WO2002077318A1 - Evaporador de arco con guía magnética intensa para blancos de superficie amplia - Google Patents

Evaporador de arco con guía magnética intensa para blancos de superficie amplia Download PDF

Info

Publication number
WO2002077318A1
WO2002077318A1 PCT/ES2001/000119 ES0100119W WO02077318A1 WO 2002077318 A1 WO2002077318 A1 WO 2002077318A1 ES 0100119 W ES0100119 W ES 0100119W WO 02077318 A1 WO02077318 A1 WO 02077318A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
magnetic
evaporator
arc
targets
Prior art date
Application number
PCT/ES2001/000119
Other languages
English (en)
French (fr)
Inventor
Josu Goikoetxea Larrinaga
Original Assignee
Fundación Tekniker
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Tekniker filed Critical Fundación Tekniker
Priority to US10/472,575 priority Critical patent/US20040112736A1/en
Priority to EP01915437A priority patent/EP1382711B1/en
Priority to JP2002575351A priority patent/JP2004523658A/ja
Priority to PCT/ES2001/000119 priority patent/WO2002077318A1/es
Priority to CNB018230970A priority patent/CN100355933C/zh
Priority to DE60105856T priority patent/DE60105856T2/de
Priority to BRPI0116951-3A priority patent/BR0116951B1/pt
Priority to ES01915437T priority patent/ES2228830T3/es
Priority to AT01915437T priority patent/ATE277204T1/de
Publication of WO2002077318A1 publication Critical patent/WO2002077318A1/es
Priority to US11/473,440 priority patent/US7828946B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32614Consumable cathodes for arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Definitions

  • the present invention relates to an arc evaporator, that is to say a machine intended to evaporate a material, an electric conductor, so that said material, in the form of steam, can be moved within a vacuum means, to be deposited on the surface of the piece to be coated.
  • the object of the invention is to achieve an arc evaporator which, including an intense magnetic guide, allows guiding the cathode point of the arc in an infinite number of different paths, individually selectable and covering the entire surface of the target, in order to achieve uniform use of it. Also, the intense magnetic guide causes a throttling or narrowing of the cathode point, which increases the temperature and ionization of the emitted material, facilitating the obtaining of good quality coatings.
  • the intense magnetic guide helps to increase the reliability of the arc evaporator, by preventing the arc from accidentally moving to a different point on the evaporation surface.
  • arc evaporators are machines to evaporate a material, an electric conductor, and emit it inside a vacuum bell in the form of steam that can move inside it.
  • the material to be evaporated is in the form of a plate, one of whose faces is cooled by water and the other is directed towards the inside of the vacuum bell, in a situation of confrontation with the piece on which the deposition of the emitted vapors, causing the evaporation of the material by blowing up an electric arc of DC, of approximately 22 volts and 80 amps, between a refrigerated electrode that acts as an anode and the conductive plate that is interested in evaporating and acting as a cathode, also being introduced into the vacuum chamber, usually, a small amount of gas necessary for the maintenance of the arc.
  • the electric arc acts on the surface of the plate to evaporate in a concentrated way on a single point, a cathode point that moves randomly along the external surface of the plate, which causes a little wear of said plate homogeneous, or what is the same, a good use of the constituent material of said plate is not achieved, whose cost is very high.
  • US Patent No. 4,673,477 describes a magnetic guide that uses a permanent magnet that moves, by mechanical means, on the back of the plate to evaporate, such that the variable magnetic field generated by this permanent magnet produces a guided electric arc over the cathode.
  • This machine optionally also incorporates a magnetic winding that surrounds the cathode plate in order to reinforce or reduce the strength of the magnetic field in a direction perpendicular to the active surface of the cathode and thus improve electrode guidance.
  • the problem with this machine is that the magnetic system of permanent moving magnets is very complex mechanically and therefore susceptible to breakdowns.
  • US Patent No. 4,724,058 refers to a magnetic guide that incorporates coils placed at the back of the cathode plate, which guide the electric arc in a single direction parallel to that followed by the coil.
  • methods are used that attempt to weaken the effect of guiding the magnetic field so that a random component overlaps it.
  • the magnetic field generated by the coil is connect and disconnect so that most of the time the arc moves over the cathode randomly, and a very small part is guided by the magnetic field.
  • the problem with this machine is that, finally, the guidance occurs for a very short time and the rest is random, so that accurate and efficient control of the wear of the cathode plate cannot be guaranteed.
  • US Patent No. 5,861,088 describes a magnetic guide that includes a permanent magnet located in the center of the target and on its rear face, and a coil surrounding said permanent magnet, the assembly constituting a magnetic field concentrator.
  • the system is complemented by a second coil placed outside the evaporator. The problem with this machine is that the field
  • the magnetic generated is weak and therefore also the guidance it produces on the electric arc.
  • US Patent No. 5,298,136 describes a magnetic guide for thick targets in circular evaporators, comprising two coils and a magnetic piece of special configuration that adapts to the edges of the target to evaporate, such that the assembly
  • the arc evaporator that the invention proposes solves in a fully satisfactory way the problem previously exposed, in each and every one of the different aspects mentioned, thanks to the incorporation of an intense magnetic guide but which, by its special configuration, allows guiding the point cathode of the arc in an infinity of different trajectories individually selectable and covering the entire surface of the target, including the edges and center of the same, achieving a uniform consumption of the target or cathode.
  • said evaporator focuses its characteristics on the fact that its magnetic guide is formed by two magnetic systems independent, that is, by four magnetic poles, which allows to play with the values of the magnetic intensities of both systems and ensure that the perpendicular component of the resulting magnetic field is zero at the desired point of the target surface, thus achieving guidance of the arc according to any trajectory, from the center of the target to its extreme edges.
  • the two magnetic systems that constitute the guide can be a very powerful permanent magnet system and a system of electromagnets, also very powerful, that guarantee a very high magnetic intensity and therefore a good control over the electric arc but, at At the same time it is possible to act on the electromagnets by varying their intensity, which produces a change in the trajectory of the arc over the target. Therefore, with this system we get a strong magnetic guide that also allows us to vary, and therefore control, the trajectories of the arc over the target, thus achieving uniform wear of the entire surface of it.
  • the permanent magnet system could also be replaced by a second electromagnets system, since the operation of the assembly would be similar.
  • Figure 1 shows a schematic sectional representation of a rectangular arc evaporator with an intense magnetic guide made in accordance with the object of the present invention.
  • Figure 2. Shows, also according to a schematic representation, a plan view of the evaporator of the previous figure.
  • Figures 3, 4 and 5 reproduce the section of Figure 1, to which in Figure 3 a graph of the vertical component of the magnetic field created by the permanent magnets located outside is added, in Figure 4 a graph similar but corresponding to the magnetic fields created by the electromagnet located on the back of the target when different electrical intensities are applied to the electromagnet and in figure 5 the magnetic fields created by the permanent magnets located outside the evaporator plus the electromagnet located on the back of the target, also when different electrical intensities are applied to the electromagnet.
  • Figure 6. Shows a section similar to that of Figure 1, according to a variant embodiment in which the shape of the electromagnet permeable material has been modified.
  • Figure 7 shows, finally, another section similar to that of Figure 1 but corresponding to another variant embodiment of the invention in which the permanent magnets outside the evaporator are replaced by two electromagnets.
  • the invention proposes an anode (1) and a cathode or target (2), as well as a magnetic guide, so that the direct current electric arc is logically established between the anode (1) and the target (2) that acts as a cathode of said electric arc and therefore emits material from its surface.
  • a guide is used magnetic composed of two independent magnetic systems, a first magnetic system formed by a set of permanent magnets (3) located on the periphery of the evaporator and so that its magnetization is perpendicular to the surface of the target, and a second magnetic system consisting of a only electromagnet (4-5) located at the back of the target, at a certain distance from it, the magnetic pole being closer to the target (2) parallel to the surface of said target.
  • the electromagnet (4-5) located on the back of the target (2) consists of a core (4) of a material of high magnetic permeability and low coercivity, such as soft iron, surrounded by an electric coil (5) that is responsible for generating the magnetic flux necessary to magnetize the soft iron, the aforementioned core (4) adopting a rectangular section, shown in Figure 1, with the two magnetic poles arranged parallel to the surface of the target (2).
  • the electromagnet (4-5) is housed and perfectly fitted within the body (6) of the evaporator, which configures a kind of bowl to which the cathode or target (2) is attached to the mouth that is fixed with the collaboration of screws not shown, leaving the electromagnet (4-5) located below the target and at a certain distance from it to ensure that the magnetic field is sufficiently homogeneous on the surface of the target, thus defining between the target (2) and the electromagnet (4-5) a chamber (11) that can be used to place the necessary systems to ensure adequate cooling of the blank (2), as well as the rest of the evaporator components. As indicated, the height of this cooling chamber is given by the need for a certain distance between the upper face of the ferromagnetic core and the evaporation surface, so that the magnetic field on it is sufficiently uniform.
  • the set is complemented with an outer base (9), lateral and external braces (8) and a barrier of slats (13) that configure a frame that, in addition to protecting the screws that fix the target (2) to the body
  • braces (8) and base (9) are obtained based on electrically insulating materials at high temperature, such as alumina, ceramic hob, boron nitride or PTFE, and which make it difficult for the arc to be primed on unwanted surfaces. These pieces must be subject to periodic maintenance since in the course of the operation of the arc they are covered with electrically conductive materials, with which their effectiveness to avoid priming the arc is decreasing.
  • the magnets (3) that make up the first magnetic system on the periphery of the evaporator body (6), at the target level (2) materialize in permanent external magnets (3) that must be of low height and be located in such a way that their midline coincides with the mean plane defined between the initial surface of the target (2) and the surface that it will present at the end of its useful life, said magnets also having to be of the greatest possible power, for which will be of maximum width and will be obtained based on high coercivity materials, such as SmCo, NdFeB or hard ferrites.
  • Figure 3 shows a graph (12) that corresponds to the vertical component of the magnetic field created by the permanent magnets (3) located outside the body (6) the evaporator and at the level of the target surface (2).
  • the graphs (13) (14) and (15) represented correspond to the vertical components of the magnetic fields created by the electromagnet (4-5) located behind the surface of the target (2) within the body (6) of the evaporator, when different electrical intensities are applied to said electromagnet (4-5).
  • this graph is the result of adding the magnetic field created by the electromagnet (4-5) to the magnetic field created by the permanent magnets (3) and results in a vertical translation of the graph corresponding to the permanent magnets , so that now a part of this graph is in the positive part of the vertical axis.
  • the cathodic point follows a trajectory on the surface of the target that is constituted by the points at which the value of the vertical component of the magnetic field is zero and thus for example if the power applied to the electromagnet is adjusted so that the graph corresponding outside the one represented with the number 16, the path of the cathodic point on the target would pass through points 19 and 20, while if we adjust the intensity so that the corresponding graph was 18, the cathodic point would pass through points 23 and 24 on the surface of the target in an intermediate path (17) the cathodic points would be 21 and 22.
  • the magnetic core (4) can have a "T" section with one of its poles parallel to the target (2) and the other perpendicular to the target, allowing this configuration to obtain a greater intensity of the magnetic field on the surface of the evaporator, as well as a greater extension of the magnetic field in the horizontal, which allows to reduce the distance between the upper face of the ferromagnetic core (4) and the target (2).
  • permanent magnets (3) could be replaced by electromagnets (3 '), of similar structure to that of electromagnets (4-5), as seen in the embodiment shown in Figure 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Incorporando un ánodo (1) y un cátodo o blanco (2), del que se obtiene el material evaporado que va a ser suministrado a la pieza a recubrir (10) en el seno de una cámara de vacío, y donde con una guía magnética se intenta que la acción del arco eléctrico sobre el blanco se desplace sobre toda la superficie del mismo, de forma homogénea, la citada guía magnética está constituida mediante dos sistemas magnéticos independientes, un primer sistema magnético constituido por un conjunto de imanes permanentes (3) situados en la periferia del cátodo o blanco (2), en disposición sensiblemente coplanaria con el mismo, de manera que su imantación es perpendicular a la superficie de dicho blanco (2), y un segundo sistema magnético constituido por un electroimán (4-5), situado en la parte posterior del blanco (2), alojado en el cuerpo eléctricamente aislante (6) del evaporador y a cierta distancia de dicho blanco (2), con al menos uno de sus polos magnéticos paralelo a la superficie de dicho blanco (2), de manera que la acción combinada de los dos sistemas magnéticos determina un uso o consumo uniforme del blanco (2), a la vez que un aumento en la fiabilidad del evaporador.

Description

EVAPORADOR DE ARCO CON GUÍA MAGNÉTICA INTENSA PARA BLANCOS DE SUPERFICIE AMPLIA
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un evaporador de arco, es decir a una máquina destinada a evaporar un material, conductor eléctrico, de manera que dicho material, en forma de vapor, puede desplazarse en el seno de un medio de vacío, para depositarse sobre la superficie de la pieza a revestir.
El objeto de la invención es conseguir un evaporador de arco que, incluyendo una guía magnética intensa, permite guiar el punto catódico del arco en una infinidad de trayectorias distintas, seleccionables individualmente y que abarcan toda la superficie del blanco, con el fin de conseguir un uso uniforme del mismo. Asimismo, la guía magnética intensa provoca un estrangulamiento o estrechamiento del punto catódico, lo cual incrementa la temperatura e ionización del material emitido, facilitando la obtención de recubrimientos de buena calidad.
Por otro lado, la guía magnética intensa contribuye a aumentar la fiabilidad del evaporador de arco, al imposibilitar que el arco se desplace accidentalmente a un punto distinto de la superficie de evaporación.
ANTECEDENTES DE LA INVENCIÓN Como ya se ha apuntado en el párrafo anterior, los evaporadores de arco son máquinas para evaporar un material, conductor eléctrico, y emitirlo en el interior de una campana de vacío en forma de vapor que puede desplazarse por el interior de la misma. Normalmente el material a evaporar se encuentra en forma de placa, una de cuyas caras está refrigerada por agua y la otra se dirige hacia el interior de la campana de vacío, en situación de enfrentamiento a la pieza sobre la que se desea la deposición de los vapores emitidos, provocándose la evaporación del material al hacer saltar un arco eléctrico de corriente continua, de aproximadamente 22 voltios y 80 amperios, entre un electrodo refrigerado que actúa como ánodo y la placa conductora que interesa evaporar y que actúa como cátodo, introduciéndose adicionalmente en la cámara de vacío, habitualmente, una pequeña cantidad de gas necesaria para el mantenimiento del arco.
De forma más concreta el arco eléctrico actúa sobre la superficie de la placa a evaporar de forma concentrada sobre un único punto, punto catódico que se va desplazando de forma aleatoria por la superficie externa de la placa, lo que produce un desgaste de dicha placa poco homogéneo, o lo que es lo mismo, no se consigue un buen aprovechamiento del material constitutivo de dicha placa, cuyo costo es muy elevado.
Para corregir este problema de falta de homogeneidad en el desgaste de la placa se intenta controlar y dirigir el movimiento del arco eléctrico, utilizándose a tal fin guías magnéticas que generan campos que pueden modificar de forma controlada la trayectoria del arco eléctrico.
Existen en la actualidad distintas soluciones para dichas guías magnéticas destinadas todas ellas a intentar controlar el movimiento del arco sobre el cátodo con el fin de optimizar un desgaste homogéneo, entre las que caben destacar las siguientes:
La Patente Estadounidense N° 4.673.477 describe una guía magnética que utiliza un imán permanente que se desplaza, por medios mecánicos, en la parte posterior de la placa a evaporar, de tal manera que el campo magnético variable que genera este imán permanente produce un guiado del arco eléctrico sobre el cátodo. Esta máquina incorpora opcionalmente también un arrollamiento magnético que rodea la placa cátodo con el fin de reforzar o reducir la fuerza del campo magnético en una dirección perpendicular a la superficie activa del cátodo y así mejorar el guiado del electrodo. El problema que presenta esta máquina es que el sistema magnético de imanes permanentes móviles es muy complejo mecánicamente y por tanto susceptible de averías .
La Patente Estadounidense N° 4.724.058 se refiere a una guía magnética que incorpora unas bobinas colocadas en la parte posterior de la placa cátodo, que guían el arco eléctrico en una única dirección paralela a la que sigue la bobina. Con el fin de reducir el efecto de desgaste preferente en una única trayectoria se utilizan métodos que tratan de debilitar el efecto de guiado del campo magnético de forma que a éste se superponga una componente aleatoria. En concreto, se ha previsto que el campo magnético generado por la bobina se conecte y desconecte de forma que la mayor parte del tiempo el arco se desplace sobre el cátodo de forma aleatoria, y una parte muy pequeña se encuentre guiada por el campo magnético. El problema de esta máquina es que, finalmente, el guiado se produce durante muy poco tiempo y el resto es aleatorio con lo que no se puede garantizar un control preciso y eficiente del desgaste de la placa cátodo.
10
La Patente Estadounidense N° 5.861.088 describe una guía magnética que incluye un imán permanente situado en el centro del blanco y en su cara posterior, y una bobina que rodea el 15 citado imán permanente constituyendo el conjunto un concentrador de campo magnético. El sistema se complementa con una segunda bobina colocada en el exterior del evaporador. El problema de esta máquina es que el campo
20 magnético generado es débil y por lo tanto también el guiado que produce sobre el arco eléctrico .
La Patente Estadounidense N° 5.298.136 describe 25 una guía magnética para blancos gruesos en evaporadores circulares , que comprende dos bobinas y una pieza magnética de configuración especial que se adapta a los bordes del blanco a evaporar, de tal forma que el conjunto
30 funciona con un solo elemento magnético, con dos polos magnéticos. Aunque esta configuración permite desplazar la trayectoria del arco en cierto grado, no es capaz de desplazar la trayectoria del mismo hasta el borde exterior 35 del blanco o una distancia pequeña del mismo por lo que para aprovechar eficientemente el material del cátodo, la guía debe ser lo suficientemente débil como para permitir que al movimiento forzado magnéticamente se superponga una componente aleatoria.
En resumen, todos los sistemas de guías magnéticas conocidos presentan la problemática de que si se quiere obtener un desgaste uniforme de toda la superficie del cátodo, el arco debe poder desplazarse con cierta libertad y por tanto se deben utilizar guías débiles (de intensidades magnéticas reducidas) , por lo que no es posible mantener el control sobre la trayectoria del arco en todo momento .
Si por el contrario se utilizan guías magnéticas muy intensas, no es posible conseguir un desgaste uniforme de toda la superficie del blanco o cátodo.
DESCRIPCIÓN DE LA INVENCIÓN
El evaporador de arco que la invención propone resuelve de forma plenamente satisfactoria la problemática anteriormente expuesta, en todos y cada uno de los diferentes aspectos comentados, merced a la incorporación de una guía magnética intensa pero que, por su especial configuración, permite guiar el punto catódico del arco en una infinidad de trayectorias distintas seleccionables individualmente y que abarcan toda la superficie del blanco, incluyendo los bordes y centro del mismo, consiguiéndose un consumo uniforme del blanco o cátodo.
Para ello y de forma más concreta dicho evaporador centra sus características en el hecho de que su guía magnética está formada por dos sistemas magnéticos independientes, esto es, por cuatro polos magnéticos, lo cual permite jugar con los valores de las intensidades magnéticas de ambos sistemas y conseguir que la componente perpendicular del campo magnético resultante sea nula en el punto deseado de la superficie del blanco, consiguiendo así el guiado del arco según cualquier trayectoria, desde el centro del blanco hasta sus bordes extremos .
De esta forma, al tener un sistema que permite garantizar el guiado del arco en todos los puntos del blanco, es posible utilizar sistemas magnéticos fuertes que permiten por tanto aplicar grandes intensidades magnéticas en cada una de las trayectorias, lo cual provoca un fuerte estrangulamiento del punto catódico, que implica un aumento importante en la temperatura y grado de ionización del material emitido, facilitando en buena medida la obtención de recubrimientos de buena calidad. También aumenta la fiabilidad del evaporador, ya que los campos magnéticos intensos sujetan firmemente un punto en el cual se aplica el arco sobre la trayectoria seleccionada, evitando que pueda desplazarse accidentalmente sobre alguna zona no prevista .
En concreto, los dos sistemas magnéticos que constituyen la guía pueden ser un sistema de imanes permanentes muy potentes y un sistema de electroimanes, también muy potente, que garantizan una intensidad magnética muy alta y por tanto un buen control sobre el arco eléctrico pero, a la vez es posible actuar sobre los electroimanes variando su intensidad, lo que produce un cambio en la trayectoria del arco sobre el blanco. Por lo tanto, con este sistema conseguimos una guía magnética fuerte que además permite variar, y por tanto controlar, las trayectorias del arco sobre el blanco consiguiendo así un desgaste uniforme de toda la superficie del mismo. También se podría sustituir el sistema de imanes permanentes por un segundo sistema de electroimanes, ya que el funcionamiento del conjunto sería similar.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1.- Muestra una representación esquemática en sección de un evaporador de arco rectangular con guía magnética intensa realizado de acuerdo con el objeto de la presente invención.
La figura 2.- Muestra, también según una representación esquemática, una vista en planta del evaporador de la figura anterior.
Las figuras 3, 4 y 5 reproducen la sección de la figura 1, a la que en la figura 3 se ha añadido una gráfica de la componente vertical del campo magnético creado por los imanes permanentes situados en el exterior, en la figura 4 una gráfica similar pero correspondiente a los campos magnéticos creados por el electroimán situado en la parte posterior del blanco cuando se aplican distintas intensidades eléctricas en el electroimán y en la figura 5 los campos magnéticos creados por los imanes permanentes situados en el exterior del evaporador más el electroimán situado en la parte posterior del blanco, igualmente cuando se aplican distintas intensidades eléctricas al electroimán.
La figura 6. - Muestra una sección similar a la de la figura 1, según una variante de realización en la que se ha modificado la forma del material permeable del electroimán.
La figura 7.- Muestra, finalmente, otra sección similar a la de la figura 1 pero correspondiente a otra variante de realización del invento en la que se sustituyen los imanes permanentes del exterior del evaporador por sendos electroimanes.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las figuras reseñadas, y especialmente de las figuras 1 y 2, puede observarse como en el evaporador de arco que la invención propone participa un ánodo (1) y un cátodo o blanco (2) , así como una guía magnética, de manera que el arco eléctrico de corriente continua se establece, lógicamente, entre el ánodo (1) y el blanco (2) que actúa como cátodo de dicho arco eléctrico y por tanto emite material desde su superficie.
Para asegurar que el punto del blanco (2) sobre el cual actúa el arco (punto en el cual la componente perpendicular del campo magnético es nula) se desplaza por toda la superficie de dicho blanco (2) de forma homogénea, se utiliza una guía magnética compuesta por dos sistemas magnéticos independientes, un primer sistema magnético formado por un conjunto de imanes permanentes (3) situados en la periferia del evaporador y de manera que su imantación es perpendicular a la superficie del blanco, y un segundo sistema magnético constituido por un único electroimán (4-5) situado en la parte posterior del blanco, a cierta distancia de éste, estando el polo magnético mas cercano al blanco (2) paralelo a la superficie del citado blanco .
El electroimán (4-5) situado en la parte posterior del blanco (2) consta de un núcleo (4) de un material de elevada permeabilidad magnética y escasa coercitividad, tal como hierro dulce, rodeado por una bobina eléctrica (5) que se encarga de generar el flujo magnético necesario para magnetizar el hierro dulce, adoptando el citado núcleo (4) una sección rectangular, mostrada en la figura 1, con los dos polos magnéticos dispuestos paralelamente a la superficie del blanco (2) .
De forma más concreta, el electroimán (4-5) queda alojado y perfectamente encajado en el seno del cuerpo (6) del evaporador, que configura una especie de cazoleta a cuya embocadura se acopla el cátodo o blanco (2) que se fija con la colaboración de tornillos no representados, quedando el electroimán (4-5) situado por debajo del blanco y a una cierta distancia de éste para garantizar que el campo magnético es suficientemente homogéneo en la superficie del blanco, definiéndose así entre el blanco (2) y el electroimán (4-5) una cámara (11) que puede ser utilizada para colocar los sistemas necesarios para asegurar la adecuada refrigeración del blanco (2) , así como el resto de los componentes del evaporador. Como se ha indicado, la altura de esta cámara de refrigeración viene dada por la necesidad de que exista una cierta distancia entre la cara superior del núcleo ferromagnético y la superficie de evaporación, a fin de que el campo magnético sobre ésta sea suficientemente uniforme.
El conjunto se complementa con una base exterior (9) , unos tirantes laterales y exteriores (8) y una barrera de listones (13) que configuran un marco que, además de proteger los tornillos que fijan el blanco (2) al cuerpo
(6) , confinan el arco dentro del blanco, delimitando así la superficie de evaporación. A su vez, los listones aislantes
(13) están fijados por tornillos (71) adecuadamente aislados eléctricamente. Todos estos elementos, listones
(13) , tirantes (8) y base (9) están obtenidos a base de materiales eléctricamente aislantes a elevada temperatura, tales como alúmina, vitrocerámica, nitruro de boro o PTFE, y que dificultan que el arco se cebe sobre superficies indeseadas. Estas piezas deben estar sujetas a un mantenimiento periódico ya que en el transcurso del funcionamiento del arco se van cubriendo con materiales eléctricamente conductores, con lo cual su efectividad para evitar el cebado del arco va disminuyendo.
Por su parte los imanes (3) que configuran el primer sistema magnético en la periferia del cuerpo (6) del evaporador, a nivel del blanco (2), se materializan en imanes permanentes exteriores (3) que deben ser de poca altura y estar situados de tal forma que la línea media de los mismos coincida con el plano medio definido entre la superficie inicial del blanco (2) y la superficie que presentará al final de su vida útil, debiendo además dichos imanes ser de la mayor potencia posible, por lo que serán de anchura máxima y estarán obtenidos a base de materiales de elevada coercitividad, como por ejemplo de SmCo, NdFeB o ferritas duras.
El mecanismo descrito se complementa con una cámara o campana de vacío, no representada en los dibujos, en cuyo seno se establece la pieza (10) a recubrir con el material evaporado del blanco (2) . En la figura 3 se representa una gráfica (12) que corresponde con la componente vertical del campo magnético creado por los imanes permanentes (3) situados en el exterior del cuerpo (6) el evaporador y a nivel de la superficie del blanco (2) .
En la figura 4, las gráficas (13) (14) y (15) representadas corresponden a las componentes verticales de los campos magnéticos creados por el electroimán (4-5) situado tras la superficie del blanco (2) en el seno del cuerpo (6) del evaporador, cuando se aplican distintas intensidades eléctricas a dicho electroimán (4-5) .
Finalmente en la figura 5 se representan las gráficas (16) (17) y (18) correspondientes a las componentes verticales de los campos magnéticos creados sobre la superficie del blanco (2) tanto por los imanes permanentes situados en el exterior del evaporador sobre la superficie del blanco (2) como por el electroimán (4-5) situado en la parte posterior del blanco (2), cuando se aplican distintas intensidades eléctricas al electroimán (4-5) .
Como se puede apreciar, este gráfico es el resultado de sumar el campo magnético creado por el electroimán (4-5) al campo magnético creado por los imanes permanentes (3) y da como resultado una traslación vertical de la gráfica correspondiente a los imanes permanentes, de forma que ahora una parte de esta gráfica queda en la parte positiva del eje vertical. Precisamente el punto catódico sigue una trayectoria sobre la superficie del blanco que está constituida por los puntos en los que el valor de la componente vertical del campo magnético es cero y así por ejemplo si se ajusta la potencia aplicada al electroimán de tal forma que la gráfica correspondiente fuera la representada con el número 16, la trayectoria del punto catódico sobre el blanco pasaría por los puntos 19 y 20, mientras que si ajustamos la intensidad de manera que la gráfica correspondiente fuera la 18, el punto catódico pasaría por los puntos 23 y 24 sobre la superficie del blanco en una trayectoria intermedia (17) los puntos catódicos serían 21 y 22.
Según se observa en la figura 6, en otra realización práctica, el núcleo magnético (4) puede presentar una sección en "T" con uno de sus polos paralelo al blanco (2) y el otro perpendicular al blanco, permitiendo esta configuración obtener una mayor intensidad del campo magnético sobre la superficie del evaporador, así como una mayor extensión del campo magnético en la horizontal, lo cual permite reducir la distancia entre la cara superior del núcleo ferromagnético (4) y el blanco (2) .
Por último, señalar que los imanes permanentes (3) podrían sustituirse por unos electroimanes (3'), de estructura similar a la de los electroimanes (4-5) , como se observa la realización representada en la figura 7.

Claims

R E I V I N D I C A C I O N E S
Ia.- Evaporador de arco con guía magnética intensa para blancos de superficie amplia, que siendo del tipo de los que incorporan un ánodo (1) y un cátodo o blanco (2) , alojados en el interior de una campana de vacío, en la que se aloja también una pieza (10) a recubrir con material evaporado del blanco (2) mediante un arco eléctrico generado entre ánodo (1) y cátodo (2) , en los que participa además una guía magnética para controlar y dirigir el movimiento del arco eléctrico, se caracteriza porque dicha guía magnética está constituida por dos sistemas magnéticos independientes, esto es, cuatro polos magnéticos que permiten variar a voluntad la intensidad magnética resultante para que el arco eléctrico siga la trayectoria deseada sobre el blanco, estando uno de los sistemas magnéticos constituido por un conjunto de imanes permanentes (3), situados en la periferia del evaporador, en disposición coplanaria con el blanco (2) , con su imantación perpendicular a la superficie de dicho blanco
(2) , y el segundo sistema magnético constituido por un electroimán (4-5) , situado en la parte posterior del blanco (2) , distanciado de éste último, estando el polo magnético superior o mas cercano al blanco (2) dispuesto paralelamente a la superficie del citado blanco (2) .
2a.- Evaporador de arco con guía magnética intensa para blancos de superficie amplia, según reivindicación Ia, caracterizado porque el electroimán (4-5) correspondiente al segundo sistema magnético se aloja en el seno del cuerpo
(6) del evaporador, que constituye una especie de cazoleta a cuya embocadura se fija el blanco (2), que queda suficientemente distanciado del electroimán (4-5) como para permitir el establecimiento entre estos elementos de los sistemas de refrigeración del blanco (2) , fijándose el blanco al cuerpo (6) con la colaboración de los correspondientes tornillos y sobre estos, constituyendo una especie de marco perimetral, una barrera de listones (7) de un material aislante a alta temperatura, rematándose el cuerpo (6) con una pluralidad de tirantes (8) y una base posterior (9) , piezas todas ellas de materiales eléctricamente aislantes a una elevada temperatura tales como alúmina, vitrocerámica, nitruro de boro o PTFE .
3a.- Evaporador de arco con guía magnética intensa para blancos de superficie amplia, según reivindicación Ia, caracterizado porque el electroimán (4-5) constitutivo del segundo sistema magnético, está estructurado a base de un núcleo (4) de elevada permeabilidad magnética y escasa coercitividad, tal como hierro dulce, situado en correspondencia con la zona central de la superficie de evaporación, disponiéndose a su alrededor una bobina eléctrica (5) encargada de generar el flujo magnético necesario para magnetizar el núcleo (4) .
4a.- Evaporador de arco con guía magnética intensa para blancos de superficie amplia, según reivindicaciones anteriores, caracterizado porque el citado núcleo magnético
(4) adopta una sección rectangular con los dos polos magnéticos dispuestos paralelamente a la superficie del blanco (2) .
5a.- Evaporador de arco con guía magnética intensa para blancos de superficie amplia, según reivindicaciones Ia, 2a y 3a, caracterizado porque el núcleo (4) del electroimán presenta una sección en "T", de tal forma que uno de sus polos sea paralelo al blanco (2), quedando el otro polo perpendicular al citado blanco (2) .
6a.- Evaporador de arco con guía magnética intensa para blancos de superficie amplia, según reivindicación Ia, caracterizado porque los imanes permanentes (3) son de poca altura y están situados de forma que la línea media de los imanes coincida con el plano medio definido entre la superficie inicial del blanco (2) y la superficie que presentará al final de su vida útil, presentando la mayor anchura posible para conseguir la máxima potencia y se obtendrán a partir de materiales de elevada coercitividad, como por ejemplo SmCo, NdFeB o ferritas duras.
7a.- Evaporador de arco con guía magnética intensa para blancos de superficie amplia, según reivindicación Ia, caracterizado porque los dos sistemas magnéticos están constituidos por electroimanes.
PCT/ES2001/000119 2001-03-27 2001-03-27 Evaporador de arco con guía magnética intensa para blancos de superficie amplia WO2002077318A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US10/472,575 US20040112736A1 (en) 2001-03-27 2001-03-27 Arc evaporator with a poweful magnetic guide for targets having a large surface area
EP01915437A EP1382711B1 (en) 2001-03-27 2001-03-27 Arc evaporator with a powerful magnetic guide for targets having a large surface area
JP2002575351A JP2004523658A (ja) 2001-03-27 2001-03-27 大きい表面領域を有するターゲットのための強力な磁気ガイドを伴うアーク蒸着装置
PCT/ES2001/000119 WO2002077318A1 (es) 2001-03-27 2001-03-27 Evaporador de arco con guía magnética intensa para blancos de superficie amplia
CNB018230970A CN100355933C (zh) 2001-03-27 2001-03-27 具有用于较大表面积的靶的强力磁引导装置的电弧蒸发器
DE60105856T DE60105856T2 (de) 2001-03-27 2001-03-27 Bogenverdampfer mit intensiver magnetführung für grossflächige targets
BRPI0116951-3A BR0116951B1 (pt) 2001-03-27 2001-03-27 evaporador de arco com guia magnÉtico poderoso para alvos tendo uma grande Área de superfÍcie.
ES01915437T ES2228830T3 (es) 2001-03-27 2001-03-27 Evaporador de arco con guia magnetica intensa para blancos de superficie amplia.
AT01915437T ATE277204T1 (de) 2001-03-27 2001-03-27 Lichtbogenverdampfer mit kraftvoller magnetführung für targets mit grosser oberfläche
US11/473,440 US7828946B2 (en) 2001-03-27 2006-06-23 Arc evaporator with a powerful magnetic guide for targets having a large surface area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2001/000119 WO2002077318A1 (es) 2001-03-27 2001-03-27 Evaporador de arco con guía magnética intensa para blancos de superficie amplia

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10472575 A-371-Of-International 2001-03-27
US11/473,440 Continuation US7828946B2 (en) 2001-03-27 2006-06-23 Arc evaporator with a powerful magnetic guide for targets having a large surface area

Publications (1)

Publication Number Publication Date
WO2002077318A1 true WO2002077318A1 (es) 2002-10-03

Family

ID=8244313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2001/000119 WO2002077318A1 (es) 2001-03-27 2001-03-27 Evaporador de arco con guía magnética intensa para blancos de superficie amplia

Country Status (9)

Country Link
US (2) US20040112736A1 (es)
EP (1) EP1382711B1 (es)
JP (1) JP2004523658A (es)
CN (1) CN100355933C (es)
AT (1) ATE277204T1 (es)
BR (1) BR0116951B1 (es)
DE (1) DE60105856T2 (es)
ES (1) ES2228830T3 (es)
WO (1) WO2002077318A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057642A2 (de) * 2002-12-19 2004-07-08 Unaxis Balzers Aktiengesellschaft Vacuumarcquelle mit magnetfelderzeugungseinrichtung
WO2007068768A1 (es) 2005-12-16 2007-06-21 Fundacion Tekniker Máquina de evaporación catódica
WO2010072850A1 (es) 2008-12-26 2010-07-01 Fundacion Tekniker Evaporador de arco y método para operar el evaporador

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017528A1 (es) * 2005-08-02 2007-02-15 Fundacion Tekniker Dispositivo evaporador de arco catodico, y metodo para el encendido del arco
ES2648995T3 (es) * 2007-04-17 2018-01-09 Oerlikon Surface Solutions Ag, Pfäffikon Fuente de evaporación por arco voltaico al vacío, así como una cámara de evaporación por arco voltaico con una fuente de evaporación por arco voltaico al vacío
JP4314318B2 (ja) * 2007-10-31 2009-08-12 キヤノンアネルバ株式会社 マグネトロンユニット、マグネトロンスパッタリング装置及び電子デバイスの製造方法
ES2774167T3 (es) * 2008-09-02 2020-07-17 Oerlikon Surface Solutions Ag Pfaeffikon Dispositivo de revestimiento para el revestimiento de un sustrato, así como un procedimiento para el revestimiento de un sustrato
JP5839422B2 (ja) * 2009-04-28 2016-01-06 株式会社神戸製鋼所 成膜速度が速いアーク式蒸発源及びこのアーク式蒸発源を用いた皮膜の製造方法
JP5649308B2 (ja) 2009-04-28 2015-01-07 株式会社神戸製鋼所 成膜速度が速いアーク式蒸発源及びこのアーク式蒸発源を用いた皮膜の製造方法
JP5318052B2 (ja) * 2010-06-23 2013-10-16 株式会社神戸製鋼所 成膜速度が速いアーク式蒸発源、このアーク式蒸発源を用いた皮膜の製造方法及び成膜装置
JP5081315B2 (ja) * 2011-02-23 2012-11-28 株式会社神戸製鋼所 アーク式蒸発源
JP5081320B2 (ja) * 2011-02-23 2012-11-28 株式会社神戸製鋼所 アーク式蒸発源
KR20150103383A (ko) 2011-02-23 2015-09-10 가부시키가이샤 고베 세이코쇼 아크식 증발원
UA101678C2 (uk) * 2011-04-08 2013-04-25 Национальный Научный Центр "Харьковский Физико-Технический Институт" Вакуумно-дуговий випарник для генерування катодної плазми
JP5081327B1 (ja) * 2011-04-25 2012-11-28 株式会社神戸製鋼所 アーク式蒸発源
US9153422B2 (en) 2011-08-02 2015-10-06 Envaerospace, Inc. Arc PVD plasma source and method of deposition of nanoimplanted coatings
CN102534513B (zh) * 2011-12-19 2014-04-16 东莞市汇成真空科技有限公司 一种组合磁场的矩形平面阴极电弧蒸发源
JP5946337B2 (ja) * 2012-06-20 2016-07-06 株式会社神戸製鋼所 アーク式蒸発源
CN103526166B (zh) * 2013-10-25 2015-12-02 中国航空工业集团公司北京航空制造工程研究所 矩形平面阴极弧源和阴极靶材烧蚀装置
JP6403269B2 (ja) * 2014-07-30 2018-10-10 株式会社神戸製鋼所 アーク蒸発源
US11342168B2 (en) 2017-02-14 2022-05-24 Oerlikon Surface Solutions Ag, Pfaffikon Cathodic arc evaporation with predetermined cathode material removal
JP7212234B2 (ja) * 2017-10-03 2023-01-25 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン アーク源
KR20220027172A (ko) * 2019-07-03 2022-03-07 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 음극 아크 소스
CN111139438B (zh) * 2019-12-25 2022-01-21 兰州空间技术物理研究所 一种磁路可控式真空阴极电弧离子源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673477A (en) * 1984-03-02 1987-06-16 Regents Of The University Of Minnesota Controlled vacuum arc material deposition, method and apparatus
US4891560A (en) * 1986-09-18 1990-01-02 Kabushiki Kaisha Toshiba Magnetron plasma apparatus with concentric magnetic means
US5015493A (en) * 1987-01-11 1991-05-14 Reinar Gruen Process and apparatus for coating conducting pieces using a pulsed glow discharge
US5160595A (en) * 1987-04-19 1992-11-03 Hauzer Holding B.V. Arc-magnetron and the method of coating
US5298136A (en) * 1987-08-18 1994-03-29 Regents Of The University Of Minnesota Steered arc coating with thick targets

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207863A (ja) * 1986-03-06 1987-09-12 Matsushita Electric Ind Co Ltd 高速スパツタリング装置
DE3789307T2 (de) * 1986-04-04 1994-06-09 Univ Minnesota Bogenbeschichtung von feuerfesten metallverbindungen.
JPH02166278A (ja) * 1988-12-21 1990-06-26 Amorufuasu Denshi Device Kenkyusho:Kk マグネトロンスパッタ装置
DE4301516C2 (de) * 1993-01-21 2003-02-13 Applied Films Gmbh & Co Kg Targetkühlung mit Wanne
JPH0888176A (ja) * 1994-09-16 1996-04-02 Toshiba Corp スパッタリング装置
GB9722649D0 (en) * 1997-10-24 1997-12-24 Univ Nanyang Cathode ARC source for metallic and dielectric coatings
US6440282B1 (en) * 1999-07-06 2002-08-27 Applied Materials, Inc. Sputtering reactor and method of using an unbalanced magnetron

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673477A (en) * 1984-03-02 1987-06-16 Regents Of The University Of Minnesota Controlled vacuum arc material deposition, method and apparatus
US4673477B1 (es) * 1984-03-02 1993-01-12 Univ Minnesota
US4891560A (en) * 1986-09-18 1990-01-02 Kabushiki Kaisha Toshiba Magnetron plasma apparatus with concentric magnetic means
US5015493A (en) * 1987-01-11 1991-05-14 Reinar Gruen Process and apparatus for coating conducting pieces using a pulsed glow discharge
US5160595A (en) * 1987-04-19 1992-11-03 Hauzer Holding B.V. Arc-magnetron and the method of coating
US5298136A (en) * 1987-08-18 1994-03-29 Regents Of The University Of Minnesota Steered arc coating with thick targets

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057642A2 (de) * 2002-12-19 2004-07-08 Unaxis Balzers Aktiengesellschaft Vacuumarcquelle mit magnetfelderzeugungseinrichtung
WO2004057642A3 (de) * 2002-12-19 2004-12-09 Unaxis Balzers Ag Vacuumarcquelle mit magnetfelderzeugungseinrichtung
WO2007068768A1 (es) 2005-12-16 2007-06-21 Fundacion Tekniker Máquina de evaporación catódica
WO2010072850A1 (es) 2008-12-26 2010-07-01 Fundacion Tekniker Evaporador de arco y método para operar el evaporador
DE112008004247T5 (de) 2008-12-26 2012-04-12 Fundación Tekniker Lichtbogenverdampfer und Verfahren zum Betreiben des Verdampfers

Also Published As

Publication number Publication date
US7828946B2 (en) 2010-11-09
DE60105856T2 (de) 2005-10-20
US20060237309A1 (en) 2006-10-26
CN100355933C (zh) 2007-12-19
EP1382711A1 (en) 2004-01-21
BR0116951A (pt) 2004-03-09
ATE277204T1 (de) 2004-10-15
US20040112736A1 (en) 2004-06-17
CN1494603A (zh) 2004-05-05
EP1382711B1 (en) 2004-09-22
JP2004523658A (ja) 2004-08-05
ES2228830T3 (es) 2005-04-16
BR0116951B1 (pt) 2011-06-14
DE60105856D1 (de) 2004-10-28

Similar Documents

Publication Publication Date Title
ES2228830T3 (es) Evaporador de arco con guia magnetica intensa para blancos de superficie amplia.
ES2749721T3 (es) Cámara de evaporación por arco voltaico con una fuente de evaporación por arco voltaico al vacío
JP3869680B2 (ja) イオン注入装置
ES2379825T3 (es) Fuente de plasma de arco filtrada bidireccional
RU98121225A (ru) Катод для распыления или электродугового испарения (варианты) и устройство для покрытия или ионной имплантации подложек
ES2389504T3 (es) Fuente de iones con cátodo exterior de múltiples piezas
KR101118776B1 (ko) 박막 제작용 스퍼터 장치
ES2311497T3 (es) Aparato para la evaporacion de materiales para el revestimiento de objetos.
ES2602114T3 (es) Fuentes de pulverización catódica a alta presión con blancos grandes y procedimiento de pulverización catódica
WO2010072850A1 (es) Evaporador de arco y método para operar el evaporador
ES2231722T3 (es) Dispositivo para la evaporacion del arco electrico.
KR20140004785A (ko) 레이스트랙 형상의 마그네트론 스퍼터링용 자장 발생 장치
JP2009545101A (ja) プラズマ源
WO2007068768A1 (es) Máquina de evaporación catódica
JP3080401B2 (ja) 電子ビーム加熱蒸着ソース用磁気構造体
US10741765B2 (en) Vapor deposition apparatus, vapor deposition method and method of manufacturing organic EL display apparatus
JPH04231458A (ja) 電子ビーム蒸発源
JPH0525625A (ja) マグネトロンスパツタカソード
JP2013100605A (ja) 大きい表面領域を有するターゲットのための強力な磁気ガイドを伴うアーク蒸着装置
JP2942301B2 (ja) 電子銃磁界補正用フェンス装置
US4835789A (en) Electron-beam heated evaporation source
JP2005276520A (ja) 電子銃
JP2007023377A (ja) スパッタリングターゲット
JP5545452B2 (ja) プラズマ閉じ込め容器およびこれを備えたイオン源
BR112020006715A2 (pt) fonte de arco com campo magnético confinado

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10472575

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002575351

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 018230970

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001915437

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001915437

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001915437

Country of ref document: EP