WO2002093743A1 - Compensateur de phase et compensateur de phase multibit - Google Patents

Compensateur de phase et compensateur de phase multibit Download PDF

Info

Publication number
WO2002093743A1
WO2002093743A1 PCT/JP2002/002929 JP0202929W WO02093743A1 WO 2002093743 A1 WO2002093743 A1 WO 2002093743A1 JP 0202929 W JP0202929 W JP 0202929W WO 02093743 A1 WO02093743 A1 WO 02093743A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shifter
forming electrode
effect transistor
channel forming
fet
Prior art date
Application number
PCT/JP2002/002929
Other languages
English (en)
French (fr)
Inventor
Morishige Hieda
Kenichi Miyaguchi
Michiaki Kasahara
Tadashi Takagi
Hiroshi Ikematsu
Norio Takeuchi
Hiromasa Nakaguro
Kazuyoshi Inami
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US10/476,384 priority Critical patent/US7123116B2/en
Publication of WO2002093743A1 publication Critical patent/WO2002093743A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/16Networks for phase shifting
    • H03H11/18Two-port phase shifters providing a predetermined phase shift, e.g. "all-pass" filters

Definitions

  • the present invention relates to a phase shifter and a multi-bit phase shifter for electrically changing a signal passing phase in a microphone mouthband and a millimeter-wave band.
  • FIG. 1 is a configuration diagram showing a conventional phase shifter shown in, for example, “20000 IEEE Microwav e T hey o ry ana T e cn i qu S y mp o s i um D ig ⁇ s t”.
  • la and lb are input / output terminals
  • 2 a, 2 b are FETs
  • 3 a, 3 Tb, 3 c are inductors
  • 4 a, 4 c are resistors
  • 5 a, 5 b are control signal terminals
  • 8 is the capacity evening.
  • FIG. 2 is an equivalent circuit diagram showing the operation of a conventional phase shifter.
  • the circuit when the sum of the OFF capacitance of the FET 2a and the capacitance of the capacitor 8 is very small and the 0 N resistance of the FET 2b is small, the circuit operates as a ⁇ -type high-pass filter.
  • FET 2a enters the passing state with respect to control signal terminal 5a. 0 V or a positive voltage is applied, and FET 2b pinches with respect to control signal terminal 5b. Consider a case where a negative voltage that is turned off is applied.
  • FIG. 3 is an equivalent circuit diagram showing the operation of a conventional phase shifter. This figure shows an equivalent circuit of the phase shifter in the case described above.
  • the phase of the high-pass filter is advanced, and there is almost no change in the passing phase in the through-pass filter.Therefore, the control signal is switched to electrically switch the passing phase from input / output terminal 1a to input / output terminal 1b. be able to. Since the conventional phase shifter is configured as described above, the loss increases because the gate width of the FET 2a must be reduced to reduce the effect of the OFF capacitance of the pinched-off FET 2a. There was a problem that.
  • the present invention has been made to solve the above problems, and has as its object to obtain a small and low-loss phase shifter and a multi-bit phase shifter. DISCLOSURE OF THE INVENTION.
  • the phase shifter according to the present invention includes: a first field-effect transistor in which one channel forming electrode is connected to the first input / output terminal; and one channel-forming electrode being the other of the first field-effect transistor.
  • a second field-effect transistor connected to one channel-forming electrode and the other channel-forming electrode connected to a second input / output terminal; and one channel-forming electrode connected to the other channel of the first field-effect transistor.
  • a third field effect transistor connected to the forming electrode, and an inductor connected at one end to the other channel forming electrode of the third field effect transistor and connected at the other end to the ground It is.
  • the phase shifter according to the present invention includes: a first field-effect transistor in which one channel forming electrode is connected to the first input / output terminal; and one channel-forming electrode being the other of the first field-effect transistor.
  • a second field-effect transistor connected to the second channel-forming electrode and the other channel-forming electrode connected to the second input / output terminal, and one end connected to the other channel-forming electrode of the first field-effect transistor
  • a third field-effect transistor in which one channel forming electrode is connected to the other end of the inductor and the other channel forming electrode is connected to ground.
  • the multi-bit phase shifter includes a first field-effect transistor in which one channel forming electrode is connected to the first input / output terminal, and one channel-forming electrode in the first field-effect transistor.
  • a second field-effect transistor connected to the other channel-forming electrode of the second transistor and the other channel-forming electrode connected to the second input / output terminal; and one channel-forming electrode of the other channel of the first field-effect transistor.
  • a third field effect transistor connected to the forming electrode, and an inductor connected at one end to the other channel forming electrode of the third field effect transistor and the other end to the ground.
  • a phase shifter whose circuit constant is set so that the phase shift amount is 90 degrees and a 180-bit bit phase shifter are used in combination. This has the effect of providing a small, low-loss, multi-bit phase shifter.
  • FIG. 1 is a configuration diagram showing a conventional phase shifter.
  • FIG. 2 is an equivalent circuit diagram showing the operation of a conventional phase shifter.
  • FIG. 3 is an equivalent circuit diagram showing the operation of a conventional phase shifter.
  • FIG. 4 is a configuration diagram showing a phase shifter according to Embodiment 1 of the present invention.
  • FIG. 5 is a layout diagram showing a phase shifter according to Embodiment 1 of the present invention.
  • FIG. 6 is an equivalent circuit diagram showing the operation of the phase shifter according to Embodiment 1 of the present invention.
  • FIG. 7 is an equivalent circuit diagram showing the operation of the phase shifter according to Embodiment 1 of the present invention.
  • FIG. 8 is an explanatory diagram showing fill characteristics.
  • FIG. 9 is a configuration diagram showing a phase shifter according to Embodiment 2 of the present invention.
  • FIG. 10 is a configuration diagram showing a phase shifter according to Embodiment 3 of the present invention.
  • FIG. 11 is a configuration diagram showing a phase shifter according to Embodiment 4 of the present invention.
  • FIG. 12 is a configuration diagram showing a phase shifter according to Embodiment 5 of the present invention.
  • FIG. 13 is a configuration diagram showing a phase shifter according to Embodiment 6 of the present invention.
  • FIG. 14 is a configuration diagram showing a multi-bit phase shifter according to Embodiment 7 of the present invention.
  • FIG. 15 is a configuration diagram showing a multi-bit phase shifter according to Embodiment 8 of the present invention.
  • FIG. 4 is a configuration diagram showing a phase shifter according to Embodiment 1 of the present invention
  • FIG. 5 is a layout diagram showing a phase shifter according to Embodiment 1 of the present invention
  • 1a is the input / output terminal (first input / output terminal)
  • lb is the input / output terminal (second input / output terminal)
  • 2a is the drain electrode which is one of the channel forming electrodes.
  • 2b is the drain electrode, which is one channel forming electrode
  • the drain electrode which is connected to the source electrode of FET 2a
  • the source electrode which is the other channel forming electrode Is the FET (second field-effect transistor) connected to the input / output terminal 1b.
  • 2 c is one channel forming electrode; the drain electrode is a FET (third field-effect transistor) connected to the source electrode of FET 2 a; 3 a is one end connected to the source electrode of FET 2 c; An inductor whose other end is connected to ground, 4a, 4b, and 4c are resistors, 5a and 5b are control signal terminals, 6 is a semiconductor substrate, and 7 is a through hole.
  • FET third field-effect transistor
  • 6 and 7 are equivalent circuit diagrams illustrating the operation of the phase shifter according to Embodiment 1 of the present invention.
  • a bias lower than the voltage at which the FETs 2a and 2b pinch off is applied to the control signal terminal 5a, and a bias greater than the voltage at which the FET 2c pinches off is applied to the control signal terminal 5b.
  • the behavior between the drain and the source of the FETs 2a and 2b is equivalent to the capacity.
  • the connection between the drain and source of c can be regarded as equivalent to a short circuit.
  • FIG. 6 shows an equivalent circuit in this state.
  • the phase shifter operates as a T-type high-pass filter composed of FETs 2a and 2b and an inductor 3a equivalent to the capacity, and passes between the input and output terminals la and lb.
  • the phase of the high-frequency signal is advanced.
  • the drain-source of FETs 2a and 2b can be regarded as equivalent to a short circuit, and the drain-source of FET 2c behaves equivalent to the capacitance.
  • FIG. 7 shows an equivalent circuit in this state.
  • the phase shifter operates as a circuit composed of the FET 2c equivalent to the capacity and the inductor 3a.
  • the effect of the FET 2c and the inductor 3a is reduced by reducing the gate width of the FET 2c and the capacitance at the time of OF is made extremely small, so that it is treated as if it were not connected. Can be.
  • between the input / output terminals 1a and 1b is almost equivalent to through.
  • the passing phase can be changed by turning ON / OFF the FETs 2a, 2b, and 2c.
  • FIG. 8 is an explanatory diagram showing fill characteristics.
  • a ⁇ -type high-pass filter is used.
  • a T-type high-pass filter is used.
  • Figure 8 compares the 7 ⁇ -type high-pass filter with the T-type high-pass filter, which has the same fill characteristics, and shows the differences in the constituent elements.
  • Cp is an OFF capacity of FET2c
  • 0 is a desired phase shift amount.
  • the inductance of the inductor used will be higher, and the T-type high-pass filter will be better than the ⁇ -type high-pass filter. It can be set smaller, and the number can be reduced.
  • the capacitance of the high-pass filter (proportional to the size of the FETs 2a and 2b) can be set larger in the T-type than in the T-type. From this, the T-type high-pass filter can reduce the loss by reducing the ON resistance of FETs 2a and 2b.
  • the ⁇ -type high-pass filter is almost in the same state as through, signal reflection increases due to the effect of the FET grounded via the inductor, and matching cannot be achieved sufficiently. Thus, it is possible to obtain better characteristics than the phase shifter using the conventional 7T type high-pass filter.
  • the drain electrode of the FET 2a is connected to the input / output terminal 1a, but the source electrode of the FET 2a may be connected to the input / output terminal 1a. .
  • the drain electrode of FET 2a may be connected to the input / output terminal 1b.
  • the drain electrode of FET 2c may be connected to the ground.
  • FIG. 9 is a configuration diagram showing a phase shifter according to Embodiment 2 of the present invention.
  • the same parts as those in the phase shifter shown in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
  • the phase shifter according to the first embodiment is configured such that the FET 2c is grounded through the inductor 3a as shown in FIG. 4, but as shown in FIG. so that a is grounded via FET 2c
  • Embodiment 3 Embodiment 3.
  • FIG. 10 is a configuration diagram showing a phase shifter according to Embodiment 3 of the present invention.
  • the same parts as those in the phase shifter shown in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
  • 3b is the inductor connected in parallel to FET 2c.
  • the inductor 3a having one grounded is connected to the FET
  • Fig. 10 shows an example in which ⁇ NZ is turned off by 2c, but as shown in Fig. 10, an inductor 3b is added in parallel with FET 2c to form a parallel resonance circuit and ground one side. It is configured so that the same effect can be obtained by turning ON / OFF the inductor 3a.
  • the FETs 2a and 2b When a gate bias higher than the pinch-off is applied to the FETs 2a and 2b and a gate bias lower than the pinch-off is applied to the FET 2c, the FETs 2a and 2b are turned on immediately, and the FET 2c is set to 0.
  • the drain-source of the FETs 2a and 2b In the FF state, the drain-source of the FETs 2a and 2b can be regarded as equivalent to a short, and the drain-source of the FET 2c behaves equivalent to a capacity.
  • the FET 2c and the inductor 3b are resonated in parallel at a desired frequency, the effect of the inductor 3a can be reduced, and the inductor 3a can be reduced.
  • the phase shift can be changed by setting the FETs 2a and 2b to the 0N state and setting the FET 2c to the 0FF state. Acts as a vessel.
  • FIG. 11 is a configuration diagram showing a phase shifter according to Embodiment 4 of the present invention.
  • the same parts as those in the phase shifter shown in FIGS. 4 and 10 are denoted by the same reference numerals, and description thereof will be omitted.
  • connection between the FET 2c and the inductor 3b shown in FIG. 10 and the inductor 3a is shown in FIG. 11, and the same effect can be obtained even if the connection is reversed as shown in FIG.
  • the same effect can be obtained by connecting an inductor 3b (not shown) to both sides of the FET 2c and the inductor 3a.
  • FIG. 12 is a configuration diagram showing a phase shifter according to Embodiment 5 of the present invention.
  • the same parts as those in the phase shifter shown in FIGS. 4 and 10 are denoted by the same reference numerals, and description thereof will be omitted.
  • 8a is a capacity connected in parallel to FET 2a
  • 8b is a capacity connected in parallel to FET 2b.
  • the capacity used for the high-pass fill for changing the passing phase is realized by the FETs 2a and 2b.
  • the capacity is parallel to the FETs 2a and 2b. The same operation and effect can be obtained with a configuration in which the capacitors 8a and 8b are connected to the same.
  • a gate bias lower than the voltage at which FETs 2a and 2b pinch off is applied to the control signal terminal 5a, and a gate larger than the voltage at which FET 2c pinches off to the control signal terminal 5b.
  • a bias is applied, that is, when the FETs 2a and 2b are in the OFF state and the FET 2c is in the 0N state
  • the capacity between the drain and the source of the FETs 2a and 2b is equal to the capacity. It behaves equivalently, and the short circuit between the drain and the source of FET 2c can be regarded as equivalent.
  • the phase shifter operates as a T-type HPF composed of FETs 2a and 2b equivalent to the capacity, capacity 8a and 8b, and inductor 3a.
  • turning on / off FETs 2a, 2b, and 2c operates as a phase shifter that changes the phase of the passing signal.
  • FIG. 13 is a configuration diagram showing a phase shifter according to Embodiment 6 of the present invention.
  • the same reference numerals are given to the same portions of the phase shifter shown in FIGS. 4 and 10, and the description thereof is omitted.
  • reference numeral 8c denotes a capacitor connected in parallel to FET2c.
  • the drain-source of the FETs 2a and 2b can be regarded as equivalent to the short, and the drain-source of the FET 2c behaves equivalent to the capacity.
  • the effects of the inductors 3a and 3b are reduced by making the FET 2c, the inductor 3b, and the capacitor 8c resonate in parallel at a desired frequency, and are not connected. Can be treated in the same way as
  • the size can be reduced as compared with the case where the capacity is realized using only the FET2c.
  • FIG. 14 is a configuration diagram showing a multi-bit phase shifter according to Embodiment 7 of the present invention.
  • 2 0 a 2 013 3 ⁇ 01 1 sweep rate Dzuchi, 2 1 high-pass fill evening, 2 2 mouth one Pasufiru evening, 2 3 1 8 0 ° bit phase shifter, 2 4 9 0 ° It is a bit phase shifter.
  • the 90 ° bit phase shifter 24 for example, the phase shifters shown in Embodiments 1 to 6 can be used, and the phase shifter 24 shown in FIG. Phase shifter by Things.
  • the path through which the high-frequency signal input to the input / output terminal 1a passes through the SPDT switches 20a and 20b can be switched.
  • the passing phase is advanced by the high-pass filter 21.
  • the passing phase is delayed by the low-pass filter 22.
  • the difference between the phase advanced by the high-pass filter 21 and the phase delayed by the single-pass filter 22 is set to 180 °, thereby operating as a 180 ° phase shifter.
  • the circuit constant of the 90 ° bit phase shifter is set to 90.
  • the 90 ° phase shifter 24 can switch the 90 ° phase.
  • the multi-bit phase shifter according to the seventh embodiment operates as a 2-bit phase shifter that switches the passing phase in 90 ° steps.
  • Embodiment 8 is a 2-bit phase shifter that switches the passing phase in 90 ° steps.
  • FIG. 15 is a configuration diagram showing a multi-bit phase shifter according to Embodiment 8 of the present invention.
  • the same or corresponding parts as those of the multi-bit phase shifter shown in FIG. 14 are denoted by the same reference numerals, and description thereof will be omitted.
  • 25 is a 45 ° bit phase shifter
  • 26 is a 22.5 ° bit phase shifter
  • 27 is a 11.25 ° bit phase shifter.
  • the phase shifter 24 and the phase shifter 25 of the multi-bit phase shifter shown in FIG. 15 are examples of the phase shifter according to Embodiment 3, and are described in Embodiments 1 to 6.
  • the phase shifter shown can be used for phase shifters 24 and 25 o
  • the multi-bit phase shifter according to Embodiment 8 It operates as a 5-bit phase shifter that switches the passing phase in 11.25 degrees steps.
  • phase shifter and the multi-bit phase shifter according to the present invention reduce the passage loss, and suppress the reflection of the signal to achieve the sufficient matching to shift the phase of the high-frequency signal. Suitable for implementation.

Description

明 細 書 移相器及び多ビッ ト移相器 技術分野
この発明は、 マイク口波帯ゃミ リ波帯で信号の通過位相を電気的に変 化させる移相器及び多ビッ ト移相器に関するものである。 背景技術
第 1図は、 例えば 「2 0 0 0 I E E E M i c r owav e T h e o r y ana T e c hn i qu S ymp o s i um D i g Θ s t」 に示された従来の移相器を示す構成図である。 図において、 l a , l bは入出力端子、 2 a, 2 bは; F E T、 3 a, 3 Tb, 3 cはインダ クタ、 4 a, 4 cは抵抗、 5 a, 5 bは制御信号端子、 8はキャパシ夕 である。
次に動作について説明する。
第 2図は、 従来の移相器の動作を示す等価回路図である。
まず、 制御信号端子 5 aに対して F E T 2 aがピンチオフになる負電 圧が印加され、 制御信号端子 5 bに対して F E T 2 bが通過状態になる 0 V又は正の電圧が印加されている場合を考える。 このときの移相器は 、 第 2図に示す等価回路で表される。
ここで、 F E T 2 aの O F F容量とキャパシ夕 8の容量の和が非常に 小さく、 F E T 2 bの 0 N抵抗が小さい場合、 この回路は Γ型の高域通 過フィル夕として動作する。
次に、 制御信号端子 5 aに対して FE T 2 aが通過状態になる 0 V又 は正の電圧が印加され、 制御信号端子 5 bに対して F E T 2 bがピンチ オフになる負電圧が印加されている場合を考える。
第 3図は、 従来の移相器の動作を示す等価回路図である。 この図は上 記説明のような場合の移相器を等価回路に表したものである。
ここで、 F E T 2 aの 0 N抵抗が小さく、 F E T 2 bの O F F容量と インダク夕 3 cが所望周波数にて並列共振する場合、 インダク夕 3 a , 3 bの影響が小さくなり、 スルーと等価の状態になる。
なお、 高域通過フィル夕は位相が進み、 スルーでは通過位相の変化が ほとんど無いため、 制御信号を切り替えることにより、 入出力端子 1 a から入出力端子 1 bへの通過位相を電気的に切り替えることができる。 従来の移相器は以上のように構成されているので、 ピンチオフにした F E T 2 aの O F F容量の影響を小さくするには、 F E T 2 aのゲート 幅を小さくする必要があるため損失が増加するという課題があった。
この発明は上記のような課題を解決するためになされたもので、 小型 で低損失な移相器及び多ビッ ト移相器を得ることを目的とする。 発明の開示 .
この発明に係る移相器は、 一方のチャネル形成電極が第 1の入出力端 子と接続された第 1の電界効果トランジスタと、 一方のチャネル形成電 極が第 1の電界効果トランジス夕の他方のチャネル形成電極と接続され 、 他方のチャネル形成電極が第 2の入出力端子と接続された第 2の電界 効果トランジスタと、 一方のチャネル形成電極が第 1の電界効果トラン ジス夕の他方のチャネル形成電極と接続された第 3の電界効果トランジ ス夕と、 一端が第 3の電界効果トランジス夕の他方のチャネル形成電極 と接続され他端がグラン ドと接続されたインダク夕とを備えたものであ る。
このことによって、 小型で低損失な移相器が得られる効果がある。 この発明に係る移相器は、 一方のチャネル形成電極が第 1の入出力端 子と接続された第 1の電界効果トランジスタと、 一方のチャネル形成電 極が第 1の電界効果トランジス夕の他方のチャネル形成電極と接続され 他方のチャネル形成電極が第 2の入出力端子と接続された第. 2の電界効 果トランジスタと、 一端が第 1の電界効果トランジスタの他方のチヤネ ル形成電極と接続されたィンダク夕と、 一方のチャネル形成電極がィ ン ダクタの他端と接続され他方のチヤネル形成電極がグラン ドと接続され た第 3の電界効果トランジスタとを備えたものである。
このことによって、 小型で低損失な移相器が得られる効果がある。 この発明に係る多ビッ ト移相器は、 一方のチャネル形成電極が第 1の 入出力端子と接続された第 1の電界効果トランジスタと、 一方のチヤネ ル形成電極が第 1の電界効果トランジス夕の他方のチャネル形成電極と 接続され他方のチャネル形成電極が第 2の入出力端子と接続された第 2 の電界効果トランジスタと、 一方のチャネル形成電極が第 1の電界効果 トランジス夕の他方のチャネル形成電極と接続された第 3の電界効果ト ランジス夕と、 一端が第 3の電界効果トランジス夕の他方のチャネル形 成電極と接続され他端がグラン ドと接続されたィンダク夕とから構成さ れ、 移相量が 9 0度になるように回路定数が設定された移相器と、 1 8 0度ビヅ ト移相器とを組み合わせて使用するようにしたものである。 このことによって、 小型で低損失な多ビッ ト移相器が得られる効果が め o 図面の簡単な説明
第 1図は、 従来の移相器を示す構成図である。
第 2図は、 従来の移相器の動作を示す等価回路図である。
第 3図は、 従来の移相器の動作を示す等価回路図である。 第 4図は、 この発明の実施の形態 1による移相器を示す構成図である 第 5図は、 この発明の実施の形態 1による移相器を示すレイアウ ト図 である。
第 6図は、 この発明の実施の形態 1による移相器の動作を示す等価回 路図である。
第 7図は、 この発明の実施の形態 1による移相器の動作を示す等価回 路図である。
第 8図は、 フィル夕特性を示す説明図である。
第 9図は、 この発明の実施の形態 2による移相器を示す構成図である 第 1 0図は、 この発明の実施の形態 3による移相器を示す構成図であ る。
第 1 1図は、 この発明の実施の形態 4による移相器を示す構成図であ る。
第 1 2図は、 この発明の実施の形態 5による移相器を示す構成図であ る。
第 1 3図は、 この発明の実施の形態 6による移相器を示す構成図であ る。
第 1 4図は、 この発明の実施の形態 7による多ビッ ト移相器を示す構 成図である。
第 1 5図は、 この発明の実施の形態 8による多ビッ ト移相器を示す構 成図である。 発明を実施するための最良の形態
以下、 この発明をより詳細に説明するために、 この発明を実施するた めの最良の形態について、 添付の図面にしたがって説明する。
実施の形態 1.
第 4図は、 この発明の実施の形態 1による移相器を示す構成図で、 第 5図は、 この発明の実施の形態 1による移相器を示すレイアウ ト図であ る。 図において、 1 aは入出力端子 (第 1の入出力端子) 、 l bは入出 力端子 (第 2の入出力端子) 、 2 aは一方のチャネル形成電極である ド レイ ン電極が入出力端子 1 aと接続された F E T (第 1の電界効果トラ ンジス夕) 、 2 bは一方のチャネル形成電極である ドレイン電極が F E T 2 aのソース電極と接続され、 他方のチャネル形成電極であるソース 電極が入出力端子 1 bと接続された F E T (第 2の電界効果トランジス 夕) である。
2 cは一方のチャネル形成電極である ドレイン電極が F E T 2 aのソ —ス電極と接続された F E T (第 3の電界効果トランジスタ) 、 3 aは 一端が F E T 2 cのソース電極と接続され、 他端がグラン ドと接続され たイ ンダク夕、 4 a, 4 b, 4 cは抵抗、 5 a, 5 bは制御信号端子、 6は半導体基板、 7はスルーホールである。
次に動作について説明する。
第 6図及び第 7図は、 この発明の実施の形態 1による移相器の動作を 示す等価回路図である。
まず、 制御信号端子 5 aに対して F E T 2 a, 2 bがピンチオフにな る電圧より低いバイァスが印可され、 制御信号端子 5 bに対して F E T 2 cがビンチオフになる電圧より大きいバイアスが印可されている場合 、 即ち、 F E T 2 a, 2 bが O F F状態、 F E T 2 cが 0 N状態の場合 は F E T 2 a, 2 bのドレイン一ソース間はキャパシ夕と等価に振る舞 い、 F E T 2 cのドレイン一ソース間はショートと等価にみなすことが できる。 第 6図は、 この状態の等価回路を示している。 この状態では、 移相器 はキャパシ夕と等価の FE T 2 a, 2 bとインダクタ 3 aから構成され た T型の高域通過フィル夕として動作し、 入出力端子 l a, l b間を通 過する高周波信号の位相は進み状態になる。
次に、 F E T 2 a, 2 bがピンチオフ以上のゲートバイアスが印可さ れ、 F E T 2 cがピンチオフ以下のゲートバイアスが印可されている場 合、 即ち、 F E T 2 a, 2 bが ON状態、 F E T 2 cが O F F状態の場 合、 F E T 2 a, 2 bの ドレイ ン一ソース間はショートと等価にみなす ことができ、 F E T 2 cのドレイン一ソース間はキャパシ夕と等価に振 る舞ラ。
第 7図は、 この状態の等価回路を示している。 この状態では、 移相器 はキャパシ夕と等価の F E T 2 cとインダク夕 3 aから構成された回路 として動作する。 ここで、 F E T 2 cのゲート幅を小さく し、 OF F時 の容量を非常に小さくすることにより、 F E T 2 cとインダク夕 3 aの 影響を小さく し、 接続されていないのと同様に扱うことができる。 この 場合、'入出力端子 1 a, 1 b間はスルーとほぼ等価になる。
上記のように、 F E T 2 a, 2 b, 2 cを ON/O F Fすることによ り、 通過位相を変化させることができる。
第 8図は、 フィル夕特性を示す説明図である。
従来は Γ型高域通過フィルタを用いており、 この実施の形態 1では T 型高域通過フィル夕を用いている。 第 8図は、 同等なフィル夕特性を有 する 7Γ型高域通過フィル夕と T型高域通過フィル夕とを比較し、 構成素 子などの相違を示している。 図において、 は角周波数、 Cpは F E T 2 cの O F F容量、 0は所望の移相量である。
同じフィル夕特性が得られるようにすると、 使用するインダク夕のィ ンダクタンスせ、 T型高域通過フィル夕の方が Γ型高域通過フィル夕に 比べて小さく設定することができ、 さらに個数も少なく構成できる。 ま た、 高域通過フィル夕を構成するキャパシタンス (F E T 2 a, 2 bの サイズに比例) は 型に比べて T型の方が大きく設定することができる 。 このことから、 T型高域通過フィル夕は F E T 2 a , 2 bの ON抵抗. を小さく して損失を低減させることが可能になる。 また、 Γ型高域通過 フィル夕は、 スルーとほぼ同等な状態になるとイ ンダクタを介して接地 する F E Tの影響によって信号の反射が多くなり、 整合が十分に取れな くなる。 このように、 従来の 7T型高域通過フィル夕を用いた移相器より も優れた特性を得ることが可能になる。
この実施の形態 1では、 半導体基板 6上に回路を構成したモノ リシッ ク構造について記しているが、 誘電体基板上にディスク リート部品を用 いて回路を構成して、 F E Tを接続しても同等の効果が得られる。
なお、 この実施の形態 1では、 F E T 2 aの ドレイ ン電極を入出力端 子 1 aと接続するものについて示したが、 F E T 2 aのソース電極を入 出力端子 1 aと接続してもよい。 同様に、 F E T 2 bのソース電極を入 出力端子 1 bと接続するものについて示したが、 F E T 2 aのドレイ ン 電極を入出力端子 1 bと接続してもよい。 さらに、 F E T 2 cのソース 電極をグラン ドと接続するものについて示したが、 F E T 2 cのドレイ ン電極をグラン ドと接続してもよい。 . 実施の形態 2.
第 9図は、 この発明の実施の形態 2による移相器を示す構成図である 。 第 4図に示した移相器と同一部分には同じ符号を付し、 その説明を省 略する。 実施の形態 1による移相器は、 第 4図に示すように F E T 2 c がイ ンダク夕 3 aを介して接地されるように構成したものであるが、 第 911に示すようにインダク夕 3 aが F E T 2 cを介して接地されるよう に構成してもよ く、 上記実施の形態 1の移相器と同等の作用効果を得る ことができる。 実施の形態 3.
第 1 0図は、 この発明の実施の形態 3による移相器を示す構成図であ る。 第 4図に示した移相器と同一部分に同じ符号を付し、 その説明を省 略する。 図において、 3 bは F E T 2 cに並列接続されたインダク夕で める。
実施の形態 1の移相器では、 一方を接地したィ ンダク夕 3 aを FE T
2 cによ り 〇NZ O F Fさせたものを例示したが、 第 1 0図に示すよう に、 F E T 2 cと並列にイ ンダク夕 3 bを追加し、 並列共振回路を構成 して一方を接地したィ ンダク夕 3 aを ON/O F Fさせて同等の作用効 果が得られるように構成したものである。
次に動作について説明する。
F E T 2 a , 2 bにピンチオフ以上のゲートバイアスが印可され、 F E T 2 cにピンチオフ以下のゲートバイアスが印可されている場合、 即 ち、 F E T 2 a, 2 bが ON状態、 F E T 2 cが 0 F F状態の場合、 F E T 2 a , 2 bの ドレイン一ソース間がショー ト と等価にみなすことが でき、 また、 F E T 2 cの ドレイ ン一ソース間がキャパシ夕と等価に振 る舞つ。
ここで、 F E T 2 cとイ ンダク夕 3 bを所望の周波数で並列共振させ ると、 イ ンダク夕 3 aの影響を小さ くすることができ、 当該イ ンダク夕
3 aが接続されていないのと同様に扱うことができる。 このようにした 場合には、 入出力端子 l a, 1 b間がスルー状態と同等になる。
上記説明のように, F E T 2 a, 2 bを 0 N状態にして F E T 2 cを 0 F F状態にすることにより、 通過位相を変化させることができる移相 器として動作する。 実施の形態 4.
第 1 1図は、 この発明の実施の形態 4による移相器を示す構成図であ る。 第 4図及び第 1 0図に示した移相器と同一部分に同じ符号を付し、 その説明を省略する。
第 1 0図に示した F E T 2 c及びイ ンダク夕 3 bと、 イ ンダク夕 3 a との接続関係を第 1 1図に示し,たように反転しても同等の作用効果が得 られる。 また、 F E T 2 c及びイ ンダクタ 3 aの両側にインダク夕 3 b を接続 (図示省略) しても同等の作用効果が得られる。 実施の形態 5 ·
第 1 2図は、 この発明の実施の形態 5による移相器を示す構成図であ る。 第 4図及び第 1 0図に示した移相器と同一部分に同じ符号を付し、 その説明を省略する。 図において、 8 aは F E T 2 aに並列接続された キャパシ夕、 8 bは F E T 2 bに並列接続されたキャパシ夕である。 実施の形態 1では、 通過位相を変化させるためのハイパスフィル夕に 用いるキャパシ夕を F E T 2 a, 2 bにて実現したが、 第 1 2図に示す ように、 F E T 2 a, 2 bと並列にキャパシ夕 8 a, 8 bを接続した構 成としても同等の作用効果が得られる。
次に動作について説明する。
まず、 制御信号端子 5 aに対して FE T 2 a, 2 bがピンチオフにな る電圧より低いゲートバイアスが印可され、 制御信号端子 5 bに対して F E T 2 cがピンチオフになる電圧より大きいゲートバイアスが印可さ れている場合、 即ち、 F E T 2 a, 2 bが O F F状態、 F E T 2 cが 0 N状態の場合、 F E T 2 a, 2 bのドレイ ン一ソース間がキャパシ夕と 等価に振る舞い、 F E T 2 cのドレイ ン一ソース間をショートと等価に みなすことができる。 この状態では、 移相器はキャパシ夕と等価の F E T 2 a , 2 bとキャパシ夕 8 a, 8 b及びインダク夕 3 aから構成され た T型の HP Fとして動作する。
上記説明のように、 F E T 2 a, 2 b, 2 cを ON/O F Fすること により、 通過信号の位相を変化させる移相器として動作する。
また、 単位面積あたりの容量が F E T 2 a , 2 bよりもキャパシ夕 8 a , 8 bの方が大き 場合には、 F E T 2 a, 2 bだけを用いてキャパ シ夕を実現した場合に比べて、 小型化が可能になる。
また、 F E T 2 aとキャパシ夕 8 aの合計容量及び F E T 2 bとキヤ パシ夕 8 bの合計容量が一定のままサイズを変化させることにより、 F E T 2 a , 2 bが ON時の抵抗値を変化させて移相量が一定のまま通過 損失を変化させることが可能になり、 位相切り替え時の損失差を小さ く することができる。 実施の形態 6.
第 1 3図は、 この発明の実施の形態 6による移相器を示す構成図であ る。 第 4図及び第 1 0図に示す移相器 同一部分に同じ符号を付し、 そ の説明を省略する。 図において、 8 cは F E T 2 cに並列接続されたキ ャパシ夕である。
実施の形態 5では、 入出力端子 1 a, l bに接続された F E T 2 a , 2 bにキャパシ夕 8 a , 8 bを並列に接続するものについて示したが、 第 1 3図に示すように、 一方を接地したイ ンダク夕 3 aを ON/O F F させる F E T 2 c及びィンダク夕 3 bと並列にキャパシ夕 8 cを接続し ても同等の作用効果を得ることができる。 - 次に動作について説明する。 F E T 2 a, 2 bがピンチオフ以上のゲー トバイアスが印可され、 F E T 2 cがピンチオフ以下のゲー トバイァスが印可されている場合、 即 ち、 F E T 2 a, 2 bが ON状態、 F E T 2 cが 0 F F状態の場合、 F E T 2 a, 2 bの ドレイ ン一ソース間をショー ト と等価にみなすことが でき、 F E T 2 cの ドレイ ン一ソース間がキャパシ夕と等価に振る舞う 。 ここで、 F E T 2 cとイ ンダク夕 3 bとキャパシ夕 8 cを所望の周波 数で並列共振させることによ り、 イ ンダク夕 3 a, 3 bの影響を小さ く し、 接続されていないのと同様に扱うことができる。
上記説明のように、 F E T 2 a, 2 b , 2 cを ON/O F Fするこ と により、 通過信号の位相を変化させることができる移相器として動作す る ο
また、 単位面積あたりの容量が F E T 2 cよ り もキャパシ夕 8 cの方 が大きい場合、 F E T 2 cだけを用いてキャパシ夕を実現した場合に比 ベて小型化が可能になる。
また、 FE T 2 cとキャパシタ 8 cの合計容量が一定のままサイズを 変化させることによ り、 移相量が一定のまま通過損失を変化させること ができるため、 位相切り替え時の損失差を小さ くすることが可能になる
実施の形態 7.
第 1 4図は、 この発明の実施の形態 7による多ビッ ト移相器を示す構 成図である。 図において、 2 0 a, 2 013は3卩011スィ ヅチ、 2 1は ハイパスフィル夕、 2 2は口一パスフィル夕、 2 3は 1 8 0 ° b i t移 相器、 2 4は 9 0 ° b i t移相器である。 なお、 9 0 ° b i t移相器 2 4は、 例えば、 実施の形態 1 ~ 6に示した移相器を用いることができ、 第 1 4図に示した移相器 24は、 実施の形態 3による移相器を例示した ものである。
次に動作について説明する。
入出力端子 1 aに入力した高周波信号は、 S PD Tスイ ッチ 2 0 a, 2 0 bにて通過する経路を切り替えられる。 まず、 ハイパスフィル夕 2 1を通過する場合、 通過位相はハイパスフィル夕 2 1により進む。 一方 、 口一パスフィル夕 2 1を通過する場合、 通過位相はローパスフィル夕 2 2により遅れる。 ここで、 ハイパスフィルタ 2 1により進む位相と、 口一パスフィル夕 2 2により遅れる位相の差を 1 8 0 ° に設定すること. により、 1 8 0 ° 移相器として動作する。
次に、 9 0 ° b i t移相器の回路定数を移相量が 9 0。 になるように 設定することにより、 9 0 ° 移相器 24は 9 0 ° 位相を切り替えること ができる。
上記説明のように構成することにより、 実施の形態 7による多ビッ ト 移相器は、 通過位相を 9 0 ° ステツプで切り替える 2ビッ ト移相器とし て動作する。 実施の形態 8.
第 1 5図は、 この発明の実施の形態 8による多ビッ ト移相器を示す構 成図である。 第 1 4図に示す多ビッ ト移相器と同一あるいは相当する部 分に同じ符号を付し、 その説明を省略する。 図において、 2 5は 45 ° b i t移相器、 2 6は 2 2. 5 ° b i t移相器、 2 7は 1 1. 2 5 ° b i t移相器である。 なお、 第 1 5図に示した多ビッ ト移相器の移相器 2 4および移相器 2 5は、 実施の形態 3による移相器を例示したもので、 実施の形態 1〜 6に示した移相器を移相器 2 4 , 2 5に用いることがで きる o
このように構成することで、 実施の形態 8による多ビッ ト移相器は、 通過位相を 1 1 . 2 5 ° ステップで切り替える 5 ビッ ト移相器として動 作する。 産業上の利用可能性
以上のように、 この発明に係る移相器及び多ビッ ト移相器は、 通過損 失が低減され、 また、 信号の反射を抑制して整合を十分とりながら高周 波信号の移相を実施するのに適している。

Claims

請 求 の 範 囲
1 . 一方のチャネル形成電極が第 1の入出力端子と接続された第 1の 電界効果トランジスタと、 一方のチャネル形成電極が上記第 1の電界効 果トランジス夕の他方のチヤネル形成電極と接続され他方のチヤネル形 成電極が第 2の入出力端子と接続された第 2の電界効果トランジスタと 、 一方のチャネル形成電極が上記第 1の電界効果トランジス夕の他方の チャネル形成電極と接続された第 3の電界効果トランジスタと、 一端が 上記第 3の電界効果トランジス夕の他方のチャネル形成電極と接続され 他端がグラン ドと接続されたィンダク夕とを備えた移相器。
2 . 第 3の電界効果トランジスタにおける一方のチャネル形成電極と 他方のチャネル形成電極間にインダク夕を接続したことを特徴とする請 求の範囲第 1項記載の移相器。
3 . 第 1及び第 2の電界効果トランジスタにおける一方のチャネル形 成電極と他方のチヤネル形成電極間にキャパシ夕を接続したことを特徴 とする請求の範囲第 1項記載の移相器。
4 . 第 3の電界効果トランジスタにおける一方のチャネル形成電極と 他方のチャネル形成電極間にキャパシ夕を接続したことを特徴とする請 求の範囲第 1項記載の移相器。
5 . 移相量が 9 0度になるように回路定数を設定したことを特徴とす る請求の範囲第 1項記載の移相器。
6 . 移相量が 4 5度になるように回路定数を設定したことを特徴とす る請求の範囲第 1項記載の移相器。
7 . 一方のチャネル形成電極が第 1の入出力端子と接続された第 1の 電界効果トランジスタと、 一方のチャネル形成電極が上記第 1の電界効 果トランジスタの他方のチヤネル形成電極と接続され他方のチヤネル形 成電極が第 2の入出力端子と接続された第 2の電界効果トランジスタと 、 一端が上記第 1の電界効果トランジス夕の他方のチャネル形成電極と 接続されたイ ンダク夕と、 一方のチャネル形成電極が上記ィンダク夕の 他端と接続され他方のチャネル形成電極がグラン ドと接続された第 3の 電界効果トランジスタとを備えた移相器。
8 . 第 3の電界効果トランジスタにおける一方のチヤネル形成電極と 他方のチャネル形成電極間にィンダク夕を接続したことを特徴とする請 求の範囲第 7項記載の移相器。
9 . 第 1及び第 2の電界効果トランジスタにおける一方のチャネル形 成電極と他方のチャネル形成電極間にキャパシ夕を接続したことを特徴 とする請求の範'囲第 7項記載の移相器。
1 0 . 第 3の電界効果トランジスタにおける一方のチャネル形成電極 と他方のチャネル形成電極間にキャパシ夕を接続したことを特徴とする 請求の範囲第 7項記載の移相器。
1 1 . '移相量が 9 0度になるように回路定数を設定したことを特徴と する請求の範囲第 7項記載の移相器。
1 2 . 移相量が 4 5度になるように回路定数を設定したことを特徴と する請求の範囲第 7項記載の移相器。
1 3 . 一方のチャネル形成電極が第 1の入出力端子と接続された第 1 の電界効果トランジスタと、 一方のチャネル形成電極が上記第 1の電界 効果トランジス夕の他方のチヤネル形成電極と接続され他方のチヤネル 形成電極が第 2の入出力端子と接続された第 2の電界効果トランジスタ と、 一方のチャネル形成電極が上記第 1の電界効果トランジスタの他方 のチャネル形成電極と接続された第 3の電界効果トランジスタと、 一端 が上記第 3の電界効果トランジス夕の他方のチャネル形成電極と接続さ れ他端がグラン ドと接続されたィンダクタとから構成され、 移相量が 9 0度になるように回路定数が設定された移相器と、
1 8 0度ビッ ト移相器とを組み合わせて使用することを特徴とする多 ビッ ト移相器。
PCT/JP2002/002929 2001-05-14 2002-03-26 Compensateur de phase et compensateur de phase multibit WO2002093743A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/476,384 US7123116B2 (en) 2001-05-14 2002-03-26 Phase shifter and multibit phase shifter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-143654 2001-05-14
JP2001143654A JP3469563B2 (ja) 2001-05-14 2001-05-14 移相器及び多ビット移相器

Publications (1)

Publication Number Publication Date
WO2002093743A1 true WO2002093743A1 (fr) 2002-11-21

Family

ID=18989763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002929 WO2002093743A1 (fr) 2001-05-14 2002-03-26 Compensateur de phase et compensateur de phase multibit

Country Status (3)

Country Link
US (1) US7123116B2 (ja)
JP (1) JP3469563B2 (ja)
WO (1) WO2002093743A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729411A1 (en) * 2004-03-26 2006-12-06 Mitsubishi Denki Kabushiki Kaisha Phase circuit, high-frequency switch, and phase device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739828A4 (en) 2004-07-27 2010-01-27 Mitsubishi Electric Corp PHASE SHIFTING CIRCUIT AND MULTIBIT PHASE DECAL
KR100648011B1 (ko) * 2004-12-16 2006-11-23 삼성전자주식회사 의사 차동 전류 모드 수신방법 및 이를 위한 전류 모드수신기
US7535320B2 (en) * 2005-07-12 2009-05-19 U.S. Monolithics, L.L.C. Phase shifter with flexible control voltage
JP2008236105A (ja) * 2007-03-19 2008-10-02 Nec Corp 電力分配合成システム
JP5522908B2 (ja) * 2008-07-02 2014-06-18 三菱電機株式会社 移相回路
KR100976799B1 (ko) * 2008-10-24 2010-08-20 한국전자통신연구원 위상 변위기와 그 제어 방법
JP2010114718A (ja) * 2008-11-07 2010-05-20 Nec Electronics Corp 移相器
JP2010220200A (ja) * 2009-02-19 2010-09-30 Renesas Electronics Corp 導通切替回路、導通切替回路ブロック、及び導通切替回路の動作方法
US8988165B2 (en) * 2012-01-27 2015-03-24 Freescale Semiconductor, Inc Delay line phase shifter with selectable phase shift
DE102012208555B4 (de) * 2012-05-22 2023-07-27 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Schaltbare Frequenzweiche und Signalgenerator
US9160296B2 (en) 2014-01-21 2015-10-13 Qualcomm Incorporated Passive switch-based phase shifter
EP3373455B1 (en) * 2015-12-09 2019-12-04 Mitsubishi Electric Corporation High frequency switch
US10374663B2 (en) * 2016-12-30 2019-08-06 Hughes Network Systems, Llc Digital dithering for reduction of quantization errors and side-lobe levels in phased array antennas
US11296410B2 (en) * 2018-11-15 2022-04-05 Skyworks Solutions, Inc. Phase shifters for communication systems
US10566952B1 (en) * 2018-12-27 2020-02-18 Industrial Technology Research Institute Phase shifter with broadband and phase array module using the same
US10763827B1 (en) * 2019-08-29 2020-09-01 Nxp B.V. Delay line with controllable phase-shifting cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151113A (ja) * 1988-12-01 1990-06-11 Nec Corp Lpf/hpf移相器
US5317290A (en) * 1987-10-19 1994-05-31 General Electric Company MMIC (monolithic microwave integrated circuit) switchable bidirectional phase shift network
JPH08250963A (ja) * 1995-03-15 1996-09-27 Mitsubishi Electric Corp 移相器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349401A (ja) * 1989-07-18 1991-03-04 Mitsubishi Electric Corp マイクロ波素子
JPH0421201A (ja) * 1990-05-16 1992-01-24 Toyota Central Res & Dev Lab Inc 移相器
JP2898470B2 (ja) * 1992-05-08 1999-06-02 三菱電機株式会社 スイッチドライン型移相器
JP3310203B2 (ja) * 1997-07-25 2002-08-05 株式会社東芝 高周波スイッチ装置
JP3144477B2 (ja) * 1997-09-01 2001-03-12 日本電気株式会社 スイッチ回路及び半導体装置
JP2001339276A (ja) * 2000-05-30 2001-12-07 Mitsubishi Electric Corp 移相器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317290A (en) * 1987-10-19 1994-05-31 General Electric Company MMIC (monolithic microwave integrated circuit) switchable bidirectional phase shift network
JPH02151113A (ja) * 1988-12-01 1990-06-11 Nec Corp Lpf/hpf移相器
JPH08250963A (ja) * 1995-03-15 1996-09-27 Mitsubishi Electric Corp 移相器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729411A1 (en) * 2004-03-26 2006-12-06 Mitsubishi Denki Kabushiki Kaisha Phase circuit, high-frequency switch, and phase device
EP1729411A4 (en) * 2004-03-26 2009-07-15 Mitsubishi Electric Corp PHASE CIRCUIT, HIGH FREQUENCY SWITCH, AND PHASE DEVICE

Also Published As

Publication number Publication date
JP2002344201A (ja) 2002-11-29
US7123116B2 (en) 2006-10-17
US20040145429A1 (en) 2004-07-29
JP3469563B2 (ja) 2003-11-25

Similar Documents

Publication Publication Date Title
WO2002093743A1 (fr) Compensateur de phase et compensateur de phase multibit
US10211801B2 (en) Hybrid coupler with phase and attenuation control
US6992366B2 (en) Stacked variable inductor
US6563366B1 (en) High-frequency Circuit
US7495529B2 (en) Phase shift circuit, high frequency switch, and phase shifter
JPH0349401A (ja) マイクロ波素子
US5701107A (en) Phase shifter circuit using field effect transistors
US8212632B2 (en) FET phase shifter for selectively phase shifting signals between different filtering characteristics
JPWO2002056467A1 (ja) 移相器及び多ビット移相器
JPH1174703A (ja) スイッチ回路及び半導体装置
WO2005093894A1 (ja) 単極単投スイッチ、単極双投スイッチ及び多極多投スイッチ
JP4963241B2 (ja) 移相回路
US7167064B2 (en) Phase shift circuit and phase shifter
JP2943480B2 (ja) 半導体移相器
JP2001339276A (ja) 移相器
JPH10200302A (ja) 可変移相器
JP4122600B2 (ja) 電解効果トランジスタおよび半導体回路
WO2023135663A1 (ja) 移相回路
JP3171915B2 (ja) モノリシック・マイクロ波移相器
JP3670084B2 (ja) 半導体スイッチ回路
JP2002246802A (ja) 半導体スイッチ、移相回路及び減衰器
JP2002164703A (ja) 広帯域耐電力スイッチ
JP3315299B2 (ja) マイクロ波スイッチ
JP2003188671A (ja) ハイパス/ローパス切替形移相器
JPH09139604A (ja) マイクロ波移相装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10476384

Country of ref document: US

122 Ep: pct application non-entry in european phase