WO2002080240A2 - Verfahren zur herstellung einer halbleiteranordnung und verwendung einer ionenstrahlanlage zur durchführung des verfahrens - Google Patents

Verfahren zur herstellung einer halbleiteranordnung und verwendung einer ionenstrahlanlage zur durchführung des verfahrens Download PDF

Info

Publication number
WO2002080240A2
WO2002080240A2 PCT/EP2002/003344 EP0203344W WO02080240A2 WO 2002080240 A2 WO2002080240 A2 WO 2002080240A2 EP 0203344 W EP0203344 W EP 0203344W WO 02080240 A2 WO02080240 A2 WO 02080240A2
Authority
WO
WIPO (PCT)
Prior art keywords
ion beam
layer
liner
capacitor
semiconductor arrangement
Prior art date
Application number
PCT/EP2002/003344
Other languages
English (en)
French (fr)
Other versions
WO2002080240A3 (de
Inventor
Bernd Goebel
Peter Moll
Martin Gutsche
Harald Seidl
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to EP02757724A priority Critical patent/EP1382061A2/de
Publication of WO2002080240A2 publication Critical patent/WO2002080240A2/de
Priority to US10/675,766 priority patent/US20040063321A1/en
Publication of WO2002080240A3 publication Critical patent/WO2002080240A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate
    • H10B12/0385Making a connection between the transistor and the capacitor, e.g. buried strap

Definitions

  • the present invention relates in particular to a method for producing a semiconductor arrangement according to the preamble of patent claim 1.
  • the object of the present invention is to provide a method and a device for removing a thin layer on only one side of a trench or a contact hole of the semiconductor arrangement.
  • the geometry of the hole or depression is used by the ion beam directed obliquely at the radiation angle ⁇ onto the wafer surface. Since the undesired ion attack on a side wall surface is avoided by the shadowing effect in the recess, the said layer can be removed on one side reproducibly and with sufficient accuracy in one method step.
  • the process according to the invention is not dependent on the exact relative positioning to one another or the alignment of two lithography planes, which is also becoming more and more complex with smaller structure sizes. Rather, the method according to the invention is self-adjusting and independent of lithographic adjustment accuracies. The same applies to the use of an ion beam system for carrying out the method and a semiconductor arrangement produced by the method according to the invention.
  • wafers in which buried straps are to be realized have a uniform geometry easily reproducible and exactly the liner is removed from one side in the recess and subsequently the buried strap is created.
  • the ion beam is advantageously generated by a relatively pivotable RIBE (reactive ion beam etching) source. This ensures a controlled selective etching of the liner with a good etching rate.
  • RIBE reactive ion beam etching
  • Fig. La-f the formation of a one-sided buried straps by means of a directed ion beam according to the first embodiment in a sectional view
  • Fig. 2a-f the formation of a one-sided buried straps by means of a directed ion beam according to the second embodiment in a sectional view
  • Fig. 3a, b in a plan view on an enlarged scale the irradiated perforated base according to the second embodiment
  • FIG. 4a-g the formation of a one-sided buried strap by means of a directed ion beam according to the third exemplary embodiment in a sectional view
  • FIG. 5 a greatly simplified basic illustration of the device used according to the invention.
  • FIG. 1 a shows a section of a DRAM memory cell of a semiconductor circuit arranged on a wafer, which has seen all the process steps before the start of the process steps according to the invention (Widmann, Mader: p. 338;
  • the DT capacitor 1 consists of a poly-Si core 5, which is surrounded by a collar oxide 7, and is arranged in the bottom region of a hole 9 or a trench with an elliptical base area.
  • the hole 9 is arranged in a Si substrate 11, which is covered by an approximately 0.2 ⁇ m thick Si 3 N 4 mask 13.
  • the distance between the top of the Si 3 N4 mask 13 and the top of the poly-Si 5 of the DT capacitor 1 is approximately 0.3-0.4 ⁇ m and the short or long side of the ellipse is 0.2 or 0.4 ⁇ m.
  • Barrier layer which is suitable as a mask for the subsequent dry or wet etching, in the form of an Si 3 N 4 liner 15 with a thickness of about 5-10 im.
  • the liner 15 in particular also covers the circumferential side of the side wall of the DT capacitor 1 and the bottom of the hole 9 or the upper sides of the
  • Poly-Si core 5 and the collar oxide 7 (Fig. Lb).
  • An advantage of the choice of material for the liner 15 is that both Si and Si0 can be selectively etched in the case of Si 3 N 4 .
  • the thickness of the liner 15 is dimensioned at about 5-10 nm in such a way that on the one hand the liner 15 in the irradiated areas can still be completely removed by the subsequent ion irradiation, and on the other hand the liner in the non-irradiated and thus in the not removed areas is sufficiently strong as a mask for the subsequent subsequent etching back of the collar oxide.
  • one side of the DT capacitor 1 in the hole 9 is subjected to a significantly stronger etching or Sputter attack exposed as the side that is in the opposite radiation shadow located.
  • the thin Si 3 N 4 barrier layer 15 is removed on one side from the side wall and the perforated bottom (area A; cf. FIG. 3a). All semiconductor structures possibly located under the thick Si 3 N 4 mask 13 are protected from the ion radiation by the mask 13.
  • the Si 3 N 4 liner 15 represents a mask for the subsequent removal of the collar oxide 7, so that a buried strap 17 can only occur at the points on which the liner 15 was previously removed.
  • the irradiation angle ⁇ is selected such that the liner 15 is removed up to half the width b of the hole 9 in the area A.
  • the radiation angle ⁇ is therefore preferably set such that the ion beam S is shielded to approximately% of the hole width b. This ensures that, despite manufacturing fluctuations and setting inaccuracies, neither too little nor too much Si 3 N-liner 15 is removed in the bottom region of the hole 9 (FIG. 1c, cf. FIG. 3a).
  • the collar oxide 7 is etched back on the side of the DT capacitor 1, on which the Si 3 N 4 - was previously etched using a highly selective anisotropic etching (arrow) - followed by an isotropic overetch to remove residues.
  • Liner 15 has been removed by ion irradiation. If this anisotropic etching is not sufficiently selective, a lower liner can also be opened with the liner 15, which then again serves as a mask for the subsequent etching step (not shown).
  • a poly-Si layer 19 is deposited conformally according to FIG. Le (FIG. Le) and thus the conductive connection between the poly-Si core 5 of the DT capacitor 1 and the selection transistor 3 or the Si -Substrate 11 made on one side (Fig. Le). 00> tXJ bh ⁇
  • an Si 3 N 4 liner 15 is deposited conformally.
  • the liner 15 serves as a mask for the following dry or wet etching and is also approximately 5-10 nm thick.
  • the Si 3 N liner 15 in particular also covers the circumferential side of the side wall of the DT capacitor 1 or of the collar oxide 7 and the bottom of the hole 9 or the top of the poly-Si core 5 (FIG. 2b).
  • the liner 15 is then removed by means of a directed ion beam S on one side or on part of the poly-Si surface 5 in accordance with the first exemplary embodiment (FIG. 2c).
  • Limits of the spatial extent of the distance of the liner 15 due to the ion irradiation to be observed are shown in sections in FIGS. 2cl and 2c2.
  • the Si 3 N liner 15 remains at most up to a height of the width of the collar oxide 7 (corresponds to the lateral distance between the Si substrate 11 and the poly
  • Si core 5 are available so that they are still suitable for the subsequent etching processes.
  • the other limit state of the removal of the liner 15 results from the fact that it must be ensured in terms of process technology that the buried strap 17 is reliably formed only on one side of the DT capacitor 1 (cf. FIGS. 3a, b).
  • the collar oxide 7 can be etched back with a selective isotropic etching (arrow), so that the collar oxide 7 on the previously irradiated side wall is completely removed in the region above the perforated bottom (FIG. 2d).
  • the collar oxide 7 is then sufficiently withdrawn on this side wall by means of anisotropic etching back (arrow). Undesired oxide residues can subsequently also be removed by a further isotropic etching step (FIG. 2e).
  • the deposition of a conformal poly-Si layer 19 (broken line in FIG. 2f) and a subsequent isotropic etching back of the deposited poly-Si (FIG. 2f) remains in the gap caused by the collar oxide etching back
  • FIG. 3a and 3b show a plan view on an enlarged scale, in which area B the Si 3 N-liner 15 is removed due to the ion beam S above the collar oxide 7 in the elliptical hole 9, one of the ion radiation S. irradiated bottom surface A (FIG. 3a) of the DT capacitor 1 and an area C in which the collar oxide 7 has been removed after the two-time isotropic etching back according to FIG. 2d, e (FIG. 3b).
  • FIG. 3a illustrates in which surface area A of the perforated base, which is delimited essentially in an elliptical shape, occurs the ion radiation S which is irradiated at the angle ⁇ according to FIG is safely shielded.
  • the radiation component reflected from the side wall of the hole 9 into the bottom area can be neglected.
  • the isotropic etchback is approximately twice the Co ⁇ lar width.
  • a conductive connection, initially formed on both sides, between the DT capacitor 1 and the immediately adjacent region of the associated selection transistor 3 is removed on one side and the buried strap 17 is thereby generated on one side (FIGS. 4a-g ).
  • etching method with directed atomic beams can also be used for the implementation of the invention.
  • FIG. 5 shows in simplified form the device known per se for carrying out the method according to the invention.
  • an ion source 27 and a pivotable sample table 29, on which the wafer for radiation is arranged at the radiation angle ⁇ , are provided in a vacuum chamber 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

Bekannt ist ein Lithographisches Verfahren zum Entfernen einer dünnen Maskenschicht, insbesondere eines Si3N4-Liners, auf einer Seite einer Vertiefung in einer Halbleiteranordnung. Erfindungsgemäß ist vorgesehen, dass ein Ionenstrahl unter einem Winkel schräg auf die Vertiefung gerichtet wird, wodurch in den bestrahlten Bereichen die dünne Maskenschicht entfernt wird.

Description

Beschreibung
Verfahren zur Herstellung einer Halbleiteranordnung und Verwendung einer Ionenstrahlanlage zur Durchführung des Ver- fahrens
Die vorliegende Erfindung betrifft insbesondere ein Verfahren zur Herstellung einer Halbleiteranordnung nach dem Oberbegriff des Patentanspruches 1.
Bekannt sind gemäß dem Stand der Technik aus D. Widmann, H. Mader, H. Friedrich: Technologie hochintegrierter Schaltungen. - 2. Auflage - Springer, 1996. u.a. Halbleiteranordnungen für DRAMs in Sub-μ Technologie mit Deep Trench- (DT) Kondensator und Auswahltransistor. Um den DT-Kondensator an den Auswahltransistor anschließen zu können, muss der DT-Kondensator mit dem Substrat leitend verbunden werden. Dieser Kontakt bzw. diese Verbindung (buried strap oder Buried-Kon- takt) darf jedoch lediglich auf der dem zugehörigen Auswahl- transistor zugewandten Seite unterhalb der Mono-Si-Oberflache bestehen. Daher muss auf dieser Seite die Isolierung zwischen dem DT-Kondensator und dem Auswahltransistor bzw. dem Substrat entfernt werden und durch ein leitendes Material ersetzt werden. Auf der anderen Seite des DT-Kondensators darf hingegen keine leitende Verbindung entstehen. Möglich ist auch umgekehrt, eine vorhandene leitende Verbindung zwischen dem DT-Kondensator und dem Substrat auf einer der beiden Seiten zu entfernen und dadurch den buried strap zu realisieren. Grundsätzlich muss also eine unterschiedliche Behand- lung beider -Seiten des DT-Kondensators durchgeführt werden. Dieses Problem wird gemäß dem Stand der Technik über ein Lithografie-Verfahren gelöst, bei dem nur eine Seite des DT- Kondensators bedeckt ist, wobei durch einen anschließenden Ätzvorgang der buried strap auf den nicht abgedeckten Gebie- ten entfernt wird (Widmann, Mader: S. 339; Schritt 11). Weiterhin ist es aus D. Widmann et. al . bekannt, bei der Strukturerzeugung in Gräben auch vertikale Oberflächen auszunutzen, beispielsweise durch Prozessschritte wie definierte Rückätzung und Schrägimplantation (Widmann, Mader: S.82, 178, 282) . Bekannt ist beispielsweise eine Schrägimplantation unter einem Bestrahlungswinkel von etwa 45° durch einen Spacer hindurch zur Erzeugung kurzer LDD (Lightly Doped Drain) -Dotierprofile.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung bereitzustellen zum Entfernen einer dünnen Schicht an lediglich einer Seite eines Grabens oder eines Kontaktloches der Halbleiteranordnung.
Erfindungsgemäß ist dies bei einem Verfahren mit den Merkmalen des Patentanspruches 1 erreicht . Durch den unter dem Strahlungswinkel α schräg auf die Waferoberflache gerichteten Ionenstrahl wird die Geometrie des Loches bzw. der Vertiefung genutzt. Da der unerwünschte Ionenangriff auf einer Seitenwandflache durch den Abschattungseffekt in der Vertiefung vermieden wird, kann in einem Verfahrensschritt über die gesamte Fläche des Wafers reproduzierbar und ausreichend genau die besagte Schicht einseitig entfernt werden. Im Gegensatz zu den bekannten lithographischen Verfahren ist das erfindungsgemäße Verfahren jedoch nicht abhängig von der genauen relativen Zueinanderpositionierung bzw. dem Alignment zweier Lithographieebenen, was zudem bei kleineren Strukturgrößen immer aufwendiger wird. Das erfindungsgemäße Verfahren ist vielmehr selbstjustierend und unabhängig von litho- graphischen Justiergenauigkeiten. Entsprechendes gilt für die Verwendung einer Ionenstrahlanlage zur Durchführung des Verfahrens und eine nach dem erfindungsgemäßen Verfahren hergestellte Halbleiteranordnung.
Wenn alle Vertiefungen der Halbleiteranordnung auf einem
Wafer, in denen buried straps realisiert werden sollen, eine einheitliche Geometrie aufweisen, kann erfindungsgemäß auf einfache Weise reproduzierbar und genau der Liner einseitig in der Vertiefung entfernt werden und nachfolgend der buried strap erzeugt werden.
Vorteilhafter Weise wird der Ionenstrahl durch eine relativ verschwenkbare RIBE (Reactive Ion Beam Etching) -Quelle erzeugt. Dadurch ist eine kontrollierte selektive Ätzung des Liners bei guter Ätzrate sichergestellt.
In weiteren abhängigen Ansprüchen finden sich weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens.
Nachfolgend sind drei Ausführungsbeispiele des erfindungsgemäßen Verfahrens und die dabei erforderliche Vorrichtung beschrieben; es zeigen:
Fig. la-f die Formierung eines einseitigen buried straps mittels gerichteten Ionenstrahls gemäß dem ersten Ausführungsbeispiel in einer Schnittdarstellung, sowie Fig. 2a-f die Formierung eines einseitigen buried straps mittels gerichteten Ionenstrahls gemäß dem zweiten Ausführungsbeispiel in einer Schnittdarstellung, Fig. 3a,b in einer Draufsicht in vergrößertem Maßstab den bestrahlte Lochboden gemäß dem zweiten Ausführungsbeispiel, sowie
Fig. 4a-g die Formierung eines einseitigen buried straps mittels gerichteten Ionenstrahls gemäß dem dritten Ausführungsbeispiel in einer Schnittdarstellung, sowie Fig. 5 eine stark vereinfachte Prinzipdarstellung der erfindungsgemäß verwendeten Vorrichtung.
In Fig. la ist ein Ausschnitt einer DRAM-Speicherzelle einer auf einem Wafer angeordneten Halbleiterschaltung gezeigt, die alle Verfahrensschritte vor dem Beginn der erfindungsgemäßen Verfahrensschritte gesehen hat (Widmann, Mader: S. 338;
Schritt 9). Dabei ist in Fig. la-f aus Vereinfachungsgründen lediglich ein DT-Kondensator 1 und der unmittelbar angren- zende Bereich eines dazugehörigen Auswahltransistors 3 dargestellt. Der DT-Kondensator 1 besteht aus einem Poly-Si-Kern 5, der von einem Collar-Oxid 7 umgeben ist, und ist im Bodenbereich eines Loches 9 bzw. eines Grabens mit ellipsenförmi- ger Grundfläche angeordnet. Das Loch 9 ist in einem Si-Sub- strat 11 angeordnet, das von einer etwa 0,2 μ starken Si3N4- Maske 13 bedeckt ist. Dabei beträgt der Abstand der Oberseite der Si3N4-Maske 13 zur Oberseite des Poly-Si 5 des DT-Kondensators 1 etwa 0,3 -0,4 μm und die kurze bzw. die lange Seite der Ellipse betragen 0,2 bzw. 0,4 μm. Durch einen nasschemischen isotropen Ätzvorgang wurde, wie in Fig. la gezeigt, das Collar-Oxid 7 gegenüber der Oberseite des Poly-Si 5 etwas zurückgezogen ( Pfeil in Fig. la) .
Gemäß Fig. lb erfolgt eine konforme Abscheidung einer
Barriereschicht, die als Maske für die nachfolgenden Trockenoder Nassätzungen geeignet ist, in Form eines Si3N4-Liners 15 mit einer Stärke von etwa 5-10 im. Der Liner 15 bedeckt insbesondere auch umfangsseitig die Seitenwand des DT-Konden- sators 1 und den Boden des Loches 9 bzw. die Oberseiten des
Poly-Si-Kerns 5 und des Collar-Oxids 7 (Fig. lb) . Vorteilhaft an der Materialwahl des Liners 15 ist, dass bei Si3N4 sowohl Si als auch Si0 selektiv geätzt werden können. Die Stärke des Liners 15 ist mit etwa 5-10 nm so bemessen, dass einer- seits durch die nachfolgende Ionenbestrahlung der Liner 15 in den bestrahlten Bereichen noch sicher vollständig entfernt werden kann, und dass andererseits der Liner in den nicht bestrahlten und damit in den nicht entfernten Bereichen als Maske für die dann anschließende Rückätzung des Collar-Oxids ausreichend stark ausgebildet ist.
Durch die Verwendung eines gerichteten Ionenstrahls S, der unter einem Bestrahlungswinkel in Abweichung zur Normalen (unterbrochene Linie) auf die Scheibe bzw. den Wafer gerich- tet wird, wird in dem Loch 9 eine Seite des DT-Kondensators 1 einem deutlich stärkeren Ätz- bzw. Sputterangriff ausgesetzt als die Seite, die sich im gegenüberliegenden Strahlungs- schatten befindet. Dadurch wird einseitig die dünne Si3N4- Barriereschicht 15 von der Seitenwand und dem Lochboden (Bereich A; vgl. Fig. 3a) entfernt. Alle unter der dicken Si3N4-Maske 13 gegebenenfalls befindlichen Halbleiterstruk- turen sind dabei durch die Maske 13 vor der Ionenstrahlung geschützt. Im nicht bestrahlten und deshalb nicht entfernten Bereich stellt der Si3N4-Liner 15, wie nachfolgend beschrieben ist, für die anschließende Entfernung des Collar-Oxids 7 eine Maske dar, so dass ein buried strap 17 nur an den Stel- len entstehen kann, an denen vorher der Liner 15 entfernt worden ist. Gemäß Fig. lc ist der Bestrahlungswinkel α so gewählt, dass der Liner 15 bis zur Hälfte der Breite b des Loches 9 im Bereich A entfernt wird. Um eine nachteilig zu geringe oder zu umfangreiche Entfernung des Si3N4-Liners 15 vermeiden zu können, wird der Bestrahlungswinkel α deshalb bevorzugt so eingestellt, dass der Ionenstrahl S etwa auf % der Lochbreite b abgeschirmt ist. Dadurch ist sichergestellt, dass trotz Fertigungsschwankungen und Einstell-Ungenauigkei- ten weder zu wenig noch zu viel Si3N-Liner 15 im Boden- bereich des Loches 9 entfernt wird (Fig. lc, vgl. Fig. 3a) .
Im folgenden Verfahrensschritt wird gemäß Fig. Id mit einer hochselektiven anisotropen Ätzung (Pfeil) - mit anschließendem isotropem Overetch zur Entfernung von Resten - an der Seite des DT-Kondensators 1 das Collar-Oxid 7 rückgeätzt, an der zuvor der Si3N4-Liner 15 durch die Ionenbestrahlung entfernt worden ist. Bei nicht ausreichender Selektivität dieser anisotropen Ätzung kann auch mit dem Liner 15 ein unterer Liner geöffnet werden, der dann wieder als Maske für den fol- genden Ätzschritt dient (nicht gezeigt) .
Im nächsten Verfahrensschritt wird gemäß Fig. le eine Poly- Si-Schicht 19 konform abgeschieden (Fig. le) und somit die leitende Verbindung zwischen dem Poly-Si-Kern 5 des DT-Kon- densators 1 und dem Auswahltransistor 3 bzw. dem Si-Substrat 11 einseitig hergestellt (Fig. le) . 00 > tXJ b h^
LΠ o LΠ o υπ o LΠ
P)
0*
P> tr
Φ
H- tr
Φ
H-
<;
Φ ι-i
IQ φ μ- n tr σ
P> li
Φ i-i
F o o t tQ
H d d o*
I—1
P): o tr
Φ
Φ
CT
>
P* i-**
p
3
• ö
H-
Φ
Figure imgf000007_0001
nasschemische Rückätzung des Collar-Oxids 7 ist im Unterschied zum ersten Ausführungsbeispiel nicht erfolgt.
Im ersten Verfahrensschritt wird ein Si3N4-Liner 15 konform abgeschieden. Der Liner 15 dient als Maske für die folgenden Trocken- oder Nassätzungen und ist ebenfalls etwa 5-10 nm stark. Der Si3N-Liner 15 bedeckt insbesondere auch umfangs- seitig die Seitenwand des DT-Kondensators 1 bzw. des Collar- Oxids 7 und den Boden des Loches 9 bzw. die Oberseite des Poly-Si-Kerns 5 (Fig. 2b).
Anschließend wird der Liner 15 wird über einen gerichteten Ionenstrahl S an einer Seite bzw. auf einem Teil der Poly-Si- Oberfläche 5 entsprechend dem ersten Ausführungsbeispiel ent- fernt (Fig. 2c) . Dabei einzuhaltende Grenzen des räumlichen Umfangs der Entfernung des Liners 15 durch die Ionenbestrahlung sind in Fig. 2cl sowie 2c2 ausschnittsweise dargestellt. Gemäß Fig. 2cl bleibt der Si3N-Liner 15 höchstens bis zu einer Höhe der Breite des Collar-Oxids 7 (entspricht dem lateralen Abstand zwischen dem Si-Substrat 11 und dem Poly-
Si-Kern 5) stehen, um für die anschließenden Ätzprozesse noch geeignet ausgebildet zu sein. Der andere Grenzzustand der Entfernung des Liners 15 ergibt sich dadurch, dass prozesstechnisch sichergestellt sein muss, dass der buried strap 17 zuverlässig nur auf einer Seite des DT-Kondensators 1 ausgebildet wird (vgl. Fig. 3a, b) .
Dann kann im folgenden Verfahrensschritt mit einer selektiven isotropen Ätzung das Collar-Oxid 7 rückgeätzt werden (Pfeil) , so dass an der zuvor bestrahlten Seitenwand das Collar-Oxid 7 im Bereich oberhalb des Lochbodens vollständig entfernt wird (Fig. 2d) .
An dieser Seitenwand wird anschließend das Collar-Oxid 7 über eine anisotrope Rückätzung ausreichend zurückgezogen (Pfeil) . Nachfolgend können durch einen weiteren isotropen Ätzschritt zudem unerwünschte Oxid-Reste entfernt werden (Fig. 2e) . Durch die Abscheidung einer konformen Poly-Si-Schicht 19 (unterbrochene Linie in Fig. 2f) und eine anschließende isotrope Rückätzung des abgeschiedenen Poly-Si (Fig. 2f) ver- bleibt in dem Spalt, der durch die Collar-Oxid-Rückätzung
(Fig. 2e) entstanden ist, ausreichend Poly-Si, das den buried strap 17 entsprechend dem ersten Ausführungsbeispiel bildet.
In den Fig. 3a und 3b ist in einer Draufsicht in vergrößertem Maßstab gezeigt, in welchem Bereich B der Si3N-Liner 15 infolge des lonenstrahls S oberhalb des Collar-Oxids 7 in dem ellipsenförmigen Loch 9 entfernt wird, eine von der Ionenstrahlung S bestrahlte Bodenfläche A (Fig. 3a) des DT-Kondensators 1 sowie ein Bereich C, in dem das Collar-Oxid 7 nach der zweimaligen isotropen Rückätzung gemäß Fig. 2d, e entfernt ist (Fig. 3b) . In Fig. 3a ist veranschaulicht, in welchem im wesentlichen ellipsenförmig begrenzten Flächenbereich A des Lochbodens die Ionenstrahlung S auftritt, die unter dem Winkel α gemäß Fig. 2c eingestrahlt wird, und in welchem übrigen Flächenbereich die Halbleiteranordnung durch den oberen Rand des Loches 9 im Bodenbereich sicher abgeschirmt ist. Der von der Seitenwand des Loches 9 in den Bodenbereich reflektierte Strahlungsanteil kann hierbei vernachlässigt werden. Die isotrope Rückätzung beträgt gemäß Fig. 3b etwa das zweifache der Coϊlar-Breite.
Alternativ zu den beiden ersten Ausführungsbeispielen wird im Verfahren gemäß dem dritten Ausführungsbeispiel eine zunächst beidseitig ausgebildete leitende Verbindung zwischen dem DT- Kondensator 1 und dem unmittelbar angrenzenden Bereich des dazugehörigen Auswahltransistors 3 einseitig entfernt und dadurch einseitig der buried strap 17 erzeugt (Fig. 4a-g) .
Ausgehend von der zu der in Fig. la gezeigten identischen Prozesssituation gemäß Fig. 4a wird das Collar-Oxid 7 isotrop rückgeätzt (Pfeil in Fig. 4b). Im nachfolgenden Prozessschritt erfolgt die Abscheidung einer konformen Poly-Si- LO LO tsJ is 0 1
LΠ O LΠ o LΠ o LΠ
Figure imgf000010_0001
mit Edelgas-Ionen zur Durchführung des erfindungsgemäßen Verfahrens verwendbar. Alternativ ist auch eine geeignete Modifikation einer RIE-Anlage möglich, wobei die Ionen geeignet abgelenkt werden. Auch das Ätzverfahren mit gerichteten Atom- strahlen (NSE bzw. Neutral Stream Etch) ist für die Realisierung der Erfindung verwendbar.
In Fig. 5 ist vereinfacht die an sich bekannte Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens gezeigt. Dabei sind in einer Vakuumkammer 25 eine Ionenquelle 27 und ein schwenkbarer Probentisch 29, auf dem der Wafer zur Bestrahlung unter dem Bestrahlungswinkel α angeordnet ist, vorgesehen.

Claims

Patentansprüche
1. Lithographisches Verfahren zum Herstellen einer Maskenschicht auf einer Halbleiteranordnung, wobei eine dünne Schicht, insbesondere eine SiN-Schicht (15) in eine
Vertiefung (9) der Halbleiteranordnung eingebracht wird, wobei die Schicht (15) zur Herstellung einer Maskenschicht auf einer Seite der Vertiefung (9) entfernt wird, d a d u r c h g e k e n n z e i c h n e t, dass ein Ionenstrahl (S) unter einem Winkel (°=) schräg auf die Vertiefung (9) gerichtet wird, wodurch die Schicht nur in einem Teilbereich der Vertiefung (9) bestrahlt und in dem bestrahlten Bereich die Schicht (15) entfernt und eine Maskenschicht erhalten wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass alle Vertiefungen (9) der Halbleiteranordnung auf einem Wafer eine einheitliche Geometrie aufweisen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als der durch den Ionenstrahl (S) zu strukturierende dünne Maskenschicht eine Si3N4*-Schicht (15) abgeschieden wird, dessen Stärke etwa 5-10 nm beträgt.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ionenstrahl (S) durch eine RIBE-Quelle erzeugt wird.
5. Verwendung einer Ionenstrahlanlage zum Entfernen einer dünnen Maskenschicht, insbesondere einer Si3N4-Schicht (15) , auf einer Seite einer Vertiefung (9) in einer Halbleiteranordnung, dadurch gekennzeichnet, dass ein Ionenstrahl (S) der Ionenstrahlanlage auf einen Winkel (°=) in Abweichung zur Normalen bzgl . der Vertiefung (9) eingestellt wird.
6. Halbleiteranordnung mit zahlreichen Vertiefungen (9), in denen buried straps (17) angeordnet sind, dadurch gekennzeichnet , dass die buried straps (17) mit dem Verfahren nach Anspruch 1 hergestellt sind, und dass deshalb die buried straps (17) jeweils an der gleichen Seite der Vertiefung (9) einseitig angeordnet sind.
PCT/EP2002/003344 2001-03-30 2002-03-25 Verfahren zur herstellung einer halbleiteranordnung und verwendung einer ionenstrahlanlage zur durchführung des verfahrens WO2002080240A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02757724A EP1382061A2 (de) 2001-03-30 2002-03-25 Verfahren zur herstellung einer halbleiteranordnung und verwendung einer ionenstrahlanlage zur durchführung des verfahrens
US10/675,766 US20040063321A1 (en) 2001-03-30 2003-09-30 Method for fabricating a semiconductor configuration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10115912.9 2001-03-30
DE10115912A DE10115912A1 (de) 2001-03-30 2001-03-30 Verfahren zur Herstellung einer Halbleiteranordnung und Verwendung einer Ionenstrahlanlage zur Durchführung des Verfahrens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/675,766 Continuation US20040063321A1 (en) 2001-03-30 2003-09-30 Method for fabricating a semiconductor configuration

Publications (2)

Publication Number Publication Date
WO2002080240A2 true WO2002080240A2 (de) 2002-10-10
WO2002080240A3 WO2002080240A3 (de) 2003-11-20

Family

ID=7679766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/003344 WO2002080240A2 (de) 2001-03-30 2002-03-25 Verfahren zur herstellung einer halbleiteranordnung und verwendung einer ionenstrahlanlage zur durchführung des verfahrens

Country Status (5)

Country Link
US (1) US20040063321A1 (de)
EP (1) EP1382061A2 (de)
DE (1) DE10115912A1 (de)
TW (1) TW574727B (de)
WO (1) WO2002080240A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1025475C2 (nl) * 2004-02-12 2005-08-15 C2V Werkwijze voor het vervaardigen van een inrichting en inrichting vervaardigd volgens zo een werkwijze.
FR2926669A1 (fr) * 2008-05-21 2009-07-24 Commissariat Energie Atomique Procede de realisation de nanoelements a des emplacements predetermines de la surface d'un substrat

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10219123B4 (de) * 2002-04-29 2004-06-03 Infineon Technologies Ag Verfahren zur Strukturierung keramischer Schichten auf Halbleitersubstanzen mit unebener Topographie
DE10333777B4 (de) * 2003-07-24 2007-01-25 Infineon Technologies Ag Herstellungsverfahren für einen Grabenkondensator mit einem Isolationskragen, der über einen vergrabenen Kontakt einseitig mit einem Substrat elektrisch verbunden ist, insbesondere für eine Halbleiterspeicherzelle
DE10334547B4 (de) * 2003-07-29 2006-07-27 Infineon Technologies Ag Herstellungsverfahren für einen Grabenkondensator mit einem Isolationskragen, der über einen vergrabenen Kontakt einseitig mit einem Substrat elektrisch verbunden ist
DE10352667B4 (de) * 2003-11-11 2006-10-19 Infineon Technologies Ag Herstellungsverfahren für eine Halbleiterstruktur mit einem Streifen (Buried Strap) in einem Substrat, der einen vergrabenen, leitenden Kontakt ausbildet, welcher einseitig mit dem Substrat elektrisch verbundenen ist
DE10353269B3 (de) * 2003-11-14 2005-05-04 Infineon Technologies Ag Herstellungsverfahren für einen Grabenkondensator mit einem Isolationskragen, der über einen vergrabenen Kontakt einseitig mit einem Substrat elektrisch verbunden ist, insbesonde für eine Halbleiterspeicherzelle
US20050191807A1 (en) * 2004-02-26 2005-09-01 Nanya Technology Corporation Method for forming shallow trench in deep trench structure
US9984889B2 (en) * 2016-03-08 2018-05-29 Varian Semiconductor Equipment Associates, Inc. Techniques for manipulating patterned features using ions
DE102016116019B4 (de) 2016-08-29 2023-11-23 Infineon Technologies Ag Verfahren zum Bilden eines Halbleiterbauelements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376225A (en) * 1992-08-26 1994-12-27 Matsushita Electric Industrial Co., Ltd. Method of forming fine structure on compound semiconductor with inclined ion beam etching
WO2000016414A1 (en) * 1998-09-14 2000-03-23 Commonwealth Scientific And Industrial Research Organisation Method of fabrication of step edge
EP0991117A2 (de) * 1998-09-29 2000-04-05 Siemens Aktiengesellschaft Speicherzelle mit Stapelkondensator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2341154C2 (de) * 1973-08-14 1975-06-26 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zur Herstellung einer Zweiphasen-Ladungsverschiebeanordnung
US4958206A (en) * 1988-06-28 1990-09-18 Texas Instruments Incorporated Diffused bit line trench capacitor dram cell
JP2717822B2 (ja) * 1988-11-21 1998-02-25 住友イートンノバ株式会社 イオン注入装置
JPH03245527A (ja) * 1990-02-23 1991-11-01 Rohm Co Ltd 微細加工方法
US5240875A (en) * 1992-08-12 1993-08-31 North American Philips Corporation Selective oxidation of silicon trench sidewall
US5360758A (en) * 1993-12-03 1994-11-01 International Business Machines Corporation Self-aligned buried strap for trench type DRAM cells
US5444007A (en) * 1994-08-03 1995-08-22 Kabushiki Kaisha Toshiba Formation of trenches having different profiles
JP2643901B2 (ja) * 1995-03-17 1997-08-25 日本電気株式会社 半導体装置の製造方法
US5885425A (en) * 1995-06-06 1999-03-23 International Business Machines Corporation Method for selective material deposition on one side of raised or recessed features
US5909044A (en) * 1997-07-18 1999-06-01 International Business Machines Corporation Process for forming a high density semiconductor device
US6110792A (en) * 1998-08-19 2000-08-29 International Business Machines Corporation Method for making DRAM capacitor strap
US6242770B1 (en) * 1998-08-31 2001-06-05 Gary Bela Bronner Diode connected to a magnetic tunnel junction and self aligned with a metallic conductor and method for forming the same
US6348374B1 (en) * 2000-06-19 2002-02-19 International Business Machines Process for 4F2 STC cell having vertical MOSFET and buried-bitline conductor structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376225A (en) * 1992-08-26 1994-12-27 Matsushita Electric Industrial Co., Ltd. Method of forming fine structure on compound semiconductor with inclined ion beam etching
WO2000016414A1 (en) * 1998-09-14 2000-03-23 Commonwealth Scientific And Industrial Research Organisation Method of fabrication of step edge
EP0991117A2 (de) * 1998-09-29 2000-04-05 Siemens Aktiengesellschaft Speicherzelle mit Stapelkondensator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1025475C2 (nl) * 2004-02-12 2005-08-15 C2V Werkwijze voor het vervaardigen van een inrichting en inrichting vervaardigd volgens zo een werkwijze.
FR2926669A1 (fr) * 2008-05-21 2009-07-24 Commissariat Energie Atomique Procede de realisation de nanoelements a des emplacements predetermines de la surface d'un substrat

Also Published As

Publication number Publication date
WO2002080240A3 (de) 2003-11-20
US20040063321A1 (en) 2004-04-01
DE10115912A1 (de) 2002-10-17
TW574727B (en) 2004-02-01
EP1382061A2 (de) 2004-01-21

Similar Documents

Publication Publication Date Title
DE69133316T2 (de) Verfahren zum Herstellen einer Halbleitervorrichtung
DE4310955C2 (de) Verfahren zum Bearbeiten eines Halbleiterwafers
DE10209989B4 (de) Verfahren zur Herstellung von DRAM-Grabenkondensatorstrukturen mit kleinen Durchmessern mittels SOI-Technologie
DE102020008064B4 (de) Tiefe grabenisolationsstruktur und verfahren zu deren herstellung
DE3834241A1 (de) Halbleitereinrichtung
DE10219398B4 (de) Herstellungsverfahren für eine Grabenanordnung mit Gräben unterschiedlicher Tiefe in einem Halbleitersubstrat
DE102004062829A1 (de) Halbleitervorrichtung und Verfahren zu deren Herstellung
DE102010064289A1 (de) Größenreduzierung von Kontaktelementen und Kontaktdurchführungen in einem Halbleiterbauelement durch Einbau eines zusätzlichen Abschrägungsmaterials
WO1991003074A1 (de) Verfahren zur struckturierung eines halbleiterkörpers
DE4447229A1 (de) Halbleiterspeichervorrichtung und Verfahren zu ihrer Herstellung
DE19837395A1 (de) Verfahren zur Herstellung einer Halbleiter-Isolationsschicht und eines diese Halbleiter-Isolationsschicht enthaltenden Halbleiterbauelements
EP1382061A2 (de) Verfahren zur herstellung einer halbleiteranordnung und verwendung einer ionenstrahlanlage zur durchführung des verfahrens
DE10205077B4 (de) Halbleiterspeicherzelle mit einem Graben und einem planaren Auswahltransistor und Verfahren zu ihrer Herstellung
DE4418163A1 (de) Verfahren zur Herstellung von mikromechanischen Strukturen
DE19717880C2 (de) Verfahren zur Bildung eines Isolationsbereichs einer Halbleitereinrichtung
DE4212494C2 (de) Verfahren zur Herstellung einer Halbleitereinrichtung mit einer sich nach oben in der Breite verringernden Seitenwandisolierschicht und Halbleitereinrichtung
DE10131709B4 (de) Verfahren zur Herstellung einseitiger Buried-Straps
DE10303926B4 (de) Verbesserte Technik zur Herstellung von Kontakten für vergrabene dotierte Gebiete in einem Halbleiterelement
EP1164638A2 (de) Verfahren zur Erhöhung Kapazität von Grabenkondensatoren
DE102007015505B4 (de) Verfahren zur Herstellung einer Halbleiterstruktur
DE60032051T2 (de) Verfahren zum Bilden einer mehrlagigen Zweifach-Polysilizum-Struktur
DE19734837B4 (de) Verfahren zur Herstellung eines selbstausrichtenden Silicids
DE102004029516B3 (de) Herstellungsverfahren für eine Schattenmaske in einem Graben einer mikroelektronischen oder mikromechanischen Struktur sowie Verwendung derselben
EP0869551B1 (de) Leitende Verbindung zwischen zumindest zwei Gebieten eines ersten Leitfähigkeitstyps
DE102021110022A1 (de) Interconnect-struktur für halbleitervorrichtungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002757724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10675766

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002757724

Country of ref document: EP