WO2007068768A1 - Máquina de evaporación catódica - Google Patents

Máquina de evaporación catódica Download PDF

Info

Publication number
WO2007068768A1
WO2007068768A1 PCT/ES2005/000687 ES2005000687W WO2007068768A1 WO 2007068768 A1 WO2007068768 A1 WO 2007068768A1 ES 2005000687 W ES2005000687 W ES 2005000687W WO 2007068768 A1 WO2007068768 A1 WO 2007068768A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathodic
machine according
magnetic field
evaporation machine
magnetic
Prior art date
Application number
PCT/ES2005/000687
Other languages
English (en)
French (fr)
Inventor
Josu Goikoetxea Larrinaga
Original Assignee
Fundacion Tekniker
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Tekniker filed Critical Fundacion Tekniker
Priority to US12/097,728 priority Critical patent/US20090050059A1/en
Priority to DE602005019800T priority patent/DE602005019800D1/de
Priority to ES05826678T priority patent/ES2342835T3/es
Priority to PCT/ES2005/000687 priority patent/WO2007068768A1/es
Priority to EP05826678A priority patent/EP1970464B1/en
Priority to CN2005800525390A priority patent/CN101370957B/zh
Priority to AT05826678T priority patent/ATE459734T1/de
Publication of WO2007068768A1 publication Critical patent/WO2007068768A1/es
Priority to HK09107449.3A priority patent/HK1129430A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32614Consumable cathodes for arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Definitions

  • the invention encompasses in the field of arc evaporators and, more specifically, in the field of arc evaporators that include a magnetic arc guide system.
  • Arc evaporators are machines intended to evaporate a material, an electrical conductor, so that said material can move through a chamber (in which a state of vacuum or very low pressure is normally established) to be deposited on a surface of a piece to be coated with the material. That is, this type of machines are used for coating parts and surfaces.
  • Arc evaporating machines usually include, in addition to
  • the chamber itself, at least one anode and at least one cathode, between which an electric arc is established.
  • This arc (which in a typical case can represent a current of 80 A that is applied under a voltage of 22 V) strikes a cathode point (known as a cathode point) and generates, in correspondence with that point, an evaporation of the material of the cathode Therefore, the cathode is constituted from the material that is desired to be used for the coating, usually in the form of a plate (for example, disk-shaped) of said material.
  • a small amount of gas is usually introduced into the chamber.
  • the arc produces an evaporation of the material on the internal surface of the cathode (that is, on the surface of the cathode that is in contact with the interior of the chamber), in correspondence with the points where the arc strikes the surface.
  • This internal surface may face the piece or surface to be coated, so that the material vaporized by the arc is deposited on said piece or surface.
  • a cooling fluid for example, water
  • the arc (or, in the case of a system with multiple arcs, each arc) affects a specific point, in which the cathode evaporates.
  • the arc moves over the internal surface of the cathode, causing wear of said surface in correspondence with the path followed by the arc in its displacement. If some type of control is not applied to the displacement of the arc, said displacement can be random, producing an uneven wear of the cathode, something that can imply a bad use of the cathode material, whose cost per unit can be quite high.
  • control or magnetic guidance systems of the arc displacement have been developed. These guidance systems establish and modify magnetic fields that affect the movements of the electric arc, so that the cathode evaporation wear can be made more homogeneous.
  • these magnetic guides contribute to increasing the reliability of the arc evaporator, by making it impossible or difficult for the arc to accidentally move to a point that is not part of the evaporation surface.
  • US-A-4673477 describes a magnetic guidance system that uses a permanent magnet that moves, by mechanical means, on the back of the plate to evaporate, such that the variable magnetic field generated by this permanent magnet produces a guidance of the electric arc over the cathode.
  • This machine optionally also incorporates a magnetic winding that surrounds the cathode plate in order to reinforce or reduce the strength of the magnetic field in a direction perpendicular to the active surface of the cathode and thus improve electrode guidance.
  • a The problem presented by this machine is that the magnetic system of permanent moving magnets is very complex mechanically and therefore expensive to implement and susceptible to breakdowns.
  • US-A-4724058 refers to a machine with a magnetic guide that incorporates coils placed in the back of the cathode plate, which guide the electric arc in a single direction parallel to that followed by the coil.
  • a magnetic guide that incorporates coils placed in the back of the cathode plate, which guide the electric arc in a single direction parallel to that followed by the coil.
  • methods are used that attempt to weaken the effect of guiding the magnetic field so that a random component overlaps it.
  • the coil is connected and disconnected so that most of the time the arc moves over the cathode randomly.
  • a problem with this machine is that, finally, guidance occurs for a very short time, so that a precise and efficient control of the wear of the cathode plate cannot be guaranteed.
  • US-A-5861088 describes a machine with a magnetic guide that includes a permanent magnet located in the center of the target and on its rear face, and a coil surrounding said permanent magnet, the assembly constituting a magnetic field concentrator.
  • the system is complemented by a second coil placed outside the evaporator.
  • a problem with this machine is that the magnetic field generated is weak, which implies a weak guiding effect on the movement of the electric arc.
  • WO-A-02/077318 (TEKNIKER FOUNDATION, et al.) (Corresponding to ES-T-2228830 and EP-A-1382711) presents an evaporator with an intense operating magnetic guide, which employs permanent hands in an advanced position corresponding to the interior of the chamber, so it is necessary to incorporate means to cool the magnets when the chamber is used for coatings made at high temperature (for example, for cutting tools, which require process temperatures of the order of 500 0 C).
  • US-A-5298136 describes a magnetic guide for thick targets in circular evaporators, comprising two coils and a magnetic piece of special configuration that adapts to the edges of the target to evaporate, so that the assembly works with a single magnetic element , with two magnetic poles.
  • the second magnetic pole is inside the permanent magnet.
  • a coil is provided that rests on a support, constituted as the base of the magnetic pole.
  • the second magnetic pole and the coil are attached to the target by its lower face, and the permanent magnet embraces, with contact, the coil and the target.
  • the upper edge of the magnet is flush with the active surface of the target.
  • the invention provides a system that allows guiding the cathodic point (the point of incidence of the arc on the cathode) in accordance with a path that can be chosen individually from one infinity of possible paths and that can cover the entire internal surface of the cathode plate.
  • the invention relates to a cathodic evaporation machine, comprising an evaporation chamber configured to house a part or surface to be coated, a cathode assembly comprising a cathodic element, and an anode.
  • the cathode assembly and the anode are configured and arranged so that an arc can be established between the anode and the cathode element to produce at least partial evaporation of the cathode element, and the cathode assembly further comprises a magnetic guidance system for guide the arch over the cathode element.
  • This magnetic guidance system comprises a magnetic device comprising a central pole and a peripheral pole, and at least a first magnetic field generator and a second magnetic field generator configured to generate respective magnetic field components that contribute to a total magnetic field in correspondence with the cathodic element.
  • At least the first magnetic field generator comprises at least a first coil disposed around at least a part of the magnetic device and configured to generate the corresponding magnetic field component in the magnetic device, so as to modify a current through the first coil, the total magnetic field can be modified in correspondence with the cathodic element.
  • the peripheral pole has a terminal surface configured so that the magnetic field generated by the first magnetic field generator and second magnetic field generator has a higher intensity in correspondence with said terminal surface than in correspondence with adjacent surfaces of the magnetic device.
  • the distance between this terminal surface and the cathodic element is at least 20 mm. It has been verified that with this separation between the terminal surface in question and the element cathodic, a significant increase in the possibilities of moving the point of attack of the electric arc on the cathodic element is achieved; In the beginning, it may be possible to move the point of attack of the electric arc over the entire surface of the cathodic element.
  • the distance between this terminal surface and the cathodic element may be at least 30 mm, or at least 40 mm. For example, this distance may be more than 40 mm and less than 150 mm, for example, more than 40 mm and less than 75 mm. These distances generally allow a good displacement of the point of attack of the cathode arc, over all or substantially the entire surface of the cathodic element.
  • the terminal surface may be at least 10 mm away from the outermost level of the cathodic element, in a first direction perpendicular to said level. Also or alternatively, said terminal surface may be at least 10 mm away from the cathodic element, in a direction parallel to the general extent of said cathodic element.
  • the magnetic device can comprise a support that has the peripheral pole and the central pole, the support having a base from which a central protrusion that constitutes the central pole extends.
  • the support can also have a peripheral extension extending from the base in a direction substantially parallel to the central protuberance, said peripheral extension constituting the peripheral pole.
  • Said, at least one, coil can surround the central protuberance.
  • the central protuberance may comprise a ferromagnetic material.
  • the support can have a general circular configuration and / or a substantially E-shaped cross section (in which case the central arm of the E corresponds to the central protuberance, and the lateral arms of the E correspond to the peripheral pole).
  • the support can be made of a ferro magnetic material.
  • the second magnetic field generator may comprise at least a second coil that surrounds a part of the support other than the central protuberance, the second magnetic field generator comprising said second coil.
  • the support may be composed in part by ferromagnetic material and partly by permanent magnet material, in which case the second magnetic field generator may comprise the permanent magnet material.
  • the peripheral pole may comprise permanent magnet material.
  • the peripheral extension may comprise, at least partially, permanent magnet material. That permanent magnet material can have a magnetization direction perpendicular to the base or, for example, a magnetization direction at an acute angle with respect to the base.
  • the central protuberance may comprise at least partially permanent magnet material, and / or the base may comprise at least partially permanent magnet material.
  • the protuberance may have a terminal surface away from the base, said surface being substantially flat and substantially parallel to the cathodic element.
  • the protuberance can have at least one through channel to allow the passage of a cooling fluid (for example, water).
  • a cooling fluid for example, water
  • the peripheral pole may be located in correspondence with a peripheral edge of the cathodic element, but distanced from said peripheral edge.
  • the machine can also comprise a duct system for the passage of a refrigerant fluid in correspondence with the cathodic element, and / or a programmable system for supplying current to the first coil.
  • the peripheral pole and the central pole may be located outside the evaporation chamber.
  • Figure 1. Shows a schematic sectional representation of a circular arc evaporator with an external intense magnetic guide according to a possible embodiment of the invention.
  • Figure 2. Shows a configuration corresponding to the state of the art (specifically, corresponding to Figure 5 of US-A-5298136).
  • Figure 3. Shows an image of a magnetic field created by a configuration according to Figure 1, as it is calculated by finite elements.
  • Figure 4.- Similarly to Figure 3, shows an image of a magnetic field created by the configuration illustrated in Figure 2 (calculated by finite elements; the same software package has been used to calculate the fields illustrated in Figures 3 and 4).
  • Figure 5. Shows a graph of a magnetic field perpendicular to the surface of the evaporation target, calculated on the surface of the target, as a function of the distance from the center of the target and for different currents circulating through the coil illustrated in the figure one.
  • Figure 6. shows a graph of the magnetic field perpendicular to the surface of the evaporation target, calculated on the surface of the target, as a function of the distance from the center of the target and for different currents circulating through the internal coil of the magnetic configuration of Figure 2.
  • Figure 7. shows a graph of the magnetic field perpendicular to the surface of the evaporation target, calculated on the surface of the target, as a function of the distance from the center of the target and for different currents circulating through the external coil of the magnetic configuration described in US-A-5298136.
  • FIGS 8-14.- They show some alternative configurations of the magnetic device.
  • Figure 15.- Shows an alternative configuration of the invention in which permanent magnets are not used; its function Ia fulfills a coil external to the ferromagnetic core.
  • Figure 1 illustrates a machine according to a preferred embodiment of the invention, comprising an evaporation chamber 2 configured to accommodate a piece or surface to be coated 1, a cathode assembly comprising a cathodic element 3, and an anode 4.
  • the cathode element and the anode are connected to the negative and positive poles, respectively, of an electric power source 100, suitable for establishing and maintaining, under certain conditions, an electric arc between the cathode element 3 and the anode 4.
  • the chamber is a system of vacuum pumps 101 for establishing a vacuum condition (or, rather, substantially vacuum) inside the chamber 2, as well as a gas injection system 102 for injecting a small amount of gas , which can serve to facilitate the establishment of the electric arc between cathode element 3 or cathode, and the anode 4 of the system.
  • a system of vacuum pumps 101 for establishing a vacuum condition (or, rather, substantially vacuum) inside the chamber 2
  • a gas injection system 102 for injecting a small amount of gas , which can serve to facilitate the establishment of the electric arc between cathode element 3 or cathode, and the anode 4 of the system.
  • the cathodic element 3 constitutes what is usually referred to as the "target” that is desired to evaporate, at least partially, with the cathode arc.
  • the cathodic element is located in a hole in one of the walls of the chamber 2, placed in a ring 7 screwed in a cooling piece 8, associated with an inlet duct 9 of a cooling fluid, and an outlet duct 10 of the cooling fluid, which between said inlet and outlet it passes in contact with an outer surface of the cathodic element, to cool it.
  • a piece 5 of plastic or ceramic material serves to fix the cathode assembly to the wall of the evaporation chamber 2; This piece 5 provides an electrical insulation between the cathode assembly and the body of the chamber 2.
  • the machine incorporates a protective plate 6, which can be boron nitride or other suitable material, and which is located for protect the side of the cathode element 3 and the ring 7, so that the electric arc cannot influence these parts of the assembly.
  • This protective plate must be subject to periodic maintenance since in the course of the operation of the arc it is covered with electrically conductive materials, with which its electrical insulation and its effectiveness to avoid priming the arc are decreasing.
  • At least one sealing gasket is interposed between the cooling part 8 and the cathodic element, to prevent the cooling fluid from passing inside the chamber 2.
  • the cathode assembly further comprises the magnetic guidance system to guide the arc over the cathode element 3.
  • this magnetic guidance system comprises a magnetic device comprising a central pole 14 and a peripheral pole 12, and a first magnetic field generator and a second magnetic field generator configured to generate respective magnetic field components that contribute to a total magnetic field in correspondence with the cathode element 3.
  • the first magnetic field generator it comprises a first coil 13 arranged around a central protuberance 14b extending from a base 15a of a support 15 that forms part of the magnetic device.
  • This protuberance 14b is configured to generate the corresponding magnetic field component in said magnetic device, so that by modifying a current through the first coil 13, it can modify the total magnetic field in correspondence with the cathode element 3.
  • the central protuberance 14b has a terminal surface 14a away from the base 15a; this surface is substantially flat and substantially parallel to the cathode element 3.
  • the peripheral pole 12 has a terminal surface 12a configured so that the magnetic field generated by the first magnetic field generator and second magnetic field generator has a higher intensity in correspondence with this terminal surface 12a than in correspondence with adjacent surfaces of the magnetic device.
  • the support has a peripheral extension 12b extending from the base 15a in a direction substantially parallel to the central protuberance 14b; This peripheral extension 12b constitutes the peripheral pole 12.
  • the peripheral extension is constituted by permanent magnets and ends at said terminal surface 12a.
  • the magnetic device basically comprises a peripheral ring of permanent magnets, superimposed on an electromagnet with a body with a "T" shaped cross-section (which constitutes the support 15 with its central protuberance 14b), of a high material magnetic permeability and poor coercivity (for example, soft iron or other suitable ferromagnetic material) and with the central arm of the T surrounded by the coil 13.
  • the cathodic assembly is provided with a programmable system 18 to supply current to the first coil 13.
  • the programmable system may comprise an amplifier which is usually used to power DC motors, and which delivers a current governed by a signal sent to it. from a Programmable Logic Controller (PLC), so that it is possible to vary the current flowing through the first coil 13 in a programmed way.
  • PLC Programmable Logic Controller
  • the permanent magnets are located in correspondence with the outer edge of the cathodic element, but distanced from the cathodic element.
  • the distance A between Ia terminal surface 12a (corresponding to one end of the permanent magnets) and the cathode element 3, is at least 20 mm, for example, between 40 mm and 150 mm.
  • the terminal surface 12a is a distance B of at least 10 mm away from the outermost level of the cathode element 3, in a first direction perpendicular to said level, and a distance C of at least 10 mm from the cathode element 3 , in a direction parallel to the general extension of said cathodic element 3, as indicated in Figure 1.
  • This configuration allows to establish an arc attack point that can move over the entire surface of the cathode element that is accessible from inside the chamber 2, and also allows the interposition of the cooling system 8 between the magnetic guidance system and the element cathodic 3.
  • the magnetic guidance system of Figure 1 is completely external to the evaporation chamber 2, something that facilitates the design and manufacture of the machine.
  • Figure 1 is a schematic figure approaching in its proportions relative to the proportions of the evaporator for a circular evaporation target with a diameter of 100 mm.
  • Figure 2 illustrates, by way of example, an embodiment that seems to be part of the state of the art and, more specifically, seems to be reflected in US-A-5298136.
  • This system comprises a cathode or evaporation target 72, a ferromagnetic core 75, a coil 76 and permanent magnets 71.
  • the permanent magnets 71 are at the same level as the surface of the cathodic element 72, something that has been considered as not suitable for many applications, since it does not seem to favor an adequate guidance of the arc over the entire surface of the cathodic element.
  • Figure 3 shows the lines of the magnetic field created by the permanent magnets when the coil is inactive, in the magnetic configuration according to the embodiment of the invention illustrated in Figure 1.
  • the magnetic field has been calculated with a software package for calculation of magnetic fields by finite elements.
  • the point "P" indicates the point at which the magnetic field is parallel to the interior surface of the target (that is, to the surface of the cathodic element that is located in correspondence with the interior of the chamber and on which the cathode arc), or, what is the same, the point of
  • FIG. 4 shows the lines of the magnetic field created by the permanent magnets when the coil is inactive, in the magnetic configuration illustrated in Figure 2; The magnetic field has been calculated with the same software that has been used to calculate the magnetic field illustrated in Figure 3. Also in Figure 4, the point "P" indicates the point at which the magnetic field is parallel to the surface white interior.
  • FIG 5 a graph of the normal component of the magnetic field on the surface of the target (axis "y”, in Teslas (T)) is shown, as a function of the distance from the center of the target (axis "x", in mm), for different values of current density (2 A / mm 2 , 0 A / mm 2 and -1 A / mm 2 , respectively) that are circulated through the coil, all for the magnetic configuration illustrated in Figure 1.
  • the arc will follow the path formed by the points at which the magnetic field is parallel to the surface of the target, that is, the points where the normal component is canceled.
  • the normal magnetic field is canceled for a radius around 44 mm, so that the arc will follow that circular path regardless of the intensity of the current flowing through the coil.
  • the only modification obtained by varying the intensity of the coil is a slight increase or reduction in the intensity of the magnetic field, which will have a small influence on the degree of firmness with which the magnetic field holds the arc to the established path , and also slightly influence the speed at which the arc moves by varying the intensity of the parallel magnetic field.
  • FIG 7 a graph of the normal magnetic field is again shown for the magnetic configuration of Figure 2 (namely, a graph of the normal component of the magnetic field on the surface of the target -axis "y", in Teslas-, depending on the distance from the center of the target -axis "x", in mm-, for different values of current density (2 A / mm 2 , 0 A / mm 2 and -2 A / mm 2 , -5 A / mm 2 , respectively) that is circulated through the coil) for the magnetic configuration of Figure 2 (applying what we have said above with respect to that figure, mutatis mutandis ), but this time using a coil outside the ferromagnetic core.
  • the main reason for the impossibility of varying the arc trajectory with the action of the coils in the case of the configuration of Figure 2 may be that the proximity of the permanent magnet (whose field is hardly altered by the coils) to the surface White makes the magnetic field at this point hardly affected by the field created by the coils. Therefore, the invention solves this problem by removing said permanent magnets (or functionally corresponding elements of the magnetic device) from the evaporation target. To compensate for the weakening of the magnetic field associated with the removal of permanent magnets, it may be convenient to increase their size.
  • Figures 8-15 show some alternative configurations for the manufacture of the magnetic part of the magnetic guide, among the many that can be conceived while maintaining the essence of the invention.
  • Figure 8 corresponds to an alternative embodiment of the magnetic guide in which the ferromagnetic core has a central through hole 17, through which the feed 9 and the return 10 of the cooling fluid can be passed, as well as the feed of the current Of the arc
  • the peripheral extension 12b is constituted by permanent magnets.
  • Figure 9 shows a configuration in which the Alnico magnets used in the simulation (which constitute the peripheral extension in Figure 8) have been replaced by a ferromagnetic part (which is part of the support 15 itself) crowned with a high energy magnet 12c, made of neodymium-iron-boron or cobalt-samarium, which have the advantage of providing greater magnetic energy and avoiding the problems of demagnetization of the Alnico
  • Figure 10 shows a configuration similar to Ia 9 but in which magnets 14c have also been added at the central pole, which contributes to increasing the intensity of the magnetic field.
  • Figure 11 is an alternative configuration to that of Figure 10, in which the magnets 14d of the central pole are radially magnetized, so that a greater number of magnets can be placed, which helps to further increase the field.
  • the magnetization of the permanent magnets located in the central pole is such that it coincides with the direction in which the magnetic lines created by the peripheral magnets 12c arrive so that they reinforce them, without substantially modifying the distribution of lines created by the peripheral magnets 12c. If these magnets of the central pole 14c, 14d were magnetized in the opposite direction, they would oppose the flow created by the peripheral magnets 12c and could substantially alter the character of the magnetic field.
  • Figure 12 shows a configuration in which the peripheral magnets 12d are not magnetized vertically but with a certain inclination towards the center of the evaporator. This alteration modifies the location of the path created simply by the peripheral magnets, which can advantageously be used to equalize the intensity that the coil must apply in both directions to drag the path to its practical limits.
  • Figure 13 shows a configuration in which the permanent magnets 12e are located in the horizontal plane, instead of in the vertical arms.
  • This configuration has the advantage of providing a large volume for the placement of magnets, so that these can be of lower energy than those used in other configurations.
  • They can be, by example, of hard ferrites, instead of neodymium-iron-boron that could be used in the other configurations.
  • Figure 14 shows a configuration in which magnets are not used in the peripheral pole and the central pole is formed by a permanent magnet 14e with an magnetization that does not have to be strictly vertical, but can be tilted inwards.
  • Figure 15 shows a configuration in which permanent magnets have been dispensed with and its function Ia exerts a coil 16 external to the magnetic assembly formed by the ferromagnetic core that constitutes the support 15.
  • all these configurations can be compatible with a gas injection system through an insert placed in the center of the evaporation target to enable the electronic arc to be ignited.
  • the invention is not limited to the specific embodiments that have been described but also covers, for example, the variants that can be made by the average expert in the field (by for example, regarding the choice of materials, dimensions, components, configuration, etc.), within what follows from the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Soil Working Implements (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

La máquina de evaporación catódica comprende una cámara de evaporación (2), un elemento catódico (3), un ánodo (4), y un sistema de guiado magnético para guiar el arco sobre el elemento catódico (3). El sistema de guiado magnético comprende un polo central (14) y un polo periférico (12) con una superficie terminal (12a). La distancia (A) entre dicha superficie terminal (12a) y el elemento catódico (3) es de al menos 20 mm.

Description

MÁQUINA DE EVAPORACIÓN CATÓDICA
CAMPO TÉCNICO DE LA INVENCIÓN
La Invención se engloba en el campo de los evaporadores de arco y, más concretamente, en el campo de los evaporadores de arco que incluyen un sistema de guía magnética del arco.
ANTECEDENTES DE LA INVENCIÓN
Los evaporadores de arco son máquinas destinadas a evaporar un material, conductor eléctrico, de manera que dicho material pueda desplazarse por una cámara (en Ia que normalmente se establece un estado de vacío o de presión muy baja) para depositarse sobre una superficie de una pieza a revestir con el material. Es decir, este tipo de máquinas se utilizan para recubrimientos de piezas y superficies. Las máquinas evaporadoras de arco suelen comprender, en adición a
Ia cámara propiamente dicha, al menos un ánodo y al menos un cátodo, entre los que se establece un arco eléctrico. Este arco (que en un caso típico puede representar una corriente de 80 A que se aplica bajo una tensión de 22 V) incide sobre un punto del cátodo (conocido como punto catódico) y genera, en correspondencia con dicho punto, una evaporación del material del cátodo. Por Io tanto, el cátodo se constituye a partir del material que se desea utilizar para el recubrimiento, normalmente en forma de una placa (por ejemplo, en forma de disco) de dicho material. Para mantener el arco y/o para facilitar que se establezca el arco, se suele introducir una pequeña cantidad de gas en Ia cámara. El arco produce una evaporación del material en Ia superficie interna del cátodo (es decir, sobre Ia superficie del cátodo que está en contacto con el interior de Ia cámara), en correspondencia con los puntos donde el arco incide sobre Ia superficie. Esta superficie interna puede estar enfrentada a Ia pieza o superficie que se desea recubrir, para que el material vaporizado por el arco se deposite sobre dicha pieza o superficie. Para evitar un sobrecalentamiento del cátodo, se aplica frecuentemente un fluido de refrigeración (por ejemplo, agua) sobre el cátodo, por ejemplo, sobre Ia superficie externa del cátodo.
En cada momento, al arco (o, en el caso de un sistema con múltiples arcos, cada arco) incide sobre un punto concreto, en el cual se produce Ia evaporación del cátodo. El arco se desplaza sobre Ia superficie interna del cátodo, produciendo un desgaste de dicha superficie en correspondencia con Ia trayectoria seguida por el arco en su desplazamiento. Si no se aplica algún tipo de control sobre el desplazamiento del arco, dicho desplazamiento puede ser aleatorio, produciendo un desgaste poco homogéneo del cátodo, algo que puede implicar un mal aprovechamiento del material del cátodo, cuyo coste por unidad puede ser bastante elevado.
Para evitar o reducir el carácter aleatorio del desplazamiento del arco, con el fin de hacer el desgaste del cátodo más homogéneo, se han desarrollado sistemas de control o guiado magnético del desplazamiento del arco. Estos sistemas de guiado establecen y modifican campos magnéticos que afectan a los movimientos del arco eléctrico, con Io que se puede hacer que el desgaste por evaporación del cátodo se haga más homogéneo. Por otro lado, estas guías magnéticas contribuyen a aumentar Ia fiabilidad del evaporador de arco, al imposibilitar o dificultar que el arco se desplace accidentalmente a un punto que no forme parte de Ia superficie de evaporación.
Existen varias publicaciones de patentes o solicitudes de patente que describen diferentes sistemas de este tipo.
US-A-4673477 describe un sistema de guiado magnético que utiliza un imán permanente que se desplaza, por medios mecánicos, en Ia parte posterior de Ia placa a evaporar, de tal manera que el campo magnético variable que genera este imán permanente produce un guiado del arco eléctrico sobre el cátodo. Esta máquina incorpora opcionalmente también un arrollamiento magnético que rodea Ia placa del cátodo con el fin de reforzar o reducir Ia fuerza del campo magnético en una dirección perpendicular a Ia superficie activa del cátodo y así mejorar el guiado del electrodo. Un problema que presenta esta máquina es que el sistema magnético de imanes permanentes móviles es muy complejo mecánicamente y, por tanto, costoso de implementar y susceptible de averías.
US-A-4724058 se refiere a una máquina con una guía magnética que incorpora unas bobinas colocadas en Ia parte posterior de Ia placa cátodo, que guían el arco eléctrico en una única dirección paralela a Ia que sigue Ia bobina. Con el fin de reducir el efecto de desgaste preferente en una única trayectoria, se utilizan métodos que tratan de debilitar el efecto de guiado del campo magnético de forma que a éste se superponga una componente aleatoria. En concreto, se ha previsto que el campo magnético generado por
Ia bobina se conecte y desconecte de forma que Ia mayor parte del tiempo el arco se desplace sobre el cátodo de forma aleatoria. Un problema de esta máquina es que, finalmente, el guiado se produce durante muy poco tiempo, con Io que no se puede garantizar un control preciso y eficiente del desgaste de Ia placa catódica.
US-A-5861088 describe una máquina con una guía magnética que incluye un imán permanente situado en el centro del blanco y en su cara posterior, y una bobina que rodea el citado imán permanente constituyendo el conjunto un concentrador de campo magnético. El sistema se complementa con una segunda bobina colocada en el exterior del evaporador. Un problema de esta máquina es que el campo magnético generado es débil, Io cual implica un débil efecto de guiado sobre el movimiento del arco eléctrico.
WO-A-02/077318 (FUNDACIÓN TEKNIKER, et al.) (correspondiente a ES-T-2228830 y EP-A-1382711 ) presenta un evaporador con una guía magnética intensa operativa, que emplea unos ¡manes permanentes en una posición avanzada que corresponde al interior de Ia cámara, por Io que es necesaria Ia incorporación de medios para refrigerar los imanes cuando Ia cámara se emplea para recubrimientos efectuados a alta temperatura (por ejemplo, para herramientas de corte, que requieren temperaturas de proceso del orden de 500 0C). US-A-5298136 describe una guía magnética para blancos gruesos en evaporadores circulares, que comprende dos bobinas y una pieza magnética de configuración especial que se adapta a los bordes del blanco a evaporar, de tal forma que el conjunto funciona con un solo elemento magnético, con dos polos magnéticos. Ahora bien, por ejemplo, se ha comprobado que al menos una de las configuraciones alternativas que se describen en US-A- 5298136 tal vez no sea adecuada o idónea para desplazar el arco en un evaporador de arco catódico. Concretamente, se han realizado análisis computacionales por elementos finitos de los campos magnéticos que sugieren que Ia configuración ¡lustrada en Ia figura 5 de US-A-5298136 en Ia práctica no permite el desplazamiento de Ia trayectoria del arco más que unos escasos milímetros, por Io que esta configuración implica un uso ineficiente del blanco de evaporación. La configuración de Ia figura 5 de US- A-5298136 está constituida por un imán permanente, de forma anular y dispuesto rodeando el blanco o cátodo, y cuyo borde extremo queda al mismo nivel que Ia superficie activa del cátodo o blanco. El segundo polo magnético se encuentra en el interior del imán permanente. En contacto con Ia superficie inferior del blanco y sobre él, y quedando también en el interior del imán permanente, está dispuesta una bobina que apoya sobre un soporte, constituido como base del polo magnético. En esta configuración, el segundo polo magnético y Ia bobina están adosados al blanco por su cara inferior, y el imán permanente abraza, con contacto, Ia bobina y el blanco. Además, el borde superior del imán está enrasado con Ia superficie activa del blanco. A Ia vista de las deficiencias o imperfecciones de los sistemas conocidos, el objetivo de Ia invención es proporcionar una configuración alternativa que, con una estructura bastante sencilla, permita controlar el arco catódico y desplazarlo sobre una zona amplia de Ia placa catódica. Más concretamente, Ia invención proporciona un sistema que permite guiar el punto catódico (el punto de incidencia del arco sobre el cátodo) de acuerdo con una trayectoria que puede elegirse individualmente entre una infinidad de trayectorias posibles y que puede abarcar Ia totalidad de Ia superficie interna de Ia placa cátodo.
DESCRIPCIÓN DE LA INVENCIÓN La invención se refiere a una máquina de evaporación catódica, que comprende una cámara de evaporación configurada para alojar una pieza o superficie a recubrir, un conjunto de cátodo que comprende un elemento catódico, y un ánodo. El conjunto de cátodo y el ánodo están configurados y dispuestos de manera que se puede establecer un arco entre el ánodo y el elemento catódico para producir una evaporación al menos parcial del elemento catódico, y el conjunto de cátodo comprende además un sistema de guiado magnético para guiar el arco sobre el elemento catódico. Este sistema de guiado magnético comprende un dispositivo magnético que comprende un polo central y un polo periférico, y al menos un primer generador de campo magnético y un segundo generador de campo magnético configurados para generar respectivas componentes de campo magnético que contribuyen a un campo magnético total en correspondencia con el elemento catódico. Al menos el primer generador de campo magnético comprende al menos una primera bobina dispuesta alrededor de al menos una parte del dispositivo magnético y configurada para generar Ia correspondiente componente de campo magnético en el dispositivo magnético, de manera que modificando una corriente a través de Ia primera bobina, se puede modificar el campo magnético total en correspondencia con el elemento catódico. El polo periférico tiene una superficie terminal configurada para que el campo magnético generado por el primer generador de campo magnético y segundo generador campo magnético tenga una intensidad más alta en correspondencia con dicha superficie terminal que en correspondencia con superficies adyacentes del dispositivo magnético.
De acuerdo con Ia invención, Ia distancia entre esta superficie terminal y el elemento catódico es de al menos 20 mm. Se ha comprobado que con esta separación entre Ia superficie terminal en cuestión y el elemento catódico, se consigue un notable incremento de las posibilidades de desplazar el punto de ataque del arco eléctrico sobre el elemento catódico; en un principio, puede resultar posible desplazar el punto de ataque del arco eléctrico sobre toda Ia superficie del elemento catódico. La distancia entre esta superficie terminal y el elemento catódico puede ser de al menos 30 mm, o de al menos 40 mm. Por ejemplo, esta distancia puede ser de más de 40 mm y de menos de 150 mm, por ejemplo, de más de 40 mm y de menos de 75 mm. Estas distancias permiten en general obtener un buen desplazamiento del punto de ataque del arco catódico, sobre toda o sustancialmente toda Ia superficie del elemento catódico.
De acuerdo con un posible aspecto de Ia invención, Ia superficie terminal puede estar alejada al menos 10 mm desde el nivel más exterior del elemento catódico, en una primera dirección perpendicular a dicho nivel. También o alternativamente, dicha superficie terminal puede estar alejada al menos 10 mm desde el elemento catódico, en una dirección paralela a Ia extensión general de dicho elemento catódico. Estas configuraciones permiten obtener un amplio desplazamiento del punto de ataque del arco eléctrico, sobre Ia superficie del elemento catódico. El dispositivo magnético puede comprender un soporte que presenta el polo periférico y el polo central, teniendo el soporte una base de Ia cual se extiende una protuberancia central que constituye el polo central. El soporte puede además presentar una extensión periférica que se extiende de Ia base en una dirección sustancialmente paralela a Ia protuberancia central, constituyendo dicha extensión periférica el polo periférico. Dicha, al menos una, bobina puede rodear Ia protuberancia central. La protuberancia central puede comprender un material ferromagnético.
El soporte puede tener una configuración general circular y/o una sección transversal sustancialmente en forma de E (en cuyo caso el brazo central de Ia E corresponde a Ia protuberancia central, y los brazos laterales de Ia E corresponden al polo periférico). El soporte puede ser de un material ferro magnético. Ei segundo generador de campo magnético puede comprender al menos una segunda bobina que rodea una parte del soporte distinta a Ia protuberancia central, comprendiendo el segundo generador de campo magnético dicha segunda bobina.
El soporte puede estar compuesto en parte por material ferromagnético y en parte por material de imán permanente, en cuyo caso el segundo generador de campo magnético puede comprender el material de imán permanente. Por ejemplo, el polo periférico puede comprender material de imán permanente.
La extensión periférica puede comprender, al menos parcialmente, material de imán permanente. Ese material de imán permanente puede tener una dirección de imanación perpendicular a Ia base o, por ejemplo, una dirección de imanación en ángulo agudo con respecto a Ia base. En algunas posibles realizaciones de Ia invención, Ia protuberancia central puede comprender al menos parcialmente material de imán permanente, y/o Ia base puede comprender al menos parcialmente material de imán permanente.
La protuberancia puede tener una superficie terminal alejada de Ia base, siendo dicha superficie sustancialmente plana y sustancialmente paralela al elemento catódico.
La protuberancia puede presenta al menos un canal pasante para permitir el paso de un fluido (por ejemplo, agua) de refrigeración.
El polo periférico puede estar situado en correspondencia con un borde periférico del elemento catódico, pero distanciado de dicho borde periférico.
La máquina puede además comprender un sistema de conductos para el paso de un fluido refrigerante en correspondencia con el elemento catódico, y/o un sistema programable para suministrar corriente a Ia primera bobina. El polo periférico y el polo central pueden estar situados fuera de Ia cámara de evaporación.
DESCRIPCIÓN DE LAS FIGURAS Para complementar Ia descripción y con objeto de ayudar a una mejor comprensión de las características de Ia invención, de acuerdo con unos ejemplos de realización práctica de Ia misma, se acompaña como parte integrante de dicha descripción, un juego de figuras en el que con carácter ilustrativo y no limitativo, se ha representado Io siguiente: La figura 1.- Muestra una representación esquemática en sección de un evaporador de arco circular con guía magnética intensa externa de acuerdo con una posible realización de Ia invención.
La figura 2.- Muestra una configuración correspondiente al estado de la técnica (concretamente, correspondiente a Ia figura 5 de US-A-5298136). La figura 3.- Muestra una imagen de un campo magnético creado por una configuración de acuerdo con Ia figura 1 , tal y como resulta calculándolo por elementos finitos.
La figura 4.- Análogamente a Ia figura 3, muestra una imagen de un campo magnético creado por Ia configuración ilustrada en Ia figura 2 (calculado por elementos finitos; se ha utilizado el mismo paquete de software para calcular los campos ilustrados en las figuras 3 y 4).
La figura 5.- Muestra una gráfica de un campo magnético perpendicular a Ia superficie del blanco de evaporación, calculada en Ia superficie del blanco, en función de Ia distancia desde el centro del blanco y para distintas corrientes circulando por Ia bobina ilustrada en Ia figura 1.
La figura 6.- Análogamente a Ia anterior muestra una gráfica del campo magnético perpendicular a Ia superficie del blanco de evaporación, calculada en Ia superficie del blanco, en función de Ia distancia desde el centro del blanco y para distintas corrientes circulando por Ia bobina interna de Ia configuración magnética de Ia figura 2. La figura 7.- Análogamente a las figuras 5 y 6, Ia figura 7 muestra una gráfica del campo magnético perpendicular a Ia superficie del blanco de evaporación, calculada en Ia superficie del blanco, en función de Ia distancia desde el centro del blanco y para distintas corrientes circulando por Ia bobina externa de Ia configuración magnética que se describe en US-A-5298136.
Las figuras 8-14.- Muestran algunas configuraciones alternativas del dispositivo magnético.
La figura 15.- Muestra una configuración alternativa de Ia invención en Ia que no se emplean ¡manes permanentes; su función Ia cumple una bobina externa al núcleo ferromagnético.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
La figura 1 ilustra una máquina de acuerdo con una realización preferida de Ia invención, que comprende una cámara de evaporación 2 configurada para alojar una pieza o superficie a recubrir 1 , un conjunto de cátodo que comprende un elemento catódico 3, y un ánodo 4. El elemento catódico y el ánodo están conectados a los polos negativo y positivo, respectivamente, de una fuente de energía eléctrica 100, adecuada para establecer y mantener, bajo ciertas condiciones, un arco eléctrico entre el elemento catódico 3 y el ánodo 4. Asociada a Ia cámara hay un sistema de bombas de vacío 101 para establecer una condición de vacío (o, mejor dicho, sustancialmente de vacío) en el interior de Ia cámara 2, así como un sistema 102 de inyección de gas para inyectar una pequeña cantidad de gas, que puede servir para facilitar el establecimiento del arco eléctrico entre elemento catódico 3 o cátodo, y el ánodo 4 del sistema.
El elemento catódico 3 constituye Io que se suele denominar el "blanco" que se desea evaporar, al menos parcialmente, con el arco catódico. El elemento catódico está situado en un orificio en una de las paredes de Ia cámara 2, colocado en un anillo 7 atornillado en una pieza de refrigeración 8, asociada a un conducto de entrada 9 de un fluido de refrigeración, y a un conducto de salida 10 del fluido de refrigeración, que entre dicha entrada y salida pasa en contacto con una superficie exterior del elemento catódico, para refrigerarlo. Una pieza 5 de material plástico o cerámico sirve para fijar el conjunto de cátodo a Ia pared de Ia cámara 2 de evaporación; esta pieza 5 aporta un aislamiento eléctrico entre el conjunto de cátodo y el cuerpo de Ia cámara 2. Por otra parte, Ia máquina incorpora una plancha protectora 6, que puede ser de nitruro de boro o de otro material adecuado, y que está situada para proteger el lateral del elemento catódico 3 y el anillo 7, de forma que el arco eléctrico no pueda incidir sobre estas partes del conjunto. Esta plancha protectora debe estar sujeta a un mantenimiento periódico ya que en el transcurso del funcionamiento del arco se va cubriendo con materiales eléctricamente conductores, con Io cual su aislamiento eléctrico y su efectividad para evitar el cebado del arco van disminuyendo.
Lógicamente, y aunque no están ilustradas en las figuras, entre Ia pieza de refrigeración 8 y el elemento catódico está interpuesta al menos una junta de sellado, para evitar que el fluido de refrigeración pueda pasar al interior de Ia cámara 2.
Por otra parte, el conjunto de cátodo comprende además el sistema de guiado magnético para guiar el arco sobre el elemento catódico 3. Concretamente, en Ia realización ilustrada en Ia figura 1 , este sistema de guiado magnético comprende un dispositivo magnético que comprende un polo central 14 y un polo periférico 12, y un primer generador de campo magnético y un segundo generador de campo magnético configurados para generar respectivas componentes de campo magnético que contribuyen a un campo magnético total en correspondencia con el elemento catódico 3. El primer generador de campo magnético comprende una primera bobina 13 dispuesta alrededor de una protuberancia central 14b que se extiende desde una base 15a de un soporte 15 que forma parte del dispositivo magnético. Esta protuberancia 14b está configurada para generar Ia correspondiente componente de campo magnético en dicho dispositivo magnético, de manera que modificando una corriente a través de Ia primera bobina 13, se puede modificar el campo magnético total en correspondencia con el elemento catódico 3. La protuberancia central 14b tiene una superficie terminal 14a alejada de Ia base 15a; esta superficie es sustancialmente plana y sustancialmente paralela al elemento catódico 3. Por otra parte, el polo periférico 12 tiene una superficie terminal 12a configurada para que el campo magnético generado por el primer generador de campo magnético y segundo generador campo magnético tenga una intensidad más alta en correspondencia con esta superficie terminal 12a que en correspondencia con superficies adyacentes del dispositivo magnético. El soporte presenta una extensión periférica 12b que se extiende de Ia base 15a en una dirección sustancialmente paralela a Ia protuberancia central 14b; esta extensión periférica 12b constituye el polo periférico 12. En esta realización preferida, Ia extensión periférica está constituida por imanes permantentes y termina en Ia citada superficie terminal 12a. De esa manera, el dispositivo magnético comprende básicamente un anillo periférico de imanes permanentes, superpuesto a un electroimán con un cuerpo con sección transversal en forma de "T" (que constituye el soporte 15 con su protuberancia central 14b), de un material de elevada permeabilidad magnética y escasa coercitividad (por ejemplo, hierro dulce u otro material ferromagnético adecuado) y con el brazo central de Ia T rodeado por Ia bobina 13.
Además, el conjunto catódico está dotado de sistema programable 18 para suministrar corriente a Ia primera bobina 13. El sistema programable puede comprender un amplificador de los que suelen emplearse para alimentar motores DC, y que entrega una corriente gobernada por una señal que se Ie envía desde un Controlador Lógico Programable (PLC), de forma que es posible variar Ia corriente que circula por primera bobina 13 de forma programada.
De acuerdo con Ia invención, los imanes permanentes están situados en correspondencia con el borde exterior del elemento catódico, pero distanciados del elemento catódico. Concretamente, Ia distancia A entre Ia superficie terminal 12a (correspondiente a un extremo de los imanes permanentes) y el elemento catódico 3, es de al menos 20 mm, por ejemplo, entre 40 mm y 150 mm. Es conveniente que Ia superficie terminal 12a está alejada una distancia B de al menos 10 mm desde el nivel más exterior del elemento catódico 3, en una primera dirección perpendicular a dicho nivel, y una distancia C de al menos 10 mm desde el elemento catódico 3, en una dirección paralela a Ia extensión general de dicho elemento catódico 3, tal y como se indica en Ia figura 1.
Esta configuración permite establecer un punto de ataque del arco que puede desplazarse sobre toda Ia superficie del elemento catódico que está accesible desde el interior de Ia cámara 2, y además permite Ia interposición del sistema de refrigeración 8 entre el sistema de guiado magnético y el elemento catódico 3.
Tal y como se puede observar, el sistema de guiado magnético de Ia figura 1 es completamente externo a Ia cámara 2 de evaporación, algo que facilita el diseño y Ia fabricación de Ia máquina.
La figura 1 es una figura esquemática que se aproxima en sus proporciones relativas a las proporciones del evaporador para un blanco de evaporación circular con un diámetro de 100 mm. La figura 2 ilustra, a modo de ejemplo, una realización que parece formar parte del estado de Ia técnica y que, más concretamente, parece estar reflejada en US-A-5298136. Este sistema comprende un cátodo o blanco de evaporación 72, un núcleo ferromagnético 75, una bobina 76 y unos imanes permanentes 71. Los imanes permanentes 71 están al mismo nivel que Ia superficie del elemento catódico 72, algo que se ha considerado como no idóneo para muchas aplicaciones, ya que no parece favorecer un guiado adecuado del arco sobre toda Ia superficie del elemento catódico.
En Ia figura 3 se representan las líneas del campo magnético creado por los imanes permanentes cuando Ia bobina está inactiva, en Ia configuración magnética de acuerdo con Ia realización de Ia invención ilustrada en Ia figura 1. El campo magnético ha sido calculado con un paquete de software para cálculo de campos magnéticos por elementos finitos. El punto "P" indica el punto en el que el campo magnético es paralelo a Ia superficie interior del blanco (es decir, a Ia superficie del elemento catódico que está situada en correspondencia con el interior de Ia cámara y sobre Ia que debe actuar el arco catódico), o, Io que es Io mismo, el punto de
Ia superficie del blanco en el que Ia componente normal del campo magnético (perpendicular a Ia superficie del blanco) se anula. Esos puntos forman una trayectoria circular sobre Ia superficie del blanco, Ia cual constituye Ia trayectoria que seguirá el arco eléctrico en su movimiento. En Ia figura 4 se representan las líneas del campo magnético creado por los imanes permanentes cuando Ia bobina está inactiva, en Ia configuración magnética ilustrada en Ia figura 2; el campo magnético se ha calculado con el mismo software que se ha utilizado para calcular el campo magnético ilustrado en Ia figura 3. También en Ia figura 4, el punto "P" indica el punto en el que el campo magnético es paralelo a Ia superficie interior del blanco.
Las proporciones relativas de las partes que aparecen en Ia figura 2 no resultan adecuadas para imanes permanentes enérgicos, como los fabricados a base de neodimio-hierro-boro o de cobalto-samario. Es posible que Ia figura 5 de US-A-5298136 esté dibujada pensando en el uso de imanes de Alnico, que aún eran los más frecuentes en el momento de presentarse Ia correspondiente solicitud de patente. Por tanto, cuando se han hecho las simulaciones en las que se basan las figuras 3 y 4, se han supuesto imanes permanentes de Alnico V. Para asegurar que ambas simulaciones sean comparables, además se ha tomado para ambas un blanco con un diámetro de 100 mm. Tomando esto como referencia, Ia simulación para Ia figura 2 se ha realizado conservando las proporciones entre las partes que aparecen en Ia figura 5 de US-A-5298136.
En Ia figura 5, se representa una gráfica de Ia componente normal del campo magnético en Ia superficie del blanco (eje "y", en Teslas (T)), en función de Ia distancia desde el centro del blanco (eje "x", en mm), para distintos valores de densidad de corriente (2 A/mm2, 0 A/mm2 y -1 A/mm2, respectivamente) que se hace circular por Ia bobina, todo ello para Ia configuración magnética ilustrada en Ia figura 1. Como antes se ha señalado, el arco seguirá Ia trayectoria formada por los puntos en los que el campo magnético es paralelo a Ia superficie del blanco, esto es, los puntos donde Ia componente normal se anula. Por Io tanto, en esta gráfica se ve que para una bobina inactiva, J = O A/mm2, Ia trayectoria es una circunferencia de 44 mm de radio. Análogamente, para J = -1 A/mm2, Ia trayectoria tiene un radio de 48 mm, muy cercano al borde del blanco, mientras que para J = 2 A/mm2 el radio de Ia trayectoria es 3 mm, por Io que está prácticamente en el centro.
En Ia figura 6, por el contrario, se representa Ia misma gráfica (es decir, una gráfica de Ia componente normal del campo magnético en Ia superficie del blanco -eje "y", en Teslas-, en función de Ia distancia desde el centro del blanco -eje "x", en mm-, para diferentes valores de densidad de comente (J=2 A/mm2, 0 A/mm2, -2 A/mm2, -5 A/mm2, respectivamente) que se hace circular por Ia bobina) para Ia configuración magnética de Ia figura 2 (aplicándose Io que hemos dicho más arriba con respecto a esa figura, mutatis mutandis). Como puede verse, para todos los valores razonables de corrientes en Ia bobina, el campo magnético normal se anula para un radio en torno de 44 mm, por Io que el arco seguirá esa trayectoria circular independientemente de Ia intensidad de Ia corriente que circula por Ia bobina. La única modificación que se obtiene al variar Ia intensidad de Ia bobina es un ligero incremento o reducción de Ia intensidad del campo magnético, Io cual tendrá una pequeña influencia en el grado de firmeza con el que el campo magnético sujeta el arco a Ia trayectoria establecida, y también influirá levemente en Ia velocidad a Ia que se mueve el arco al variar Ia intensidad del campo magnético paralelo.
En Ia Figura 7 se representa de nuevo una gráfica del campo magnético normal para Ia configuración magnética de Ia figura 2 (a saber, una gráfica de Ia componente normal del campo magnético en Ia superficie del blanco -eje "y", en Teslas-, en función de Ia distancia desde el centro del blanco -eje "x", en mm-, para diferentes valores de densidad de corriente (2 A/mm2, 0 A/mm2 y -2 A/mm2, -5 A/mm2, respectivamente) que se hace circular por Ia bobina) para Ia configuración magnética de Ia figura 2 (aplicándose Io que hemos dicho más arriba con respecto a esa figura, mutatis mutandis), pero esta vez empleando una bobina exterior al núcleo ferromagnético. En este caso hay una exigua variación en el radio de Ia trayectoria del arco, desde 40 mm de radio hasta 45 mm, a pesar de que para ello haya que variar Ia intensidad entre -2 A/mm2 y 5 A/mm2, es decir, mucho más que en Ia configuración de Ia figura 1. Esto implica que si uno se basa en el sistema propuesto en Ia figura 2, posiblemente sea imprescindible adoptar sistemas de refrigeración con agua para evitar que las bobinas se sobrecalienten por el mero paso de Ia corriente.
La razón principal para Ia imposibilidad de variar Ia trayectoria del arco con Ia actuación de las bobinas en el caso de Ia configuración de Ia figura 2 puede residir en que Ia cercanía del imán permanente (cuyo campo apenas es alterado por las bobinas) a Ia superficie del blanco hace que el campo magnético en este punto apenas se vea afectado por el campo creado por las bobinas. Por Io tanto, Ia invención soluciona este problema alejando dichos imanes permanentes (o los elementos funcionalmente correspondientes del dispositivo magnético) del blanco de evaporación. Para compensar el debilitamiento del campo magnético asociado al alejamiento de los imanes permanentes, puede ser conveniente incrementar el tamaño de los mismos. Se estima que en el caso de Ia figura 1 , una separación de 20 mm entre los imanes permanentes y el blanco puede ser suficiente para que Ia actuación de una bobina adecuadamente diseñada pueda barrer la trayectoria del arco en un rango de utilidad práctica. Un alejamiento mayor puede dar un rango de barrido mayor, pero como contrapartida se disminuye el campo magnético, por Io que sus efectos beneficiosos sobre el comportamiento del arco disminuyen, o, alternativamente, es necesario incorporar imanes de mayor tamaño o potencia. Habitualmente se considera que una guía con un campo magnético paralelo, en Ia trayectoria del arco, de unos 15 Gausses (0,0015 Teslas) puede ser suficiente para guiar adecuadamente al arco, pero el incremento de Ia intensidad del campo magnético redunda normalmente en una mejora del recubrimiento. Como contrapartida, eso exige el empleo de ¡manes de mayor tamaño o energía, e incluso de fuentes de alimentación de arco de mejor calidad ya que el incremento de Ia velocidad de movimiento del arco también implica un aumento en Ia tensión del arco y, por tanto, en su inestabilidad, Io cual debe compensarse empleando una fuente de alimentación más reactiva, de mejor calidad. Por tanto Ia elección de Ia intensidad magnética que se debe emplear depende de Ia relativa importancia que se den a los distintos factores que se han mencionado.
Las figuras 8-15 muestran algunas configuraciones alternativas para la fabricación de Ia parte magnética de Ia guía magnética, de entre las muchas que pueden llegar a idearse manteniendo en su esencia el carácter de Ia invención.
La figura 8 corresponde a una realización alternativa de Ia guía magnética en Ia que el núcleo ferromagnético presenta un orificio pasante central 17, a través del que puede pasarse Ia alimentación 9 y el retorno 10 del fluido de refrigeración, así como Ia alimentación de Ia corriente del arco
(que no se representa). El orificio apenas modifica Ia distribución del campo magnético en Ia superficie del blanco y su incidencia en el barrido de Ia superficie es muy bajo, mientras que esta forma de alimentación del fluido de refrigeración y de Ia corriente del arco permite que se desarrolle de una manera simétrica, homogénea, que no influya en el perfil de desgaste del blanco. La refrigeración puede sofisticarse empleando canales radiales o en forma espiral. Igual que en Ia figura 1 , Ia extensión periférica 12b está constituida por ¡manes permanentes.
En Ia figura 9 se presenta una configuración en Ia que los imanes de Alnico empleados en Ia simulación (las cuales constituyen Ia extensión periférica en Ia figura 8) han sido sustituidos por una pieza ferromagnética (que forma parte del soporte 15 propiamente dicho) coronada con un imán 12c de elevada energía, fabricado en neodimio-hierro-boro o en cobalto- samario, que tienen Ia ventaja de aportar una mayor energía magnética y de evitar los problemas de desimanación del Alnico. En Ia figura 10 se presenta una configuración similar a Ia 9 pero en Ia que se han añadido imanes 14c también en el polo central, Io que contribuye a incrementar Ia intensidad del campo magnético.
La figura 11 es una configuración alternativa a Ia de Ia figura 10, en Ia que los ¡manes 14d del polo central están imantados radialmente, por Io que puede colocarse un mayor numero de ¡manes , Io cual ayuda a incrementar aún más el campo.
En estas configuraciones Ia imantación de los imanes permanentes situados en el polo central es tal que coincide con el sentido en el que llegan las líneas magnéticas creadas por los imanes periféricos 12c de forma que los refuerzan, sin modificar sustancialmente Ia distribución de líneas creada por los imanes periféricos 12c. Si estuvieran imantados en el sentido inverso estos imanes del polo central 14c, 14d se opondrían al flujo creado por los imanes periféricos 12c y podrían alterar sustancialmente el carácter del campo magnético. En Ia figura 12 se presenta una configuración en Ia que los imanes periféricos 12d no están imantados verticalmente sino con una cierta inclinación hacia el centro del evaporador. Esta alteración modifica Ia ubicación de Ia trayectoria creada simplemente por los imanes periféricos, Io cual puede emplearse ventajosamente para igualar Ia intensidad que Ia bobina debe aplicar en ambos sentidos para arrastrar Ia trayectoria hasta sus límites prácticos.
En Ia figura 13 se presenta una configuración en Ia que los imanes permanentes 12e están ubicados en el plano horizontal, en lugar de en los brazos verticales. Esta configuración tiene Ia ventaja de proporcionar un gran volumen para Ia colocación de imanes, por Io que estos pueden ser de menor energía que los empleados en otras configuraciones. Pueden ser, por ejemplo, de ferritas duras, en lugar de neodimio-hierro-boro que se podría emplear en las otras configuraciones.
En Ia figura 14 se presenta una configuración en Ia que no se emplean imanes en el polo periférico y el polo central esta formado por un imán permanente 14e con una imantación que no tiene que ser estrictamente vertical, sino que puede estar inclinada hacia el interior.
En Ia figura 15 se presenta una configuración en Ia que se ha prescindido de imanes permanentes y su función Ia ejerce una bobina 16 externa al conjunto magnético formado por el núcleo ferromagnético que constituye el soporte 15. A pesar de tener menor utilidad práctica que el resto de las configuraciones presentadas, pueden darse circunstancias en los que Ia flexibilidad extra aportada por Ia bobina exterior puede ser empleada con ventaja.
Adicionalmente, todas estas configuraciones pueden compatibilizarse con un sistema de inyección de gas a través de un inserto colocado en el centro del blanco de evaporación para posibilitar Ia realización de un encendido electrónico del arco.
Las configuraciones que se han presentado pueden incluso combinarse entre ellas para crear configuraciones válidas, por Io que resulta evidente que las configuraciones presentadas no agotan en modo alguno las posibilidades de fabricar distintas guías magnéticas que se ajustan en los sustancial a Io presentado en esta invención. En esta descripción detallada de algunas posibles realizaciones de Ia invención, elementos idénticos o análogos se ha indicado con las mismas referencias numéricas. En este texto, Ia palabra "comprende" y sus variantes (como
"comprendiendo", etc.) no deben interpretarse de forma excluyente, es decir, no excluyen Ia posibilidad de que Io descrito incluya otros elementos, pasos etc.
Por otra parte, Ia invención no está limitada a las realizaciones concretas que se han descrito sino abarca también, por ejemplo, las variantes que pueden ser realizadas por el experto medio en Ia materia (por ejemplo, en cuanto a Ia elección de materiales, dimensiones, componentes, configuración, etc.), dentro de Io que se desprende de las reivindicaciones.

Claims

REIVINDICACIONES
1.- Máquina de evaporación catódica, que comprende una cámara de evaporación (2) configurada para alojar una pieza o superficie a recubrir (1 ), un conjunto de cátodo que comprende un elemento catódico (3), y un ánodo
(4), estando el conjunto de cátodo y el ánodo configurados y dispuestos de manera que se pueda establecer un arco entre el ánodo (4) y el elemento catódico (3) para producir una evaporación al menos parcial del elemento catódico (3), comprendiendo el conjunto de cátodo además un sistema de guiado magnético para guiar el arco sobre el elemento catódico (3), comprendiendo dicho sistema de guiado magnético un dispositivo magnético que comprende un polo central (14) y un polo periférico (12), y al menos un primer generador de campo magnético y un segundo generador de campo magnético configurados para generar respectivas componentes de campo magnético que contribuyen a un campo magnético total en correspondencia con el elemento catódico (3), comprendiendo al menos dicho primer generador de campo magnético al menos una primera bobina (13) dispuesta alrededor de al menos una parte (14b) del dispositivo magnético y configurada para generar Ia correspondiente componente de campo magnético en dicho dispositivo magnético, de manera que modificando una corriente a través de dicha primera bobina (13), se puede modificar dicho campo magnético total en correspondencia con dicho elemento catódico (3), teniendo el polo periférico (12) una superficie terminal (12a) configurada para que el campo magnético generado por el primer generador de campo magnético y segundo generador campo magnético tenga una intensidad más alta en correspondencia con dicha superficie terminal (12a) que en correspondencia con superficies adyacentes del dispositivo magnético; caracterizada porque
Ia distancia (A) entre dicha superficie terminal (12a) y el elemento catódico (3) es de al menos 20 mm.
2.- Máquina de evaporación catódica según Ia reivindicación 1 , en Ia que dicha distancia (A) es de al menos 30 mm.
3.- Máquina de evaporación catódica según Ia reivindicación 2, en Ia que dicha distancia (A) es de al menos 40 mm.
4.- Máquina de evaporación catódica según Ia reivindicación 3, en Ia que dicha distancia (A) es de más de 40 mm y de menos de 150 mm.
5.- Máquina de evaporación catódica según Ia reivindicación 4, en Ia que dicha distancia (A) es de más de 40 mm y de menos de 75 mm.
6.- Máquina de evaporación catódica según cualquiera de las reivindicaciones anteriores, en Ia que dicha superficie terminal (12a) está alejada una distancia (B) de al menos 10 mm desde el nivel más exterior del elemento catódico (3), en una primera dirección perpendicular a dicho nivel.
7.- Máquina de evaporación catódica según cualquiera de las reivindicaciones anteriores, en Ia que dicha superficie terminal (12a) está alejada una distancia (C) de al menos 10 mm desde el elemento catódico (3), en una dirección paralela a Ia extensión general de dicho elemento catódico (3).
8.- Máquina de evaporación catódica según cualquiera de las reivindicaciones anteriores, en Ia que el dispositivo magnético comprende un soporte (15) que presenta dicho polo periférico (12) y dicho polo central (14), teniendo dicho soporte una base (15a) de Ia cual se extiende una protuberancia central (14b) que constituye dicho polo central (14).
9.- Máquina de evaporación catódica según Ia reivindicación 8, en Ia que el soporte además presenta una extensión periférica (12b) que se extiende de
Ia base (15a) en una dirección sustancialmente paralela a Ia protuberancia central (14b), constituyendo dicha extensión periférica (12b) el polo periférico (12).
10.- Máquina de evaporación catódica según Ia reivindicación 8 o 9, en Ia que dicha al menos una bobina (13) rodea dicha protuberancia central (14b).
11.- Máquina de evaporación catódica según Ia reivindicación 10, en Ia que dicha protuberancia central (14b) comprende un material ferromagnético.
12.- Máquina de evaporación catódica según cualquiera de las reivindicaciones 8-11 , en Ia que dicho soporte (15) tiene una configuración general circular.
13.- Máquina de evaporación catódica según cualquiera de las reivindicaciones 8-12, en Ia que el soporte (15) tiene una sección transversal sustancialmente en forma de E, correspondiendo un brazo central de Ia E a Ia protuberancia central (14b), y correspondiendo los brazos laterales (12b) de Ia E al polo periférico (12).
14.- Máquina de evaporación catódica según cualquiera de las reivindicaciones 8-13, en Ia que el soporte (15) es de un material ferromagnético.
15.- Máquina de evaporación catódica según Ia reivindicación 14, en Ia que el segundo generador de campo magnético comprende al menos una segunda bobina (16) que rodea una parte del soporte distinta a Ia protuberancia central (fig. 15), comprendiendo el segundo generador de campo magnético dicha segunda bobina (16).
16.- Máquina de evaporación catódica según cualquiera de las reivindicaciones 8-13, en Ia que el soporte está compuesto en parte por material ferromagnético y en parte por material de imán permanente, comprendiendo dicho segundo generador de campo magnético dicho material de imán permanente.
17.- Máquina de evaporación catódica según Ia reivindicación 16, en Ia que el polo periférico (12) comprende material de imán permanente.
18.- Máquina de evaporación catódica según Ia reivindicación 9 y 16, en Ia que dicha extensión periférica (12b) comprende, al menos parcialmente, material de imán permanente (figs. 1 y 8-12).
19.- Máquina de evaporación catódica según Ia reivindicación 18, caracterizado porque dicho material de imán permanente tiene una dirección de imanación perpendicular a Ia base (figs. 1 y 8-11).
20.- Máquina de evaporación catódica según Ia reivindicación 18, caracterizado porque dicho material de imán permanente tiene una dirección de imanación en ángulo agudo con respecto a Ia base (fig. 12).
21.- Máquina de evaporación catódica según Ia reivindicación 16, en Ia que dicha protuberancia (14b) comprende al menos parcialmente material de imán permanente (figs. 10, 11 , 14)
22.- Máquina de evaporación catódica según Ia reivindicación 16, en Ia que Ia base (15a) comprende al menos parcialmente material de imán permanente (fig. 13).
23.- Máquina de evaporación catódica según cualquiera de las reivindicaciones 8-22, en Ia que Ia protuberancia tiene una superficie terminal (14a) alejada de Ia base, siendo dicha superficie sustancialmente plana y sustancialmente paralela al elemento catódico (3).
24.- Máquina de evaporación catódica según cualquiera de las reivindicaciones 8-23, en Ia que Ia protuberancia (14b) presenta al menos un canal pasante (17) para permitir el paso de un fluido de refrigeración.
25.- Máquina de evaporación catódica según cualquiera de las reivindicaciones anteriores, en Ia que el polo periférico (12) está situado en correspondencia con un borde periférico del elemento catódico (3), pero distanciado de dicho borde periférico.
26.- Máquina de evaporación catódica según cualquiera de las reivindicaciones anteriores, que además comprende un sistema de conductos (9, 10) para el paso de un fluido refrigerante en correspondencia con el elemento catódico (3).
27.- Máquina según cualquiera de las reivindicaciones anteriores, que además comprende un sistema programable (18) para suministrar corriente a Ia primera bobina (13).
28.- Máquina según cualquiera de las reivindicaciones anteriores, en Ia que el polo periférico (12) y el polo central (14) están situados fuera de Ia cámara de evaporación.
PCT/ES2005/000687 2005-12-16 2005-12-16 Máquina de evaporación catódica WO2007068768A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US12/097,728 US20090050059A1 (en) 2005-12-16 2005-12-16 Cathode evaporation machine
DE602005019800T DE602005019800D1 (de) 2005-12-16 2005-12-16 Kathodenverdampfungsmaschine
ES05826678T ES2342835T3 (es) 2005-12-16 2005-12-16 Maquina de evaporacion catodica.
PCT/ES2005/000687 WO2007068768A1 (es) 2005-12-16 2005-12-16 Máquina de evaporación catódica
EP05826678A EP1970464B1 (en) 2005-12-16 2005-12-16 Cathode evaporation machine
CN2005800525390A CN101370957B (zh) 2005-12-16 2005-12-16 阴极蒸发器
AT05826678T ATE459734T1 (de) 2005-12-16 2005-12-16 Kathodenverdampfungsmaschine
HK09107449.3A HK1129430A1 (en) 2005-12-16 2009-08-13 Cathode evaporation machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2005/000687 WO2007068768A1 (es) 2005-12-16 2005-12-16 Máquina de evaporación catódica

Publications (1)

Publication Number Publication Date
WO2007068768A1 true WO2007068768A1 (es) 2007-06-21

Family

ID=38162586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000687 WO2007068768A1 (es) 2005-12-16 2005-12-16 Máquina de evaporación catódica

Country Status (8)

Country Link
US (1) US20090050059A1 (es)
EP (1) EP1970464B1 (es)
CN (1) CN101370957B (es)
AT (1) ATE459734T1 (es)
DE (1) DE602005019800D1 (es)
ES (1) ES2342835T3 (es)
HK (1) HK1129430A1 (es)
WO (1) WO2007068768A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110308941A1 (en) * 2009-02-09 2011-12-22 Oerlikon Trading Ag, Trubbach Modifiable magnet configuration for arc vaporization sources

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649308B2 (ja) * 2009-04-28 2015-01-07 株式会社神戸製鋼所 成膜速度が速いアーク式蒸発源及びこのアーク式蒸発源を用いた皮膜の製造方法
JP6095568B2 (ja) 2010-06-22 2017-03-15 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,トリュープバッハ 定義された電界を有するarc蒸着ソース
EP2607517A1 (en) * 2011-12-22 2013-06-26 Oerlikon Trading AG, Trübbach Low temperature arc ion plating coating
JP5946337B2 (ja) * 2012-06-20 2016-07-06 株式会社神戸製鋼所 アーク式蒸発源
CN103074580B (zh) * 2012-12-25 2015-08-26 王奉瑾 采用电磁加热的物理气相沉积设备
JP6403269B2 (ja) * 2014-07-30 2018-10-10 株式会社神戸製鋼所 アーク蒸発源
EP3583619B1 (de) * 2017-02-14 2021-10-27 Oerlikon Surface Solutions AG, Pfäffikon Lichtbogenkathodenverdampfung mit vorbestimmtem kathodenmaterialabtrag
RU2020113430A (ru) 2017-10-03 2021-11-08 Эрликон Серфис Сольюшнс Аг, Пфеффикон Дуговой источник с ограниченным магнитным полем
CN114481046A (zh) * 2022-01-26 2022-05-13 纳狮新材料有限公司 电弧蒸发装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673477A (en) 1984-03-02 1987-06-16 Regents Of The University Of Minnesota Controlled vacuum arc material deposition, method and apparatus
US4724058A (en) 1984-08-13 1988-02-09 Vac-Tec Systems, Inc. Method and apparatus for arc evaporating large area targets
US4734183A (en) * 1986-07-17 1988-03-29 Leybold-Heraeus Gmbh Sputtering cathode on the magnetron principle
US4927513A (en) * 1988-01-09 1990-05-22 Leybold Aktiengesellschaft Method and arrangement for fabricating magneto-optical, storable, and/or deletable data carriers
US5022978A (en) * 1990-03-22 1991-06-11 Leybold Aktiengesellschaft Apparatus for coating three dimensional substrates by means of cathode sputtering
US5160595A (en) * 1987-04-19 1992-11-03 Hauzer Holding B.V. Arc-magnetron and the method of coating
US5298136A (en) 1987-08-18 1994-03-29 Regents Of The University Of Minnesota Steered arc coating with thick targets
US5861088A (en) 1993-08-30 1999-01-19 W. Bloesch Ag Magnetic field cathode
DE10010448C1 (de) * 2000-03-03 2002-04-25 Multi Media Machinery Gmbh Kathode
WO2002077318A1 (es) 2001-03-27 2002-10-03 Fundación Tekniker Evaporador de arco con guía magnética intensa para blancos de superficie amplia

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2256847A1 (en) * 1998-12-22 2000-06-22 Munther Kandah Particle-free cathodic arc carbon ion source
JP4679004B2 (ja) * 2000-09-26 2011-04-27 新明和工業株式会社 アーク蒸発源装置、その駆動方法、及びイオンプレーティング装置
DE10127013A1 (de) * 2001-06-05 2002-12-12 Gabriel Herbert M Lichtbogen-Verdampfungsvorrichtung

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673477B1 (es) 1984-03-02 1993-01-12 Univ Minnesota
US4673477A (en) 1984-03-02 1987-06-16 Regents Of The University Of Minnesota Controlled vacuum arc material deposition, method and apparatus
US4724058A (en) 1984-08-13 1988-02-09 Vac-Tec Systems, Inc. Method and apparatus for arc evaporating large area targets
US4734183A (en) * 1986-07-17 1988-03-29 Leybold-Heraeus Gmbh Sputtering cathode on the magnetron principle
US5160595A (en) * 1987-04-19 1992-11-03 Hauzer Holding B.V. Arc-magnetron and the method of coating
US5298136A (en) 1987-08-18 1994-03-29 Regents Of The University Of Minnesota Steered arc coating with thick targets
US4927513A (en) * 1988-01-09 1990-05-22 Leybold Aktiengesellschaft Method and arrangement for fabricating magneto-optical, storable, and/or deletable data carriers
US5022978A (en) * 1990-03-22 1991-06-11 Leybold Aktiengesellschaft Apparatus for coating three dimensional substrates by means of cathode sputtering
US5861088A (en) 1993-08-30 1999-01-19 W. Bloesch Ag Magnetic field cathode
DE10010448C1 (de) * 2000-03-03 2002-04-25 Multi Media Machinery Gmbh Kathode
WO2002077318A1 (es) 2001-03-27 2002-10-03 Fundación Tekniker Evaporador de arco con guía magnética intensa para blancos de superficie amplia
EP1382711A1 (en) 2001-03-27 2004-01-21 Fundacion Tekniker Arc evaporator with a powerful magnetic guide for targets having a large surface area
ES2228830T3 (es) 2001-03-27 2005-04-16 Fundacion Tekniker Evaporador de arco con guia magnetica intensa para blancos de superficie amplia.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110308941A1 (en) * 2009-02-09 2011-12-22 Oerlikon Trading Ag, Trubbach Modifiable magnet configuration for arc vaporization sources
KR101784648B1 (ko) 2009-02-09 2017-11-06 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 아크 증발원의 변형 가능한 자석 배치
US11264216B2 (en) * 2009-02-09 2022-03-01 Oerlikon Surface Solutions Ag, Pfäffikon Modifiable magnet configuration for arc vaporization sources
US11535928B2 (en) 2009-02-09 2022-12-27 Oerlikon Surface Solutions Ag, Pfäffikon Modifiable magnet configuration for arc vaporization sources

Also Published As

Publication number Publication date
CN101370957A (zh) 2009-02-18
ATE459734T1 (de) 2010-03-15
DE602005019800D1 (de) 2010-04-15
HK1129430A1 (en) 2009-11-27
ES2342835T3 (es) 2010-07-15
EP1970464B1 (en) 2010-03-03
CN101370957B (zh) 2011-01-26
EP1970464A1 (en) 2008-09-17
US20090050059A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
ES2342835T3 (es) Maquina de evaporacion catodica.
ES2228830T3 (es) Evaporador de arco con guia magnetica intensa para blancos de superficie amplia.
ES2424764T3 (es) Fuente de iones con hueco en el electrodo
ES2237676T3 (es) Fuente de pulverizacion de magnetron.
ES2389504T3 (es) Fuente de iones con cátodo exterior de múltiples piezas
CN102953035B (zh) 多模式交变耦合磁场辅助电弧离子镀沉积弧源设备
BRPI0711644A2 (pt) fonte de arco voltaico e disposição de ìmãs
RU98121225A (ru) Катод для распыления или электродугового испарения (варианты) и устройство для покрытия или ионной имплантации подложек
JP2013524016A (ja) 回転式マグネトロンのための標的利用改善
CN103327721A (zh) 一种控制会切磁场推力器羽流发散角度的方法
ES2924694T3 (es) Aparato generador de gotas de agua
ES2231722T3 (es) Dispositivo para la evaporacion del arco electrico.
WO2010072850A1 (es) Evaporador de arco y método para operar el evaporador
JP3728140B2 (ja) アーク蒸発源及び真空蒸着装置
JP2009545101A (ja) プラズマ源
CN202945315U (zh) 一种高效动态耦合磁控弧源装置
ES2277575B1 (es) Rotor de motor magnetico.
ES2764281T3 (es) Fuente de evaporación por arco
ES2329164T3 (es) Procedimiento y dispositivo para la mejora de procesos de flujo de tipo capilar.
KR102486247B1 (ko) 자화수 생성장치
CN102857000A (zh) 一种内嵌式正弦型面永磁电机转子
JP2012057247A (ja) スパッタ装置のターゲットモジュール、およびスパッタ装置
JP5545452B2 (ja) プラズマ閉じ込め容器およびこれを備えたイオン源
CN219591834U (zh) 用于产生水氧离子的放电装置
CN220083189U (zh) 空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005826678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12097728

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580052539.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005826678

Country of ref document: EP