WO2005039058A1 - 符号化データ生成方法と装置 - Google Patents

符号化データ生成方法と装置 Download PDF

Info

Publication number
WO2005039058A1
WO2005039058A1 PCT/JP2004/015274 JP2004015274W WO2005039058A1 WO 2005039058 A1 WO2005039058 A1 WO 2005039058A1 JP 2004015274 W JP2004015274 W JP 2004015274W WO 2005039058 A1 WO2005039058 A1 WO 2005039058A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
data
value
generation method
argument
Prior art date
Application number
PCT/JP2004/015274
Other languages
English (en)
French (fr)
Inventor
Shinya Adachi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/556,178 priority Critical patent/US7271746B2/en
Priority to EP04792491A priority patent/EP1675268A1/en
Priority to JP2005514800A priority patent/JPWO2005039058A1/ja
Priority to CA002523144A priority patent/CA2523144A1/en
Publication of WO2005039058A1 publication Critical patent/WO2005039058A1/ja
Priority to US11/835,066 priority patent/US7528746B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/40Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/20Contour coding, e.g. using detection of edges
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction

Definitions

  • the present invention relates to a method for generating encoded data representing a road position or the like on a digital map and an apparatus for generating and decoding encoded data, and reduces the data amount of encoded data. It is intended.
  • VICS Vehicle Traffic Information and Communication System
  • vehicle navigation device equipped with a digital map database to transmit road traffic information that indicates congested sections and travel time through FM multiplex broadcasting and beacons. Implement the provided service! / Puru.
  • the vehicle navigation device receives the road traffic information and displays the map on the screen by coloring the congested section or calculating and displaying the time required to reach the destination.
  • Japanese Patent Laid-Open Publication No. 2003-23357 proposes a method of notifying a road position on a digital map without using a node number or a link number and with a small amount of data.
  • sampling points are reset at fixed distance intervals on a road section on the digital map to be conveyed (this is called "equidistant resampling"), and the position data of each sampling point is set.
  • the compression-encoding process is performed on the data sequence in which are sequentially arranged, and the compression-encoded data is transmitted.
  • the receiving side restores the data sequence of the sampling point position data and reproduces the road shape on its own digital map. If necessary, use this location data to identify and refer to a location on the digital map of the user (map matching) to identify road sections.
  • the compression encoding of the position data sequence is performed as follows: (1) conversion of the position data into a single variable; and (2) statistical bias of the value represented by the single variable.
  • the conversion is performed in the order of (3) variable-length encoding of the converted value.
  • sampling points on the road section set by the equidistant resampling are represented by PJ-1 and PJ.
  • This sampling point (PJ) can be uniquely specified by two dimensions of the distance (resample length) L and the angle ⁇ from the adjacent sampling point (PJ-1), and the distance is fixed (L). Then, the sampling point (PJ) can be represented by a single variable consisting only of the angle component ⁇ from the adjacent sampling point.
  • the angle ⁇ is defined as the angle ⁇ ⁇ by the absolute azimuth that specifies the magnitude in the range of 0-360 degrees clockwise, with the azimuth of true north (upward in the figure) being 0 degrees. (Absolute direction from true north).
  • This angle ⁇ can be calculated by the following formula, where the xy coordinates (latitude, longitude) of P1 and PJ are (xj-l, yj-l) and (xj, yj).
  • ⁇ j- 1 tan " 1 ⁇ (xj-xj- 1) / (yj-yj- 1) ⁇
  • the road section can be represented by a data sequence of the angle components of each sampling point by separately indicating the fixed distance L between the sampling points and the latitude and longitude of the sampling point (reference point) at the start or end. it can.
  • the angle component of each sampling point is converted into a neighboring sampling value so that the single variable value at each sampling point becomes a statistically uneven value suitable for variable-length coding. It is represented by the displacement difference between the point and the angle component, that is, the “deviation” 6 j. This declination ⁇ j t
  • the angular component of the sampling point is obtained by calculating the declination ⁇ j of the sampling point PJ of interest and the sampling points PJ-1, PJ-2,.
  • Statistical expression by expressing the difference value (prediction difference value or prediction error) ⁇ j from the predicted value Sj of the sampling point PJ predicted using the declination -j-1, ⁇ j-2, It can be converted to biased data.
  • the predicted value Sj is, for example,
  • the predicted difference value ⁇ ⁇ j is
  • Fig. 26 (d) shows a graph of the frequency of occurrence of data when a straight road section is displayed with a declination ⁇ and when a curved road section is displayed with a predicted difference value ⁇ . Is shown.
  • variable length coding There are various types of variable-length coding methods such as a fixed numerical compression method (0 compression or the like), Shannon's Fano coding method, Huffman coding method, arithmetic coding method, dictionary method, and any method may be used.
  • variable length coding data with a high frequency of occurrence is encoded with a small number of bits, and data with a low frequency of occurrence is encoded with a large number of bits, thereby reducing the total data amount.
  • the relationship between this data and the code is defined in the code table. [0012] Now, the arrangement of ⁇ 0 at the sampling points of the road section expressed in units of 1 ° is “0—0——2—0—0— + 1—0—0——1—0— + 5—0 — 0— 0— + 1— 0 "
  • the typical angle of ⁇ 0 in the range of ⁇ 2 ° — 4 ° is ⁇ 3 °
  • the code is “111 0”, when +, the additional bit “0”, and when —, the additional bit “1” ⁇ 5.
  • the representative angle of ⁇ 0 in the range of 7 ° is ⁇ 6 °
  • the sign of “111100” is indicated by a plus and minus sign
  • the representative angle is specified as ⁇ 9 °
  • the sign “111101” is defined by adding an additional bit indicating positive or negative.
  • the data sequence is encoded as follows.
  • the receiving side that has received this data restores the data sequence of ⁇ ⁇ using the same code table as that used in the encoding, performs the processing opposite to that of the transmitting side, and converts the position data of the sampling points. Reproduce.
  • the data amount of the encoded data can be reduced.
  • the value (quantized resample length) that the resample length Lj of each section j can take is, for example, Lj is determined in advance by using the radius of curvature of the section j using the following formula, and the quantization sample length closest to this value is determined as the resample length Lj: 40Z80Z160Z320Z640Z1280Z2560Z5120 meters.
  • JP-A-2003-23357 was tried using the following three prediction formulas.
  • the prediction formula 2 or the prediction formula 3 is often suitable. There were many cases that were suitable.
  • the present invention provides a coded data generation method for efficiently compressing data to generate coded data such as a road shape of a digital map, and generating the coded data and generating the coded data. For the purpose of providing a device for decrypting! Puru.
  • Patent Document 1 JP-A-2003-23357
  • Prediction Equation 3 is a prediction using the average curvature of The curvature error for each interval is smoothed. Therefore, highly accurate prediction is possible in the above-mentioned “smooth power over a long distance”.
  • a linear object having a linear shape is resampled to set a plurality of nodes, and positional information of each node represented by an argument from the immediately preceding node is set.
  • To generate a declination data sequence convert the declination to a prediction difference value indicating a difference from a prediction value, and generate encoded data for performing variable-length coding on the prediction difference value data sequence.
  • a prediction formula for calculating a predicted value is selected from a plurality of prediction formulas.
  • the effect of data compression can be enhanced.
  • the data sequence of the predicted difference value when the argument is converted into the predicted difference value is evaluated, and a prediction formula is selected based on the evaluation result.
  • the above-described encoded data generation method may include the following steps (1) and (6).
  • step (5) for each of the plurality of prediction formulas, a step of acquiring a plurality of data strings of the prediction difference values respectively corresponding to the plurality of prediction formulas; And the step of selecting the predetermined prediction formula in the step (4) from a plurality of prediction formulas based on the evaluation result of the evaluation step. .
  • a plurality of prediction expressions include a prediction expression having 0 as a prediction value.
  • the plurality of prediction expressions described above may include at least one prediction expression formed by a function using at least one argument before the argument of interest as a parameter.
  • a plurality of prediction formulas include a prediction formula that uses the argument of the immediately preceding node as a prediction value.
  • one of the plurality of prediction formulas includes a prediction formula having a prediction value of an average or a weighted average of a plurality of preceding declination angles.
  • a plurality of prediction formulas include a prediction formula having a prediction value that is an angle obtained by reversing the sign of the argument of the immediately preceding node.
  • all the deviations included in the deviation angle data string are included.
  • the angle is converted to a predicted difference value, and the data sequence of the predicted difference value is evaluated. Based on the evaluation result, a prediction formula for converting all declinations to the predicted difference value is selected!
  • the argument included in the argument data sequence corresponding to a partial section of the linear object is converted into a prediction difference value, and the prediction difference value data sequence is evaluated. Based on the evaluation result, a prediction formula for converting the argument corresponding to the partial section into a prediction difference value is selected.
  • the data compression effect can be further enhanced by dynamically changing the prediction formula in the middle of the shape data of the linear object.
  • the argument data string is divided by an argument state transition pattern, and a prediction equation for converting the argument into a prediction difference value in units of the pattern is selected. Do as you do.
  • the argument data string is divided into blocks each containing a predetermined number of data, and a prediction formula for converting the argument into a prediction difference value is selected for each block. I will do it.
  • the selected prediction formula appears in the coded data in a fixed number unit, so that it is not necessary to insert a marker code into the coded data.
  • the argument data string is divided into blocks in accordance with a change in the resampled sample length, and the argument is converted into a prediction difference value in units of this block.
  • the feature of the shape data changes at the point where the resample length changes. Therefore, when this method is adopted, a prediction formula that matches the characteristics of the shape data can be selected.
  • the oblique angle of interest is determined in accordance with the evaluation result of the data sequence of a predetermined number of oblique angle prediction difference values preceding the oblique angle of interest of the oblique angle data sequence.
  • the prediction formula for converting the angle into the prediction difference value is selected.
  • both the encoding side and the decoding side implement a rule by a program. More realizable.
  • a predetermined number of declinations are converted into a plurality of prediction difference value data strings, and the evaluation result for the prediction difference value data string based on the predetermined selection formulas satisfies a predetermined requirement. Only in this case, the currently used prediction equation may be changed to a predetermined prediction equation, and then the argument of interest may be converted into a prediction difference value.
  • a prediction equation may be selected with reference to the selection state of the prediction equation in the preceding or following argument or block.
  • the evaluation criterion of the prediction difference value sequence in the argument or block of interest is selected. You may add a penalty value to the value. This penalty value can be set according to the frequency of occurrence of each prediction formula.
  • the data sequence of the prediction difference value is evaluated based on the number of 0s included in the data sequence, and a prediction expression having the largest number of 0s is selected. I try to do it.
  • the data sequence of the prediction difference value is evaluated based on the statistical value (variance, standard deviation, etc.) of the prediction difference value included in the data sequence, and the variance or standard The prediction formula that minimizes the deviation is selected.
  • the evaluation value for each prediction difference value is set in advance according to the appearance frequency of the prediction difference value, and the evaluation of the data sequence of the prediction difference value is performed in the data sequence. This is performed based on the total value of the evaluation values of the included prediction difference values.
  • the prediction expression having the smallest total value is selected.
  • a linear object is resampled by the encoded data
  • a shape data resample processing unit that sets a node, arranges the position information of each node expressed in declination from the previous node and generates a declination data sequence, and calculates the declination of this data sequence
  • a prediction that evaluates a data sequence of a prediction difference value when converted to a prediction difference value indicating a difference from a prediction value, and selects a prediction formula for calculating a prediction value from a plurality of prediction formulas based on the evaluation result.
  • the declination included in the data sequence generated by the formula deciding unit and the shape data resampling unit is converted into a prediction difference value between the prediction value calculated using the prediction formula determined by the prediction formula deciding unit, and the And a variable-length encoding processing unit that performs variable-length encoding on the data sequence of the prediction difference value.
  • the encoded data generation method described above can be implemented to efficiently compress the data amount of the encoded data.
  • the coded data restoration device decodes the variable length coded coded data representing the position information of the linear object, and predicts the difference between the argument and the predicted value.
  • a coded data decoding unit for reproducing shape data including a value data sequence; a prediction formula determination unit for determining a prediction formula used for calculating a predicted value from information of the decoded shape data;
  • a shape data restoration unit that calculates a prediction value using the prediction expression determined by the expression determination unit, and reproduces position information of the node of the linear target from the data sequence of the prediction difference value decoded by the encoded data decoding unit. And set up!
  • the position information of the linear object can be reproduced from the encoded data of the position information of the linear object.
  • the present invention also includes a program for causing a computer to generate encoded data obtained by encoding a linear object, and the program resamples the linear object and sets a plurality of nodes. Then, the procedure of arranging the position data of each node represented by the argument from the immediately preceding node to generate the argument data string, and the method of predicting the argument data string by the position data of each node A procedure for evaluating a data string of a predicted difference value when converted to a predicted difference value indicating a difference from a value, and a procedure for selecting a prediction equation for calculating a predicted value from a plurality of prediction equations based on the evaluation result. And the argument included in the argument data sequence generated by the shape data resampling unit into a prediction difference value between a prediction value calculated using the determined prediction formula and a prediction difference value To perform variable-length coding on a data sequence , The co Computer.
  • the present invention further includes a program for causing a computer to decode encoded data representing a linear object, the program comprising a variable-length encoded code representing position information of the linear object.
  • a procedure for decoding shape data including a data sequence of a prediction difference value indicating a difference between an argument and a prediction value, and calculating a prediction value from the decoded shape data.
  • the encoded data generation method of the present invention can effectively compress data when generating encoded data.
  • the apparatus of the present invention can encode the shape data of the linear object by effectively compressing the data by implementing the encoding data generation method. Encoded data can also restore the original shape data.
  • FIG. 1 is a diagram schematically illustrating a code generation data generation method according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a declination sequence of road shape data.
  • FIG. 3 is a diagram illustrating a zigzag phenomenon.
  • FIG. 4 is a flowchart showing a procedure of a code generation data generation method in a target road unit selection method in the embodiment of the present invention.
  • FIG. 5 is a flowchart showing a resample and argument sequence generation procedure in the encoding data generation method according to the embodiment of the present invention.
  • FIG. 6 is a flowchart showing an evaluation value calculation procedure in the encoding data generation method according to the embodiment of the present invention.
  • FIG. 7 is an example of a Huffman table describing occurrence frequencies.
  • FIG. 8 is a data configuration example of encoded data generated by a target road unit selection method according to the embodiment of the present invention.
  • FIG. 9 Coded data generated by the target road unit selection method according to the embodiment of the present invention.
  • FIG. 19 is a flowchart showing a decoding procedure of the first embodiment.
  • FIG. 10 is a flowchart showing a procedure of a method for generating encoded data by a pattern unit selection method in the embodiment of the present invention.
  • FIG. 12 is a flowchart showing a decoding procedure of encoded data generated by the pattern unit selection method in the embodiment of the present invention.
  • FIG. 13 is a flowchart showing a procedure of a method for generating encoded data in a block unit selection method in the embodiment of the present invention.
  • FIG. 15 is a flowchart showing a decoding procedure of encoded data generated by the block unit selection method in the embodiment of the present invention.
  • [16] is a flowchart showing a procedure of a method for generating encoded data in the resample length interlocking method according to the embodiment of the present invention.
  • FIG. 18 is a flowchart showing a decoding procedure of encoded data generated by the resample length interlocking method according to the embodiment of the present invention.
  • FIG. 19 is a flowchart showing a procedure of a method for generating encoded data by the sequential selection method in the embodiment of the present invention.
  • FIG. 20 is a data configuration example of encoded data generated by a sequential selection method according to an embodiment of the present invention.
  • FIG. 21 is a flowchart showing a procedure for decoding encoded data generated by the sequential selection method according to the embodiment of the present invention.
  • Fig. 22 is a diagram showing an evaluation value obtained by the prediction formula and a total evaluation method of a change penalty accompanying a change in the prediction formula.
  • FIG. 23 is a diagram showing a method of dynamically changing a change penalty according to a change in a prediction formula.
  • FIG. 24 is a block diagram showing a configuration of an information transmitting device and an information utilizing device according to an embodiment of the present invention.
  • FIG. 25 is a block diagram showing the configurations of a vehicle-mounted probe car and a probe information collection center according to an embodiment of the present invention.
  • FIG. 26 is a diagram for explaining a method of converting position data into data having a statistical bias.
  • FIG. 27 is a diagram showing a code table used for variable-length coding.
  • FIG. 28 is a diagram illustrating a change in the resample length due to the curvature of the road shape.
  • the encoded data is generated by encoding a road shape of a digital map which is an example of a linear object.
  • the encoded data is generated in the order of
  • the resampling of the road shape in (a) is performed by a method described in JP-A-2003-23357, and a plurality of nodes are set by resampling the linear object.
  • the conversion of (b) into declination ⁇ is performed by a method described in JP-A-2003-23357, in which the position data of each node is represented by an angle component, and this angle component is converted to declination ⁇ .
  • Figures 2 (a), (b), and (c) show the (declination) data sequence (declination) in which the position data at each node of the shape data of the target roads A, B, and C are represented by declination ⁇ Square row).
  • Each line also has 10 data points, and their data numbers are displayed at the left end.
  • the numbers enclosed by> in the declination column are the resample length change codes indicating the resample length quantization codes, and the numbers following the right are obtained by resampling with the code resample length.
  • the position data of each node obtained is represented by declination ⁇ (deg).
  • the position data of each node is represented by the declination from the previous node, and the data sequence of the declination is generated.
  • Sj is calculated by adaptively using a calculation formula (prediction formula) of a predicted value Sj for predicting the value of the position data, This is a process of converting the argument ⁇ of the argument sequence into a difference value (preliminary difference value) from the predicted value Sj.
  • variable length coding (d) of (d) is a process of performing variable length coding on a prediction difference value (prediction error) of shape data converted into a prediction difference value sequence, which is described in JP-A-2003-23357. Do it the way you are.
  • this encoding data generation method is characterized by the position data conversion process (c).
  • the position data of each node j is represented by the argument ⁇ j, and the predicted value is 0.
  • the position data of each node j is represented by (0 j-0 1).
  • the position data of each node j is represented by ⁇ ]-( ⁇ 1 1 +2) ⁇ 2 ⁇ .
  • the predicted value is the average of the two argument angles preceding the argument of interest.
  • the number of leading declinations is arbitrary, and a weighted average such as (a ⁇ j-1 + b 0 j-2) Z (a + b) may be used as the predicted value. Large, real number).
  • the compression efficiency is high.
  • This zigzag phenomenon occurs inevitably when the road shape is traced by setting the angular resolution ⁇ at the time of resampling, because the available angles are limited (the necessity accompanying angle quantization).
  • the declination column of FIG. 2 (a) the zigzag phenomenon occurs, and the position data of a certain point is displayed in italic characters.
  • Target road unit selection method Method of dynamically selecting a prediction formula for each target road
  • pattern unit selection method A method of detecting the pattern of the declination column of the target road and selecting a prediction formula for each pattern unit (referred to as “pattern unit selection method”)
  • block unit selection method A method in which the declination column of the target road is divided into blocks with a fixed number of data, and a prediction formula is selected in block units (referred to as a “block unit selection method”).
  • FIG. 1 schematically shows the relationship between the prediction formula selected by the resample length interlocking method and the road shape.
  • the road shape is indicated by a dotted line
  • the resample shape is indicated by a solid line
  • the change in the resample length is indicated by Ml>, ⁇ M2>, and ⁇ M3>.
  • the flowchart of FIG. 4 shows the processing procedure in the target road unit selection method.
  • Digital map database force Obtains the shape data of the target road (Step 1), and expresses the position data of the node generated by resampling by declination ⁇ to generate a declination sequence (Step 2).
  • step 2 The process of step 2 is performed in detail according to the procedure shown in Fig. 5. That is, the angular resolution ⁇ at each angle of each resample length is determined in advance (step 21), and the shape data of the target road is converted into a curvature function (step 22). Determine L (Step 23). Next, the target road is resampled using the resample length L and the representative angle of angular resolution ⁇ according to the declination (step 24), and the shape data of the target road is resampled using the resample section length change code and declination quantum And convert them into a declination sequence (Step 25)
  • is converted into a difference value (prediction difference value) from the prediction value Sj, and which prediction formula is optimal is evaluated (step 3).
  • the processing of step 3 is performed in detail according to the procedure shown in FIG.
  • Step 33 ⁇ j — Sj) (Step 33), and calculate the evaluation value of this declination sequence (Step 34).
  • the calculation of the evaluation value is performed as in the following (i) -i (iii).
  • a score corresponding to the frequency of appearance is set in advance for the data appearing in the predicted difference value sequence, and the cumulative value obtained by adding the score of the data appearing in the predicted difference value sequence to be evaluated is used as the evaluation value.
  • the evaluation value Give a rating.
  • the occurrence frequency (or occurrence probability) of each angle is described, and a shorter code is assigned to an angle having a higher occurrence frequency.
  • the cumulative value is used as the evaluation value. give.
  • the code length of the angle is added according to the angle appearing in the prediction difference value sequence to be evaluated, the cumulative value is used as the evaluation value. .
  • by having a score table corresponding to such an appearance frequency in advance it is possible to perform the evaluation according to (i ii) even when performing a variable length code other than the Huffman code.
  • steps 33 and 34 The processing of steps 33 and 34 is performed using all the prediction formulas.
  • the prediction expression having the best evaluation value is selected, and the argument ⁇ of the argument sequence is converted into a prediction difference value with the prediction value calculated by the prediction expression (step 4).
  • the entire shape data converted into a column is subjected to variable length code compression (step 5).
  • the prediction equation used is defined for the obtained encoded data (step 6).
  • FIG. 8 shows the data configuration of encoded data generated by the target road unit selection method.
  • data representing the used prediction formula is inserted before the shape data body of the target road.
  • the flowchart in FIG. 9 shows a procedure for reproducing the shape data of the target road from the encoded data.
  • the shape data subjected to the variable-length decoding process is extracted from the encoded data (step 41), and a prediction formula is determined with reference to the header (step 42).
  • Convert (step 43) Reproduce the shape data (step 44).
  • the flowchart in FIG. 10 shows a processing procedure in the pattern unit selection method.
  • the procedure for acquiring shape data (step 51) and resampling and declination string conversion processing (step 52) is the same as the processing procedure for the target road unit selection method (Figs. 4 and 5).
  • step 55 the entire shape data converted into the prediction difference value sequence is subjected to variable-length code compression (step 55), and the used code is defined in the obtained code data in groups. 56).
  • the argument data string is divided into blocks (groups) corresponding to the argument state transition patterns. Then, an optimal prediction formula is selected for each block.
  • FIG. 11 shows the data configuration of encoded data generated by the pattern unit selection method.
  • a prediction formula initial value representing the prediction formula used in the first group is inserted before the shape data body of the target road, and the prediction data indicating the insertion of the prediction formula is preceded by the position data of each subsequent group.
  • the expression marker and the prediction expression number of the prediction expression used in the group are inserted.
  • the flowchart of FIG. 12 shows a procedure (a method of decoding encoded data) for reproducing shape data of a target road from the encoded data.
  • the shape data subjected to the variable-length decoding process is extracted from the encoded data (step 61), the number of the angle data from which the shape data force is also read is set to an initial value, and the prediction formula to be used first is the prediction formula.
  • the prediction formula represented step 62
  • the prediction formula represented step 62
  • read the corresponding angle data from the shape data step 63
  • identify whether or not a prediction formula change code is inserted before the angle data (step 62).
  • the prediction formula change code has not been inserted, the set prediction formula is used as it is (step 66), and the angle data is converted into declination according to the prediction formula (step 67). If the prediction formula change code has been inserted, the prediction formula is changed to the new prediction formula specified by the code (step 65), and the angle data is converted into declination according to the prediction formula (step 65). 67). Such processing is performed for all the angle data (steps 68 and 69), and the shape data of the target road is reproduced (step 70).
  • the data sequence of the declination corresponding to a part of the linear object (road shape) that is not part of the entire linear object (road shape) is converted into a data sequence of the prediction difference value, and the evaluation of the data sequence of the prediction difference value is performed. Based on the result, an optimal prediction formula for converting the argument corresponding to the partial section into a prediction difference value is selected. This idea is commonly used in the following methods (3)-(5).
  • the flowchart in FIG. 13 shows a processing procedure in the block unit selection method.
  • the procedure for acquiring the shape data (step 71) and the resampling and argument sequence conversion processing (step 72) are the same as the processing procedure in the target road unit selection method (Figs. 4 and 5).
  • the method of evaluation is the same as in the case of the target road unit selection method (Fig. 6).
  • the prediction formula with the best evaluation value is selected for each block, the argument sequence is converted to a prediction difference value sequence (step 74), and the entire shape data converted to the prediction difference value sequence is subjected to variable-length coding compression (step 74). 75)
  • the used prediction equation is defined for each block of the obtained encoded data (step 76).
  • FIG. 14 shows the data structure of encoded data generated by the block unit selection method.
  • a prediction formula initial value indicating the prediction formula used in the first block is inserted before the shape data of the target road, and the prediction data is predicted prior to the position data of each subsequent block.
  • the formula number has been inserted. Since the insertion position of the prediction expression number is automatically determined by the number of data included in the block, it is not necessary to insert a prediction expression marker.
  • the flowchart of FIG. 15 shows a procedure for reproducing the shape data of the target road from the encoded data.
  • the variable-length-decoded shape data is extracted (step 81), the number of the block from which the shape data is also read is set to the initial value, and the prediction formula to be used first is set to the prediction formula initial value.
  • Set the prediction formula shown (Step 82), read the angle data of the block whose shape data force is also applicable (Step 83), and convert the angle data to declination according to the prediction formula defined for that block (Step 83).
  • Step 84 This process is performed for all blocks (steps 85 and 86), and the shape data of the target road is reproduced (step 87).
  • the predetermined number of declination data included in one block is set to ten. This number can be arbitrarily changed.
  • the flowchart of FIG. 16 shows a processing procedure in the resample length interlocking method.
  • the procedure for acquiring the shape data (step 91) and the resampling and argument sequence conversion processing (step 92) are the same as the processing procedures for the target road unit selection method (Figs. 4 and 5).
  • the prediction formula having the best evaluation value is selected for each block, the argument sequence is converted into a prediction difference value sequence (step 94), and the entire shape data converted into the prediction difference value sequence is subjected to variable length coding compression. (Step 95) In the obtained coded data, the used prediction formula is defined for each block (step 96).
  • FIG. 17 shows the data structure of encoded data generated by the resample length interlocking method.
  • the initial value of the prediction formula representing the measurement formula is inserted, and the prediction formula number of the prediction formula used in each subsequent block follows the section length marker inserted at the start position of the angle data resampled with the same resample length Specified in section length information.
  • the flowchart of Fig. 18 shows a procedure for reproducing the shape data of the target road from the encoded data.
  • the variable-length-decoded shape data is extracted from the encoded data (step 101), and the number of the block of the same resample length to be read is set to the initial value (step 102).
  • Such processing is performed on all blocks having the same resample length (steps 105 and 106), and the shape data of the target road is reproduced (step 107).
  • the flowchart of FIG. 19 shows the processing procedure in the sequential selection method.
  • the procedure for acquiring shape data (step 111) and resampling and declination sequence conversion processing (step 112) is the same as the processing procedure for the target road unit selection method (FIGS. 4 and 5).
  • the argument ⁇ of the argument sequence is converted into a prediction difference value, and a prediction expression ⁇ new with the best evaluation value is selected (step 115).
  • the method of evaluation is the same as in the case of the target road unit selection method (Fig. 6).
  • step 116 it is determined whether it is necessary to change the set prediction formula in light of the prediction formula change condition. That is, in the present method, it is determined whether or not the power to change the optimal prediction formula used for the position data is determined while referring to the shape upstream of the position data to be encoded. .
  • the angle data is converted into a prediction difference value (step 119) using the prediction equation that has been set as it is (step 118). If the change condition is satisfied! /, The prediction formula is changed to the prediction formula ⁇ new (step 117), and the angle data is converted to a prediction difference value (step 119). Such processing is performed on all the angle data (steps 120 and 121), and the entire shape data converted into the prediction difference value sequence is subjected to variable-length coding compression (step 122).
  • the rules for changing the prediction formula are set in a program that defines the encoding process.
  • a prediction equation for converting a focused argument into a predicted difference value according to a result of evaluating a data sequence of a predicted difference value of a predetermined number (P) preceding the focused argument is described. Selected. Further, only when the evaluation result satisfies a predetermined requirement, the currently used prediction formula is changed to a predetermined prediction formula.
  • FIG. 20 shows the data configuration of encoded data generated by the sequential selection method. Since the encoding data does not include information for specifying a prediction equation, the data amount is small. The prediction formula used for decoding is selected based on the rules of the program that specifies the decoding of the encoded data.
  • the flowchart of FIG. 21 shows a procedure of reproducing the shape data of the target road from the encoded data.
  • it is determined whether or not the force that needs to change the set prediction formula is determined based on the change condition of the prediction formula (step 135). If the change condition is not satisfied, the prediction formula that has been set is used as it is (step 137). ), And converts the angle data into declination according to the prediction formula (step 138).
  • the prediction formula is changed to the prediction formula ⁇ new (step 136), and the angle data is converted to the argument according to the prediction formula (step 138).
  • Such processing is performed on all the angle data (steps 139 and 140), and the shape data of the target road is reproduced (step 141).
  • the prediction formula used to calculate the predicted value for converting the position data into the predicted difference value is determined for each road or for the road. By adaptively selecting each part, the amount of encoded data can be efficiently compressed.
  • FIG. 22 is a diagram showing an evaluation value obtained by the prediction formula and a comprehensive evaluation method of a change penalty accompanying a change in the prediction formula.
  • the prediction formula is changed because changing the prediction formula reduces the amount of data and improves the efficiency of data transmission.
  • the prediction formula is not changed because the transmission efficiency is better without changing.
  • the change penalty is relatively small for a prediction formula with a high frequency of occurrence, and the change penalty is large for a prediction formula with a low frequency of occurrence. If a prediction formula with a low frequency of occurrence is used, it is highly likely that the prediction formula will be changed to another prediction formula in the next block.
  • FIG. 23 is a diagram illustrating a method of dynamically changing a change penalty according to a change in a prediction formula.
  • Fig. 24 shows an information transmission device (encoded data generation device) 20 that executes this encoded data generation method to convey a target road of traffic information, and a vehicle-mounted vehicle that utilizes the provided traffic information.
  • 1 shows a configuration with an information utilization device (encoded data restoration device) 40 such as a navigation device or a personal computer.
  • the information transmission device 20 includes an event information input unit 21 for inputting traffic congestion information and traffic accident information, a shape data extraction unit 23 for extracting road shape data of a target road section of traffic information from the digital map database A22, and a A shape data resampling unit 26 that resamples the road shape data extracted by the data extraction unit 23 to generate a declination sequence of node position data, and a conversion unit that converts the declination sequence into a prediction difference value sequence.
  • a prediction formula determination unit 25 that determines a prediction formula
  • a variable length coding processing unit 28 that converts the argument of the shape data into a prediction difference value using the prediction formula determined by the prediction formula determination unit 25, and performs compression coding.
  • a compressed data storage unit 27 that stores the compressed and encoded road shape data and provides the stored data to external media, and a shape data transmission unit 29 that transmits the compressed and encoded road shape data.
  • the information utilization device 40 includes a shape data receiving unit 41 that receives the provided road shape data, an encoded data decoding unit 42 that decodes the compressed and encoded data, and a prediction difference value.
  • Prediction formula determination unit 47 that identifies the prediction formula used when transforming the data
  • shape data restoration unit 43 that restores shape data using the prediction formula identified by prediction formula determination unit 47, and data from digital map database B46.
  • a map matching unit 45 for specifying a road section represented by a node point on a digital map, and an information utilization unit 44 for utilizing the obtained information.
  • the shape data extracting unit 23 extracts the road shape data of the target road, and the shape data resampling unit 26 resamples the road shape data to obtain the bias of the road shape data. Generate a square sequence.
  • the prediction formula determination unit 25 predicts the declination sequence using the “target road unit selection method”, “pattern unit selection method”, “block unit selection method”, “resample length interlocking method” or “sequential selection method” described above. Determine the prediction formula to convert to a value sequence.
  • the variable-length coding processing unit 28 calculates a prediction value using the prediction formula determined by the prediction formula determination unit 25, generates a prediction difference value sequence by subtracting the prediction value from the argument of the argument sequence, and generates Encode.
  • the road shape data compressed by the variable length coding is recorded on an external medium and provided, or transmitted from the shape data transmitting unit 29.
  • the encoding data decoding unit 42 decodes the compression-encoded data.
  • the prediction formula determining unit 47 identifies a prediction formula for decoding the argument from the decoded data, and the shape data restoration unit 43 reproduces the argument sequence using the prediction formula, Convert declination to latitude and longitude data and reproduce road shape data.
  • the resampled shape connecting the reproduced nodes is displayed on the display screen of the information utilization device 40 so as to overlap the digital map.
  • the map matching unit 45 performs a map matching between the reproduced position data of the node points and the map data of the digital map database B46, and executes the map matching on the digital map data. Identify the target road.
  • the information utilization device 40 can also constitute a car navigation receiver or a map display terminal.
  • FIG. 25 shows a case where the encoded data generation method is executed to convey a traveling locus.
  • FIG. 2 shows the configuration of an on-board probe car device (encoded data generation device) 60 and a probe information collection center (encoded data restoration device) 50 for collecting probe information.
  • Probe force (1) The in-vehicle device 60 includes a vehicle position determination unit 61 that determines the vehicle position based on information received from the GPS antenna 73 and detection information from the gyro 74, a digital map database 69, And a traveling locus shape resampling unit 63 that resamples the traveling locus and generates a declination sequence of the node position data, and converts the declination sequence into a prediction difference value sequence.
  • a predictive formula determining unit 68 that determines the predictive formula of the vehicle, and a variable length code that converts the declination of the travel locus shape data into a predictive difference value using the predictive formula determined by the predictive formula determining unit 68 and compresses and encodes it.
  • the processing section 64 includes a compression processing section 64, a compressed data storage section 65 for storing compression-encoded traveling locus shape data, and a traveling locus transmitting section 66 for transmitting compression-encoded traveling locus shape data.
  • the probe information collection center 50 includes a traveling trajectory receiving section 51 that receives traveling trajectory shape data provided from the on-board probe car device 60, and an encoding that decodes the compression-encoded received data.
  • a trajectory shape restoring unit 53 and a traveling trajectory measurement information utilization unit 54 that uses traveling trajectories and measurement information collected from the probe car on-board unit 60 to generate traffic information are provided.
  • the traveling locus accumulating section 62 of the probe car on-board unit 60 sequentially accumulates the own vehicle position detected by the own vehicle position judging section 61 as a traveling locus.
  • Traveling locus shape resample processing unit 6 3 reads the traveling locus data stored in the traveling locus storage unit 62, the travel locus by Lisa sample, to produce a polarization angle column of the travel locus shape data.
  • the prediction formula determining unit 68 calculates the argument sequence by using the “target road unit selection method”, “pattern unit selection method”, “block unit selection method”, “resample length interlocking method” or “sequential selection method” described above. Determine the prediction formula to convert to a column.
  • the variable-length coding processing unit 64 calculates a prediction value using the prediction expression determined by the prediction expression determination unit 68, generates a prediction difference value sequence by subtracting the prediction value from the argument of the argument sequence, and generates Encode.
  • the compression-encoded data is transmitted to the probe information collection center 50 at the time of transmitting the probe information. This data is The data may be stored in a medium and provided to the probe information collection center 50.
  • the encoded data decoding unit 52 decodes the data collected from the probe car on-board unit 60.
  • the prediction formula determining unit 55 identifies a prediction formula for decoding the argument from the decoded data, and the traveling trajectory shape restoring unit 53 reproduces the argument sequence using the prediction formula, and Converts the angle into latitude and longitude data and reproduces the travel locus data.
  • the information on the traveling locus is used for generating traffic information together with the measurement information such as the speed measured by the probe car on-board unit 60.
  • the information transmitting apparatus and the in-vehicle probe car use the encoded data generation method of the present invention to generate the encoded data of the target road and the traveling locus, thereby efficiently reducing the data amount. Can be compressed.
  • a probe car system is constructed from the combination of the probe car on-board unit 60 and the probe information collection center 50, and a method of transmitting information of the probe car system between them is achieved. This is achieved by a combination of a data generation method and a decoding method of the encoded data.
  • the coded data generation device is an information transmission device 20, which is an information transmission center, or an example in which the probe car vehicle-mounted device 60 is used. These are examples of the embodiment on the information transmission side. Any form of device or terminal capable of transmitting information may be used. Further, the generated encoded data can be recorded on a medium and provided to another device. Further, the information utilization device 40 and the probe information collection center 50, which are coded data restoration devices, are merely examples, and any device that can utilize information such as a personal computer and a portable terminal may be used. Of course, the same effect can be obtained with an information collection center capable of restoring encoded data or a device on the center side. Needless to say, similar effects can be obtained by performing restoration processing using a medium on which encoded data is recorded.
  • the present invention also includes a program for causing a computer to generate encoded data obtained by encoding a linear object, and the program resamples the linear object to generate a plurality of items.
  • the procedure of setting the nodes of the first node, arranging the position data of each node represented by the argument from the previous node, and generating the argument data string, and the procedure of setting the argument data string to each node A procedure for evaluating a data sequence of the predicted difference value when converted to a predicted difference value indicating a difference from a predicted value for predicting the position data of the position data, and a plurality of prediction formulas for calculating the predicted value based on the evaluation result And a prediction difference between a predicted value calculated using the determined prediction formula and a declination included in the declination data sequence generated by the shape data resampling processing unit.
  • a program is incorporated into the information transmitting device 20 and the probe car vehicle-mounted device 60 in various formats.
  • a program can be recorded in a predetermined memory in the information transmitting device 20, the probe car in-vehicle device 60, or a device outside these devices.
  • the program may be recorded on an information recording device such as a hard disk, or an information recording medium such as a CD-ROM, a DVD-ROM, or a memory card.
  • the program may be downloaded via a network!
  • the present invention further includes a program for causing a computer to decode encoded data representing a linear object, wherein the program includes a variable-length encoded code representing position information of the linear object.
  • a procedure for decoding shape data including a data sequence of a prediction difference value indicating a difference between an argument and a prediction value, and calculating a prediction value from the decoded shape data.
  • Such a program is also incorporated into the information utilization device 40 and the probe information collection center 50 in various formats.
  • a program can be recorded in a predetermined memory in the information utilization device 40, the probe information collection center 50, or a device outside these devices.
  • the program may be recorded on an information recording device such as a node disk or an information recording medium such as a CD-ROM, a DVD-ROM, or a memory card.
  • the program may be downloaded via a network.
  • a map data distribution system is constituted by a combination of the information transmitting device 20 and the information utilizing device 40 or the in-vehicle probe car device 60 and the probe information collecting center 50 of the present invention.
  • an algorithm (program) according to the code generation data generation method of the present invention is mapped to a map.
  • the data can be recorded on a recording medium on which map data corresponding to various map information is recorded. This makes it possible to compress the map data itself.
  • linear object has a road shape for position reference, but the linear object is not limited to the road shape.
  • “Linear object” includes all elongated shapes including various forms such as straight lines and curves, and may include all geographic information that can be represented by a linear shape on a map. In addition, it is not related to maps such as fingerprints, but includes everything represented by linear shapes.
  • the encoded data generation method of the present invention is used to generate encoded data representing position information such as road shapes, rivers, railway tracks, administrative boundaries, contour lines, and the like on a digital map, and transmit and store the data.
  • encoded data representing position information such as road shapes, rivers, railway tracks, administrative boundaries, contour lines, and the like on a digital map
  • it can be used to generate coded data representing linear objects, such as various figures and fingerprints, and to transmit and store them. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Traffic Control Systems (AREA)
  • Instructional Devices (AREA)

Abstract

 道路形状をリサンプルして複数のノードを設定し、一つ前のノードからの偏角で表した各ノードの位置情報を配列して偏角のデータ列を生成し、前記偏角を、予測値との差分を示す予測差分値に変換して、予測差分値のデータ列を可変長符号化する符号化データの生成方法において、偏角を予測差分値に変換したときの予測差分値のデータ列を評価し、評価結果に基づいて、予測値を算出する予測式を複数の予測式φ=1、φ=2、φ=3、φ=4の中から適応的に選択する。予測値を算出する予測式を道路形状A、B、C、Dに応じて適応的に選択することで、データ圧縮の効果が向上する。

Description

明 細 書
符号化データ生成方法と装置
技術分野
[0001] 本発明は、デジタル地図の道路位置等を表す符号化データの生成方法と、その符 号ィ匕データの生成及び復号ィ匕を行う装置に関し、符号ィ匕データのデータ量の削減を 図るものである。
背景技術
[0002] 従来から、 VICS (道路交通情報通信システム)では、デジタル地図データベースを 搭載する車両用ナビゲーシヨン装置に対して、 FM多重放送やビーコンを通じて、渋 滞区間や旅行時間を示す道路交通情報の提供サービスを実施して!/ヽる。車両用ナ ピゲーシヨン装置は、この道路交通情報を受信して、画面表示する地図に渋滞区間 を色付けして表したり、目的地までの所用時間を算出して表示したりしている。
[0003] このように、道路交通情報を提供する場合には、デジタル地図上の道路の位置情 報を伝えることが必要になる。また、現在地及び目的地の情報を受信して、最短時間 で目的地まで到達できる推奨経路の情報を提供するサービスや、近年、研究が進め られて ヽる、走行中の車両 (プローブカー)から軌跡情報及び速度情報等を収集する 道路交通情報収集システム (プローブ情報収集システム)においても、デジタル地図 上の推奨経路や走行軌跡を相手方に正しく伝えることが必要である。
[0004] これまで、デジタル地図上の道路位置を伝える場合には、一般的に、道路に付され たリンク番号や、交差点などのノードを特定するノード番号が使用されている。しかし 、道路網に定義したノード番号やリンク番号は、道路の新設や変更に伴って新しい番 号に付け替える必要があり、それに応じて、各社で制作されるデジタル地図データも 更新しなければならないため、ノード番号やリンク番号を用いる方式は、メンテナンス に多大な社会的コストが掛カることになる。
[0005] こうした点を改善するため、特開 2003— 23357号公報では、ノード番号やリンク番 号を用いずに、且つ、少ないデータ量でデジタル地図上の道路位置を伝える方法を 提案している。 [0006] この方法では、伝えようとするデジタル地図上の道路区間に一定距離間隔でサン プリング点を再設定し (これを「等距離リサンプル」と言う)、各サンプリング点の位置デ ータを順番に並べたデータ列に対して圧縮符号化の処理を施し、圧縮符号化したデ ータを送信する。これを受信した受信側は、サンプリング点の位置データのデータ列 を復元し、自己のデジタル地図上に道路形状を再現する。また、必要に応じて、この 位置データを使用して、自己のデジタル地図上で位置特定、位置参照を実施し (マ ップマッチング)、道路区間を特定する。
[0007] 位置データのデータ列に対する圧縮符号ィ匕は、次に示すように、(1)位置データの 単一変数への変換、 (2)単一変数で表わした値の統計的に偏りを持つ値への変換、 (3)変換した値の可変長符号化、の順に行われる。
(1)位置データの単一変数への変換
図 26 (a)には、等距離リサンプルで設定した道路区間上のサンプリング点を PJ-1、 PJで表している。このサンプリング点(PJ)は、隣接するサンプリング点(PJ-1)からの 距離 (リサンプル長) Lと角度 Θとの 2つのディメンジョンで一意に特定することができ 、距離を一定 (L)とすると、サンプリング点 (PJ)は、隣接サンプリング点 う からの 角度成分 Θのみの単一変数で表現することができる。図 26 (a)では、この角度 Θとし て、真北(図の上方)の方位を 0度とし、時計回りに 0— 360度の範囲で大きさを指定 する「絶対方位」による角度 Θを示している(真北からの絶対方位)。この角度 Θは、 P ト 1、 PJの xy座標 (緯度,経度)を (xj-l, yj-l)、 (xj, yj)とするとき、次式により算出す ることがでさる。
[0008] Θ j- 1 = tan"1 { (xj - xj- 1) / (yj - yj- 1) }
従って、道路区間は、サンプリング点間の一定距離 L、及び、始端または終端となる サンプリング点(基準点)の緯度.経度を別に示すことにより、各サンプリング点の角度 成分のデータ列により表わすことができる。
(2)単一変数値の統計的に偏りを持つ値への変換
各サンプリング点の単一変数値が、可変長符号化に適した、統計的に偏在する値 となるように、図 26 (b)に示すように、各サンプリング点の角度成分を、隣接するサン プリング点の角度成分との変位差、即ち、「偏角」 6 jによって表現する。この偏角 θ j t
Figure imgf000005_0001
は、
Θ j = 0j - ΘΗ
として算出される。道路が直線的である場合に、各サンプリング点の偏角 Θは 0付近 に集中し、統計的に偏りを持つデータとなる。
[0009] また、サンプリング点の角度成分は、図 26 (c)に示すように、着目するサンプリング 点 PJの偏角 Θ jを、それ以前のサンプリング点 PJ- 1、 PJ- 2、 · ·の偏角 Θ j- 1、 Θ j-2、 · •を用いて予測した当該サンプリング点 PJの予測値 Sjとの差分値 (予測差分値又は 予測誤差) Δ 0 jで表わすことにより、統計的に偏りを持つデータに変換することがで きる。予測値 Sjは、例えば、
Sj = Θ卜 1
と定義したり、
Sj = ( θ j-1 + Θ卜 2) Z2
と定義したりすることができる。予測差分値 Δ Θ jは、
Δ Θ j = Θ j - Sj
として算出される。道路が一定の曲率で湾曲している場合には、各サンプリング点の 予測差分値 Δ Θは 0付近に集中し、統計的に偏りを持つデータとなる。
[0010] 図 26 (d)は、直線的な道路区間を偏角 Θで表示した場合、及び、曲線的な道路区 間を予測差分値 Δ Θで表示した場合のデータの発生頻度をグラフ化して示している 。 0及び Δ 0の発生頻度は Θ (又は Δ Θ ) =0° に極大が現れ、統計的に偏りを持 つている。
(3)可変長符号ィ匕
次に、統計的に偏りを持つ値に変換したデータ列の値を可変長符号ィ匕する。可変 長符号化方法には、固定数値圧縮法 (0圧縮等)、シャノン 'ファノ符号法、ハフマン 符号法、算術符号法、辞書法など多種存在し、いずれの方法を用いてもよい。
[0011] ここでは、最も一般的なハフマン符号法を用いる場合について説明する。
この可変長符号化では、発生頻度が高いデータを少ないビット数で符号ィ匕し、発生 頻度が低いデータを多いビット数で符号ィ匕して、トータルのデータ量を削減する。こ のデータと符号との関係は、符号表で定義する。 [0012] いま、 1° 単位で表わした道路区間のサンプリング点における Δ 0の並びが "0— 0— - 2— 0— 0— + 1— 0— 0— - 1— 0— +5— 0— 0— 0— + 1— 0"
であるとする。このデータ列を符号ィ匕するために、可変長符号化とランレングス符号 ィ匕 (連長符号化)とを組み合わせた図 27に示す符号表を用いる場合について説明 する。この符号表では、最小角度分解能(δ )を 3° に設定しており、 1° 一 + 1° の範囲にある Δ 0の代表角度を 0° として符号「0」で表し、 0° 力 個連続するときは 符号「100」で表わし、 0° が 10個連続するときは符号「1101」で表わすことを規定し ている。また、 ± 2° — 4° の範囲にある Δ 0の代表角度は ± 3° として、符号「111 0」に、 +のときは付加ビット「0」を、—のときは付加ビット「1」を加えて表し、 ± 5。 一 7 ° の範囲にある Δ 0の代表角度は ±6° として、符号「111100」に正負を示す付カロ ビットをカ卩えて表し、また、 ±8° — 10° の範囲にある Δ 0の代表角度は ± 9° とし て、符号「111101」に正負を示す付加ビットをカ卩えて表わすことを規定している。
[0013] そのため、前記データ列は、次のように符号ィ匕される。
"0—0—11101—100— 0—0— 1111000— 100"
→"0011101100001111000100"
このデータを受信した受信側は、符号化で使用されたものと同一の符号表を用い て Δ Θのデータ列を復元し、送信側と逆の処理を行って、サンプリング点の位置デー タを再現する。
[0014] このように、データを符号化することにより、符号ィ匕データのデータ量の削減が可能 である。
また、前記特開 2003— 23357号公報では、図 28に示すように、道路形状の曲率 が大きい区間 Βでは、等距離リサンプルの距離 L2を短く設定し、曲率が小さい、直線 的な道路区間 Αでは、等距離リサンプルの距離 L1を長く設定することを提案している 。これは、曲率が大きぐカーブがきつい道路を長い距離でリサンプルすると、特徴的 な道路形状を示す位置にサンプリング点を配置することができなくなり、受信側での 道路形状の再現性が悪くなり、また、誤マッチングが発生する可能性が高くなるため である。
[0015] そのため、各区間 jのリサンプル長 Ljが取り得る値 (量子化リサンプル長)を、例えば 、 40Z80Z160Z320Z640Z1280Z2560Z5120メートルのように予め設定し 、区間 jの曲率半径 を用いて、次式により Ljを求め、この値に最も近い量子化リサ ンプル長をリサンプル長 Ljとして決定して 、る。
[0016] Lj= p j'Kr (Krは固定パラメータ)
前記特開 2003— 23357号公報の方法を、次の 3つの予測式を用いて試行を行つ た。
[0017] 予測式 l : Sj =0 : 偏角をそのまま利用 (実質的には、予測を行わない)
予測式 2: Sj = Θ卜 1: 前ノードの偏角を利用
予測式 3: Sj = ( Θ卜 1 + Θ卜 2) /2: 前及び前々ノードの偏角平 均 値を利用
結果は、平均的には予測式 1の圧縮効率が高力つたものの、対象道路を個別にみ た場合、予測式 2または予測式 3の圧縮効率が高 、ものも存在した。
[0018] 具体的には、高速道路など、長くなだらかなカーブを多く含む形状の道路では、予 測式 2または予測式 3が適しているケースが多ぐまた、一般道では、予測式 1が適し ているケースが多かった。
[0019] また同種の予測式である、予測式 2と予測式 3を比較した場合は、若干、予測式 3 の方が圧縮効率で勝るケースが多力つた。
本発明は、効率的にデータを圧縮して、デジタル地図の道路形状等の符号化デ ータを生成する符号化データ生成方法を提供し、また、その符号化データの生成や 符号化データの復号化を行う装置を提供することを目的として!ヽる。
特許文献 1:特開 2003— 23357号
発明の開示
[0020] 上述の点を考察した結果、以下の結果が導かれた。
•高速道路などの「なだらかなカーブ」部分は、比較的小さな曲率が長距離にわたつ て、ほぼ一定となる。このため、ある微小区間に着目すると、該当箇所の曲率は、上 流側の区間の曲率力 非常に容易に予測できる。以上より、前または前々ノードの偏 角をもちいて該当区間の偏角を予測する、予測式 2または予測式 3が適している。 •特に予測式 3は、上流側の前および前々区間の平均曲率を用いた予測であり、区 間毎の曲率誤差が平滑化される。よって、上記のような「長距離わたるなだらかな力 ーブ」においては、高精度な予測が可能となる。
'しかしながら、カーブ区間が比較的短い場合、予測式 3は、予測式 2と比較し、上流 側のより長い区間の影響を受けることから、カーブの開始 ·終了箇所周辺(=曲率が 変更する箇所周辺)での予測が外れやすい。この影響を受け、カーブ区間が比較的 短い場合には、予測式 2の方が予測式 3に勝るケースもある。
•一方、一般道路では、交差点部等で直角に曲がったり、カーブが存在しても比較的 大きな曲率が短距離のみであるケースが多い。これはすなわち、ある微小区間の曲 率を、上流側の前区間の曲率から予測しにくぐまた予測をしたとしても外れやすい、 ということである。このような場合には、実質的には予測を行わない、予測式 1 (偏角を そのまま用いる)が適して!/、る。
[0021] 前記の試行結果から、道路全体を見渡すと、全般的には、予測式 1 (予測を行わず 、偏角をそのまま用いる)の効率が良いものの、個別の道路または道路区間に着目し た場合は、予測式 2または予測式 3 (上流側の曲率力 該当地点の曲率を予測する) が適した箇所も混在して!/、る、 t 、うことが分力つた。
[0022] 上記の点を踏まえ、本発明では、線形形状を備えた線形対象物をリサンプルして 複数のノードを設定し、一つ前のノードからの偏角で表した各ノードの位置情報を配 列して偏角のデータ列を生成し、前記偏角を予測値との差分を示す予測差分値に 変換して、予測差分値のデータ列を可変長符号化する符号化データの生成方法に ぉ 、て、予測値を算出する予測式を複数の予測式の中から選択するようにして 、る。
[0023] このように、予測値を算出する予測式を動的に選択することによって、データ圧縮 の効果を高めることができる。特に上記構成において、偏角を予測差分値に変換し たときの予測差分値のデータ列を評価し、当該評価結果に基づ!、て予測式が選択さ れる。
[0024] 上述の符号化データ生成方法は以下の(1)一 (6)のステップを備え得る。
(1)線形対象物をリサンプルして複数のノードを設定するステップ。
(2)—つ前のノードからの偏角で表された各ノードの位置データを配列して偏角の データ列を生成するステップ。 [0025] (3)偏角のデータ列に基づき、各ノードの位置データの予測値を算出するための 複数の予測式を用意するステップ。
(4)当該複数の予測式のうち、所定の予測式を用いて予測値を算出するステップ。
[0026] (5)偏角のデータ列を、算出された予測値との差分を示す予測差分値のデータ列 に変換するステップ。
(6)予測差分値のデータ列を可変長符号ィヒして前記符号ィヒデータを得るステップ
[0027] 更に上述(5)のステップにより、複数の予測式の各々について、複数の予測式の各 々に対応した複数の前記予測差分値のデータ列を取得するステップと、複数の予測 差分値のデータ列を評価するステップと、当該評価ステップの評価結果に基づき、上 述 (4)のステップにおける所定の予測式を、複数の予測式の中から選択するステップ と、を更に設けることができる。
[0028] また、本発明の符号化データ生成方法では、複数の予測式の中に、 0を予測値と する予測式を含めている。
通常は、この予測式を用いて効果的なデータ圧縮が得られる。
[0029] 上述の複数の予測式には、着目する偏角に先行する少なくとも一つの偏角をパラメ ータとして用いた関数によって構成された予測式が少なくとも一つ含まれ得る。
また、本発明の符号ィ匕データ生成方法では、複数の予測式の中に、一つ前のノー ドの偏角を予測値とする予測式を含めている。
[0030] 緩やかなカーブ周辺でこの予測式を用いると、効果的なデータ圧縮が得られる。
また、本発明の符号ィ匕データ生成方法では、複数の予測式の中に、先行する複数 の偏角の平均又は加重平均を予測値とする予測式を含めて 1、る。
[0031] 緩やかなカーブ周辺でこの予測式を用いると、効果的なデータ圧縮が得られる。
また、本発明の符号ィ匕データ生成方法では、複数の予測式の中に、一つ前のノー ドの偏角の正負を逆にした角度を予測値とする予測式を含めている。
[0032] リサンプル形状がジグザグにトレースした場合は、この予測式を用いることにより、効 果的なデータ圧縮が得られる。
また、本発明の符号ィ匕データ生成方法では、偏角のデータ列に含まれる全ての偏 角を予測差分値に変換して予測差分値のデータ列を評価し、評価結果に基づ ヽて 、全ての偏角を予測差分値に変換する予測式を選択するようにして!ヽる。
[0033] 線形対象物の形状データ単位で予測式を動的に変えて、データ圧縮効果を高め ることがでさる。
また、本発明の符号ィ匕データ生成方法では、線形対象物の一部区間に対応する 偏角のデータ列に含まれる偏角を予測差分値に変換して予測差分値のデータ列を 評価し、評価結果に基づいて、前記一部の区間に対応する偏角を予測差分値に変 換する予測式を選択するようにして ヽる。
[0034] 線形対象物の形状データの途中で予測式を動的に変えて、データ圧縮効果をさら に高めることができる。
また、本発明の符号ィ匕データ生成方法では、偏角のデータ列を、偏角の状態遷移 のパターンによって区分し、前記パターンの単位で、偏角を予測差分値に変換する 予測式を選択するようにして 、る。
[0035] この方式を採る場合は、各パターンに適した予測式を選択することができる。
また、本発明の符号ィ匕データ生成方法では、偏角のデータ列を、所定数のデータ を含むブロックに区分し、前記ブロックの単位で、偏角を予測差分値に変換する予測 式を選択するようにして ヽる。
[0036] この方式を採る場合は、符号化データ中に、選択した予測式が一定個数単位に出 現するため、符号ィ匕データへのマーカーコードの挿入が不要になる。
また、本発明の符号ィ匕データ生成方法では、偏角のデータ列を、リサンプルのリサ ンプル長の変更点に合わせてブロックに区切り、このブロックの単位で、偏角を予測 差分値に変換する予測式を選択するようにして!/ヽる。
[0037] リサンプル長の変更点では形状データの特徴が変化するケースが多い。そのため 、この方式を採る場合は、形状データの特徴に合った予測式の選択ができる。
また、本発明の符号ィ匕データ生成方法では、偏角のデータ列の着目する偏角に先 行する所定数の偏角の予測差分値のデータ列に対する評価結果に応じて、着目す る偏角を予測差分値に変換する予測式を選択するようにして ヽる。
[0038] この方式は、エンコード側'デコード側の双方力 プログラムでルール化することに より実現できる。
ここで、複数の選択式を用いて、所定数の偏角を複数の予測差分値のデータ列に 変換し、所定の選択式に基づく予測差分値のデータ列に対する評価結果が所定の 要件を満たす場合のみ、現在使用されている予測式を所定の予測式に変更したうえ で、着目する偏角を予測差分値に変換するようにしてもよい。
[0039] また、着目する偏角またはブロックにおいて、前後の偏角またはブロックでの予測 式の選択状況を参考にして予測式を選択するようにしてもょ 、。
また、着目する偏角またはブロックにおいて、前後の偏角またはブロックで採用する 予測式とは異なる予測式を選出する場合、着目する偏角またはブロックでの予測差 分値列の評価基準である評価値に対しペナルティ値を加算するようにしてもょ 、。各 予測式の発生頻度に応じてこのペナルティ値を設定することができる。
[0040] また、本発明の符号ィ匕データ生成方法では、予測差分値のデータ列の評価を、デ ータ列に含まれる 0の数によって行い、最も 0の数が多くなる予測式を選択するように している。
[0041] そのため、データが 0に集中し、可変長符号化によるデータ圧縮効果が向上する。
また、本発明の符号ィ匕データ生成方法では、予測差分値のデータ列の評価を、デ ータ列に含まれる予測差分値の統計値 (分散、標準偏差等)によって行い、分散また は標準偏差が最も小さくなる予測式を選択するようにしている。
[0042] そのため、データが統計的に偏り、可変長符号化によるデータ圧縮効果が向上す る。
また、本発明の符号ィ匕データ生成方法では、予測差分値ごとの評価値を、予測差 分値の出現頻度に応じてあらかじめ設定し、予測差分値のデータ列の評価を、デー タ列に含まれた予測差分値の評価値の合計値によって行うようにしている。
[0043] 予測差分値の発生頻度を評価値とするときは、合計値が最も大き!ヽ予測式を選択 する。
また、予測差分値の符号長を評価値とするときは、合計値が最も小さい予測式を選 択する。
[0044] また、本発明では、符号化データ生成装置に、線形対象物をリサンプルして複数の ノードを設定し、一つ前のノードからの偏角で表した各ノードの位置情報を配列して 偏角のデータ列を生成する形状データリサンプル処理部と、このデータ列の偏角を、 予測値との差分を示す予測差分値に変換したときの予測差分値のデータ列を評価し 、評価結果に基づいて、予測値を算出する予測式を複数の予測式の中から選択す る予測式決定部と、形状データリサンプル処理部が生成したデータ列に含まれる偏 角を、予測式決定部が決定した予測式を用いて算出した予測値との予測差分値に 変換して、その予測差分値のデータ列を可変長符号化する可変長符号化処理部と を設けている。
[0045] この装置では、前述する符号化データ生成方法を実施して符号化データのデータ 量を効率的に圧縮することができる。
また、本発明では、符号化データ復元装置に、線形対象物の位置情報を表す、可 変長符号化された符号化データを復号化して、偏角と予測値との差分を示す予測差 分値のデータ列が含まれた形状データを再生する符号化データ復号部と、復号化さ れた形状データの情報から、予測値の算出に用いた予測式を決定する予測式判定 部と、予測式判定部が決定した予測式を用いて予測値を算出し、符号化データ復号 部が復号ィ匕した予測差分値のデータ列から、線形対象物のノードの位置情報を再現 する形状データ復元部とを設けて!/ヽる。
[0046] この装置では、線形対象物の位置情報の符号化データから、線形対象物の位置情 報を再現することができる。
更に本発明は、線形対象物を符号化して得られる符号化データの生成をコンビュ ータに実行させるためのプログラムをも含み、当該プログラムは、線形対象物をリサン プルして複数のノードを設定し、一つ前のノードからの偏角で表された各ノードの位 置データを配列して偏角のデータ列を生成する手順と、偏角のデータ列を、各ノード の位置データの予測値との差分を示す予測差分値に変換したときの予測差分値の データ列を評価する手順と、評価結果に基づいて、予測値を算出する予測式を複数 の予測式の中から選択する手順と、形状データリサンプル処理部が生成した偏角の データ列に含まれる偏角を、前記決定された予測式を用いて算出した予測値との予 測差分値に変換して、予測差分値のデータ列を可変長符号ィ匕する手順と、を前記コ ンピュータに実行させる。
[0047] 更に本発明は、線形対象物を表わす符号化データの復号化をコンピュータに実行 させるためのプログラムをも含み、当該プログラムは、線形対象物の位置情報を表す 可変長符号化された符号ィ匕データを復号化して、偏角と予測値との差分を示す予測 差分値のデータ列が含まれた形状データを再生する手順と、復号化された形状デー タから、予測値の算出に用いた予測式を決定する手順と、決定された予測式を用い て予測値を算出し、復号化された予測差分値のデータ列から、線形対象物のノード の位置情報を再現する手順と、を前記コンピュータに実行させる。 本発明の符号化 データ生成方法は、符号ィ匕データの生成に当たって、効果的にデータを圧縮するこ とがでさる。
[0048] また、本発明の装置は、この符号ィ匕データ生成方法を実施して、線形対象物の形 状データを、効果的にデータを圧縮して符号化することができ、また、この符号化デ 一タカも元の形状データを復元することができる。
図面の簡単な説明
[0049] [図 1]本発明の実施形態における符号ィ匕データ生成方法を模式的に説明する図で ある。
[図 2]道路形状データの偏角列を示す図である。
[図 3]ジグザグ現象を説明する図である。
[図 4]本発明の実施形態における対象道路単位選択方式での符号ィ匕データ生成方 法の手順を示すフロー図である。
[図 5]本発明の実施形態における符号ィ匕データ生成方法でのリサンプル及び偏角列 生成手順を示すフロー図である。
[図 6]本発明の実施形態における符号ィ匕データ生成方法での評価値算出手順を示 すフロー図である。
[図 7]発生頻度を記載したハフマンテーブルの例である。
[図 8]本発明の実施形態における対象道路単位選択方式で生成した符号ィ匕データ のデータ構成例である。
[図 9]本発明の実施形態における対象道路単位選択方式で生成した符号ィ匕データ の復号手順を示すフロー図である。
圆 10]本発明の実施形態におけるパターン単位選択方式での符号ィ匕データ生成方 法の手順を示すフロー図である。
圆 11]本発明の実施形態におけるパターン単位選択方式で生成した符号ィ匕データ のデータ構成例である。
圆 12]本発明の実施形態におけるパターン単位選択方式で生成した符号ィ匕データ の復号手順を示すフロー図である。
圆 13]本発明の実施形態におけるブロック単位選択方式での符号ィ匕データ生成方 法の手順を示すフロー図である。
圆 14]本発明の実施形態におけるブロック単位選択方式で生成した符号ィ匕データの データ構成例である。
圆 15]本発明の実施形態におけるブロック単位選択方式で生成した符号ィ匕データの 復号手順を示すフロー図である。
圆 16]は本発明の実施形態におけるリサンプル長連動方式での符号ィ匕データ生成 方法の手順を示すフロー図である。
圆 17]本発明の実施形態におけるリサンプル長連動方式で生成した符号ィ匕データ のデータ構成例である。
圆 18]本発明の実施形態におけるリサンプル長連動方式で生成した符号ィ匕データ の復号手順を示すフロー図である。
圆 19]本発明の実施形態における逐次選択方式での符号ィ匕データ生成方法の手順 を示すフロー図である。
[図 20]本発明の実施形態における逐次選択方式で生成した符号化データのデータ 構成例である。
[図 21]本発明の実施形態における逐次選択方式で生成した符号化データの復号手 順を示すフロー図である。
圆 22]予測式によって得られた評価値と、予測式の変更に伴う変更ペナルティの総 合評価方法を示す図である。
[図 23]予測式の変更に伴う変更ペナルティを動的に変動させる方法を示す図である [図 24]本発明の実施形態における情報送信装置及び情報活用装置の構成を示す ブロック図である。
[図 25]本発明の実施形態におけるプローブカー車載機及びプローブ情報収集セン タの構成を示すブロック図である。
[図 26]位置データを統計的に偏りを持つデータに変換する方法を説明する図である
[図 27]可変長符号ィ匕に用いる符号表を示す図である。
[図 28]道路形状の曲率によるリサンプル長の変更を説明する図である。
発明を実施するための最良の形態
[0050] 本発明の実施形態における符号ィ匕データ生成方法では、線形対象物の一例であ るデジタル地図の道路形状を符号化して符号化データを生成するため、大別して、
(a)道路の曲率半径に応じたリサンプル長での道路形状のリサンプル
(b)サンプリング点(ノード)における位置データの偏角 Θへの変換
(c)偏角 Θで表した位置データの統計的に偏りを持つ値への変換
(d)変換した値の可変長符号ィ匕
の順序で符号化データを生成する。
[0051] (a)の道路形状のリサンプルは、特開 2003— 23357号公報に記載されている方法 で行い、線形対象物をリサンプルして複数のノードを設定する。また、(b)の偏角 Θ への変換は、特開 2003— 23357号公報に記載されている方法で、各ノードの位置 データを角度成分で表した後、この角度成分を偏角 Θに変換する。図 2 (a)、(b)、 ( c)は、対象道路 A、 B、 Cの形状データの各ノードにおける位置データを偏角 Θで表 した (偏角の)データ列(以下、「偏角列」と言う)を示している。各行は 10個のデータ 力も成り、そのデータ番号を左端に表示している。偏角列の中のく >で囲んだ数字 は、リサンプル長の量子化コードを示すリサンプル長変更コードであり、その右に続く 数値は、そのコードのリサンプル長でリサンプルして得られた各ノードの位置データを 偏角 Θ (deg)で表したものである。各ノードの位置データが一つ前のノードからの偏 角で表わされ、集まって偏角のデータ列が生成される。 [0052] (c)における位置データの統計的に偏りを持つ値への変換は、位置データの値を 予測する予測値 Sjの算出式 (予測式)を適応的に用いて Sjを算出し、偏角列の偏角 Θを予測値 Sjとの差分値 (予側差分値)に変換する処理である。
[0053] (d)の可変長符号ィ匕は、予測差分値列に変換した形状データの予測差分値 (予測 誤差)を可変長符号化する処理であり、特開 2003— 23357号公報に記載されている 方法で行う。
[0054] 従って、この符号ィ匕データ生成方法は、(c)の位置データの変換処理に特徴を有 している。
(c)の位置データの変換処理では、予測値 Sjを予測するため、次の 4つの予測式( φ=1、 φ=2、 φ=3、 φ =4)のいずれかを使用する。これらの式は前もって用意さ れており、所定のメモリなどに記録されている。
• φ =1;予測式3』' = 0
即ち、各ノード jの位置データを偏角 Θ jで表し、予測値は 0である。
=2;予測式3』'= θ M
即ち、各ノード jの位置データを( 0 j— 0卜 1)で表す。
• φ = 3;予測式 Sj = ( Θ j-1 + Θ j-2) /2
即ち、各ノード jの位置データを { θ]-(θ卜 1 + Θ卜 2)Ζ2}で表す。
• φ =4;予測式 Sj =- Θ j-1
即ち、各ノード jの位置データを( θ} + Θ卜 1)で表す。
[0055] φ =2または φ =3は、図 2の偏角列において、下線を引いたカーブ箇所の位置デ ータを変換するときに用いると圧縮効率が高 、。
Φ =2、 φ =3、 φ =4は、着目する偏角に先行する少なくとも一つの偏角をパラメ ータとして用いた関数によって構成されるものである。
[0056] また、 φ = 2は、着目する偏角の一つ前の偏角を予測値として 、る。
また、 φ =3は、前記着目する偏角に先行する二つの偏角の平均を予測値としてい る。しかし、先行する偏角の個数は任意であり、 (a Θ j-1 +b 0 j- 2)Z(a + b)の如き 加重平均を予測値としてもょ 、 (a、 bは 0より大き 、実数)。
[0057] また、 φ =4は、着目する偏角の一つ前のノードの偏角の正負を逆にした角度を予 測値としている。
また、図 3に示すように、道路形状 (点線)の折り曲がり箇所で、リサンプル形状 (実 線)がジグザグ状を呈する場合があり、 φ =4は、こうした箇所の位置データを変換す るときに用いると圧縮効率が高い。このジグザグ現象は、リサンプル時の角度分解能 δを設定して道路形状をトレースすると、利用できる角度に限りがあるため、必然的 に発生する (角度の量子化に伴う必然性)。図 2 (a)の偏角列において、ジグザグ現象 が発生して 、る箇所の位置データを斜体文字で表示して 、る。
[0058] また、 φ = 1は、道路形状が直線に近い場合 (カーブがあってもすぐ終わる場合や 、ほぼ直線でたまに角度を修正するような場合を含む)に圧縮効率が高ぐ通常の道 路形状の位置データを変換するときには、この φ = 1を使用する。
[0059] 偏角 Θの変換処理に使用する予測値 Sjの予測式は、道路形状に応じて動的に選 択する。予測式の選択には、
(1)対象道路ごとに予測式を動的に選択する方式(「対象道路単位選択方式」と呼ぶ )
(2)対象道路の偏角列のパターンを検出し、そのパターン単位に予測式を選択する 方式(「パターン単位選択方式」と呼ぶ)
(3)対象道路の偏角列を一定データ数のブロックに分け、ブロック単位に予測式を選 択する方式(「ブロック単位選択方式」と呼ぶ)
(4)対象道路の偏角列中でリサンプル長変更コードが変わるごとに予測式を選択す る方式(「リサンプル長連動方式」と呼ぶ)
(5)対象道路の偏角列中で着目する位置データの上流側 N個の位置データにおけ る状況から、プログラム規則に従って予測式を選択する方式(「逐次選択方式」と呼 ぶ)
等の方式が考えられる。どの方式を用いるかは、予め送信側と受信側で決めておく 必要がある。
[0060] 図 1は、リサンプル長連動方式で選択される予測式と道路形状との関係を模式的に 示している。道路形状を点線で示し、リサンプル形状を実線で示し、リサンプル長の 変更箇所をく Ml >、 < M2 >、 < M3 >で示している。道路形状が直線的である範 囲 Aでは φ = 1が選択され、ジグザグ現象が発生する範囲 Βでは φ =4が選択され、 カーブしている範囲 Cでは φ = 2または φ = 3が選択され、また、そのいずれとも特定 できない道路形状の範囲 Dでは φ = 1が選択される。
[0061] 次に、各方式での処理について詳しく説明する。
(1)対象道路単位選択方式
図 4のフロー図は、対象道路単位選択方式での処理手順を示している。デジタル 地図データベース力 対象道路の形状データを取得し (ステップ 1)、リサンプルで生 成したノードの位置データを偏角 Θで表し、偏角列を生成する (ステップ 2)。
[0062] ステップ 2の処理は、詳しくは図 5に示す手順で行う。即ち、各リサンプル長の各偏 角における角度分解能 δを予め決定し (ステップ 21)、また、対象道路の形状データ を曲率関数に変換して (ステップ 22)、曲率力も各区間のリサンプル長 Lを決定する( ステップ 23)。次いで、対象道路を、リサンプル長 L、及び、偏角に応じた角度分解能 δの代表角度によってリサンプルし (ステップ 24)、対象道路の形状データを、リサン プル区間長変更コードと偏角量子化値とを羅列した偏角列に変換する (ステップ 25)
[0063] 偏角列の生成が終了すると、対象道路の偏角列全体に対し、予測式 φ = 1、 φ = 2、 φ = 3及び φ =4を適用して、偏角列の偏角 Θを予測値 Sjとの差分値 (予測差分 値)に変換し、どの予測式が最適であるかを評価する (ステップ 3)。 ステップ 3の処 理は、詳しくは図 6に示す手順で行う。即ち、評価対象の偏角列 (対象道路単位選択 方式の場合は対象道路の偏角列全体)を取得し (ステップ 31)、予測式を φ = 1から 順に用いて (ステップ 32)、各々の予測式で予測値 Sjを算出し、偏角列の偏角 Θを 予測差分値(= Δ 0 j
= Θ j— Sj)で表した予測差分値列に変換し (ステップ 33)、この偏角列の評価値を 算出する (ステップ 34)。
[0064] 評価値の算出は、次の(i)一 (iii)のように行う。
(i)予測差分値列に含まれる 0の数を評価値として、 0が多い予測差分値列程、高い 評価を与える(最も 0を多く含む予測式を選択する)。
(ii)予測差分値列に含まれるデータの統計値 (例えば分散、標準偏差等)の計算値 を評価値として、分散または標準偏差が小さい予測差分値列程、高い評価を与える
(iii)予測差分値列に現れるデータに、あらかじめ出現頻度に応じた得点を設定し、 評価対象の予測差分値列に現れるデータの得点を加算した累積値を評価値として、 この累積値に応じた評価を与える。図 7のハフマンテーブルでは、各角度の発生頻 度 (または発生確率)が記述され、発生頻度が高い角度程、短い符号が割り当てられ ている。評価対象の予測差分値列に現れる角度に応じて、このテーブルの該当する 発生頻度の値を加算する場合は、その累積値を評価値として、累積値が高い予測差 分値列程、高い評価を与える。また、評価対象の予測差分値列に現れる角度に応じ て、その角度の符号長を加算する場合は、その累積値を評価値として、累積値が小 さい予測差分値列程、高い評価を与える。なお、こうした出現頻度に対応する得点表 をあらかじめ持つことにより、ハフマン符号ィ匕以外の可変長符号ィ匕を行う場合にも、 (i ii)による評価が可能である。
[0065] 全ての予測式を用いてステップ 33、ステップ 34の処理を行い、それが終了すると( ステップ 35、 36)、最も評価値の良い予測式を決定する (ステップ 37)。すなわち、予 測式 φ = 1、 φ = 2、 φ = 3及び φ =4の各々について、対応する予測差分値のデ ータ列が生成され、これらのデータ列が評価される。
[0066] こうして最も評価値の良い予測式を選出して、偏角列の偏角 Θを、その予測式で算 出した予測値との予測差分値に変換し (ステップ 4)、予測差分値列に変換した形状 データ全体を可変長符号ィ匕圧縮する (ステップ 5)。得られた符号化データに、使用し た予測式を定義付ける (ステップ 6)。
[0067] 図 8は、対象道路単位選択方式により生成した符号化データのデータ構成を示し ている。ここでは、対象道路の形状データ本体の前に、使用した予測式を表すデー タが揷入されている。
[0068] また、図 9のフロー図は、この符号化データから対象道路の形状データを再現する 手順を示して ヽる。符号化データから可変長復号化処理した形状データを取り出し( ステップ 41)、ヘッダを参照して予測式を決定し (ステップ 42)、その予測式に従って 、形状データ力も読み取った角度データを偏角に変換し (ステップ 43)、対象道路の 形状データを再現する (ステップ 44)。
(2)パターン単位選択方式
図 10のフロー図は、パターン単位選択方式での処理手順を示している。形状デー タの取得 (ステップ 51)や、リサンプル及び偏角列変換処理 (ステップ 52)の手順は、 対象道路単位選択方式での処理手順(図 4、図 5)と同じである。
[0069] 得られた偏角列をスキャンし、同一正負符号の非 0のデータが P個以上連続する、 φ = 2または φ = 3を適用すべき曲線パターン(図 2の下線部分)や、絶対値が同一 値で正負符号が交互に反転するデータが Q個以上連続する、 φ =4を適用すべきジ グザグパターン(図 2 (a)の斜字部分)を抽出し、偏角列のデータを、各パターン別の グループ、何れのパターンにも属さない、 φ = 1を適用すべきグループに分け(ステツ プ 53)、グループ単位に最も評価値が良い予測式を選出して、偏角列を予測差分値 列に変換する (ステップ 54)。このとき、グループに対応する最良の予測式が一意に 決まらない場合は、図 6の手順により、そのグループの偏角列に複数の予測式を適 用し、最も評価値の良い予測式を決定する。
[0070] 次に、予測差分値列に変換した形状データ全体を可変長符号ィ匕圧縮し (ステップ 5 5)、得られた符号ィ匕データに、使用した予測式をグループ単位で定義付ける (ステツ プ 56)。
[0071] 本実施形態では、偏角の状態遷移のパターンに対応したブロック(グループ)に、 偏角のデータ列を区分している。そしてブロック毎に最適な予測式が選択される。 図 11は、パターン単位選択方式により生成した符号ィ匕データのデータ構成を示し ている。ここでは、対象道路の形状データ本体の前に、最初のグループで使用した 予測式を表す予測式初期値が挿入され、以降の各グループの位置データに先行し て、予測式の挿入を示す予測式マーカと、そのグループで使用した予測式の予測式 番号とが挿入されている。
[0072] また、図 12のフロー図は、この符号化データから対象道路の形状データを再現す る手順 (符号化データの復号化方法)を示して ヽる。この符号化データから可変長復 号ィ匕処理した形状データを取り出し (ステップ 61)、その形状データ力も読み取る角 度データの番号を初期値に設定し、また、最初に使用する予測式を予測式初期値で 表された予測式に設定し (ステップ 62)、形状データから該当する角度データを読み 取り(ステップ 63)、その角度データの前に予測式変更コードが挿入されているか否 かを識別する (ステップ 64)。予測式変更コードが挿入されていなければ、設定した 予測式をそのまま使用して (ステップ 66)、その予測式に従って、角度データを偏角 に変換する (ステップ 67)。また、予測式変更コードが挿入されていれば、予測式を、 そのコードで指定された新たな予測式に変更し (ステップ 65)、その予測式に従って 、角度データを偏角に変換する (ステップ 67)。こうした処理を角度データの全てにつ いて行い (ステップ 68、ステップ 69)、対象道路の形状データを再現する(ステップ 70
) o
[0073] 本方式では、線形対象物 (道路形状)全体ではなぐその一部区間に対応する偏 角のデータ列が予測差分値のデータ列に変換され、予測差分値のデータ列に対す る評価結果に基づいて、当該一部区間に対応する偏角を予測差分値に変換する最 適な予測式が選択されるものである。この思想は、以下の(3)—(5)の方式でも共通 して採用されている。
(3)ブロック単位選択方式
図 13のフロー図は、ブロック単位選択方式での処理手順を示している。形状データ の取得 (ステップ 71)や、リサンプル及び偏角列変換処理 (ステップ 72)の手順は、対 象道路単位選択方式での処理手順(図 4、図 5)と同じである。
[0074] 例えば、図 2に示す偏角列の 1行、 10データを 1ブロックとして、このブロック単位の 偏角列に対し、予測式 φ = 1、 φ = 2、 φ = 3及び φ =4を適用して、偏角列の偏角 Θを予測差分値に変換し、どの予測式が最適であるかを評価する (ステップ 73)。評 価の仕方は、対象道路単位選択方式の場合(図 6)と同じである。ブロック単位に最も 評価値が良い予測式を選出して、偏角列を予測差分値列に変換し (ステップ 74)、 予測差分値列に変換した形状データ全体を可変長符号化圧縮し (ステップ 75)、得 られた符号化データに、使用した予測式をブロック単位で定義付ける (ステップ 76)。
[0075] 図 14は、ブロック単位選択方式により生成した符号ィ匕データのデータ構成を示して いる。ここでは、対象道路の形状データ本体の前に、最初のブロックで使用した予測 式を表す予測式初期値が挿入され、以降の各ブロックの位置データに先行して予測 式番号が挿入されている。なお、予測式番号の挿入位置は、ブロックに含まれるデー タ数により自動的に決まるので、予測式マーカの挿入は不要である。
[0076] また、図 15のフロー図は、この符号化データから対象道路の形状データを再現す る手順を示して ヽる。この符号化データから可変長復号化処理した形状データを取り 出し (ステップ 81)、その形状データ力も読み取るブロックの番号を初期値に設定し、 また、最初に使用する予測式を予測式初期値で表された予測式に設定し (ステップ 8 2)、形状データ力も該当するブロックの角度データを読み取り(ステップ 83)、そのブ ロックに定義された予測式に従って、角度データを偏角に変換する (ステップ 84)。こ うした処理をブロックの全てについて行い(ステップ 85、ステップ 86)、対象道路の形 状データを再現する (ステップ 87)。
[0077] 本実施形態では、 1ブロックに含まれる偏角のデータの所定数は 10とした力 この 数は任意に変更することができる。
(4)リサンプル長連動方式
図 16のフロー図は、リサンプル長連動方式での処理手順を示している。形状デー タの取得 (ステップ 91)や、リサンプル及び偏角列変換処理 (ステップ 92)の手順は、 対象道路単位選択方式での処理手順(図 4、図 5)と同じである。
[0078] 図 2に示す偏角列において、同一リサンプル長でリサンプルされた、リサンプル長 変更コードと次のリサンプル長変更コードとの間(二つのリサンプルのリサンプル長の 変更点)に在る角度データをブロック(く >で囲まれた数字ごとのブロック)とし、この ブロック単位の偏角列に対し、予測式 φ = 1、 φ = 2、 φ = 3及び φ =4を適用して、 偏角列の偏角 Θを予測差分値に変換し、どの予測式が最適であるかを評価する (ス テツプ 93)。評価の仕方は、対象道路単位選択方式の場合(図 6)と同じである。プロ ック単位に最も評価値が良い予測式を選出して、偏角列を予測差分値列に変換し( ステップ 94)、予測差分値列に変換した形状データ全体を可変長符号化圧縮し (ス テツプ 95)、得られた符号化データに、使用した予測式をブロック単位で定義付ける( ステップ 96)。
[0079] 図 17は、リサンプル長連動方式により生成した符号ィ匕データのデータ構成を示し ている。ここでは、対象道路の形状データ本体の前に、最初のブロックで使用した予 測式を表す予測式初期値が挿入され、以降の各ブロックで使用した予測式の予測式 番号は、同一リサンプル長でリサンプルされた角度データの開始位置に挿入される 区間長マーカに続く区間長情報の中で規定されている。
[0080] また、図 18のフロー図は、この符号化データから対象道路の形状データを再現す る手順を示して ヽる。この符号化データから可変長復号化処理した形状データを取り 出し (ステップ 101)、その形状データ力 読み取る同一リサンプル長のブロックの番 号を初期値に設定し (ステップ 102)、リサンプル長が同一のブロックに含まれる全て の角度データ、及び、リサンプル長変更コードに付随している予測式を取得し (ステツ プ 103)、予測式に従って、ブロック内の角度データを偏角に変換する (ステップ 104 )。こうした処理をリサンプル長が同一のブロックの全てにっ 、て行 、(ステップ 105、 ステップ 106)、対象道路の形状データを再現する (ステップ 107)。
(5)逐次選択方式
図 19のフロー図は、逐次選択方式での処理手順を示している。形状データの取得 (ステップ 111)や、リサンプル及び偏角列変換処理 (ステップ 112)の手順は、対象 道路単位選択方式での処理手順(図 4、図 5)と同じである。
[0081] 偏角列力 抽出する角度データの番号を初期値に設定し、また、最初に使用する 予測式を Φ = 1に設定する (ステップ 113)。偏角列から該当する角度データ及びそ の上流側の所定数たる P個のサンプルを抽出し (ステップ 114)、抽出したデータから 成る偏角列に対し、予測式 φ = 1、 φ = 2、 φ = 3及び φ =4を適用して、偏角列の 偏角 Θを予測差分値に変換し、最も評価値が良い予測式 φ newを選出する (ステツ プ 115)。評価の仕方は、対象道路単位選択方式の場合(図 6)と同じである。
[0082] この評価結果を踏まえ、予測式の変更条件に照らして、設定済みの予測式を変更 する必要があるか否かを判定する (ステップ 116)。すなわち、本方式においては、符 号ィ匕の対象となっている位置データの上流の形状を参照しつつ、当該位置データに 使用される最適な予測式を変更すべき力否かが判断される。
[0083] この変更条件として、例えば、次の(i)または (ii)のような条件を設定する。
(i)現在使用して!/ヽる予測式 φと予測式 φ newとの間で評価値差 Δが所定値より大 き!ヽ場合は予測式を変更する。 (ii)現在使用している予測式 φよりも予測式 φ newの方に高い評価が与えられる状 態が Q回以上続いた場合は予測式を変更する。
[0084] この変更条件を満たして 、なければ、設定済みの予測式をそのまま使用して (ステ ップ 118)、角度データを予測差分値に変換する (ステップ 119)。また、変更条件を 満たして!/、る場合は、予測式を予測式 φ newに変更して (ステップ 117)、角度デー タを予測差分値に変換する (ステップ 119)。こうした処理を全ての角度データに対し て行い (ステップ 120、ステップ 121)、予測差分値列に変換した形状データ全体を 可変長符号化圧縮する (ステップ 122)。
[0085] この予測式変更の規則は、この符号化処理を規定するプログラムの中でルールイ匕 されている。
本実施形態では、着目する偏角に先行する所定数 (P)の偏角の予測差分値のデ ータ列に対する評価結果に応じて、着目する偏角を予測差分値に変換する予測式 が選択される。さらに、この評価結果が所定の要件を満たす場合のみ、現在使用さ れて 、る予測式を所定の予測式に変更するように構成して 、る。
[0086] 図 20は、逐次選択方式により生成した符号化データのデータ構成を示している。こ の符号ィ匕データには、予測式を指定する情報が含まれていないため、データ量も少 ないものとなっている。デコードの際に使用する予測式は、この符号化データのデコ ードを規定するプログラムのルールに基づいて選択される。
[0087] 図 21のフロー図は、この符号化データから対象道路の形状データを再現する手順 を示して 、る。この符号化データから可変長復号化処理した形状データを取り出し( ステップ 131)、その形状データ力も読み取る角度データの番号を初期値に設定し、 また、最初に使用する予測式を φ = 1に設定する (ステップ 132)。形状データから該 当する角度データ及びその上流側 P個のサンプルを読み取り(ステップ 133)、読み 取ったデータ力 成る偏角列に対し、予測式 φ = 1、 φ = 2、 φ = 3及び φ =4を適 用して、偏角列の偏角 Θを予測差分値に変換し、最も評価値が良い予測式 φ new を選出する (ステップ 134)。次に、この評価結果を踏まえ、予測式の変更条件に照ら して、設定済みの予測式を変更する必要がある力否かを判定する (ステップ 135)。 変更条件を満たしていなければ、設定済みの予測式をそのまま使用し (ステップ 137 )、その予測式に従って、角度データを偏角に変換する (ステップ 138)。また、変更 条件を満たしている場合は、予測式を予測式 φ newに変更し (ステップ 136)、その 予測式に従って、角度データを偏角に変換する (ステップ 138)。こうした処理を全て の角度データに行い (ステップ 139、ステップ 140)、対象道路の形状データを再現 する(ステップ 141)。
[0088] このように、道路形状の符号化データを生成する場合に、位置データを予測差分 値に変換するための予測値の算出に使用する予測式を、道路ごとに、あるいは、道 路の部分ごとに、適応的に選択することにより、符号化データのデータ量を効率的に 圧縮することができる。
[0089] ところで、上述の(1)一 (4)各々の方式において、 1つの形状データにおいて、予測 式を変更する場合、「予測式の変更を明示し、予測式 IDを指定する」という情報をデ ータに盛り込むことが必要となる。これは、データ量増加の 1要因となり得る。さらに、「 その道路区間全般では、概して予測式 1が良いが、瞬間的に他の予測式が良い」場 合など、頻繁に予測式を変えるのもあまり望ましくはない。少なくとも予測式を変更す る場合は、「新たな予測式によって得られるデータ量削減効果」が「予測式の変更に 伴うロス」を上回る必要があることが望まし 、。
[0090] そこで、「各予測式によって得られた評価値」に対し、「変更ペナルティ」を加算し、 その総合評価によって「予測式を変更するか否か」を決定することが考えられる。言 い換えると、予測式変更に対してヒステリシスを持たせることが考えられる。
[0091] 図 22は予測式によって得られた評価値と、予測式の変更に伴う変更ペナルティの 総合評価方法を示す図である。
図 22 (a)では、予測式を変更した方がデータ量が削減され、データ送信の効率が 向上するので、予測式を変更する。一方、図 22 (b)では、変更しない方が送信効率 がよいため、予測式は変更しない。
[0092] また、データを区分けするブロックや偏角が増加すると、「どういう組合せが最も効率 がよいのか?」という組合せ最適化問題が発生する。ブロックや偏角が増加するにつ れ、最適解を簡便に、早く見つけるのは難しくなる。
[0093] そこで、準最適解をすばやく見つけるための方法として、以下の 2つの方式が考え られる。
(i)発生頻度が高い予測式には、変更ペナルティを相対的に小さくし、発生頻度が 低い予測式には、変更ペナルティを大きくする。発生頻度が低い予測式を採用した 場合、次ブロックで他の予測式に変わる可能性が大きいので、発生頻度が低い予測 式への変更を抑制する。
[0094] (ii)普通は、一方向に順に処理していくので、着目するブロックの上流側の実績か ら下流側の状況を推定し、変更ペナルティを動的に変えていく。
さらに、圧縮率によって、最適な予測式の発生頻度が変わるものと考えられる。例え ば、圧縮率を上げると偏角の規則性が無くなり、 φ = 1が最適な式になる傾向がある 。また、逆に圧縮率を下げると偏角の規則性が強まり、 φ = 2や、 φ = 3が最適な式 になる傾向がある。
[0095] よって、(i)の場合、「形状データ全体に対して各予測式の評価値を一旦算出し、そ の評価値に応じて変更ペナルティを決定する」ような方法が良いと考えられる。
図 23は予測式の変更に伴う変更ペナルティを動的に変動させる方法を示す図であ る。
[0096] 図 24は、交通情報の対象道路を伝えるために、この符号化データ生成方法を実行 する情報送信装置 (符号化データ生成装置) 20と、提供された交通情報を活用する 、車載用ナビゲーシヨン装置やパーソナルコンピュータなどの情報活用装置 (符号化 データ復元装置) 40との構成を示している。情報送信装置 20は、渋滞情報や交通 事故情報などが入力される事象情報入力部 21と、デジタル地図データベース A22 から交通情報の対象道路区間の道路形状データを抽出する形状データ抽出部 23と 、形状データ抽出部 23で抽出された道路形状データをリサンプルしてノード位置デ 一タの偏角列を生成する形状データリサンプル処理部 26と、偏角列を予測差分値 列に変換するための予測式を決定する予測式決定部 25と、予測式決定部 25が決 定した予測式を用いて形状データの偏角を予測差分値に変換し、圧縮符号化する 可変長符号化処理部 28と、圧縮符号化された道路形状データを蓄積して外部メディ ァに蓄積データを提供する圧縮データ蓄積部 27と、圧縮符号化された道路形状デ ータを送信する形状データ送信部 29とを備えて ヽる。 [0097] 一方、情報活用装置 40は、提供された道路形状データを受信する形状データ受 信部 41と、圧縮符号化されているデータを復号する符号化データ復号部 42と、予測 差分値への変換時に使用された予測式を識別する予測式判定部 47と、予測式判定 部 47が識別した予測式を用いて形状データを復元する形状データ復元部 43と、デ ジタル地図データベース B46のデータを用いてマップマッチングを行 、、ノード点で 表された道路区間をデジタル地図上で特定するマップマチング部 45と、得られた情 報を活用する情報活用部 44とを備えている。
[0098] 情報送信装置 20では、形状データ抽出部 23が対象道路の道路形状データを抽 出し、形状データリサンプル処理部 26が、この道路形状データをリサンプルして、道 路形状データの偏角列を生成する。予測式決定部 25は、前述する「対象道路単位 選択方式」「パターン単位選択方式」「ブロック単位選択方式」「リサンプル長連動方 式」あるいは「逐次選択方式」により、偏角列を予測差分値列に変換するための予測 式を決定する。可変長符号化処理部 28は、予測式決定部 25が決定した予測式で 予測値を算出し、偏角列の偏角から予測値を減じて予測差分値列を生成し、これを 可変長符号化する。
[0099] 可変長符号化でデータ圧縮された道路形状データは、外部メディアに記録されて 提供され、あるいは、形状データ送信部 29から送信される。
この道路形状データを受信した情報活用装置 40では、符号ィ匕データ復号部 42が 、圧縮符号化されているデータを復号化する。予測式判定部 47は、復号化されたデ ータから、偏角をデコードするための予測式を識別し、形状データ復元部 43は、この 予測式を用 、て偏角列を再生し、偏角を緯度 ·経度データに変換して道路形状デー タを再現する。再現されたノードを繋ぐリサンプル形状は、情報活用装置 40の表示 画面上にデジタル地図と重ねて表示される。
[0100] また、この道路区間を正確に特定するために、マップマッチング部 45は、再現され たノード点の位置データとデジタル地図データベース B46の地図データとのマップマ ツチングを行い、デジタル地図データ上で対象道路を特定する。情報活用装置 40は 、カーナビ受信機または地図表示端末をも構成し得る。
[0101] また、図 25は、走行軌跡を伝えるために、この符号化データ生成方法を実行する プローブカー車載機 (符号化データ生成装置) 60と、プローブ情報を収集するプロ ーブ情報収集センタ (符号化データ復元装置) 50との構成を示している。プローブ力 一車載機 60は、 GPSアンテナ 73から受信する情報やジャイロ 74の検知情報を基に 自車位置を判定する自車位置判定部 61と、デジタル地図のデータベース 69と、自 車の走行軌跡を蓄積する走行軌跡蓄積部 62と、走行軌跡をリサンプルしてノード位 置データの偏角列を生成する走行軌跡形状リサンプル処理部 63と、偏角列を予測 差分値列に変換するための予測式を決定する予測式決定部 68と、予測式決定部 6 8が決定した予測式を用いて走行軌跡形状データの偏角を予測差分値に変換し、圧 縮符号化する可変長符号化処理部 64と、圧縮符号化された走行軌跡形状データを 蓄積する圧縮データ蓄積部 65と、圧縮符号化された走行軌跡形状データを送信す る走行軌跡送信部 66とを備えて 、る。
[0102] 一方、プローブ情報収集センタ 50は、プローブカー車載機 60から提供された走行 軌跡形状データを受信する走行軌跡受信部 51と、圧縮符号化されている受信デー タを復号化する符号化データ復号部 52と、予測差分値への変換時に使用された予 測式を識別する予測式判定部 55と、予測式判定部 55が識別した予測式を用いて走 行軌跡形状を復元する走行軌跡形状復元部 53と、プローブカー車載機 60から収集 した走行軌跡や計測情報を交通情報の生成に活用する走行軌跡計測情報活用部 5 4とを備えている。
[0103] プローブカー車載機 60の走行軌跡蓄積部 62には、自車位置判定部 61で検出さ れた自車位置が走行軌跡として順次蓄積される。走行軌跡形状リサンプル処理部6 3は、走行軌跡蓄積部 62に蓄積された走行軌跡データを読み出し、走行軌跡をリサ ンプルして、走行軌跡形状データの偏角列を生成する。予測式決定部 68は、前述 する「対象道路単位選択方式」「パターン単位選択方式」「ブロック単位選択方式」「リ サンプル長連動方式」あるいは「逐次選択方式」により、偏角列を予測差分値列に変 換するための予測式を決定する。可変長符号化処理部 64は、予測式決定部 68が 決定した予測式で予測値を算出し、偏角列の偏角から予測値を減じて予測差分値 列を生成し、これを可変長符号化する。圧縮符号化されたデータは、プローブ情報 の送信時期に、プローブ情報収集センタ 50に送信される。また、このデータは、外部 メディアに格納してプローブ情報収集センタ 50に提供される場合もある。
[0104] プローブ情報収集センタ 50では、符号化データ復号部 52が、プローブカー車載機 60から収集したデータを復号化する。予測式判定部 55は、復号ィ匕されたデータから 、偏角をデコードするための予測式を識別し、走行軌跡形状復元部 53は、この予測 式を用いて偏角列を再生し、偏角を緯度 ·経度データに変換して走行軌跡データを 再現する。この走行軌跡の情報は、プローブカー車載機 60で計測された速度等の 計測情報と併せて交通情報の生成に活用される。
[0105] このように、情報送信装置やプローブカー車載機は、本発明の符号化データ生成 方法を用いて、対象道路や走行軌跡の符号化データを生成することにより、データ 量を効率的に圧縮することができる。
[0106] プローブカー車載機 60とプローブ情報収集センタ 50の組み合わせより、プローブ カーシステムが構築され、両者間でプローブカーシステムの情報伝達方法が達成さ れるが、当該方法は、本発明の符号化データの生成方法及び当該符号化データの 復号化方法の組み合わせより達成される。
[0107] なお、上述では、符号化データ生成装置が、情報送信センタである情報送信装置 20又プローブカー車載機 60である例を示した力 これらは情報送信側における実施 形態の例であり、情報を送信する事が出来る装置や端末であればどのような形態の ものでもよい。さらに生成した符号化データを媒体に記録して、他の装置に提供する ことも可能である。また、符号化データ復元装置である情報活用装置 40やプローブ 情報収集センタ 50もあくまで例であり、パーソナルコンピュータ、携帯端末等の情報 を活用できる装置であればなんでもよい。もちろん、符号化データの復元が可能な情 報収集センターや、センター側の装置でも同様の効果を得ることが出来る。さらに符 号化されたデータが記録された媒体等を用いて、復元処理することにより、同様の効 果を得ることは言うまでもな 、。
[0108] また、本発明は、線形対象物を符号化して得られる符号化データの生成をコンビュ ータに実行させるためのプログラムをも含み、当該プログラムは、線形対象物をリサン プルして複数のノードを設定し、一つ前のノードからの偏角で表された各ノードの位 置データを配列して偏角のデータ列を生成する手順と、偏角のデータ列を、各ノード の位置データを予測するための予測値との差分を示す予測差分値に変換したときの 予測差分値のデータ列を評価する手順と、評価結果に基づいて、予測値を算出する 予測式を複数の予測式の中から選択する手順と、形状データリサンプル処理部が生 成した偏角のデータ列に含まれる偏角を、前記決定された予測式を用いて算出した 予測値との予測差分値に変換して、予測差分値のデータ列を可変長符号化する手 順と、を前記コンピュータに実行させる。このようなプログラムは、情報送信装置 20、 プローブカー車載機 60に、種々の形式で組み込まれる。例えば情報送信装置 20、 プローブカー車載機 60内又はこれらの外部の装置内の所定のメモリにプログラムを 記録することができる。また、ハードディスクのような情報記録装置や、 CD— ROMや DVD-ROM,メモリカードのような情報記録媒体にプログラムを記録してもよい。また 、ネットワーク経由により当該プログラムをダウンロードするようにしてもよ!、。
[0109] 更に本発明は、線形対象物を表わす符号化データの復号化をコンピュータに実行 させるためのプログラムをも含み、当該プログラムは、線形対象物の位置情報を表す 可変長符号化された符号ィ匕データを復号化して、偏角と予測値との差分を示す予測 差分値のデータ列が含まれた形状データを再生する手順と、復号化された形状デー タから、予測値の算出に用いた予測式を決定する手順と、決定された予測式を用い て予測値を算出し、復号化された予測差分値のデータ列から、線形対象物のノード の位置情報を再現する手順と、を前記コンピュータに実行させる。
[0110] このようなプログラムも、情報活用装置 40、プローブ情報収集センタ 50に、種々の 形式で組み込まれる。例えば情報活用装置 40、プローブ情報収集センタ 50内又は これらの外部の装置内の所定のメモリにプログラムを記録することができる。また、ノ、 ードディスクのような情報記録装置や、 CD— ROMや DVD— ROM、メモリカードのよ うな情報記録媒体にプログラムを記録してもよい。また、ネットワーク経由により当該プ ログラムをダウンロードするようにしてもょ 、。
[0111] また、本発明の情報送信装置 20と情報活用装置 40又はプローブカー車載機 60と プローブ情報収集センタ 50の組み合わせより、地図データ配信システムが構成され る。
また、本発明の符号ィ匕データ生成方法に沿ったアルゴリズム (プログラム)を、地図 データ本体に各種地図情報に対応した地図データが記録された記録媒体に記録す ることができる。これにより、地図データ本体自体を圧縮符号ィ匕することが可能となる
[0112] 尚、上述の実施形態においては、線形対象物が位置参照用の道路形状である例 を説明したが、線形対象物は道路形状に限られない。「線形対象物」とは直線、曲線 など種々の形態を含む細長い形状のものを総て含み、地図上の線形形状によって 表わせる地理情報総てを含み得る。更に、指紋等地図とは関係ないが、線形形状に よって表わされるもの総てをも含まれる。
[0113] また、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神 と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとつ て明らかである。
[0114] 本出願は、 2003年 10月 17日出願の日本特許出願 (特願 2003— 357730)に基 づくものであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0115] 本発明の符号化データ生成方法は、デジタル地図の道路形状や河川、鉄道線路 、行政境界線、等高線などの位置情報を表す符号化データを生成して、伝送 '蓄積' 保存するときなどに利用することができ、また、デジタル地図以外に、各種の図形や 指紋などの線形対象物を表す符号化データを生成して、伝送 '蓄積'保存するときな どにも適用することができる。

Claims

請求の範囲 [1] 線形対象物を符号ィ匕して得られる符号ィ匕データの生成方法であって、
(1)前記線形対象物をリサンプルして複数のノードを設定するステップと、
(2)—つ前のノードからの偏角で表された各ノードの位置データを配列して偏角の データ列を生成するステップと、
(3)前記偏角のデータ列に基づき、前記各ノードの位置データの予測値を算出す るための複数の予測式を用意するステップと、
(4)当該複数の予測式のうち、所定の予測式を用いて前記予測値を算出するステ ップと、
(5)前記偏角のデータ列を、前記算出された予測値との差分を示す予測差分値の データ列に変換するステップと、
(6)前記予測差分値のデータ列を可変長符号化して前記符号化データを得るステ ップと、を備える符号化データ生成方法。
[2] 請求項 1に記載の符号化データ生成方法であって、
前記(5)のステップにより、前記複数の予測式の各々について、前記複数の予測 式の各々に対応した複数の前記予測差分値のデータ列を取得するステップと、 前記複数の予測差分値のデータ列を評価するステップと、
前記評価ステップの評価結果に基づき、前記 (4)のステップにおける前記所定の 予測式を、前記複数の予測式の中から選択するステップと、を更に備える符号化デ ータ生成方法。
[3] 請求項 1又は 2に記載の符号ィ匕データ生成方法であって、
前記複数の予測式は、 0を予測値とする予測式を少なくとも一つ含む、符号化デー タ生成方法。
[4] 請求項 1又は 2に記載の符号ィ匕データ生成方法であって、
前記複数の予測式は、着目する偏角に先行する少なくとも一つの偏角をパラメータ として用いた関数によって構成された予測式を少なくとも一つ含む、符号化データ生 成方法。
[5] 請求項 4に記載の符号化データ生成方法であって、 前記関数によって構成された予測式は、前記着目する偏角の一つ前の偏角を予 測値とする予測式を少なくとも一つ含む、符号化データ生成方法。
[6] 請求項 4に記載の符号化データ生成方法であって、
前記関数によって構成された予測式は、前記着目する偏角に先行する複数の偏角 の平均または加重平均を予測値とする予測式を少なくとも一つ含む、符号化データ 生成方法。
[7] 請求項 4に記載の符号化データ生成方法であって、
前記関数によって構成された予測式は、前記着目する偏角の一つ前のノードの偏 角の正負を逆にした角度を予測値とする予測式を少なくとも一つ含む、符号化デー タ生成方法。
[8] 請求項 2に記載の符号化データ生成方法であって、
前記(5)のステップにおいて、前記線形対象物の一部区間に対応する偏角のデー タ列が前記予測差分値のデータ列に変換され、当該予測差分値のデータ列に対す る評価結果に基づいて、前記一部区間に対応する偏角を予測差分値に変換する予 測式を選択する、符号化データ生成方法。
[9] 請求項 8に記載の符号化データ生成方法であって、
前記偏角のデータ列を、偏角の状態遷移のパターンに対応したブロックに区分し、 前記ブロック毎に、偏角を予測差分値に変換する予測式を選択する、請求項 7に記 載の符号化データ生成方法。
[10] 請求項 8に記載の符号化データ生成方法であって、
前記偏角のデータ列を、所定数の偏角のデータを含むブロックに区分し、前記プロ ック毎に、偏角を予測差分値に変換する予測式を選択する、符号化データ生成方法
[11] 請求項 8に記載の符号化データ生成方法であって、
前記偏角のデータ列を、前記(1)のステップにおけるリサンプルのリサンプル長の 変更点に合わせてブロックに区分し、前記ブロック毎に、偏角を予測差分値に変換 する予測式を選択する、符号化データ生成方法。
[12] 請求項 8に記載の符号化データ生成方法であって、 着目する偏角に先行する所定数の偏角の予測差分値のデータ列に対する評価結 果に応じて、前記着目する偏角を予測差分値に変換する予測式を選択する、符号 化データ生成方法。
[13] 請求項 12に記載の符号化データ生成方法であって、
前記複数の選択式を用いて、前記所定数の偏角を複数の予測差分値のデータ列 に変換し、所定の選択式に基づく予測差分値のデータ列に対する評価結果が所定 の要件を満たす場合のみ、現在使用されている予測式を前記所定の予測式に変更 したうえで、前記着目する偏角を予測差分値に変換する、符号化データ生成方法。
[14] 請求項 8な 、し 11に記載の符号化データ生成方法であって、
着目する偏角またはブロックにおいて、前後の偏角またはブロックでの予測式の選 択状況を参考にして予測式を選択する、符号化データ生成方法。
[15] 請求項 14に記載の符号化データ生成方法であって、
着目する偏角またはブロックにおいて、前後の偏角またはブロックで採用する予測 式とは異なる予測式を選出する場合、前記着目する偏角またはブロックでの予測差 分値列の評価基準である評価値に対しペナルティ値を加算する、符号化データ生成 方法。
[16] 請求項 15に記載の符号化データ生成方法であって、
各予測式の発生頻度に応じて前記ペナルティ値を設定する、符号ィ匕データ生成方 法。
[17] 請求項 2ないし 16のいずれ力 1項に記載の符号ィ匕データ生成方法であって、
前記予測差分値のデータ列の評価を、前記データ列に含まれる 0の数によって行 い、最も 0の数が多くなる予測式を選択する、符号化データ生成方法。
[18] 請求項 2ないし 16のいずれ力 1項に記載の符号ィ匕データ生成方法であって、
前記予測差分値のデータ列の評価を、前記データ列に含まれる予測差分値の統 計値によって行い、前記統計値の結果に基づき予測式を選択する、符号化データ生 成方法。
[19] 請求項 18に記載の符号化データ生成方法であって、
前記統計値は、前記予測差分値の分散及び標準偏差の少なくとも!ヽずれか一つ である、符号化データ生成方法。
[20] 請求項 2ないし 16のいずれ力 1項に記載の符号ィ匕データ生成方法であって、
前記予測差分値ごとの評価値をあらかじめ設定し、前記予測差分値のデータ列の 評価を、前記データ列に含まれた予測差分値の評価値の合計値によって行う、符号 化データ生成方法。
[21] 請求項 20に記載の符号化データ生成方法であって、
前記予測差分値の発生頻度が前記評価値であり、前記合計値が最も大きい予測 式を選択する、符号化データ生成方法。
[22] 請求項 20に記載の符号化データ生成方法であって、
前記予測差分値の符号長が前記評価値であり、前記合計値が最も小さい予測式を 選択する、符号化データ生成方法。
[23] 線形対象物をリサンプルして複数のノードを設定し、一つ前のノードからの偏角で表 された各ノードの位置データを配列して偏角のデータ列を生成する形状データリサン プル処理部と、
前記偏角のデータ列を、前記各ノードの位置データを予測するための予測値との 差分を示す予測差分値に変換したときの前記予測差分値のデータ列を評価し、評 価結果に基づいて、前記予測値を算出する予測式を複数の予測式の中から選択す る予測式決定部と、
前記形状データリサンプル処理部が生成した前記偏角のデータ列に含まれる偏角 を、前記予測式決定部が決定した予測式を用いて算出した予測値との予測差分値 に変換して、前記予測差分値のデータ列を可変長符号化する可変長符号化処理部 と、を備える符号化データ生成装置。
[24] 線形対象物の位置情報を表す可変長符号化された符号ィ匕データを復号化して、偏 角と予測値との差分を示す予測差分値のデータ列が含まれた形状データを再生す る符号化データ復号部と、
復号化された前記形状データから、前記予測値の算出に用いた予測式を決定する 予測式判定部と、
前記予測式判定部が決定した予測式を用いて予測値を算出し、前記符号化デー タ復号部が復号化した前記予測差分値のデータ列から、前記線形対象物のノードの 位置情報を再現する形状データ復元部と、を備える符号化データ復元装置。
[25] 線形対象物を符号化して得られる符号化データの生成をコンピュータに実行させる ためのプログラムであって、当該プログラムは、
線形対象物をリサンプルして複数のノードを設定し、一つ前のノードからの偏角で 表された各ノードの位置データを配列して偏角のデータ列を生成する手順と、 前記偏角のデータ列を、前記各ノードの位置データの予測値との差分を示す予測 差分値に変換したときの前記予測差分値のデータ列を評価する手順と、
評価結果に基づいて、前記予測値を算出する予測式を複数の予測式の中から選 択する手順と、
前記偏角のデータ列に含まれる偏角を、前記決定された予測式を用いて算出した 予測値との予測差分値に変換して、前記予測差分値のデータ列を可変長符号ィ匕す る手順と、を前記コンピュータに実行させるプログラム。
[26] 線形対象物を表わす符号ィ匕データの復号ィ匕をコンピュータに実行させるためのプロ グラムであって、当該プログラムは、
線形対象物の位置情報を表す可変長符号化された符号ィ匕データを復号化して、 偏角と予測値との差分を示す予測差分値のデータ列が含まれた形状データを再生 する手順と、
復号化された前記形状データから、前記予測値の算出に用いた予測式を決定する 手順と、
前記決定された予測式を用いて予測値を算出し、前記復号化された前記予測差分 値のデータ列から、前記線形対象物のノードの位置情報を再現する手順と、を前記 コンピュータに実行させるプログラム。
PCT/JP2004/015274 2003-10-17 2004-10-15 符号化データ生成方法と装置 WO2005039058A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/556,178 US7271746B2 (en) 2003-10-17 2004-10-15 Encoding data generation method and device
EP04792491A EP1675268A1 (en) 2003-10-17 2004-10-15 Encoding data generation method and device
JP2005514800A JPWO2005039058A1 (ja) 2003-10-17 2004-10-15 符号化データ生成方法と装置
CA002523144A CA2523144A1 (en) 2003-10-17 2004-10-15 Encoding data generation method and device
US11/835,066 US7528746B2 (en) 2003-10-17 2007-08-07 Encoding data generation method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-357730 2003-10-17
JP2003357730 2003-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/835,066 Continuation US7528746B2 (en) 2003-10-17 2007-08-07 Encoding data generation method and device

Publications (1)

Publication Number Publication Date
WO2005039058A1 true WO2005039058A1 (ja) 2005-04-28

Family

ID=34463255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015274 WO2005039058A1 (ja) 2003-10-17 2004-10-15 符号化データ生成方法と装置

Country Status (7)

Country Link
US (2) US7271746B2 (ja)
EP (1) EP1675268A1 (ja)
JP (1) JPWO2005039058A1 (ja)
KR (1) KR20060096181A (ja)
CN (1) CN1788421A (ja)
CA (1) CA2523144A1 (ja)
WO (1) WO2005039058A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027714A1 (ja) * 2009-09-04 2011-03-10 日本電気株式会社 データ要約システム、データ要約方法および記録媒体
CN102522043A (zh) * 2011-12-12 2012-06-27 光庭导航数据(武汉)有限公司 基于线段拓扑关系的多边形压缩方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4230132B2 (ja) * 2001-05-01 2009-02-25 パナソニック株式会社 デジタル地図の形状ベクトルの符号化方法と位置情報伝達方法とそれを実施する装置
JP2004280521A (ja) * 2003-03-17 2004-10-07 Matsushita Electric Ind Co Ltd プローブカーシステムでの走行軌跡の伝送方法と装置
WO2009026189A2 (en) 2007-08-16 2009-02-26 Cortxt, Inc. Methods and apparatus for providing location data with variable validity and quality
US20090167599A1 (en) * 2007-08-23 2009-07-02 Cortxt, Inc. Location Based Services Information Storage and Transport
US20090191897A1 (en) * 2008-01-24 2009-07-30 Cortxt, Inc. Environment Characterization for Mobile Devices
US8035547B1 (en) 2008-03-17 2011-10-11 Garmin Switzerland Gmbh System and method of assisted aerial navigation
DE102010063330A1 (de) * 2010-12-17 2012-06-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Komprimieren von Routendaten
CN103366411B (zh) 2012-03-30 2016-01-06 国际商业机器公司 用于通过无线网络传输车辆位置数据残差的方法和装置
CN103795417B (zh) * 2014-01-22 2017-02-15 复旦大学 一种最大误差可控的轨迹数据压缩方法
CN107328423B (zh) * 2016-04-28 2020-10-16 厦门雅迅网络股份有限公司 基于地图数据的弯道识别方法及其系统
US11147501B2 (en) 2017-10-12 2021-10-19 Children's Hospital Medical Center Systems and methods for enhanced encoded source imaging
CN112082565B (zh) * 2020-07-30 2022-12-09 西安交通大学 一种无依托定位与导航方法、装置及存储介质
CN114116995B (zh) * 2021-10-11 2024-07-26 上海交通大学 基于增强图神经网络的会话推荐方法、系统及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200774A (ja) * 1996-01-19 1997-07-31 Fuji Xerox Co Ltd 画像符号化装置
JPH1056388A (ja) * 1996-08-07 1998-02-24 Ricoh Co Ltd 適応予測器選択回路
JP2003023357A (ja) * 2001-05-01 2003-01-24 Matsushita Electric Ind Co Ltd デジタル地図の形状ベクトルの符号化方法と位置情報伝達方法とそれを実施する装置
JP2003203243A (ja) * 2001-10-26 2003-07-18 Matsushita Electric Ind Co Ltd 地図データの蓄積及び送信方法とそれを実施する装置
EP1347427A2 (en) * 2002-03-20 2003-09-24 Vehicle Information and Communication System Center Road traffic information transmitter, transmitting method, transmitting program, and road traffic information receiver, receiving method, and reception program

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216446A (en) * 1978-08-28 1980-08-05 Motorola, Inc. Quarter wave microstrip directional coupler having improved directivity
JPH0267916A (ja) * 1988-09-02 1990-03-07 Yamaha Corp アブソリュートエンコーダ
US5278759A (en) * 1991-05-07 1994-01-11 Chrysler Corporation System and method for reprogramming vehicle computers
US5491418A (en) * 1994-10-27 1996-02-13 General Motors Corporation Automotive diagnostic communications interface
DE19512903A1 (de) * 1995-04-06 1996-10-24 Vdo Schindling Kommunikationsschnittstelle zwischen einem Rechner und einem Fahrzeuggerät
US6393149B2 (en) * 1998-09-17 2002-05-21 Navigation Technologies Corp. Method and system for compressing data and a geographic database formed therewith and methods for use thereof in a navigation application program
JP3917339B2 (ja) * 1999-10-01 2007-05-23 パイオニア株式会社 通信装置及び通信方法
US6611755B1 (en) * 1999-12-19 2003-08-26 Trimble Navigation Ltd. Vehicle tracking, communication and fleet management system
US6552670B2 (en) * 2000-05-26 2003-04-22 Switchboard Incorporated Location encoder
JP2002107170A (ja) * 2000-07-26 2002-04-10 Denso Corp ナビゲーション装置
US6703947B1 (en) * 2000-09-22 2004-03-09 Tierravision, Inc. Method for organizing and compressing spatial data
JP2003122622A (ja) * 2001-10-09 2003-04-25 Honda Motor Co Ltd データの受信および書き込みを制御する車両制御装置
US7010398B2 (en) * 2001-10-11 2006-03-07 The Boeing Company Control system providing perspective flight guidance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200774A (ja) * 1996-01-19 1997-07-31 Fuji Xerox Co Ltd 画像符号化装置
JPH1056388A (ja) * 1996-08-07 1998-02-24 Ricoh Co Ltd 適応予測器選択回路
JP2003023357A (ja) * 2001-05-01 2003-01-24 Matsushita Electric Ind Co Ltd デジタル地図の形状ベクトルの符号化方法と位置情報伝達方法とそれを実施する装置
JP2003203243A (ja) * 2001-10-26 2003-07-18 Matsushita Electric Ind Co Ltd 地図データの蓄積及び送信方法とそれを実施する装置
EP1347427A2 (en) * 2002-03-20 2003-09-24 Vehicle Information and Communication System Center Road traffic information transmitter, transmitting method, transmitting program, and road traffic information receiver, receiving method, and reception program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONUKI T. ET AL.: "Yosoku fugoka ni okeru yosokushiki sentaku ni kansuru kento", 1999 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, 8 March 1999 (1999-03-08), pages 22, XP002989374 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027714A1 (ja) * 2009-09-04 2011-03-10 日本電気株式会社 データ要約システム、データ要約方法および記録媒体
CN102522043A (zh) * 2011-12-12 2012-06-27 光庭导航数据(武汉)有限公司 基于线段拓扑关系的多边形压缩方法

Also Published As

Publication number Publication date
US20070273570A1 (en) 2007-11-29
US7528746B2 (en) 2009-05-05
CA2523144A1 (en) 2005-04-28
US20060227020A1 (en) 2006-10-12
CN1788421A (zh) 2006-06-14
KR20060096181A (ko) 2006-09-08
US7271746B2 (en) 2007-09-18
JPWO2005039058A1 (ja) 2007-11-29
EP1675268A1 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
US7528746B2 (en) Encoding data generation method and device
KR100943676B1 (ko) 디지털 지도의 형상 벡터의 부호화 방법과 위치 정보전달방법
WO2004084153A1 (ja) プローブカーシステムでの走行軌跡の伝送方法と装置
EP2565582B1 (en) Method for compressing route search acceleration data
US7340341B2 (en) Digital map position information compressing method and device
US9109909B2 (en) Navigation devices
US20050171649A1 (en) Road information providing system and road information providing apparatus and road information generating method
JP4619682B2 (ja) 交通情報の生成方法と装置
JP4212632B2 (ja) 道路情報提供システム及び装置と道路情報生成方法
JP2004354395A (ja) マップマッチング方法と装置
KR20050100638A (ko) 형상 정보 부호화 방법 및 장치, 형상 정보 복호화 방법 및장치, 및 프로그램
JP2004355662A (ja) 道路情報提供システム及び装置と道路情報生成方法
CN101010709A (zh) 线性对象位置数据产生方法和系统
WO2005038752A1 (ja) リサンプル長決定方法と装置
JP4286593B2 (ja) ベクトルデータの圧縮方法と装置
JP4318537B2 (ja) マップマッチング方法とそれを実施する装置
JP3874745B2 (ja) 交通情報提供方法、交通情報提供システム及び装置
JP2008052282A (ja) マップマッチング方法とそれを実施する装置
JP2004354396A (ja) デジタル地図の形状ベクトルの符号化方法と位置情報伝達方法とそれを実施する装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004792491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2523144

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006227020

Country of ref document: US

Ref document number: 10556178

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048126856

Country of ref document: CN

Ref document number: 1020057021416

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005514800

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004792491

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057021416

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10556178

Country of ref document: US