WO2002052626A2 - Verfahren zur herstellung eines mikroelektronischen bauelements und danach hergestelltes bauelement - Google Patents

Verfahren zur herstellung eines mikroelektronischen bauelements und danach hergestelltes bauelement Download PDF

Info

Publication number
WO2002052626A2
WO2002052626A2 PCT/EP2001/014955 EP0114955W WO02052626A2 WO 2002052626 A2 WO2002052626 A2 WO 2002052626A2 EP 0114955 W EP0114955 W EP 0114955W WO 02052626 A2 WO02052626 A2 WO 02052626A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
contact
conductive layer
semiconductor material
deposited
Prior art date
Application number
PCT/EP2001/014955
Other languages
English (en)
French (fr)
Other versions
WO2002052626A3 (de
Inventor
Klaus J. Riepe
Hervé Blanck
Wolfgang Doser
Original Assignee
United Monolithic Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Monolithic Semiconductors Gmbh filed Critical United Monolithic Semiconductors Gmbh
Priority to EP01988040A priority Critical patent/EP1346403A2/de
Publication of WO2002052626A2 publication Critical patent/WO2002052626A2/de
Publication of WO2002052626A3 publication Critical patent/WO2002052626A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05026Disposition the internal layer being disposed in a recess of the surface
    • H01L2224/05027Disposition the internal layer being disposed in a recess of the surface the internal layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • H01L2224/05572Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the invention relates to a method for producing a microelectronic component with at least one electrode in a GaAs connection semiconductor material and to a component produced using such a method.
  • an electrically conductive contact is generated on the semiconductor material which contains at least one low-resistance metallic conductive layer.
  • the type of contact formation depends strongly on the type of contact (ohmic / schottky / capacitive), the type of component (bipolar / FET), the semiconductor material (Si / GaN / Gas / ...) and the type (p / n) and the amount of the doping, so that, depending on the combination of such parameters, different types of contacts are used and the advantages that occur in one type are generally not readily transferable to other parameter combinations
  • EP 0 402 061 shows on a Si substrate a TiW / TiWN / TiW / Au layer sequence with Au as a low-resistance conductive layer and the TiW / TiWN / TiW layer sequence deposited over a window of a passivation layer as an adhesive layer and barrier. From "New structure for contact metallurgy" in IBM Technical Disclosure Bulletin, Vol. 25, No. 12, May 1983, pp.
  • the contact has a multilayer structure and comprises a gold (Au) conductive layer, which is separated from the substrate by a diffusion barrier layer and an adhesive layer.
  • Au gold
  • the gold conductive layer is characterized by a particularly high conductivity and is corrosion-free.
  • the structure of the contact on the semiconductor surface can be produced, for example, in a lift-off process in which the surface structure of the contact with an undercut is etched free in a photoresist layer and the layer sequence of the contact is then deposited thereon.
  • the deposition of the entire layer sequence of adhesive layer, barrier layer and conductive layer (Au) on a photoresist mask is, on the one hand, inexpensive and, on the other hand, ensures the self-aligned deposition of the successive layers of the contact.
  • GaAS components produced in this customary manner disadvantageously show unsatisfactory long-term behavior with decreasing performance data, for example in the form of a current gain in heterobipolar transistors which decreases significantly over time.
  • the invention is based on the object of specifying a production method for microelectronic components with at least one electrode in a GaAs compound semiconductor material, with which components with long-term stable properties can be produced in a cost-effective manner, and a component produced using such a method.
  • the structure of the conductive layer in a contact on GaAs compound semiconductor material completely or at least predominantly made of aluminum instead of the Au as usual for GaAs contacts as the conductive layer material enables simple and inexpensive production of a low-resistance contact with good long-term stability of the component properties, in particular the current gain of one Hetero-bipolar transistor (HBT).
  • the contact can advantageously be made in a lift-off process.
  • the invention makes use of the observation that when a contact with, for example, an Au conductive layer and an underlying barrier layer is deposited by means of a lift-off process, the layer thicknesses of the individual layers of the contact towards the edges of the contact due to the deposition become thinner in the undercut-structured photoresist mask of the lift-off process and then the diffusion barrier effect of the barrier layer at the edges of the contact decreases with the usual contacts on GaAs and gold from the low-resistance conductive layer in the electrode area of the semiconductor substrate can diffuse.
  • the invention is therefore also particularly advantageous for the production of a base contact of a hetero bipolar transistor using GaAs technology.
  • the device can be part of a more complex monolithically integrated circuit.
  • the conductive layer of the contact is understood to be that layer of the layer sequence of the contact which, due to the low specific resistance of the material and the relatively large layer thickness, makes the main contribution to the conductance of the contact for current conduction parallel to the substrate surface. Any diffusion of aluminum from the conductive layer into the electrode does not have the effect of forming recombination centers such as this. B. is the case with gold in a carbon-doped GaAs electrode. The diffusion barrier layer can therefore be omitted entirely in a preferred embodiment.
  • An adhesive layer which, on the one hand, compensates for mechanical stresses between the semiconductor material and the conductive layer and can ensure layer adhesion on the semiconductor material and on the other hand, above all, reducing contact potential barriers between the materials of the conductive layer and substrate, can be deposited on the substrate as the first layer of the contact in a manner which is conventional per se.
  • the adhesive layer advantageously consists predominantly of one or more of the elements Ti, Pt, Mo, Ni, Pd, preferably predominantly or entirely of Ti.
  • the thickness of the adhesive layer is small compared to the thickness of the conductive layer and is preferably not more than 50 nm.
  • the thickness of the conductive layer is advantageously at least 5 times the thickness of the adhesive layer. Due to the small layer thickness of the adhesive layer between the conductive layer and the semiconductor material and the use of Ti, the ohmic resistance perpendicular to the layers is very low.
  • a protective layer is deposited on the Al conductive layer during the lift-off process, which prevents corrosion of the aluminum.
  • the protective layer advantageously consists at least predominantly of one or more of the elements Ti, Ni, Pt and, like the adhesive layer and the conductive layer, is preferably deposited directly in succession by vapor deposition.
  • preparation of the semiconductor surface by ion bombardment is not provided.
  • An alloy step is also not provided in the method according to the invention, so that there is a particularly simple and inexpensive process for producing the contact.
  • a layer sequence that is conventional per se with a gold-containing conductive layer and a diffusion barrier layer separating it from the semiconductor material, and optionally one Adhesive layer on the semiconductor material larger than the contact structure, in particular deposited over the entire area on the semiconductor and the contact can be produced by structured etching back of this large-area layer sequence.
  • a uniform barrier layer with a reliable barrier effect against gold diffusion into the semiconductor material is achieved within the contact.
  • a further advantageous variant of the invention provides for the production of a contact with a gold-containing conductive layer and a diffusion barrier layer that before the deposition of the contact layer sequence, an insulating layer, preferably a silicon nitride layer, is deposited on the semiconductor material and above the electrode a contact window is created in this insulating layer.
  • the subsequent generation of the layer sequence of the contact can be done with the usual lift-off technique and the usual layer sequence of e.g. B. adhesive layer, barrier layer and gold-containing conductive layer, but the structure of the contact the edges of the
  • Contact window overlaps so that the edges of the contact structure, at which the layer thicknesses become thinner when deposited with an undercut mask, lie on the insulating layer, which in turn also acts as a diffusion barrier, so that no gold through the insulating layer or in the contact window through the Barrier layer diffuses to the semiconductor material.
  • FIG. 1 shows a cross section through a conventional structure.
  • FIG. 2 shows a cross section through a contact layer sequence with gold-free
  • FIG. 3 shows a cross section through a contact with a back-etched layer sequence.
  • FIG. 4 shows a cross section through an overlapping contact window
  • Contact Fig. 1 shows a cross section through a common structure of a contact, in which on a semiconductor layer 1, which, for. B. is a carbon-doped base layer of a hetero-bipolar transistor made of compound semiconductor material, in particular in GaAs technology, a metallic layer sequence of an adhesive layer 2, a diffusion barrier layer 3 and a low-resistance conductive layer 4 Gold is deposited.
  • the structuring of the metallic layer sequence 2 to 4 on the surface takes place in lift-off technology by means of a photoresist mask PL, the mask opening MO of which is widened towards the semiconductor layer 1 by an undercut.
  • Layer sequence 2 to 4 is produced by vapor deposition with a single mask. After the layer sequence has been deposited, the photoresist mask and the metal deposited thereon are detached. The deposited layers run thinner in an edge region RB that extends beyond the vertical projection of the mask opening MO, so that the diffusion-blocking effect of the barrier layer 2 in this edge region decreases or in some cases can also be omitted in the case of an irregular edge profile and gold from the guide layer 4 in can diffuse the semiconductor layer 1 and form recombination centers there, which by increased charge carrier recombination the characteristic data of the semiconductor component, for. B. deteriorate the current gain of a bipolar transistor.
  • a gold-free conductive layer 5 lies entirely or at least predominantly of aluminum and a corrosion protection layer 6 on the semiconductor layer 1 in front.
  • a diffusion barrier layer between the Al conductive layer 5 and the semiconductor layer 1 is not necessary and is preferably not present, since aluminum, which may diffusing conductor layer, there does not develop the degrading effect like gold.
  • An additional diffusion barrier layer can further significantly reduce the aluminum diffusion into the semiconductor layer by restricting it to the edge regions.
  • a high layer-parallel conductivity is ensured by the good specific conductivity of aluminum and the layer thickness of the conductive layer 5 that is large compared to the adhesive layer 2.
  • the protective layer 6 prevents the oxidation of the aluminum of the conductive layer 5 in an oxygen-containing atmosphere and thus permits unproblematic handling of the arrangement in the further manufacturing process.
  • the protective layer consists, for example, of Ti, Ni, Pt or other materials that protect against corrosion by Al.
  • the adhesive layer ensures good mechanical adhesion of the layer sequence on the semiconductor layer 1 and for a low contact resistance perpendicular to the layer plane and can, for. B. from Ti, Pt, Mo, Ni, Pd, preferably completely or at least predominantly consist of Ti.
  • the contact sketched in cross section in FIG. 3 can have, for example, the same layer sequence as in FIG. 1 and in particular comprise a diffusion barrier layer 31 and a conductive layer 41 made of gold on an adhesive layer 21.
  • the layer sequence is applied to the entire surface of the surface of the semiconductor layer (indicated by broken lines) and structured by means of a photoresist mask by etching back to the semiconductor layer. Due to the deposition of the layer sequence over the entire surface, the barrier layer 31 in the finished structured contact has a uniform layer thickness which effectively prevents gold from diffusing into the semiconductor layer 1.
  • an insulating layer 10 preferably made of silicon nitride Si 3 N, is first deposited and in this, z. B. defined by dry chemical etching with an etching mask, a contact window KF.
  • the metallic layer sequence of contact with the adhesive layer 22, diffusion barrier layer 32 and low-resistance gold conductive layer 42 is then deposited in a customary manner using lift-off technology, the structures of the photoresist mask of the lift-off process on the one hand and the etching mask on the other are matched to one another in such a way that the contact structure reliably overlaps the edges of the contact window KF, so that the edge regions of the contact with the thinner layers on the insulating layer 10 are spaced apart from the contact window.
  • a diffusion of gold to the semiconductor layer through the barrier layer 32 is then reliably prevented under the edge regions of the metallic layer sequence. Diffusion over the contact window is prevented by the uniformly thick barrier layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Für die Herstellung eines Halbleiterbauelements in einem GaAs-Verbindungs-Halbleiter-Material, insbesondere einem Heterostruktur-GaAs-Halbleiter-Material, z. B. eines Hetero-Bipolar-Transistors, werden Herstellungsverfahren beschrieben, welche bei einfachem und kostengünstigem Prozessverlauf einen niederohmigen Kontaktwiderstend mit hoher Langzeitstabilität der Bauelelmenteigenschaften gewährleisten.

Description

Bezeichnung
Verfahren zur Herstellung eines mikroelektronischen Bauelements und danach hergestelltes Bauelement
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung eines mikroelektronischen Bauelements mit wenigstens einer Elektrode in einem GaAs-Verbindungs- Halbleiter-Material sowie ein nach einem solchen Verfahren hergestelltes Bauelement.
Zur elektrischen Verbindung einer in einem Halbleitermaterial ausgebildeten Elektrode eines mikroelektronischen Bauelements mit anderen Bauelementen eines Substrats und/oder externen Schaltungsteilen wird auf dem Halbleitermaterial ein elektrisch leitender Kontakt erzeugt, welcher wenigstens eine nie- derohmige metallische Leitschicht enthält. Die Art der Ausbildung des Kontakts hängt aber stark vom Typ des Kontakts (ohmisch/schottky/kapazitiv), vom Typ des Bauelements (bipolar/FET), vom Halbleitermaterial (Si/GaN/Gas/...) und von Art (p/n) und Höhe der Dotierung ab, so dass je nach vorliegender Kombination solcher Parameter andere Ausführungen von Kontakten eingesetzt sind und die bei einer Ausführung auftretenden Vorteile im Regelfall nicht ohne weiteres auf andere Parameterkombinationen übertragbar sind
So wird z.B. von Lee et al. In „Long-term thermal stability of Ti/Al/Pt/Au ohmic contacts to n-type GaN", Applied Physics Letters Vol. 17, No. 17, 24. April 2000, S. 2364-2366 vorgeschlagen, die auf n-dotiertem GaN-Halbleitermaterial gebräuchliche Ti-Al-Au-Schichtfolge eines ohmschen Kontakts durch eine Pla- tin-Schicht zwischen AI und Au zu ergänzen, um beobachtete Degradationen in Form einer Zunahme des ohmschen Widerstands des Kontaktes zu verringern.
Die EP 0 402 061 zeigt auf einem Si-Substrat eine TiW/TiWN/TiW/Au- Schichtenfolge mit Au als niederohmiger Leitschicht und der über einem Fenster einer Passivierungsschicht abgeschiedenen TiW/TiWN/TiW-Schichtfolge als Haftschicht und Barriere. Aus „New structure for contact metallurgy" in IBM Technical Disclosure Bulletin, Vol. 25, No. 12, May 1983, S. 6398, 6399 ist es bekannt, zur Erzielung eines niedrigen Kontaktwiderstands in einem Fenster einer SiO2-Passivierungsschicht auf einen n+-dotierten Si-Halbleiterbereich einen TiN-Film aufzudampfen und in einem Hochtemperaturprozess daraus eine TiSi2-Schicht an der Grenze zum Halbleiter und darüber eine TiN-Schicht als Diffusionsbarriere zu erzeugen, auf welcher AI als Leitschicht abgeschieden wird.
Innerhalb der Gruppe der Verbindungshalbleiter ist insbesondere die Galliu- marsenid (GaAs)-Technologie aufgrund der hohen Ladungsträgerbeweglichkeit und der damit verbundenen hohen Grenzfrequenzen der Bauelemente von Bedeutung. Bauelemente dieser Art finden insbesondere Verwendung in Hochfre- quenzschaltkreisen wie z.B. Leistungsverstärkern, Oszillatoren, Mixed-Signal- Schaltkreisen sowie in diskreten Bauteilen. Typischerweise ist der Kontakt mehrlagig aufgebaut und umfaßt eine Leitschicht aus Gold (Au), welche durch eine Diffusions-Barrieren-Schicht und eine Haftschicht von dem Substrat getrennt ist. Die Leitschicht aus Gold zeichnet sich durch eine besonders hohe Leitfähigkeit aus und ist korrosionsfrei. Die Struktur des Kontakts auf der Halbleiteroberfläche kann beispielsweise in einem Lift-off-Prozeß erzeugt werden, bei welchem in einer Photolack-Schicht die Flächenstruktur des Kontakts mit Hinterschneidung freigeätzt und darauf die Schichtenfolge des Kontakts abgeschieden wird. Die Abscheidung der ge- samten Schichtenfolge von Haftschicht, Barrieren-Schicht und Leitschicht (Au) auf einer Photolack-Maske ist zum einen kostengünstig und gewährleistet zum anderen die selbstjustierte Abscheidung der aufeinanderfolgenden Schichten des Kontakts.
Die auf diese gebräuchliche Weise hergestellten GaAS-Bauelemente zeigen aber nachteiligerweise ein unbefriedigendes Langzeitverhalten mit abnehmenden Leistungsdaten, beispielsweise in Form einer mit der Zeit deutlich abnehmenden Stromverstärkung in Heterobipolartransistoren.
Aus „AuNiGe Contacts to GaAs" in IBM Technical Disciosure Bulletin, Vol. 28, No. 7, Dec. 1985, S. 3183-3184 ist ein Prozess angegeben, bei welchem aus einer auf eine GaAs-Halbleiteroberf lache aufgebrachten Ni/AuGe/Ni/Au- Schichtenfolge in einem Legierungsschritt eine Ni2GeAs/Au3Ga-Schichtenfolge mit niedrigem Kontaktwiderstand erzeugt wird.
Von Ito et al. wird in „Extremely low Resistance ohmic Contacts to n-GaAs for AlGaAs-Heterjunction Bipolar-Transistor", Japanese Journal of Applied Physics, Vol. 23, No. 8, Aug. 1984, S. L635 - L637 ein Herstellungsverfahren für einen Kontakt auf n-GaAs beschrieben, bei welchem eine AuGe/Ni/Ti/Au-Multilayer- Strukturen einer Niedertemperatur-Legierung unterzogen wird, wobei sich ein Minimum des Kontaktwiderstands bei einer Legierungstemperatur von ca. 370°C ergibt. Stareev beschriebt in „Formation of extremely low resistance Ti/Pt/Au ohmic contacts to p-GaAs", Appl. Phys. Lett. (62(22), 31 May 1993, S. 2801-2803 ein Verfahren zur Herstellung eines Kontakts auf p-GaAs, bei welchem in einem Vorbereitungsschritt die GaAs-Oberfläche durch lonenbeschuss gereinigt und danach einem Ausheilungs-Temperaturschritt unterzogen wird, bevor anschließend eine Ti/Pt/Au-Schichtenfolge als nichtlegierter Kontakt abgeschieden wird.
Der Erfindung liegt die Aufgabe zugrunde, ein Herstellungsverfahren für mikroelektronische Bauelemente mit wenigstens einer Elektrode in einem GaAs- Verbindungs-Halbleiter-Material, mit welchem auf kostengünstige Weise Bauelemente mit langzeitstabilen Eigenschaften herstellbar sind, sowie ein nach einem solchen Verfahren hergestelltes Bauelement anzugeben.
Erfindungsgemäße Lösungen sind in den unabhängigen Ansprüchen beschrie- ben. Die abhängigen Ansprüche enthalten vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung.
Der Aufbau der Leitschicht in einem Kontakt auf GaAs-Verbindungs-Halbleiter- Material vollständig oder zumindest überwiegend aus Aluminium anstelle des für GaAs-Kontakte üblichen Au als Leitschichtmaterial ermöglicht eine einfache und kostengünstige Herstellung eines niederohmigen Kontakts mit guter Langzeitstabilität der Bauelementeigenschaften, insbesondere der Stromverstärkung eines Hetero-Bipolar-Transistors (HBT). Der Kontakt kann dabei günstigerweise in einem Lift-off-Prozess hergestellt werden.
Die Erfindung macht sich dabei die Beobachtung zunutze, dass bei Abscheiden eines Kontakts mit z.B. einer Au-Leitschicht und einer darunterliegenden Barriereschicht über einen Lift-off-Prozess die Schichtdicken der einzelnen Schichten des Kontakts zu den Rändern des Kontakts hin bedingt durch die Abscheidung in die mit Hinterschneidung strukturierte Photolackmaske des Lift-off-Prozesses dünner werden und bei den gebräuchlichen Kontakten auf GaAs dann die Dif- fusions-Sperrwirkung der Barrieren-Schicht an den Rändern des Kontakts abnimmt und aus der niederohmig leitfähigen Leitschicht Gold in den Elektroden- bereich des Halbleitersubstrats eindiffundieren kann. Hierbei kann durch Eindiffundieren von Gold in z.B. einen mit Kohlenstoff dotierten Elektrodenbereich eines GaAs-Halbleitermaterials wie beispielsweise die Basiselektrode eines Hetero-Bipolar-Transistors in GaAs-Technologie durch das als Störstelle im Halbleiter wirkende Gold eine vermehrte Ladungsträger-Rekombination in der Basiselektrode auftreten, wodurch die Stromverstärkung verringert wird.
Eine solche Degradation der Bauelementeigenschaften tritt bei Verwendung von Aluminium als Leitschichtmaterial in einem Kontakt auf einer Elektrode in einem GaAs-Verbindungs-Halbleiter-Material nicht auf. Die Erfindung ist daher auch besonders vorteilhaft für die Herstellung eines Basiskontakts eines Hetero-Bipolar-Transistors in GaAs-Technologie. Das Bauelement kann Teil einer komplexeren monolithisch integriertem Schaltung sein.
Als Leitschicht des Kontakts sei hierbei wie beim Stand der Technik diejenige Schicht der Schichtenfolge des Kontakts verstanden, welche durch geringen spezifischen Widerstand des Materials und relativ große Schichtdicke den Hauptbeitrag zum Leitwert des Kontakts für die Stromführung parallel zur Substratoberfläche liefert. Eine eventuell stattfindende Diffusion von Aluminium aus der Leitschicht in die Elektrode hat nicht die Wirkung der Bildung von Rekombi- nationszentren wie dies z. B. bei Gold in einer mit Kohlenstoff dotierten GaAs- Elektrode der Fall ist. Die Diffusions-Barrieren-Schicht kann daher bei einer bevorzugten Ausführung ganz entfallen. Eine Haftschicht, welche zum einen mechanische Spannungen zwischen Halbleitermaterial und Leitschicht ausgleichen und die Schichtenhaftung auf dem Halbleitermaterial gewährleisten kann und zum anderen vor allem Kontaktpotentialbarrieren zwischen den Materialien von Leitschicht und Substrat reduziert, kann in an sich üblicher Weise als erste Schicht des Kontakts auf dem Substrat abgeschieden werden. Die Haftschicht besteht vorteilhafterweise überwiegend aus einem oder mehreren der Elemente Ti, Pt, Mo, Ni, Pd, vorzugsweise überwiegend oder vollständig aus Ti. Die Dicke der Haftschicht ist gering gegen die Dicke der Leitschicht und beträgt vorzugsweise nicht mehr als 50nm. Die Dicke der Leitschicht beträgt vorteilhafterweise wenigstens das 5-fache der Dicke der Haftschicht. Durch die geringe Schichtdicke der Haftbschicht zwischen Leitschicht und Halbleitermaterial und die Verwendung von Ti ist der ohmsche Widerstand senkrecht zu den Schichten sehr gering.
Vorteilhafterweise wird noch im Verlauf des Lift-off-Prozesses auf der Al- Leitschicht eine Schutzschicht abgeschieden, welche eine Korrosion des Alu- miniums verhindert. Die Schutzschicht besteht vorteilhafterweise zumindest überwiegend aus einem oder mehreren der Elemente Ti, Ni, Pt und wird bevorzugt wie die Haftschicht und die Leitschicht durch Aufdampfen insbesondere unmittelbar nacheinander abgeschieden. Insbesondere bei der bevorzugten Verwendung von Ti als Haftschichtmaterial ist ist eine Vorbereitung der Halb- leiter-Oberfläche durch lonenbeschuss nicht vorgesehen. Auch ein Legierungsschritt ist bei dem erfindungsgemäßen Verfahren nicht vorgesehen, so dass ein besonders einfacher und kostengünstiger Prozess zur Herstellung des Kontakts gegeben ist.
Wenn, z. B. aufgrund von technischen Randbedingungen ein Verzicht auf Gold in der Leitschicht nicht möglich ist, so kann gemäß einer vorteilhaften Variante der Erfindung eine an sich gebräuchliche Schichtfolge mit einer Gold enthaltenden Leitschicht und einer diese vom Halbleitermaterial trennenden Diffusions-Barrieren-Schicht sowie ggf. einer Haftschicht auf dem Halbleitermaterial großflächiger als die Kontaktstruktur, insbesondere ganzflächig auf dem Halbleiter abgeschieden und der Kontakt durch strukturiertes Rückätzen dieser großflächigen Schichtenfolge hergestellt werden. Dabei wird innerhalb des Kontakts eine gleichmäßige Barrieren-Schicht mit zuverlässiger Sperrwirkung gegen eine Diffusion von Gold in das Halbleitermaterial erzielt.
Eine weitere vorteilhafte Variante der Erfindung sieht für die Herstellung eines Kontakts mit einer Gold enthaltenden Leitschicht und einer Diffusions- Barrieren-Schicht vor, daß vor dem Abscheiden der Kontakt-Schichtenfolge eine Isolierschicht, vorzugsweise eine Siliziumnitrid-Schicht auf dem Halbleitermaterial abgeschieden und über der Elektrode ein Kontaktfenster in dieser Isolierschicht erzeugt wird. Die anschließende Erzeugung der Schichtenfolge des Kontakts kann mit gebräuchlicher Lift-off-Technik und gebräuchlicher Schichtenfolge von z. B. Haftschicht, Barrieren-Schicht und Gold enthaltender Leitschicht erfolgen, wobei aber die Struktur des Kontakts die Ränder des
Kontaktfensters überlappt, so daß die Ränder der Kontaktstruktur, an denen die Schichtdicken bei der Abscheidung mit hinterschnittener Maske prinzipbedingt dünner werden, auf der Isolierschicht liegen, welche ihrerseits gleichfalls als Diffusionssperre wirkt, so daß kein Gold durch die Isolierschicht oder im Kon- taktfenster durch die Barrieren-Schicht zum Halbleitermaterial diffundiert.
Die Erfindung ist nachfolgend an vorteilhaften Ausführungsbeispielen unter Bezugnahme auf die Abbildungen noch eingehend veranschaulicht. Dabei zeigt Fig. 1 einen Querschnitt durch einen herkömmlichen Aufbau Fig. 2 einen Querschnitt durch eine Kontakt-Schichtenfolge mit goldfreier
Leitschicht Fig. 3 einen Querschnitt durch einen Kontakt mit rückgeätzter Schichtenfolge Fig. 4 einen Querschnitt durch einen ein Kontaktfenster überlappenden
Kontakt Die Fig. 1 zeigt einen Querschnitt durch einen gebräuchlichen Aufbau eines Kontakts, bei welchem auf eine Halbleiterschicht 1 , welche z. B. eine mit Kohlenstoff dotierte Basisschicht eines Hetero-Bipolar-Transistors aus Verbin- dungs-Halbleiter-Material, insbesondere in GaAs-Technologie ist, eine metallische Schichtenfolge aus einer Haftschicht 2, einer Diffusions-Barrieren-Schicht 3 und einer niederohmigen Leitschicht 4 aus Gold abgeschieden ist. Die Strukturierung der metallischen Schichtenfolge 2 bis 4 auf der Oberfläche erfolgt in Lift-off-Technik mittels einer Photolackmaske PL, deren Maskenöffnung MO durch einen Hinterschnitt zur Halbleiterschicht 1 hin erweitert ist. Die
Schichtenfolge 2 bis 4 wird durch Aufdampfen mit einer einzigen Maske hergestellt. Nach Abscheiden der Schichtenfolge wird die Photolackmaske und das auf dieser abgeschiedene Metall abgelöst. Die abgeschiedenen Schichten laufen in einem über die Vertikalprojektion der Maskenöffnung MO hinausgehen- den Randbereich RB dünner werdend aus, so daß die diffusionssperrende Wirkung der Barrieren-Schicht 2 in diesem Randbereich zurückgeht oder bei unregelmäßigem Randverlauf stellenweise auch entfallen kann und Gold aus der Leitschicht 4 in die Halbleiterschicht 1 diffundieren und dort Rekombinationszentren bilden kann, welche durch vermehrte Ladungsträgerrekombination die Kenndaten des Halbleiterbauelements, z. B. die Stromverstärkung eines Bipolartransistors verschlechtern.
Bei dem in Fig. 2 skizzierten, gleichfalls in der zuverlässigen und kostengünstigen Lift-off-Technik hergestellten Kontakt liegt auf der Halbleiterschicht 1 eine andere Schichtenfolge mit einer Haftschicht 2, einer goldfreien Leitschicht 5 vollständig oder zumindest überwiegend aus Aluminium und einer Korrosions- Schutzschicht 6 vor. Eine Diffusions-Barrieren-Schicht zwischen der Al- Leitschicht 5 und der Halbleiterschicht 1 ist nicht erforderlich und vorzugsweise nicht vorhanden, da Aluminium, welches evtl. in geringem Umfang in die Halb- leiterschicht eindiffundieren kann, dort nicht die degradierende Wirkung wie Gold entfaltet. Eine zusätzliche Diffusions-Barrieren-Schicht kann die Aluminium-Diffusion in die Halbleiterschicht durch Beschränkung auf die Randbereiche weiter deutlich reduzieren. Ein hoher schichtparaller Leitwert ist durch die gute spezifische Leitfähigkeit von Aluminium und der gegenüber der Haftschicht 2 großen Schichtdicke der Leitschicht 5 gewährleistet. Die Schutzschicht 6 verhindert die Oxidation des Aluminiums der Leitschicht 5 in sauerstoffhaltiger Atmosphäre und erlaubt damit eine unproblematische Handhabung der Anordnung im weiteren Herstellungsprozeß. Die Schutzschicht besteht beispielsweise aus Ti, Ni, Pt oder anderen für AI korrosionsschützenden Materialien. Die Haftschicht sorgt für eine gute mechanische Haftung der Schichtenfolge auf der Halbleiterschicht 1 und für einen geringen Kontaktwiderstand senkrecht zur Schichtenebene und kann z. B. aus Ti, Pt, Mo, Ni, Pd, vorzugsweise vollständig oder zumindest überwiegend aus Ti bestehen.
Der in Fig. 3 im Querschnitt skizzierte Kontakt kann beispielsweise dieselbe Schichtenfolge wie in Fig. 1 aufweisen und insbesondere auf einer Haftschicht 21 eine Diffusions-Barrieren-Schicht 31 und eine aus Gold bestehende Leitschicht 41 umfassen. Die Schichtenfolge wird ganzflächig auf die Oberfläche der Halbleiterschicht aufgebracht (mit unterbrochenen Linien angedeutet) und mittels einer Photolackmaske durch Rückätzen bis zur Halbleiterschicht strukturiert. Durch die ganzflächige Abscheidung der Schichtenfolge weist die Barrieren-Schicht 31 in dem fertig strukturierten Kontakt eine gleichmäßige, eine Diffusion von Gold in die Halbleiterschicht 1 wirkungsvoll unterbindende Schicht- dicke auf.
Zur Herstellung des in Fig. 4 skizzierten, wiederum eine Leitschicht 42 aus Gold umfassenden Kontakts auf der Halbleiterschicht 1 wird zuerst eine Isolierschicht 10, vorzugsweise aus Siliziumnitrid Si3N , abgeschieden und in dieser, z. B. durch trockenchemische Ätzung mit einer Ätzmaske, ein Kontaktfenster KF definiert. Anschließend wird in gebräuchlicher Weise in Lift-off-Technik die metallische Schichtenfolge des Kontakts mit Haftschicht 22, Diffusions- Barrieren-Schicht 32 und niederohmiger Gold-Leitschicht 42 abgeschieden, wobei die Strukturen der Photolackmaske des Lift-off-Prozesses einerseits und der Ätzmaske andererseits so aufeinander abgestimmt sind, daß die Kontaktstruktur die Ränder des Kontaktfensters KF zuverlässig überlappt, so daß die Randbereiche des Kontakts mit den dünner auslaufenden Schichten auf der Isolierschicht 10 vom Kontaktfenster beabstandet liegen. Unter den Randberei- chen der metallischen Schichtenfolge wird dann eine Diffusion von Gold zur Halbleiterschicht durch die Barrieren-Schicht 32 zuverlässig unterbunden. Über dem Kontaktfenster ist die Diffusion durch die gleichmäßig dicke Barrieren- Schicht verhindert.
Die vorstehend und die in den Ansprüchen angegebenen sowie die den Abbildungen entnehmbaren Merkmale sind sowohl einzeln als auch in verschiedener Kombination vorteilhaft realisierbar. Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt, sondern im Rahmen fachmännischen Könnens in mancherlei Weise abwandelbar.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines mikroelektronischen Bauelements mit einer Elektrode in einem GaAs-Verbindungs-Halbleiter-Material und wenigstens einem niederohmigen metallischen Kontakt auf dem Halbleiter-Material zu der Elektrode, wobei der Kontakt aus mehreren verschiedenen Schichten mit einer niederohmigen Leitschicht besteht, wobei als nieder-ohmige Leitschicht eine Schicht abgeschieden wird, welche zumindest überwiegend, vorzugsweise vollständig aus Aluminium besteht.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Kontakt in einem Lift-off-Prozess erzeugt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß über der Leitschicht eine Oxidations-Schutzschicht abgeschieden wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Schutzschicht zumindest überwiegend aus einem oder mehreren der Elemente Ti, Ni, Pt besteht.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zwischen Leitschicht und Substrat keine Diffusions-Barrieren-Schicht abgeschieden wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als erste Schicht eine Haftschicht abgeschieden wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Haftschicht zumindest überwiegend aus einem oder mehreren der Elemente Ti, Pt, Mo, Ni, Pd besteht.
8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass die Schichten der Schichtenfolge von Haftschicht, Leitschicht und Schutzschicht unmittelbar nacheinander aufgebracht, insbesondere aufgedampft werden.
9. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Leitschicht und ggf. die Haftschicht und die Schutzschicht keinem Legie- rungsprozess unterzogen werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Halbleiter-Material ein GaAs-Material ist.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Bauelement ein Heterobipolartransistor ist.
12. Verfahren zur Herstellung eines mikroelektronischen Bauelements mit einer Elektrode in einem Verbindungs-Halbleiter-Material und wenigstens einem niederohmigen metallischen Kontakt auf dem Halbleiter-Material zu der Elektrode, wobei der Kontakt mittels eines Lift-off-Prozesses erzeugt wird und eine Gold enthaltende niederohmige Leitschicht sowie eine zwischen der Leitschicht und dem Halbleiter-Material liegende Diffusions-Barrieren-
Schicht umfaßt, dadurch gekennzeichnet, daß vor dem Abscheiden der Schichtenfolge des Kontakts auf dem Halbleiter-Material eine Isolierschicht abgeschieden und über der Elektrode ein Fenster in der Isolierschicht er- zeugt wird und daß der Kontakt über das Fenster hinaus sich bis über die Isolierschicht erstreckt.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß als Isolier- schicht ein Nitrid aufgebracht wird.
14. Verfahren zur Herstellung eines mikroelektronischen Bauelements mit einer Elektrode in einem Verbindungs-Halbleiter-Material und einem niederohmigen metallischen Kontakt auf dem Halbleiter-Material zu der Elektrode, wo- bei der Kontakt eine Gold enthaltende Leitschicht sowie eine zwischen der
Leitschicht und dem Halbleiter-Material liegende Diffusions-Barrieren-Schicht umfaßt, dadurch gekennzeichnet, daß die Schichtenfolge des Kontakts großflächig abgeschieden und der Kontakt durch strukturiertes Rückätzen der Schichtenfolge erzeugt wird.
15. Mikroelektronisches Bauelement, welches nach einem der Ansprüche 1 bis 1 1 hergestellt ist und auf einem GaAs-Verbindungshalbleiter ein Kontakt mit einer Haftschicht, eine Leitschicht und eine Schutzschicht aufweist, wobei die Leitschicht vollständig oder zumindest überwiegend aus Aluminium be- steht.
16. Bauelement nach Anspruch 15, dadurch gekennzeichnet, dass die Schichtdicken von Haftschicht, Leitschicht und Schutzschicht zu den Rändern hin abnehmen.
PCT/EP2001/014955 2000-12-22 2001-12-18 Verfahren zur herstellung eines mikroelektronischen bauelements und danach hergestelltes bauelement WO2002052626A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01988040A EP1346403A2 (de) 2000-12-22 2001-12-18 Verfahren zur herstellung eines mikroelektronischen bauelements und danach hergestelltes bauelement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10064479A DE10064479A1 (de) 2000-12-22 2000-12-22 Verfahren zur Herstellung eines mikroelektronischen Bauelements
DE10064479.1 2000-12-22

Publications (2)

Publication Number Publication Date
WO2002052626A2 true WO2002052626A2 (de) 2002-07-04
WO2002052626A3 WO2002052626A3 (de) 2003-02-13

Family

ID=7668595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/014955 WO2002052626A2 (de) 2000-12-22 2001-12-18 Verfahren zur herstellung eines mikroelektronischen bauelements und danach hergestelltes bauelement

Country Status (5)

Country Link
EP (1) EP1346403A2 (de)
CN (1) CN1222984C (de)
DE (1) DE10064479A1 (de)
TW (1) TW550715B (de)
WO (1) WO2002052626A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106553992B (zh) * 2015-09-25 2018-06-29 中芯国际集成电路制造(上海)有限公司 金属电极结构的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004057A1 (en) 1987-10-20 1989-05-05 Bell Communications Research, Inc. Epitaxial intermetallic contact for compound semiconductors
US5777389A (en) 1995-07-27 1998-07-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including ohmic contact to-n-type GaAs

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2543518A1 (de) * 1975-09-30 1977-04-07 Licentia Gmbh Halbleiterbauelement mit einem mehrschichtigen ohmschen anschlusskontakt
JPS57183071A (en) * 1981-05-06 1982-11-11 Nec Corp Formation of recess type fine multi-layer gate electrode
JPS60123026A (ja) * 1983-12-08 1985-07-01 Toshiba Corp 半導体装置の製造方法
JPH0722141B2 (ja) * 1984-03-07 1995-03-08 住友電気工業株式会社 半導体素子の製造方法
JPS6298768A (ja) * 1985-10-25 1987-05-08 Nec Corp 半導体素子用電極
US4994892A (en) * 1986-10-09 1991-02-19 Mcdonnell Douglas Corporation Aluminum germanium ohmic contacts to gallium arsenide
US5849630A (en) * 1989-03-29 1998-12-15 Vitesse Semiconductor Corporation Process for forming ohmic contact for III-V semiconductor devices
JP2661333B2 (ja) * 1989-06-05 1997-10-08 モトローラ・インコーポレーテツド 金属被覆化プロセス処理方法
FR2697945B1 (fr) * 1992-11-06 1995-01-06 Thomson Csf Procédé de gravure d'une hétérostructure de matériaux du groupe III-V.
JP2606581B2 (ja) * 1994-05-18 1997-05-07 日本電気株式会社 電界効果トランジスタ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004057A1 (en) 1987-10-20 1989-05-05 Bell Communications Research, Inc. Epitaxial intermetallic contact for compound semiconductors
US5777389A (en) 1995-07-27 1998-07-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including ohmic contact to-n-type GaAs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Formation of extremely low resistance Ti/Pt/Au ohmic contacts to p-GaAs", APPL. PHYS. LETT., vol. 62, no. 22, 31 May 1993 (1993-05-31), pages 2801 - 2803
See also references of EP1346403A2

Also Published As

Publication number Publication date
CN1222984C (zh) 2005-10-12
EP1346403A2 (de) 2003-09-24
WO2002052626A3 (de) 2003-02-13
DE10064479A1 (de) 2002-07-04
TW550715B (en) 2003-09-01
CN1481579A (zh) 2004-03-10

Similar Documents

Publication Publication Date Title
DE112017003754B4 (de) Halbleitervorrichtung und verfahren zum herstellen einer halbleitervorrichtung
EP2015372B1 (de) Halbleiterchip und Verfahren zur Herstellung eines Halbleiterchips
DE112018007009T5 (de) Halbleitervorrichtung und Herstellungsverfahren für diese
DE102014115174B4 (de) Halbleitervorrichtung mit einer korrosionsbeständigen metallisierung und verfahren zu ihrer herstellung
DE2436449C3 (de) Schottky-Diode sowie Verfahren zu ihrer Herstellung
DE10048196A1 (de) Verbindungshalbleiter-Bauteil und Verfahren zum Herstellen desselben
US6809352B2 (en) Palladium silicide (PdSi) schottky electrode for gallium nitride semiconductor devices
DE10203801A1 (de) Halbleiterbauelement und Verfahren zu dessen Herstellung
EP1794816A2 (de) Verfahren zur herstellung eines d]nnfilmhalbleiterchips
EP1658643B1 (de) Strahlungemittierendes halbleiterbauelement
DE102016104446B4 (de) Kontakt mit geringem Widerstand für Halbleiter-Einheiten
WO2002052626A2 (de) Verfahren zur herstellung eines mikroelektronischen bauelements und danach hergestelltes bauelement
EP1835528B1 (de) Verfahren zur Herstellung eines Halbleiterbauelements mit einer metallischen Steuerelektrode und Halbleiterbauelement
DE102016122399A1 (de) Gate-Struktur und Verfahren zu dessen Herstellung
DE1961492B2 (de) Auf druck ansprechendes halbleiterbauelement und verfahren zum herstellen
DE19954319C1 (de) Verfahren zum Herstellen von mehrschichtigen Kontaktelektroden für Verbindungshalbeiter und Anordnung
DE102014111482A1 (de) Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
JP2630208B2 (ja) オーミック電極
JPH05218047A (ja) 半導体装置の製造方法
DE10308322B4 (de) Verfahren zum Herstellen eines elektrischen Kontaktbereiches auf einer Halbleiterschicht und Bauelement mit derartigem Kontaktbereich
DE1236661B (de) Halbleiteranordnung mit einem durch Einlegieren einer Metallpille erzeugten pn-UEbergang
JP2889240B2 (ja) 化合物半導体装置及びその製造方法
DE19647618C2 (de) Gate-Metallisierung auf Feldeffekttransistoren
EP0292015A1 (de) Leistungshalbleiterbauelement
DE19847368A1 (de) Bipolartransistor mit Heteroübergang und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

REEP Request for entry into the european phase

Ref document number: 2001988040

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001988040

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018208916

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001988040

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP