情報変換部 33は、 量子化単位決定部 32が量子化レベルを基に決定した交 通情報量子化テーブル 53を用いて交通情報の量子化を行い (ステップ 18)、 量子 化した交通情報を統計予測差分値に変換する (ステップ 19)。
次に、符号化処理部 34は、量子化単位決定部 32が決定した符号表 52を用いて、 量子化された交通情報の可変長符号化圧縮を実施する (ステップ 20)。 また、 相 対位置補正用基準ノードを用いて単位区画長を捕正する (ステップ 21 )。
この処理を交通情報提供区間の全てについて実行する (ステップ 23)。 情報送 信部 35は、 符号化されたデ一タを送信データに変換し (ステップ 24)、 符号表と ともにデータ送信する (ステップ 25)。
図 8には、 交通情報送信部 30から送信される形状ベクトルデータ列情報 (a ) と交通情報( b )とのデータ構造の一例を示している。交通情報送信部 30からは、 これらの情報の他に、形状べクトルの符号表や、交通情報量子化テーブル(図 3 )、 交通情報の統計予測差分値の符号表 (図 4 ) などが同時に (あるいは別ルートで) 送信される。
なお、 交通情報 (図 8 ( b ) ) には、 「量子化された単位区間の数」 のデータ項 目を設けているが、 このデータの代わりに、 符号表でデータの終わりを示す E O D (End of Data) コードを特殊符号として設定し、 符号化した交通情報のデータ 列の中で距離方向量子化単位の終わりを示すようにしても良い。
一方、 受信側装置 60は、 図 6のフロー図に示すように、 情報受信部 61がデー タを受信すると (ステップ 30)、 各交通情報提供区間 Vについて (ステップ 31)、 複号化処理部 62 、形状べクトルを復号化し、マップマッチング及び区間確定部 63が、 自己のデジタル地図データベース 65に対するマップマッチングを行い、 対象道路区間を特定する (ステップ 32)。 また、 相対位置補正用基準ノードを用 いて単位区画長を捕正する (ステップ 33)。
また、複号化処理部 62は、符号表を参照して交通情報を復号化する (ステップ 34)。 交通情報反映部 64は、 復号化された旅行時間を自システムのリンクコス ト 等に反映させる (ステップ 35)。 こうした処理が全ての交通情報提供区間につい て実行される (ステップ 36、 37)。 情報活用部 67は、 提供された旅行時間を活用 して所要時間表示やルートガイダンスを実行する (ステップ 38)。 ぐ量子化単位の決定方法 >
交通情報送信部 30の量子化単位決定部 32が、 図 6の処理において、 交通状況 を判定して標本化点間隔 (距離方向量子化単位の単位区画長) 及び量子化レベル を決定する手順 (ステップ 14) について説明する。
量子化単位決定部 32は、交通状況を判定し、交通情報の送信データ量が交通情 報送信部 30の伝送パス容量を超えないように、情報表現の分解能を決定する。情 報表現の分解能は、 図 4 4に示すように、 位置分解能と交通表現分解能とを要素 としており、 位置分解能は標本化したときの標本化点の間隔 (距離方向量子化単 位の単位区画長) によって決まり、 交通表現分解能は、 量子化の粗さを示す量子 化レベルで決まり、 これは選択した量子化テーブルによって決まる。 量子化単位 決定部 32は、情報表現の分解能を決定する一環として標本化点間隔及び量子化テ 一プルを決定する。
標本化点間隔が小さければ、 交通情報は詳細になるがデータ量は多くなる。 逆 に、標本化点間隔が大きければ、交通情報は粗くなるがデータ量は少なくて済む。 同様に、 細かく区分された量子化テーブルを使用して交通情報の状態量を量子化 すれば交通情報は詳細に表現できるがデータ量は多くなる。 逆に、 粗い量子化テ 一プルを使用すれば交通情報は大まかになるがデータ量は少なくて済む。
量子化単位決定部 32は、現在の交通状況から交通情報の送信データ量を予測し て、 送信データ量が伝送パス容量を超えないように、 情報表現の分解能を調整す る。 このとき、 量子化単位決定部 32は、 各路線の交通情報の重要度を考慮して、 それぞれの路線の交通情報を表現する標本化点間隔及ぴ量子化テーブルを決定し、 また、 符号化に使用する符号表として、 その標本化点間隔及び量子化テーブルと 交通状況パターンとに対応する符号表を決定する。
図 9のフロー図は、 量子化単位決定部 32の処理の一例を示している。
量子化単位決定部 32は、 送信データ量が交通情報送信部 30の伝送パス容量を 超えないように、 この伝送パス容量を基に目標データサイズを決定する (ステツ プ 40)。次に、前の周期に交通情報計測装置 10から送られて来た元情報(図 7 ( a ) 及び ( b ) ) のデータサイズと、それを符号化して送信した送信データ (図 8 ( a ) 及び (b ) ) のデータサイズとの比から、 今周期に交通情報計測装置 10から送ら れて来た元情報 (図 7 ( a ) 及び (b ) ) のデータサイズが、 符号化によりどの程 度のデータサイズになるかを算出し、 それを基に目標データの拡張率 (または削 減率) を決定する (ステップ 41)。
また、 現在の交通状況から交通状況パターン Lを決定する (ステップ 42)。
また、交通情報送信部 30が交通情報を送信している送信地点の周辺の交通情報 提供区間 Wを 1つ抽出し (ステップ 43、 44)、 交通情報提供区間 Wを構成する地 図データリンクの属性 (道路種別/道路番号/単位長当たりの交差点数など)、 道 路幅員などの道路構造、 交通量、 交通状況 (渋滞発生状況等)、 及び、 交通情報 提供区間 Wの重心位置と送信地点との距離から、 交通情報提供区間 Wの情報重要 度を決定する (ステップ 45)。
図 1 0 ( a ) のテーブルから、 ステップ 45で求めた情報重要度とステップ 41 で求めた目標データの拡張率 (または削減率) とが交わる欄の増減値を求め、 そ の情報重要度に対応する情報表現ランク (量子化単位ランク) のデフォルト値に 増減値を加算して量子化単位ランクを算出する。 次いで、 図 1 0 ( b ) のテープ ルから、 その量子化単位ランクに対応する標本化点間隔 (距離方向量子化単位) Mwと交通情報量子化テーブル Nwとを決定する (ステップ 46)。 また、 この交通 情報提供区間 Wの交通情報の符号化には、 L—Mw— Nwの符号表を使用する。
この処理を送信地点周辺の交通情報提供区間の全てについて行う (ステップ 47、 48)。
こうした処理により、 送信データ量や交通情報提供区間の情報重要度などに応 じて動的に標本化点間隔や量子化レベルを変更することができる。 また、 F M多 重放送等の場合では、 例えば東京放送局から放送するときは、 東京都内の情報は 細かく、 隣接県の情報は粗くなるように情報提供し、 また、 ビーコンでの情報提 供では、 ビーコンの設置地点周辺の情報は細かく、 その地点から遠方になるほど 粗くするなど、 情報提供地点、 あるいは情報提供エリアからの距離に応じて標本 化点間隔や量子化レベルを変更することができる。
また、 図 1 1のフロー図は、 センター側で推奨経路を計算し、 その推奨経路と その周辺の交通情報とを提供する場合に、 推奨経路上の交通情報の分解能は細か くし、 推奨経路から外れた周辺部の交通情報の分解能は、 推奨経路からの距離に 応じて粗くする方法を示している。
量子化単位決定部 32は、 推奨経路情報を収集し (ステップ 50)、 現在の交通状 況から交通状況パターン Lを決定し (ステップ 51)、 図 1 0 ( b ) のテーブルか らランク 1に相当する推奨経路の距離方向量子化単位 M0と交通情報量子化テー ブル N。とを決定する (ステップ 52)。
推奨経路周辺の交通情報提供区間 Wを 1つ抽出し (ステップ 53、 54)、 交通情 報提供区間 Wの重心を算出し、 重心から推奨経路までの垂線距離を算出する (ス テツプ 55)。 この垂線距離から交通情報提供区間 Wの距離方向量子化単位 Mwと交 通情報量子化テーブル Nwとを決定する (ステップ 56)。
この処理を推奨経路周辺の交通情報提供区間の全てについて行う (ステップ 57、 58)。
こうして、量子化単位決定部 32は、提供する交通情報の重要度に応じて情報表 現の分解能を決定する。
<前加工処理〉
交通情報変換部 33は、交通情報の量子化.の前に、圧縮効果が高まるように、交 通情報の量子化前のデータを均す (ならす) 加工処理を行う。
図 1 2のフロー図は、 隣接 N区間のデータの加重平均を取ることにより、 デー タを均す前加工処理の手順を示している。 距離方向量子化単位の始めの区間から順に、 区間 pに着目して (ステップ 60、 61)、 区間!)と、 pを中心とする前後の区間とを合わせた合計 N区間について、各 区間の交通情報 Tpを収集する(ステップ 62)。次いで、区間; の交通情報 Τ ρを、 次式で算出した Ν区間の交通情報の加重平均に置き換える (ステップ 63)。
Τρ = (∑ ¾ 1 Χ Τ ΐ) /N 但し、 ∑ a i = 1
これを全ての距離方向量子化単位について実施する (ステップ 64)。
こうした前加工処理により、 微視的に変化する交通状況の全体的な傾向が表さ れる。 この前加工処理を施すことにより、 量子化した後の統計予測差分値は 0の 付近に集中し、 符号化における圧縮効果が高まる。
また、 渋滞情報を表示する場合には、 一部の区間の微視的な交通情報の変化を 無視しても、 情報の利用者には支障がない。
図 1 3 ( a ) に示すように、 一部の区間のデータが、 その前後の区間のデータ より大きく、 その差が規定値以上である場合に、 これをピークと言い、 また、 図 1 3 ( b ) に示すように、 一部の区間のデータが、 その前後の区間のデータより 小さく、 その差が規定値以上である場合に、 これをディップと言うが、 渋滞情報 の表示では、 このピーク及びディップの区間が短ければ、 その情報を無視するこ とができる。
図 1 4のフロー図は、 この場合の前加工処理方法を示している。
距離方向量子化単位の始めの区間から順に、 区間: に着目して (ステップ 70、 71)、区間 pから N区間の各区間における交通情報 T pを収集する(ステップ 71)。 次いで、 区間 p〜p + N間でのピーク及びディップを検索する (ステップ 72)。 ピーク及びディップ部分の幅が規定値未満のとき、 このピーク及びディップ部分 を、 その前後の区間における交通情報の平均値に置き換える (ステップ 73)。 なお、 ピークやディップの検索は、 例えば、 次の手順で行うことができる。
1 . 区間!)〜 p + Nの交通情報の平均値及び標準偏差を算出する。
2 . 各区間の交通情報 Tp+iについて、 偏差値を算出する。
3 . 偏差値が規定値以上、 または規定値以下の場合、 Tp+i をピークまたはデ ィップと判定する。 こうした前加工処理を施すことにより、 交通情報を符号化した際の圧縮効果を 高めることができ、 伝送データ量を削減することができる。 ぐ変形例 >
これまで、 交通情報を量子化するための標本化点間隔 (距離方向量子化単位の 単位区画長) に固定値 (例えば、 1 0 0 m単位) を設定し、 形状ベク トルの基準 ノードから距離方向に等間隔 (固定値の間隔) に標本化する場合について説明し たが、 形状ベク トルの始端と終端との間の分割数を規定し、 始端〜終端の間を分 割数で等間隔に分割して、 距離方向量子化単位を設定するようにしても良い。 こ の場合、 交通情報のデータ (図 8 ( b ) ) には、 終端側の基準ノード番号と、 始端 側の基準ノード番号と、 始端〜終端の分割数とのデータを含ませる。 これを受信 した受信側は、 (始■終端基準ノード間距離 ÷分割数) により距離方向量子化単位 の単位区間長を算出する。
また、 形状ベクトルに含まれるノードや補間点等の構成要素点間の区間を、 交 通情報の距離方向量子化単位とすることも可能である。 この場合、 形状ベクトル の圧縮符号化後における各構成要素点の位置間を距離方向量子化単位の区間とす る。 この距離方向量子化単位は等間隔では無いが、 隣接する距離方向量子化単位 の交通情報との差分で旅行時間 (あるいは旅行速度) などを表現することにより 可変長符号化が可能である。
なお、 本発明の実施形態の方法で交通情報を生成する場合、 速度を基に旅行時 間情報を生成するときは、 量子化の際に、 図 3の量子化テーブルに示すように、 遅い速度ほど細かく、 速い速度ほど粗くなるように量子化を行う方が良い。 旅行 時間は速度に反比例するため、 特に速度域が小さいところでは、 小さな変化でも 大きく影響する。 旅行時間に変換した後の誤差を均質化するためには、 等比級数 的な離散値で速度量子化テーブルを表現することが好ましい。 く道路区間参照データの種類 >
これまで、 対象道路区間を知らせるために、 形状ベクトルデータ列を受信側に 細 75 伝え、 受信側が、 この形状べク トルデータ列を参照して交通情報の対象道路区間 を識別する場合について説明したが、 道路区間を識別するためのデータ (道路区 間参照データ) には、 形状べクトルデータ列以外の使用も可能である。 例えば、 図 4 5 ( a ) に示すように、 統一的に定めた道路区間識別子 (リンク番号) や交 差点識別子 (ノード番号) を用いても良い。
また、提供側及び受信側の双方が同一地図を参照する場合には、提供側が緯度 - 経度データを受信側に伝え、 受信側が、 このデータによって道路区間を特定する ことができる。
また、 図 4 5 ( b ) に示すように、 交差点部やリンク途中の道路から抜き出し た間欠的なノード P 1 ■ P 2 · P 3 · P 4の位置参照用の緯度■経度データ(名 称、 道路種別等の属性情報も保有するもの)を受信側に送信して対象道路を伝え るようにしてもよい。 ここで、 P l =リンク中点、 P 2 =交差点部、 P 3 =リン ク中点、 P 4 =リンク中点である。 この場合、 受信側は、 図 4 5 ( c ) に示すよ うに、 まず、 P l、 P 2、 P 3、 P 4の各々の位置を特定し、 次に各々の区間を 経路探索で繋いで、 対象道路区間を特定する。
また、 対象道路を特定する道路区間参照データとして、 前述する形状ベク トル データ列や道路区間識別子、 交差点識別子だけでなく、 道路地図をタイル状に区 分してその各々に付した識別子や、 道路に設けたキロポスト、 道路名、 住所、 郵 便番号等を用い、 これらの道路区間参照データによって、 交通情報の対象道路区 間を特定してもよい。
(第 2の実施形態)
<予測情報の差分表現 >
本発明の第 2の実施形態では、 交通情報の予測情報の生成について説明する。 予測情報を差分で表現するには、 図 1 5に模式的に示すように、 二通りの方法が 考えられる。
第 1の方法は、 時間帯 N + 1の交通情報 (a ) における距離方向の差分を算出 し (d )、 この差分 (変化点) の情報を符号化する方式である。 これは、 第 1の 0303875 実施形態で説明した現在情報の符号化方式と同じである。
第 2の方法は、 時間帯 N+ 1の交通情報 (a) と、 それ以前の時間帯 Nの交通 情報 (b) との差分を抽出し (c)、 さらに、 この差分の距離方向の差分を算出 して符号化する方式である (e)。
データ量を削減する上で第 1の方法と第 2の方法とのいずれが有利であるかは 一概に言えない。
普通渋滞は、 「ボトルネック交差点 (原宿交差点や東名高速の秦野バス停) を 先頭に、 末尾が伸び縮みする」 点や、 また、 「時間帯 N〜N+ 1の時間差が小さ い場合には特に、 渋滞の末尾も移動しない個所が多い」 ため、 総合的には第 2の 方法の方が有利となる。 しかし、 「前後の渋滞が繋がった場合」 または 「渋滞の 先頭も末尾も変化する場合」 には、 変化点の総数は第 2の方法 (e) の方が多く なり、 第 1の方法 (d) が有利となる。 つまり、 ケースバイケースと考えられ、 予測時間帯までの時間差や交通の変化状況によって、 交通情報提供区間ごとに、 第 1の方法と第 2の方法とを切り換えるのが、 最も効果的と考えられる。
第 1の方法については、 第 1の実施形態で述べたので、 第 2の実施形態では、 第 2の方法での交通情報の生成について説明する。
<予測情報の符号化〉
図 1 6 (a) は、 各距離方向量子化単位での現在情報及び次時間帯の予測情報 における交通情報を示している。
まず、 この現在情報及び予測情報における交通情報を量子化テーブルを用いて 量子化する (図' 1 6 (b))。
次に、 予測情報を現在情報との差分で表現する (図 1 6 (c))。 このとき、 相関法則 Bにより、 予測情報の値は ± 0周辺に集中するデータが増える。 なお、 図 1 6 (c) では、 現在情報の値は、 隣接する距離方向量子化単位の値を統計予 測値として、 統計予測値との差分で表現している。
次に、 予測情報についても統計予測値との差分で表現する (図 1 6 (d))。 このとき、 相関法則 Cにより、 予測情報の統計予測差分値の多くが ± 0周辺に集 中する。
なお、 図 1 6 (c) の処理は、 現在情報から予測情報を減算して差分を求めて も同じ結果が得られる。 時間的に逆方向の表現も可能である。
こうして得られた現在情報及び予測情報の統計予測差分値を、 符号表を用いて 符号化する。 図 1 7 (a) に示すように、 現在情報の統計予測差分値を符号化す る符号表は、 第 1の実施形態の場合 (図 4) と同じである。 予測情報の統計予測 差分値を符号化する符号表は、 図 1 7 (b) に示すように、 特殊コードが無い点 を除けば、 現在情報の符号表と同じである。
<システム構成 >
図 1 8は、 予測情報を含む交通情報を生成して提供する放送型の交通情報提供 システムを示している。 このシステムの交通情報計測装置 10は、各センサー処理 部 11、 12、 13で処理されたデータを用いて交通情報の現在情報を生成し、 また、 統計情報 16を用いて予測情報を生成し、それらの交通情報データと対象区間を示 すデータとを出力する交通情報■予測情報算出部 15を備えている。その他の構成 は第 1の実施形態 (図 5) と変わりがない。
また、 図 1 9のフロー図は、 このシステムの各部の動作を示している。 第 1の 実施形態での処理 (図 6) に比べて、 符号表作成部の処理では、 予測情報の符号 化に使用する符号表の作成過程 (ステップ 104〜ステップ 08) が加わっている点 が相違し、 また、 交通情報送信部の処理では、 ステップ 116〜ステップ 120の処 理において、 現在情報とともに予測情報のデータを符号化している点が相違して いる。 その他は同じである。
また、図 20には、交通情報送信部 30から送信される形状べクトルデータ列情 報 (a) と交通情報 (b) とのデータ構造の一例を示している。 形状ベクトルデ ータ列情報 (a) は、 第 1の実施形態 (図 8 (a)) と同じである。 交通情報 (b) に関しては、 星印で示すデータが第 1の実施形態 (図 8 (b)) と変わっており、 予測情報の符号表を規定する識別コードや、 予測情報の有効時間帯を示す情報、 予測情報の符号化されたデータ等が加わっている。 予測情報に関しては、 有効時 間帯を異にする複数のデータが含まれる。交通情報送信部 30からは、この形状べ クトルデータ列情報(a)及び交通情報(b) の他に、形状べク トルの符号表や、 交通情報量子化テーブル、 交通情報の統計予測差分値の符号表 (図 1 7 (a))、 予測情報の符号表 (図 1 7 (b)) などが同時に (あるいは別ルートで) 送信され る。 く予測情報の分解能の変更 >
予測情報については、 遠い将来を予測する程、 予測精度が低下するため、 未来 時間になるほど分解能を下げて情報を提供するようにしても良レ、。
図 2 1 (b) は、 オリジナルの情報 (図 2 1 (a)) から、 未来時間に従って 、 位置分解能を低下させ、 且つ、 交通表現分解能を低下させる様子を模式的に示 している。 位置分解能を下げる場合は、 複数の距離方向量子化単位を 1つの距離 方向量子化単位に纏め、 各距離方向量子化単位のデータの平均値を、 纏めた距離 方向量子化単位のデータとする。
また、 交通表現分解能を下げる場合は、 粗い量子化テーブルを用いてデータの 量子化を行う。
図 2 2は、 オリジナルの予測情報 (a) から、 位置分解能を落とし、 また、 図 2 3に示す複数のレベルで粗さが設定されている量子化テーブルを用いて交通表 現分解能を落として、 予測情報の統計予測差分値を求める事例を示している。 図 2 2 (b) では、 位置分解能を半分に落としている。 交通情報の値は、 平均を求 め、 端数を切り上げている。
図 2 2' (c) では、 図 2 3の 「量子化量 (現在)」 の量子化テーブルを用いて、 予測情報及び現在情報を量子化している。 図 2 2 (d) では、 図 2 3の 「量子化 量 (予測 1)」 の量子化テーブルを用いて、 予測情報をさらに量子化し、予測情報 の交通表現分解能を落としている。 図 2 2 (e) では、 「量子化量 (予測 1)J の 量子化テーブルを用いて量子化した現在情報と図 2 2 (d) の予測情報との時間 方向の差分を抽出している。
図 22 ( f ) では、 図 2 2 (e) で求めた予測情報、 及び、 図 2 2 (c) で求 めた現在情報 (「量子化量 (現在)」 の量子化テーブルで量子化した現在情報) に 関し、 隣接する量子化単位の値を統計予測値として、 統計予測差分値を算出して いる。
ここでは、 位置分解能及び交通表現分解能の両方を変える場合について示した が、 いずれか一方だけの分解能を落とすようにしても良い。
また、 この例では、 予測情報の位置分解能を半分に落とした (即ち、 単位区画 長を 2倍にした) 力 単位区画長を 1 . 0倍以上の任意の値に設定することが可 能である。 (ただし、計算が面倒になるので、 1 . 5倍や 1 . 2 5倍に設定するの が実用上は妥当である)
また、 この例では、 予測情報の交通表現分解能も半分に落としたが、 粗くなる 方向であれば任意に設定することが可能である (ただし、計算は面倒になる)。 距 離方向の末尾の端数については、 計算が面倒なので、 あらかじめ 「一番粗く した 状態の単位区間長」を算出しておき、その区間長をベースに 2 N分割していくのが 現実的と考えられる。
なお、 復号化 (デコード) の手順を図 2 2の右側に①〜⑧で示している。 また、 図 2 4は、 予測情報の分解能を変更する場合の交通情報のデータ構造を 示している。 各有効時間帯の予測情報について、 位置分解能識別コード (「単位 区間長が!)倍に長くなる」 ことを示すコード) と量子化テーブル番号とが追加さ れている。
このように、 予測情報に対しては、 予測を行う未来時間に応じて、 情報表現の 分解能を変更し、 送信データ量を削減することができる。 ぐ変形例〉
ここでは、 統計予測差分値を算出する場合に、 隣接する距離方向量子化単位の 値を統計予測値として用いる場合を示したが、 図 2 5に示すように、 空間 ·時間 の両方を考慮して、 黒丸の量子化単位における統計予測値を、
統計予測値 = a①十 b② + c③ (ただし、 a + b + c = 1 )
または = (① +③) ÷ 2 と設定しても良い。
(第 3の実施形態)
本発明の第 3の実施形態では、 基準ノ一ドからの距離の関数で表された交通情 報に直交変換を施して周波数成分に分解し、 交通情報を各周波数成分の係数で表 現する方法について説明する。
なお、 時系列データに直交変換を施し、 周波数成分の係数に変換する手法とし て FFT (高速フーリエ変換)、 DCT (離散コサイン変換)、 ウエーブレット 変換等が知られている。 ここでは、 最も一般的な F FT (高速フーリエ変換) に ついて説明する。
フーリエ変換は、 有限個の離散値 (サンプル値) を用いてフーリエ係数を得る 変換であり、 複素関数 f で表した離散値に対して、 複素関数 Cを、
C (k)= (1/n) ∑ f (j) · ω- jk (k = 0 , 1, 2, ·', n— 1 ) (∑ は j =0から n_ 1まで加算) (数 1) と対応させることを 「フーリエ変換する」 と云う。 なお、 ω = e X p (2 π i ) である。 また、 C(k)をフーリエ係数と云う。 nは次数と云う。
逆に、
f ( j) =∑ C (k) - ω Jk ( j = 0 , 1 , 2, · ·, η - 1 )
(∑ は k = 0から η— 1まで加算) (数 2 ) と対応させることを逆フーリエ変換という。
フーリエ変換を行う際に、 f (j)の取り得る離散値について、
-サンプリング間隔 δ =—定
• η = 2Ν
となるときは、 FFT (高速フーリエ変換) が可能である。 F FTアルゴリズム については種々のものが提案されている。
図 26は、 交通情報を実際にフーリエ係数で表現した実験例を示している。 こ の実験例を通じて、フーリエ係数で表した交通情報の生成方法について説明する。 ここで、 ① 「元の交通情報データ」 は、 各標本化点における交通情報の状態量 (図 1 ( b ) のデータに相当) を示している。 データ数は、 F F Tが可能になるように、 2 5 ( = 3 2 ) 個に設定している。 F F Tの場合、 複素関数の実数部と虚数部と を用いて 2つの情報を同時に送ることができるため、 ここでは、 実数部に 「速度 情報」 を設定し、 虚数部に 「渋滞情報」 を設定している。 なお、 F F Tの場合、 値が同程度の方が相対的な誤差が少なくなるため、 渋滞情報は、 速度情報の数値 レベルにあわせて 「渋滞 = 1 0、 混雑 = 2 0、 閑散 = 4 0」 と表現している。
② F F T変換処理では、 ①のデータを虚数表現 (末尾に 「 i」 が付いている数 値は、 虚数係数を表す) し、 F F T変換処理を行い、 得られた F F T係数を示し ている。
③量子化テーブルは、 符号化圧縮時の 「交通情報量子化テーブル」 に相当し、 ②の F F T係数を量子化テーブルの値で除算して (即ち、 量子化して)、 「④送 信データ」 を得る。 F F T係数は、 本表では、 「行の上部に記述されているもの ほど低周波の係数であり、 下部に記述されているものは高周波の係数」 となるた め、 影響の大きい低周波の係数は、 詳細に表現できるように 「③量子化テーブル 」 の値を小さく設定し、 高周波に行く程、 粗くなるように 「③量子化テーブル」 の値を設定している。
④送信データは、 ②の F F T係数を③量子化テーブルで量子化して求めている 。 (量子化テーブルの値が 6 4であれば、 F F T係数の実数部 ·虚数部を 6 4で 除算し、 小数点以下を四捨五入する)。 ④送信データは、 高周波成分ほど、 粗く 量子化しているため、 上から 6行目以降は、 相対的に値が小さくなり、 「0」 周 辺に値が集中して来る。 この④送信データは、 後述するように、 可変長符号化圧 縮されて送信されるが (なお、 F F T係数の場合、 規則性がないため、 特に統計 差分等の処理は行わない)、 「0」 周辺に値が集中することにより、 可変長符号 化の圧縮効果が出ることになる。 なお、 受信側には、 復号化に必要なテーブル情 報として、 ③量子化テーブルが併せて送信される。
⑤逆 F F T変換処理は、 受信したフーリエ係数 (④) を、 逆 F F T変換する処 理である.。 まず、 受信したデータの実数部整数 '虚数部整数の各係数を 「量子化 テーブル」 の値をもとに復元する (量子化テーブルの値が 6 4であれば、 受信デ ータの実数部 .虚数部に 6 4を乗算し、 小数点以下を四捨五入する)。 その値を 逆 F F T変換処理する。
⑥復元交通情報データは、 逆 F F T変換で得られた逆 F F T係数の実数部■虚 数部の係数値を四捨五入し、 実数 を速度情報に、 虚数部を渋滞情報に復元した ものである。
⑦元ー復元データ間差異は、 参考までに 「復元データ」 と 「計測データ」 との 差を記述している。 最大で ± 4程度の誤差は発生しているものの、 元の 「計測デ ータ」 と比較し、 ほぼ同じ値が得られている。 特に渋滞情報については、 このレ ベルの誤差であれば、 「渋滞 = 0〜 1 5、 混雑 = 1 6〜 2 5、 閑散 = 2 6以上」 と事前に取り決めておくことにより、 正確に再現できる。
なお、 図 2 7は、 図 2 6と同じ計測データについて、 ③量子化テーブルを細か く設定し、 生データに近い形で詳細にデータを送信する場合を示している。
このときの⑦元ー復元データ間差異は、 図 2 6に比べて遥かに小さく、 精密に 情報が再現されている。 伹し、 ④送信データは、 図 2 6に比べて、 高周波成分の レンジが拡がっており (土 0を中心としたバラツキが大きレ、)、 こちらの方が送 信する情報量が多く、 可変長符号化圧縮の効果が出なくなる。
このように、 交通情報を F F T係数に変換して送信する場合には、 量子化テー ブルの値を調整することにより、 「情報量は多いが、 交通情報を正確に再現でき る送信データ」 から 「情報量は少ないが、 交通情報の再現精度は低いデータ」 ま で得ることができ、 第 1の実施形態で説明した位置分解能も考慮して、 情報量を 調整することができる。
交通情報を F F T係数に変換して提供するシステムの構成は図 5と同じである c 図 2 8のフロー図は、 このシステムでの処理手順を示している。 符号表作成部 は、 F F Tを実施して F F T係数を求め (ステップ 204)、 F F T係数を量子化 して量子化係数を算出し (ステップ 205)、 量子化係数の分布を計算し (ステツ プ 207)、 ランレングスの分布を計算し (ステップ 207)、 それらを基に符号表を 作成する (ステップ 208)。 また、 交通情報送信部は、 実数部及び虚数部に設定した交通情報のレベル合わ せを行い(ステツプ 218)、 F F Tを実施してフーリェ係数に変換し(ステップ 219)、 このフーリエ係数を符号表を参照して可変長符号化圧縮する (ステップ 220)。 また、 受信側装置は、 符号表を参照し、 逆フーリエ変換を実施して交通情報を 復号化する (ステップ 234)。
その他の手順は、 図 6の場合と変わりがない。
図 3 0は、 符号化に用いる符号表を示し、 図 2 9は、 交通情報送信部から送信 される交通情報のデータ構成例を示している。 ここで、 交通量子化テーブル識別 コードは、 図 2 6の③量子化テーブルの識別番号に相当する。 符号表識別コード は、 図 3 0の符号表の識別コードを表している。
F F Tの場合、 送信されるデータの数 (図 2 7の表の行数 X 2に相当) は、 通 常は、 基準ノード間の区間分割数 2 Nの 2倍になる。 ただ、 高周波成分をカット して送信する場合には、 その数が違ってくる。 これは、 符号表の E O Dコードで 識別する。 このとき、 受信側は、 高周波成分のフーリエ係数を 0と見做して復号 化処理を行う。
このように、 交通情報を、 道路を示す形状ベク トルの距離方向に標本化し、 各 標本化点の状態量で表される交通情報の関数を周波数成分に分解し、 各周波数の 係数値を符号化して提供することにより、 受信側装置では、 交通情報を復元する ことができる。
この方法は、 交通情報の予測情報に対しても同様に適用することができる。 ま た、 予測情報の場合には、 時間帯 Nの交通情報の状態量と、 時間的に隣接する時 間帯 N + 1の交通情報 (予測情報) の状態量との差分を取り、 各標本化点での差 分状態量に直交変換を施して各周波数成分の係数値に変換し、 得られた係数値を 符号化するようにしても良い。
また、 周波数成分への変換で得られた各周波数の係数値のうち、 高周波成分の 係数値を統計的発生頻度に偏りを持つように量子化し、 量子化後の各周波数の係 数値を符号化することにより、 データ量を大幅に削減できる。
また、 周波数成分への変換で得られた各周波数の係数値のうち、 高周波成分の 係数値を削除して符号化を行うようにしても良い。
(第 4の実施形態)
本発明の第 4の実施形態では、 フーリェ係数などで表現した交通情報の特殊な データ送信方法について説明する。
ぐ周波数の階層別に低周波から高周波の順に送信する方法〉
この送信方法では、 画像情報のプログレッシブ伝送方式に準じた方法で交通情 報を送信する。
画像情報のプログレッシブ伝送方式では、 送信側が、
①まずは低周波成分を全画素分一気に送り
②次に、 より高周波成分の係数を送り
③また次に、 さらに高周波成分の係数を送り これを繰り返す。 画像を見る受信側では、
①まずは、 ポャけた画像が出てくる
②段々と、 細密化されてくる
となる。 この場合、 通信速度が遅くても、 受信側は、 全データを受信する前に、 どんな画像であるかが、 ほぼ判別できるので、 早い段階で 「必要か否か」 が判断 できる。
周波数成分への変換を実施して各周波数の係数値で表現した交通情報に対して も、 このデータ送信方法を適用することが可能である。
このデータ送信方法は、 交通情報を表す各周波数の係数値を周波数によって階 層化し、 階層別に分割して送信することにより、 実現可能である。
図 3 1は、 交通情報を分割する場合のデータ構成を示している。 図 3 1 ( a ) は、 初期に送信される、 基本的な情報及び低周波成分の F F T係数情報を示して いる。 ここには、 低周波成分〜高周波成分を何分割したかを表す 「交通情報の分 割数」 が含まれ、 また、 本情報がその中の何番目かを示す 「本情報の番号」 が含 まれる。 図 3 1 ( b ) は、 分割された交通情報の一つである高周波成分の F F T T JP03/03875 係数情報を示している。 ここにも 「交通情報の分割数」 及び 「本情報の番号」 は 含まれるが、 図 3 1 ( a ) と重複するデータ項目は省略されている。
この交通情報の送信方法をィンターネット等からの交通情報の提供に適用する 場合には、ユーザは、インターネット等で、あちこちの交通情報を見たい場合に、 概要情報を見て、 読み飛ばせそうであれば、 次を見ることができる。 また、 イン ターネット等で交通情報を高速道路沿いにスクロールしながら参照する場合に、 概要情報を見て読み飛ばせそうであれば、 スクロールを次々に進めることができ る。 '
また、 時系列に蓄積した過去の交通情報を、 順次アニメーションのように見て いく場合には、 注目している個所が渋滞していなさそうな場合に、 次々とコマを 進めて行くことができる。
また、 情報提供を行う複数の道路における前記周波数の係数値を、 図 3 2 ( b ) の矢印で示す順序で、 低周波から高周波の順に送信するようにしても良い。 図 3 2 ( a ) は、 対比のために通常の送信順序を示している。 く複数の送信メディアによる補完 >
交通情報を表す各周波数の係数値を周波数によって階層化し、図 3 1のように、 低周波成分と高周波成分とに分割した場合は、 交通情報を階層別に複数のメディ ァから分けて送ることが可能になる。
例えば、 地上波デジタル放送は、 広域の全対象道路の形状べクトルデータ (位 置情報) と、 粗い交通情報 (F F T係数の低周波成分) とを提供し、 道路脇に設 置されているビーコンは、 設置場所周辺について、 地上波デジタル放送が提供す る交通情報を詳細化する情報 (F F T係数の高周波成分) を提供する。
このように広域放送型メディアは、 公共的な概要情報を提供し、 地域の詳細な 情報の提供をビーコンなどに任せることができる。
図 3 3は、 この場合のシステムの構成図を示している。 交通情報送信部 30は、 広域メディア Aを通じて交通情報を提供する情報送信部 A (135) と、 ビーコン (メディア B ) を通じて交通情報を提供する情報送信部 B (235) とを備え、 受 PC漏細 75 信側装置 60は、 広域メディア Aの提供情報を受信する情報受信部 A (161) と、 ビーコンからの提供情報を受信する情報受信部 B (261) とを備えている。
受信側装置 60は、 情報受信部 A (161) で受信した交通情報と、 情報受信部 B (261) で受信した交通情報とを用いて、 交通情報を再現する。
このように広域メディアとビーコンとが補完して交通情報を提供するシステム では、 広域メディアは、 細かい情報を送る必要がない分、 より広範囲な交通情報 を送信することが可能になる。 また、 受信側装置は、 広域メディアから得た情報 と、 走行中の現地のビーコンから得た詳細情報とを基に、 必要な交通情報を再現 することができる。
また、 ビーコンを通じてプローブ情報を提供した車载機に対して、 ビーコンか ら詳しい情報を見返り情報として提供し、 プローブ情報提供の促進を図ることな ども可能である。
なお、 ここでは、 広域メディアとビーコンとの関係について説明したが、 補完 関係を築くメディアは、 他の組み合わせでも良く、 ビーコンに代えて、 携帯電話 等他のメディァでも良い。
(第 5の実施形態)
本発明の第 5の実施形態では、 最新の交通情報を、 前回の交通情報との差分情 報によって提供する方法について説明する。
この方法では、 未来時間の時間軸上に時系列的に並ぶ予測情報を算出するため に用いた手法 (即ち、 前時間帯との差分を取り、 且つ、 隣接地点との差分を取り 、 その差分値を符号化する手法) を、 実時間軸上に時系列的に並ぶ各時間帯の最 新情報を算出するために適用し、 現時間帯の最新情報を算出する場合に、 前の時 間帯の最新情報との差分を取り、 且つ、 隣接地点との差分を取り、 その差分値を 符号化する。
ただ、 予測情報の場合には、 図 2 0 ( b ) の交通情報のデータフォーマットに 各時間帯の予測情報を表示して送信することができたが、 実時間軸上の最新情報 は、 当然、 その時間が来なければデータを送ることができない。 PC漏應 75 そこで、 ここでは、 図 2 0 ( b ) の交通情報のデータフォーマットを、 図 3 4 に示すように、 基となる交通情報 (図 3 4 ( a ) ) と、 各時間帯の予測情報を表 す交通情報 (図 3 4 ( b ) ) とのデータフォーマットに分割し、 実時間が到来し た時点で、 その時点の最新情報を図 3 4 ( b ) の交通情報のデータフォーマット で送信する。 '
これらの交通情報には、 分割した数を表す 「交通情報分割数」 と、 本情報がそ の中の何番目かを示す 「本情報の番号」 とが記述される。 この分割数が N— 1の
1サイクル目には、 次回から N— 1サイクルまでの基となる交通情報を図 3 4 ( a ) のデータフォーマットで、 形状ベク トルデータ列情報とともに送信する。
2サイクル目には、 図 3 4 ( b ) のデータフォーマットで、 1サイクル目の情 報からの差分値で表した最新交通情報を送信する。
3サイクル目には、 図 3 4 ( b ) のデータフォーマットで、 2サイクル目の情 報からの差分値で表した最新交通情報を送信する。
Nサイクル目には、 次回以降の基となる交通情報を図 3 4 ( a ) のデータフォ 一マツトで、 形状べク トルデータ列情報とともに送信する。
こうすることにより、 トータルの情報量は小さくて済む。 また、 受信側は、 マ ップマッチングの回数が少なくて済み、 システム全体のトータルの性能が向上す る。
過去に提供した交通情報の履歴データを保存しておく場合にも、 データ量が少 なくて済む。
また、 インターネット等でリアルタイムの交通情報を提供したり、 過去の交通 情報を時系列で次々とアニメーション的に見せるサービスを提供したりする場合 に、 利用者の通信料金負担が軽減できる。
(第 6の実施形態)
本発明の第 6の実施形態では、 本方式の蓄積媒体への適用について説明する。 3875 これまで、 本発明により生成した交通情報を通信で情報伝達する場合を主眼に説 明して来たが、 この交通情報は、 ハードディスクや C D、 D V D等の蓄積メディ ァに保存したり、 蓄積メディアを通じて他の端末に移したりすることも可能であ る。
図 3 5は、 この場合のシステム構成図を示している。 交通情報変換 ·記録装置 330は、 符号化された交通情報を蓄積する情報蓄積部 335を備えており、 情報蓄 積部 335は、符号化処理部 34が符号化した交通情報を内部記録メディア 331や外 部記録メディア 332に蓄積する。 また、 交通情報参照 ·活用装置 3S0は、 符号化 データを復号化する複号化処理部 362を備えており、 復号化処理部 362は、 外部 記録メディア 332や内部記録メディア 361に格納されている交通情報を読み出し て復号化する。複号化された交通情報の活用の仕方は、図 5の場合と同じである。 このように、 本発明の方法で生成した交通情報は、 蓄積メディアに蓄積して活 用することができる。
(第 7の実施形態)
本発明の第 7の実施形態では、対話型による交通情報の提供について説明する。 このシステムでは、 図 3 6に示すように、 クライアントが、 交通情報の範囲や データ量 (これを超えるデータは要らない) を指定して、 交通情報を要求するリ タエスト情報を送り、 サーバが、 リクエストに応じた交通情報を提供する。 クラ イアント側装置には、 カーナビやパソコン、 携帯型端末等が成り得る。
図 3 9は、 このシステムの構成をブロック図で示している。 クライアント装置 460は、 ユーザが要求を入力する入力操作部 463 と、 入力操作に基づいて、 要求 する表示範囲やデータサイズを決定する表示範囲 ·データサイズ決定部 462と、 リクエストを送信するリクエスト情報送信部 461と、 レスポンス情報を受信する レスポンス情報受信部 464と、符号化データの復号化処理を行う復号化処理部 465 と、 再生された交通情報を活用する交通情報活用部 466 と、 交通情報活用部 4SS が参照するデジタル地図データベース 467とを備えている。
一方、サーバ装置 430は、リクエスト情報を受信するリクエスト情報受信部 431 PC漏脑 75 と、 送信する交通情報のエリアや詳細度を判定する送信交通情報エリア ·詳細度 判定部 432と、 符号表データ 434を用いて交通情報データ 433を符号化する交通 情報量子化■符号化部 435と、 符号化した交通情報を送信するレスポンス情報送 信部 436とを備えている。
図 3 8のフロー図は、 このシステムの動作手順を示している。
クライアント装置 460は、 表示や経路探索等の処理で必要な交通情報の範囲及 び希望するデータサイズを決定し (ステップ 310)、 サーバ 430に対してリクエス ト情報を送信する (ステップ 311)。
クライアントからの要求を待っていたサーバ装置 430は (ステップ 300)、 クラ イアントからのリクエスト情報を受信すると (ステップ301)、 リクエスト情報か らクライアントに対して送信する交通情報の詳細度を決定し (ステップ 302)、 交 通情報の量子化及び符号化を実施し (ステップ 303)、符号化した交通情報及ぴ符 号表をクライアントに送信する (ステップ 304)。 このとき、 サーバ装置 430は、 図 8や図 2 0に示すデータをクライアントに送信する。
クライアント装置 460は、 サーバ 430からレスポンス情報を受信すると (ステ ップ 312)、符号表を参照して、符号表現された交通情報を復号化し(ステップ 313)、 位置情報 (形状べクトル等) を基にマップマッチングを行い、 受信した交通情報 の位置を特定し (ステップ 314)、 交通情報を活用する。
図 3 7は、 このリクエスト情報の一例を示している。
「希望する最大データサイズ」 は、 パケット料金制度の場合の通信料金や通信 時間等でも構わない。 リクエストの範囲は、 「矩形の左下 Z右上の緯度経度」 「中 心点」 「都道府県/市町村コード」 「道路指定」 「経路探索要求用始終端緯度経度」 「現在地緯度経度 +進行方向」 のいずれを用いて指定しても良く、 また、 それら を組み合わせて指定しても良い。
送信交通情報エリア ·詳細度判定部 432は、 交通情報が 「経路探索要求用始終 端緯度経度」 によりリクエストされた場合には、 推奨経路上の交通情報について は詳しく、 推奨経路からの距離が長くなる程、 粗くなるように交通情報の詳細度 を決定する。 PC蘭薦 875 また、 交通情報が 「現在地緯度経度 +進行方向」 によりリクエストされた場合 には、 現在地の周辺で進行方向及ぴ進行道路上の交通情報は詳細に、 遠方程粗く なるように、 交通情報の詳細度を決定する。
このように対話型情報提供では、 交通情報における情報表現の分解能を、 リク エストに応じてきめ細かく調整することができる。
この他、 各リンクへの到着予想旅行時間に従って、 到着予測時刻周辺の予測情 報は細かく、 到着予想時刻から外れるほど予測情報を粗くして情報を提供する等 の調整も可能である。
(第 8の実施形態)
これまでの実施形態では、 センターである交通情報提供装置 (交通情報送信部 ) 力 カーナビ車载機などの交通情報利用装置に交通情報を提供する場合につい て説明したが、 走行データを提供するプローブカーの車載機が交通情報提供装置 となり、 プローブカー車載機から情報を収集するセンターが交通情報利用装置と なり、 プローブカー車载機が、 交通情報として、 走行速度や燃料消費量など、 各 種の計測情報をセンターに提供するシステムにおいても、 本発明の交通情報生成 方法の適用が可能である。 本発明の第 8の実施形態では、 こうしたプローブカー システムについて説明する。
このシステムは、 図 4 6に示すように、 走行時のデータを計測して提供するプ ローブカー車載機 90と、 このデータを収集するプローブカー収集システム 80と から成り、プローブカー車載機 90は、送信データの符号化に用いる符号表をプロ ープカー収集システム 80から受信する符号表受信部 94と、 速度を検知するセン サ A 106や動力出力を検知するセンサ B 107、燃料消費を検知するセンサ 108の検 知情報を収集するセンサ情報収集部 98と、 G P Sアンテナ 101での受信情報ゃジ ャイロ 102の情報を用いて自車位置を判定する自車位置判定部 93と、自車の走行 軌跡やセンサ A、 B、 Cの計測情報を蓄積する走行軌跡計測情報蓄積部 96と、計 測情報のサンプリングデータを生成する計測情報データ変換部 97と、受信した符 号表データ 95 を用いて計測情報のサンプリングデータや走行軌跡データを符号 PC漏細 75 化する符号化処理部 92 と、 符号化されたデータをプローブカー収集システム 80 に送信する走行軌跡送信部 91とを備えている。
一方、 プローブカー収集システム 80は、 プローブカー車載機 90から走行デー タを受信する走行軌跡受信部 83と、 符号表データ 86を用いて受信データの復号 化を行う符号化データ復号部 82と、復号化されたデータを用いて計測情報を復元 する計測情報データ逆変換部 87と、復元された計測情報や走行軌跡のデータを活 用する走行軌跡計測情報活用部 81と、プローブカーの現在位置に応じてプローブ カー車載機 90に与える符号表を選出する符号表選出部 85と、 選出された符号表 をプローブカーに送信する符号表送信部 84とを備えている。
ここでは、 第 3の実施形態で示した圧縮符号化方法、 即ち、 交通情報に直交変 換を施し、 各周波数成分の係数に表して送信する場合について説明する。
プローブカー車载機 90の自車位置判定部 93は、 G P Sアンテナ 101での受信 情報やジャイロ 102の情報を用いて自車位置を識別する。 また、 センサ情報収集 部 98は、 センサ A 106で検知された速度情報やセンサ B 107で検知されたェンジ ン負荷、 センサ C 108 で検知されたガソリン消費量等の計測値を収集する。 セン サ情報収集部 98で集められた計測情報は、 自車位置判定部 93が識別した自車位 置と対応付けて走行軌跡計測情報蓄積部 96に格納される。
計測情報データ変換部 97は、 走行軌跡計測情報蓄積部 96に蓄積された計測情 報を走行道路の計測開始地点 (基準位置) からの距離の関数で表し、 計測情報の サンプリングデータを生成する。符号化処理部 92は、 このサンプリングデータに 直交変換を施して、 計測情報を周波数成分の係数値に変換し、 走行軌跡データや 変換した係数値を、受信した符号表データ 95を用いて符号化する。符号化された 走行軌跡データ及ぴ計測情報は、走行軌跡送信部 91を通じてプローブカー収集シ ステム 80に送られる。
データを受信したプローブカー収集システム 80では、 符号化データ復号部 82 力 符号化されている走行軌跡データ及び計測情報を、符号表データ 86を用いて 復号化する。計測情報データ逆変換部 87は、復号化された係数値を用いて直交逆 変換を施して計測情報を復元する。走行軌跡計測情報活用部 81は、復元された計 測情報を、 プローブカーが走行した道路の交通情報の作成に利用する。
このように、 本発明の交通情報生成方法は、 プローブカー車载機からアップ口 一ドする情報の生成にも用いることができる。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。
本出願は、 2002年 3月 27 日出願の日本特許出願 (特願 2002— 089069)、 2003 年 1月 31 日出願の日本特許出願 (特願 2003— 025037)、 に基づくものであり、 そ の内容はここに参照として取り込まれる。 産業上の利用可能性
以上の説明から明らかなように、 本発明の交通情報提供システムでは、 位置分 解能及び交通表現分解能を任意に設定することができ、 交通情報の重要度に応じ て情報表現の分解能を随時変えることができる。 また、 交通情報の 「予測サービ ス」 にも柔軟に対応することができる。

Claims

請 求 の 範 固
1 . 道路に沿って変化する道路情報の状態量を、 前記道路の基準点からの 距離の関数で表して提供する道路情報提供装置と、
前記関数から前記道路における道路情報を再現する道路情報利用装置と を備えることを特徴とする道路情報提供システム。
2 . 前記道路情報提供装置は、 前記道路情報とともに前記道路を特定する 道路区間参照データを提供し、 前記道路情報利用装置は、 前記道路区間参照デー タから前記道路情報の対象道路を特定することを特徴とする請求項 1に記載の道 路情報提供システム。
3 . 前記道路情報提供装置は、 前記道路区間参照データとして、 前記道路 の形状べクトルを表すデータを提供し、 前記道路情報利用装置は、 前記形状べク トルを表すデータを用いてマップマッチングを行い、 前記道路情報の対象道路を 特定することを特徴とする請求項 2に記載の道路情報提供システム。
4 . 道路に沿って変化する道路情報の状態量を、.前記道路の距離方向に前 記道路情報の位置分解能に対応する間隔で標本化し、 各標本化点での前記状態量 を前記道路情報の表現可能な状態数を表す交通表現分解能に応じて量子化し、 得 られた値を符号化して提供する道路情報提供装置と、
前記符号化されている前記値を複号化して前記道路の道路情報を再現する道路 情報利用装置と
を備えることを特徴とする道路情報提供システム。
5 . 前記道路情報提供装置は、 前記道路の距離方向に等間隔に標本化する ことを特徴とする請求項 4に記載の道路情報提供システム。
6 . 前記道路情報提供装置は、 前記道路を示す形状べク トルの構成要素点 の位置または構成要素点間のリンク上の任意の点で標本化することを特徴とする 請求項 4に記載の道路情報提供
7 . 道路に沿って変化する道路情報の予測情報の状態量を、 前記道路の距 離方向に標本化し、 各標本化点での前記状態量を量子化し、 得られた値を符号化 して提供する道路情報提供装置と、
前記符号化されている前記値を復号化して前記道路の道路情報の予測情報を再 現する道路情報利用装置と
を備えることを特徴とする道路情報提供システム。
8 . 前記道路情報提供装置は、提供する道路情報のデータ伝送量に応じて、 前記位置分解能及び交通表現分解能の少なくとも一方を動的に変更することを特 徴とする請求項 4に記載の道路情報提供システム。
9 . 道路に沿って変化する道路情報の状態量を、 前記道路の距離方向に標 本化し、 各標本化点での前記状態量を統計的に偏りを持つ値に変換し、 前記値を 符号化して提供する道路情報提供装置と、
前記符号化されている前記値を複号化して前記道路の道路情報を再現する道路 情報利用装置と
を備えることを特徴とする道路情報提供システム。
1 0 . 道路に沿って変化する道路情報の予測情報の状態量を、 前記道路の 距離方向に標本化し、 各標本化点での前記状態量を量子化し、 量子化した前記値 を統計的に偏りを持つ値に変換し、 前記値を符号化して提供する道路情報提供装 置と、
前記符号化されている前記値を複号化して前記道路の道路情報の予測情報を再 現する道路情報利用装置と を備えることを特徴とする道路情報提供システム。
1 1 . 前記道路情報提供装置は、 隣接する位置の量子化単位における前記 値との差分を取ることにより、 着目する量子化単位における前記値を統計的に偏 りを持つ値に変換することを特徴とする請求項 9または請求項 1 0に記載の道路 情報提供システム。
1 2 . 道路に沿って変化する道路情報の予測情報の状態量を、 前記道路の 距離方向に標本化し、 各標本化点での前記状態量を、 隣接する時間帯の前記標本 化点での状態量との差分値で表し、 前記差分値を量子化し、 量子化した値を符号 化して提供する道路情報提供装置と、
前記符号化されている前記値を復号化して前記道路の道路情報の予測情報を再 現する道路情報利用装置と
を備えることを特徴とする道路情報提供システム。
1 3 . 道路に沿って変化する道路情報の状態量を、 前記道路の距離方向に 標本化し、 各標本化点での前記状態量を直交変換により周波数成分の係数値に変 換し、 前記係数値を符号化して提供する道路情報提供装置と、
前記符号化されている前記係数値を復号化して前記道路の道路情報を再現する 道路情報利用装置と
を備えることを特徴とする道路情報提供システム。
1 4 . 道路に沿って変化する道路情報の予測情報の状態量を、 前記道路の 距離方向に標本化し、 各標本化点での前記状態量を直交変換に.より周波数成分の 係数値に変換し、 前記係数値を符号化して提供する道路情報提供装置と、 前記符号化されている前記係数値を復号化して前記道路の道路情報の予測情報 を再現する道路情報利用装置と
を備えることを特徴とする道路情報提供システム。
1 5 . 道路に沿って変化する道路情報の予測情報の状態量を、 前記道路の 距離方向に標本化し、 各標本化点での前記状態量を、 瞵接する時間帯の前記標本 化点での状態量との差分値で表し、 前記差分値を直交変換により周波数成分の係 数値に変換し、 前記係数値を符号化して提供する道路情報提供装置と、
前記符号化されている前記係数値を復号化して前記道路の道路情報の予測情報 を再現する道路情報利用装置と
を備えることを特徴とする道路情報提供システム。
1 6 . 前記道路情報提供装置は、 前記各周波数の係数値を、 高周波の前記 係数値が統計的に偏りを持つように量子化し、 得られた値を可変長符号化するこ とを特徴とする請求項 1 3から請求項 1 5のいずれかに記載の道路情報提供シス テム。
1 7 . 前記道路情報提供装置は、 前記各周波数の係数値のうち、 高周波の 前記係数値を削除して符号化することを特徴とする請求項 1 3から請求項 1 5の いずれかに記載の道路情報提供システム。
1 8 . 前記道路情報提供装置は、 提供する道路情報のデータ伝送量に応じ て、 前記標本化点の間隔に対応する位置分解能を動的に変更することを特徴とす る請求項 1 3から請求項 1 7のいずれかに記載の道路情報提供システム。
1 9 . 前記道路情報提供装置は、 提供する道路情報のデータ伝送量に応じ て、 前記量子化の粗さに対応する交通表現分解能を動的に変更することを特徴と する請求項 1 6に記載の道路情報提供システム。
2 0 . 前記道路情報提供装置は、 提供する道路情報のデータ伝送量に応じ て、 削除する前記高周波の係数値の数を動的に変更することを特徴とする請求項 7に記載の道路情報提供
2 1 . 前記道路情報提供装置は、 道路情報または対象道路の重要度に応じ て、 前記道路情報の前記位置分解能または交通表現分解能を変更することを特徴 とする請求項 8、 請求項 1 8または請求項 1 9に記載の道路情報提供システム。
2 2 . 前記道路情報提供装置は、 道路情報の対象道路の情報提供地点から 距離に応じて、 前記道路情報の前記位置分解能または交通表現分解能を変更する ことを特徴とする請求項 8、 請求項 1 8または請求項 1 9に記載の道路情報提供
2 3 . 前記道路情報提供装置は、 推奨経路から外れた道路の道路情報に対 する前記位置分解能または交通表現分解能を落とすように変更することを特徴と する請求項 8、 請求項 1 8または請求項 1 9に記載の道路情報提供システム。
2 4 . 前記道路情報提供装置は、 複数の道路の低周波成分の係数値を符号 化したデータを、 高周波成分の係数値を符号化したデータよりも先に提供するこ とを特徴とする請求項 1 3から請求項 1 6に記載の道路情報提供;
2 5 . 前記道路情報提供装置は、 低周波成分の係数値を符号化したデータ を第 1のメディアから提供し、 前記高周波成分の係数値を符号化したデーダを第 2のメディアから提供することを特徴とする請求項 1 3から請求項 1 6に記載の 道路情報提供システム。
2 6 . 前記道路情報提供装置は、 前記各標本化点での前記状態量を均した 後、 次の処理を行うことを特徴とする請求項 4から請求項 2 5のいずれかに記载 の道路情報提供システム。
2 7 . 前記道路情報提供装置は、 現在時刻の道路情報を提供するとき、 過 去に提供した道路情報との差分のデータを提供することを特徴とする請求項 1か ら請求項 2 6のいずれかに記載の道路情報提供システム。
2 8 . 前記道路情報提供装置は、 前記道路情報を無線回線または有線回線 を通じて提供することを特徴とする請求項 1から請求項 2 7のいずれかに記載の 道路情報提供システム。
2 9 . 前記道路情報提供装置は、 前記道路情報を記録媒体に記録して提供 することを特徴とする請求項 1から請求項 2 8のいずれかに記載の道路情報提供 システム。
3 0 . 前記道路情報提供装置は、 前記道路情報の要求を受けて、 要求され た道路または地域の前記道路情報を提供することを特徴とする請求項 1から請求 項 2 9のいずれかに記載の道路情報提供 >
3 1 . 前記道路情報の前記状態量が、 前記標本化点での走行速度、 旅行時 間または渋滞状況であることを特徴とする請求項 1から請求項 3 0のいずれかに 記載の道路情報提供システム。
3 2 . 前記道路情報提供装置が、 走行中に計測した計測情報を提供するプ ローブカーであり、 前記道路情報利用装置が、 前記プローブカーから前記計測情 報を収集する情報収集装置であることを特徴とする請求項 1または請求項 3に記 載の道路情報提供システム。
3 3 . 道路に沿って変化する道路情報の状態量を、 前記道路の距離方向に 前記道路情報の位置分解能に対応する間隔で標本化する処理と、 各標本化点での 前記状態量を量子化テーブルを用いて量子化する処理とを行う道路情報変換部と、 前記道路情報変換部が処理したデータを符号表を用いて符号化する符号化処理 部と、
道路情報の収集状態に応じて、 前記位置分解能に対応する間隔を決定し、 前記 道路情報変換部が使用する前記量子化テーブル及び前記符号化処理部が使用する 前記符号表を選択する量子化単位決定部と、
前記符号化処理部が符号化したデータを送信する情報送信部と
を備えることを特徴とする道路情報生成装置。
3 4 . 道路を示す形状べク トルの基準ノードからの距離の関数で表された 道路情報と前記形状べク トルを表すデータとを受信する情報受信部と、
前記形状べクトルを表すデータを用いてマップマッチングを行い前記道路情報 の対象道路を特定するマップマツチング部と
を備えることを特徴とする道路情報利用装置。
3 5 . 道路に沿って変化する道路情報の状態量を、 前記道路の距離方向に 前記道路情報の位置分解能に対応する間隔で標本化し、 各標本化点での前記状態 量を前記道路情報の表現可能な状態数を表す交通表現分解能に応じて量子化し、 得られた値を統計的に偏りを持つ値に変換し、 変換した前記値を符号化すること を特徴とする道路情報生成方法。
3 6 . 道路に沿って変化する道路情報の状態量を、 前記道路の距離方向に 前記道路情報の位置分解能に対応する間隔で標本化し、 各標本化点での前記状態 量を直交変換により周波数成分の係数値に変換し、 前記係数値を統計的に偏りを 持つように量子化し、 量子化後の前記係数値を符号化することを特徴とする道路 情報生成方法。 .
3 7 . コンピュータに、
道路情報を標本化する際の間隔と量子化する際の量子化の粗さとを、 道路情報 の収集状態に応じて決定する手順と、
収集された前記道路情報の状態量を、 道路の距離方向に前記間隔で標本化する 手順と、
各標本化点での前記状態量を前記量子化の粗さに対応する量子化テーブルを用 いて量子化する手順と、
量子化した値を符号化圧縮する手順と
を実行させるためのプログラム。
3 8 . コンピュータに、
道路情報を標本化する際の間隔と量子化する際の量子化の粗さとを、 道路情報 の収集状態に応じて決定する手順と、
収集された道路情報の状態量を、 道路の距離方向に前記間隔で標本化する手順 と、
各標本化点での前記状態量に直交変換を施して周波数成分の係数値を求める手 順と、
前記係数値を前記量子化の粗さに対応する量子化テーブルを用いて量子化する 手順と、
量子化した値を符号化圧縮する手順と
を実行させるためのプログラム。
3 9 . 道路に沿って変化する道路情報の状態量を前記道路の基準点からの 距離の関数で表した道路情報のデータと、 前記道路を特定する道路区間参照デー タとが記録された記録媒体。
PCT/JP2003/003875 2002-03-27 2003-03-27 Systeme et appareil d'information routiere et procede de generation d'information routiere WO2003081558A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002480474A CA2480474A1 (en) 2002-03-27 2003-03-27 Road information providing system and road information providing apparatus and road information generating method
EP03745012A EP1489576A4 (en) 2002-03-27 2003-03-27 ROAD INFORMATION PROCESSING SYSTEM AND ROAD INFORMATION PROCESSING APPARATUS AND ROAD INFORMATION PROCESSING METHOD
US10/508,923 US20050171649A1 (en) 2002-03-27 2003-03-27 Road information providing system and road information providing apparatus and road information generating method
AU2003236157A AU2003236157A1 (en) 2002-03-27 2003-03-27 Road information providing system and road information providing apparatus and road information generating method
KR10-2004-7015206A KR20040102056A (ko) 2002-03-27 2003-03-27 도로정보 제공 시스템 및 장치와 도로정보 생성 방법
US12/048,630 US7747381B2 (en) 2002-03-27 2008-03-14 Road information provision system, road information provision apparatus, and road information generation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002089069 2002-03-27
JP2002-089069 2002-03-27
JP2003-025037 2003-01-31
JP2003025037A JP3990641B2 (ja) 2002-03-27 2003-01-31 道路情報提供システム及び装置と道路情報生成方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10508923 A-371-Of-International 2003-03-27
US12/048,630 Continuation US7747381B2 (en) 2002-03-27 2008-03-14 Road information provision system, road information provision apparatus, and road information generation method

Publications (1)

Publication Number Publication Date
WO2003081558A1 true WO2003081558A1 (fr) 2003-10-02

Family

ID=28456296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003875 WO2003081558A1 (fr) 2002-03-27 2003-03-27 Systeme et appareil d'information routiere et procede de generation d'information routiere

Country Status (8)

Country Link
US (2) US20050171649A1 (ja)
EP (1) EP1489576A4 (ja)
JP (1) JP3990641B2 (ja)
KR (1) KR20040102056A (ja)
CN (1) CN1656522A (ja)
AU (1) AU2003236157A1 (ja)
CA (1) CA2480474A1 (ja)
WO (1) WO2003081558A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677271A1 (en) * 2003-10-21 2006-07-05 Matsushita Electric Industrial Co., Ltd. Method and device for generating traffic information
CN103903436A (zh) * 2012-12-28 2014-07-02 上海优途信息科技有限公司 一种基于浮动车的高速公路交通拥堵检测方法和系统

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060064233A1 (en) * 2003-01-22 2006-03-23 Matsushita Electric Industrial Co., Ltd. Traffic information providing system, a traffic information expressing method and device
JP2004280521A (ja) * 2003-03-17 2004-10-07 Matsushita Electric Ind Co Ltd プローブカーシステムでの走行軌跡の伝送方法と装置
JP2005078124A (ja) * 2003-08-29 2005-03-24 Pioneer Electronic Corp 情報提供装置、そのシステム、その方法、そのプログラム、およびそのプログラムを記録する記録媒体
US7890246B2 (en) * 2003-12-26 2011-02-15 Aisin Aw Co., Ltd. Method of interpolating traffic information data, apparatus for interpolating, and traffic information data structure
JP4393222B2 (ja) * 2004-02-25 2010-01-06 株式会社日立製作所 交通情報表示装置
JP2005316739A (ja) * 2004-04-28 2005-11-10 Sumitomo Electric Ind Ltd 車両検出位置をリンクに対応付けする方法及び装置、渋滞箇所判定方法、渋滞箇所表示方法並びにプログラム
KR100693181B1 (ko) * 2005-05-06 2007-03-13 에스케이 텔레콤주식회사 텔레매틱스 서비스에서 차량의 속도를 보정하는 방법 및시스템
KR101254219B1 (ko) * 2006-01-19 2013-04-23 엘지전자 주식회사 링크 식별 방법 및 링크 식별 장치
CN101371280B (zh) 2005-12-30 2011-09-14 意大利电信股份公司 道路交通监视系统及相关方法
US8700296B2 (en) 2006-03-03 2014-04-15 Inrix, Inc. Dynamic prediction of road traffic conditions
US7912628B2 (en) 2006-03-03 2011-03-22 Inrix, Inc. Determining road traffic conditions using data from multiple data sources
US7899611B2 (en) * 2006-03-03 2011-03-01 Inrix, Inc. Detecting anomalous road traffic conditions
JP2009529187A (ja) * 2006-03-03 2009-08-13 インリックス インコーポレイテッド モバイルデータソースからのデータを使用する道路交通状況の評価
US20070208498A1 (en) * 2006-03-03 2007-09-06 Inrix, Inc. Displaying road traffic condition information and user controls
AU2007343393A1 (en) * 2007-01-10 2008-07-17 Tomtom International B.V. Improved navigation device interface
JP5045210B2 (ja) * 2007-04-25 2012-10-10 株式会社デンソー 走行情報収集装置
EP2006818B1 (en) 2007-06-15 2012-04-25 Xanavi Informatics Corporation Traffic information providing system and method for generating traffic information
WO2009080067A1 (en) * 2007-12-20 2009-07-02 Tomtom International B.V. Navigation device and method
JP4770858B2 (ja) * 2008-03-28 2011-09-14 アイシン・エィ・ダブリュ株式会社 信号交差点情報取得装置、信号交差点情報取得方法および信号交差点情報取得プログラム
US8812172B2 (en) * 2008-09-15 2014-08-19 Hti Ip, Llc Method for generating a vehicle identifier
EP2462411B1 (en) * 2009-08-03 2015-07-29 TomTom North America Inc. Method of verifying attribute information of a digital transport network database using interpolation and probe traces
DE102009053080A1 (de) * 2009-11-13 2011-05-19 Valeo Schalter Und Sensoren Gmbh Verfahren und System zur Erzeugung und Bereitstellung von verkehrsrelevanten Informationen
CN102110364B (zh) * 2009-12-28 2013-12-11 日电(中国)有限公司 基于路口和路段的交通信息处理方法和装置
US20110221901A1 (en) * 2010-03-11 2011-09-15 Gm Global Technology Operations, Inc. Adaptive Scene Rendering and V2X Video/Image Sharing
JP5146486B2 (ja) * 2010-05-11 2013-02-20 株式会社デンソー 経路探索装置およびナビゲーション装置
KR101743294B1 (ko) * 2010-11-01 2017-06-15 두산인프라코어 주식회사 건설장비의 모니터링 데이터 샘플링 방법
US8930123B2 (en) * 2010-11-19 2015-01-06 International Business Machines Corporation Systems and methods for determining traffic intensity using information obtained through crowdsourcing
CN102622879B (zh) * 2011-01-26 2015-03-11 株式会社日立制作所 交通信息提供装置
DE102012009674B4 (de) * 2012-03-07 2019-05-02 Audi Ag Verfahren zum Bereitstellen von Routeninformationen in einem Steuergerät eines Kraftwagens, sowie Navigationssystem eines Kraftwagens, sowie Kraftwagen
DE102012204306A1 (de) * 2012-03-19 2013-09-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung eines Bereitstellens von Verkehrsinformationsdaten zur Aktualisierung einer Verkehrsinformation
JP5615312B2 (ja) * 2012-03-26 2014-10-29 株式会社デンソーアイティーラボラトリ 渋滞予測方法及び渋滞予測装置
JP5456818B2 (ja) * 2012-03-27 2014-04-02 本田技研工業株式会社 ナビサーバ、ナビクライアント及びナビシステム
US11126394B2 (en) 2012-05-01 2021-09-21 Lisnr, Inc. Systems and methods for content delivery and management
US11452153B2 (en) 2012-05-01 2022-09-20 Lisnr, Inc. Pairing and gateway connection using sonic tones
JP5970971B2 (ja) * 2012-06-18 2016-08-17 住友電気工業株式会社 旅行時間情報生成システム及びコンピュータプログラム
US9368027B2 (en) 2013-11-01 2016-06-14 Here Global B.V. Traffic data simulator
US9495868B2 (en) * 2013-11-01 2016-11-15 Here Global B.V. Traffic data simulator
CN104794891A (zh) * 2014-01-20 2015-07-22 北京中交华安科技有限公司 一种道路信息采集设备
US9488490B2 (en) * 2014-04-02 2016-11-08 Here Global B.V. Storing and accessing traffic data images in a limited bandwidth environment
US10247557B2 (en) 2014-09-30 2019-04-02 Here Global B.V. Transmitting map data images in a limited bandwidth environment
BR112017007814A2 (pt) * 2014-10-15 2017-12-19 Lisnr Inc tons de sinalização inaudíveis
KR102274402B1 (ko) * 2014-10-28 2021-07-07 현대엠엔소프트 주식회사 실시간 교통정보 제공장치 및 방법
CN104464304A (zh) * 2014-12-25 2015-03-25 北京航空航天大学 一种基于路网特性的城市道路车辆行驶速度预测方法
CN105808617B (zh) * 2014-12-31 2020-02-07 高德软件有限公司 一种电子地图的生成、显示方法和装置
US9719785B2 (en) * 2015-01-21 2017-08-01 Honeywell International Inc. Methods and systems for route-based display of meteorological forecast information
RU2578643C1 (ru) * 2015-01-30 2016-03-27 Открытое Акционерное Общество "Российские Железные Дороги" Система для оперативной передачи предупреждений и электронных карт на высокоскоростной поезд
DE102016200759B4 (de) 2015-11-12 2023-03-30 Volkswagen Aktiengesellschaft Verfahren, Vorrichtung und Verarbeitungseinrichtung zum Steuern von Funktionen in einem Fahrzeug
WO2018012414A1 (ja) * 2016-07-13 2018-01-18 日本電気株式会社 交通制御支援システム、交通制御支援方法およびプログラム記録媒体
CN107784844B (zh) * 2016-08-31 2021-05-14 百度在线网络技术(北京)有限公司 智能交通信号灯系统及其道路环境检测方法
US10168176B2 (en) 2017-03-06 2019-01-01 International Business Machines Corporation Visualizing unidirectional traffic information
US12122352B2 (en) * 2017-06-06 2024-10-22 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for more accurately adjusting traffic predictions for the intended use of optimizing battery pre-charging
CN109147371B (zh) * 2017-06-15 2020-07-28 杭州海康威视数字技术股份有限公司 行驶路线确定方法及装置和计算机设备
US11189295B2 (en) 2017-09-28 2021-11-30 Lisnr, Inc. High bandwidth sonic tone generation
US11486718B2 (en) 2017-10-25 2022-11-01 Tata Consultancy Services Limited Predicting vehicle travel time on routes of unbounded length in arterial roads
JP7052786B2 (ja) * 2018-12-14 2022-04-12 株式会社デンソー 表示制御装置および表示制御プログラム
JP7277162B2 (ja) * 2019-02-12 2023-05-18 株式会社アイシン 交通情報案内装置及びコンピュータプログラム
CN111478952B (zh) * 2020-03-26 2023-05-12 宁波泰芯微电子有限公司 用于处理采样点的通信设备及方法
US11238729B1 (en) 2020-09-11 2022-02-01 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for traffic flow prediction
CN112652165B (zh) * 2020-12-11 2022-05-31 北京百度网讯科技有限公司 模型训练及路况预测方法、装置、设备、介质及程序产品
CN113742437B (zh) * 2021-08-18 2023-09-01 北京百度网讯科技有限公司 地图更新方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729087A (ja) * 1993-07-13 1995-01-31 Mitsubishi Electric Corp 交通量予測装置
JP2875520B2 (ja) * 1997-06-03 1999-03-31 雅夫 桑原 交通流シミュレータ
JP2000057482A (ja) * 1998-08-07 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> 交通状況予測方法、装置、および交通状況予測プログラムを記録した記録媒体
JP2001041757A (ja) * 1999-07-28 2001-02-16 Matsushita Electric Ind Co Ltd デジタル地図の位置情報伝達方法とそれを実施する装置
JP2002228467A (ja) * 2001-01-29 2002-08-14 Matsushita Electric Ind Co Ltd デジタル地図の位置情報伝達方法とそれに使用する装置
WO2002091587A1 (en) * 2001-05-01 2002-11-14 Matsushita Electric Industrial Co., Ltd. Digital map shape vector encoding method and position information transfer method

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642875B1 (fr) * 1989-02-03 1994-02-18 Urba 2000 Systeme de collecte et de diffusion d'informations pour automobilistes
JP2959048B2 (ja) 1990-06-05 1999-10-06 住友電気工業株式会社 道路交通情報提供システム
EP0482888B1 (en) 1990-10-25 1997-06-04 Matsushita Electric Industrial Co., Ltd. Video signal recording/reproducing apparatus
JPH04319992A (ja) 1991-04-19 1992-11-10 Pioneer Electron Corp 移動体の遠方監視制御装置
US5666161A (en) * 1993-04-26 1997-09-09 Hitachi, Ltd. Method and apparatus for creating less amount of compressd image data from compressed still image data and system for transmitting compressed image data through transmission line
US5488559A (en) * 1993-08-02 1996-01-30 Motorola, Inc. Map-matching with competing sensory positions
US5539645A (en) 1993-11-19 1996-07-23 Philips Electronics North America Corporation Traffic monitoring system with reduced communications requirements
JPH0887234A (ja) 1994-09-19 1996-04-02 Mitsubishi Electric Corp 道路情報提供システム
ATE187835T1 (de) * 1995-03-23 2000-01-15 Deutsche Telekom Mobil Verfahren und einrichtung zur ermittlung von dynamischen verkehrsinformationen
JP3902417B2 (ja) 1995-03-30 2007-04-04 三洋電機株式会社 半導体装置の製造方法
DE19526148C2 (de) * 1995-07-07 1997-06-05 Mannesmann Ag Verfahren und System zur Prognose von Verkehrsströmen
JP3355627B2 (ja) * 1995-08-09 2002-12-09 トヨタ自動車株式会社 旅行計画作成装置
JPH09181610A (ja) 1995-12-26 1997-07-11 Advantest Corp パターン圧縮方法及び装置
DE19750774A1 (de) * 1996-12-16 1998-07-23 Mannesmann Ag Verfahren und Vorrichtung zum Übermitteln von ein Verkehrsnetz betreffenden, die Verkehrssituation repräsentierenden Verkehrsinformationen von einer Verkehrszentrale an ein Endgerät eines Fahrzeuges
JPH10307993A (ja) 1997-03-04 1998-11-17 Sony Corp 交通情報収集システム
DE19741116B4 (de) * 1997-09-12 2004-02-26 Mannesmann Ag Verfahren zur Übertragung von Wegedaten, Verfahren zur Analyse eines Verkehrswegenetzes, Verkehrserfassungszentrale und Endgerät
JP3750345B2 (ja) 1998-03-26 2006-03-01 いすゞ自動車株式会社 車両運行管理システム
KR20000009806A (ko) * 1998-07-28 2000-02-15 이흥수 벡터데이터로 표현된 화상정보를 전송하는 시스템 및 그 방법
US6438561B1 (en) * 1998-11-19 2002-08-20 Navigation Technologies Corp. Method and system for using real-time traffic broadcasts with navigation systems
US6611749B1 (en) * 1998-12-14 2003-08-26 Mannesmann Ag Binary transmission system
JP2000258176A (ja) 1999-03-10 2000-09-22 Matsushita Electric Ind Co Ltd 動的地図データ更新システム
JP2003509710A (ja) * 1999-09-07 2003-03-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 交通道路網におけるオブジェクトを符号化および復号化する方法
JP2001109998A (ja) * 1999-10-08 2001-04-20 Hitachi Ltd 車両走行支援装置
JP3889191B2 (ja) 1999-11-01 2007-03-07 財団法人道路交通情報通信システムセンター 道路交通情報の簡易図形表示のためのデータ処理方法
JP3475142B2 (ja) 2000-03-01 2003-12-08 三菱電機株式会社 地図データ送信装置、地図データ送信方法、及び、地図データ送信方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP3679313B2 (ja) 2000-06-13 2005-08-03 株式会社日立製作所 移動体情報の通信装置及び通信方法
JP4064044B2 (ja) * 2000-08-29 2008-03-19 三菱電機株式会社 交通情報送信システム及び交通情報収集配信システム並びに交通情報収集配信方法
JP3636983B2 (ja) * 2000-10-23 2005-04-06 日本放送協会 符号化装置
JP2003346285A (ja) * 2002-03-20 2003-12-05 Vehicle Information & Communication System Center 道路情報送信装置、道路情報送信方法、道路情報送信プログラムおよび道路情報受信装置、道路情報受信方法、道路情報受信プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729087A (ja) * 1993-07-13 1995-01-31 Mitsubishi Electric Corp 交通量予測装置
JP2875520B2 (ja) * 1997-06-03 1999-03-31 雅夫 桑原 交通流シミュレータ
JP2000057482A (ja) * 1998-08-07 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> 交通状況予測方法、装置、および交通状況予測プログラムを記録した記録媒体
JP2001041757A (ja) * 1999-07-28 2001-02-16 Matsushita Electric Ind Co Ltd デジタル地図の位置情報伝達方法とそれを実施する装置
JP2002228467A (ja) * 2001-01-29 2002-08-14 Matsushita Electric Ind Co Ltd デジタル地図の位置情報伝達方法とそれに使用する装置
WO2002091587A1 (en) * 2001-05-01 2002-11-14 Matsushita Electric Industrial Co., Ltd. Digital map shape vector encoding method and position information transfer method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1489576A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677271A1 (en) * 2003-10-21 2006-07-05 Matsushita Electric Industrial Co., Ltd. Method and device for generating traffic information
EP1677271A4 (en) * 2003-10-21 2008-08-27 Matsushita Electric Ind Co Ltd METHOD AND DEVICE FOR PRODUCING TRAFFIC INFORMATION
CN103903436A (zh) * 2012-12-28 2014-07-02 上海优途信息科技有限公司 一种基于浮动车的高速公路交通拥堵检测方法和系统

Also Published As

Publication number Publication date
JP2004005416A (ja) 2004-01-08
US20080215233A1 (en) 2008-09-04
KR20040102056A (ko) 2004-12-03
EP1489576A1 (en) 2004-12-22
EP1489576A4 (en) 2012-08-08
US20050171649A1 (en) 2005-08-04
JP3990641B2 (ja) 2007-10-17
US7747381B2 (en) 2010-06-29
CN1656522A (zh) 2005-08-17
AU2003236157A1 (en) 2003-10-08
CA2480474A1 (en) 2003-10-02

Similar Documents

Publication Publication Date Title
WO2003081558A1 (fr) Systeme et appareil d&#39;information routiere et procede de generation d&#39;information routiere
US10629069B2 (en) Method and apparatus for providing a localized link-centric metric for directional traffic propagation
EP1577643A1 (en) Traffic information providing system, traffic information expression method and device
US7610151B2 (en) Collaborative route planning for generating personalized and context-sensitive routing recommendations
JP4212632B2 (ja) 道路情報提供システム及び装置と道路情報生成方法
WO2014153130A1 (en) High resolution encoding and transmission of traffic information
JP4212536B2 (ja) 道路情報提供システム及び装置と道路情報生成方法
CA2444271A1 (en) A method and apparatus for transmitting position information
US20060064233A1 (en) Traffic information providing system, a traffic information expressing method and device
JP2004220574A (ja) 道路関係情報の表現方法と、それを実施する装置及びシステム
JP2004333157A (ja) ルート情報送信方法と装置
CN111740981A (zh) 一种汽车gps轨迹数据压缩方法
JP2003203243A (ja) 地図データの蓄積及び送信方法とそれを実施する装置
JP2005056061A (ja) 交通情報の符号化方法、交通情報提供システム及び装置
WO2005038742A1 (ja) 交通情報の生成方法と装置
WO2005039058A1 (ja) 符号化データ生成方法と装置
JP3874745B2 (ja) 交通情報提供方法、交通情報提供システム及び装置
Chen et al. DAVT: An error-bounded vehicle trajectory data representation and compression framework
US20150094940A1 (en) Method for Transforming Probe Data Across Transportation Modes
KR20050012358A (ko) 동영상과 문자 및 음성을 결합한실시간멀티미디어교통정보제공시스템 및 그 서비스 방법
JP2006234569A (ja) 交通情報の生成方法及び装置ならびに再生方法及び装置
JP2004227316A (ja) 交通情報提示方法及び装置
Qin Data-Driven Human Behavior Learning and Prediction in Smart Cities
JPH11325940A (ja) 情報管理装置,ナビゲーション装置及びナビゲーション方法
TW201202658A (en) System and method of optimizing and dynamically updating route information

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10508923

Country of ref document: US

Ref document number: 1020047015206

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003745012

Country of ref document: EP

Ref document number: 2480474

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20038117045

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047015206

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003745012

Country of ref document: EP