WO2003053747A1 - Procede et appareil pour l'estimation de l'etat de la surface d'une route et de l'etat de fonctionnement de pneumatiques, abs et commande de vehicule dans lesquels ils sont utilises - Google Patents

Procede et appareil pour l'estimation de l'etat de la surface d'une route et de l'etat de fonctionnement de pneumatiques, abs et commande de vehicule dans lesquels ils sont utilises Download PDF

Info

Publication number
WO2003053747A1
WO2003053747A1 PCT/JP2002/013332 JP0213332W WO03053747A1 WO 2003053747 A1 WO2003053747 A1 WO 2003053747A1 JP 0213332 W JP0213332 W JP 0213332W WO 03053747 A1 WO03053747 A1 WO 03053747A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
road surface
tire
pressure fluctuation
level
Prior art date
Application number
PCT/JP2002/013332
Other languages
English (en)
French (fr)
Other versions
WO2003053747A8 (fr
Inventor
Hidetoshi Yokota
Hiroshi Morinaga
Original Assignee
Kabushiki Kaisha Bridgestone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001390605A external-priority patent/JP3892723B2/ja
Priority claimed from JP2001390560A external-priority patent/JP3892722B2/ja
Priority claimed from JP2001390583A external-priority patent/JP4263400B2/ja
Application filed by Kabushiki Kaisha Bridgestone filed Critical Kabushiki Kaisha Bridgestone
Priority to EP02805488.0A priority Critical patent/EP1457388B1/en
Priority to ES02805488.0T priority patent/ES2534480T3/es
Priority to US10/499,431 priority patent/US7203579B2/en
Publication of WO2003053747A1 publication Critical patent/WO2003053747A1/ja
Publication of WO2003053747A8 publication Critical patent/WO2003053747A8/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/173Eliminating or reducing the effect of unwanted signals, e.g. due to vibrations or electrical noise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0474Measurement control, e.g. setting measurement rate or calibrating of sensors; Further processing of measured values, e.g. filtering, compensating or slope monitoring
    • B60C23/0477Evaluating waveform of pressure readings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • B60T8/1725Using tyre sensors, e.g. Sidewall Torsion sensors [SWT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/13Aquaplaning, hydroplaning

Definitions

  • the present invention relates to a method and an apparatus for estimating a fine running state of a tire and a state of a road surface on which the tire is in contact with the ground during running.
  • the tire condition refers to the tire internal pressure, wear, failure prediction, and the like
  • the road surface condition mainly refers to the friction coefficient between the road surface and the tire (road surface friction coefficient //). If it is possible to estimate the running condition of the tires and road surface conditions in advance, stop the car before the tires fail and perform inspections.Before performing danger avoidance operations such as braking and steering, for example, AB It is expected that more advanced control of the S-brake, etc., will be possible, and safety will be significantly improved. In addition, simply informing the driver of the danger of the road surface condition while driving can enable the driver to perform an early deceleration operation, which can reduce the number of accidents.
  • the road surface friction coefficient is determined by using the fact that the tire uniformity level, which is a physical quantity representing the fluctuation of the rotational speed of the wheel, changes with the magnitude of the road surface friction coefficient.
  • Estimation method Japanese Unexamined Patent Application Publication No. 2000-55990
  • a method of estimating the road surface friction coefficient by using the fact that the vibration level changes according to the road surface friction coefficient Japanese Patent Application Laid-Open No. 6-258986) has been proposed.
  • the road surface friction coefficient is estimated from the tire uniformity level. According to this method, a flat spot occurs on the tire, which deteriorates the uniformity. In the process of recovering the uniformity, it is difficult to make an accurate estimation.
  • the above method of estimating the road surface friction coefficient from the lateral vibration of the front wheel with a corner is used to measure when the slip angle of the tire is completely flat or when the slip angle is large. There was a problem when accuracy was low.
  • the present invention has been made in view of the conventional problems, and has as its object to improve the traveling safety of a vehicle by accurately estimating the road surface state where the tire is in contact with the ground and the traveling state of the tire. . Disclosure of the invention
  • the present inventors have studied in detail the contact behavior of the running tire and the behavior of the tire at the time of failure, and as a result, obtained the frequency analysis of the vibration in the circumferential direction or the width direction of the running tire.
  • the vibration level in one or more frequency bands of the above-mentioned vibration frequency spectrum is characterized by the condition of the ground surface where the sunset is grounded and the fault condition of the sunset. I knew that I was crazy.
  • the vibration of the tire itself, the vibration of the wheel / suspension part propagated from the tire, or the time axis of the pressure of the gas (usually air) filled in the tire The present inventors have found out that it is possible to accurately estimate the road surface state and the tire running state by detecting the above minute change, and have arrived at the present invention. That is, the invention set forth in claim 1 is a method for estimating a road surface state and a tire running state estimating a state of a road surface on which a tire is in contact with a ground and a running state of a tire, Detects the vibration of the car or wheel or suspension of the vehicle inside, detects the vibration level of the vibration spectrum obtained by analyzing the frequency, and estimates the road surface state and the running state of the car when driving.
  • the method for estimating a road surface condition and a tire running state detects a pressure fluctuation of a gas filled in a tire of a running vehicle and detects a pressure fluctuation obtained by frequency analysis of the pressure fluctuation. It is characterized by detecting the pressure fluctuation level of the vehicle and estimating the road surface state during traveling and the traveling state of the tire.
  • the tire pressure is detected using an absolute value of an output of a pressure sensor installed in the tire.
  • a small vibration component on the time axis of the output is detected, and this is estimated as a pressure fluctuation of the gas filled in the tire, and the road surface state and the traveling state of the tire during traveling are estimated. is there.
  • a vibration spectrum or the pressure fluctuation spectrum is provided in the method for estimating a road surface condition and a tire running state according to any one of the first to third aspects. It is characterized in that a vibration level or a pressure fluctuation level in the range of 10 to 100 Hz is detected.
  • a frequency band for detecting the vibration level or the pressure fluctuation level is used. Is set in a range of 10 to 500 Hz.
  • the invention according to claim 6 is the method for estimating a road surface condition and a tire running state according to any one of claims 1 to 4, wherein the vibration level or the pressure fluctuation level is detected. It is characterized in that the bandwidth of the band is in the range of 1 to 100% of the detection frequency band.
  • the invention set forth in claim 8 is the method for estimating a road surface condition and a tire running state according to any one of claims 1 to 7, wherein the vibration level or the pressure fluctuation level is calculated by the following method. Xn) by using the following equation to calculate the estimated value of the road surface friction coefficient.
  • the data of the vibration spectrum or the pressure fluctuation spectrum is provided.
  • the road surface condition and the traveling condition of the vehicle during running are estimated using the vehicle speed data.
  • the front wheel speed and the rear wheel speed are detected. Then, the road surface state and the running state of the tire during running are estimated using the slip ratio calculated using the detected front wheel speed and rear wheel speed.
  • the invention according to claim 12 is a method for estimating a road surface condition and a tire running state according to claim 10, wherein the pattern pitch frequency of the tire is obtained from a vehicle speed data. Number of the vibration spectrum or the pressure fluctuation spectrum, the vibration level or the pressure fluctuation level of the frequency band including the pattern pitch frequency is detected, and the detected vibration level or the pressure fluctuation level is constant. If the threshold value is exceeded, the tire is assumed to be in a hydroplaning state.
  • a vibration level or a pressure fluctuation level in a frequency band not affected by the pattern pitch frequency is obtained.
  • the ratio of the vibration level or the pressure fluctuation level in the frequency band of the above-mentioned no-pitch frequency band exceeds a certain threshold value, the tire is estimated to be in a hydroplaning state.
  • the invention described in claim 14 is the method for estimating a road surface condition and a tire running state described in claim 12 or claim 13, wherein the threshold value can be changed.
  • the invention according to claim 15 is the method for estimating a road surface condition and a tire running state according to any one of claims 1 to 14, wherein the vibration spectrum or the pressure fluctuation
  • the feature is that the road surface condition at the time of running and the running condition of the evening tire are estimated using the data of the tire internal pressure in addition to the data of the spectrum.
  • the invention according to claim 16 is the method for estimating a road surface condition and a tire running state according to claim 15, wherein the natural frequency of the tire is obtained from the data of the vibration spectrum, and the natural frequency of the tire is obtained in advance.
  • the tire internal pressure is estimated from the relationship between the tire frequency and the tire internal pressure, and the estimated tire pressure is used as the tire internal pressure data described in claim 13 above, as the road surface condition during running and the running of the tire.
  • the state is estimated. ⁇
  • the invention according to claim 17 is the method for estimating a road surface condition and a tire running state according to any one of claims 1 to 15, wherein the pressure fluctuation spectrum includes: Detects the pressure fluctuation level in the band synchronized with tire rotation within the frequency band of 10 to 100 kHz and compares this with the normal pressure fluctuation level, and the pressure fluctuation is 20% or more than normal. If it is high, it is assumed that the tire has some sort of abnormality. It is to be determined.
  • the invention set forth in claim 18 is the method for estimating a road surface condition and a tire running state according to any one of claims 1 to 17, wherein the vibration spectrum or the pressure It is characterized in that, in addition to the variation spectrum, the road surface condition at the time of running and the running condition of the evening wheel are estimated using the load data of each wheel of the vehicle. Further, the invention according to claim 19 is the method for estimating a road surface condition and a tire running state according to any one of claims 1 to 18, wherein the vibration or pressure fluctuation information is obtained.
  • the signal is converted to a digital signal by the tire or wheel, compressed and transmitted to the vehicle body. The compressed signal is received and restored by the vehicle body, and the frequency is prayed. .
  • the invention described in claim 20 is a road surface state estimating device for estimating the state of the road surface where the tires are in contact with the ground and the running state of the tire, and a running state estimating device.
  • the vibration level is characterized by the vibration detection means that detects the vibration of the tires or wheels of the vehicle, and the frequency spectrum obtained by analyzing the frequency of the detected vibration.
  • the invention according to claim 21 is the road surface condition and tire running state estimation device according to claim 20, wherein the vibration is vibration in a width direction of a tire or a wheel.
  • the invention set forth in claim 22 is the road surface condition and tire running state estimating device according to claim 20, wherein the vibration is a circumferential vibration of a tire or a wheel.
  • the invention according to claim 23 is the road surface state and evening traveling state estimating device according to any one of claims 2 to 22.
  • the sensor is installed on the same substrate or in the same housing as the pressure sensor that monitors the pressure of the gas filled in the tire.This allows the substrate to be shared, resulting in a more compact and lower device. Cost reduction can be realized.
  • the invention according to claim 24 is the road surface state and tire running state estimation device according to any one of claims 20 to 22, wherein the vibration detecting means or the vibration detecting means is provided.
  • the board on which is installed is mounted on a tire or wheel.
  • the invention according to claim 25 is the road surface state and tire traveling state estimation device according to any one of claims 20 to 24, wherein the apparatus is configured to wirelessly communicate from a vehicle body side that is a non-rolling portion.
  • the road surface condition and tire running state estimation device further comprising: a vibration detecting unit configured to detect a vibration of a suspension unit of the running vehicle; and a frequency obtained by performing a frequency analysis of the detected vibration.
  • the invention according to claim 27 is the device for estimating a road surface condition and a tire running state according to claim 26, further comprising: a vibration detection means for detecting the vibration of the suspension unit, wherein the hub to which the wheel is mounted is provided. It is attached to the part that is integrated via a bearing.
  • the road surface state and tire running state estimating device are provided with pressure fluctuation detecting means for detecting a pressure fluctuation of gas filled in tires of a running vehicle.
  • the invention according to claim 29 provides the road surface state and evening traveling state estimation device according to claim 28, wherein the tire internal pressure is determined by using an absolute value of an output of a pressure sensor installed in the tire. In addition to the detection, a minute vibration component on the time axis of the output is detected, and this is defined as the pressure fluctuation of the gas.
  • the invention according to claim 30 is the road surface state and tire traveling state estimation device according to any one of claims 20 to 29, wherein the vibration level or the pressure fluctuation level is detected.
  • Set the bandwidth of the frequency band within the range of 1 to 100% of the detection frequency band and use the following equation from the vibration level or pressure fluctuation level data detected in one or more frequency bands.
  • the estimated value of the road surface friction coefficient is calculated.
  • Road friction coefficient estimation l / [l + exp ⁇ — (ao + ai X i + a ⁇ z +. '.' + AnXn) ⁇ ] where a. ; Constant, a l 5 a 2 , ⁇ ⁇ ⁇ ⁇ , a n ; coefficient
  • Xi Vibration level or pressure fluctuation level in the frequency band (fi)
  • the invention described in claim 31 is a road surface condition and tire running described in any one of claims 20 to 30.
  • a signal processing means is provided in a tire or a wheel portion, and a vibration information signal detected by the vibration detecting means or a pressure fluctuation information signal detected by the pressure fluctuation detecting means is converted into a digital signal. This is compressed and transmitted to the car body side, and the car body receives and decompresses the above-mentioned compressed signal and analyzes it in frequency. In this way, digital data compression technology is applied. By transmitting with a reduced amount of data, continuous data communication becomes possible and the accuracy of detecting the vibration level or pressure fluctuation level can be improved. .
  • the invention described in claim 32 reduces the amount of transmitted data in the road surface condition and tire running state estimation device according to any one of claims 20 to 30.
  • signal processing means is installed on the tire or wheel, and a vibration information signal detected by the vibration detection means or a pressure fluctuation information signal detected by the pressure fluctuation detection means.
  • the tires or wheels are used to analyze the frequency to estimate the road surface condition during running and the running condition of the coaster, and the data representing the estimated road surface condition during running and the running condition of the coaster are calculated. To be sent to the car body It was made.
  • the invention described in claim 33 is the road surface condition and tire running state estimation device according to claim 31 or claim 32, wherein the antenna function for performing the data communication is provided by a wheel. It is provided on the evening ear valve attached to the section.
  • an antenna for performing the data communication is provided by a wheel. It is provided on the periphery of the rim.
  • the vibration information or the pressure fluctuation information is initialized.
  • Reset button or vehicle behavior data information including one or more of wheel speed, vehicle acceleration, and vehicle rotation angular speed, and the information from the estimating device are compared to automatically generate the vibration information or pressure fluctuation information.
  • a system that initializes the vehicle, and initializes vibration information or pressure fluctuation information that differs depending on the type of car, wheel, or tire. Can be further improved.
  • the invention according to claim 36 is the road surface condition and tire running state estimation device according to any one of claims 20 to 35, further comprising a load measuring device for each wheel of the vehicle, The road surface condition and the running condition of the vehicle during running are estimated based on the load data of each wheel. This allows the load variation applied to the wheels to be reduced, as in a large truck. Even for a large vehicle, the road surface state and the tire running state can be estimated according to the load data of each wheel, so that the estimation accuracy can be improved.
  • a vehicle control device for controlling a running state of a vehicle, wherein the road condition and the road surface condition according to any one of the first to third aspects are set forth.
  • ABS brake oil pressure control means wheel lock state control means, or vehicle based on the road surface state and / or the running tire state estimated by the above-described apparatus.
  • Vehicle control means for controlling the running state of the vehicle such as an attitude control means for the vehicle.
  • the invention according to claim 38 is a road surface state estimation method for estimating a state of a ground surface of a running tire, wherein the tire vibration, the wheel vibration, the suspension vibration, and the inside of the tire are included.
  • At least one of the pressure fluctuations is detected and the vibration level of the vibration spectrum obtained by analyzing the frequency or the pressure fluctuation level of the pressure fluctuation spectrum is detected to estimate the road surface friction coefficient and
  • a conventional AB SJ control system that detects on / off of the brake switch and stops updating the estimated value of the road friction coefficient when it is determined that the brake is depressed, and controls based on the wheel acceleration It is characterized in that it is switched to only. This makes it possible to prevent the present system from estimating the road surface friction coefficient after the brake pedal is stepped on, so that a malfunction of the system due to tire slippage can be prevented.
  • the road surface state estimating method is that, instead of detecting the on / off state of the play switch, a slip ratio is calculated by detecting a speed of a driving wheel and a driven wheel, and the slip ratio is calculated in advance.
  • the set threshold value is exceeded, updating of the estimated value of the road friction coefficient is interrupted.
  • the slip state of the tire can be determined by detecting the slip ratio according to the speed difference between the driven wheel and the driven wheel caused by stepping on the brake. Estimation of the road surface friction coefficient can be interrupted according to the state, and malfunction of the system can be reliably prevented.
  • the road surface state estimating method detects the engine speed and interrupts updating of the estimated value of the road surface friction coefficient when the engine speed exceeds a preset threshold value. It is characterized by doing so.
  • the engine speed is detected, and when the engine speed becomes higher than the threshold value, the torque becomes extremely high, and it can be determined that the tire is slippery. Therefore, the estimation of the road surface friction coefficient can be interrupted according to the slip condition of the tire, and the malfunction of the system can be reliably prevented.
  • the invention according to claim 41 is the road surface state estimation method according to claim 40, wherein the threshold value of the engine speed is changed according to the connection state of the traveling gear and the clutch. is there.
  • the invention described in claim B in claim 42 is characterized in that, in the road surface state estimation method according to any one of claims 38 to claim 41, the vibration level or the pressure fluctuation level is detected.
  • the bandwidth of the frequency band is set within the range of 1 to 100% of the detection frequency band, and the following equation is calculated from the data of the vibration level or pressure fluctuation level detected in one or more frequency bands. This is used to estimate the road surface friction coefficient.
  • Road friction coefficient estimated value l / [l + exp ⁇ — (a.10 ax ⁇ a 2 x 2 + "'+ a n x n ) ⁇ ] where a Q ; constant, a 15 a 25 ⁇ ⁇ ⁇ ⁇ , A n ; Coefficient
  • the invention according to claim 43 is a road surface state estimating device for estimating a state of a grounded road surface of a running tire, At least one of tire vibration, wheel vibration, suspension vibration, and tire pressure fluctuation is detected and subjected to frequency analysis to measure the vibration level of the vibration spectrum or pressure fluctuation spectrum.
  • the road surface condition estimating device that detects the pressure fluctuation level and estimates the road surface friction coefficient is equipped with a means for detecting the on / off state of the brake switch, and when it is determined that the brake is depressed, the road surface friction coefficient The update of the estimate is interrupted.
  • the road surface condition estimating device detects at least one of tire vibration, wheel vibration, suspension vibration, and pressure fluctuation in the tire, and obtains a vibration spectrum obtained by frequency analysis of the detected vibration.
  • the road surface condition estimating device detects at least one of tire vibration, wheel vibration, suspension vibration, and pressure fluctuation in the tire, and obtains a vibration spectrum obtained by frequency-analyzing the detected vibration.
  • a road surface condition estimation device that detects the vibration level or the pressure fluctuation level of the pressure fluctuation spectrum and estimates the road surface friction coefficient
  • a means for detecting the engine speed is provided, and when the engine speed exceeds a preset threshold value, updating of the estimated value of the road surface friction coefficient is interrupted.
  • the road surface condition estimating device wherein the load of the engine depends on the connection state of the traveling gear and the clutch.
  • a means for detecting the situation is provided, and the threshold value of the engine speed is changed according to the running gear and the connection state of the clutch. This enables more accurate control.
  • the road surface state estimating device is the road surface state estimating device according to any one of claims 43 to 46, wherein the information signal of the vibration or the pressure fluctuation is transmitted to a tire.
  • a digital signal is converted and compressed by a wheel or a suspension, and then transmitted to the vehicle body. The compressed signal is received and restored by the vehicle, and frequency analysis is performed.
  • the invention according to claim 48 is a method for controlling ABS braking, wherein at least one of tire vibration, wheel vibration, suspension vibration, and tire pressure fluctuation is detected, and
  • the road surface friction coefficient is continuously estimated by detecting the vibration level of the vibration spectrum or the pressure fluctuation level of the pressure fluctuation spectrum obtained by frequency analysis of the vehicle, and immediately before the driver steps on the brake.
  • the threshold value of the brake oil pressure for shifting to the ABS control is changed according to the magnitude of the estimated road surface friction coefficient. For example, when the road surface friction coefficient estimated value is low, the slip ratio increases rapidly if the normal threshold value is set, and the braking force is reduced. In this case, the threshold value of the brake hydraulic pressure for shifting to the ABS control is set. By lowering the ABS and controlling it so that the sleep ratio does not increase early, the safety of the vehicle is improved.
  • the ABS braking control method comprises detecting at least one of tire vibration, wheel vibration, suspension vibration, and pressure fluctuation in the tire, and analyzing a vibration spectrum obtained by frequency analysis of the vibration.
  • the road surface friction coefficient is continuously estimated by detecting the vibration level or the pressure fluctuation level of the pressure fluctuation spectrum, and the ABS is determined according to the magnitude of the road surface friction coefficient estimation value immediately before the driver steps on the brake.
  • B The feature is that the degree of increase / decrease of the rake hydraulic pressure is adjusted. This makes it possible to perform ABS braking stably.
  • the invention according to claim 50 is the ABS braking control method according to claim 48 or claim 49, wherein a bandwidth of a frequency band when the vibration level or the pressure fluctuation level is detected is detected.
  • the road friction coefficient is continuously calculated from the data of the vibration level or pressure fluctuation level detected in one or more frequency bands by using the following calculation formula. It is intended to be estimated.
  • Road surface frictional coefficient estimated value l / [l + exp ⁇ (a. + A lXl + a 2 x 2 + ... ⁇ + a n x n) ⁇ ]
  • the invention according to Claim 51 is an ABS braking control device, which includes tire vibration, wheel vibration, suspension vibration, and tire pressure fluctuation.
  • Road friction coefficient estimation l / [l + exp ⁇ (an + aiXi + a ⁇ z + + anXn) ⁇ ] where, a. ; Constant, a 15 a 2 , ⁇ , a n ; coefficient
  • the ABS braking control device comprising: a means for detecting at least one of tire vibration, wheel vibration, suspension vibration, and tire pressure fluctuation. And the vibration level of the vibration spectrum obtained by frequency analysis of the detected vibration information signal or pressure fluctuation signal or the pressure fluctuation level of the pressure fluctuation spectrum is detected, and the road surface friction is calculated using the following equation. Means for continuously calculating the estimated value of the coefficient, means for detecting the on / off of the brake switch, and ABS brake hydraulic pressure according to the magnitude of the road surface friction coefficient estimated immediately before the driver steps on the brake. Degree of change And means for adjusting.
  • Road friction coefficient estimation l / [l + exp ⁇ — (ao + aiXi + asXz + '-'. + AnXn) ⁇ ] where, a. ; Constant, a 13 a 25 ⁇ , a n ; coefficient
  • the invention according to Claim 53 is a vehicle control device for controlling a running state of a vehicle, wherein the vehicle control device controls the running state of the vehicle.
  • FIG. 1 is a functional block diagram showing a configuration of a road surface state and evening traveling state estimation device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a mounting location of the acceleration sensor.
  • FIG. 3 is a diagram showing a vibration spectrum of a wheel.
  • FIG. 4 is a diagram showing a correlation between an actual road surface friction coefficient / and an estimated value according to the present invention.
  • FIG. 5 is a diagram showing another mounting portion of the acceleration sensor.
  • FIG. 6 is a diagram showing a method of detecting vibration of the suspension section according to the second embodiment.
  • FIG. 7 is a diagram showing a vibration spectrum of a suspension unit.
  • FIG. 8 is a diagram showing a correlation between an actual road surface friction coefficient / z and an estimated value obtained by detecting and estimating vibration of a suspension.
  • FIG. 9 is a diagram showing a configuration of a vehicle control device according to the third embodiment.
  • FIG. 10 is a diagram showing another configuration of the vehicle control device according to the present invention.
  • FIG. 11 is a functional block diagram of the road surface state and tire traveling state estimation device according to the fourth embodiment.
  • FIG. 12 is a diagram showing a mounting position of a pressure sensor.
  • FIG. 13 is a diagram showing a configuration example for transmitting a pressure fluctuation information signal to the vehicle body.
  • Fig. 14 shows a vehicle equipped with a pressure sensor on a dry asphalt road and on snow.
  • FIG. 4 is a diagram showing a pressure fluctuation spectrum when the vehicle is driven while traveling.
  • FIG. 15 is a diagram showing a correlation between an actual road surface friction coefficient / z and an estimated value based on a tire internal pressure fluctuation.
  • FIG. 16 is a diagram showing the correlation between the actual road surface friction coefficient and the ⁇ estimation value based on wheel vibration.
  • FIG. 17 is a diagram showing a configuration of the hydroplaning state estimating means according to the fifth embodiment.
  • FIG. 18 is a diagram showing a pressure fluctuation spectrum in a hydroplaning state.
  • FIG. 19 is a diagram showing a vibration spectrum in a hydroplaning state.
  • FIG. 20 is a diagram showing the relationship between the vehicle speed and the ratio between the vibration level at the pattern pitch frequency and the vibration level in the 100 to 200 ° band.
  • FIG. 21 is a diagram showing a configuration of a road surface condition estimating device according to Embodiment 6.
  • FIG. 22 is a flow chart for updating control of an estimated value based on detection of a brake switch.
  • FIG. 23 is a diagram showing a configuration of a road surface state estimating apparatus including a sleep ratio determining unit according to the present invention.
  • FIG. 24 is a flowchart for updating control of the ⁇ estimation value based on the slip ratio.
  • FIG. 25 is a flowchart for controlling the updating of the estimated value based on the engine speed.
  • FIG. 26 is a diagram showing the calculation results of ⁇ estimation values when the test vehicle is run on various road surfaces at a constant speed.
  • FIG. 27 is a diagram showing a calculation result of the ⁇ estimation value when the test vehicle is accelerated on a dry asphalt road surface.
  • FIG. 28 is a diagram illustrating the calculation result of the estimated value when the control of updating the estimated value is performed based on the slip ratio and the engine speed.
  • FIG. 29 is a diagram showing a configuration example of the ABS braking control device according to the seventh embodiment.
  • FIG. 30 is a schematic diagram showing the force applied to the tire.
  • Fig. 31 is an S- / curve showing the relationship between slip ratio and frictional force.
  • FIG. 32 is a graph showing a result of measuring a vehicle speed and a wheel speed by running a test vehicle on a WET road surface.
  • FIG. 33 is a graph showing the results of measuring a vehicle speed and a wheel speed by running a test vehicle on an ICE road surface.
  • FIG. 34 shows a test vehicle equipped with an ABS braking control device according to the present invention.
  • FIG. 1 is a functional block diagram showing a configuration of a road surface state and tire running state estimating apparatus 10 according to the best mode 1.
  • the apparatus 10 includes a vibration detecting unit 10A and a signal processing unit 10B. It has.
  • the vibration detection unit 1 OA includes an acceleration sensor 11 that is a vibration detection unit that detects the vibration of the tire transmitted to the wheel, and the signal processing unit 10 B includes the frequency band setting unit 12 and the vibration level detection unit.
  • Frequency analysis means 14 for detecting a vibration level in a frequency range in which the vibration level is characteristically changed, that is, a vibration level in a frequency band at least included in a range of 100 to 100 Hz.
  • the vibration level detected by the bell storage means 15 and the frequency analysis means 14 is compared with the vibration level correspondence table 15 T by jfe, and the road surface friction coefficient ⁇ and the state of the running tire are calculated from the vibration level.
  • the vibration level correspondence table 15 T indicates that, as described later, the acceleration sensor 11 is attached to the test vehicle, and the vehicle is driven at a predetermined speed V on a road surface having a different road surface friction coefficient. It is created by measuring the vibration of the wheel 1 by driving a vehicle equipped with a prototype tire corresponding to the defective tire with a part of the tread removed.
  • a bimorph piezoelectric surface mount type acceleration sensor is used as the acceleration sensor 11, and the acceleration sensor 11 is connected to the wheel 1 of the wheel 1 as shown in FIGS. 2 (a) and (b).
  • the sensor was housed in the sensor box 17 attached to the recess of the tire 2 on the tire side.
  • reference numeral 3 denotes a tire valve mounted on the wheel 1.
  • the sensor box 17 accommodates a pressure sensor 18 for monitoring the pressure of the gas filled in the tire, and the acceleration sensor 11 includes a pressure detection circuit, a battery, and the like.
  • the pressure sensor 18 is mounted on the substrate 19 on which the pressure sensor 18 is mounted.
  • the board 19 is a common sensor, and the drive circuit for the acceleration sensor 11 is also mounted on the board 19, and the battery is a common power supply for the acceleration sensor 11 and the pressure sensor 18.
  • the acceleration sensor 11 or the substrate on which the acceleration sensor 11 is installed may be installed on the wheel 1 separately from the pressure sensor 18, or the drive / detection circuit for the acceleration sensor 11 may be installed.
  • the mounted substrate may be installed separately from the acceleration sensor 11, but in order to reduce the size of the device, as described above, the acceleration sensor 11 and its counterpart are in the same housing as the pressure sensor 18. It is preferable to install the sensor in the body (sensor box 17), and it is preferable to share at least the substrate with the above-mentioned countermeasure 19.
  • vibration of the running wheel 1 is detected by the acceleration sensor 11, and the detected vibration information signal of the wheel 1 is frequency-analyzed by the frequency analysis means 14 to obtain a vibration level in a predetermined frequency band.
  • the vibration level detected by the frequency analysis means 14 may be different depending on the center frequency depending on the road surface condition or tire running condition. Vibration level characteristically changes, i.e., the vibration level of a frequency band having a predetermined bandwidth in the range of at least 10 to 10,000 Hz, more specifically, the frequency range of at least 10 to 10,000 Hz.
  • One of a detection frequency band (frequency band of vibration information signal of wheel 1); L: A vibration level having a bandwidth of 00% is detected.
  • the vibration level detected by the frequency analysis means 14 is 800 to 3500 Hz, and the bandwidth is about 54% of the detection frequency band.
  • the bandwidth is preferably set to a relatively narrow range, for example, 10 to 500 Hz.
  • the one or more frequency bands are set by the frequency band setting means 12, and the vibration level detection means 13 detects the vibration level.
  • the detected vibration level is sent to the road surface condition and tire running state estimating means 16, and is stored in the road surface state and tire running state estimating means 16 in the vibration level storing means 15 in advance.
  • the estimated value (/ estimated value) of the road surface friction coefficient is obtained. From the vibration information signal in the tire circumferential direction or tire width direction, the road surface friction coefficient can be accurately estimated.
  • Fig. 3 shows a passenger car equipped with a tire equipped with a wheel equipped with two acceleration sensors, an acceleration sensor that detects vibration in the tire circumferential direction and an acceleration sensor that detects vibration in the tire width direction.
  • the horizontal axis of this graph is the frequency
  • the vertical axis is the vibration level when 1 G is set to 0 dB.
  • the solid line represents the tire vibration spectrum in the tire circumferential direction
  • the broken line represents the tire width vibration spectrum.
  • FIG. 4 is a graph showing a relationship between a road surface friction coefficient measured in advance and an estimated value ( ⁇ estimated value) of a road surface friction coefficient estimated using a detected wheel vibration information signal. As is clear from the results, the above // estimated value and the actual road surface friction coefficient show a good correlation.
  • the acceleration sensor 11 detects the vibration of the wheel 1 in the tire circumferential direction or the tire width direction, and the vibration information signal and the vibration levels and the road surface friction coefficient in the plurality of frequency bands obtained in advance are determined. It was confirmed that it was possible to accurately estimate the road surface friction coefficient by associating with the vibration level correspondence table 15 T showing the relationship with.
  • the vibration information signal of the wheel 1 detected by the acceleration sensor 11 attached to the wheel rim 2 is frequency-analyzed by the frequency analysis means 14 and the vibration spectrum is obtained.
  • the vibration level of the vehicle is detected, and the relationship between the detected vibration level, the road surface friction coefficient ⁇ stored in the vibration level storage means 15 and the vibration level is shown by the road surface state and tire running state estimation means 16. Since the road surface friction coefficient / is estimated by comparing with the vibration level correspondence table 15 T, the value of the road surface friction coefficient ⁇ can be accurately estimated, and vehicle safety can be improved.
  • the acceleration sensor 11 is mounted on the tire side of the wheel rim 2 to detect the vibration of the tire transmitted to the wheel 1. However, as shown in FIG.
  • the acceleration sensor 11 may be mounted on the wheel disk side of the wheel rim 2.
  • the acceleration sensor 1 may be attached to the inner surface 5a of the tread 5 of the tire 4 to directly detect the vibration of the tire 4.
  • the slipperiness which is the state of the running tire, may be estimated from the road surface friction coefficient.
  • the frequency band for detecting the vibration level for calculating the estimated value is compared with the vibration spectrum obtained by running on a different road surface, and the vibration level is characteristic.
  • this frequency band is set to a frequency band having a high correlation with the road surface friction coefficient ⁇ , the accuracy of the estimated value can be further improved.
  • the acceleration sensor 11 is attached to the test vehicle, and the vehicle is driven at a predetermined speed V on a road surface having a different road surface condition (road surface friction coefficient z) to obtain a tire vibration spectrum.
  • ⁇ Estimated value l / [l + exp ⁇ — (a. + A 1 Xi + a 2 x 2 + ha n x n ) ⁇ ] '... (1) where a 0 ; constant, a 15 a 2 , ⁇ , a n ; coefficient
  • a frequency band fi (i l to n having a high correlation with the road surface friction coefficient ⁇ .
  • the number of frequency bands fi for detecting the vibration frequency band value (vibration level) Xi used for detecting the road surface friction coefficient ⁇ ⁇ is preferably three or more. If there is a frequency band fi that clearly reflects the state (road friction coefficient ⁇ ), one frequency band may be used.
  • the vibration level storage means 15 is omitted in the device 10, and the road surface state and evening traveling state estimating means 16 are provided with the frequency of the vibration detected by the frequency analyzing means 12.
  • the ⁇ estimation value can be directly obtained by using the above equation (1), or the road surface condition can be estimated by using the above / estimated value.
  • the failure state of the tire using the vibration spectrum. Specifically, when a part of the tire tread is peeled off or the like, a specific vibration is generated every time the part comes into contact with the road surface. By detecting the vibration level of the frequency band and comparing the vibration level of the normal tire with the vibration level of the same frequency band as above, it can be estimated that some abnormality has occurred in the tire.
  • the frequency of the natural vibration of the tire is detected from the vibration level in the frequency band of 200 Hz or less of the vibration spectrum obtained by frequency analysis of the vibration information signal from the acceleration sensor 11.
  • the tire internal pressure can be estimated.
  • the natural vibration frequency of the evening tire is determined from the vibration spectrum data, and the tire frequency and the tire pressure obtained in advance are calculated.
  • the tire internal pressure may be estimated from the relationship, and the estimated tire internal pressure may be used as the evening internal pressure.
  • the pressure sensor 18 provided in the sensor box 17 can be omitted.
  • a load measuring device is installed on each wheel of the vehicle to detect the load acting on each wheel of the vehicle, and based on the load data of each wheel of the vehicle, the road surface condition and running condition of the tire during running are estimated.
  • the load applied to the wheels varies greatly due to the weight of the load
  • the friction coefficient changes greatly due to the load, so that the load changes the tire vibration state ( As the load increases, the friction coefficient decreases, but it becomes difficult to slip.)
  • a vibration level correspondence table 15 T showing the relationship between the road surface friction coefficient z and the vibration level was created for each load. For example, if the road surface state and the tire running state are estimated according to the load data of each wheel of the vehicle detected by the load measuring device using the strain gauge, the estimation accuracy is further improved. be able to.
  • the present apparatus 10 is provided with a reset button for initializing the system, and travels a certain distance to grasp the actual friction state between the tire and the road surface.
  • the vibration spectrum used for estimating the road surface condition is a vibration spectrum of an actual vehicle test that has been input in advance, but the vibration spectrum is slightly different depending on the type of automobile, wheel, and tire.
  • the occupant presses the reset button, and inputs whether the road surface traveled is dry, dry, snowy or ice / snow.
  • the vibration spectrum for each road surface condition stored in advance and the vibration spectrum obtained at the time of the initialization are compared to determine whether the traveled road surface condition is dry, wet, or wet. Ice or snow may be automatically input.
  • the road surface friction coefficient roughly estimated from these data and the present device 10 A system may be provided for appropriately resetting by comparing the road surface friction coefficient estimated by the above method. '' Best mode 2.
  • the acceleration sensor 11 is used to efficiently detect the transmitted tire vibration. Is mounted not on the suspension arms 6a and 6b but on a non-rotating part integrated with the hap part 8 on which the wheel 1 is mounted. Since the vibration in the tire width direction propagates to the suspension portion 6 with relatively little attenuation, the acceleration sensor 11 should be attached so as to detect the vibration of the hub portion 8 in the tire width direction. Is preferred.
  • Fig. 7 shows that the acceleration sensor is mounted on the suspension section of a passenger car, and 30 km /] on a normal dry asphalt road surface! It is a diagram showing a vibration spectrum obtained by running the suspension at this time at a constant speed within a range of up to 90 km and measuring the vibration of the suspension at this time and analyzing the frequency.Using this vibration spectrum, Similar to the above-described best mode 1, the road surface friction coefficient can be estimated.
  • Fig. 8 is a graph showing the relationship between the road surface friction coefficient / measured in advance and the estimated value // estimated from the detected vibration of the suspension section 6, and as is clear from the results, the detected vibration There is a good correlation between the ⁇ estimation value obtained from the repelle and the actual road surface friction coefficient ⁇ , indicating that the road surface friction coefficient ⁇ can be accurately estimated from the vibration of the suspension unit 6. Best mode 3.
  • FIG. 9 is a diagram showing a configuration of a vehicle control device 20 using the device for estimating a road surface condition and a running condition of a road according to the present invention.
  • the device 20 is a rolling device to which an acceleration sensor 11 is attached.
  • Side (tire or wheel side) A and the non-rolling side body side: B are configured to be connected wirelessly.
  • the rolling side A includes an acceleration sensor 11, a data processing unit 21 that converts the vibration information signal detected by the acceleration sensor 11 into digital data and compresses the signal, and wirelessly transmits the compressed signal to the vehicle body B. And the acceleration sensor sent from the vehicle side B. And an RF (Radio Frequency) unit 22 for receiving a radio signal for driving the sensor 11 and the data processing unit 21. Also, the vehicle side B receives the compressed vibration information signal and transmits the radio signal to the rolling side A by a wireless transmission / reception unit (hereinafter referred to as a transmission / reception unit) 23.
  • a wireless transmission / reception unit hereinafter referred to as a transmission / reception unit
  • a road surface state and tire running state calculating section 24 for estimating a road surface state and a running state of a tire during running from the obtained vibration spectrum by restoring the frequency of the obtained vibration information signal, and the calculating section
  • An ABS control unit (vehicle control means) 25 for controlling the oil pressure of the ABS brake is provided based on the road surface state and the tire running state estimated in 24.
  • the vibration information signal detected by the tire or the wheel portion can be processed by the vehicle body side B to estimate the road surface state and the evening traveling state. Also, by sending the estimated road surface condition and tire running condition data to the ABS control unit 25, the hydraulic pressure of the ABS brake can be controlled in accordance with the road surface condition and tire running condition. The running state can be controlled stably.
  • the acceleration sensor 11 and the data processing unit 21 are wirelessly driven from the vehicle body B, the battery provided on the rolling side A can be omitted.
  • the configuration of the road surface state and tire running state calculating unit 24 is the same as that of the signal processing unit 10 of the road surface state and evening running state estimating apparatus 10 shown in FIG. 1 of the best mode 1. Same as B.
  • An antenna section is provided on the vehicle side B to maximize the radio wave service area on the circumference of the tire.
  • the RF section 22 on the rolling side A (tire or wheel side) has a transmitting / receiving section 24.
  • a passive mode non-contact IC chip that operates by induced electromotive force generated by receiving a weak radio wave transmitted from the antenna unit through the above-mentioned antenna unit, operating the acceleration sensor 11 and the data processing unit 21 Then, the vibration data detected by the acceleration sensor 11 is converted to digital data and compressed, and transmitted to the vehicle body A.
  • the antenna function for performing the above-mentioned transmission may be provided in the tire valve 3 (see FIG. 1) mounted on the wheel 1, or an antenna may be separately provided on the periphery of the wheel rim 2. May be provided.
  • the data processing unit 21 is installed on the rolling side A (tire or wheel side) to which the acceleration sensor 11 is attached, and the acceleration sensor 11 detects the data.
  • the vibration information signal is converted into a digital signal, compressed and transmitted to the vehicle body side B, and the received vibration information signal is restored by the road surface state and sunset running state calculation unit 24 provided on the vehicle body side B.
  • the acceleration sensor 11 and the data processing unit 21 are driven wirelessly from the vehicle body B, the battery can be omitted, and the vibration detection unit can be reduced in size and weight. Note that when data communication is performed using a battery, the life of the battery is shortened and replacement is required. In this example, such a problem does not exist and the battery is stable for a long time. It is possible to estimate the road surface condition and the running condition of the sunset.
  • an FFT processing unit may be provided in the tire or wheel unit, and the vibration information signal may be frequency-analyzed on the rolling side A to obtain an estimated value and transmitted to the vehicle body B.
  • a road surface condition and tire running condition calculation section 24 is provided on the rolling side A (tire or wheel side), and the vibration of the tire or wheel detected by the acceleration sensor 11 is provided.
  • the information signal is frequency-analyzed to estimate the road surface state during driving and the running state of the coaster, and the data representing the estimated road surface state during running and the running state of the coaster are transmitted from the RF unit 22.
  • the received data is sent to the ABS control section 25 to control the hydraulic pressure of the ABS brake.
  • the vehicle control device 20A By configuring the vehicle control device 20A as described above, similar to the above-described best mode 3, it is possible to perform continuous data communication between the rolling side A and the vehicle body B, By improving the estimation accuracy of the tire running state, the running state of the vehicle can be controlled stably.
  • the vibration information signal of the tire 4, the wheel 1, or the suspension unit 6 detected by the acceleration sensor 11 is subjected to frequency analysis to detect the vibration level of the vibration spectrum.
  • the road surface condition and the road surface friction coefficient // have been estimated, the road surface condition and the road surface friction coefficient // may be estimated by detecting the pressure fluctuation of the gas filled in the tires of the running vehicle.
  • FIG. 11 is a functional block diagram of the road surface state and tire running state estimation device 30 according to the best mode 4, in which 31 is a pressure fluctuation detecting means provided in the tire.
  • the sensor 32 includes a frequency band setting means 33 and a pressure fluctuation level detecting means 34, and outputs an output of the pressure sensor 31 which is a pressure fluctuation signal of the gas in the tire detected by the pressure sensor 31.
  • the frequency of the minute vibration component (AC component) on the time axis is analyzed, and the vibration level is characteristic according to the road surface condition and tire running condition of the frequency spectrum of the pressure fluctuation (hereinafter referred to as pressure fluctuation spectrum).
  • Frequency analysis means for detecting a vibration level of a frequency band included in at least a frequency range of 10 to 100 Hz, and 35 is a road surface condition or a traveling condition determined in advance.
  • Pressure fluctuation level indicating the relationship between the tire condition and the pressure fluctuation level in a predetermined frequency band (hereinafter referred to as the pressure fluctuation frequency band value)
  • Table 3 5 Pressure fluctuation level storage means for storing T, 36
  • the pressure fluctuation level detected by the frequency analysis means 32 is made to correspond to the pressure fluctuation level correspondence table 35 T to estimate the road surface state during traveling and the tire state during traveling, It is a line state estimating means.
  • the pressure fluctuation level correspondence table 35 T indicates that the test vehicle is equipped with a pressure sensor 31, and the vehicle is driven at a predetermined speed V on a road surface with a different road surface condition (road surface friction coefficient ⁇ ). For example, by driving a vehicle equipped with a prototype tire corresponding to a broken tire with a part of the tread peeled, measure the pressure fluctuation of the gas in the tire Created by
  • the pressure sensor 31 is mounted on a substrate 37 on which circuit components such as a detection circuit are mounted, and the wheel rim 2 of the wheel 1 is mounted on the tire side.
  • the sensor A is mounted in the sensor box 38 attached to the recess, and the wheel side (rolling side) A and the vehicle body side B, which is the non-rolling side, are connected wirelessly. I have to.
  • the wheel side A includes a pressure sensor 31, a data processing unit 41 for converting a pressure fluctuation signal of the gas charged in the tire detected by the pressure sensor 31 into a digital signal and compressing the digital signal, Transmit on the side B by radio: an RF (Radio Frequency) unit 42 is provided.
  • the vehicle body side B has a receiving unit 43 for receiving the compressed signal, a frequency analysis by restoring the received compressed signal and analyzing the obtained pressure fluctuation spectrum to determine the road surface condition and running time during traveling.
  • a road surface condition for estimating the traveling state of the tire and a tire traveling state calculation unit 44 are provided.
  • the road surface state and tire running state calculation unit 44 receives the frequency analysis unit 32, the pressure fluctuation level storage unit 35, the road surface state and tire running state estimation unit 36 shown in FIG. It is composed.
  • the pressure sensor 31 detects the pressure fluctuation of the gas filling the running tire
  • the frequency analysis means 32 analyzes the frequency to detect the pressure fluctuation level in a predetermined frequency band. More specifically, the pressure fluctuation level detected by the frequency analysis means 32 is such that the center frequency is a frequency range in which the vibration level characteristically changes depending on the road surface condition and the running condition of the tire, that is, at least 10 to: L 0000 Hz Pressure fluctuation level of a frequency band having a predetermined bandwidth in the range of, for example, a pressure fluctuation level of one frequency band having a relatively wide bandwidth such as 800 to 3500 Hz, or 800 ⁇ : Relatively narrow bandwidth such as pressure fluctuation level at L 000Hz, 1600 ⁇ 2000Hz, 3000 ⁇ 3500Hz Pressure fluctuation levels (a plurality) in a plurality of frequency bands having
  • the one or more frequency bands are set by the frequency band setting means 33, and the vibration level is detected by the vibration level detection means 34.
  • the detected vibration level is sent to the road surface condition and tire traveling state estimation means 36, and the road surface state and tire traveling state estimation means 36 detects the pressure fluctuation level (pressure fluctuation (Corresponding to the pressure fluctuation level correspondence table 35 T indicating the relationship between the road surface friction coefficient // stored in the pressure fluctuation level storage means 35 in advance and the frequency band value of the pressure fluctuation).
  • pressure fluctuation Corresponding to the pressure fluctuation level correspondence table 35 T indicating the relationship between the road surface friction coefficient // stored in the pressure fluctuation level storage means 35 in advance and the frequency band value of the pressure fluctuation.
  • the road surface condition (road surface friction coefficient //) can be accurately estimated.
  • the road surface condition may be estimated.
  • slipperiness which is the state of the running tire, may be estimated from the road surface friction coefficient //.
  • a tire failure state using the pressure fluctuation spectrum. Specifically, when a part of the tire tread comes off, for example, a specific vibration occurs every time the part comes into contact with the road surface.
  • the pressure fluctuation level in the frequency band of 0 Hz is a pressure fluctuation level in a band synchronized with the rotation of the tire, the pressure fluctuation level is detected and the normal pressure fluctuation level is detected.
  • tire abnormalities can be estimated. Specifically, when the detected pressure fluctuation level is higher than normal by 20% or more, it is estimated that some abnormality has occurred in the tire.
  • the setting method of the frequency band when detecting the road surface friction coefficient ⁇ or the pressure fluctuation level used for estimating the road surface condition by the frequency band setting means 33 is the same as the setting method described in the best mode 1 above.
  • the formula for calculating the estimated value ( In 1) an estimated value is calculated as the frequency band value xi of the vibration as the frequency band value (pressure fluctuation level) Xi of the pressure fluctuation, and the calculated ⁇ estimated value and the road surface friction coefficient //
  • the number of the frequency bands fi is preferably three or more.
  • the road surface condition and tire running state estimation means 36 calculates the above equation (1) from the frequency band value Xi of the pressure fluctuation detected by the frequency analysis means 32.
  • the estimated value may be directly obtained by using the above, or the road surface condition may be estimated using the above / estimated value.
  • the pressure sensor 31 is attached to the wheel rim 2 of the wheel 1 to detect the pressure of the gas filled in the tires of the running vehicle, and this detection is performed.
  • the minute vibration component (AC component) on the time axis of the obtained pressure signal is frequency-analyzed by the frequency analysis means 32 to detect the pressure fluctuation level of the pressure fluctuation spectrum, and the road surface state and tire running state estimation means According to 36, the detected pressure fluctuation level is compared with the pressure fluctuation level correspondence table 35T indicating the relationship between the road surface state stored in the pressure fluctuation level storage means 35 and the traveling state of the evening track, and the road surface Since the friction coefficient and / or the failure state of the roller are estimated, the road surface state and the traveling state of the roller can be accurately estimated.
  • this device 30 Since the tire internal pressure can be detected from the absolute value (DC component) of the output of the pressure sensor 31, this device 30 is used as the above-mentioned pressure sensor 31 of a tire internal pressure monitor system which has been widely used in recent years.
  • the pressure sensor can be used as it is. Therefore, it is possible to reduce costs by avoiding an increase in cost due to hardware with hardware. Further, by detecting the internal pressure of the tire by the pressure sensor 31, it is possible to estimate an abnormality of the tire internal pressure, which is one of the running conditions of the tire.
  • a means for detecting the speed of the vehicle is provided in the state estimating device 30, and a pressure fluctuation level correspondence table 35 T showing the relationship between the road surface friction coefficient / z and the frequency band value of the pressure fluctuation is prepared for each vehicle speed. If the road surface condition and the traveling condition of the tires are estimated using the speed data of the vehicle in addition to the data of the pressure fluctuation spectrum, the estimation accuracy of the road surface condition and the traveling condition of the tires can be estimated. Can be further improved.
  • a load measuring device is installed on each wheel of the vehicle to detect a load acting on each wheel of the vehicle, and to estimate a road surface state and a running state of tires during running based on the load data of each wheel of the vehicle. Is also possible.
  • FIG. 14 shows the result of the pressure fluctuation spectrum.
  • Horizontal axis represents the frequency of the graph, the vertical axis indicates the magnitude of pressure fluctuation level when the 2 X 1 0- 2 P a was O d B, a thin solid line in FIG dry asphalt Al bets, the thick solid line It is a night on the snow.
  • the pressure fluctuation level in the high-frequency region of 100 Hz or higher is high on slippery snow. It smells on slippery snow It is considered that the restraint of the tread surface of the tire in contact with the road surface from the road surface is reduced, and the tread surface generates slip vibration and excites the gas inside the tire.
  • This method can be applied to tire vibration, wheel vibration and suspension vibration as well.
  • tire vibration, wheel vibration, suspension vibration, or pressure fluctuation in the tire is detected to estimate the road surface state and the tire running state. It is not clear how to distinguish between ice-snow roads, which are easy to reach, and the planing conditions at the hide mouth.
  • the inventors have examined the vibration spectrum or the pressure fluctuation spectrum in detail, and as a result, when the hydroplaning state occurs, the tire pattern pitch is calculated based on the vibration spectrum or the pressure fluctuation spectrum. It was found that the vibration level or pressure fluctuation level near the next frequency became characteristically large.
  • a road surface condition and tire running condition estimating device 30H with a hydroplaning detection means 50 attached thereto is configured to detect a vibration level or a pressure fluctuation level near a tire pattern pitch primary frequency. Also, the occurrence of the hydroplaning state can be estimated at the same time.
  • 51 is a vehicle speed detecting means for detecting the speed of the vehicle
  • 52 is a pattern pitch frequency calculating means for calculating a pattern pitch frequency from the data of the vehicle speed from the vehicle speed detecting means 51.
  • Reference numeral 53 denotes second frequency analysis means for performing frequency analysis on the output of the pressure sensor 31.
  • the second frequency band setting means 54 provided in the second frequency analysis means 53 provides a pressure fluctuation level. Is set to a frequency band including the pattern pitch frequency, and the pressure fluctuation level in the frequency band is detected by the hydroplaning vibration level detecting means 55.
  • Reference numeral 56 denotes a hide opening planing state estimating means for estimating the occurrence of the hydroplaning state by comparing the detected pressure fluctuation level with a predetermined threshold value.
  • the pattern pitch frequency calculating means 52 uses the vehicle speed data V detected by the vehicle speed detecting means 51, the tire circumference L, and the number of blocks n of the tread pattern.
  • the pattern pitch frequency F p is calculated by the following equation (2).
  • the estimation accuracy of the hydroplaning state can be further improved.
  • the best mode 5 described above describes the case where the pressure sensor 31 detects the pressure fluctuation of the gas in the tire to estimate the hydroplaning state
  • the acceleration sensor 11 is used to estimate the tire and tread. It is also possible to detect suspension vibration and perform frequency analysis, and estimate the hydroplaning state from the obtained vibration spectrum.
  • the tire is assumed to be in the hydroplaning state when the pressure fluctuation level in the non-pitch frequency band exceeds a certain threshold, but the vibration in the frequency band not affected by the pattern pitch frequency is considered.
  • the ratio of the vibration level or the pressure fluctuation level of the pattern pitch frequency band to the level or the pressure fluctuation level exceeds a certain threshold, it is assumed that the tire is in a hydroplaning state. If this is the case, the estimation accuracy of the hydroplaning state can be further improved.
  • the function of the second frequency analysis means 53 may be provided to the frequency analysis means 32. '' ⁇ Example; 3>
  • the tire used for the self-test vehicle is a 195 / 60R15 size passenger car tire
  • the pitch frequency is calculated using the above equation (2) as follows.
  • a test vehicle with an acceleration sensor mounted on a wheel was run at different speeds on a road with a depth of 10 mm and on a dry asphalt road to obtain a vibration spectrum and calculate the ratio of the vibration levels in the following two frequency bands.
  • the plotted results are shown in FIG.
  • the estimated value is sequentially updated in the device 10 of the above-described best mode 1 based on the control signal from the brake switch ONZO FF detecting means 61.
  • a road surface condition device 60 is provided with a vehicle control means 70 for controlling the running state of the vehicle and / or an estimated value output means 62 attached to the vehicle before and after braking such as rapid acceleration / deceleration.
  • 11 is an acceleration sensor for detecting tire vibration
  • 12 is provided with a frequency band setting means 13 and a vibration level detecting means 14, and a vibration information signal of wheel vibration detected by the acceleration sensor 11 is frequency-converted.
  • the vibration spectrum has a frequency range in which the vibration level characteristically changes depending on the road surface condition and the running condition of the tire, ie, at least 10 to 10,000 Hz.
  • the frequency analysis means for detecting the vibration level of the frequency band included in the range 16 Z is the estimated value of the road surface friction coefficient ( // Estimated value) road surface friction coefficient estimating means, 61 is a brake switch ON / 0 FF detecting means for detecting the ON / OFF state of the brake switch, and 62 is the above brake switch ON / OFF Based on the control signal from the detecting means 61, and sequentially updates the computed ⁇ estimate a ⁇ estimation value output means for outputting to the vehicle control unit 70 for controlling the running state of the vehicle.
  • the acceleration sensor 11 is attached to the tire-side recess of the wheel 1 rim 2 of the wheel 1 in the same manner as the best mode 1, and the wheel transmitted from the tire 4 The first vibration was detected.
  • vibration from the tire transmitted to the wheel 1 is detected by the acceleration sensor 11, and the detected vibration information signal is frequency-analyzed by the frequency analysis means 12 to detect a vibration level in a predetermined frequency band. More specifically, the vibration level detected by the frequency analysis means 12 is such that the center frequency is in a frequency range in which the vibration level is characteristically changed depending on the road surface condition or the running condition of the tire, that is, at least 10 to 10,000.
  • the vibration level in a frequency band having a predetermined bandwidth in the range of Hz for example, a vibration level in one frequency band having a relatively wide bandwidth such as 800 to 3500 Hz or 800 Vibration levels (plurality) in a plurality of frequency bands having a relatively narrow bandwidth, such as vibration levels at ⁇ 1000 Hz, 1600-200000 Hz, and 3000-3500 Hz, may be used.
  • the detection of the frequency band value Xi of the vibration by the frequency analyzing means 12 including the frequency band setting means 13 and the vibration level detecting means 14 is usually performed by a frequency analysis using a fast Fourier transform (FFT). It can be realized by an FFT analyzer, which is a device.
  • FFT fast Fourier transform
  • the road surface friction coefficient estimating means 16 Z calculates an estimated value from the detected vibration frequency band value Xi according to the formula (1) for calculating the estimated value, which will be described again below.
  • the // estimated value calculated by the road surface friction coefficient estimating means 16 Z is sent to the / estimated value output means 62. If the update interruption signal from the brake switch ON / OFF detection means 61 is not input to the estimated value output means 62, the ⁇ estimated value sent from the road surface friction coefficient estimation means The estimated values are sequentially updated and output to the vehicle control means 70. If the update interruption signal is input, the estimated value is not updated, and the estimated value before the brake switch is depressed is output to the vehicle control means 70. ⁇
  • step S 10 calculates the ⁇ estimate ⁇ n, in step S 11, ⁇ update the estimated values to a new // estimates the / n.
  • step S12 the state of the brake switch is detected by the brake switch ON / OFF detection means 61. If the brake switch is in the OFF state, the process proceeds to step S13, where the estimated value
  • the output means 62 outputs // n to the vehicle control means 70 as an // estimated value.
  • step S 1 After calculating the following ⁇ estimate // n + 1 at Step S 1 4, returns to step S 1 1
  • step S15 in which the update stop signal is output from the pre-switch ON / OFF detection means 61 to the estimated value output means 62 to update the estimated value. interrupted, thereafter, outputs to the vehicle control unit 7 0 j n a / estimate before interrupting the update as ⁇ estimate.
  • step S11 After that, if the brake switch is detected to be OFF, the process returns to step S11 after a predetermined time has elapsed, and the updating of the estimated value is restarted.
  • the acceleration sensor 11 detects the vibration of the wheel 1, detects the vibration level of the vibration spectrum obtained by analyzing the frequency, and calculates the road surface friction coefficient.
  • the brake switch ON / OFF detection means 61 detects ON / OFF of the brake switch, and if it is determined that the brake is depressed, updating of the estimated value of the road surface friction coefficient is interrupted. As a result, malfunction of the system due to tire slippage can be prevented.
  • the acceleration sensor 11 is attached to the tire side of the wheel rim 2 to detect the vibration of the tire transmitted to the wheel 1.
  • the acceleration sensor 1 1 may be attached to the wheel disc side of the wheel rim 2, the inner surface 5a of the evening tread 5, or the suspension section 6 to detect the vibration of the tire and to estimate the road surface condition.
  • a pressure sensor 31 is installed in the tire in place of the acceleration sensor 11, and a minute vibration component (time axis) of the output of the pressure sensor 31 on the time axis is set.
  • AC component to extract the pressure of the gas Force fluctuation is detected, and the frequency fluctuation is analyzed to detect the pressure fluctuation level of the pressure fluctuation spectrum, and the / z estimated value is calculated from the pressure fluctuation level using the above-mentioned z estimated value calculation formula (1).
  • the on / off state of the spray switch is detected, and the updating of the estimated value in the estimated value output means 62 is controlled.
  • wheel speed detection means 63a and 63b for detecting the rotational speeds of the drive wheels and the driven wheels, respectively, and the detected drive wheels and the driven wheels
  • the slip ratio S is calculated from the rotational speed, and the slip ratio S is calculated by comparing the slip ratio S with a predetermined threshold value K to determine the magnitude of the slip ratio S.
  • Update of the estimated value // may be controlled based on the magnitude of S.
  • step S20 the z estimated value ⁇ n is calculated, and in step S21, the ⁇ estimated value is updated, and // n is set as a new ⁇ estimated value.
  • step S22 the rotational speed F1 of the driving wheel and the rotational speed F2 of the driven wheel are detected, and in step S23, the slip ratio S is calculated by the following equation (2).
  • step S25 the process proceeds to step S25, and the ⁇ estimated value output means 62 outputs the above ⁇ as the ⁇ estimated value to the vehicle control means 70. Then, after calculating the next ⁇ estimated value // ⁇ + 1 in step S26, return to step S21 with this ⁇ + 1 as ⁇ , // update the estimated value and update the ⁇ (step // ⁇ + 1 ) calculated in S26 is used as a new estimated value, and the flow advances to step S22.
  • step S27 in which the sleep rate determination means 64 outputs an update stop signal to the estimated value output means 62 to interrupt the update of the estimated value, and After that, // the estimated value ⁇ n before the update is interrupted is output to the vehicle control means 70 as an estimated value.
  • step S21 If the slip ratio S becomes equal to or smaller than the threshold value K after that, the process returns to step S21 after a predetermined time has elapsed, and the updating of the estimated value is restarted.
  • step S 3 calculates the estimated value ⁇ n, in step S 3 1, to update the // estimated values for the / n as a new // estimates.
  • step S 3 in . ⁇ estimation value output means 6 2, and outputs to the vehicle control unit 7 0 the ⁇ n as ⁇ estimate.
  • this ⁇ n + 1 to return to the upper word himself Step S 3 1 as ⁇ n
  • the ⁇ update the ⁇ estimate n ( ⁇ N + 1 calculated in step S34) is used as a new estimated value, the process proceeds to step S32, and the engine speed R is detected again.
  • Step S 3 5 suspend updates of ⁇ estimate is thereafter a ⁇ estimate before interrupting the update ⁇ n a / as an estimate Output to control means 70.
  • FIG. 26 shows the test vehicle running at a constant speed on DRY asphalt, WET asphalt (water depth approx. L mm), no, iprepur (concrete; water depth approx. 10 mm), snow-covered road, and ice-covered road.
  • FIG. 9 is a diagram showing a result of calculating an // estimated value on each road surface using the vibration level in the optimal frequency band. In high-level vehicles, as the speed of the vehicle increases, the tires lift and the ground contact area decreases, and therefore / decreases.This estimate reflects such a decrease in / z. It was confirmed that it almost matched the road friction coefficient obtained from the normal braking distance.
  • FIG. 29 is a block diagram showing an ABS braking control device 80 including the means 11 to L4 and 16Z of the road surface condition estimating device 60 according to the best mode 6 and controlling the ABS brake using the calculated ⁇ estimation value.
  • the wheel side (rolling side) A on which the acceleration sensor 11 is mounted and the vehicle body side B which is the non-rolling side are wirelessly connected, and the acceleration sensor 11
  • the detected vibration information signal of the wheel 1 is sent to the car body B by radio, and the car body B receives the vibration information signal, analyzes the frequency, obtains the estimated value, and controls the ABS brake.
  • a transmission circuit 83 including a / D converter 83a, an information compression circuit 83b, and a transmitter 83c for wirelessly transmitting the compression signal to the vehicle body B, and a transmission antenna 83p are provided.
  • a receiver 84 and an antenna 84p for receiving the compressed signal and a vibration spectrum obtained by performing frequency analysis after restoring the received compressed signal
  • An FFT analyzer 85 for detecting a level
  • an arithmetic circuit 86 for calculating an estimated value using the vibration level described above
  • a brake switch ON / OFF detector 87 for detecting the ON / OFF state of the brake switch
  • an update circuit 88 for sequentially updating and outputting the above // estimated value
  • an ABS brake controller 89 for controlling the ABS brake are provided.
  • the FFT analyzer 85 has a function corresponding to the frequency analysis means 12 including the frequency band setting means 13 and the vibration level detection means 14 of the best mode 6, and the arithmetic circuit 86
  • the road surface friction coefficient estimating means 16 Z, // the update circuit 88 corresponds to the estimated value output means 62
  • the brake switch ON / OFF detector 87 corresponds to the brake switch ONZOFF detecting means 61.
  • the vehicle body B to process the vibration information signal detected on the wheel side A, which is the rolling side, without providing signal connection lines, estimate the road surface friction coefficient, and connect the ABS brake to the port IJ. You can control.
  • the operation of the ABS braking control device 80 having the above configuration will be described.
  • the vibration information signal of the wheel 1 detected by the acceleration sensor 11 and output from the acceleration sensor circuit 81 is digitally converted by the A / D converter 83a, and then compressed by the information compression circuit 83b.
  • the compressed signal is transmitted from the transmitter 83 c to the vehicle body B by radio via the antenna 83 p.
  • the transmitted compressed signal is received by the receiver 84 via the antenna 84p and sent to the FFT analyzer 85.
  • the estimated value is calculated from 1) and sent to the updating circuit 88, and the estimated value is sequentially updated in the updating circuit 88 and output to the ABS brake controller 89.
  • the ABS brake controller 89 controls the ABS brake using the updated ⁇ estimation value.
  • the update of the estimated value in the above-mentioned updating circuit 88 is controlled by the brake switch NZO FF detector 87, and the ABS brake is controlled.
  • the / z estimate for controlling can be changed.
  • the frictional force from the road surface is low, and therefore, as will be described later, the wheel speed drops suddenly and the sleep ratio increases. If the sleep rate is too high, braking force and steering force will drop significantly, which is dangerous. Therefore, in the present best mode 7, if the estimated ⁇ ⁇ ⁇ ⁇ is low in the ABS brake controller 89, the threshold value for entering the ABS brake mode is lowered, and the ABS is activated early so that the slip ratio does not increase. Perform control. At this time, if the brake is depressed, malfunction of the system is prevented by using the estimated / estimated value immediately before the brake is depressed.
  • FIG. 30 is a schematic diagram showing the force applied to the tire.
  • the frictional force from the road acts in the opposite direction to the braking force.
  • the braking force becomes relatively strong, and the rotational speed of the tire decreases sharply, and the slip ratio sharply increases.
  • the tires can lock and become dangerous.
  • the tire locks // decreases as shown in the S- ⁇ curve showing the relationship between the slip ratio and the friction force in Fig. 31, and the steering force also decreases, making it impossible to turn.
  • the frictional force is low on low / road surfaces, so it takes time for the slip rate to return to an appropriate level even if the brake hydraulic pressure is relaxed by ABS control. In other words, it is dangerous to increase the braking distance.
  • Fig. 32 and Fig. 33 are graphs of the test vehicle running on the WET road surface and the ICE road surface, respectively, and measuring the vehicle speed and wheel speed. The difference between these speeds was divided by the vehicle speed. The thing becomes the sleep rate.
  • the tire rotation speed is more likely to decrease at the beginning of braking on the ICE road surface and the slip ratio is higher than on the WET road surface. Therefore, on a low / road surface, as described above, it is preferable to lower the threshold value of the oil pressure at the time of shifting to ABS and control the brake oil pressure so as not to increase too much.
  • the ABS brake oil pressure is increased or decreased based on the information of the gear sensor.
  • the road surface is estimated in advance, and the oil pressure is estimated based on the estimated value.
  • FIG. 33 is a diagram showing the results of measuring the vehicle speed and the wheel speed by running a test vehicle equipped with the ABS braking control device 80 according to the present invention on an ICE road surface and performing an ABS braking test.
  • the ABS brake was braked using the ABS braking control device 80, it was confirmed that the wheel speed did not decrease with respect to the vehicle speed, and the slip ratio was properly controlled. .
  • the vibration detecting means detects the vibration of a car, a wheel, or a suspension unit of a running vehicle, and obtains the frequency of the vibration obtained by praying the vibration.
  • the vibration level of the spectrum is detected at least in the frequency band included in the range of 100 to 100 Hz, and the road surface condition during driving and the vibration level are determined based on the detected vibration level. Since the traveling state is estimated, the road surface state and the evening traveling state can be accurately estimated, and the safety of the vehicle can be significantly improved.
  • the vibration detection means is installed in the same housing as the pressure sensor that monitors the pressure of the gas filled in the tire, or in the same housing, so that the substrate can be shared and the equipment can be downsized. And cost reduction can be realized.
  • a signal processing means is provided in the tire or wheel portion, and the vibration information signal detected by the vibration detecting means is converted into a digital signal, and the digital signal is compressed and transmitted to the vehicle body. Since the signal is subjected to frequency analysis, continuous data communication can be performed by radio, and the detection accuracy of vibration can be improved.
  • the tire pattern pitch frequency is detected from the vibration spectrum or pressure fluctuation spectrum data and the vehicle speed data, and the vibration level or pressure fluctuation level in this pattern pitch frequency band is constant. If the threshold is exceeded, it is assumed that the tire is in the hydroplaning state. It is possible to reliably estimate the switching state. The vibration level or pressure fluctuation level of the frequency band not affected by the pattern pitch frequency is determined. If the ratio of the vibration level or pressure fluctuation level of the pattern pitch frequency band to a certain threshold value is exceeded, the tire By estimating that is in the hydroplaning state, the estimation accuracy can be further improved.
  • the brake switch detects at least one of tire vibration, wheel vibration, suspension vibration, and tire pressure fluctuation, and analyzes the frequency to analyze the vibration level of the vibration spectrum or the pressure fluctuation of the pressure fluctuation spectrum.
  • the on / off state of the brake switch is detected, and if it is determined that the brake has been depressed, updating of the estimated value of the road surface friction coefficient is interrupted. Therefore, it is possible to prevent the estimation of the road surface friction coefficient after the brake is depressed, thereby preventing a malfunction of the system due to a slip of the tire.
  • the slip ratio is calculated by detecting the speeds of the drive wheels and the driven wheels, and when the slip ratio exceeds a preset threshold, or The same effect can be obtained by detecting the rotation speed and suspending the update of the estimated value of the road surface friction coefficient when the engine rotation speed exceeds a preset threshold value.
  • the road surface friction coefficient is continuously estimated as described above, and the threshold value of the brake hydraulic pressure for shifting to the ABS control is set according to the magnitude of the road surface friction coefficient estimation value immediately before the driver steps on the brake. Since the change is made, the ABS can be actuated as soon as possible to suppress an increase in the sleep rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Vehicle Body Suspensions (AREA)
  • Regulating Braking Force (AREA)
  • Measuring Fluid Pressure (AREA)

Description

路面状態とタイャ走行状態の推定方法と装置、 及びこれらを利用する A B
Sと車両制御
技術分野 明
本発明は、 走行時のタイャの走行細状態及び夕ィャが接地している路面の状態を 推定するための方法とその装置に関する 1ものである。
書 背景技術 ^ 自動車の走行安定性を高めるため、 走行時の夕ィャの状態やタイヤが接地して Iヽる路面状態を精度良く推定し、 車両制御へフィードバックすることが求められ ている。 ここで、 タイヤの状態とは、 タイヤ内圧、 摩耗、 故障の予知等であり、 路面状態とは、 主に路面とタイヤとの摩擦係数 (路面摩擦係数//) を指す。 予めタイヤの走行状態や路面状態を推定することができれば、 タイヤが故障を 起こす前に車を停めて点検を行ったり、 制駆動や操舵といつた危険回避の操作を 起こす前に、 例えば、 AB Sブレーキのより高度な制御等が可能になり、 安全性 がー段と高まることが予想される。 また、 運転者に走行中の路面状態の危険度を 伝えるだけでも、 運転者が早めの減速動作を行えるようになり、 事故の減少が期 待できる。
従来、 路面摩擦係数を推定する方法としては、 車輪の回転速度の変動を表わす 物理量であるタイヤのュニフォミティレベルが、 路面摩擦係数の大きさによって 変化することを利用して路面摩擦係数を推定する方法 (特開 2 0 0 0 - 5 5 7 9 0号公報) や、 前輪と車体とを連結するロアアームに加速度計を取付けて、 トー 角がついている夕ィャの横振動を検出し、 その振動レベルが路面摩擦係数によつ て変化することを利用して路面摩擦係数を推定する方法 (特閧平 6— 2 5 8 1 9 6号公報) などが提案されている。
しかしながら、 上記タイヤのュニフォミティレベルから路面摩擦係数を推定す る方法では、 タイヤにフラットスポッ トが生じてュニフォミティが悪ィ匕し、 これが回復していく過程では、 正確な推定が困難であった。
一方、 上記ト一角がついている前輪の横振動から路面摩擦係数を推定する方法 では、 夕ィャのスリヅプ角が完全にゼ口になつた場合や、 大きなスリヅプ角がつ いた場合などでの測定精度が低いといつた問題点があつた。
また、 車輪の上下方向の加速度であるパネ下加速度と、 車体の上下方向の加速 度であるノ ネ上加速度間の伝達特性から路面摩擦係数を推定する方法も提案され ている (特開平 1 1— 9 4 6 6 1号公報) 。 この方法では、 路面摩擦係数の推定 に操舵力を用いていないため、 操舵がほとんど行われない直線路においても路面 摩擦係数を推定することができるという利点があるが、 パネやダンパ一等の緩衝 特性の大きな懸架装置を介した 2点間の振動の伝達特性から路面摩擦係数を推定 しているため、 路面の凹凸の影響を受けやすいといった問題点があった。 例えば 、 雪上などの荒れた路面上においては、 パネ下の振動が大きくなるため、 サスぺ ンシヨンによって振動が吸収されるバネ上の振動と、 上記バネ下の振動との振動 レベル差が大きくなってしまい、 路面摩擦係数を正確に推定することができなか つた。 本発明は、 従来の問題点に鑑みてなされたもので、 タイヤの接地している路面 状態やタイヤの走行状態を精度良く推定して、 車両の走行安全性を向上させるこ とを目的とする。 発明の開示
本発明者らは、 走行中のタイヤの接地挙動や、 故障時のタイヤ挙動を詳細に検討 した結果、 走行中のタイヤの周方向の振動、 あるいは、 幅方向の振動を周波数分 析して得られた上記振動の周波数スペクトル (振動スペクトル) の、 1つあるい は複数の周波数帯域での振動レベルが、 夕ィャが接地して V、る路面の状態や夕ィ ャの故障形態によって特徴的に変ィ匕していることを把握した。 そこで、 このよう な振動をタイャ自体の振動や夕ィャから伝播したホイールゃサスペンション部の 振動、 あるいは、 タイヤ内に充填されている気体 (通常は空気) の圧力の時間軸 上での微小な変化として検出すること により、 路面状態及びタイヤ走行状態 を精度良く推定することができることを見出し本発明に到つたものである。 すなわち、 請求の範囲 1に記載の発明は、 走行中のタイヤの接地している路面 'の状態や夕ィャの走行状態を推定する路面状態及び夕ィャ走行状態推定方法であ つて、 走行中の車両の夕ィャまたはホイールまたはサスペンションの振動を検出 し、 これを周波数分析して得られる振動スペクトルの振動レベルを検出して、 走 行時の路面状態及び夕ィャの走行状態を推定するようにしたことを特徴とする。 また、 請求の範囲 2に記載の路面状態及びタイヤ走行状態推定方法は、 走行中 の車両のタイヤに充填されている気体の圧力変動を検出し、 これを周波数分析し て得られる圧力変動スぺクトルの圧力変動レベルを検出して、 走行時の路面状態 及びタイャの走行状態を推定するようにしたことを特徴とする。
請求の範囲 3に記載の発明は、 請求の範囲 2に記載の路面状態及び夕ィャ走行 状態推定方法において、 タイヤ内に設置した圧力センサの出力の絶対値を用いて タイヤ内圧を検出するとともに、 上記出力の時間軸上における微小振動成分を検 出し、 これを上記タイヤに充填されている気体の圧力変動として、 走行時の路面 状態及び夕ィャの走行状態を推定するようにしたものである。
請求の範囲 4に記載の発明は、 請求の範囲 1〜請求の範囲 3のいずれかに記載 の路面状態及びタイヤ走行状態推定方法において、 上記振動スぺクトルまたは圧 力変動スぺクトルの、 少なくとも 1 0〜1 0 0 0 0 H zの範囲にある振動レベル または圧力変動レベルを検出するようにしたことを特徴とする。
請求の範囲 5に記載の発明は、 請求の範囲 1〜請求の範囲 4のいずれかに記載 の路面状態及びタイヤ走行状態推定方法において、 上記振動レベルまたは圧力変 動レベルを検出する際の周波数帯域の帯域幅を、 1 0〜5 0 0 H zの範囲とした ことを特徴とする。
請求の範囲 6に記載の発明は、 請求の範囲 1〜請求の範囲 4のいずれかに記載 -の路面状態及びタイヤ走行状態推定方法において、 上記振動レベルまたは圧力変 動レベルを検出する際の周波数帯域の帯域幅を、 検出周波数帯域の 1〜 1 0 0 % の範囲としたことを特徴とする。
請求の範囲 Ίに記載の発明は、 請求の範 l 1〜請求の範囲 5のいずれかに記載 の路面状態及びタイヤ走行状態推定方 法において、 上記振動レベルまたは圧 力変動レベルを、 それそれ 3つ以上の周波数帯域で検出するようにしたことを特 徴とする。
請求の範囲 8に記載の発明は、 請求の範囲 1〜請求の範囲 7のいずれかに記載 の路面状態及びタイヤ走行状態推定方法において、 上記振動レベルまたは圧力変 動レベルのデ一夕 (X i Xn) から下記の演算式を用いて路面摩擦係数の推定値 を演算するようにしたことを特徴とする。
路面摩擦係数推定値 =l/[l+exp{— ( a。十 a i X i + a^z + anXn) }] ここで、 a。;定数、 a15 a2, · · · · , an;係数
X i ;周波数帯域 (f における振動レベルまたは圧力変動レベル 請求の範囲 9に記載の発明は、 請求の範囲 8に記載の路面状態及び夕ィャ走行 状態推定方法において、 路面摩擦係数の推定値の精度を向上させるため、 上記路 面摩擦係数推定値と、 予め測定した路面摩擦係数との相関係数を求め、 この相関 係数が最も高くなるように、 路面摩擦係数の推定に用 ヽられる振動レベルまたは 圧力変動レベルを検出するための周波数帯域: f i( i = l〜: Q) を設定し、 この設 定された周波数帯域 f i ( i = 1〜: Q ) における振動レベルまたは圧力変動レペル のデ一夕 X i = 1〜! 1) を用いて路面摩擦係数の推定値を演算するようにした ものである。
請求の範囲 1 0に記載の発明は、 請求の範囲 1〜請求の範囲 9のいずれかに記 載の路面状態及びタイヤ走行状態推定方法において、 上記振動スぺクトルまたは 圧力変動スぺクトルのデータに加え、 車両の速度デ一夕を用いて走行時の路面状 態及び夕ィャの走行状態を推定するようにしたことを特徴とする。
また、 請求の範囲 1 1に記載の発明は、 請求の範囲' 1〜請求の範囲 9のいずれ かに記載の路面状態及び夕ィャ走行状態推定方法において、 前輪速度と後輪速度 とを検出し、 上記検出された前輪速度と後輪速度とを用いて算出したスリップ率 を用いて走行時の路面状態及びタイヤの走行状態を推定するようにしたことを特 徴とする。
請求の範囲 1 2に記載の発明は、 請求の範囲 1 0に記載の路面状態及びタイヤ 走行状態推定方法において、 車両の速度デ一夕からタイヤのパターンピッチ周波 数を検出し、 上記振動スぺクトルまた は圧力変動スぺクトルの上記パターン ピッチ周波数を含む周波数帯域の振動レベルまたは圧力変動レベルを検出し、 こ の検出された振動レベルまたは圧力変動レベルが一定の閾値を超えた場合には、 タイヤがハイドロプレーニング状態にあると推定するようにしたことを特徴とす る。
請求の範囲 1 3に記載の発明は、 請求の範囲 1 0に記載の路面状態及びタイヤ 走行状態推定方法において、 上記パターンピツチ周波数に影響されない周波数帯 域の振動レベルまたは圧力変動レベルを求め、 これに対する上記ノ 夕一ンピヅチ 周波数帯域の振動レベルまたは圧力変動レベルの比が一定の閾値を超えた場合に は、 タイヤがハイドロプレーニング状態にあると推定するようにしたことを特徴 とする。
請求の範囲 1 4に記載の発明は、 請求の範囲 1 2または請求の範囲 1 3に記載 の路面状態及びタイヤ走行状態推定方法において、 上記閾値を変更可能としたも のである。
また、 請求の範囲 1 5に記載の発明は、 請求の範囲 1〜請求の範囲 1 4のいず れかに記載の路面状態及びタイヤ走行状態推定方法において、 上記振動スぺクト ルまたは圧力変動スペクトルのデ一夕に加え、 タイヤ内圧のデ一夕を用いて、 走 行時の路面状態及び夕ィャの走行状態を推定するようにしたことを特徴とする。 請求の範囲 1 6に記載の発明は、 請求の範囲 1 5に記載の路面状態及びタイヤ 走行状態推定方法において、 上記振動スぺクトルのデ一夕からタイヤの固有振動 数を求め、 予め求めたタイヤ振動数とタイヤ内圧との関係からタイヤ内圧を推定 し、 この推定されたタイヤ 圧を上記請求の範囲 1 3に記載のタイヤ内圧のデー 夕として、 走行時の路面状態及び夕ィャの走行状態を推定するようにしたもので ある。 ·
また、 請求の範囲 1 7に記載の発明は、 請求の範囲 1〜請求の範囲 1 5のいず れかに記載の路面状態及びタイヤ走行状態推定方法において、 上記圧力変動スぺ クトルのうち、 1 0〜1 0 0 k H zの周波数帯域内のタイヤ回転に同期する帯域 の圧力変動レベルを検出し、 これを正常時の圧力変動レベルと比較し、 圧力変動 が正常時より 2 0 %以上高い場合には、 タイヤに何らかの異常が生じていると推 定するようにしたものである。
また、 請求の範囲 1 8に記載の発明は、 請求の範囲 1〜請求の範囲 1 7のいず れかに記載の路面状態及びタイヤ走行状態推定方法において、 上記振動スぺクト' ルまたは圧力変動スぺクトルのデ一夕に加え、 車両各輪の荷重データを用いて走 行時の路面状態及び夕ィャの走行状態を推定するようにしたことを特徴とする。 また、 請求の範囲 1 9に記載の発明は、 請求の範囲 1〜請求の範囲 1 8のいず れかに記載の路面状態及びタイヤ走行状態推定方法において、 上記振動または圧 力変動の情幸信号をタイヤまたはホイール部にてデジタル変換信号に変換 ·圧縮 した上で車体側に送信し、 車体側にて上記圧縮信号を受信して復元し、 周波数分 祈するようにしたこと ¾特徴とする。
また、 請求の範囲 2 0に記載の発明は、 走行中のタイヤの接地している路面の 状態やタイャの走行状態を推定する路面状態及び夕ィャ走行状態推定装置であつ て、 走行中の車両のタイヤまたはホイールの振動を検出する振動検出手段と、 上 記検出された振動を周波数分析して得られる周波数スぺクトルの、 路面状態や夕 ィャの走行状態によって、 その振動レベルが特徴的に変化する周波数範囲、 すな わち、 少なくとも 1 0〜1 0 0 0 0 H zの範囲に含まれる周波数帯域の振動レべ ルを検出する手段と、 上記検出された振動レベルから、 走行時の路面状態及び夕 ィャの走行状態を推定する手段とを備えたものである。
請求の範囲 2 1に記載の発明は、 請求の範囲 2 0に記載の路面状態及びタイヤ 走行状態推定装置において、 上記振動を、 タイヤまたはホイールの幅方向の振動 としたものである。
請求の範囲 2 2に記 の発明は、 請求の範囲 2 0に記載の路面状態及びタイヤ 走行状態推定装置において、 上記振動を、 タイヤまたはホイールの周方向の振動 としたものである。
また、 請求の範囲 2 3に記載の発明は、 請求の範囲 2◦〜請求の範囲 2 2のい ずれかに記載の路面状態及び夕ィャ走行状態推定装置において、 上記振動検出手 段を、 タイヤ内に充填された気体の圧力をモニタリングする圧力センサと同一の 基板上、 または、 同一の筐体内に設置したもので、 これにより、 基板を共有化す ることができ、 装置の小型化と低コスト化を実現することが可能となる。 請求の範囲 2 4に記載の発明は、 請 求の範囲 2 0〜請求の範囲 2 2のいず れかに記載の路面状態及びタイヤ走行状態推定装置において、 上記振動検出手段 または上記振動検出手段を設置する基板を、 タイヤまたはホイ一ルに取付けたも のである。
請求の範囲 2 5に記載の発明は、 請求の範囲 2 0〜請求の範囲 2 4のいずれか に記載の路面状態及びタイヤ走行状態推定装置において、 非転動部である車体側 から、 無線にて、 転動部であるタイヤまたはホイールに取付けられた上記振動検 出手段を駆動し、 振動検出部の電源を省略したもので、 これにより、 転動部に設 けられていた、 センサ駆動 '検出用電源などのバッテリーを不要とすることがで きるので、 振動検出部を小型軽量化することが可能となる。
また、 請求の範囲 2 6に記載の路面状態及びタイヤ走行状態推定装置は、 走行 中の車両のサスペンション部の振動を検出する振動検出手段と、 上記検出された 振動を周波数分析して得られる周波数スぺクトルの、 少なくとも 1 0〜 1 0 0 0 0 H zの範囲に含まれる周波数帯域の振動レベルを検出する手段と、 上記検出さ れた振動レベルから、 走行時の路面状態及びタイヤの走行状態を推定する手段と を備え、 タイヤからサスペンション部に伝播されたタイヤの振動を検出して、 路 面状態及び夕ィャ走行状態を推定するようにしたものである。
請求の範囲 2 7に記載の発明は、 請求の範囲 2 6に記載の路面状態及びタイヤ 走行状態推定装置において、 上記サスペンション部の振動を検出する振動検出手 段を、 ホイールが取付けられているハブとベアリングを介して一体化された部位 に取付けたものである。
また、 請求の範囲 2 8に記載の路面状態及びタイヤ走行状態推定置は、 走行中 の車両のタイヤに充填されている気体の圧力変動を検出する圧力変動検出手段と
、 上記検出された圧力変動を周波数分析して得られる圧力変動スぺクトルの、 少 なくとも 1 0〜 1 0 0 0 0 H zの範囲に含まれる周波数帯域の圧力変動レベルを 検出する手段と、 上記検出された圧力変動レベルから、 走行時の路面状態及び夕 ィャの走行状態を推定する手段とを備え、 タイヤからタイャ内の気体に伝播され たタイャの振動を検出して、 路面状態及び夕ィャ走行状態を推定するようにした ものである。 請求の範囲 2 9に記載の発明は、 請 求の範囲 2 8に記載の路面状態及び夕 ィャ走行状態推定装置において、 タイヤ内に設置した圧力センサの出力の絶対値 を用いてタイヤ内圧を検出するとともに、 上記出力の時間軸上における微小振動 成分を検出し、 これを上記気体の圧力変動としたものである。
請求の範囲 3 0に記載の発明は、 請求の範囲 2 0〜請求の範囲 2 9のいずれか に記載の路面状態及びタイヤ走行状態推定装置において、 上記振動レベルまたは 圧力変動レベルを検出する際の周波数帯域の帯域幅を、 検出周波数帯域の 1〜 1 0 0 %の範囲とするとともに、 1つあるいは複数の周波数帯域で検出した上記振 動レベルまたは圧力変動レベルのデータから下記の演算式を用いて路面摩擦係数 の推定値を演算するようにしたものである。
路面摩擦係数推定値 =l/[l+exp{— ( ao + a i X i + a^z + . ' . ' + anXn) }] ここで、 a。;定数、 al 5 a2, · · · · , an;係数
Xi ;周波数帯域 (f i) における振動レベルまたは圧力変動レベル また、 請求の範囲 3 1に記載の発明は、 請求の範囲 2 0〜請求の範囲 3 0のい ずれかに記載の路面状態及びタィャ走行状態推定装置において、 タイヤまたはホ ィ一ル部に信号処理手段を設け、 上記振動検出手段で検出された振動情報信号、 または、 圧力変動検出手段で検出された圧力変動情報信号をデジタル変換すると ともにこれを圧縮して車体側に送信し、 車体側にて上記圧縮信号を受信して復元 し、 これを周波数分析するようにしたもので、 このように、 デジタルデ一夕圧縮 技術を応用してデ一夕量を少なくして送信することにより、 連続データ通信が可 能となるとともに、 振動レベルまたは圧力変動レベルの検出精度を向上させるこ とが可能となる。 .
また、 請求の範囲 3 2に記載の発明は、 請求の範囲 2 0〜請求の範囲 3 0のい ずれかに記載の路面状態及びタイヤ走行状態推定装置において、 送信するデ一夕 量を少なくして連続データ通信を可能とするため、 タイヤまたはホイール部に信 号処理手段を設置し、 上記振動検出手段で検出された振動情報信号、 または、 圧 力変動検出手段を検出された圧力変動情報信号をタイヤまたはホイール部にて周 波数分析して走行時の路面状態及び夕ィャの走行状態を推定し、 この推定された 走行時の路面状態及び夕ィャの走行状態を表わすデ一夕を車体側に送信するよう にしたものである。
請求の範囲 3 3に記載の発明は、 請求の範囲 3 1または請求の範囲 3 2に記載 の路面状態及びタイヤ走行状態推定装置において、 上記データの通信を行うため のアンテナ機能を、 ホイ一ル部に取付けられている夕イヤバルブに持たせたもの である。
また、 請求の範囲 3 4に記載の発明は、 請求の範囲 3 1または請求の範囲 3 2 に記載の路面状態及びタイヤ走行状態推定装置において、 上記データの通信を行 うためのアンテナを、 ホイールリム部の周上に設けたものである。
また、 請求の範囲 3 5に記載の発明は、 請求の範囲 2 0〜請求の範囲 3 4のい ずれかに記載の路面状態及びタイヤ走行状態推定装置において、 振動情報または 圧力変動情報を初期化するリセットボタン、 または、 車輪速、 車体加速度、 車体 回転角速度のいずれか 1つあるいは複数を含む車両挙動データ情報と、 当該推定 装置からの情報を照合して自動的に上記振動情報または圧力変動情報の初期化を 行うシステム、 を設けて、 自動車やホイール、 タイヤの種類によって異なる振動 情報または圧力変動情報を初期化するようにしたもので、 これにより、 路面状態 及び夕ィャ走行状態の推定精度を更に向上させることができる。
請求の範囲 3 6に記載の発明は、 請求の範囲 2 0〜請求の範囲 3 5のいずれか に記載の路面状態及びタイヤ走行状態推定装置において、 車両の各輪に荷重測定 装置を備え、 車両各輪の荷重デ一夕に基づいて走行時の路面状態及び夕ィャの走 行状態を推定するようにしたもので、 これにより、 大型の運搬車などように、 車 輪に加わる荷重変動が大きな車両であっても、 上記各輪の荷重データに応じて路 面状態及びタイヤ走行状態を推定することができるので、 推定精度の向上を図る ことが可能となる。
また、 請求の範囲 3 7に記載の発明は、 車両の走行状態を制御する車両制御装 置であって、 上言 3請求の範囲 1〜請求の範囲 3 6のいずれかに記載の路面状態及 び夕ィャ走行状態推定装置と、 上記装置で推定された路面状態及び/または走行 中のタイヤの状態に基づいて、 AB Sブレーキの油圧制御手段や車輪のロヅク状 態制御手段、 あるいは、 車両の姿勢制御手段などのような、 車両の走行状態を制 御する車両制御手段を備えたものである。 また、 請求の範囲 3 8に記載の発明 は、 走行中のタイヤの接地している路 面の状態を推定する路面状態推定方法であって、 タイヤ振動、 ホイール振動、 サ スペンション振動、 タイヤ内圧力変動の少なくともいずれか 1つを検出し、 これ を周波数分析して得られる振動スぺクトルの振動レベル、 または、 圧力変動スぺ クトルの圧力変動レベルを検出して路面摩擦係数を推定するとともに、 ブレーキ スィッチのオン ·オフを検出し、 ブレーキが踏まれたと判断された場合には、 路 面摩擦係数の推定値の更新を中断して、 車輪加速度を基に制御する従来の AB S J御システムのみに切換えるようにしたことを特徴としたものである。 これによ り、 プレーキが踏まれた後には本システムによる路面摩擦係数の推定を行わな ヽ ようにできるので、 タイヤのすべりによるシステムの誤動作を防止することが可 能となる。
請求の範囲 3 9に記載の路面状態推定方法は、 上記プレーキスィツチのオン · オフの検出に代えて、 駆動輪と従動輪の速度を検出してスリップ率を算出し、 こ のスリップ率が予め設定された閾値を超えた場合には、 路面摩擦係数の推定値の 更新を中断するようにしたことを特徴とするものである。 2輪駆動車の場合は、 ブレーキを踏むことで生じる駆動輪と従動輪との速度差に応じたスリップ率を検 出することにより、 タイヤのすべり状態を把握することができるので、 タイヤの すべり状態に応じて路面摩擦係数の推定を中断でき、 システムの誤動作を確実に 防止することが可能となる。
また、 請求の範囲 4 0に記載の路面状態推定方法は、 エンジン回転数を検出し 、 エンジン回転数が予め設定された閾値を超えた場合には、 路面摩擦係数の推定 値の更新を中断するようにしたことを特徴とするものである。 4輪駆動車の場合 は、 全て駆動輪であるので、 エンジン回転数を検出し、 エンジン回転数が閾値よ りも高くなつたときにはトルクが非常に高くなつて、 タイャが滑り易いと判定で きるので、 タイヤのすべり状態に応じて路面摩擦係数の推定を中断でき、 システ ムの誤動作を確実に防止することが可能となる。
請求の範囲 4 1に記載の発明は、 請求の範囲 4 0に記載の路面状態推定方法に おいて、 走行ギア及びクラッチの接続状況に応じてエンジン回転数の閾値を変更 するようにしたものである。 請求の範囲 4 2に言 B載の発明は、 請 求の範囲 3 8〜請求の範囲 4 1のいず れかに記載の路面状態推定方法において、 上記振動レベルまたは圧力変動レベル を検出する際の周波数帯域の帯域幅を、 検出周波数帯域の 1〜1 0 0 %の範囲と するとともに、 1つあるいは複数の周波数帯域で検出した上記振動レベルまたは 圧力変動レベルのデータから、 下記の演算式を用いて路面摩擦係数を推定するよ うにしたものである。
路面摩擦係数推定値 = l/ [ l+exp{— ( a。十 a x^ a2x2+ " ' · + anxn) }] ここで、 aQ ;定数、 a15 a25 · · · · , an;係数
X i ;周波数帯域(f i) における振動レベルまたは圧力変動レベル また、 請求の範囲 4 3に記載の発明は、 走行中のタイヤの接地している路面の 状態を推定する路面状態推定装置であって、 タイヤ振動、 ホイール振動、 サスぺ ンシヨン振動、 タイヤ内圧力変動の少なくともいずれか 1つを検出し、 これを周 波数分析して得られる振動スペクトルの振動レベル、 または、 圧力変動スぺクト ルの圧力変動レベルを検出して路面摩擦係数を推定する路面状態推定装置におい て、 ブレーキスィッチのオン ·オフを検出する手段を備え、 ブレーキが踏まれた と判断された場合には、 路面摩擦係数の推定値の更新を中断するようにしたもの である。
請求の範囲 4 4に記載の路面状態推定装置は、 タイヤ振動、 ホイール振動、 サ スペンション振動、 タイヤ内圧力変動の少なくともいずれか 1つを検出し、 これ を周波数分析して得られる振動スペクトルの振動レベル、 または、 圧力変動スぺ クトルの圧力変動レベルを検出して路面摩擦係数を推定する路面状態推定装置に おいて、 駆動輪と従動輪の速度を検出する手段と、 上記検出された駆動輪と従動 輪の速度からスリップ率を算出する手段とを備え、 上記スリップ率が予め設定さ れた閾値を超えた場合には、 路面摩擦係数の推定値の更新を中断するようにした ものである。
請求の範囲 4 5に記載の路面状態推定装置は、 タイヤ振動、 ホイール振動、 サ スペンション振動、 タイヤ内圧力変動の少なくともいずれか 1つを検出し、 これ を周波数分析して得られる振動スペクトルの振動レベル、 または、 圧力変動スぺ クトルの圧力変動レベルを検出して路面摩擦係数を推定する路面状態推定装置に おいて、 エンジン回転数を検出する手 段を備え、 エンジン回転数が予め設定 された閾値を超えた場合には、 路面摩擦係数の推定値の更新を中断するようにし たものである。
請求の範囲 4 6に記載の路面状態推定装置は、 エンジンの負荷が走行ギア及び クラッチの接続状況によることから、 上記請求の範囲 4 5に記載の路面状態推定 装置において、 走行ギア及びクラッチの接続状況を検出する手段を設け、 走行ギ ァ及びクラッチの接続状況に応じて上記エンジン回転数の閾値を変更するように したもので、 これにより、 更に精度の高い制御が可能となる。
請求の範囲 4 7に記載の路面状態推定装置は、 上記請求の範囲 4 3〜請求の範 囲 4 6のいずれかに記載の路面状態推定装置において、 上記振動または圧力変動 の情報信号を、 タイヤまたはホイール部またはサスペンション部にてデジタル信 号に変換 ·圧縮した上で車体側に送信し、 車体側にて上記圧縮信号を受信して復 元し、 周波数分析するようにしたものである。
また、 請求の範囲 4 8に記載の発明は、 AB S制動を制御する方法であって、 タイヤ振動、 ホイール振動、 サスペンションの振動、 タイヤ内圧力変動の少なく ともいずれか 1つを検出し、 これを周波数分析して得られる振動スぺクトルの振 動レベル、 または、 圧力変動スぺクトルの圧力変動レベルを検出して路面摩擦係 数を連続的に推定するとともに、 運転者がブレーキを踏む直前の路面摩擦係数推 定値の大きさに応じて、 A B S制御へ移行するブレーキ油圧の閾値を変更するよ うにしたことを特徴とするものである。例えば、 路面摩擦係数推定値が低い場合 には、 通常の閾値であると急速にスリップ率が高くなり、 制動力が低下するので 、 この場合には、 AB S制御へ移行するブレーキ油圧の閾値を下げて、 早めに A B Sを作動させてスリヅプ率が上がらないように制御することにより、 車両の安 全性を向上させる。
請求の範囲 4 9に記載の AB S制動制御方法は、 タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の少なくともいずれか 1つを検出し、 こ れを周波数分析して得られる振動スペクトルの振動レベル、 または、 圧力変動ス ぺクトルの圧力変動レベルを検出して路面摩擦係数を連続的に推定するとともに 、 運転者がブレーキを踏む直前の路面摩擦係数推定値の大きさに応じて AB Sブ レーキ油圧の増減度合いを調整するよ うにした iとを特徴とするもので、 こ れにより、 ABS制動を安定して行うことが可能となる。
請求の範囲 50に記載の発明は、 請求の範囲 48または請求の範囲 49に記載 の AB S制動制御方法において、 上記振動レベルまたは圧力変動レベルを検出す る際の周波数帯域の帯域幅を、 検出周波数帯域の 1〜 100 %の範囲とするとと もに、 1つあるいは複数の周波数帯域で検出した上記振動レベルまたは圧力変動 レベルのデータから、 下記の演算式を用いて路面摩擦係数を連続的に推定するよ うにしたものである。
路面摩擦係数推定値 =l/[l+exp{ ( a。+ alXl + a2x2+… · + anxn)}] ここで、 a。;定数、 a13 a2, ····, an;係数
Xi ;周波数帯域 (f i) における振動レベルまたは圧力変動レベル また、 請求の範囲 51に記載の発明は、 A BS制動の制御装置であって、 タイ ャ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の少なくともい ずれか 1つを検出する手段と、 上記検出された振動情報信号または圧力変動信号 を周波数分析して得られる振動スぺクトルの振動レベル、 または、 圧力変動スぺ クトルの圧力変動レベルを検出し、 下記の演算式を用いて路面摩擦係数の推定値 を連続的に演算する手段と、 ブレーキスィツチのオン ·オフを検出する手段と、 運転者がブレーキを踏む直前の路面摩擦係数推定値の大きさに応じて、 AB S制 御へ移行するブレーキ油圧の閾値を変更する手段とを備えたものである。
路面摩擦係数推定値 =l/[l+exp{ (an+aiXi + a^z + + anXn)}] ここで、 a。;定数、 a15 a2, ····, an;係数
Xi ;周波数帯域 (fi) における振動レベルまたは圧力変動レベル 請求の範囲 52に記載の ABS制動制御装置は、 タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の少なくともいずれか 1つを検出する手 段と、 上記検出された振動情報信号または圧力変動信号を周波数分析して得られ る振動スペクトルの振動レベル、 または、 圧力変動スペクトルの圧力変動レベル を検出し、 下記の演算式を用いて路面摩擦係数の推定値を連続的に演算する手段 と、 ブレーキスィヅチのオン ·オフを検出する手段と、 運転者がブレーキを踏む 直前の路面摩擦係数推定値の大きさに応じて、 AB Sブレーキ油圧の増減度合い を調整する手段とを備えたものである 。
路面摩擦係数推定値 =l/[l+exp{— (ao+aiXi+asXz+'-'. + anXn)}] ここで、 a。;定数、 a13 a25 ····, an;係数
Xi ;周波数帯域 (fi) における振動レベルまたは圧力変動レベル また、 請求の範囲 53に記載の発明は、 車両の走行状態を制御する車両制御装 置であって、 上記請求の範囲 41または請求の範囲 52に記載の AB S制動制御 装置を備えたものである。
図面の簡単な説明
第 1図は、 本発明の最良の形態 1に係る路面状態及び夕ィャ走行状態推定装置 の構成を示す機能プロック図である。
第 2図は、 加速度センサの装着箇所を示す図である。
第 3図は、 ホイールの振動スペクトルを示す図である。
第 4図は、 実際の路面摩擦係数/ と本発明による 推定値との相関関係を示す 図である。
第 5図は、 加速度センサの他の装着箇所を示す図である。
第 6図は、 本最良の形態 2に係るサスペンション部の振動を検出する方法を示 す図である。
第 7図は、 サスペンション部の振動スぺクトルを示す図である。
第 8図は、 実際の路面摩擦係数/ zとサスペンション部の振動を検出して推定し た 推定値との相関関係を示す図である。
第 9図は、 本最良 形態 3に係る車両制御装置の構成を示す図である。
• 第 10図は、 本発明による車両制御装置の他の構成を示す図である。
第 11図は、.本最良の形態 4に係る路面状態及びタイヤ走行状態推定装置の機 能ブロック図である。
第 12図は、 圧力センサの装着箇所を示す図である。
第 13図は、 圧力変動情報信号を車体側に送信する構成例を示す図である。 第 14図は、 圧力センサを装着した車両を、 ドライアスファルト路と雪上にお いて走行させたときの圧力変動スぺク トルを示す図である。
第 1 5図は、 実際の路面摩擦係数/ zとタイヤ内圧変動による 推定値との相関 関係を示す図である。
第 1 6図は、 実際の路面摩擦係数 とホイール振動による〃推定値との相関関 係を示す図である。
第 1 7図は、 本最良の形態 5に係るハイドロプレーニング状態推定手段の構成 を示す図である。
第 1 8図は、 ハイドロプレーニング状態の圧力変動スぺクトルを示す図である 第 1 9図は、 ハイドロプレーニング状態の振動スぺクトルを示す図である。 第 2 0図は、 車速と、 パターンピッチ周波数での振動レベルと 100〜200Ηζ帯 域での振動レベルとの比との関係を示す図である。
第 2 1図は、 最良の形態 6に係る路面状態推定装置の構成を示す図である。 第 2 2図は、 ブレーキスイッチの検出による、 推定値の更新制御のためのフ ローチャートである。
第 2 3図は、 本発明によるスリヅプ率判定手段を備えた路面状態推定装置の構 成を示す図である。
第 2 4図は、 スリップ率による、 〃推定値の更新制御のためのフローチャート である。
第 2 5図は、 エンジン回転数による、 〃推定値の更新制御のためのフローチヤ —トである。
第 2 6図は、 試験車両を様々な路面、 一定速度で走行させたときの〃推定値の 演算結果を示す図である。
第 2 7図は、 ドライアスファルト路面で試験車両を加速した場合の〃推定値の 演算結果を示す図である。
第 2 8図は、 スリップ率及びエンジン回転数による、 〃推定値の更新制御を行 つた場合の//推定値の演算結果を示す図である。
第 2 9図は、 本最良の形態 7に係る AB S制動制御装置の一構成例を示す図で ある。 第 3 0図は、 タイヤにかかる力を示 す模式図である。
第 3 1図は、 スリップ率と摩擦力の関係を示す S— /カーブである。
第 3 2図は、 試験車両を、 WE T路面において走行させ、 車体速度と車輪速度 とを計測した結果を示すグラフである。
第 3 3図は、 試験車両を、 I C E路面において走行させ、 車体速度と車輪速度 とを計測した結果を示すグラフである。
第 3 4図は、 本発明による AB S制動制御装置を搭載した試験車両試験車両を
、 I C E路面において走行させ、 車体速度と車輪速度とを計測した結果を示すグ ラフである。 発明を実施するための最良の形態
以下、 本発明の最良の形態について、 図面に基づき説明する。
最良の形態 1 .
第 1図は、 本最良の形態 1に係わる路面状態及びタイヤ走行状態推定装置 1 0 の構成を示す機能プロック図で、 本装置 1 0は振動検出部 1 0 Aと信号処理部 1 0 Bとを備えている。 振動検出部 1 O Aは、 ホイールに伝播されたタイヤの振動 を検出する振動検出手段である加速度センサ 1 1を備えており、 信号処理部 1 0 Bは、 周波数帯域設定手段 1 2と振動レベル検出手段 1 3とを備え、 上記加速度 センサ 1 1で検出されたホイール振動の振動情報信号を周波数分析して、 上記振 動め周波数スペクトル (以下、 振動スペクトルという) の、 路面状態やタイヤの 走行状態によってその振動レベルが特徴的に変ィヒする周波数範囲、 すなわち、 少 なくとも 1 0 ~ 1 0 0 0 0 H zの範囲に含まれる周波数帯域の振動レベルを検出 する周波数分析手段 1 4と、 予め求められた路面状態、 あるいは、 走行中のタイ ャの状態と、 上記振動スぺクトルの所定の周波数帯域での振動レベルとの関係を 示す振動レベル対応表 1 5 Tを記憶する振動レベル記憶手段 1 5と、 上記周波数 分析手段 1 4で検出された振動レベルを上記振動レベル対応表 1 5 Tに対 jfeさせ て、 上記振動レベルから路面摩擦係数〃及び走行中のタイヤの状態を推定する路 面状態及びタイヤ走行状態推定手段 1 6とを備え、 上記加速度センサ 1 1で検出 されたホイールの振動情報信号から、 走行時の路面状態及び夕ィャの走行状態を 推定する。
なお、 上記振動レベル対応表 1 5 Tは、 後述するように、 試験車両に加速度セ ンサ 1 1を取付け、 上記車両を、 所定の速度 Vで路面摩擦係数 の異なる路面を 走行させたり、 例えば、 トレッドの一部を剥離させた故障タイヤに相当する試作 タイヤを装着した車両を走行させたりして、 ホイ一ル 1の振動を実測することに より作成される。
本例では、 上記加速度センサ 1 1としてバイモルフ圧電式の表面実装型加速度 センサを用い、 この加速度センサ 1 1を、 第 2図 (a) , ( b ) に示すように、 ホイ一ル 1のホイ一ルリム 2の、 タイャ側の凹部に取付けられたセンサ一ボヅク ス 1 7内に収納した。 なお、 同図において、 3はホイ一ル 1に取付けられたタイ ャバルブである。
上記センサ一ボックス 1 7には、 タイヤ内に充填された気体の圧力をモニタリ ングする圧力センサ 1 8が収納されており、 上記加速度センサ 1 1は、 圧力検出 回路やバヅテリ一等が搭載された上記圧力センサ 1 8が装着された基板 1 9に装 着される。 この基板 1 9はセンサ共通 ¾反であり、 加速度センサ 1 1の駆動 '検 出回路も上記基板 1 9に搭載され、 上記バッテリーは加速度センサ 1 1及び圧力 センサ 1 8の共用電源となる。
なお、 加速度センサ 1 1または加速度センサ 1 1を設置する基板を、 ホイール 1の、 上記圧力センサ 1 8とは別個の箇所に設置してもよいし、 加速度センサ 1 1の駆動 ·検出回路を搭載した基板を加速度センサ 1 1とは別体に設置してもよ いが、 装置を小型化する上では、 上記のように、 加速度センサ 1 1とその對反を 圧力センサ 1 8と同一の筐体 (センサ一ボックス 1 7 ) 内に設置することが好ま しく、 少なくとも、 基板については上記 ¾反 1 9と共有化することが好ましい。 次に、 上記構成の路面状態及びタイヤ走行状態推定装置 1◦の動作について、 路面摩擦係数 の推定値を求める場合を例にとつて説明する。
まず、 加速度センサ 1 1により走行中のホイール 1の振動を検出し、 この検出 されたホイ一ル 1の振動情報信号を周波数分析手段 1 4により周波数分析して所 定の周波数帯域の振動レベルを検出する。 詳細には、 周波数分析手段 1 4の検出 する上記振動レベルは、 中心周波数が、 路面状態やタイヤの走行状態によってそ の振動レベルが特徴的に変化する周波 数範囲、 すなわち、 少なくとも 10〜 10000Hzの範囲にある所定の帯域幅を有する周波数帯域の振動レベル、 詳 細には、 周波数範囲が少なくとも 10〜10000Hzの範囲にある、 検出周波 数帯域 (ホイ一ル 1の振動情報信号の周波数帯域) の 1〜; L 00 %の帯域幅を有 する振動レベルを検出する。例えば、 上記検出周波数帯域が 10〜5000Hz である場合には、 周波数分析手段 14で検出する振動レベルとしては、 800〜 3500Hzのような、 帯域幅が上記検出周波数帯域の約 54%であるような、 比較的広い帯域幅を有する 1つの周波数帯域の振動レベルでもよいし、 800〜 1000Hz, 1600〜 2000Hz, 3000〜 3500 H zでの振動レべ ルなどのように、 帯域幅が上記検出周波数範囲の約 4%, 8%, 10%であるよ うな、 比較的狭い帯域幅を有する複数の周波数帯域での振動レベル (複数個) で あってもよい。 また、 振動レベルを検出する周波数帯域を複数個とする場合には 、 上記帯域幅を比較的狭い範囲、 例えば、 10〜500Hzの範囲とすることが 好ましい。 このように、 周波数分析手段 14では、 上記 1つあるいは複数の周波 数帯域を周波数帯域設定手段 12で設定し、 振動レベル検出手段 13により、 そ の振動レベルを検出する。
上記検出された振動レベルは、 路面状態及びタイヤ走行状態推定手段 16に送 られ、 路面状態及びタイヤ走行状態推定手段 16において、 上記検出された振動 レベルと、 予め振動レベル記憶手段 15に記憶されている路面摩擦係数〃と振動 レベルとの関係を示す振動レベル対応表 15 Tと対応させて、 路面摩擦係数の推 定値 ( /推定値) を求めることにより、 加速度センサ 11により検出されたホイ —ルのタイヤ周方向またはタイャ幅方向の振動情報信号から、 路面摩擦係数 を 精度良く推定することができる。
第 3図は、 タイヤ周方向の振動を検出する加速度センサとタイヤ幅方向の振動 を検出する加速度センサの 2個の加速度センサを取付けたホイ一ルを備えたタイ ャを乗用車に搭載し、 通常の乾燥ァスフアルト路面上を 60 kmZhの一定速度 で走行させ、 このときのホイ一ルのタイャ周方向振動とタイャ幅方向振動とをそ れそれ測定して周波数分析して得られた振動スぺクトルである。 このグラフの横 軸は周波数、 縦軸は 1 Gを 0 dBとしたときの振動レベルの大きさであり、 同図 の実線がホイールのタイヤ周方向振動 スペクトル、 破線がタイヤ幅方向振動 スぺクトルである。
次に、,路面摩擦係数〃の異なる様々な路面上で、 上記と同様の実験を行い、 ホ ィ一ルのタイヤ周方向及びタイヤ幅方向の振動スぺクトルを求め、 上記乾燥ァス フアルト路面上を走行して得られた振動スペクトルと比較する。 これにより、 1 0〜: L 0 0 0 0 H zの範囲に含まれる複数の周 数帯域において、 上記振動レべ ルが路面状態によりどのように異なつていることを確認することができる。 一般に、 路面摩擦係数〃が低くなると、 タイヤトレッドのすべり (ここでは幅 方向のすべり) によつて複数の周波数帯域の振動レベルが上昇する。
第 4図は、 予め測定した路面摩擦係数 と、 検出したホイールの振動情報信号 を用いて推定した路面摩擦係数の推定値 (〃推定値) との関係を示すグラフであ る。 この結果から明らかなように、 上記//推定値と実際の路面摩擦係数 とは良 好な相関関係を示している。
したがって、 加速度センサ 1 1によりホイ一ル 1のタイヤ周方向またはタイヤ 幅方向の振動を検出し、 この振動情報信号と、 予め求められた、 上記複数の周波 数帯域の振動レベルと路面摩擦係数^との関係を示す振動レベル対応表 1 5 Tと を対応させることにより、 路面摩擦係数 を精度良く推定することが可能である ことが確認された。
このように、 本最良の形態 1によれば、 ホイールリム 2に取付けられた加速度 センサ 1 1で検出したホイール 1の振動情報信号を、 周波数分析手段 1 4で周波 数分析してその振動スぺクトルの振動レベルを検出し、 路面状態及びタイヤ走行 状態推定手段 1 6により、 この検出された振動レベルと、 振動レベル記憶手段 1 5に記憶された路面摩擦係数〃と振動レベルとの関係を示す振動レベル対応表 1 5 Tとを比較して、 路面摩擦係数/を推定するようにしたので、 路面摩擦係数〃 の値を精度良く推定することができ、 車両の安全性を向上させることができる。 なお、 上記最良の形態 1では、 加速度センサ 1 1を、 ホイールリム 2のタイヤ 側に取付けて、 ホイール 1に伝播されるタイヤの振動を検出するようにしたが、 第 5図 (a) に示すように、 加速度センサ 1 1をホイ一ルリム 2のホイ一ルディ スク側に取付けもよい。 あるいは、 第 5図 (b ) に示すように、 加速度センサ 1 1をタイヤ 4のトレッド 5の内面側 5 aに取付けて、 タイヤ 4の振動を直接 検出するようにしてもよい。
また、 上記例では、 路面摩擦係数 を推定する場合について説明したが、 路面 摩擦係数//そのものではなく、 通常路面状態 (ドライ) 、 要注意路面状態 (ゥェ ヅト路、 雪路、 など) 、 危険路面状態 (ハイドロプレ一ニング状態、 圧雪路、 ミ ラ一バーンなど) などのような、 路面状態を推定するようにしてもよい。
また、 上記路面摩擦係数 から、 走行中のタイヤの状態である滑り易さを推定 するようにしてもよい。
また、 上記例では、 //推定値を算出するための振動レベルを検出する際の周波 数帯域を、 異なる路面を走行させて得られた振動スペクトルを比較して、 その振 動レベルが特徴的に変ィ匕する周波数帯域としたが、 この周波数帯域を、 路面摩擦 係数^との相関関係の高い周波数帯域に設定するようにすれば、 //推定値の精度 を更に向上させることができる。
具体的には、 試験車両に加速度センサ 1 1を取付け、 上記車両を、 所定の速度 Vで路面状態 (路面摩擦係数 z) の異なる路面を走行させて、 タイヤの振動スぺ クトルを求め、 この振動スペクトルから、 少なくとも 1つの周波数帯域 fi (i = l〜n) における振動レベル振動の周波数帯域値 (振動レベル) Xi (i= 1 〜n) を検出して、 下記の式 (1) を用いて路面摩擦係数推定値 (〃推定値) を 算出する。
〃推定値 =l/[l+exp{— (a。+a1Xi+a2x2+ h anxn) }] '··· · ( 1) ここで、 a0 ;定数、 a15 a2, ····, an;係数
そして、 上記式 (1) で算出した〃推定値と、 予め測定した路面摩擦係数〃と の相関係数を求め、 この相関係数が最も高くなるように、 上記複数の周波数帯域 f i( i= l〜n) を設定し、 この設定された周波数帯域; i( i= l〜! 1) の振動 レベルから、 上記の式 (1) を用いて 推定値を算出する。
このように、 〃推定値を算出するための振動レベルを検出する際の周波数帯域 f i (i = l〜n) を、 路面摩擦係数〃との相関関係の高い周波数帯域 f i (i = l〜n) に設定するようにすれば、 単に、 異なる路面を走行させて得られた各振 動スぺクトルを比較して、 振動の周波数帯域値 Xiの高いと思われる複数の周波 数帯域 f iを設定して〃推定値を算出 する場合に比べて、 //推定値の精度を 確実に向上させることができる。
このとき、 上記路面摩擦係数〃の検出に使用する振動の周波数帯域値 (振動レ ベル) X iを検出するための周波数帯域 f iの数は、 3つ以上とすることが好まし いが、 路面状態 (路面摩擦係数〃) が明確に反映されている周波数帯域 f iがあ れば、 周波数帯域を 1つとしてもよい。
上記方法を用いることにより、 上記装置 1 0において、 振動レベル記憶手段 1 5を省略するとともに、 路面状態及び夕ィャ走行状態推定手段 1 6では、 周波数 分析手段 1 2で検出された振動の周波数帯域値 (振動レベル) から、 上記式 ( 1 ) を用いて直接〃推定値を求めたり、 上記 /推定値を用いて、 路面状態を推 定することができる。
また、 上記振動スペクトルを用いて、 タイヤの故障状態を推定することも可能 である。 具体的には、 タイヤトレッドの一部に剥離が生じた場合などには、 その 部分が路面に接する度に特有の振動が発生するので、 上記振動スペクトルの、 1 0〜1 0 0 H zの周波数帯域の振動レベルを検出し、 正常なタイヤの上記と同じ 周波数帯域の振動レベルと比較することにより、 タイヤに何らかの異常が生じて いることを推定することができる。
また、 上記加速度センサ 1 1からの振動情報信号を周波数分析して得られる振 動スぺクトルの 2 0 0 H z以下の周波数帯域内での振動レベルから、 タイヤの固 有振動の周波数を検出してタイヤ内圧を推定することが可能である。 つまり、 夕 ィャの固有振動周波数と実際のタイヤ内圧とは高い相関関係があるので、 上記振 動スぺクトルのデータからタイヤの固有振動数を求め、 予め求めたタイヤ振動数 とタイヤ内圧との関係からタイヤ内圧を推定し、 この推定されたタイヤ内圧を夕 ィャ内圧として用いればよい。 これにより、 センサーボックス 1 7に設けられて いる圧力センサ 1 8を省略することも可能である
また車両の各輪に荷重測定装置を設置して車両各輪に作用する荷重を検出し、 車両各輪の荷重デ一夕に基づいて、 走行時の路面状態及びタイヤの走行状態の推 定を行うようにすれば、 路面状態及びタイヤの走行状態の推定精度を更に向上さ せることができる。 すなわち、 大型の運搬車などのよう に、 積み荷の重さにより車輪に加わる 荷重が大きく変動する車両においては、 荷重による摩擦係数の変化が大きいため 、 荷重によりタイヤの振動状態が変ィ匕する (荷重が大きくなると摩擦係数が減少 するが、 滑りにくくなる) ので、 これを補正するため、 路面摩擦係数 zと振動レ ベルとの関係を示す振動レベル対応表 1 5 Tを各荷重毎に作成して記憶しておき 、 例えば、 歪ゲージを用いた荷重測定装置で検出された車両各輪の荷重データに 応じて、 路面状態及びタイヤ走行状態を推定するようにすれば、 推定精度を更に 向上させることができる。
また、 本装置 1 0に、 システムを初期化するためのリセットボタンを設け、 あ る程度の距離を走行してタイヤと路面間の実際の摩擦状態を把握することが好ま しい。路面状態を推定するために用いる振動スペクトルとしては、 予めインプヅ トされた実車試験の振動スぺクトルであっても問題はないが、 振動スペクトルは 自動車やホイール、 タイヤの種類により微妙に異なることから、 当該車両をドラ ィ、 ウエット、 氷雪のいずれかの路面、 あるいは、 複敎の路面で走行させて、 そ の時の振動スぺクトル.を求め、 この求められた振動スぺクトルに基づいて路面状 態あるいは路面摩擦係数//を推定するようにすれば、 推定精度を更に向上させる ことができる。
このとき、 乗員がリセットボタンを押し、 走行した路面の状態がドライかゥェ 、ソトかあるいは氷雪かをインプットする。 なお、 装置 1 0内において、 予め記憶 された路面状態毎の振動スぺクトルと上記初期化時に得られた振動スぺクトルと を比較して、 上記走行した路面の状態がドライかゥエツトかあるいは氷雪かが自 動的にィンプットされるようにしてもよい。
あるいは、 車体の挙動制御用に車輪速、 車体加速度、 車体回転角速度などを検 出するセンサが取付けられている車両においては、 これらのデ一夕から概略推定 される路面摩擦係数と本装置 1 0によって推定された路面摩擦係数とを比較する ことにより、 適宜リセットをかけるシステムを設けてもよい。 ' 最良の形態 2 .
上記最良の形態 1では、 ホイール 1の振動を検出した例について説明したが、 第 6図に示すように、 加速度センサ 1 1をサスペンション部 6に取付け、 サ スペンション部 6に伝播されるタイヤの振動を検出して路面状態及びタイヤ走行 状態を推定することも可能である。
サスペンション部 6には、 振動緩衝のため、 ゴムブッシュ 7等の弾性部材が複 数取付けられているので、 本例では、 上記伝播されたタイヤの振動を効率よく検 出するため、 加速度センサ 1 1をサスペンションアーム 6 a , 6 b上ではなく、 ホイール 1が取付けられているハプ部 8と一体化されている非回転部に取付ける ようにしている。 なお、 サスペンション部 6には、 タイヤ幅方向の振動の方が比 較的減衰なく伝播されるので、 上記加速度センサ 1 1は、 ハブ部 8のタイヤ幅方 向の振動を検出するように取り付けることが好ましい。
第 7図は、 加速度センサを乗用車のサスペンション部に装着し、 通常の乾燥ァ スフアルト路面上を 3 0 km/]!〜 9 0 kmノ hの範囲内で一定速度で走行させ 、 このときのサスペンション部の振動を測定して周波数分析して得られた振動ス ぺクトルを示す図で、 この振動スペクトルを用いて、 上記最良の形態 1と同様に 、 路面摩擦係数 を推定することができる。
また、 第 8図は、 予め測定した路面摩擦係数/ と、 検出したサスペンション部 6の振動から推定した //推定値との関係を示すグラフで、 この結果から明らかな ように、 検出された振動レペルから求めた〃推定値と実際の路面摩擦係数^とは 良好な相関関係を示しており、 サスペンション部 6の振動からでも路面摩擦係数 ^を精度良く推定することができることがわかる。 最良の形態 3 .
第 9図は、 本発明の路面状態及び夕ィャ走行状態推定装置を用いた車両制御装 置 2 0の構成を示す図で、 本装置 2 0は、 加速度センサ 1 1が取付けられた転動 側 (タイヤまたはホイール側) Aと、 非転動側である車体側: Bとを無線により接 続するように構成したものである。
転動側 Aには、 加速度センサ 1 1と、 この加速度センサ 1 1で検出された振動 情報信号をデジタル変換して圧縮するデータ処理部 2 1と、 この圧縮された信号 を車体側 Bに無線により送信するとともに、 車体側 Bから送信される、 加速度セ ンサ 1 1及びデ一夕処理部 2 1を駆動 するための無線信号を受信する R F ( Radio Frequency)部 2 2とを設ける。 また、 車体側 Bには、 上記圧縮された振 動情報信号を受信するとともに、 転動側 Aに上記無線信号を送信する無線送信 · 受信部 (以下、 送受信部という) 2 3と、 上記受信された振動情報信号を復元し て周波数分析し、 得られた振動スぺクトルから走行時の路面状態及びタイヤの走 行状態を推定する路面状態及びタイヤ走行状態演算部 2 4と、 上記演算部 2 4で 推定された路面状態及びタイヤ走行状態に基づいて、 AB Sブレーキの油圧を制 御する AB S制御部 (車両制御手段) 2 5とを設ける。
これにより、 信号接続線を設けることなく、 タイヤまたはホイール部で検出さ れた振動情報信号を車体側 Bにて処理して路面状態及び夕ィャ走行状態を推定す ることができる。 また、 上記推定された路面状態及びタイヤ走行状態のデ一夕を A B S制御部 2 5に送ることにより、 路面状態及びタイヤ走行状態に応じて A B Sブレーキの油圧を制御することができるので、 車両の走行状態を安定して制御 することができる。 また、 車体側 Bから、 無線にて、 加速度センサ 1 1及びデ一 夕処理部 2 1を駆動するようにしたので、 転動側 Aに備えられていたバヅテリー を省略することができる。
なお、 上記路面状態及びタイヤの走行状態演算部 2 4の構成は、 上記最良の形 態 1の第 1図で示した、 路面状態及び夕ィャ走行状態推定装置 1 0の信号処理部 1 0 Bと同様である。
また、 車体側 Bには、 タイヤ円周上での電波サービスエリアを極力広くするァ ンテナ部を設け、 転動側 A (タイヤまたはホイール側) の R F部 2 2には、 送受 信部 2 4から上記アンテナ部を介して送信された微弱電波を受信して発生する誘 導起電力により稼動するパッシブモード非接触 I Cチヅプを備え、 加速度センサ 1 1とデ一夕処理部 2 1を稼動させるとともに、 加速度センサ 1 1で検出した振 動データをデジタル変換 ·圧縮して車体側 Aに送信する。 なお、 上記デ一夕の送 信を行うためのァンテナ機能を、 ホイール 1に取付けられているタイャバルブ 3 (第 1図参照) に持たせてもよいし、 別途、 ホイールリム 2の周上にアンテナを 設けるようにしてもよい。
実際に本装置 2 0を用いて転動中のホイール振動を検出し、 車体側 Bにてその 振動スペクトルを測定し、 上記最良の 形態 1の第 3図に示す振動スペクトル と比較したところ、 同様の振動スぺクトルが得られることが確認された。
このように、 本最良の形態 3によれば、 加速度センサ 1 1が取付けられる転動 側 A (タイヤまたはホイール側) にデータ処理部 2 1を設置し、 上記加速度セン サ 1 1で検出された振動情報信号をデジタル変換 ·圧縮して車体側 Bに送信し、 車体側 Bに設けられた路面状態及び夕ィャの走行状態演算部 2 4において、 上記 受信した上記振動情報信号を復元して周波数分析し、 タイヤまたはホイ一ルの振 動から走行時の路面状態及び夕ィャの走行状態を推定するようにしたので、 転動 側 Aと車体側 Bとの連続データ通信が可能となり、 振動の検出精度を向上させる ことができ、 車両の走行状態を安定して制御することができる。
また、 加速度センサ 1 1及びデータ処理部 2 1を、 車体側 Bから、 無線にて駆 動するようにしたので、 バッテリーを省略することができ、 振動検出部を小型軽 量化することができる。 なお、 バヅテリ'一を用いてデータ通信を行った場合には 、 バヅテリ一寿命が短かくなり、 交換が必要となるが、 本例では、 このような問 題がなく、 長期的に安定して路面状態及び夕ィャの走行状態を推定することが可 倉 となる。
ま 、 タイヤまたはホイール部に F F T処理部を設けて、 転動側 Aにて振動情 報信号を周波数分析して 推定値を求め、 これを車体側 Bに送信するようにして もよい。 具体的には、 第 1 0図に示すように、 転動側 A (タイヤまたはホイール 側) に路面状態及びタイヤ走行状態演算部 2 4を設け、 加速度センサ 1 1で検出 したタイヤまたはホイールの振動情報信号を周波数分析し、 走行時の路面状態及 び夕ィャの走行状態を推定し、 この推定された走行時の路面状態及び夕ィャの走 行状態を表わすデータを R F部 2 2から車体側 Bに送信する。車体側 Bでは、 受 信したデータを A B S制御部 2 5に送り A B Sブレ一キの油圧を制御する。 上記のような車両制御装置 2 0 Aを構成することにより、 上記最良の形態 3と 同様に、 転動側 Aと車体側 Bとの連続デ一夕通信を可能とし、 かつ、 路面状態及 びタイヤ走行状態の推定精度を向上させて、 車両の走行状態を安定に制御するこ とができる。
実際に、 タイヤまたはホイ一ル部において、 振動情報信号を周波数分析して、 得られた振動スペクトルから 推定値 を求め、 この//推定値を車体側 Bに送 信して路面摩擦係数〃との対応を調べたところ、 上記最良の形態 1の第 4図と同 様な良好な相関関係が見られた。 最良の形態 4 .
上記最良の形態 1及び 2では、 加速度センサ 1 1で検出したタイヤ 4、 ホイ一 ル 1、 あるいは、 サスペンション部 6の振動情報信号を周波数分析してその振動 スぺクトルの振動レベルを検出して路面状態や路面摩擦係数//を推定するように したが、 走行中の車両のタイヤに充填されている気体の圧力変動を検出して路面 状態や路面摩擦係数//を推定してもよい。
第 1 1図は、 本最良の形態 4に係わる路面状態及びタイヤ走行状態推定装置 3 0の機能プロック図で、 同図において、 3 1はタイヤ内に設けられた圧力変動検 出手段である圧力センサ、 3 2は周波数帯域設定手段 3 3と圧力変動レベル検出 手段 3 4とを備え、 上記圧力センサ 3 1で検出されたタイヤ内の気体の圧力変動 信号である、 圧力センサ 3 1の出力の時間軸上における微小振動成分 (A C成分 ) を周波数分析して、 上記圧力変動の周波数スペクトル (以下、 圧力変動スぺク トルという) の、 路面状態やタイヤの走行状態によってその振動レベルが特徴的 に変化する周波数範囲、 すなわち、 少なくとも 1 0〜1 0 0 0 0 H zの範囲に含 まれる周波数帯域の振動レベルを検出する周波数分析手段、 3 5は予め求められ た路面状態、 あるいは、 走行中のタイヤの状態と所定の周波数帯域での圧力変動 レベル (以下、 圧力変動の周波数帯域値という) との関係を示す圧力変動レベル 対応表 3 5 Tを記憶する圧力変動レベル記憶手段、 3 6は上記周波数分析手段 3 2で検出された圧力変動レベルを上記圧力変動レベル対応表 3 5 Tに対応させて 、 走行中の路面状態及び走行中のタイャの状態を推定する路面状態及び夕ィャ走 行状態推定手段である。
なお、 上記圧力変動レベル対応表 3 5 Tは、 試験車両に圧力センサ 3 1を取付 け、 上記車両を、 所定の速度 Vで路面状態 (路面摩擦係数〃) の異なる路面を走 行させたり、 例えば、 トレッドの一部を剥離させた故障タイヤに相当する試作夕 ィャを装着した車両を走行させたりして、 タイヤ内の気体の圧力変動を実測する ことにより作成される。
本例では、 第 12図 (a) , (b) に示すように、 上記圧力センサ 31を検出 回路等の回路部品を搭載した基板 37に取り付けて、 ホイール 1のホイールリム 2の、 タイヤ側の凹部に取付けられたセンサ一ボックス 38内に収納するととも に、 第 13図に示すように、 ホイール側 (転動側) Aと、 非転動側である車体側 Bとを無線により接続するようにしている。
ホイール側 Aには、 上記圧力センサ 31と、 圧力センサ 31で検出されたタイ ャに充填されている気体の圧力変動信号をデジタル変換して圧縮するデータ処理 部 4 1と、 この圧縮信号を車体側 Bに無線により送信する : RF (Radio Frequency)部 42とを設ける。 また、 車体側 Bには、 上記圧縮信号を受信する 受信部 43と、 上記受信された圧縮信号を復元して周波数分析し、 得られた圧力 変動スぺクトルから走行時の路面状態及び夕ィャの走行状態を推定する路面状態 及びタイヤ走行状態演算部 44とを設ける。 なお、 この路面状態及びタイヤの走 行状態演算部 44は、 上記第 11図に示した周波数分析手段 32, 圧力変動レべ ル記憶手段 35, 路面状態及びタイヤ走行状態推定手段 36の各手段から構成さ れる。 これにより、 信号接続線設けることなく、 転動側であるホイール部で検出 された圧力変動信号を車体側 Bにて処理して、 路面状態及び夕ィャ走行状態を推 定することができる。
次に、 上記構成の路面状態及びタイヤ走行状態推定装置 30の動作について、 路面摩擦係数〃の推定値を求める場合を例にとって説明する。
まず、 圧力センサ 31により走行中のタイヤに充填されている気体の圧力変動 を検出し、 周波数分析手段 32により周波数分析して所定の周波数帯域の圧力変 動レベルを検出する。詳細には、 周波数分析手段 32の検出する上記圧力変動レ ベルは、 中心周波数が、 路面状態やタイヤの走行状態によってその振動レベルが 特徴的に変化する周波数範囲、 すなわち、 少なくとも 10〜: L 0000Hzの範 囲にある、 所定の帯域幅を有する周波数帯域の圧力変動レベルであって、 例えば 、 800〜 3500Hzのような、 比較的広い帯域幅を有する 1つの周波数帯域 の圧力変動レベルでもよいし、 800〜: L 000Hz, 1600〜 2000Hz , 3000〜 3500 Hzでの圧力変動レベルなどのように、 比較的狭い帯域幅 を有する複数の周波数帯域での圧力変 動レベル (複数個) でもよい。 周波数 分析手段 3 2では、 上記 1つあるいは複数の周波数帯域を周波数帯域設定手段 3 3で設定し、 振動レベル検出手段 3 4により、 その振動レベルを検出する。
上記検出された振動レベルは、 路面状態及びタイヤ走行状態推定手段 3 6に送 られ、 路面状態及びタイヤ走行状態推定手段 3 6において、 上記検出された所定 の周波数帯域の圧力変動レベル (圧力変動の周波数帯域値) と、 予め圧力変動レ ベル記憶手段 3 5に記憶されている路面摩擦係数//と圧力変動の周波数帯域値と の関係を示す圧力変動レベル対応表 3 5 Tと対応させて、 路面摩擦係数の推定値
(//推定値) を求めることにより、 路面状態 (路面摩擦係数//) を精度良く推定 することができる。
なお、 路面摩擦係数//の推定値ではなく、 通常路面状態 (ドライ)、 要注意路 面状態 (ゥエツト路、 雪路、 など) 、 危険路面状態 (ハイドロプレーニング状態 、 圧雪路、 ミラ一バーンなど) などのような、 路面状態を推定するようにしても よい。
また、 上記路面摩擦係数//から、 走行中のタイヤの状態である滑り易さを推定 するようにしてもよい。
また、 上記圧力変動スペクトルを用いて、 タイヤの故障状態を推定することも 可能である。 具体的には、 タイヤトレッドの一部に剥離が生じた場合などには、 その部分が路面に接する度に特有の振動が発生するので、 上記圧力変動スぺクト ルの、 1 0〜1 0 0 H zの周波数帯域の圧力変動レベルを検出して、 正常なタイ ャの圧力変動レベルと比較することにより、 タイヤに何らかの異常が生じている ことを推定することができる。 すなわち、 1 0〜1 0 0 k H zの周波数帯域にお ける圧力変動レベルは、 タイヤ回転に同期する帯域の圧力変動レベルであるので 、 上記圧力変動レベルを検出して正常時の圧力変動レベルと比較ればタイヤの異 常が推定できる。 具体的には、 上記検出された圧力変動レベルが正常時より 2 0 %以上高い場合には、 タイヤに何らかの異常が生じていると推定される。
なお、 上記周波数帯域設定手段 3 3による、 路面摩擦係数〃あるいは路面状態 の推定に用いる圧力変動レベルを検出する際の周波数帯域の設定方法は、 上記最 良の形態 1で述べた設定方法と同様であり、 下記に再掲する〃推定値の算出式 ( 1) において、 振動の周波数帯域値 x iを圧力変動の周波数帯域値 (圧力変 動レベル) Xiとして〃推定値を算出するとともに、 この算出された〃推定値と 、 予め測定した路面摩擦係数//との相関係数を求め、 この相関係数が最も高くな るように、 圧力変動レベルを検出するための周波数帯域 f i( i = 1〜: Q) を設定 する。 このとき、 上記周波数帯域 fiの数としては、 3つ以上とすることが好ま しい。
〃推定値 =l/[l+exp{— (ao+aiXi+azXa+'.-' + anXn)}]'''' (1) ここで、 a。;定数、 a a2, ····, an;係数
また、 路面状態あるいは路面摩擦係数 の推定のみを行なうのであれば、 路面 状態、 あるいは、 走行中のタイヤの状態と所定の周波数帯域での圧力変動レベル との関係を記憶する必要がないので、 上記装置 30において、 圧力変動レベル記 憶手段 35を省略するとともに、 路面状態及びタイヤ走行状態推定手段 36では 、 周波数分析手段 32で検出された圧力変動の周波数帯域値 Xiから、 上記式 ( 1) を用いて直接〃推定値を求めたり、 上記 /推定値を用いて、 路面状態を推定 するようにしてもよい。
このように、 本最良の形態 4によれば、 ホイ一ル 1のホイールリム 2に圧力セ ンサ 31を取付けて、 走行中の車両のタイヤに充填されている気体の圧力を検出 し、 この検出された圧力信号の時間軸上における微小振動成分(AC成分) を、 周波数分析手段 32により周波数分析してその圧力変動スぺクトルの圧力変動レ ベルを検出し、 路面状態及びタイヤ走行状態推定手段 36により、 この検出され た圧力変動レベルと、 圧力変動レベル記憶手段 35に記憶された路面状態及び夕 ィャの走行状態との関係を示す圧力変動レベル対応表 35 Tとを比較して、 路面 摩擦係数//や夕ィャの故障状態を推定するようにしたので、 路面状態及び夕ィャ の走行状態を精度良く推定することができる。
なお、 圧力センサ 31の出力の絶対値 (DC成分) からは、 タイヤ内圧を検出 することができるので、 本装置 30は、 上記圧力センサ 3 1として、 近年普及し ているタイヤ内圧モニタ一システムの圧力センサをそのまま用いることができる 。 したがって、 ハ一ドウエア付カ卩によるコストアップを回避して、 低コスト化を 図ることができる。 また、 上記圧力センサ 3 1により夕 ィャ内圧を検出することにより、 タイ ャの走行状態の 1つである、 タイヤ内圧の異常についても推定することができる また、 上記路面状態及び夕ィャ走行状態推定装置 3 0に車両の速度を検出する 手段を設けるとともに、 車速毎に路面摩擦係数/ zと圧力変動の周波数帯域値との 関係を示す圧力変動レベル対応表 3 5 Tを準備して、 圧力変動スぺクトルのデー 夕に加え、 車両の速度デ一夕を用いて走行時の路面状態及び夕ィャの走行状態を 推定するようにすれば、 路面状態及びタイャの走行状態の推定精度を更に向上さ せることができる。
更に、 車両の各輪に荷重測定装置を設置して車両各輪に作用する荷重を検出し 、 車両各輪の荷重データに基づいて、 走行時の路面状態及びタイヤの走行状態の 推定を行うことも可能である。
すなわち、 大型の運搬車などのように、 積み荷の重さにより車輪に加わる荷重 が大きく変動する車両においては、 荷重による摩擦係数の変化が大きいため、 荷 重によりタイヤの振動状態が変化する (荷重が大きくなると摩擦係数が減少して 滑り易くなる) ので、 これを補正するため、 路面摩擦係数//と振動レベルとの関 係を示す圧力変動レベル対応表 3 5 Tを各荷重毎に作成して記憶しておき、 上記 荷重測定装置で検出された車両各輪の荷重データに応じて、 路面状態及びタイヤ 走行状態を推定するようにすれば、 推定精度を更に向上させることができる。
<実施例 1 >
試験車両に圧力センサ 1 1を取付け、 上記車両を、 V= 2 0 km/hで通常の アスファルト (ドライアスファルト) と滑り易い雪上において走行させて、 タイ ャ内圧の圧力変動を測定して周波数分析し、 圧力変動スぺクトルを求めた結果を 第 1 4図に示す。 このグラフの横軸は周波数、 縦軸は 2 X 1 0—2P aを O d Bと したときの圧力変動レベルの大きさであり、 同図の細い実線がドライアスフアル ト、 太い実線が雪上のデ一夕である。
第 1 4図に示すように、 滑り易い雪上では、 1 0 0 0 H z以上の高周波領域で の圧力変動レベルが高くなつていることが分かる。 これは、 滑り易い雪上におい ては、 路面と接しているタイヤのトレ ッド面の路面からの拘束が小さくなり 、 トレツド面が滑り振動を発生してタイヤ内部の気体を加振しているためと考え ゥれ o
このように、 圧力変動レベルと、 路面の摩擦係数 との対応を調べておけば、 タイヤ内の圧力変動を常時モニタリングすることで路面状態 (路面の摩擦係数〃 ) を推定することが可能となることが確認された。
なお、 この方法は、 タイヤ振動、 ホイール振動、 サスペンション振動にも同様 に適応できる。
<実施例 2 >
実施例 1と同様な方法で、 様々な路面状態におけるタイヤ内の圧力変動、 ホイ ール振動を測定し、 上記式 (1 ) を用いて^推定値を算出し、 実際に測定した路 面摩擦係数 //との相関関係を調べた結果を第 1 5図及び第 1 6図に示す。 このと き、 〃推定値の計算に用いた振動レベル、 圧力変動レベルは、 上記最良の形態 1 の方法で設定した周波数帯域での振動レベル、 圧力変動レベルを用いた。
タイヤ内の圧力変動、 ホイール振動のいずれの場合にも、 /推定値は路面摩擦 係数//と高い相関関係を示しており、 路面摩擦係数の値を精度良く求めることが できることが確認された。 なお、 タイヤ振動、 サスペンション振動についても同 様の結果が得られた。 最良の形態 5 .
上記最良の形態 1〜4では、 タイヤ振動、 ホイール振動、 サスペンション振動 、 あるいは、 タイヤ内の圧力変動を検出して、 路面状態及びタイヤ走行状態を推 定するようにしたが、 上記方法では、 滑り易い路面状態である氷雪路とハイド口 プレーニング状態の区別が明確ではない。
発明者らは、 上記振動スぺクトルまたは圧力変動スぺクトルを詳細に検討した 結果、 ハイ ドロプレーニング状態が発生した場合には、 振動スペクトルまたは圧 力変動スぺクトルにおいて、 タイヤのパターンピッチ 1次周波数近傍の振動レべ ルまたは圧力変動レベルが特徴的に大きくなることがわかった。
そこで、 本例では、 第 1 7図に示すように、 上記最良の形態 4の装置 3 0に、 ハイドロプレーニング検出手段 5 0を 付カ卩した、 路面状態及びタイヤ走行状 態推定装置 3 0 Hを構成して、 タイヤのパターンピッチ 1次周波数近傍の振動レ ベルまたは圧力変動レベルを検出することにより、 ハイドロプレーニング状態の 発生の推定も同時に行えるようにした。
第 1 7図において、 5 1は車両の速度を検出する車速検出手段、 5 2は上記車 速検出手段 5 1からの車速のデ一夕からパターンピッチ周波数を算出するパ夕一 ンピッチ周波数算出手段、 5 3は圧力センサ 3 1の出力を周波数分析する第 2の 周波数分析手段で、 この第 2の周波数分析手段 5 3に設けられた第 2の周波数帯 域設定手段 5 4により、 圧力変動レベルを検出する周波数帯域を上記パターンピ ツチ周波数を含む周波数帯域に設定し、 ハイドロプレーニング振動レベル検出手 段 5 5により、 上記周波数帯域の圧力変動レベルを検出する。
5 6は上記検出された圧力変動レベルと所定の閾値とを比較してハイドロプレ —ニング状態の発生を推定するハイド口プレーニング状態推定手段である。 上記ハイドロプレーニング検出手段 5 0においては、 はじめに、 パターンピヅ チ周波数算出手段 5 2において、 車速検出手段 5 1で検出した車速データ Vと、 タイヤ周長 Lと、 トレッドパターンのブロック数 nとを用いて、 以下の式 (2 ) により、 パターンピッチ周波数 Fpを算出する。
Fp(Hz) = V(km/h) x l000(m/km) ÷3600(s/h) ÷ L (m) x n - - - - ( 2 ) そして、 第 2の周波数分析手段 5 3のハイドロプレーニング振動レベル検出手 段 5 5により、 圧力変動スペクトルの、 上記パターンピッチ周波数 Fpに相当す る周波数帯域での圧力変動レベルを検出した後、 ハイドロプレーニング状態推定 手段 5 6により、 上記検出された圧力変動レベルと所定の閾値とを比較し、 上記 圧力変動レベルが上記閾値を超えた場合に ハイドロプレーニング状態が発生し たと推定する。
これにより、 滑り易い路面状態である氷雪路とハイドロプレーニング状態を明 確に区別することができる。
なお、 上記閾値は、 例えば、'車両各輪に作用する荷重等により適宜変更できる ようにすれば、 ハイドロプレーニング状態の推定精度を更に向上させることがで きる。 なお、 上記最良の形態 5では、 圧力 センサ 3 1により、 タイヤ内の気体の 圧力変動を検出してハイ ドロプレーニング状態を推定する場合について説明した が、 加速度センサ 1 1を用いて、 タイヤ、 トレッド、 サスペンション振動を検出 して周波数分析し、 得られた振動スペクトルからハイ ドロプレーニング状態を推 定することも可能である。
また。 上言 3例では、 ノ ターンピッチ周波数帯域圧力変動レベルが一定の閾値を 超えた場合に、 タイヤがハイドロプレーニング状態にあると推定するようにした が、 上記パターンピッチ周波数に影響されない周波数帯域の振動レベルまたは圧 力変動レベルを求め、 これに対するパターンピッチ周波数帯域の振動レベルまた は圧力変動レベルの比が一定の閾値を超えた場合には、 タイヤがハイ ドロプレー ニング状態にあると推定するようにすれば、 ハイドロプレーニング状態の推定精 度を更に向上させることができる。
なお、 上記第 2の周波数分析手段 5 3の機能を、 上記周波数分析手段 3 2にも たせる構成とすることも可能である。 ' <実施例; 3 >
試験車両に圧力センサを取付け、 上記車両を、 水深 1 0 mmの路上を V= 9 0 km/hで走行させた。 このとき、 ハイドロプレーニングが発生し、 ハンドル操 作やブレ一キ操作による車体の制御が不可能な危険な状態になっていた。
上記の状態でタイヤ内の圧力変動を測定して周波数分析し、 圧力変動スぺクト ルを求めたところ、 第 1 8図に示すように、 9 0 0〜1 0 0 0 H z付近の振動レ ペルが特徴的に大きくなつていることが分かった。
また、 試験車両に加速度センサを取付けて同様の実験を行い振動スぺクトルを 求めたところ、 第 1 9図に示すように、 上記第 1 8図と同じ周波数帯域に振動レ ベルのピークが見られた。
ここで、 上言己試験車両に用いたタイヤは 195/60R15サイズの乗用車タイヤで、 ピッチ周波数は上記式 (2 ) を用いて、 以下のように算出される。
90(km/h) X 1000(m/km) ÷3600(s/h) +1.885 (m) x 0=943Hz
すなわち、 上記第 1 8図に示す圧力変動スぺクトル、 及び、 第 1 9図に示す振 動スペクトルの 9 0 0〜1 0 0 0 H z付近において、 圧力変動レベル、 振動レべ ルが高くなつているのは、 タイヤトレ ヅドと路面との間の水膜がトレッドプ ロックに衝突することにより、.ブロックのピッチ一次周波数での圧力変動 ·振動 の増大によるものであることがわかる。 これにより、 上記のような挙動を示す夕 ィャのタイヤ内圧の変動あるいはタイヤ、 ホイール、 サスペンションの振動を検 出することにより、 ハイドロプレーニング状態を推定することができることが確 認された。
<実施例 4 >
加速度センサをホイールに取付けた試験車両を、 水深 1 0 mmの路上とドライ アスファルト路上を速度を変えて走行させて、 振動スペクトルを求め、 以下の 2 つの周波数帯域での振動レベルの比を算出しプロヅトした結果を第 2 0図に示す ο *
(900〜1000Hz帯域での振動レベル) / (100〜200Hz帯域での振動レベル) 水深 1 0 mmの場合には、 車速が 7 5 km/hを超えると急激に振動レベルの 比が増加することがわかった。 そこで、 閾値を 0 . 3に設定するようにすれば、 ハイドロプレ一ニング状態を確実に推定することができる。 最良の形態 6 .
上記最良の形態 1〜5では、 一定速の直進走行中、 あるいは、 緩やかな加減速 、 操舵時における路面摩擦係数//の推定方法について説明したが、 タイヤの路面 に対するすべりが極端に大きくなつた場合、 例えば、 加速の際やブレーキを踏ん だ時などのように、 タイャの輪速と車体速との比であるスリツプ率が高くなつた ような場合には、 上記推定された路面摩擦係数の値が実際よりも低くなる傾向に ある。 このため、 すべりが大きい状態では路面状態や危険度を誤判定する恐れが ある。 そこで本例では、 第 2 1図に示すように、 上記最良の形態 1の装置 1 0に 、 ブレーキスイッチ O NZO F F検出手段 6 1からの制御信号に基づいて、 〃推 定値を順次更新して、 車両の走行状態を制御する車両制御手段 7 0に出力する// 推定値出力手段 6 2を付カ卩した路面状態装置 6 0を構成して、 急激な加減速など の制動に入る前の 推定値を検知し、 この 推定値を用いて制動初期から適正な 車両制御を行うことにより、 上記すベりによるシステムの誤動作を防止するよう にした。
同図において、 11はタイヤの振動を検出する加速度センサ、 12は周波数帯 域設定手段 13と振動レベル検出手段 14とを備え、 上記加速度センサ 11で検 出されたホイール振動の振動情報信号を周波数分析して、 上記振動の周波数スぺ クトル (以下、 振動スペクトルという) の、 路面状態やタイヤの走行状態によつ てその振動レベルが特徴的に変化する周波数範囲、 すなわち、 少なくとも 10〜 10000Hzの範囲に含まれる周波数帯域の振動レベルを検出する周波数分析 手段、 16 Zは上記振動レベルのデ一夕から、 上述した //推定値の算出式 (1) を用いて路面摩擦係数の推定値 (//推定値) を演算する路面摩擦係数推定手段、 61はブレーキスィツチのオン ·オフ状態を検出するブレーキスィヅチ ON/0 FF検出手段、 62は上記ブレーキスィッチ ON/OFF検出手段 61からの制 御信号に基づいて、 上記演算された〃推定値を順次更新して、 車両の走行状態を 制御する車両制御手段 70に出力する〃推定値出力手段である。
なお、 本例では、 上記加速度センサ 1 1を、 上記最良の形態 1と同様に、 ホイ —ル 1のホイ一ノレリム 2の、 タイヤ側の凹部に取付けて、 タイヤ 4から伝播され るホイ一ル 1の振動を検出するようにした。
次に、 上記構成の路面状態推定装置 60の動作について、 説明する。
まず、 加速度センサ 11によりホイール 1に伝播されたタイヤからの振動を検 出し、 この検出された振動情報信号を周波数分析手段 12により周波数分析して 所定の周波数帯域の振動レベルを検出する。 詳細には、 周波数分析手段 12の検 出する上記振動レベルは、 中心周波数が、 路面状態やタイヤの走行状態によって その振動レベルが特徴的に変ィ匕する周波数範囲、 すなわち、 少なくとも 10〜1 0000 Hzの範囲にある、 所定の帯域幅を有する周波数帯域の振動レベルであ つて、 例えば、 800〜 3500Hzのような、 比較的広い帯域幅を有する 1つ の周波数帯域の振動レベルでもよいし、 800〜1000Hz, 1600-20 00 Hz, 3000〜3500Hzでの振動レベルなどのように、 比較的狭い帯 域幅を有する複数の周波数帯域での振動レベル (複数個) でもよい。周波数分析 手段 12では、 上記 1つあるいは複数の周波数帯域: f i(i = l〜n) を周波数帯 域設定手段 13で設定し、 振動レベル検出手段 14により、 その振動レベル、 す なわち、 振動の周波数帯域値 1〜! 1) を検出する。
なお、 上記周波数帯域設定手段 13及び振動レベル検出手段 14を備えた周波 数分析手段 12による上記振動の周波数帯域値 Xiの検出は、 通常、 高速フ一リ ェ変換 (FFT) を用いた周波数分析装置である FFTアナライザ一により実現 できる。
路面摩擦係数推定手段 16 Zでは、 上記検出された振動の周波数帯域値 Xiか ら、 以下に再掲する /推定値の算出式 (1) により、 推定値を演算する。
推定値=1/[1+6 {ー(&。+&1 1+ 2:^2+ hanxn)}]---- (1) ここで、 。 ;定数、 a15 a2, ····, an;係数
そして、 上記式 (1) で算出した〃推定値と、 予め求めた路面摩擦係数 との 相関係数を求め、 この相関係数が最も高くなるように、 上記/推定値を演算する ための複数の周波数帯域: f i(i = l〜n) を設定する。
上記路面摩擦係数推定手段 16 Zでは、 周波数分析手段 12の振動レベル検出 手段 14で検出された、 上記の方法で設定された各周波数帯域 f i = 1〜; Q) 'における振動レベル x i= 1〜! 1) から、 上記の式 (1) を用いて//推定値を 算出する。
上記路面摩擦係数推定手段 16 Zで演算された //推定値は /推定値出力手段 6 2に送られる。 〃推定値出力手段 62では、 ブレーキスィヅチ ON/OFF検出 手段 61からの更新中断信号が入力されない場合には、 上記路面摩擦係数推定手 段 16 Zから送られてきた ^推定値により、 //推定値を順次更新して車両制御手 段 70に出力する。 また、 上記更新中断信号が入力された場合には、 /推定値を 更新せず、 ブレーキスイッチが踏まれる前の〃推定値を車両制御手段 70に出力 する。 ·
次に、 上記//推定値の更新方法について、 第 22図のフローチャートを参照し て更に詳細に説明する。
まず、 ステップ S 10では、 〃推定値〃nを演算し、 ステップ S 11で、 〃推 定値を更新して上記/ nを新たな//推定値とする。 ステヅプ S 12では、 ブレー キスイッチ ON/OFF検出手段 61により、 ブレーキスイッチの状態を検出し 、 ブレーキスィッチが OFF状態の場合には、 ステップ S 13に進み、 推定値 出力手段 6 2において、 上記// nを// 推定値として車両制御手段 7 0に出力 する。 そして、 ステップ S 1 4で次の^推定値// n+1を演算した後、 この// n«を 〃nとして上記ステップ S 1 1に戻り、 〃推定値を更新して上記^ n (ステップ S 1 4で演算した〃 n+1) を新たな//推定値として、 ステップ S 1 2へ進み、 再び、 ブレーキスィツチの O N/O F Fを検出する。
一方、 ブレーキスイッチが O N状態の場合には、 ステップ S 1 5に進み、 プレ —キスイッチ O N/O F F検出手段 6 1から〃推定値出力手段 6 2に更新停止信 号を出力して 推定値の更新を中断し、 以後は、 上記更新を中断する前の/推定 値である j nを〃推定値として車両制御手段 7 0に出力する。
なお、 その後にブレーキスィッチの O F Fを検出した場合には、 所定時間経過 後に上記ステップ S 1 1に戻り、 〃推定値の更新を再開する。
このように、 ブレーキが踏まれて急激な減速が起こった場合には、 タイヤのす ベりが生じ易くなるので、 ブレーキが踏まれた後の制御は、 新たに推定された 推定値〃 n+1ではなく、 ブレーキが踏まれる直前に推定した〃推定値である ^を 用いて行うようにしたので、 システムの誤動作を防止することができる。
このように、 本最良の形態 6によれば、 加速度センサ 1 1により、 ホイール 1 の振動を検出し、 これを周波数分析して得られる振動スぺクトルの振動レベルを 検出して路面摩擦係数を推定するとともに、 ブレーキスィツチ O N/O F F検出 手段 6 1により、 ブレーキスィッチのオン 'オフを検出し、 ブレーキが踏まれた と判断された場合には、 路面摩擦係数の推定値の更新を中断するようにしたので 、 タイヤのすべりによるシステムの誤動作を防止することができる。
なお、 上記最良の形態 6では、 加速度センサ 1 1をホイールリム 2のタイヤ側 に取付けて、 ホイール 1に伝播されるタイヤの振動を検出するようにしたが、 上 述したように、 加速度センサ 1 1をホイールリム 2のホイールディスク側や、 夕 ィャトレッド 5の内面側 5 a、 あるいは、 サスペンション部 6に取付けてタイヤ の振動を検出し、 路面状態を推定するようにしてもよい。
あるいは、 上記最良の形態 4に示したように、 上記加速度センサ 1 1に代えて 、 タイヤ内に圧力センサ 3 1を設置し、 この圧力センサ 3 1の出力の時間軸上に おける微小振動成分 (A C成分) を抽出して、 タイヤに充填されている気体の圧 力変動を検出し、 これを周波数分析し て得られる圧力変動スペクトルの圧力 変動レベルを検出して、 この圧力変動レベルから上記 z推定値の算出式 (1) を 用いて/ z推定値を演算するようにしてもよい。
また、 上記最良の形態 6では、 プレ一キスイッチのオン ·オフ状態を検出して 、 〃推定値出力手段 62における〃推定値の更新を制御するようにしたが、 第 2 3図に示すように、 上記ブレーキスイッチ ON/OFF検出手段 61に代えて、 あるいは加えて、 駆動輪と従動輪の回転数をそれそれ検出する輪速検出手段 63 a, 63bと、 検出された駆動輪と従動輪の回転数からスリップ率 Sを算出し、 これを所定の閾値 Kと比較してスリップ率 Sの大きさを判定するスリップ率判定 手段 64を設けた路面状態推定装置 6 O Sを構成して、 スリップ率 Sの大きさに 基づいて//推定値の更新を制御するようにしてもよい。
上記スリップ率 Sによる〃推定値の更新方法について、 第 24図のフローチヤ 一トを参照して詳細に説明する。
まず、 ステップ S 20では、 z推定値〃nを演算し、 ステップ S 21で、 〃推 定値を更新して上記/ /nを新たな〃推定値とする。 ステヅプ S 22では、 駆動輪 の回転数 F 1と従動輪の回転数 F 2をそれそれ検出し、 ステップ S 23では、 以 下の式 (2) によりスリップ率 Sを算出する。
S= | (a · F 1-b · F2) / (a · F2) 卜… (2) 但し、 F l, F 2はそれそれ 2輪の平均値で、 a, bは、 回転数を速度に変換 するための係数である。
そして、 ステップ S 24において、 上記スリップ率 Sが予め設定された閾値 K (ここでは、 K = 0. 2とした) を超えたかどうかを判定する。
S≤Κの場合には、 ステップ S 25に進み、 〃推定値出力手段 62において、 上記 ηを〃推定値として車両制御手段 70に出力する。 そして、 ステップ S 2 6で次の〃推定値// η+1を演算した後、 この〃 η+1を ^として上記ステップ S 21 に戻り、 //推定値を更新して上記〃 η (ステップ S 26で演算した// η+1) を新た な 推定値として、 ステップ S22へ進む。
一方、 S > Κの場合には、 ステップ S 27に進み、 スリヅプ率判定手段 64か ら^推定値出力手段 62に更新停止信号を出力して^推定値の更新を中断し、 以 後は、 上記更新を中断する前の //推定 値である〃 nを 推定値として車両制 御手段 7 0に出力する。
なお、 その後にスリップ率 Sが閾値 K以下になった場合には、 所定時間経過後 に上記ステップ S 2 1に戻り、 推定値の更新を再開する。
このように急激な加減速等により、 タイヤのスリップ率 Sが予め設定された閾 値 Kを超えた後の制御は、 新たに推定された /推定値^ n+1ではなく、 S > Kと なる直前に推定した/推定値である// nにより行うことにより、 システムの誤動 作を防止することができる。
なお、 4輪駆動車の場合には、 上記のように駆動輪と従動輪の回転数からスリ ヅプ率 Sを算出する方法が使えないので、 エンジン回転数 Rを検出して、 ェンジ ン回転数が所定の閾値 Rzよりも高くなつたときに、 トルクが非常に高くなつて 、 タイヤがすべりやすい状態になると判定して、 //推定値の更新を中断する。 上記エンジン回転数による 推定値の更新方法について、 第 2 4図のフローチ ャ一トを参照して詳細に説明する。
まず、 ステップ S 3 0では、 推定値〃 nを演算し、 ステップ S 3 1で、 //推 定値を更新して上記/ nを新たな//推定値とする。 ステップ S 3 2では、 ェンジ ン回転数 Rを検出し、 この検出されたエンジン回転数 Rが所定の閾値 Rz (例えば 、 Rz= 4 5 0 0 r p m)を超えたかどうかを判定する。
R≤RZの場合には、 ステップ S 3 3に進み、.〃推定値出力手段 6 2において 、 上記〃 nを〃推定値として車両制御手段 7 0に出力する。 そして、 ステップ S 3 4で次の〃推定値〃 n+1を演算した後、 この〃 n+1を〃 nとして上言己ステップ S 3 1に戻り、 ^推定値を更新して上記〃 n (ステップ S 3 4で演算した〃 n+1) を新 たな〃推定値として、 ステップ S 3 2へ進み、 再び、 エンジン回転数 Rを検出す
^ o
一方、 R >RZの場合には、 ステップ S 3 5に進み、 〃推定値の更新を中断し 、 以後は、 上記更新を中断する前の〃推定値である〃 nを /推定値として車両制 御手段 7 0に出力する。
なお、 その後にエンジン回転数が低下して; ^ RZとなった場合には、 所定時 間経過後に上記ステップ S 3 1に戻り、 〃推定値の更新を再開する。 これにより、 4輪駆動車の場合でも 、 エンジン回転数 Rを検出して、 タイ ャのすべり状態を判定し、 推定値の更新を制御すれば、 システムの誤動作を防 止することができる。
第 2 6図は、 D R Yアスファルト、 WE Tアスファルト (水深約 l mm) 、 ノ、 ィプレプール (コンクリート;水深約 1 0 mm) 、 圧雪路、 氷盤路で、 上記試験 車両を一定速度で走行させ、 上記最適な周波数帯域の振動レベルを用いて、 各路 面での//推定値を算出した結果を示す図である。 ハイプレブ一ルでは、 車両の速 度が上がるにつれ、 タイヤの浮き上がり現象が生じ接地面積が低下し、 このため /も低下するが、 この 推定値は、 このような/ z低下を反映しており、 通常の制 動距離から求めた路面摩擦係数とほぼ合致していることが確認された。
次に、 上記試験車両を D R Yアスファルトにおいて、 上記試験車両を緩やかに 加速したところ、 第 2 7図の一点鎖線に示すように、 //推定値は上記第 2 6図に 示した一定速度で走行させた場合の〃推定値とほぼ一致しており、 推定値の誤 判断が起こらないことが確認された。
しかしながら、 D R Yアスファルトにおいて、 上記試験車両をフル加速した場 合には、 第 2 7図の破線で示すように、 途中で /推定値が低下してしまう領域が 存在する。 これらの領域は、 エンジン回転数が高くなり、 ギアチェンジを行う直 前である。 すなわち、 エンジントルクが高くなり、 タイヤのスリップ率が高くな つている領域であり、 実際に、 タイヤのスリップ率が 2 0 %を超えていた。
そこで、 上記第 2 4図に示したスリップ率 Sによる制御フロー、 及び、 第 2 5 図に示したエンジン回転数による制御フローのロジックを組み込んだシステムを 試験車両に搭載し、 D R Yアスファルトにおいて、 上記試験車両をフル加速して 推定値を求めたところ、 第 2 8図に示すように、 タイヤのスリップ率が高くな つている間は、 の更新が中断され、 その直前の 値が保持されることが確認さ k « ο
なお、 上記試験車両としては、 1 8 0 0 c cの F F駆動車を使用し、 スリップ 率 Sの閾値を K = 0 . 2に、 エンジン回転数 Rの閾値 Rzを 4 5 0 0 r p mに設 疋し/こ。 最良の形態 7.
第 29図は、 上記最良の形態 6の路面状態推定装置 60の各手段 11〜: L 4, 16 Zを備え、 演算された〃推定値を用いて ABSブレーキを制御する ABS制 動制御装置 80の一構成例を示す図で、 ここでは、 加速度センサ 11が取付けら れたホイール側 (転動側) Aと、 非転動側である車体側 Bとを無線により接続し 、 加速度センサ 11で検出したホイール 1の振動情報信号を無線により車体側 B に送り、 車体側 Bにてこれを受信して周波数分析して〃推定値を求め、 ABSブ レーキを |J御するようにしている。
ホイール側 Aには、 上記加速度センサ 11とその駆動 ·検出用の回路 81とバ ヅテリ一 82と、 上記加速度センサ 11で検出されたホイ一ル 1の振動情報信号 をデジタル変換して圧縮する A/D変換器 83 a, 情報圧縮回路 83 b及び上記 圧縮信号を車体側 Bに無線により送信する送信器 83 cから成る送信回路 83と 、 送信用のアンテナ 83 pとを設ける。 - また、 車体側 Bには、 上記圧縮信号を受信する受信器 84及びアンテナ 84 p と、 受信された圧縮信号を復元した後周波数分析して得られる振動スぺクトルの 、 所定周波数帯域の振動レベルを検出する FFTアナライザ一 85と、 上記振動 レベルを用いて//推定値を演算する演算回路 86と、 ブレーキスィヅチのオン · オフ状態を検出するブレーキスィヅチ ON/OFF検出器 87と、 このブレーキ スィヅチ ON/OFF検出器 87の出力に基づいて上記//推定値を順次更新して 出力する〃更新回路 88と、 ABSブレーキを制御する ABSブレーキ制御器 8 9とを設ける。
なお、 上記 F FTアナライザ一 85は、 上記最良の形態 6の、 周波数帯域設定 手段 13及び振動レベル検出手段 14を備えた周波数分析手段 12に相当する機 能を有するものであり、 演算回路 86は路面摩擦係数推定手段 16 Zに、 //更新 回路 88は〃推定値出力手段 62に、 ブレーキスィヅチ ON/OFF検出器 87 はブレーキスィヅチ ONZOFF検出手段 61にそれそれ相当する。
これにより、 信号接続線を設けることなく、 転動側であるホイール側 Aで検出 された振動情報信号を車体側 Bにて処理して、 路面摩擦係数を推定して AB Sプ レーキを港 IJ御することができる。 次に 上記構成の AB S制動制御装 置 8 0の動作について、 説明する。 まず、 加速度センサ 1 1により検出され、 加速度センサ回路 8 1から出力され たホイール 1の振動情報信号を A/D変換器 8 3 aによりデジタル変換した後、 情報圧縮回路 8 3 bにより圧縮し、 送信器 8 3 cから、 アンテナ 8 3 pを介して 、 上記圧縮信号を車体側 Bに無線により送信する。
この送信された圧縮信号は、 アンテナ 8 4 pを介して受信器 8 4で受信されて 、 F F Tアナライザー 8 5に送られる。 F F Tアナライザ一 8 5では、 上記圧縮 された受信信号を復元した後、 周波数分析して得られる振動スペクトルの、 複数 の周波数帯域 f i( i = l〜! 1 ) における振動の周波数帯域値 X i( i = l〜! 1 ) を 検出する。 そして、 演算回路 8 6にて、 上記最良の形態 6と同様にして、 上記振 動の周波数帯域値 i = 1〜! 1 ) から〃推定値を演算して〃更新回路 8 8に送 り、 〃更新回路 8 8において、 上記〃推定値を順次更新して、 AB Sブレーキ制 御器 8 9に出力する。 AB Sブレーキ制御器 8 9では、 上記更新された〃推定値 を用いて AB Sブレーキを制御する。
なお、 本例においても、 上記最良の形態 6と同様にして、 ブレーキスイッチ〇 NZO F F検出器 8 7により、 上記〃更新回路 8 8における //推定値の更新を制 御し、 AB Sブレーキの制御を行うための/ z推定値を変更可能としている。
したがって、 ブレーキが踏まれていない状態では、 AB Sブレーキ制御器 8 9 には、 上記演算された//推定値が順次入力し、 ブレーキが踏まれた場合には、 ブ レーキが踏まれる直前に推定した //推定値が入力される。
一般に低 路ではブレーキをかけると、 路面からの摩擦力が低いために、 後述 するように、 急下に車輪速が低下し、 スリヅプ率が上がる。 スリヅプ率が上がり 過ぎると、 制動力の低下と操舵力の大幅な低下を引き起こし、 危険である。 そこで、 本最良の形態 7では、 AB Sブレーキ制御器 8 9において、 推定〃が 低ければ、 AB Sブレーキモードに入る閾値を下げ、 早めに AB Sを作動させて 、 スリップ率が上がらないような制御を行う。 このとき、 ブレーキが踏まれた場 合には、 ブレーキが踏まれる直前に推定した /推定値を用いることにより、 シス テムの誤動作を防ぐようにしている。
また、 低^路では、 早めに AB Sモードに入っても油圧のかけ方が急激である と、 やはりスリップ率が高くなりすぎ て危険であるので、 低〃路では、 早め に AB Sモードに入るとともに、 AB Sブレーキ f¾御器 8 9において、 ゆっくり としたブレーキ油圧を増加させるようにしている。逆に、 減圧する場合には、 低 〃路では摩擦力が低いので、 スリップ率がなかなか下がらない (タイヤの加速が 遅い) ので、 速く下げた方がよい。
第 3 0図は、 タイヤにかかる力を示す模式図であり、 路面からの摩擦力は、 同 図に示すように、 ブレーキ力に対して反対の向きに作用する。 このため、 路面の が低いとブレーキ力が相対的に強くなり、 タイャの回転速度が急激に低下し、 スリップ率が急激に上昇する。極端な場合には、 タイヤがロックに至り危険であ る。 タイヤがロックすると、 第 3 1図のスリップ率と摩擦力の関係を示す S―〃 カーブに示すように、 //が低くなり、 また、 操舵力も低下して曲がれなくなる。 このように、 一旦タイヤの回転速度が落ちてしまうと、 低 /路面では摩擦力も 低いので、 ブレーキ油圧を A B S制御で緩めてもスリヅプ率が適当なところに戻 るのに時間がかかる。 すなわち、 制動距離が長くなつて危険である。
第 3 2図, 第 3 3図は、 試験車両を、 WE T路面と I C E路面においてそれそ れ走行させ、 車体速度と車輪速度とを計測したグラフで、 これらの速度差を車体 速度で割つたものがスリヅプ率になる。
I C E路面では、 WE T路面に比べて制動初期でタイヤ回転速度が低下しやす く、 スリップ率が高くなつていることが分かる。 したがって、 低い/の路面では 、 上記のように、 AB Sへ移行する際の油圧の閾値を下げて、 ブレーキ油圧が上 がりすぎないように制御することが好ましい。
また、 AB S制動中の増圧、 減圧についても、 路面〃に応じて適正に制御する ことが好ましい。
通常の AB S制御においても、 ギアセンサの情報を元に、 AB Sブレーキ油圧 の増減調整しているが、 本発明のように、 予め路面^を推定し、 〃推定値に基づ いて上記油圧の増減を調整することにより、 制御ミスを低減できる。
また、 第 3 3図は、 本発明による AB S制動制御装置 8 0を搭載した試験車両 を I C E路面において走行させ、 AB S制動試験を行い、 車体速度と車輪速度と を計測した結果を示す図で、 上記第 3 2図と比較してわかるように、 本発明によ る AB S制動制御装置 8 0を用いて A B Sブレーキの制動を行った場合には 、 車輪速は車体速に対して低下しておらず、 スリップ率が適正に制御されている ことが確認された。 産業上の利用可能性
以上説明したように本発明によれば、 振動検出手段により、 走行中の車両の夕 ィャ、 ホイール、 あるいは、 サスペンション部の振動を検出し、 これを周波数分 祈して得られる上記振動の周波数スぺクトルの、 少なくとも 1 0〜1 0 0 0 0 H zの範囲に含まれる周波数帯域の振動レベルを検出して、 上記検出された振動レ ベルから、 走行時の路面状態及び夕ィャめ走行状態を推定するようにしたので、 路面状態及び夕ィャ走行状態を精度よく推定することができ、 車両の安全性を著 しく高めることができる。
また、 振動検出手段を、 タイヤ内に充填された気体の圧力をモニタリングする 圧力センサと同一の 反上、 または、 同一の筐体内に設置するようにしたので、 基板が共有でき、 装置の小型化と低コスト化を実現することができる。
更に、 タイヤまたはホイール部に信号処理手段を設け、 上記振動検出手段で検 出された振動情報信号をデジタル変換するとともにこれを圧縮して車体側に送信 し、 車体側で受信した上記圧縮された信号を周波数分析するようにしたので、 無 線による連続デ一夕通信を行うことができ、 振動の検出精度を向上させることが できる。
また、 タイヤ内に充填されている気体(通常は空気) の圧力の時間軸上での微 小な変化として検出し、 これを周波数分析して得られた周波数スぺクトルの振動 レベルまたは圧力変動レベルを検出して、 上記検出された振動レベルまたは氐カ 変動レベルから、 走行時の路面状態及び夕ィャの走行状態を推定するようにして も、 同様の効果を得ることができる。
また、 上記振動スぺクトルまたは圧力変動スぺクトルのデータと車両の速度デ 一夕とから、 タイヤのパターンピッチ周波数を検出し、 このパターンピッチ周波 数帯域の振動レベルまたは圧力変動レベルが一定の閾値を超えた場合には、 タイ ャがハイドロプレーニング状態にあると推定することにより、 ハイドロプレー二 ング状態を確実に推定することができ る。 なお、 上記パターンピッチ周波数 に影響されない周波数帯域の振動レベルまたは圧力変動レベルを求め、 これに対 するパターンピッチ周波数帯域の振動レベルまたは圧力変動レベルの比が一定の 閾値を超えた場合には、 タイヤがハイ ドロプレーニング状態にあると推定するこ とにより、 推定精度を更に向上させることができる。
また、 タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の 少なくともいずれか 1つを検出し、 これを周波数分析して得られる振動スぺクト ルの振動レベル、 または、 圧力変動スペクトルの圧力変動レベルを検出して路面 摩擦係数を推定するとともに、 ブレーキスイッチのオン 'オフを検出し、 ブレー キが踏まれたと判断された場合には、 路面摩擦係数の推定値の更新を中断するよ うにしたので、 ブレーキが踏まれた後には路面摩擦係数の推定を行わないように でき、 タイヤのすべりによるシステムの誤動作を防止することができる。
また、 上記ブレーキスィヅチのオン ·オフの検出に代えて、 駆動輪と従動輪の 速度を検出してスリップ率を算出し、 このスリップ率が予め設定された閾値を超 えた場合、 あるいは、 エンジン回転数を検出し、 エンジン回転数が予め設定され た閾値を超えた場合に、 路面摩擦係数の推定値の更新を中断するようにしても同 様の効果を得ることができる。
また、 上記のように路面摩擦係数を連続的に推定するとともに、 運転者がプレ —キを踏む直前の路面摩擦係数推定値の大きさに応じて、 AB S制御へ移行する ブレーキ油圧の閾値を変更するようにしたので、 早めに AB Sを作動させ、 スリ ヅプ率の上昇を抑制することができる。
また、 運転者がブレーキを踏む直前の路面摩擦係数推定値の大きさに応じて、 AB Sブレーキ油圧の増減度合いを調整するようにしたので、 スリヅプ率の上昇 を確実に抑制することができる。

Claims

請 求 の 範 囲
走行中の車両のタイヤまたはホイ一ルまたはサスペンションの振動を検出 し、 これを周波数分析して得られる振動スぺクトルの振動レベルを検出し て、 走行時の路面状態及びタイャの走行状態を推定することを特徴とする 路面状態及び夕ィャ走行状態推定方法。
走行中の車両のタイヤに充填されている気体の圧力変動を検出し、 これを 周波数分析して得られる圧力変動スぺクトルの圧力変動レベルを検出して 、 走行時の路面状態及びタイヤの走行状態を推定することを特徴とする路 面状態及び夕ィャ走行状態推定方法。
タイヤ内に設置した圧力センサの出力の絶対値を用いてタイヤ内圧を検出 するとともに、 上記出力の時間軸上における微小振動成分を検出し、 これ を上記気体の圧力変動としたことを特徴とする請求の範囲 2に記載の路面 状態及び夕ィャ走行状態推定方法。
上記振動スぺクトルまたは圧力変動スぺクトルの、 少なくとも 1 0〜1 0 0 0 0 H zの範囲にある振動レベルまたは圧力変動レベルを検出すること を特徴とする請求の範囲 1〜請求の範囲 3のいずれかに記載の路面状態及 び夕ィャ走行状態推定方法。
上記振動レベルまたは圧力変動レベルを検出する際の周波数帯域の帯域幅 を、 1 0〜5 0 0 H zの範囲としたことを特徴とする請求の範囲 1〜請求 の範囲 4のいずれかに記載の路面状態及び夕ィャ走行状態推定方法。
上記振動レベルまたは圧力変動レベルを検出する際の周波数帯域の帯域幅 を、 検出周波数帯域の 1〜1 0 0 %の範囲としたことを特徴とする請求の 範囲 1〜請求の範囲 4のいずれかに記載の路面状態及び夕ィャ走行状態推 定方法。
3つ以上の周波数帯域で、 上記振動レベルまたは圧力変動レベルをそれそ れ検出することを特徴とする請求の範囲 1〜請求の範囲 5のいずれかに記 載の路面状態及び夕ィャ走行状態推定方法。
上記振動レベルまたは圧力変動レベルのデ一夕から下記の演算式を用いて 路面摩擦係数の推定値を演算することを特徴とする請求の範囲 1〜請求の 範囲 7のいずれかに記載の路面 状態及びタイヤ走行状態推定方法。 路面摩擦係数推定値 =l/[l+exp{— ( a。十 a iX i + a^ z + anXn) }] ここで、 a。;定数、 a l 5 a2, · ·■· , an;係数
Xi ;周波数帯域(f における振動レベルまたは圧力変動レベル
9 . 上記請求の範囲 8に記載の路面摩擦係数の推定値と、 予め測定した路面摩 擦係数との相関係数を求め、 この相関係数が最も高くなるように、 路面摩 擦係数の推定に用いる振動レベルまたは圧力変動レベルを検出する周波数 帯域を設定することを特徴とする請求の範囲 8に記載の路面状態及び夕ィ ャ走行状態推定方法。
1 0 . 上記振動スぺクトルまたは圧力変動スぺクトルのデ一夕に加え、 車両の 速度デ一夕を用いて走行時の路面状態及びタイヤの走行状態を推定するよ うにしたことを特徴とする請求の範囲 1〜請求の範囲 9のいずれかに記載 の路面状態及びタイャ走行状態推定方法。
1 1 . 前輪速度と後輪速度とを検出し、 上記検出された前輪速度と後輪速度と を用いて算出したスリップ率を用いて走行時の路面状態及びタイヤの走行 状態を推定するようにしたことを特徴とする請求の範囲 1〜請求の範囲 9 のいずれかに記載の路面状態及び夕ィャ走行状態推定方法。
1 2 . 車両の速度デ一夕からタイヤのパターンピッチ周波数を検出し、 上記振 動スぺクトルまたは圧力変動スぺクトルの上記パターンピッチ周波数を含 む周波数帯域の振動レベルまたは圧力変動レベルを検出し、 この検出され た振動レベルまたは圧力変動レベルが一定の閾値を超えた場合には、 タイ ャがハイ ドロプレーニング状態にあると推定するようにしたことを特徴と する請求の範囲 1 0に記載の路面状態及びタイヤ走行状態推定方法。
1 3 . 車両の速度データからタイヤのパターンピッチ周波数を検出し、 上記振 動スぺクトルまたは圧力変動スぺクトルの上記パターンピッチ周波数を含 む周波数帯域の振動レベルまたは圧力変動レベルを検出するとともに、 上 記パターンピッチ周波数に影響されない周波数帯域の振動レベルまたは圧 力変動レベルを求め、 これに対する上記パターンピッチ周波数帯域での振 動レベルまたは圧力変動レベルの比が一定の閾値を超えた場合には、 タイ ャがハイ ドロプレーニング状態 にあると推定するようにしたことを特 徴とする請求の範囲 1 0に記載の路面状態及びタイヤ走行状態推定方法。
1 4 . 上記閾値を変更可能としたことを特徴とする請求の範囲 1 2または請求 の範囲 1 3に記載の路面状態及びタイヤ走行状態推定方法。
1 5 . 上記振動スぺクトルまたは圧力変動スぺクトルのデ一夕に加え、 タイヤ 内圧のデ一夕を用いて走行時の路面状態及びタイヤの走行状態を推定する ようにしたことを特徴とする請求の範囲 1〜請求の範囲 1 4のいずれかに 記載の路面状態及び夕ィャ走行状態推定方法。
1 6 . 上言己振動スぺクトルのデ一夕からタイヤの固有振動数を求め、 予め求め たタイャ振動数とタイヤ内圧との関係から夕ィャ内圧を推定し、 この推定 されたタイヤ内圧を上記タイヤ内圧のデータとしたことを特徴とする請求 の範囲 1 5に記載の路面状態及びタイヤ走行状態推定方法。
1 7 . 上記圧力変動スペクトルのうち、 1 0〜1 0 0 k H zの周波数帯域内の ' タイヤ回転に同期する帯域の圧力変動レベルを検出し、 これを正常時の圧 力変動レベルと比較し、 圧力変動が正常時より 2 0 %以上高い場合には、 タイヤに何らかの異常が生じていると推定することを特徴とする請求の範 囲 1〜請求の範囲 1 5に記載の路面状態及び夕ィャ走行状態推定方法。
1 8 . 上記振動スぺクトルまたは圧力変動スぺクトルのデータに加え、 車両各 輪の荷重データを用いて走行時の路面状態及び夕ィャの走行状態を推定す るようにしたことを特徴とする請求の範囲 1〜請求の範囲 1 7のいずれか に記載の路面状態及び夕ィャ走行状態推定方法。
1 9 . 上言 3振動または圧力変動の情報信号をタイヤまたはホイール部にてデジ タル変換信号に変換 ·圧縮した上で車体側に送信し、 車体側にて上記圧縮 信号を受信して復元し、 周波数分析するようにしたことを特徴とする請求 の範囲 1〜請求の範囲 1 8のいずれかに記載の路面状態及びタイヤ走行状 態推定方法。 ·
2 0 . 走行中の車両のタイヤまたはホイールの振動を検出する振動検出手段と 、 上記検出された振動を周波数分析して得られる上記振動の周波数スぺク トルの、 少なくとも 1 0〜 1 0 0 0 0 H zの範囲に含まれる周波数帯域の 振動レベルを検出する手段と、 上記検出された振動レベルから、 走行 時の路面状態及び夕ィャの走行状態を推定する手段とを備えたことを特徴 とする路面状態及び夕ィャ走行状態推定装置。
. 上記振動を、 タイヤまたはホイールの幅方向の振動としたことを特徴と する請求の範囲 2 0に記載の路面状態及び夕ィャ走行状態推定装置。
. 上記振動を、 タイヤまたはホイールの周方向の振動としたことを特徴と する請求の範囲 2 0に記載の路面状態及び夕ィャ走行状態推定装置。
. 上記振動検出手段を、 タイヤ内に充填された気体の圧力をモニタリング する圧力センサと同一の基板上、 または、 同一の筐体内に設置したことを 特徴とする請求の範囲 2 0〜請求の範囲 2 2のいずれかに記載の路面状態 及び夕ィャ走行状態推定装置。
. 上記振動検出手段または上記振動検出手段を設置する基板を、 タイヤま たはホイ一ルに取付けたことを特徴とする請求の範囲 2 0〜請求の範囲 2 2のいずれかに記載の路面状態及び夕ィャ走行状態推定装置。
. 車体側から、 無線にて、 上記振動検出手段を駆動し、 駆動検出部の電源 を省略したことを特徴とする請求の範囲 2 0〜請求の範囲 2 4のいずれか に記載の路面状態及び夕ィャ走行状態推定装置。
. 走行中の車両のサスペンション部の振動を検出する振動検出手段と、 上 記検出された振動を周波数分析して得られる上記振動の周波数スぺクトル の、 少なくとも 1 0〜1 0 0 0 0 H zの範囲に含まれる周波数帯域の振動 レベルを検出する手段と、 上記検出された振動レベルから、 走行時の路面 状態及びタイヤの走行状態を推定する手段とを備えたことを特徴とする路 面状態及び夕ィャ走行状態推定装置。
. 上記振動検出手段を、 ホイールが取付けられているハブと一体化された 部位に取付けたことを特徴とする請求の範囲 2 6に記載の路面状態及び夕 ィャ走行状態推定装置。
. 走行中の車両のタイヤに充填されている気体の圧力変動を検出する圧力 変動検出手段と、 上記検出された圧力変動を周波数分析して得られる圧力 変動スぺクトルの、 少なくとも 1 0〜1◦ 0 0 0 H zの範囲に含まれる周 波数帯域の圧力変動レベルを検 出する手段と、 上記検出された圧力変 動レベルから、 走行時の路面状態及びタイヤの走行状態を推定する手段と を備えたことを特徴とする路面状態及びタイヤ走行状態推定装置。
2 9 . タイヤ内に設置した圧力センサの出力の絶対値を用いてタイヤ内圧を検 出するとともに、 上記出力の時間軸上における微小振動成分を検出し、 こ れを上記気体の圧力変動としたことを特徴とする請求の範囲 2 8に記載の 路面状態及び夕ィャ走行状態推定装置。
3 0 . 上記振動レベルまたは圧力変動レベルを検出する際の周波数帯域の帯域 幅を、 検出周波数帯域の 1〜1 0 0 %の範囲とするとともに、 1つあるい は複数の周波数帯域で検出した上記振動レベルまたは圧力変動レベルのデ —夕から下記の演算式を用いて路面摩擦係数の推定値を演算することを特 徴とする請求の範囲 2 0〜請求の範囲 2 9のいずれかに記載の路面状態及 び夕ィャ走行状態推定方法。
路面摩擦係数推定値 = V[l+exp{— ( a。十 al X l + a2x2 + · + anxn) }] ここで、 a。;定数、 a a2, · · · · , n;係数
X i ;周波数帯域 (f i) における振動レベルまたは圧力変動レベル
3 1 . タイヤまたはホイール部に信号処理手段を設け、 上記振動検出手段で検 出された振動情報信号、 または、 圧力変動檢出手段で検出された圧力変動
' 情報信号をデジタル変換するとともにこれを圧縮して車体側に送信し、 車 体側にて上記圧縮信号を受信して復元し、 周波数分析するようにしたこと を特徴とする請求の範囲 2 0〜請求の範囲 3 0のいずれかに記載の路面状 態及びタイヤ走行状態推定装置。
3 2 . タイヤまたはホイール部に信号処理手段を設け、 上記振動検出手段で検 出された振動情報信号、 または、 圧力変動検出手段を検出された圧力変動 情報信号をタイヤまたはホイール部にて周波数分析して走行時の路面状態 及びタイヤの走行状態を推定し、 この推定された走行時の路面状態及び夕 ィャの走行状態を表わすデータを車体側に送信するようにしたことを特徴 とする請求の範囲 2 0〜請求の範囲 3 0のいずれかに記載の路面状態及び タイヤ走行状態推定装置。
. 上記デ一夕の通信を行うため のアンテナ機能を、 ホイール部に取付 けられているタイャバルブに持たせたことを特徴とする請求の範囲 3 1ま たは請求の範囲 3 2に記載の路面状態及び夕ィャ走行状態推定装置。
. 上記デ一夕の通信を行うためのアンテナを、 ホイールリム部の周上に設 けたことを特徴とする請求の範囲 3 1または請求の範囲 3 2に記載の路面 状態及び夕ィャ走行状態推定装置。
. 自動車やホイ一ル、 タイヤの種類によって異なる振動情報または圧力変 動情報を初期化するためのリセットボタン、 または、 車輪速、 車体加速度 、 車体回転角速度のいずれか 1つあるいは複数を含む車両挙動デ一夕情報 と、 当該推定装置からの情報を照合して自動的に上記振動情報または圧力 変動情報の初期化を行うシステム、 を設けたことを特徴とする請求の範囲 2 0〜請求の範囲 3 4のいずれかに記載の路面状態及びタイヤ走行状態推 . 車両の各輪に荷重測定装置を備え、 車両各輪の荷重デ一夕に基づいて走 行時の路面状態及び夕ィャの走行状態を推定するようにしたことを特徴と する請求の範囲 3 0〜請求の範囲 3 5のいずれかに記載の路面状態及び夕 ィャ走行状態推定装置。
. 上記請求の範囲 3 0〜請求の範囲 3 6のいずれかに記載の路面状態及び タイヤ走行状態推定装置と、 上記装置で推定された路面状態及び/または 走行中のタイヤの状態に基づいて車両の走行状態を制御する車両制御手段 を備えたことを特徴とする車両制御装置。
. タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の 少なくともいずれか 1つを検出し、 これを周波数分析して得られる振動ス ベクトルの振動レベル、 または、 圧力変動スペクトルの圧力変動レベルを 検出して路面摩擦係数を推定する路面状態推定方法において、 ブレーキス ィツチのオン ·オフを検出し、 ブレーキが踏まれたと判断された場合には 、 路面摩擦係数の推定値の更新を中断することを特徴とする路面状態推定 方法。
. タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の 少なくともいずれか 1つを検出 し、 これを周波数分析して得られる振 動スペクトルの振動レベル、 または、 圧力変動スペクトルの圧力変動レべ ルを検出して路面摩擦係数を推定する路面状態推定方法において、 駆動輪 -と従動輪の速度を検出してスリヅプ率を算出し、 このスリップ率が予め設 定された閾値を超えた場合には、 路面摩擦係数の推定値の更新を中断する ことを特徴とする路面状態推定方法。
0 . タイヤ振動、 ホイ一ル振動、 サスペンション振動、 タイヤ内圧力変動の 少なくともいずれか 1つを検出し、 これを周波数分析して得られる振動ス ぺクトルの振動レベル、 または、 圧力変動スペクトルの圧力変動レベルを 検出して路面摩擦係数を推定する路面状態推定方法において、 エンジン回 転数を検出し、 エンジン回転数が予め設定された閾値を超えた場合には、 路面摩擦係数の推定値の更新を中断することを特徴とする路面状態推定方 法。
1 . 走行ギア及びクラッチの接続状況に応じて上記エンジン回転数の閾値を 変更することを特徴とする請求の範囲 4 0に記載の路面状態推定方法。 2 . 上記振動レベルまたは圧力変動レベルを検出する際の周波数帯域の帯域 幅を、 検出周波数帯域の 1〜1 0 0 %の範囲とするとともに、 1つあるい は複数の周波数帯域で検出した上記振動レベルまたは圧力変動レベルのデ —夕から、 下記の演算式を用いて路面摩擦係数を推定することを特徴とす る請求の範囲 3 8〜請求の範囲 4 1のいずれかに記載の路面状態推定方法 ο
路面摩擦係数推定値 = l/ [ l+exp{— ( a。+ a2x2+ " ' · + anxn) }] ここで、 a。;定数、 al 3 a2, · · · ·, an;係数
X i ;周波数帯域(ί ) における振動レベルまたは圧力変動レベル 3 . タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の 少なくともいずれか 1つを検出し、 これを周波数分析して得られる振動ス ぺクトルの振動レベル、 または、 圧力変動スぺクトルの圧力変動レベルを 検出して路面摩擦係数を推定する路面状態推定装置において、 プレーキス ィツチのオン ·オフを検出する手段を備え、 ブレーキが踏まれたと判断さ れた場合には、 路面摩擦係数の 推定値の更新を中断するようにしたこ とを特徴とする路面状態推定装置。
. タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の 少なくともいずれか 1つを検出し、 これを周波数分析して得られる振動ス ベクトルの振動レベル、 または、 圧力変動スペクトルの圧力変動レベルを 検出して路面摩擦係数を推定する路面状態推定装置において、 駆動輪と従 動輪の速度を検出する手段と、 上記検出された駆動輪と従動輪の速度から スリップ率を算出する手段とを備え、 上記スリップ率が予め設定された閾 値を超えた場合には、 路面摩擦係数の推定値の更新を中断することを特徴 とする路面状態推定装置。
. タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の 少なくともいずれか 1つを検出し、 これを周波数分析して得られる振動ス ベクトルの振動レベル、 または、 圧力変動スペクトルの圧力変動レベルを 検出して路面摩擦係数を推定する路面状態推定装置において、 エンジン回 転数を検出する手段を備え、 エンジン回転数が予め設定された閾値を超え た場合には、 路面摩擦係数の推定値の更新を中断することを特徴とする路 . 走行ギア及びクラッチの接続状況を検出する手段を設け、 走行ギア及び クラッチの接続状況に応じて上記ェンジン回転数の閾値を変更するように したことを特徴とする請求の範囲 4 5に記載の路面状態推定装置。
. 上記振動または圧力変動の情報信号を、 タイヤまたはホイール部または サスペンション部にてデジタル信号に変換 ·圧縮した上で車体側に送信し 、 車体側にて上記圧縮信号を受信して復元し、 周波数分析するようにした ことを特徴とする請求の範囲 4 3〜請求の範囲 4 6のいずれかに記載の路 . タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の 少なくともいずれか 1つを検出し、 これを周波数分析して得られる振動ス ベクトルの振動レベル、 または、 圧力変動スペクトルの圧力変動レベルを 検出して路面摩擦係数を連続的に推定するとともに、 運転者がブレーキを 踏む直前の路面摩擦係数推定値 の大きさに応じて、 ABS制御へ移行 するブレーキ油圧の閾値を変更することを特徴とする AB S制動制御方法
49. タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の 少なくともいずれか 1つを検出し、 これを周波数分析して得られる振動ス ぺクトルの振動レベル、 または、 圧力変動スペクトルの圧力変動レベルを 検出して路面摩擦係数を連続的に推定するとともに、 運転者がブレーキを 踏む直前の路面摩擦係数推定値の大きさに応じて、 AB Sブレーキ油圧の 増減度合 L、を調整することを特徴とする ABS制動制御方法。
50. 上記振動レベルまたは圧力変動レベルを検出する際の周波数帯域の帯域 幅を、 検出周波数帯域の 1〜100%の範囲とするとともに、 1つあるい は複数の周波数帯域で検出した上記振動レベルまたは圧力変動レベルのデ 一夕から、 下記の演算式を用いて路面摩擦係数を連続的に推定することを 特徴とする請求の範囲 48または請求の範囲 49に記載の A B S制動制御 方法。
路面摩擦係数推定値 =l/[l+exp{— (a。+aix1 + a2x2 + '''' + anxn)}] ここで、 a。;定数、 al3 a2, ····, an;係数
Xi ;周波数帯域 (f における振動レベルまたは圧力変動レベル 51. タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変動の 少なくともいずれか 1つを検出する手段と、 上記検出された振動情報信号 または圧力変動信号を周波数分析して得られる振動スぺクトルの振動レべ ル、 または、 圧力変動スペクトルの圧力変動レベルを検出し、 下記の演算 式を用いて路面摩擦係数の推定値を連続的に演算する手段と、 ブレーキス ィツチのオン ·オフを検出する手段と、 運転者がブレーキを踏む直前の路 面摩擦係数推定値の大きさに応じて、 AB S制御へ移行するブレーキ油圧 の閾値を変更する手段とを備えたことを特徴とする ABS制動制御装置。 路面摩擦係数推定値 =l/[l+exp{— ( a。十 a2x2+… · + anxn)}] ここで、 a。;定数、 al3 a2, ···', an;係数
Xi ;周波数帯域 (fi) における振動レベルまたは圧力変動レベル
52. タイヤ振動、 ホイール振動、 サスペンション振動、 タイヤ内圧力変 動の少なくともいずれか 1つを検出する手段と、 上記検出された振動情報 信号または圧力変動信号を周波数分析して得られる振動スぺクトルの振動 レベル、 または、 圧力変動スペクトルの圧力変動レベルを検出し、 下記の 演算式を用いて路面摩擦係数の推定値を連続的に演算する手段と、 ブレー キスィツチのオン■オフを検出する手段と、 運転者がブレーキを踏む直前 の路面摩擦係数推定値の大きさに応じて、 AB Sブレーキ油圧の増減度合 いを調整する手段とを備えたことを特徴とする ABS制動制御装置。
路面摩擦係数推定値 =l/[l+exp{— (aQ+a1x1+a2x2 + '''' + anxn)}] ここで、 a。;定数、 a15 a2, ····, an;係数
Xi ;周波数帯域 ( ) における振動レベルまたは圧力変動レベル 53. 上記請求の範囲 51または請求の範囲 52のいずれかに記載の AB S制 動制御装置を備えたことを特徴とする車両制御装置。
PCT/JP2002/013332 2001-12-21 2002-12-20 Procede et appareil pour l'estimation de l'etat de la surface d'une route et de l'etat de fonctionnement de pneumatiques, abs et commande de vehicule dans lesquels ils sont utilises WO2003053747A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02805488.0A EP1457388B1 (en) 2001-12-21 2002-12-20 Method and apparatus for estimating road surface state and tire running state
ES02805488.0T ES2534480T3 (es) 2001-12-21 2002-12-20 Método y aparato para estimar el estado de la superficie de una carretera y el estado de marcha de un neumático
US10/499,431 US7203579B2 (en) 2001-12-21 2002-12-20 Method and apparatus for estimating road surface state and tire running state, ABS and vehicle control using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001-390560 2001-12-21
JP2001-390605 2001-12-21
JP2001390605A JP3892723B2 (ja) 2001-12-21 2001-12-21 Abs制動制御方法とその装置
JP2001390560A JP3892722B2 (ja) 2001-12-21 2001-12-21 路面状態及びタイヤ走行状態推定装置及び車両制御装置
JP2001390583A JP4263400B2 (ja) 2001-12-21 2001-12-21 路面摩擦係数推定方法と路面摩擦係数推定装置
JP2001-390583 2001-12-21

Publications (2)

Publication Number Publication Date
WO2003053747A1 true WO2003053747A1 (fr) 2003-07-03
WO2003053747A8 WO2003053747A8 (fr) 2004-05-27

Family

ID=27347987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013332 WO2003053747A1 (fr) 2001-12-21 2002-12-20 Procede et appareil pour l'estimation de l'etat de la surface d'une route et de l'etat de fonctionnement de pneumatiques, abs et commande de vehicule dans lesquels ils sont utilises

Country Status (5)

Country Link
US (1) US7203579B2 (ja)
EP (2) EP2514640B1 (ja)
CN (1) CN1321838C (ja)
ES (2) ES2534480T3 (ja)
WO (1) WO2003053747A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514704A1 (en) 2003-09-10 2005-03-16 Schrader Electronics Limited Method and apparatus for detecting wheel motion in a tyre pressure monitoring system
CN111674210A (zh) * 2020-06-23 2020-09-18 苏州驶安特汽车电子有限公司 一种轮胎冻结报警系统

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856389B2 (ja) * 2003-06-19 2006-12-13 本田技研工業株式会社 タイヤ空気圧監視装置
DE60331108D1 (de) * 2003-07-04 2010-03-11 Pirelli Verfahren und system zum bestimmen einer reifenbelastung während des fahrens eines kraftfahrzeugs
FR2865053B1 (fr) * 2004-01-12 2006-06-16 Michelin Soc Tech Procede pour evaluer l'ecart entre la situation a un instant donne d'un site et un etat "normal" pour les conditions de fonctionnement de pneumatiques de vehicules de genie civil operant sur ce site.
US7991523B2 (en) * 2004-02-02 2011-08-02 Continental Teves Ag & Co. Ohg Method for indirect tire pressure monitoring
JP4259398B2 (ja) * 2004-05-27 2009-04-30 日産自動車株式会社 車両走行制御システムの悪路走行シミュレーション装置、および、車両走行制御システム作動感度評価装置
JP4812624B2 (ja) * 2004-06-23 2011-11-09 株式会社ブリヂストン タイヤ摩耗検知システム及び空気入りタイヤ
JP2006131116A (ja) 2004-11-05 2006-05-25 Yokohama Rubber Co Ltd:The 車両駆動制御システム及びセンサユニット並びにタイヤ
JP4604677B2 (ja) * 2004-11-19 2011-01-05 横浜ゴム株式会社 タイヤ滑り状態検出方法及びタイヤ滑り状態検出装置
JP3895347B2 (ja) * 2004-11-19 2007-03-22 横浜ゴム株式会社 タイヤ変形量算出方法及びタイヤ変形量算出装置
US7739019B2 (en) * 2004-12-20 2010-06-15 Gm Global Technology Operations, Inc. Rough road detection
ES2921886T3 (es) * 2005-03-18 2022-09-01 Gatekeeper Systems Inc Sistema de comunicación bidireccional para el seguimiento de la ubicación y el estado de los vehículos sobre ruedas
JP5121452B2 (ja) * 2005-06-17 2013-01-16 株式会社ブリヂストン 路面状態推定方法、路面状態推定用タイヤ、路面状態推定装置、及び、車両制御装置
US7751961B2 (en) * 2005-09-15 2010-07-06 Gm Global Technology Operations, Inc. Acceleration/deceleration induced real-time identification of maximum tire-road friction coefficient
CN100357982C (zh) * 2005-09-28 2007-12-26 华南理工大学 汽车轮胎内置非接触式制动传感系统
EP1951534B1 (de) * 2005-11-14 2016-03-16 Continental Teves AG & Co. oHG Verfahren zur erkennung der beladung eines kraftfahrzeugs
CN100371697C (zh) * 2005-12-12 2008-02-27 华南理工大学 一种汽车轮胎内置式制动特性传感方法
DE102007003255A1 (de) * 2006-01-24 2007-09-06 The Yokohama Rubber Co., Ltd., Hiratsuka Vorrichtung und Verfahren zum Vorhersagen eines Bremswegs eines Fahrzeugs
JP4021919B2 (ja) * 2006-04-21 2007-12-12 横浜ゴム株式会社 タイヤの転動時たわみ量算出方法、タイヤの転動時データ蓄積方法及びタイヤの転動時接地長算出方法
DE102006028411A1 (de) * 2006-06-21 2007-12-27 Robert Bosch Gmbh Verfahren zur Reifenzustandserkennung
EP1878596B1 (en) 2006-07-11 2013-06-05 The Yokohama Rubber Co., Ltd. Apparatus and method for evaluating a degree of a safety in traveling of a vehicle
DE102006041867B4 (de) * 2006-09-06 2008-12-04 Continental Automotive Gmbh Verfahren und Vorrichtung zur Überwachung des Rauschens eines Sensors
US7617036B2 (en) * 2006-09-20 2009-11-10 Gm Global Technology Operations, Inc. Method and system for determining the velocity of an automobile
JP4229965B2 (ja) * 2006-11-14 2009-02-25 横浜ゴム株式会社 ブレーキ制御方法およびブレーキ制御装置
JP4195054B2 (ja) * 2006-11-24 2008-12-10 横浜ゴム株式会社 ブレーキ制御方法およびブレーキ制御装置
DE102006057342A1 (de) * 2006-12-05 2008-06-12 Siemens Ag Verfahren zum Ermitteln eines Fahrbahnzustands
FR2909946B1 (fr) 2006-12-13 2010-09-17 Soc Tech Michelin Procede d'estimation d'un risque de defaut de liaison au sol d'un vehicule automobile
US8032281B2 (en) 2007-03-29 2011-10-04 Ford Global Technologies Vehicle control system with advanced tire monitoring
US7778741B2 (en) * 2007-03-29 2010-08-17 Ford Global Technologies Vehicle stability control system with tire monitoring
US7873449B2 (en) * 2007-03-29 2011-01-18 Ford Global Technologies Vehicle safety system with advanced tire monitoring
JP5191163B2 (ja) * 2007-04-27 2013-04-24 株式会社ブリヂストン タイヤ接地状態推定方法、及び、タイヤ接地状態推定装置
JP5072463B2 (ja) * 2007-07-11 2012-11-14 株式会社ブリヂストン タイヤの摩耗検知方法及びタイヤの摩耗検知装置
FR2924982B1 (fr) * 2007-12-14 2009-12-25 Siemens Vdo Automotive Procede de localisation de la position longitudinale de roues d'un vehicule
DE102008015873A1 (de) * 2008-03-26 2009-10-01 Bombardier Transportation Gmbh Fahrzeug, insbesondere Schienenfahrzeug, mit einer Einrichtung zur Überwachung der Bremswirkung
DE102008001202A1 (de) * 2008-04-16 2009-10-22 Zf Friedrichshafen Ag Verfahren zum Ermitteln eines Nutzsignals
JP5620268B2 (ja) * 2008-06-25 2014-11-05 株式会社ブリヂストン タイヤ摩耗推定方法及びタイヤ摩耗推定装置
US8146565B2 (en) 2008-07-15 2012-04-03 Ford Global Technologies, Llc Reducing noise, vibration, and harshness in a variable displacement engine
CN102103170B (zh) * 2009-12-17 2012-12-26 上海凯迪克航空工程技术有限公司 一种防滑电气控制系统原位检测装置
DE102010008258A1 (de) * 2010-02-17 2011-08-18 Conti Temic microelectronic GmbH, 90411 Verfahren zur automatischen Prävention von Aquaplaning
US8307790B2 (en) * 2010-04-08 2012-11-13 Ford Global Technologies, Llc Method for operating a vehicle with a fuel reformer
US8001934B2 (en) * 2010-04-08 2011-08-23 Ford Global Technologies, Llc Pump control for reformate fuel storage tank
US8015952B2 (en) * 2010-04-08 2011-09-13 Ford Global Technologies, Llc Engine fuel reformer monitoring
US8146541B2 (en) 2010-04-08 2012-04-03 Ford Global Technologies, Llc Method for improving transient engine operation
US8191514B2 (en) * 2010-04-08 2012-06-05 Ford Global Technologies, Llc Ignition control for reformate engine
US8539914B2 (en) * 2010-04-08 2013-09-24 Ford Global Technologies, Llc Method for operating an engine with a fuel reformer
US8613263B2 (en) * 2010-04-08 2013-12-24 Ford Global Technologies, Llc Method for operating a charge diluted engine
US8037850B2 (en) * 2010-04-08 2011-10-18 Ford Global Technologies, Llc Method for operating an engine
US8041500B2 (en) * 2010-04-08 2011-10-18 Ford Global Technologies, Llc Reformate control via accelerometer
US8245671B2 (en) 2010-04-08 2012-08-21 Ford Global Technologies, Llc Operating an engine with reformate
US8230826B2 (en) * 2010-04-08 2012-07-31 Ford Global Technologies, Llc Selectively storing reformate
US8118006B2 (en) 2010-04-08 2012-02-21 Ford Global Technologies, Llc Fuel injector diagnostic for dual fuel engine
US8402928B2 (en) * 2010-04-08 2013-03-26 Ford Global Technologies, Llc Method for operating an engine with variable charge density
CN101879907A (zh) * 2010-06-21 2010-11-10 南京航空航天大学 货运列车脱轨自动制动停车装置及方法
JP5495971B2 (ja) * 2010-06-24 2014-05-21 株式会社ブリヂストン タイヤ内部故障判定方法
DE102011015509A1 (de) * 2010-06-30 2012-01-05 Wabco Gmbh Verfahren und Vorrichtung zur Steuerung zumindest eines Fahrerassistenzsystems eines Fahrzeuges und damit ausgestattetes Fahrzeug
US8566011B2 (en) * 2010-09-30 2013-10-22 Siemens Corporation Data collection and traffic control using multiple wireless receivers
JP5788710B2 (ja) * 2011-05-16 2015-10-07 株式会社ブリヂストン 路面摩擦係数推定方法、車両制御方法、及び、路面摩擦係数推定装置
JP5629659B2 (ja) * 2011-08-24 2014-11-26 株式会社東海理化電機製作所 バルブid登録システム
US8573045B2 (en) * 2011-10-28 2013-11-05 Infineon Technologies Ag Indirect tire pressure monitoring systems and methods
JP5857781B2 (ja) * 2012-02-15 2016-02-10 日産自動車株式会社 電動モータを用いた車両の制振制御装置
JP5267741B1 (ja) * 2012-03-27 2013-08-21 トヨタ自動車株式会社 車両制御装置
JP5937921B2 (ja) * 2012-08-09 2016-06-22 株式会社ブリヂストン 路面状態判別方法とその装置
ITRM20120476A1 (it) * 2012-10-08 2014-04-09 Mauro Biagi Sistema rmapa di radiocomunicazioni per monitoraggio aderenza pneumatici di autoveicoli
CA2888335A1 (en) * 2012-10-19 2014-04-24 Roadroid Ab Method and system for monitoring road conditions
DE102012112724A1 (de) 2012-12-20 2014-06-26 Continental Teves Ag & Co. Ohg Verfahren zur Bestimmung eines Fahrbahnzustands aus Umfeldsensordaten
DE102012112725A1 (de) 2012-12-20 2014-06-26 Continental Teves Ag & Co. Ohg Reibwertschätzung aus Kamera- und Raddrehzahldaten
DE102013101639A1 (de) 2013-02-19 2014-09-04 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Bestimmung eines Fahrbahnzustands
JP5993804B2 (ja) * 2013-06-12 2016-09-14 株式会社ブリヂストン タイヤ接地状態推定方法
ITMI20130983A1 (it) * 2013-06-14 2014-12-15 Pirelli Metodo e sistema per stimare l'attrito potenziale tra un pneumatico per veicoli ed una superficie di rotolamento
US9050864B2 (en) * 2013-06-14 2015-06-09 The Goodyear Tire & Rubber Company Tire wear state estimation system and method
CN105722699B (zh) 2013-11-15 2019-03-29 米其林集团总公司 借助压电装置在打滑事件期间的接触块测量
DE102013223367A1 (de) 2013-11-15 2015-05-21 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Bestimmung eines Fahrbahnzustands mittels eines Fahrzeugkamerasystems
JP5806278B2 (ja) * 2013-11-26 2015-11-10 株式会社ブリヂストン タイヤ偏摩耗推定方法及びタイヤ偏摩耗推定装置
DE102013113431A1 (de) * 2013-12-04 2015-06-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Bestimmen einer Aquaplaning-Gefahr
US9284903B2 (en) * 2013-12-30 2016-03-15 GM Global Technology Operations LLC System and method for adjusting engine speed and/or engine load to improve fuel economy without causing vehicle vibration that is perceivable by a vehicle occupant
WO2015128985A1 (ja) * 2014-02-27 2015-09-03 パイオニア株式会社 表示装置、制御方法、プログラム、及び記憶媒体
KR101544886B1 (ko) * 2014-07-07 2015-08-17 현대오트론 주식회사 타이어 압력 모니터링 방법 및 시스템
EP2993064B1 (en) 2014-09-03 2018-02-28 Continental Automotive GmbH Method and system for determining a rotation angle of at least one wheel of a vehicle
MX2017002102A (es) * 2014-09-12 2017-05-25 Hendrickson Usa Llc Sensor de extremo de rueda para vehiculos de uso pesado.
CN104210491A (zh) * 2014-09-16 2014-12-17 成都衔石科技有限公司 一种基于线阵图像传感器的换道跟驰的跟驰车队
JP6394300B2 (ja) * 2014-11-10 2018-09-26 株式会社デンソー レーンキープ制御システム
US9963132B2 (en) 2014-11-10 2018-05-08 The Goodyear Tire & Rubber Company Tire sensor-based vehicle control system optimization and method
US10245906B2 (en) 2014-11-11 2019-04-02 The Goodyear Tire & Rubber Company Tire wear compensated load estimation system and method
JP6355257B2 (ja) * 2014-11-19 2018-07-11 東洋ゴム工業株式会社 ゴム摩擦試験方法及びゴム摩擦試験機
US9739689B2 (en) 2014-11-21 2017-08-22 The Goodyear Tire & Rubber Company Tire cornering stiffness estimation system and method
US9340211B1 (en) * 2014-12-03 2016-05-17 The Goodyear Tire & Rubber Company Intelligent tire-based road friction estimation system and method
US9963146B2 (en) 2014-12-03 2018-05-08 The Goodyear Tire & Rubber Company Tire lift-off propensity predictive system and method
US9650053B2 (en) * 2014-12-03 2017-05-16 The Goodyear Tire & Rubber Company Slip ratio point optimization system and method for vehicle control
JP6515517B2 (ja) * 2014-12-12 2019-05-22 株式会社Soken 車両制御装置
US10460226B2 (en) 2014-12-23 2019-10-29 Bridgestone Americas Tire Operations, Llc Tire having radio frequency identification device for monitoring structural health
CN105818815A (zh) * 2015-01-09 2016-08-03 深圳爱拽科技有限公司 一种利用obd进行路况信息检测的方法
DE102015214176A1 (de) * 2015-07-27 2017-02-02 Continental Teves Ag & Co. Ohg Verfahren zur Fahrerunterstützung bei Wasserglätte auf einem Fahrbahnuntergrund
US9937908B2 (en) * 2015-09-17 2018-04-10 GM Global Technology Operations LLC Vehicle with model-based control of an active aerodynamic element
JP6488986B2 (ja) 2015-10-27 2019-03-27 株式会社Soken 路面状況推定装置
GB2545681B (en) * 2015-12-22 2018-05-09 Schrader Electronics Ltd Tyre monitoring device and system for use with a vehicle on-board stability control system
GB2545901B (en) * 2015-12-22 2020-06-03 Schrader Electronics Ltd Apparatus and method for detecting vehicle motion in a tyre pressure monitoring system
US10406866B2 (en) * 2016-02-26 2019-09-10 The Goodyear Tire & Rubber Company Tire sensor for a tire monitoring system
JP6551274B2 (ja) * 2016-03-17 2019-07-31 株式会社デンソー ハイドロプレーニング判定装置
CA3018944C (en) * 2016-04-22 2020-09-22 Nissin Kogyo Co., Ltd. Brake fluid pressure control device for vehicle
TWI593571B (zh) 2016-05-06 2017-08-01 Mobiletron Electronics Co Ltd Tire monitoring methods
CN107399207A (zh) * 2016-05-18 2017-11-28 车王电子股份有限公司 轮胎监测方法
JP6454748B2 (ja) * 2016-05-18 2019-01-16 レノボ・シンガポール・プライベート・リミテッド ユーザの存否を認定する方法、デバイスの制御方法および電子機器
JP6627670B2 (ja) * 2016-07-13 2020-01-08 株式会社デンソー タイヤマウントセンサおよびそれを含む路面状態推定装置
DE102016214926A1 (de) * 2016-08-11 2018-02-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung der Abhebegefahr eines luftbereiften Rades von einer Fahrbahn
DE102016225352B4 (de) * 2016-12-16 2018-10-04 Volkswagen Aktiengesellschaft Verfahren zum Schätzen eines Reibwerts einer Fahrbahn mittels eines Kraftfahrzeugs sowie Steuervorrichtung und Kraftfahrzeug
US10916129B2 (en) * 2017-01-30 2021-02-09 International Business Machines Corporation Roadway condition predictive models
US10106168B2 (en) * 2017-02-27 2018-10-23 GM Global Technology Operations LLC Methods and systems for proactively estimating road surface friction coefficient
FR3067288B1 (fr) * 2017-06-08 2019-06-28 Compagnie Generale Des Etablissements Michelin Procede de controle et/ou de suivi de l'utilisation d'un pneumatique
US10207559B2 (en) * 2017-06-15 2019-02-19 GM Global Technology Operations LLC Systems and methods for the real-time determination of tire normal forces
CN107512143B (zh) * 2017-07-14 2020-07-10 清华大学 轮胎压力计算方法、装置及在自行车上的应用
DE102018200330A1 (de) * 2018-01-11 2019-07-11 Robert Bosch Gmbh Verfahren zur Ermittlung der aktuellen Fahrbahnrauhigkeit in einem Fahrzeug
DE102018200771A1 (de) * 2018-01-18 2019-07-18 Robert Bosch Gmbh Transportvorrichtung, insbesondere Kinderwagen, mit einer elektrischen Antriebseinheit
US10661808B2 (en) * 2018-04-09 2020-05-26 Arnold Chase Dynamic vehicle separation system
IT201800005907A1 (it) * 2018-05-31 2019-12-01 Sistema e metodo di rilevamento di danni a pneumatici
IT201800005904A1 (it) 2018-05-31 2019-12-01 Sistema e metodo di rilevamento di danni a pneumatici
IT201800005906A1 (it) * 2018-05-31 2019-12-01 Sistema e metodo di rilevamento di danni a pneumatici
CN109080402B (zh) * 2018-07-11 2021-09-10 江苏大学 一种精度可调路面不平度辨识系统及方法
US11298991B2 (en) 2018-11-28 2022-04-12 The Goodyear Tire & Rubber Company Tire load estimation system and method
CN109297731B (zh) * 2018-11-29 2021-06-01 正新橡胶(中国)有限公司 一种轮胎走行试验的控制方法及装置
JP7224897B2 (ja) * 2018-12-21 2023-02-20 日立Astemo株式会社 車両運動状態推定装置、車両運動状態推定方法並びに車両
US11472413B2 (en) * 2019-02-20 2022-10-18 Steering Solutions Ip Holding Corporation Mu confidence estimation and blending
JP7335713B2 (ja) * 2019-03-28 2023-08-30 株式会社Subaru 路面判定装置
JP2020183901A (ja) * 2019-05-08 2020-11-12 株式会社神戸製鋼所 タイヤユニフォミティデータの補正方法、およびタイヤユニフォミティマシン
JP2020196359A (ja) * 2019-06-04 2020-12-10 マツダ株式会社 車両姿勢制御装置
CN110281943B (zh) * 2019-07-04 2021-04-02 郑州大学 自动控制车辆行驶模式的方法、系统及智能车辆
KR102267901B1 (ko) * 2019-10-02 2021-06-24 한국타이어앤테크놀로지 주식회사 노면 상태 추정 장치 및 이를 이용한 노면 상태 추정 방법
US11084471B2 (en) * 2019-11-22 2021-08-10 Automotive Research & Testing Center Braking control method according to friction of road surface
IT202000002857A1 (it) * 2020-02-13 2021-08-13 Bridgestone Europe Nv Sa Sistema e metodo di rilevamento di danni a pneumatici
IT202000002854A1 (it) * 2020-02-13 2021-08-13 Bridgestone Europe Nv Sa Sistema e metodo di rilevamento di danni a pneumatici
CN113263873B (zh) * 2020-02-17 2023-06-02 建大工业股份有限公司 轮胎组件及轮胎抓地力的改善方法
CN111024606A (zh) * 2020-02-22 2020-04-17 李庆锋 一种借助拖曳链测量行车路面摩擦状况的方法
CN111308887B (zh) * 2020-04-08 2023-10-24 江苏盛海智能科技有限公司 一种无人驾驶车辆的制动控制的优化方法及优化端
DE102020205588A1 (de) * 2020-05-04 2021-11-04 Robert Bosch Gesellschaft mit beschränkter Haftung Sensoranordnung für ein Fahrzeugrad
CN111532277B (zh) * 2020-06-01 2021-11-30 中国第一汽车股份有限公司 车辆地形识别系统、方法及车辆
WO2021247016A1 (en) * 2020-06-03 2021-12-09 Sensata Technologies, Inc. Detecting a condition of a road surface
JP7230887B2 (ja) * 2020-07-17 2023-03-01 トヨタ自動車株式会社 ブレーキパッド状態推定装置及びブレーキパッド状態推定方法
CN111968382A (zh) * 2020-08-14 2020-11-20 上海感探号信息科技有限公司 一种无源无线车速、车压传感装置
CN112208273B (zh) * 2020-10-19 2022-09-06 长沙理工大学 基于智能轮胎状态检测装置的车辆控制方法、设备
CN112428753B (zh) * 2020-10-21 2022-07-19 浙江吉利控股集团有限公司 一种车辆轮胎异常识别方法、装置、电子设备及存储介质
CN111994068B (zh) * 2020-10-29 2021-03-16 北京航空航天大学 一种基于智能轮胎触觉感知的智能驾驶汽车控制系统
CN112766306B (zh) * 2020-12-26 2023-06-27 浙江天行健智能科技有限公司 一种基于svm算法的减速带区域识别方法
CN114347963B (zh) * 2021-12-28 2023-02-10 广州小鹏汽车科技有限公司 车辆控制方法、装置、车辆及存储介质
DE102022102006B4 (de) 2022-01-28 2023-11-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Erfassen von Verkehrsaktivitäten mit Schwingungssensoren von einem Fahrzeug aus

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312096A2 (en) * 1987-10-15 1989-04-19 Mazda Motor Corporation Friction detecting device for vehicles
WO1989003780A1 (en) * 1987-10-22 1989-05-05 Robert Bosch Gmbh PROCESS FOR CONTINUOUS DETERMINATION OF THE ADHESION COEFFICIENT $G(m) AND/OR THE SLOPE Kmu of the mu SLIP CURVE
JPH0599014A (ja) * 1991-10-09 1993-04-20 Japan Electron Control Syst Co Ltd 路面摩擦係数の検出方法
DE4213221A1 (de) 1992-04-22 1993-10-28 Porsche Ag Verfahren zur Erfassung der Benetzung einer Fahrbahnoberfläche
US5325300A (en) * 1990-06-21 1994-06-28 Mazda Motor Corporation Traction control system for motor vehicle
JPH06213801A (ja) * 1993-01-14 1994-08-05 Mitsubishi Motors Corp 路面摩擦係数測定方法
EP0645288A2 (en) 1993-09-29 1995-03-29 Honda Giken Kogyo Kabushiki Kaisha Apparatus for detecting wheel grip on road
JPH09170916A (ja) * 1995-12-20 1997-06-30 Toyota Motor Corp 路面状態推定装置
JPH09196791A (ja) * 1996-01-17 1997-07-31 Nippon Soken Inc タイヤ空気圧検知装置
US5723768A (en) 1995-11-24 1998-03-03 Daimler-Benz Ag Process for the early recognition of hydroplaning of a vehicle tire on a wet road
WO1998056606A1 (fr) * 1997-06-10 1998-12-17 Thomson Csf Detexis Surveillance d'un pneumatique par mesure d'acceleration
EP0968892A1 (en) 1997-11-28 2000-01-05 Denso Corporation Vehicle controller
WO2001087647A1 (en) 2000-04-12 2001-11-22 Nira Dynamics Ab Tire pressure estimation
EP1219515A1 (en) * 2000-06-23 2002-07-03 Kabushiki Kaisha Bridgestone Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel
JP2002240520A (ja) * 2001-02-13 2002-08-28 Bridgestone Corp タイヤ走行状態の検出方法とタイヤ走行状態検出装置、及び路面状態の推定方法と路面状態推定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574267A (en) * 1982-05-06 1986-03-04 Trw Inc. Tire pressure warning system
US4770438A (en) * 1984-01-20 1988-09-13 Nissan Motor Co., Ltd. Automotive suspension control system with road-condition-dependent damping characteristics
US4916619A (en) * 1989-04-13 1990-04-10 General Motors Corporation Adaptive wheel slip threshold
US5065618A (en) * 1990-11-14 1991-11-19 Hodges Transportation Inc. Method and apparatus for determining terrain surface profiles
JP3022038B2 (ja) * 1993-03-04 2000-03-15 トヨタ自動車株式会社 路面摩擦係数検出装置
JPH092240A (ja) * 1995-06-14 1997-01-07 Nippon Denshi Kogyo Kk Abs装置に於けるブレーキ減圧制御点検出法
DE69804723T2 (de) * 1997-07-18 2002-11-21 Toyota Chuo Kenkyusho Aichi Kk Radzustands- Abschätzungsvorrichtung
US5852243A (en) * 1997-07-21 1998-12-22 J-Squared, Llc Method and apparatus for detecting a road pavement surface condition
JPH1194661A (ja) 1997-09-18 1999-04-09 Nissan Motor Co Ltd 路面摩擦係数推定装置
JP2000055790A (ja) 1998-06-03 2000-02-25 Toyota Central Res & Dev Lab Inc 路面μ推定装置
ATE279329T1 (de) * 2000-03-16 2004-10-15 Pirelli System, reifen und methode zur bestimmung des verhaltens eines bewegten reifens
DE10025502A1 (de) * 2000-05-23 2001-11-29 Bosch Gmbh Robert Sensorsystem zur Erfassung von Meßgrößen an einem rotierenden Gegenstand

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312096A2 (en) * 1987-10-15 1989-04-19 Mazda Motor Corporation Friction detecting device for vehicles
WO1989003780A1 (en) * 1987-10-22 1989-05-05 Robert Bosch Gmbh PROCESS FOR CONTINUOUS DETERMINATION OF THE ADHESION COEFFICIENT $G(m) AND/OR THE SLOPE Kmu of the mu SLIP CURVE
US5325300A (en) * 1990-06-21 1994-06-28 Mazda Motor Corporation Traction control system for motor vehicle
JPH0599014A (ja) * 1991-10-09 1993-04-20 Japan Electron Control Syst Co Ltd 路面摩擦係数の検出方法
DE4213221A1 (de) 1992-04-22 1993-10-28 Porsche Ag Verfahren zur Erfassung der Benetzung einer Fahrbahnoberfläche
JPH06213801A (ja) * 1993-01-14 1994-08-05 Mitsubishi Motors Corp 路面摩擦係数測定方法
EP0645288A2 (en) 1993-09-29 1995-03-29 Honda Giken Kogyo Kabushiki Kaisha Apparatus for detecting wheel grip on road
US5723768A (en) 1995-11-24 1998-03-03 Daimler-Benz Ag Process for the early recognition of hydroplaning of a vehicle tire on a wet road
JPH09170916A (ja) * 1995-12-20 1997-06-30 Toyota Motor Corp 路面状態推定装置
JPH09196791A (ja) * 1996-01-17 1997-07-31 Nippon Soken Inc タイヤ空気圧検知装置
WO1998056606A1 (fr) * 1997-06-10 1998-12-17 Thomson Csf Detexis Surveillance d'un pneumatique par mesure d'acceleration
EP0968892A1 (en) 1997-11-28 2000-01-05 Denso Corporation Vehicle controller
WO2001087647A1 (en) 2000-04-12 2001-11-22 Nira Dynamics Ab Tire pressure estimation
EP1219515A1 (en) * 2000-06-23 2002-07-03 Kabushiki Kaisha Bridgestone Method for estimating vehicular running state, vehicular running state estimating device, vehicle control device, and tire wheel
JP2002240520A (ja) * 2001-02-13 2002-08-28 Bridgestone Corp タイヤ走行状態の検出方法とタイヤ走行状態検出装置、及び路面状態の推定方法と路面状態推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1457388A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514704A1 (en) 2003-09-10 2005-03-16 Schrader Electronics Limited Method and apparatus for detecting wheel motion in a tyre pressure monitoring system
US7104123B2 (en) 2003-09-10 2006-09-12 Schrader Electronics, Limited Method and apparatus for detecting wheel motion in a tire pressure monitoring system
CN111674210A (zh) * 2020-06-23 2020-09-18 苏州驶安特汽车电子有限公司 一种轮胎冻结报警系统
CN111674210B (zh) * 2020-06-23 2022-06-24 苏州驶安特汽车电子有限公司 一种轮胎冻结报警系统

Also Published As

Publication number Publication date
CN1321838C (zh) 2007-06-20
EP1457388A1 (en) 2004-09-15
ES2534480T3 (es) 2015-04-23
WO2003053747A8 (fr) 2004-05-27
US20050085987A1 (en) 2005-04-21
US7203579B2 (en) 2007-04-10
EP1457388A4 (en) 2010-04-21
EP2514640B1 (en) 2015-08-05
EP1457388B1 (en) 2015-01-21
ES2552509T3 (es) 2015-11-30
CN1608012A (zh) 2005-04-20
EP2514640A1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2003053747A1 (fr) Procede et appareil pour l&#39;estimation de l&#39;etat de la surface d&#39;une route et de l&#39;etat de fonctionnement de pneumatiques, abs et commande de vehicule dans lesquels ils sont utilises
JP3892722B2 (ja) 路面状態及びタイヤ走行状態推定装置及び車両制御装置
JP4868689B2 (ja) 路面状態推定方法、及び、路面状態推定装置
JP4263400B2 (ja) 路面摩擦係数推定方法と路面摩擦係数推定装置
JP3856389B2 (ja) タイヤ空気圧監視装置
JP3817242B2 (ja) タイヤに影響する車両状態をモニタするためのシステム及び方法
US7248953B2 (en) Wheel-state obtaining apparatus, and vehicle-state obtaining apparatus
JP4817753B2 (ja) 路面状態推定方法、路面状態推定装置、及び、車両制御装置
US20050044946A1 (en) Method and apparatus for tire pressure monitoring
US7512473B2 (en) Method for judging road surface condition and device thereof, and program for judging road surface condition
KR20020035568A (ko) 차량 타이어 제어에 의한 차량 동작 특성 제어 방법 및시스템
JP4694558B2 (ja) スリップを制御する方法及び装置
JP4629246B2 (ja) タイヤ走行状態の検出方法とタイヤ走行状態検出装置、及び路面状態の推定方法と路面状態推定装置
JP4629756B2 (ja) 路面状態推定方法と路面状態推定装置
JP2005059800A (ja) 路面状態推定方法及び路面状態推定装置
JP2005521579A (ja) 車両タイヤ状態のモニタ方法および装置
JP3892723B2 (ja) Abs制動制御方法とその装置
JP5097901B2 (ja) 車両の荷重状態を決定する方法
KR0163343B1 (ko) 자동차의 바퀴슬립 감지장치
JP2002178729A (ja) タイヤ内圧調整装置および方法
JP4193659B2 (ja) アンチスキッドブレーキシステム作動判定装置およびアンチスキッドブレーキシステム作動判定方法ならびに駆動力配分制御装置
JP2006160065A (ja) タイヤ空気圧監視装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WR Later publication of a revised version of an international search report
WWE Wipo information: entry into national phase

Ref document number: 2002805488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10499431

Country of ref document: US

Ref document number: 20028258762

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002805488

Country of ref document: EP