WO2002040569A1 - Polycarbonate aromatique, son procede de production et composition contenant celui-ci - Google Patents

Polycarbonate aromatique, son procede de production et composition contenant celui-ci Download PDF

Info

Publication number
WO2002040569A1
WO2002040569A1 PCT/JP2001/009874 JP0109874W WO0240569A1 WO 2002040569 A1 WO2002040569 A1 WO 2002040569A1 JP 0109874 W JP0109874 W JP 0109874W WO 0240569 A1 WO0240569 A1 WO 0240569A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
aromatic
stirring
polycarbonate
compound
Prior art date
Application number
PCT/JP2001/009874
Other languages
English (en)
French (fr)
Inventor
Toru Sawaki
Masumi Hirata
Katsushi Sasaki
Yoshiki Matsuoka
Masashi Shimonaru
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to EP01996572A priority Critical patent/EP1275677A4/en
Priority to JP2002543573A priority patent/JPWO2002040569A1/ja
Publication of WO2002040569A1 publication Critical patent/WO2002040569A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/205General preparatory processes characterised by the apparatus used

Definitions

  • the present invention relates to an aromatic polysiloxane, a method for producing the same, and a composition containing the same.
  • the present invention relates to an aromatic polycarbonate, a method for producing the same, and a composition containing the same. More specifically, a high-quality aromatic polycarbonate component with excellent hue, low contamination of the mold when molding is performed, continuous molding for a long period of time, precision molding, and less clouding of the molded product.
  • the present invention relates to a production method and a composition containing the same.
  • polycarbonates are prepared by directly polymerizing an aromatic dihydroxy compound such as bisphenol A and phosgene in the presence of an organic solvent such as methylene chloride (interfacial method), or an aromatic dihydroxy compound and an aromatic carbonate. It is manufactured by a method of transesterification with a polyester (melt polycondensation method).
  • the melt polycondensation method is advantageous in environmental health because it has the advantage that polycarbonate can be produced at a lower cost than the interface method and does not use toxic substances such as phosgene.
  • the melt polymerization method has a drawback that the polymerization rate is slower than the interface method and the polymerization must be performed at a high temperature, so that the quality of the polycarbonate obtained is inferior.
  • This reaction has the highest reaction rate when the amount of phenyl end groups is substantially equal to the amount of OH end groups, and the polymerization time for producing a polymer having a desired degree of polymerization is short.
  • the ratio of the amount of phenyl end groups to the amount of OH end groups is As the value deviates from 1, the reaction rate decreases and the polymerization time increases. Since the melt polymerization must be performed at a high temperature exceeding 250, the polymerization time is closely linked to the thermal degradation of the polymer.If the polymerization time is shortened, the hue of the obtained polycarbonate improves and the thermal degradation is reduced. The resulting foreign matter amount is also reduced.
  • the polycarbonate has a smaller number of OH terminals.
  • polymerization is carried out in the presence of a phenyl terminal group substantially equal to the amount of ⁇ H terminal group, and approximately 50% of all terminals are ⁇ H terminals, and a polyponate having a desired polymerization degree is used.
  • a method has been proposed to block and reduce the OH terminal of the polymer using a terminal blocking agent.
  • this method not only has a drawback of using an expensive sealing agent, but also may have a problem that the polymer is deteriorated in the process of end capping or the degree of polymerization adjusted by polymerization is changed.
  • an aromatic dihydroxy compound is used in an amount of twice as much as that of the aromatic dihydroxy compound.
  • a two-step reaction is also known in which an oligomer in which an aromatic carbonate diester is condensed by transesterification is ester-exchanged in the second step, and polymerization is performed while diaryl carbonate (aromatic carbonate diester) is by-produced. I have. According to this method, it is possible to obtain a polysaccharide component having an extremely low H-terminal content.
  • the transesterification reaction involving the elimination of diaryl carbonate is less likely to occur than the transesterification reaction involving the elimination of an aromatic monohydroxy compound, and thus requires a higher temperature and a longer polymerization time.
  • the catalyst to be used requires a strong basic catalyst such as lithium aluminum hydride / tetraethyl aluminum borohydride.
  • the quality, such as hue and foreign matter content, is inferior to polycarbonate obtained by an ester exchange reaction accompanied by elimination of an aromatic monohydroxy compound.
  • JP-B-47-14742 and JP-B-47-14743 disclose an initial condensate by an ester exchange reaction between an aromatic dihydroxy compound and an aromatic carbonic acid diester. This is post-condensed and reacted in the presence of a quaternary ammonium compound to promote the elimination reaction of the aromatic monohydroxy compound and diaryl carbonate in the post-condensation reaction, thereby shortening the post-polycondensation time.
  • a method for producing high-quality polycarbonate is disclosed.
  • the ratio of the aromatic carbonate diester to the aromatic dihydroxy compound can be up to 1.5 times the molar ratio. It is described that it can be increased, and that it is effective to add a quaternary ammonium compound in a post-polymerization stage.
  • melt polymerization of aromatic dihydroxy compound and aromatic diester carbonate As a result, it is difficult to produce a polycarbonate having a low terminal OH content and excellent quality in terms of hue and foreign matter content.
  • the terminal group content decreases with an increase in the degree of polymerization, so that transesterification becomes more difficult to occur, resulting in a low terminal OH group content and excellent hue. It is even more difficult to obtain polypolycarbonate with quality such as low foreign matter content.
  • Japanese Unexamined Patent Publication No. Hei 9-2787887 discloses that in the first step of producing an aromatic poly-polyponate by transesterification of diphenol and dicarboxylic acid sulfonate in the presence of a catalyst, The mixture is heated to 100 Pa to normal pressure at 290 to distill off the resulting monophenol and to form an oligocarbonate having a ⁇ H end group content of from 10 to 35 mol%, then Disclosed is a method for producing poly-polyponate by polycondensation in a self-cleaning high-viscosity reactor for 10 to 60 minutes under 240 to 340, 1 to 50, OOOPa in the second stage Have been. However, in this method, the polymerization proceeds while an aromatic monohydroxy compound is produced as a by-product, and there is no description of a reaction involving the elimination of dialkyl carbonyl.
  • Polycarbonate has excellent optical properties, moldability, and mechanical properties, and is widely used for applications such as recording material substrates.
  • an object of the present invention is obtained by performing a melt polycondensation reaction between an aromatic dihydroxy compound and an aromatic carbonic ester, has a low terminal OH group content, is excellent in hue, has a low foreign matter content, and It is an object of the present invention to provide a method for producing a polycarbonate having an unprecedented superior quality with less mold contamination, excellent continuous precision moldability, and less generation of a cloud.
  • Another object of the present invention is to provide an ester exchange reaction and elimination of an aromatic monohydroxy compound when melt-polymerizing an aromatic dihydroxy compound and an aromatic carbonate diester in the presence of a catalyst.
  • the transesterification reaction accompanied by elimination of a certain amount is caused at a fixed rate, resulting in a low H-terminal content, excellent hue and thermal stability, low foreign matter content, low mold contamination, and cloud
  • An object of the present invention is to provide a method for producing a high-molecular-weight polycarbonate which is unlikely to generate water.
  • Still another object of the present invention is to provide an aromatic polycarbonate having the above various excellent properties, which is produced by the method of the present invention.
  • Still another object of the present invention is to provide a composition comprising the aromatic polycarbonate having the above various excellent properties of the present invention and other specific components, and utilizing the excellent properties of the aromatic polycarbonate. To provide.
  • An aromatic dihydroxy compound and an aromatic carbonic acid diester are subjected to a transesterification reaction to have a viscosity average molecular weight of at least 4,000 and a terminal hydroxyl group concentration of 15 to 45 mol% of all terminal groups.
  • a first aromatic polycarbonate which is (2) The first aromatic polycarbonate is subjected to a polymerization involving a first transesterification reaction for removing an aromatic monohydroxy compound and a second transesterification reaction for removing an aromatic carbonic diester.
  • the viscosity average molecular weight is larger than the viscosity average molecular weight of the first aromatic polycarbonate and 10, so that the molar ratio of the aromatic carbonic diester to the molar ratio of the aromatic carbonate diester is 1: 0.1 to 1.
  • the concentration of terminal hydroxyl groups produced by the above method of the present invention is 35 mol% or less of all terminal groups, and the content of particles of 0.5 m or more is 50,000 particles 8 or less, Having a viscosity average molecular weight of 10,000 or more,
  • the aromatic polycarbonate produced by the above method of the present invention and a composition comprising at least one selected from the group consisting of an ester of an aliphatic alcohol and an aliphatic carboxylic acid, an inorganic filler, and a thermoplastic resin other than the polycarbonate. Achieved by things.
  • FIG. 1 is a sectional view of a single-shaft reactor.
  • FIG. 2 is an AA sectional view of FIG.
  • FIG. 3 is a diagram showing an example of a support blade with a tail wing in FIG.
  • FIG. 4 is a perspective view of a twin-screw reactor.
  • FIG. 5 is a plan cross-sectional view of the twin-screw reactor.
  • FIG. 6 is a cross-sectional view of a twin-screw reactor.
  • FIG. 7 is a detailed view of the stirring unit used for the A region in FIG.
  • FIG. 8 is an assembly diagram of the disruption unit used in the area B in FIG. 5 and FIG.
  • FIG. 9 is a diagram showing a stirring unit used for the region B in FIG. 5 and FIG.
  • FIG. 10 is a diagram showing a stirring unit used for the region B in FIG.
  • FIG. 11 is a detailed view of the stirring unit used in the area A in FIG.
  • FIG. 12 is a cross-sectional view of the twin-screw reactor.
  • FIG. 13 is a sectional view of a twin-screw reactor.
  • FIG. 14 is an explanatory diagram for calculating the surface area of the single-shaft reactor.
  • FIG. 15 is a detailed view of the vent of the twin-screw reactor.
  • the aromatic dihydroxy compound and the aromatic carbonic acid diester are subjected to an ester exchange reaction to have a viscosity average molecular weight of at least 4,000 and a terminal hydroxyl group concentration of 15 to 4 of all terminal groups. 5 mol% of the first aromatic polycarbonate is produced.
  • aromatic dihydroxy compound examples include bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 4-bis (4-hydroxyphenyl) heptane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, Bis (4-hydroxyphenyl) oxide, bis (3,5-dichloro-4-hydroxyphenyl) oxide, p, p'-dihydroxydiphenyl, 3,3, dichloro-1,4,4, dihydroxy Diphenyl, bis (hydroxyphenyl) sulfone, resorcinol, hydroquinone, 1,4-dihydroxy-1,2,5-dichlorobenzene, 1,4 —Dihydroxy-1-methylbenzene, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide and the like are used. Of these
  • aromatic carbonic diester examples include diphenyl carbonate, ditri-carbonyl carbonate, bis (chlorophenyl) carbonate, and m-cresyl carbonate. , Dinaphthyl carbonate, bis (diphenyl) carbonate and the like are used. Of these, diphenyl carbonate is particularly preferred.
  • the polycarbonate used in the present invention may be, if necessary, a copolymer component such as a fatty acid such as ethylene glycol, 1,4-butanediol, 1,4-cyclohexane dimethanol, and 1,10-decanediol.
  • a copolymer component such as a fatty acid such as ethylene glycol, 1,4-butanediol, 1,4-cyclohexane dimethanol, and 1,10-decanediol.
  • Group diols for example, dicarboxylic acid components such as succinic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, cyclohexanecarboxylic acid, and terephthalic acid; and, for example, lactic acid And oxyacid components such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid.
  • an alkali metal compound an alkaline earth metal compound, and a nitrogen-containing basic compound can be used as the transesterification catalyst used for the melt polymerization.
  • Alkali metal compounds include, for example, hydroxides, bicarbonates, carbonates, acetates, nitrates, nitrites, sulfites, cyanates, thiocyanates, stearates, hydrogenates of alkali metals Boron salts, benzoates, hydrogen phosphates, bisphenols, phenol salts, and the like.
  • Specific examples include ⁇ sodium oxide, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, Sodium nitrate, potassium nitrate, lithium nitrate, sodium nitrite, potassium nitrite, lithium nitrite, sodium sulfite, potassium sulfite, lithium sulfite, sodium cyanate, potassium cyanate, lithium cyanate, sodium thiocyanate, potassium thiocyanate, Lithium thiocyanate, sodium stearate, potassium stearate, lithium stearate, sodium borohydride, potassium borohydride, lithium borohydride, phenylated sodium borate Sodium, sodium benzoate, potassium benzoate, lithium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, dilithium hydrogen phosphate, disodium salt of bisphenol ⁇ , di
  • alkaline earth metal compounds examples include hydroxides, bicarbonates, carbonates, acetates, nitrates, nitrites, sulfites, cyanates, and thiocyanates of alkaline earth metal compounds. , Stearates, benzoates, bisphenols, salts of phenols and the like. Specific examples of these include calcium hydroxide, barium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate, barium carbonate, strontium carbonate, calcium acetate, barium acetate, and acetic acid.
  • the alkali metal compound of the catalyst may be (i) an alkali metal salt of an ate complex of an element of Group 14 of the Periodic Table or (ii) an oxo acid of an element of Group 14 of the Periodic Table.
  • the elements of the 14th group of the periodic table refer to gay, germanium, and tin.
  • alkali metal salt of the ate complex of Group 14 element of the periodic table in (i) those described in Japanese Patent Application Laid-Open No. Hei 7-2688091 are mentioned.
  • alkali metal salt of oxo acid of Group 14 element of the periodic table in the above (ii) examples include alkali metal salt of gay acid (silicic acid), alkali metal salt of stannic acid (stannic acid), Preferred are an alkali metal salt of germanium ( ⁇ ) acid (germanic acid) and an alkali metal salt of germanium (IV) acid (germanic acid).
  • alkali metal salt of a keic acid include an acidic or neutral alkali metal salt of monosilic acid or a condensate thereof, and specific examples thereof include monosodium orthoketyate, disodium orthogaeate, and orthosodium orthokete.
  • Trinadium gayate and tetranathoorthoate can be mentioned.
  • Germanium ([pi) alkali metal salt of the acid is, for example, a mono- germanium acids or acidic or neutral alkali metal salt of the condensate, the specific examples germanium monosodium salt (NaHGe0 2 ).
  • the alkali metal salt of germanium (GV) acid is, for example, an acid or neutral alkali metal salt of monogermanic (IV) acid or a condensate thereof, and specific examples thereof are orthogermanic acid.
  • monolithium salt Li H 3 Ge0 4
  • ortho germanium disodium salt ortho germanium acid tetrasodium salt
  • di germanium disodium salt Na 2 Ge 2 0 5)
  • Te tiger germanium disodium salt Na 2 Ge 4 ⁇ 9
  • pen evening germanium disodium salt Na 2 Ge 5 0 lx
  • the alkaline metal compound or alkaline earth metal compound as a catalyst is composed of an aromatic dihydroxy compound when the alkaline metal element or alkaline earth metal element in the catalyst is an aromatic dihydroxy compound. It is preferably used in a ratio of 1 mole per 1 X 10- 8 ⁇ 5 X 10- 5 equivalents. A more preferred ratio is a ratio of 5 ⁇ 10 17 to 1 ⁇ 10—5 equivalents based on the same standard.
  • nitrogen-containing basic compound as a catalyst examples include, for example, tetramethylammonium hydroxide (Me 4 NOH), tetraethylammonium hydroxide (Et 4 N ⁇ H), tetrabutylammonium hydroxide (Bu 4 NOH), benzyltrimethylammonium hydroxide [ ⁇ —CH 2 (Me) 3 N ⁇ H], hexadecyltrimethylammonium hydroxide, and other alkyl, aryl, and alkylaryl groups.
  • Me 4 NOH tetramethylammonium hydroxide
  • Et 4 N ⁇ H tetraethylammonium hydroxide
  • Bu 4 NOH tetrabutylammonium hydroxide
  • benzyltrimethylammonium hydroxide [ ⁇ —CH 2 (Me) 3 N ⁇ H] hexadecyltrimethylammonium hydroxide, and other alkyl, aryl, and alkylaryl groups.
  • Tertiary amines such as ammonium hydroxide, triethylamine, triptylamine, dimethylpenzylamine, hexadecyldimethylamine, or tetramethylammonium borohydride (Me 4 NBH 4 ); tetra Petit Luang monitor ⁇ -time borohydride (Bu 4 NBH 4), Te tiger Petit Luang monitor ⁇ -time tetra-phenylene Rupore (Me 4 NBPh 4), a basic salt such as Tetorabu chill ammonium Niu arm tetramethyl phenylene Ruporeto (Bu 4 NBPh 4) can ani gel.
  • the nitrogen-containing basic compound is preferably used in a proportion
  • Anmoniumu nitrogen atom of the nitrogen-containing basic compound is an aromatic dihydroxy compound per mol of 1 X 10- 5 ⁇ 5 X 10- 3 equivalent.
  • More preferred ratio is a ratio which is a 2 X 10- 5 ⁇ 5X 1 0 one 4 equivalent based on the same standard.
  • a particularly desirable ratio is a ratio of 5 ⁇ 10 15 to 5 ⁇ 1 CI— 4 equivalents based on the same standard.
  • the above-mentioned transesterification catalyst is added at the start of the transesterification reaction in step (1), and as the polymerization reaction proceeds, for example, in the later-stage polycondensation in step (2) described later, it is newly added. There is no particular need to add it.
  • the viscosity average molecular weight is at least 4,0.
  • a first aromatic polycarbonate is produced having a molecular weight of 0 and a terminal hydroxyl group concentration of 15 to 45 mol% of the total terminal groups.
  • the viscosity average molecular weight is preferably not less than 4,000 and less than 10,000, more preferably not less than 4,000 and less than 8,000.
  • the terminal hydroxyl (OH) group concentration is 20 to 40 mol% of all terminal groups.
  • the operation of controlling the terminal OH group content of the first aromatic polycarbonate differs slightly between using batch equipment and continuous equipment.
  • the molecular weight and OH group content of the reactants in the polymerization tank change continuously in the polymerization tank.
  • the reactants in the polymerization tank were analyzed by sampling, and the relationship between the amount of by-products, mainly aromatic monohydroxy compounds generated by the transesterification reaction, and the molecular weight of the reactants was used as the raw material.
  • the molecular weight of the first aromatic polycarbonate and the OH And the group content can be maintained within a predetermined range.
  • the OH terminal content of the oligomer is usually controlled by adjusting the molar ratio of the aromatic dihydroxy compound to the aromatic carbonic diester, and the ratio varies depending on the characteristics of the equipment used. However, in general, a ratio of using 1.0 to 1 to 1 mole of the aromatic carbonate diester per mole of the aromatic dihydroxy compound is selected. It is preferable to maintain the selected raw material use ratio with an accuracy of 0.5%.
  • the type of reactor used for producing the oligomer is not particularly limited, and a generally known reactor can be used, but a vertical stirring tank is preferably used. Further, a vertical stirring tank provided with a rectification column is preferably used for the purpose of suppressing the distillation of the aromatic carbonate diester used as a raw material to the outside of the system.
  • the material of the reactor used to produce the oligomer there is no particular limitation on the material of the reactor used to produce the oligomer, but at least the inner surface of the reactor that comes into contact with the reaction solution is usually made of a material with a low iron content such as stainless steel or nickel. You.
  • reaction temperature for producing the oligomer a generally known reaction temperature can be used, and it is usually 100 to 300, preferably 180 to 270.
  • the reaction pressure at this time is usually from normal pressure to 133 Pa (ImmHg), preferably from 66,500 Pa (50 OmmHg) to 1,330 Pa (1 OmmHg).
  • the aromatic dihydroxy compound and the aromatic carbonate diester used as the raw materials in the step (1) are mixed at a temperature lower than the melting point of the aromatic dihydroxy compound. It is desirable to use it after filtering with a filter.
  • a filter having a filtration layer made of a metal fiber having a nominal filtration accuracy of 0.1 to 1 m is preferably used.
  • the number of foreign substances of the polycarbonate obtained by polycondensation can be reduced, and the hue can be improved.
  • the cause is not clear, among the foreign substances of 1 m or more, there are substances that worsen the hue of polycarbonate and many reaction inhibitors, and removal of these substances increases the polycondensation reaction rate. Therefore, it is considered that a polycarbonate having a small heat history and a good hue can be obtained.
  • the filter used in the present invention is a filter having a filtration layer composed of metal fibers inert to a raw material mixture such as SUS, and as such a filter, metal fibers are made by wet or dry papermaking.
  • Metallic non-woven fabrics include filters obtained by sintering the non-woven fabrics.
  • Such a metal fiber filter not only has better heat resistance and chemical resistance than a membrane filter, but also has a longer filter life. I found it to be. Although the cause is not clear, it is presumed that the membrane filter collects foreign substances on the surface of the filter medium, while the metal fiber filter collects foreign substances over the entire thickness, so the collection capacity is estimated to increase. Is done. For this reason, when the metal fiber filter is used, it is possible to filter for a long time even if a filter having a fine opening of 0.1 to lzm is used without filtering each raw material in advance.
  • the first aromatic polypropylene formed in the step (1) is further polymerized.
  • a first ester exchange reaction for elimination of the aromatic monohydroxy compound and a second transesterification reaction for elimination of the aromatic carbonic diester in the polymerization reaction are carried out by reacting the aromatic monohydroxy compound with the aromatic carbonic diester.
  • the occurrence of the aromatic monohydroxy compound elimination reaction and diallyl carbonate elimination reaction at such a ratio indicates that by-product vapor generated from the reaction tank is collected without changing the composition, and is collected. It can be confirmed by measuring the molar ratio of the contained aromatic monohydroxy compound to diaryl carbonyl. If the proportion of the diaryl carbonate elimination reaction is higher than this range, the resulting OH terminal content of the polycarbonate is undesirably large. On the other hand, if the proportion of the diaryl carbonate elimination reaction is lower than this range, the time required for the polymerization is prolonged, and the quality of the polycarbonate obtained is undesirably reduced.
  • a reactor having excellent thin film-forming properties for example, a reactor capable of controlling the surface area of a polymer having a liquid depth of 50 mm or less to 50% or more of the surface area of the polymer in the reactor is preferable.
  • Such a thin film having a liquid depth of 50 mm or less is applied with a scraper having a clearance of 50 mm or less to a portion of a vessel wall such as a head plate or a body wall of the reactor facing the scraper or the like.
  • the method and the components of the stirring blade such as the disk, the supporting blade, the stirring unit and the scraper in the reactor (hereinafter simply referred to as the stirring blade component) It may be formed by a method in which a reactant flows down along a support such as a wire for flowing down a polymer, or a method in which a reactant is allowed to freely fall.
  • a stirring blade includes a stirring blade component such as an end disk, a hollow disk, and a supporting blade in a horizontal single-shaft reactor, and in the case of a horizontal twin-shaft reactor, It means a member having a stirring function including a stirring blade component such as a stirring unit.
  • the “stirring axis direction” means a line that becomes the center of rotation when the stirring blade rotates, and does not necessarily mean that the stirring shaft actually exists.
  • the ⁇ horizontal two-axis reactor '' means that there are two sets of stirring blades, and does not necessarily mean that the stirring shaft actually exists. Absent.
  • the polymer surface is irregularly deformed and contains many air bubbles due to the evaporation of low-boiling substances produced as by-products.
  • air bubbles are generated.
  • the liquid depth is defined as such a smooth plane, the liquid depth is measured perpendicular to the plane (which may be curved) It indicates the liquid thickness in the case of performing.
  • a thin film suitable for carrying out the present invention when applying a polymer to the reactor wall, can be formed by setting the clearance of the supporting blades facing the container wall to 5 Omm or less, and the surface area of the thin film can be reduced. This corresponds to the surface area of the vessel wall to which the object was applied.
  • the product of the supply amount V (mmVmin) and the average flow time t (min) is calculated as the average flow length G ( mm) and the number of supports M to obtain the average cross-sectional area S (mm 2 ) . If the support comes into contact with the reactant on the surface, S is the wetting width of the support perpendicular to the falling length J (mm) And calculate the liquid depth.
  • the support is a wire or the like and substantially contacts the reactant with a wire
  • the liquid depth can be reduced to 5 O mm or less suitable for the present invention by adjusting the supply amount and the shape, length, and number of supports, and the surface area is reduced to GXJXM or 27T r GM. Equivalent to.
  • the reactant When the reactant is allowed to fall freely to form a liquid film, extrude the reactant from the perforated plate It can be divided into a case where the reactant is allowed to fall freely and a case where the reactant is poured out from a container having a space that is not restricted at the top and the object is allowed to fall freely.
  • the former is thought to yield a falling object having the same cross section as the hole shape of the perforated plate that extrudes the reactants, and calculates the liquid depth and surface area.
  • the hole shape is a circle
  • the radius r of the hole corresponds to the liquid depth
  • the surface area can be obtained by 2-r r GM, where M is the number of holes and G is the drop length.
  • the thickness of the formed liquid film is 10 O mm or less
  • the liquid depth can be regarded as 1 O 2 of 5 O mm or less.
  • the surface area of the liquid film is expressed as 2 MGJ, where G is the drop length, the liquid film width is M, and the number of liquid films is M.
  • Fig. 14 shows a cross-sectional view of the horizontal reactor shown in Fig. 1 in the direction of the stirring axis, where 1 is the wall of the reactor, 11 is a hollow disk, and 13 is a stirrer between the hollow disks 11 Shows the support blades installed in the axial direction.
  • the support blades 13 are installed at a small distance from the reaction wall 1, and the reaction liquid is applied to the body wall by the outside (body wall side) end face of the support blade to form a thin film.
  • the space formed by the reactor body wall 1, the plurality of hollow disks 11 and the support blades 13 installed between the hollow disks corresponds to a container having a space not restrained at the top, It has a function of pumping the reaction solution in the space with the rotation of the blades and then free-falling from the end face inside the support blades (center side of the reactor) to form a thin film.
  • the position of the support blade that can form the free-falling liquid film should be an arbitrary position from the reaction liquid starting point (y-z position) to the point f where the support blade is vertical.
  • the total (MG) of the free-fall lengths when the support blade is provided at the point f is obtained, and the surface area of the free-falling liquid film is calculated.
  • the surface area (AV) of the reaction liquid whose depth held in the lower part of the reactor exceeds 50 mm is represented by J (D 2 -d 2 ) 1/2.
  • the ratio of the surface area having a liquid depth of not more than m can be calculated from (As + Af) / (As + Af + Av).
  • the surface on which the thin film is formed includes the surface of the hollow disk above the surface of the reaction solution and the surface of the supporting blades.
  • VZS which is obtained by dividing the total liquid volume (V) in the reactor by the total surface area (S) of the reaction liquid, is not so important, and the ratio of the thin film forming portion to the whole is important.
  • an aromatic monohydroxy compound generated by a transesterification reaction with an aromatic carbonic acid diester hereinafter sometimes referred to as diaryl carbonate
  • the molecular size of the latter is small.
  • the diffusion rate of diaryl carbonate having a large molecular size is larger than that of aromatic monohydroxy compound due to the increase in the liquid depth.
  • reaction speed is slowed down by the influence, and the diffusion speed is slow due to the increase in the viscosity of the reaction solution in the polymerization region where the oligomer is a polycarbonate, which has a considerable effect on the overall transesterification reaction speed. It depends on what you think.
  • Such a reactor having excellent thin film forming properties include, for example, applying and renewing the reaction liquid to the reaction drum wall by using a support blade close to the reaction drum wall, and partially disposing the reaction liquid by the support blade.
  • a horizontal uniaxial cylindrical reactor having a structure in which the liquid is pumped and then dropped while forming a free liquid film by gravity is mentioned.
  • the horizontal single-shaft cylindrical reactor is, for example, as shown in Fig. 1, where two ends are placed in a cylindrical container composed of an inlet head plate 5 and an outlet head plate 6 covered with a jacket outer wall 2, and a container body wall 1.
  • Discs 9, 9 ', a plurality of hollow discs 11 arranged between the two end discs, the end discs and the hollow discs, and the hollow discs are connected at predetermined intervals;
  • a plurality of supporting vanes 13 to be fixed and two independent end rotating shafts 8 and 8 'fixed to the center of the two end disks.
  • This reactor has a stirring blade with a structure without a rotating axis. And in this reactor, the end disk and the hollow disk are perpendicular to the virtual rotation axis of the stirring blade.
  • FIG. 1 a plurality of hollow discs 11 disposed between the end discs 9 and 9 ′ are connected and fixed at predetermined intervals by support blades 13 that are inclined or curved in the reverse direction of rotation. Have been. The center of the end disks 9, 9 'is supported by end stirring shafts 8, 8'.
  • the liquid is pumped up with stirring and rotation by the space formed by the front end portion and the container body wall 1, and then falls while forming a free liquid film by gravity, and the container body 13 is supported by the supporting blades 13. It has a structure to apply and renew the liquid to the gas phase part of wall 1.
  • the at least one support blade is preferably a flat plate extending in the direction of the virtual rotation axis of the stirring blade, and particularly, with respect to a tangent to a tangent in a cylindrical section perpendicular to the virtual rotation axis of the stirring blade. More preferably, it has an angle of 30 to 60 degrees.
  • the thickness (liquid depth) of the liquid film applied to the container body wall corresponds to the clearance between the tip of the support blade and the container body wall, and the free liquid film formed when the pumped liquid falls is formed.
  • the liquid depth is less than 5 Om.
  • the stirring blade having such a structure By using the stirring blade having such a structure, the liquid is pumped up with the stirring rotation by the space formed by the tip of the support blade 13 and the container body wall 1 even if the hold-up is increased, and then the free liquid is generated by gravity. Since the liquid falls while forming a film, and the liquid is applied to the gas phase portion of the vessel wall by the support blades 13, the ratio of the surface area having a liquid depth of 50 mm or less to the surface liquid of the reaction liquid As a result, the ratio between the aromatic monohydroxy compound elimination reaction and the diaryl carbonate elimination reaction can be maintained in a preferable range, a high reaction rate is achieved, and the quality is improved. It is possible to obtain a polymer having an improved
  • the end disk 9 preferably has a large number of openings for the purpose of preventing stagnation of liquid in the end plate portion of the reactor.
  • Such shapes include, for example, numerous openings and notches And a hollow disk having a plurality of support plates extending from the center. Among them, a notched disk having an opening 10 as shown in FIG. 2 is preferable.
  • the support blades 13 extend at the tip end in a direction opposite to the rotation direction as shown in FIGS. 3 (1), (2) and (3), and retain a small gap with the container body wall 1.
  • the installation of the tail portion 14 has an effect of improving the application of the liquid film to the container wall and the pumping ability of the reaction solution when the viscosity of the reaction solution is low.
  • the tail portion 14 has a shape having a property of applying a liquid film to the container body wall and pumping up the reaction solution. In order to perform the function of applying spirit to the vessel wall, it has a part parallel to the reactor wall.
  • the supporting blade is rotated slowly by a motor, preferably at a rotation speed of 1 to 15 rpm.
  • Such an apparatus may be used for batch polymerization of oligomers or for continuous polymerization.
  • the liquid When used for continuous polymerization, the liquid is continuously injected from the inlet 3 shown in Fig. 1, and the supplied first aromatic polystyrene ponate is applied to the inside of the side wall 5 of the inlet by the guide vanes 7 and renewed.
  • the reaction solution is applied to the body wall 1 of the gas phase by being lifted up by the support blades 13 or the tail portion 14 and renewed. Further, the reaction solution drops while forming a film, flows into the next chamber from the opening 12 of the hollow disk 11, and is sequentially sent to the liquid outlet 4 by repeating the same operation, and is polymerized from the liquid outlet 4. It is possible to obtain an enhanced degree of second aromatic poly-polyponate.
  • reactor having excellent thin film forming properties of the present invention is a horizontal twin-screw reactor having a cocoon-shaped cross section formed by combining two cylinders extending in parallel, comprising: Mention may be made of those having structural elements. .
  • a reactor inlet side head plate a reactor outlet side head plate in a direction opposite to the head plate, a first stirring blade having a plurality of stirring units extending substantially horizontally in the reactor, and the first stirring member A plurality of stirring units arranged in parallel with the blades and substantially horizontally in the reactor With a second stirring blade.
  • the first stirring blade and the second stirring blade are arranged close to each other so as to mesh with each other, and are rotated in the same direction while being synchronized with each other, so that the reaction liquid is mixed with each other by the stirring unit. It has the function of coating and renewing a thin film on the reactor body wall.
  • the first stirring blade means a stirring blade that moves the reaction solution in the upper part of the reactor away from the stirring unit of another stirring shaft installed by rotation.
  • the reactor having such a structure is preferably used when producing a high molecular weight polycarbonate which cannot be handled by the above-mentioned horizontal single-screw reactor.
  • a high molecular weight corresponds to a case where the viscosity average molecular weight exceeds 15, 000, preferably, a case where the viscosity average molecular weight exceeds 20, 000. May be directly polymerized in such a horizontal twin-screw reactor, or the first aromatic polycarbonate may be polymerized in a horizontal single-screw reactor, and then polymerized using a horizontal twin-screw reactor. Good.
  • Such a horizontal twin-screw reactor will be described in more detail for each component by taking an example.
  • the present invention is not particularly limited by this.
  • a structure in which a part of the stirring shaft is actually missing is also acceptable.
  • FIGS. 4, 5, and 6A and B show a perspective perspective view, a plan sectional view as viewed from above, and a side sectional view showing a preferred embodiment of the horizontal twin-screw reactor used in the present invention.
  • “stirring axis” means an actually existing stirring axis.
  • the horizontal twin-screw reactor preferably used in the present invention includes a reactor entrance-side head plate 105, a reactor outlet-side head plate 106 in a direction opposite to the head plate, and a substantially horizontal inside of the reactor. It has a first stirring shaft 102 extending in the opposite direction and a second stirring shaft 103 arranged substantially horizontally in parallel with the first stirring shaft 102.
  • Each stirring shaft is provided with a plurality of stirring units 120, 121, 127, which are arranged close to each other so as to mesh with each other, and these stirring shafts are synchronously moved in the same direction. Rotate.
  • the reactor body wall 1 has a narrow gap with the stirring unit, and has a cocoon-shaped cross-section formed by combining two cylinders.
  • an inlet 1 1 1 for the reaction solution is provided near the reactor inlet side head plate 105 and above the first stirring shaft 102, and near the reactor outlet side head plate 106.
  • a reaction liquid outlet 111 is provided at the lower part of the reactor, and a reaction liquid extraction screw 113 is provided at the reaction liquid outlet in order to discharge the reaction liquid having increased viscosity.
  • the aromatic monohydroxy compound and diaryl carbonate generated by the transesterification reaction are discharged out of the reactor through the vacuum pipes 117 and 116 connected to the vent 15. At this time, the high-boiling substances entrained in the by-product vapor are collected in the distillate receiver 118 installed between the vacuum pipes 117 and 116.
  • the stirring shaft 102 corresponds to the first stirring shaft
  • the rotation direction of the stirring shaft is opposite to the direction shown in FIG. 13.
  • the stirring shaft 103 corresponds to the first stirring shaft.
  • Each stirring shaft of the present invention is provided with a plurality of stirring units as shown in FIGS.7A, 7B, 9, 11A, and 11B, which serve to stir the reactants and form a thin film. I have.
  • the stirring unit used in the present invention has a substantially convex lens-shaped (spindle-shaped) cross section as shown in FIGS. 7A, 9, and 11A.
  • FIG. 5 is another plan sectional view showing a preferred embodiment of the horizontal twin-screw reactor of the present invention.
  • FIG. 12A does not have a liquid sending function from the inlet of the reactor shown in FIG.
  • a stirring unit having a strong stirring function is used, and it is preferable to use a stirring unit having a liquid sending function at the reactor outlet indicated by B. In this way, the hold-up of the reaction solution is increased and the function of forming a thin film is improved.
  • by forcibly feeding the reaction solution into the reactor outlet side head plate it is possible to eliminate the stagnation portion of the reaction solution that is likely to occur in the reactor outlet side head plate portion, and to obtain a poly-pionate with improved quality. Become.
  • the stirring unit shown in FIGS. 7A and 11A is preferably used.
  • the stirring portion a has a substantially convex lens-shaped cross section, and is attached with a phase difference of 90 ° from the opposing stirring portion b at a fixed interval c in the stirring axis direction.
  • a scraper hereinafter referred to as S
  • S having a length slightly shorter than the mounting interval c and being installed in parallel with the rotation axis at a slight distance from the reactor body wall at the tip of the stirring unit.
  • S a scraper having a length slightly shorter than the mounting interval c and being installed in parallel with the rotation axis at a slight distance from the reactor body wall at the tip of the stirring unit.
  • a stirring structure in which the stirring portions a and b each having the S-scraper are maintained at a predetermined interval c to form an integral structure is preferably used.
  • Figure 7A shows this integrated stirring configuration at 120.
  • the stirring unit 120 is installed with a phase difference of 90 ° between the first stirring shaft and the second stirring shaft, and the S-space of the stirring unit attached to one shaft with rotation.
  • the crapper is installed so as to enter the space between the S-scraper of the stirring unit attached to the other stirring shaft and the stirring shaft with a slight gap of 50 mm or less.
  • the tip of the stirring unit is installed so as to keep a slight gap of 50 mm or less from the reactor body wall and the opposing stirring unit.
  • the reaction solution is applied and renewed as a thin film on the entire wall of the reactor body and the stirring unit, and the ratio of the surface area having a liquid depth of 50 mm or less to 50% of the polymer surface area in the reactor is reduced. % Or more.
  • Another embodiment of the stirring unit used in the region A in FIGS. 5 and 12 is a stirring unit 128 shown in FIG. 11A.
  • the stirring unit has a substantially convex lens-shaped cross section, is attached with a phase shift of 90 ° in the direction of the stirring axis, and is also provided between the first stirring shaft and the second stirring shaft. Are shifted by 90 °.
  • the tip of the stirring unit is 50 mm or less from the reactor body wall and the opposing stirring unit. It is installed to keep a small gap.
  • the reaction solution is applied and renewed as a thin film on the entire surface of the reactor body wall and the stirring unit, and out of the polymer surface area in the reactor which is a requirement of the present invention,
  • the ratio of the surface area having a liquid depth of 50 mm or less can be made 50% or more.
  • the stirring unit 127 shown in FIG. 9 is preferably used.
  • the stirring unit 127 has a substantially convex lens-shaped cross section, and has a slightly twisted shape on the upper surface and the lower surface as shown in FIG.
  • the degree of this twist is represented by an arrow in FIG. 10
  • the angle is in the range of 5 to 60 °
  • the liquid transfer property and the self-cleaning property are improved, which is preferable.
  • the best performance is obtained when the temperature is in the range of 5 to 45 °.
  • the stirring unit 127 is attached to the stirring shaft so as to shift the phase in the stirring shaft direction as shown in FIG. Assuming that the phase shift at this time is ⁇ , ⁇ is preferably in the range of 15 to 60 °, and particularly preferably in the range of 30 ⁇ 10 °.
  • each stirring unit becomes independent and is not affected by the preceding and following stirring units, so that the wetting of the stirring unit is reduced and gels and foreign substances are generated.
  • the liquid sending property is also weak, the amount of the reaction solution sent to the reactor outlet side head portion decreases, and a dead space is generated in the reactor outlet side head portion, thereby deteriorating the polymer quality.
  • the stirring units 1 2 7 installed on the first stirring shaft and the second stirring shaft so as to form a whole screw shape as described above are installed so as to engage with each other, and the tip of the stirring unit reacts. It is installed so that there is a slight gap of 5 Omm or less between the wall of the vessel and the opposing stirring unit.
  • the reaction liquid is sent toward the reactor outlet side head plate with the rotation of the stirring shaft.
  • the entire surface of the reactor wall and the stirring unit is coated and renewed in a thin film form, and the ratio of the surface area with a liquid depth of 50 mm or less to 50% or more of the polymer surface area in the reactor should be 50% or more. Is possible.
  • stirring units 120, 127, 128 of the present invention the stirring units attached to both ends of the stirring shaft are desirably attached as close as possible to the head plate.
  • a stirring unit having a scraper (hereinafter referred to as P-scraper) 122, 123 for the head plate shown in Fig. 7B or 11B is used. Is preferred.
  • the P-scraper is the outer periphery of the surface facing the end plate of the stirring unit, and is 90 to 180 °. And at least part of each of the region of 27 ° to 360 ° are point-symmetrically installed.
  • the P-scraper has the effect of forcibly flowing the reaction solution in the end plate portion from the top of the stirring unit toward the stirring shaft as it rotates, thereby eliminating dead spaces that are likely to occur near the stirring shaft. This makes it possible to produce high quality polycarbonate.
  • intervals described in the above description are dimensions at the operating temperature, and are not values measured at the time of cooling.
  • the position where the reaction solution is supplied to the horizontal twin-screw reactor of the present invention is preferably close to the entrance head plate of the reactor and above the first stirring shaft.
  • the close proximity specifically means that the interval is substantially within 500 mm. More preferably, it is 300 mm or less.
  • a supply port is provided directly on the reactor inlet side head plate above the first stirring shaft.
  • a vent port is provided near the entrance head plate and above the first stirring shaft, and the reaction solution is supplied from the inside of the vent port to the entrance head plate. There is a method of supplying in close proximity.
  • the horizontal twin-screw reactor of the present invention removes by-products such as aromatic monohydroxy compound ⁇ diaryl carbonate generated by the transesterification reaction outside the reactor, and provides a ventro 15 for maintaining the reactor internal pressure at reduced pressure. It is preferably installed on the reactor wall above the first stirring shaft.
  • the size of the vent port installed on the reactor body wall should be at least 1.15 times the inner diameter of the stirring unit including the S-scraper visible from the vent port when one stirring unit passes through. It is preferable to set the range of 1.15 times to 2.5 times. By doing so, it is possible to prevent a phenomenon called vent up, in which the liquid film of the reaction solution formed by the stirring unit is scattered out of the system from the vent port. It can be manufactured stably for a long time.
  • FIG. 15 is a plan view showing the vent port in more detail.
  • the vent port 15 is installed on the body wall 1 above the first stirring shaft 102, and the inside diameter X of the vent port is It is preferable that the length is set to 1.15 times or more the length Y of the stirring unit including the S-scraper passing through the vent portion.
  • the stirring shaft of the horizontal reactor of the present invention extends from the end plate to the bearing to allow the reaction solution to enter the stirring shaft sleeve 107, 108, 109, 110. It is preferable to form a spiral groove for the purpose of prevention or for the purpose of discharging the intruded reaction solution out of the system without returning it to the inside of the reactor.
  • Fig. 5 schematically shows this, and the portions where the spiral groove is formed from the end plate of the stirring shaft to the bearing are indicated by 124 and 125.
  • reference numeral 125 denotes a stirring shaft provided with a spiral groove in a direction to push back the polymer that has entered by the rotation of the stirring shaft into the inside of the reactor.
  • Reference numeral 124 denotes a stirring shaft provided with a spiral groove that functions to feed the polymer that has entered by the rotation of the stirring shaft in the bearing direction.
  • Figure 6 shows that the polymer discharge port 1 26 enters the stirring shaft sleeve at the position where the groove for feeding the polymer 124 in the bearing direction and the groove for pushing back the inside of the reactor 125 into the stirring shaft sleeve. In this case, the reaction liquid is discharged from the discharge port to the outside of the system.
  • the material of the reactor having excellent thin film forming properties is not particularly limited, and ordinary materials can be used.
  • the inner surface of the reactor with which the reaction solution comes into contact is made of a material having a low iron content such as stainless steel or nickel. It is preferred to use
  • the first aromatic polycarbonate is usually placed in a reactor having the above-mentioned excellent thin film-forming property, usually from 200 to 350 :, 1,330 Pa (1 OmmHg).
  • the polymerization is preferably carried out under a condition of 250 to 320 and not more than 665 Pa (5 mmHg).
  • the viscosity average molecular weight is larger than the viscosity average molecular weight of the first aromatic polycarbonate and is not less than 100,000, and the concentration of the terminal hydroxyl group with respect to all the terminal groups is the first aromatic polycarbonate.
  • Secondary aromatic polycarbonates are produced which are lower in concentration of the terminal hydroxyl groups of the polycarbonate.
  • the viscosity-average molecular weight of the second aromatic polycarbonate is preferably 100,000 to 100,000, and the OH terminal content relative to all terminals is preferably 35 mol% or less.
  • the second aromatic polycarbonate preferably contains both aromatic monohydroxy compounds and aromatic carbonic diesters at no more than 500 ppm. Therefore, by devolatilizing the second aromatic polycarbonate, the contents of the aromatic monohydroxy compound and the aromatic carbonic diester can be easily reduced to 200 ppm or less, respectively.
  • the second aromatic polycarbonate preferably has a foreign material content of 0.5 m or more and 500,000 particles Zg or less, a variation of the foreign material content of + 20% or less, and a viscosity average.
  • the optical recording medium has a viscosity-average molecular weight of 100,000 to 18,800, a ⁇ H terminal content of not more than 35 mol% with respect to all terminals, and a foreign material having a particle size of 0.5 m or more.
  • a high-quality material having an amount of 100,000 particles / g or less, a variation in foreign matter content of + 10% or less, and a variation in viscosity average molecular weight of 1% or less in soil is preferably used.
  • the polycarbonate obtained in the present invention had unexpected properties. That is, when the disc substrate was continuously molded using the polycarbonate of the present invention, it was found that mold contamination was reduced, the mold cleaning cycle could be greatly extended, and the occurrence of cloud was also significantly reduced. did.
  • the polycarbonate thus obtained in the present invention is an organic sulfonic acid compound
  • Such a sulfonic acid compound (b) is represented by the following formula ( ⁇ )
  • a 2 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and X 1 is an ammonium cation or a phosphonium cation.
  • b is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • X 1 is an ammonium cation or a phosphonium cation.
  • the sulfonic acid compound (b) has the following formula ( ⁇ )
  • a 3 , A 4 , A 5 , A 6 and A 7 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • a phosphonium sulfonate represented by the formula (1) because of its large effect.
  • Such a sulfonic acid compound (b) functions as a deactivator for the ester exchange catalyst in the production of polycarbonate, and enhances the thermal stability of the polymer.
  • sulfonic acid compounds (b) known catalyst deactivators, such as those described in JP-A-8-59975, are effectively used.
  • an ammonium salt of sulfonic acid and a phosphonium salt of sulfonic acid are preferable.
  • ammonium salts, phosphonium salts of dodecyl benzenesulfonic acid, ammonium salts of paratoluenesulfonic acid, ammonium salts of phosphonium salts and benzenesulfonic acid, and phosphonium salts are also preferably used.
  • tetradecylbenzenesulfonate dodecylbenzenesulfonate and tetrabutylammonium p-toluenesulfonate are particularly preferred because they have good effects.
  • the catalyst deactivator significantly reduces the activity of the catalyst.
  • Such a catalyst deactivator may be added to the polycarbonate alone, or may be added to the polycarbonate resin simultaneously as a mixed solution of water and the catalyst deactivator. You may.
  • the addition amount of the catalyst deactivator which is a sulfonic acid compound to the polycarbonate obtained by melt polycondensation, is selected from the group consisting of an alkali metal compound and an alkaline earth metal compound. It is used in a proportion of 0.5 to 50 mol, preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, per mol of the catalyst. This usually corresponds to a use of 0.1 to 500 ppm per polycarbonate.
  • the phosphorus compound used as the additive (C) for example, phosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid, phosphate ester and phosphite ester can be used.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tridecyl phosphate, trioctadecyl phosphate, and tristearyl pentaerythryl diphosphate.
  • Tricycloalkyl phosphates such as alkyl phosphate, tricyclohexyl phosphate, etc.
  • triaryl phosphates such as triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyl diphenyl phosphate, etc. Can be mentioned.
  • examples of the phosphite include a compound represented by the following formula (IV).
  • R represents an aliphatic hydrocarbon group, an alicyclic hydrocarbon group or an aromatic hydrocarbon group.
  • Three Rs may be the same or different.
  • Specific examples of the compound represented by the above formula (IV) include trimethyl phosphite, triethyl phosphite, tributyl phosphite, trioctyl phosphite, tris (2-ethylhexyl) phosphite, and trinonyl phosphite.
  • Trialkyl phosphites such as tridecyl phosphite, trioctadecyl phosphite and tristearyl phosphite; tricycloalkyl phosphites such as tricyclohexyl phosphite; triphenyl phosphite; tricresyl phosphite; Triphenyl phosphite, tris (nonylphenyl) phosphite, tris (hydroxyphenyl) phosphite, triaryl phosphite, phenyl phosphite, tris (2,4-di-t-butylphenyl) phosphite Ruhosufaito, Jifue two Le decyl phosphite, Jifue two Ruisookuchiruho Sufuaito, phenylene Louis Soo Chi le phosphite, may be mentioned ⁇ reel alky
  • distearyl pentaerythrityl diphosphite bis (2,4-di-t-butylphenyl) pentaerythrityl diphosphate, and the like can also be used as the phosphite.
  • phosphorus compound phosphoric acid, phosphorous acid and esters thereof are preferable, phosphites represented by the above formula (IV) are more preferable, and aromatic phosphite esters are particularly preferable.
  • phosphites represented by the above formula (IV) are more preferable, and aromatic phosphite esters are particularly preferable.
  • the phosphorus compound may be added in an amount of 0.0001 to 0.1 part by weight, preferably 0.001 to 0.05 part by weight, based on 100 parts by weight of the polycarbonate. If the ratio is outside the above range, the effect of adding the phosphorus compound may not be sufficiently exhibited, or a problem such as adversely affecting the polymer quality may occur.
  • examples of the release agent that can be used include an ester compound of an aliphatic alcohol and an aliphatic carboxylic acid.
  • Examples of the fatty alcohol include ethylene glycol, glycerin, trimethylolpropane, neopentyl glycol, and pentaerythritol
  • examples of the aliphatic carboxylic acid include lauric acid, dodecyl acid, pendecyl acid, and palmitic acid. Hepatic decyl acid, stearic acid, nonadecanoic acid, arachinic acid, behenic acid and lignoceric acid.
  • partial esters and complete esters using glycerin and pentaerythritol as the fatty alcohol and stearic acid as the aliphatic carboxylic acid are preferably used.
  • the ester of the aliphatic alcohol and the aliphatic carboxylic acid is preferably added and kneaded while the aromatic polycarbonate of the present invention is in a molten state. Further, it is desirable that the mixture is filtered with a filter, for example, a filter having a nominal filtration accuracy of 1 to 50 Aim while in the molten state after kneading.
  • a filter for example, a filter having a nominal filtration accuracy of 1 to 50 Aim while in the molten state after kneading.
  • the ester compound of the aliphatic alcohol and the aliphatic carboxylic acid used in the present invention is 0.01 to 1 part by weight, preferably 0.01 to 0.5 part by weight, based on 100 parts by weight of the polycarbonate. In an amount of Deviating from the above range, the effect of improving the releasability Is not preferable because it may cause insufficient or poor polymer quality.
  • Processing stabilizers include, for example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenylacrylate, 2_ [1- (2-hydroxy- 3,5-di-t-pentylphenyl) ethyl] —4,6-di-t-pentyl ⁇ / phenyl acrylate.
  • light stabilizers examples include 2- (3-t-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole and 2- (3,5-di-t-butyl-2-hydroxy Phenyl) benzotriapool, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-t-octylphenyl) benzotriazole, 2- (3,5-di-t-pentyl-2 —Hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) phenyl] benzotriazole, 2- [2-hydroxy-13,5-bis ( ⁇ , ⁇ —Dimethylbenzyl) phenyl] benzotriazole compounds such as benzotriazole; 2-hydroxy-4-octyloxybenzophenone, 2-hydroxy-1 4 Benzophenone-based compounds such as methoxybenzophenone; hydroxybenzophenone
  • Examples of the metal deactivator include N, N '— [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine, and the like.
  • the metal deactivator examples include calcium stearate, nickel stearate and the like.
  • the nucleating agent examples include sorbitols such as sodium di (4-t-butylphenyl) phosphonate, dibenzylidene sorbitol, and sodium salt of methylenebis (2,4-di-t-butylphenol) acid phosphate; acid Salt-based compounds are exemplified.
  • antistatic agent examples include quaternary ammonium salt-based compounds such as (-lauramidopropyl) trimethylammonium methylsulfate, and alkylphosphate-based compounds.
  • flame retardant examples include tris ( Halogen-containing phosphoric acid esters such as 2-chloroethyl phosphate, halides such as hexyl-substituted mocyclododecane, decabromophenyloxide, and metal inorganic compounds such as antimony trioxide, antimony pentoxide, and aluminum hydroxide; Examples thereof include a mixture thereof.
  • the method for adding the sulfonic acid compound (b) and the various additives (c) to the polycarbonate of the present invention is not particularly limited, and the mixing order of each component is arbitrary.
  • an additive (c) such as a phosphorus compound and Z or a sulfonic acid compound (b) may be added to a molten polycarbonate and kneaded, or may be added to a solution of the polycarbonate and kneaded. You may.
  • additives (c) including a phosphorus compound and Z or sulfone are directly added to polycarbonate, which is a reaction product in a molten state reactor or extruder obtained after the polymerization reaction is completed.
  • a suitable solvent for example, methylene chloride, chloroform, toluene, tetrahydrofuran, etc.
  • additives (c) including phosphorus compounds and sulfonic acid compounds (b) are added to the molten polycondensate obtained by melt polycondensation. Is preferably added and kneaded to form pellets.
  • a filter having a nominal filtration accuracy of 1 to 50 is advantageously used as the filter.
  • the sulfonic acid compound (b) supplied to kneading equipment such as a reactor and a twin-screw extruder may be in a molten state, may be a solution dissolved in an appropriate solvent, may be a dispersed emulsion, or may be a master powder dispersed in a polycarbonate. It may be a body, a polycarbonate master or a polymer. Furthermore, when preparing a composition with a resin other than the inorganic filler and the polycarbonate described below, a mass powder or a master polymer using these inorganic fillers or the resin as a medium can be used.
  • additives can be supplied by a known quantitative supply method according to the form.
  • a plunger pump, a diaphragm pump, a gear pump, or the like can be used, and a master pump can be used.
  • a solid such as a powder
  • a facility in which a fixed amount feeder and a side feeder are combined can be preferably used.
  • the treatment and the apparatus are not particularly limited.
  • a reactor with a decompression device or an extruder with a decompression device can be used.
  • the reactor with a decompression device may be either a vertical tank reactor or a horizontal tank reactor, but a horizontal tank reactor is preferred.
  • the extruder with a decompression device may be either a single-screw extruder with a vent or a twin-screw extruder, and it is also possible to pelletize while performing decompression treatment with the extruder.
  • the pressure at that time is 0.05 to 750 mmH (6.7 to: LOO, OO OPa), especially 0.05 to 50 mmHg (6.7 to 6,700 P a) is preferred, and when using an extruder, it is preferably 1 to 750 mmHg (133 to: L00, OO OPa), particularly 5 to 700 mmHg (670 to 93, OO OPa). preferable.
  • Such reduced pressure treatment is preferably performed at 240 to 350, and when using a reactor, about 5 minutes to 3 hours, and when using an extruder, about 10 seconds to 15 minutes. Is preferred.
  • a polycarbonate having reduced residual monomers and oligomers can be obtained.
  • water, a saturated aliphatic hydrocarbon, nitrogen, or the like may be subjected to pressure kneading and then reduced pressure treatment for the purpose of reducing residual monomers and oligomers, if necessary.
  • the residual amount of diphenyl carbonate and phenol in the polycarbonate can be reduced by reducing the pressure.
  • the content (residual amount) of such a polycarbonate and an aromatic monohydroxy compound may be not more than 200 ppm by weight as described above.
  • the pressure reduction treatment is effective because it is preferable.
  • Sheets can be made from the aromatic polyponates produced in the present invention. It was unexpectedly found that such a sheet has excellent adhesiveness and printability in addition to flame retardancy and antistatic properties. The reason for this is unclear, but differences in transesterification reactions may have affected properties. Such sheets are widely used for electric parts, building materials parts, automobile parts, etc., taking advantage of their properties.
  • window materials such as general houses, gymnasiums, baseball domes, vehicles (construction machinery, automobiles, buses, Glazing products for window materials such as Shinkansen trains, train cars, etc., as well as various side walls (sky domes, top lights, arcades, condominium sidings, road side walls), window materials for vehicles, etc., displays for OA equipment and sunset panels,
  • optical applications such as membrane switches, photo covers, polycarbonate resin laminates for water tanks, liquid crystal cells in combination with optical disks and polarizing plates, and phase difference correction plates.
  • the thickness of such an aromatic polycarbonate sheet need not be particularly limited. Always 0.1 to: L 0 mm, preferably 0.2 to 8 mm, particularly preferably 0.2 to 3 mm.
  • various processings (various laminations to improve weather resistance, abrasion resistance improvement to improve surface hardness, surface graining, semi-finished and Opacity, etc.).
  • a filler is preferably used for the polycarbonate containing or not containing the sulfonic acid compound (b) and Z or other additive (c) thus obtained, preferably an inorganic filler (B) and Z or A composition can be obtained by adding and kneading a resin (C) other than lipoponate.
  • the polycarbonate composition obtained in this way has a superior hue and low foreign matter in the polycarbonate used as a base as compared with the polycarbonate obtained by the conventional transesterification method. It has a high content and high molecular weight uniformity, and has excellent hue and moldability, and gives a molded article having excellent mechanical strength.
  • inorganic fillers (B) include plate-like or granular inorganic fillers such as talc, myriki, silica, alumina, clay, glass flakes, glass beads, calcium carbonate, and titanium oxide, glass fibers, and the like. Fibrous fillers such as glass milled fiber, wollastonite, carbon fiber, and metallic conductive fiber can be used.
  • Organic fillers such as aramide fibers, cross-linked acrylic particles, cross-linked silicone particles and the like can also be used.
  • the compounding amount of these inorganic and organic fillers is preferably from 1 to 150 parts by weight, more preferably from 3 to 100 parts by weight, based on 100 parts by weight of the polyolefin of the present invention.
  • the inorganic filler and the organic filler that can be used in the present invention may be surface-treated with a silane coupling agent or the like. By this surface treatment, good results such as suppression of decomposition of the polycarbonate are obtained.
  • Examples of the resin (C) other than polycarbonate used in the composition of the present invention include, for example, polyamide resin, polyimide resin, polyetherimide resin, polyurethane resin, polyphenylene ether resin, polyphenylene sulfide resin, and polystyrene.
  • Polyolefin such as rufone resin, polyethylene, polypropylene, polybutadiene Resin, polyester resin such as polyethylene terephthalate and polytetramethylene terephthalate, amorphous polyarylate resin, polystyrene resin, HIPS (high impact strength polystyrene), acrylonitrile styrene copolymer (AS resin), acrylonitrile butadiene styrene copolymer Resins such as polymer (AB S ⁇ Ji), polymethacrylate resin, phenol resin, epoxy resin and the like.
  • polyester resin such as polyethylene terephthalate and polytetramethylene terephthalate
  • amorphous polyarylate resin such as polystyrene resin, HIPS (high impact strength polystyrene), acrylonitrile styrene copolymer (AS resin), acrylonitrile butadiene styrene copolymer Resins such as polymer
  • polyester resins such as ABS tree Ji, polyethylene terephthalate, polytetramethylene terephthalate, etc., polypropylene, AS resin, HIPS, polybutadiene are preferred, and ABS resin and polyester resin are particularly preferred.
  • the amount of the resin (C) other than the polycarbonate is preferably in the range of 1 to 100,000 parts by weight, more preferably 100 to 100 parts by weight of the polycarbonate of the present invention. 10 to 1,000 parts by weight, most preferably 10 to 100 parts by weight.
  • the method for obtaining the composition of the present invention is not particularly limited, and known kneading methods and equipment can be used, but it is preferable to use a twin-screw ruder having a plurality of supply ports.
  • the polycarbonate of the present invention is supplied to the rudder in a solid state such as pellets and powder, melted, and kneaded with the inorganic filler (B) and the resin (C) other than the polycarbonate of the present invention.
  • the polycarbonate of the present invention in a molten state obtained by polymerization may be subjected to a treatment of adding a sulfonic acid compound (b) and other additives (C) or a reduced pressure treatment, and then solidified once.
  • the inorganic filler (B) and the resin (C) other than the polyphenol of the present invention may be supplied to a ruder in a molten state and kneaded with the inorganic filler (B) and the resin (C) other than the polyphenol of the present invention.
  • the latter method is preferred for reducing the heat history.
  • the inorganic filler (B) is preferably supplied into the molten resin from the downstream side of the supply section of polycarbonate or a resin other than polycarbonate. By doing so, it is possible to prevent the inorganic filler and the ruder segment from coming into contact with each other in a dry state, and it is possible to reduce undesired abrasion of the milled segment of the inorganic filler. It is preferable to supply the inorganic filler (B) in a predetermined amount using a side feeder installed downstream of the polycarbonate supply unit while controlling the supply amount using a fixed amount feeder.
  • the resin (C) other than the polycarbonate of the present invention may be supplied from any location at the upstream, downstream, or simultaneously with the supply position of the polycarbonate of the present invention.
  • the resin (C) may be supplied in a solid state, or may be once melted in another rudder or the like, and then supplied to a rudder for preparing a composition with poly-polyponate.
  • the former is often used for the purpose of reducing the heat history and simplifying the equipment.
  • the method of directly feeding the resin (C) weighed continuously with a fixed-quantity feeder to the composition-making ruder, or the continuous method A method is used in which the weighed resin (C) is supplied to a composition preparing ruler using a side feeder.
  • the kneading temperature varies depending on the type of the resin (C) other than the polyacrylonitrile, but a temperature of 200 to 380 ⁇ is generally used.
  • the supply section may be sealed with an inert gas such as nitrogen for the purpose of preventing oxygen and moisture from being mixed, and the kneaded composition may be subjected to a reduced pressure treatment.
  • the polycarbonate of the present invention may or may not preferably contain those containing the sulfonic acid compound (b) or various additives (c). However, if necessary, the obtained sulfonic acid compound may be added to the obtained composition. (B) and various additives (c) can be further added according to the above-mentioned addition method.
  • a molded article having good flame retardancy, antistatic property, dust adhesion preventing property, durability and stability can be obtained from the polycarbonate composition produced by the present invention by an injection molding method or the like.
  • a reactor having excellent thin film-forming properties is used in a method for producing a polycarbonate by performing a melt polycondensation reaction of an aromatic dihydroxy compound and an aromatic carbonate ester.
  • the polycarbonate obtained in this way has a good hue and a low foreign matter content, has little variation in quality, and is preferably used for producing high-precision molded products such as optical applications. .
  • a composition with other resins and inorganic substances it has excellent mechanical properties and moldability reflecting the improved properties of polycarbonate, and can be preferably used for various molding applications.
  • Co1orb was measured using Colour and ColorDiffernec Memet ND-1001DP manufactured by Nippon Denshoku Industries Co., Ltd. Terminal group structure:
  • the ratio (%) of OH terminal groups to all terminal groups was determined by NMR measurement.
  • the intrinsic viscosity of a 0.7 g / d 1 methylene chloride solution was measured using an Ubbelohde viscometer, and the viscosity average molecular weight was determined by the following equation.
  • Raw material preparation tank in which powdery bisphenol A (BPA) and liquid diphenol carbonate (DPC) are continuously added in a ratio of 0.70 mmol to 0.722 mmol.
  • BPA powdery bisphenol A
  • DPC liquid diphenol carbonate
  • the mixture was dissolved at 140 t: and then the mixed solution was passed through a pleated filter having a filtration layer made of SUS 316 metal fiber with a nominal filtration accuracy of 0.5 m and converted to bisphenol A per hour at 0. It was continuously supplied to the first polymerization tank in an amount of 16 kmol.
  • the first polymerization tank is operated at a temperature of 220 and a pressure of 100 °C 01: (13, 30 OPa) to separate phenol generated from the first polymerization tank from DPC and return the DPC to the first polymerization tank again. It had a rectification column and a stirrer.
  • the reaction solution in the first polymerization tank was continuously extracted from the bottom using a gear pump, and supplied to the second polymerization tank.
  • the second polymerization tank is operated at a temperature of 260 and a pressure of 15 Torr (1, 995 Pa) to separate phenol and DPC generated from the second polymerization tank and to rectify the DPC to return to the second polymerization tank. It had a tower and a stirrer.
  • a first aromatic polycarbonate having a viscosity average molecular weight of 6,000 and a ratio of 0H terminal to all terminal groups of 34.3 mol% was continuously obtained from the second polymerization tank, and this was obtained at the bottom of the second polymerization tank. It was continuously extracted using a gear pump and supplied to the third polymerization tank.
  • the third polymerization tank is the horizontal single-shaft reactor shown in Fig. 1, and reacts with the reaction liquid inlet 3 for receiving the first aromatic polycarbonate extracted from the second polymerization tank 3 and the reaction liquid outlet 4 of the third polymerization tank.
  • the reactor has a ventro 15 to remove low-boiling substances mainly composed of phenol and DPC, and keeps the inside of the reactor under reduced pressure.
  • a plurality of arranged hollow disks 11 are connected and fixed at predetermined intervals by supporting blades 13 inclined in the direction opposite to the rotation direction, and the center of the end disks 9 and 9 ′ is an end stirring shaft 8. , 8 '.
  • the outer diameter D of the hollow disk constituting the stirring blade is 80 Omm
  • the inner diameter d of the hollow disk is 325 mm
  • the mounting angle of the supporting blade ⁇ 5 is 45 °
  • the supporting blade width W is 17 Omm
  • the supporting blade is The number of sheets was 8, and the clearance between the outer end of the supporting blade and the reactor body wall was 2 Omm.
  • the ratio of the surface area having a liquid depth of 5 Omm or less was 86% of the surface area of the polymer in the third polymerization tank.
  • the viscosity average molecular weight was 15,200, and the proportion of 0H terminals in all terminals Is 2
  • a second aromatic polyponate having a foreign substance content of 5.5 mol% and 0.5 m or more and having a foreign substance content of 960 / g was continuously obtained. Further, the second aromatic polycarbonate was pelletized, and the hue was measured. As a result, the b value was -0.5, indicating that the second aromatic polycarbonate had an extremely excellent hue.
  • the molar ratio of P OH to DPC in the vapor generated from the third polymerization tank was measured to be 1: 0.3, which was a transesterification reaction involving dephenol removal and a transesterification reaction involving removal of DPC. Occurred at a rate of 0.3.
  • the polycarbonate obtained in the third polymerization tank continues to pass through the pipes in the molten state, and is led to a vented twin-screw ruder without contact with air to deactivate the polymerization catalyst and reduce low-boiling substances contained in the polymer.
  • a post-treatment consisting of removal and addition of additives was performed.
  • the vented twin-screw ruder used was a co-directional intermeshing twin-screw ruder having five treatment zones consisting of a kneading section and a vent section.
  • bisphenol A dinatriol used as a polymerization catalyst was prepared by dispersing 1% by weight of a dispersion of tetrabutylphosphonium dodecylbenzenesulfonate in water in the kneading section with respect to the polymer.
  • a diaphragm-type metering pump feed continuously by using a diaphragm-type metering pump so that dodecylbenzenesulfonate tetrabutylphosphonium salt is twice equivalent to the salt, deactivate the polymerization catalyst, and use a material seal through a material seal.
  • the polymer was treated under reduced pressure at 15 Torr (1,995 Pa) at the vent located immediately after the kneading section, and the phenol and DPC contained in the poly-carbonate were used as solvents for the deactivator. Removed along with the water.
  • stearic acid monoglyceride was added to the kneading section at a concentration of 500 ppm based on the polymer as a release agent, and tris (2,4-di-t-butyl) was used as a heat stabilizer.
  • (Phenyl) phosphite was continuously added in a molten state using a metering pump so as to be 100 ppm with respect to the polymer, and the pressure was reduced at 15 Torr at the vent.
  • the polycarbonate was extruded from a ruder, pressurized with a gear pump, filtered through a polymer filter having a mesh of 20 jam, and pelletized through a die.
  • the obtained polycarbonate contained 20 ppm of phenol and 80 ppm of DPC, and the hue b value and the foreign matter content of 0.5 m or more were output from the third polymerization tank.
  • the viscosity-average molecular weight was 15,100, and the H-terminal content was 25.6 mol%, almost the same as the value measured on the exit side of the third polymerization tank.
  • the number of moldings before the occurrence of mold release failure was 354,600, and the number of continuous moldings for the cloud was a good level of 317,800.
  • Polymerization was carried out in the same manner as in Example 1. Polycarbonate having a viscosity average molecular weight of 15 and 200 obtained from the third polymerization tank was supplied to the fourth polymerization tank, and polymerization was further performed.
  • the fourth polymerization tank is a horizontal twin-screw reactor shown in FIGS. 4 (perspective view), 5 (plan view), 6 A (side view), and 13 (cross-sectional view).
  • the reaction liquid inlet 1 1 1 at the reactor entrance end plate 105, and the reaction liquid outlet 1 1 2 at the bottom of the reactor near the reactor exit plate 1 106 It has a vent port 15 to remove low-boiling substances mainly composed of phenol and DPC, and keeps the inside of the reaction system under reduced pressure.It is attached to the first stirring shaft and the second stirring shaft.
  • the mutual clearance between the stirring units and the clearance between the stirring unit and the reactor wall are both 1 Omm, and they are installed so as to engage with each other, and rotate in the same direction at 10 rpm while synchronizing. I was.
  • the stirring unit on the upstream side of the reactor shown by A in Fig. 5 is substantially as shown in Fig. 13. It has a convex lens-shaped cross section, and the scraper for the reactor wall shown by d, e, f, and g in Fig. 7A is 1 Omm shorter than the mounting interval c of the stirring unit at the tip.
  • the agitator was installed in parallel with the agitator shaft, and the mutual agitation unit was shifted by 90 ° out of phase, so that it did not have the function of transporting the reaction solution.
  • the stirring unit downstream of the reactor indicated by B in FIG. 5 is a stirring unit having a convex lens-shaped cross section without a scraper for the reactor body wall as shown in FIGS. 9 and 10, having a torsion angle ⁇ of 30 ° and a phase.
  • a substantially screw-shaped shape was formed, and it had a function of transporting the reaction liquid toward the reactor outlet side head plate.
  • this reactor has a small reaction liquid reservoir at the tip of the stirring unit, it does not have a clear liquid surface unlike a single-shaft reactor. Therefore, it can be considered that the reaction liquid film formed on the entire wall of the reactor wall or the stirring unit corresponds to almost all reaction surfaces, and the ratio of the surface area having a liquid depth of 5 Omm or less corresponds to approximately 100%.
  • the molar ratio between PhOH and DPC in the vapor generated from the fourth polymerization tank was measured to be 1: 0.44, indicating that the transesterification reaction with de-DPC reaction was 1 It occurred at a rate of 0.44.
  • the polycarbonate obtained in the 4th polymerization tank is continuously passed through a pipe in a molten state without being exposed to air, and guided to a vented 2-axle ruder to deactivate the polymerization catalyst and reduce the boiling point of the polymer.
  • the post-treatment consisting of removal of additives and addition of additives I went according to.
  • the vented twin-screw ruder used was a co-directional intermeshing twin-screw ruder having two treatment zones consisting of a kneading part and a vent part. In the first treatment zone of the ruder, catalyst deactivation and poly
  • the polycarbonate to which the additives had been added was extruded from a ruder, pressurized by a gear pump, filtered through a polymer filter having an aperture of 40 / m, and pelletized through a die.
  • the obtained polycarbonate contains 30 ppm of phenol and 120 ppm of DPC, and has a hue b value and a foreign substance content of 0.5 izm or more.
  • the values were the same as those measured at the exit of the polymerization vessel, the viscosity average molecular weight was 23,500, and the OH terminal content was 19.5 mol%, which was almost the same as the value measured at the exit of the fourth polymerization vessel.
  • SANDOSTAB P-EPQ (manufactured by Clarant) is used as a phosphorus-based stabilizer for the polymer at 30 ppm. Except for the addition, the polycarbonate pellets produced in the same manner as in Example 2 above were melted, fed in a fixed amount by a gear pump, and sent to a T-die of a molding machine. It was sandwiched between a mirror cooling roll and a mirror roll, or melt extruded into a sheet of 2 mm or 0.2 mm thick and 800 mm wide with a single-sided switch.
  • ABS styrene-butadiene-acrylonitrile copolymer
  • Santac UT-61 manufactured by Mitsui Chemicals, Inc.
  • PET polyethylene terephthalate
  • TR-8580 manufactured by Teijin Limited, intrinsic viscosity 0.8
  • PBT polybutylene terephthalate
  • TRB-H manufactured by Teijin Limited, intrinsic viscosity 1.07
  • MBS Methyl (meth) acrylate-butadiene-styrene copolymer
  • money Ace B-56 manufactured by Kanegafuchi Chemical Industry Co., Ltd.
  • E-1 butadiene-alkyl acrylate-alkyl methacrylate copolymer
  • paraloid EXL-2602 manufactured by Kureha Chemical Industry Co., Ltd.
  • E-2 a composite rubber in which a polyorganosiloxane component and a polyalkyl (meth) acrylate rubber component have an interpenetrating network structure; MEBUREN S-2001 (manufactured by Mitsubishi Rayon Co., Ltd.);
  • T talc
  • the flexural modulus was measured according to ASTM D790.
  • the fluidity was measured by an Archimedes spiral flow (thickness 2 mm, width 8 mm) at a cylinder temperature of 250, a mold temperature of 80, and an injection pressure of 98.
  • IMP a Archimedes spiral flow
  • the viscosity of the second polymerization vessel was 600, and the ratio of the ⁇ H terminal to all the terminal groups was 34.3 mol%. This was continuously extracted from the bottom of the second polymerization tank using a gear pump, and supplied to the third polymerization tank.
  • the third polymerization tank is a vertical stirring tank without a rectification tower. The ratio of the surface area having a liquid depth of 50 mm or less to the surface area of the polymer in the inside was 5% or less.
  • the third polymerization tank was maintained at a temperature of 270: 70 and a pressure of lTorr (133 Pa), and the oligocarbonate was further transesterified.
  • Example 2 a polycarbonate having a viscosity average molecular weight of 15,200 was obtained.
  • the ratio of OH terminals to all terminals was 12.0 mol%
  • the foreign substance content of 0.5 or more was 55,700 Zg
  • the b value of the pellet hue was 0.5.
  • inferior in foreign matter content was 12.0 mol%
  • the molar ratio between P OH and DPC in the steam generated from the third polymerization tank was measured to be 1: 0.09, which was the transesterification reaction with phenol removal and the ester with DPC removal reaction. Exchange reaction occurred only at a rate of 0.09.
  • Example 2 In the same manner as in Example 1, a post-treatment including deactivation of the polymerization catalyst, removal of low-boiling substances contained in the polymer, and addition of additives was performed.
  • the polycarbonate obtained contained 22 ppm of phenol and 81 ppm of DPC as a result of measurement of low boiling components.
  • the hue b value and the foreign matter content of 0.5 m or more were found at the exit of the third polymerization tank. Same as the measured value, viscosity average molecular weight is 15, 1
  • the OH terminal content was 12.5 mol%, which was almost the same as the value measured at the outlet of the third polymerization tank.
  • the number of molded parts before the occurrence of mold release failure was 122,300, and the number of continuous molded parts for the cloud was inferior to 108,800.
  • Oligocarbonate having a viscosity average molecular weight of 6,000 and a ratio of OH terminal to all terminal groups of 34.3 mol% was continuously obtained from the second polymerization tank in the same manner as in Example 1, and this was placed at the bottom of the second polymerization tank. Continuously withdrawn using a gear pump and transferred to the third polymerization tank Supplied. In the third polymerization tank, the same apparatus as in Example 1 was used. The temperature was maintained at 270 t, the pressure was 1 Torr (133 Pa), and 200 ⁇ 10 16 mol of tetramethylammoniumhydroxyl to bisphenol A was used.
  • the molar ratio of P OH to DPC in the steam generated from the third polymerization tank was measured to be 1: 2.17, which was a transesterification reaction involving dephenol conversion and a transesterification reaction involving dePCP reaction. Reaction occurred at a rate of 2.17.
  • Polymerization was carried out in the same manner as in Example 1 except that 0.698 mmol of DPC was used for 70 mmol of bisphenol AO.
  • the viscosity average molecular weight of the second polymerization tank was 6,000, and the OH terminal to all terminal groups was OH.
  • Oligocarbonate having a ratio of 51.4 mol% was continuously obtained, continuously extracted from the bottom of the second polymerization tank using a gear pump, and supplied to the third polymerization tank.
  • the same apparatus as in Example 1 was used, and at a temperature of 270 and a pressure of lTorr (133 Pa), oligocaponate was further polymerized.As a result, polycarbonate having a viscosity average molecular weight of 15,200 was obtained. Obtained.
  • the ratio of the OH terminal to the total terminal is 60.5 mol%, the foreign substance content of 0.5 m or more is 10,400 particles / g, and the b value of the pellet hue is -0.4. Met. The hue and foreign matter content did not show a significant decrease, but the OH terminal content showed a high value.
  • the molar ratio of Ph ⁇ H to DPC in the vapor generated from the third polymerization tank was measured to be 1: 0.081, which was transesterification with phenol removal and transesterification with DPC removal. The reaction occurred only at a rate of 0.081.

Description

明 細 芳香族ポリ力一ポネート、 その製造法およびそれを含む組成物 技術分野
本発明は芳香族ポリカーボネート、 その製造法およびそれを含む組成物に関す る。 さらに詳しくは、 色相に優れ、 成形を行った際に、 金型の汚れが少なく長期 間の連続、 精密成形が可能で成形物の曇り発生が少ない高品質の芳香族ポリカー ポネ一卜、 その製造法およびそれを含有する組成物に関する。
従来の技術
ポリカーボネートは、 従来、 ビスフエノール Aのごとき芳香族ジヒドロキシ化 合物とホスゲンとをメチレンクロライドのごとき有機溶剤の存在下に直接重合さ せる方法 (界面法) 、 あるいは、 芳香族ジヒドロキシ化合物と芳香族炭酸ジエス テルとをエステル交換反応させる方法 (溶融重縮合法)によって製造されている。 これらのうち、 溶融重縮合法は、 界面法と比較して安価にポリカーボネートを 製造することができるという利点を有するとともに、 ホスゲンのごとき毒性物質 を用いないので、 環境衛生上好ましい。
しかしながら、 溶融重合法は界面法と比較して重合速度が遅く、 重合を高温で 実施する必要があるため、 得られるポリカーボネートの品質が劣ったものになる という欠点を有していた。
すなわち、 芳香族ジヒドロキシ化合物と芳香族炭酸ジエステルとをエステル交 換せしめてポリカーポネ一トを製造する反応は既によく知られており、 芳香族ジ ヒドロキシ化合物の OH末端と芳香族炭酸ジエステルのフエニル末端とが反応し 芳香族モノヒドロキシ化合物を副生させつつ重合を進行させる方法が最も一般的 に使用されている。
この反応は、 OH末端基量に対し略等しいフエニル末端基量が存在する場合、 最も反応速度が速くなり、 目的とする重合度のポリマーを製造するための重合時 間は短くなる。 これとは逆に、 OH末端基量に対するフエニル末端基量の割合が 1から外れるほど反応速度は低下し、 重合時間は長くなる。 溶融重合は 2 5 0 を超える高温で実施する必要があるため、 重合時間はポリマーの熱劣化と密接な 繋がりを有し、 重合時間が短くなると、 得られるポリカーボネートの色相が向上 し、 熱劣化に起因する異物量も減少する。
一方、 ポリカーボネートの耐熱性や、 耐湿熱性や、 耐候性の観点からはポリ力 ーボネートの OH末端は少ない方が好ましいことが分っている。
従って、 〇H末端の少ないポリカーボネートを溶融重合で製造しょうとすると OH末端基量に対するフエニル末端基量の割合を 1よりもかなり大きくして重合 反応を行う必要が生じ、 反応速度が低下し、 得られるポリカーボネートの色相が 悪化し、 異物含有量が増加する結果をもたらすことになる。
これを避ける手段として、 〇H末端基量に対し略等しいフエニル末端基を存在 させて重合を行い、 全末端の略 5 0 %が〇H末端である、 目的とする重合度のポ リカ一ポネートを製造した後、 末端封止剤を用いてポリマーの OH末端を封止、 減少させる方法が提案されている。 しかしながら、 この方法では高価な封止剤を 使用するという欠点を有するばかりではなく、 末端封止の過程でポリマーが劣化 したり、 重合で調整した重合度が変化したりする問題があり得る。
芳香族ジヒドロキシ化合物と芳香族炭酸ジエステルとのエステル交換の別の形 態として、 芳香族ジヒドロキシ化合物に対し 2倍モルの芳香族炭酸ジエステルを 用い、 第 1段階で芳香族ジヒドロキシ化合物の両末端に芳香族炭酸ジエステルが エステル交換により縮合したオリゴマーを作成し、 第 2段階で該オリゴマーをェ ステル交換しジァリールカーボネート (芳香族炭酸ジエステル) を副生させつつ 重合を行う 2段階反応も知られている。 この方法に従えば、 〇H末端含有量の極 めて少ないポリ力一ポネ一トを得ることができる。
しかしながら、 ジァリールカーボネートの脱離を伴うエステル交換反応は芳香 族モノヒドロキシ化合物の脱離を伴うエステル交換反応に比べて反応が起り難ぐ このため、 一層高い温度と長い重合時間とを必要とし、 また、 使用する触媒もリ チウムアルミニウムハイドライドゃテトラェチルアルミニウムポロハイドライド といった強力な塩基性触媒を必要とし、 このため、 得られるポリカーボネートの 色相、 異物含有量といった品質は芳香族モノヒドロキシ化合物の脱離を伴うエス テル交換反応で得られるポリカーボネートに比較して劣ったものとなる。
また、 特公昭 4 7 - 1 4 7 4 2号公報および特公昭 4 7 - 1 4 7 4 3号公報に は芳香族ジヒドロキシ化合物と芳香族炭酸ジエステルとのエステル交換反応によ り初期縮合物を生成させ、 これを第 4級アンモニゥム化合物の存在下に後縮合反 応せしめることにより、 後縮合反応における芳香族モノヒドロキシ化合物および ジァリールカーボネートの脱離反応を促進せしめ後重縮合時間を短縮させて品質 の優れたポリカーボネートを製造する方法が示されている。
この方法では第 4級アンモニゥム化合物はジァリールカーボネートの脱離を伴 うエステル交換反応を促進する効果を有するため、 芳香族ジヒドロキシ化合物に 対する芳香族炭酸ジエステルの使用比率を 1 . 5倍モルまで高めることができる ことや、 後重合段階で第 4級アンモニゥム化合物を添加することが効果的である ことが記載されている。
しかしこの方法は初期重合とは別に、後期重合でも触媒を加えなければならず、 また、 本発明者等の検討の結果、 第 4級アンモニゥム化合物は耐熱性が低ぐ 重 合条件では速やかに分解されることが分ったため、 第 4級アンモニゥム化合物の 触媒としての有効性を保つには反応系に継続して添加することが必要となるとい う欠点を有している。
さらにこの方法では得られるポリカーボネートの OH末 ¾ ^有量に関しては何 ら記載がない。 このことは OH末端含有量が少ないポリカーポネ一トを製造する ためには重大な問題を有する。 すなわち、 後期重合でジァリールカーボネートの 脱離を伴うエステル交換反応を促進させた場合、 初期縮合物のフエニル末端が選 択的に消費されるため、 得られるポリカーボネートの OH末端含有率は初期縮合 物よりも増大する結果をもたらす。
このため、 溶融重合で〇H末端含有率の少ないポリカーボネートを製造するェ 業的手段として、 ジァリールカーボネートの脱離を伴うエステル交換反応は通常 使用されていない。
このように、 芳香族ジヒドロキシ化合物と芳香族炭酸ジエステルとを溶融重合 させて末端 OH含有率が少なく、 かつ、 色相や異物含有量といった点で品質の優 れたポリカーボネートを製造することは困難なことである。 また、 重合度の高い ポリカーボネートを溶融重合で製造する場合は、 重合度の上昇と共に末端基含有 量が低下するため、 エステル交換反応がさらに起り難くなり、 低い末端 OH基含 有率と優れた色相や少ない異物含有量といった品質を兼ね備えたポリ力一ポネー トを得ることは一層困難となる。
特開平 9一 2 7 8 8 7 7号公報には、 ジフエノールおよび力ルポン酸ジァリ一 ルエステルを触媒の存在下にエステル交換して芳香族ポリ力一ポネートを製造す るに際し、 第 1段階で原料混合物を 1 0 0 P a〜常圧下に 2 9 0でまで加熱して 生成するモノフエノールを留去しそして 1 0〜 3 5モル%の〇H末端基含量のォ リゴカーボネートを生成せしめ、次いで第 2段階で 2 4 0〜3 4 0 、 1 - 5 0 , O O O P a下 1 0〜6 0分間、 自己清浄化高粘度反応器中で重縮合してポリ力一 ポネートを製造する方法が開示されている。 しかしこの方法は芳香族モノヒドロ キシ化合物を副生させつつ重合を進行させるものであり、 ジァリ一ルカ一ポネ一 卜の脱離を伴う反応については何も記載されていない。
また、 ポリ力一ポネートは優れた光学特性と成形性と機械特性とを併せ持ち、 記録材料の基板等の用途に広く使用されているが、 長時間に亘り成形を行うと金 型に汚れを生じ、記録材料表面のグループと呼ばれる微細な溝の転写性が低下し、 記録材料の不良を引き起こすという問題があった。
このため、 一定時間の経過後、 設備を休止し、 金型を清掃する必要があり、 設 備稼働率などで成形コストが上昇するので改善が求められていた。 さらに、 成形 物にクラウドと呼ばれる曇りが発生する現象が認められ、 クラウドを生じた基板 は記録材料に使用できないため、 その減少が求められていた。
発明の開示
そのため芳香族ジヒドロキシ化合物と芳香族炭酸ジエステルとのエステル交換 反応を用いた溶融重合で、 末端 OH基含有量が少なくかつ品質の優れたポリ力一 ポネートを製造する方法を見つけるべく鋭意努力を重ねた結果、 エステル交換反 応として、 従来主として考えられてきた芳香族モノヒドロキシ化合物の脱離を伴 うエステル交換反応以外にジァリールカーボネートの脱離を伴うエステル交換反 応を一定割合で併用することで、 末端 OH基含有量の少ないポリカーボネートを 従来よりも短時間で得ることができ、これによつて品質も向上することを見出し、 さらに、 このように反応を制御して得られたポリカーボネートは従来のポリカー ポネートと比較して金型汚れが少なく、 クラウドの発生も少ないという予想でき ない特徴を有することを見出し、 本発明に至った。
すなわち、 本発明の目的は、 芳香族ジヒドロキシ化合物と芳香族炭酸ジエステ ルとを溶融重縮合反応させることにより得られ、 末端 OH基含有量が少なく、 色 相に優れ異物含有量が少なく、 かつ、 金型汚れが少なく、 連続した精密成形性に 優れ、 クラウドの発生も少ない、 従来にない優れた品質を有するポリカーボネー トを製造する方法を提供することにある。
本発明の他の目的は、 芳香族ジヒドロキシ化合物と芳香族炭酸ジエステルとを 触媒の存在下、 溶融重合させる際に、 芳香族モノヒドロキシ化合物の脱離を伴う エステル交換反応とジァリ一ルカ一ポネ一トの脱離を伴うエステル交換反応とを 一定の割合で生じさせることにより、 〇H末端含有量が少なく、 色相や熱安定性 に優れ、 異物含有量が少なく、 金型汚れが少なく、 クラウドを発生し難い高分子 量のポリカーポネ一トを製造する方法を提供することにある。
本発明のさらに他の目的は、 本発明方法により製造される、 上記のごとき優れ た種々の特性を備えた芳香族ポリカーポネ一トを提供することにある。
本発明のさらに他の目的は、 本発明の上記のごとき優れた種々の特性を備えた 芳香族ポリカーボネートとその他の特定成分からなる、 上記芳香族ポリカーポネ 一卜の優れた特性を生かした組成物を提供することにある。
本発明のさらに他の目的および利点は以下の説明から明らかになろう。
本発明によれば、 本発明の上記目的および利点は、 第 1に、
( 1 ) 芳香族ジヒドロキシ化合物と芳香族炭酸ジエステルとをエステル交換反 応せしめて粘度平均分子量が少なくとも 4 , 0 0 0でありかつ末端ヒドロ キシル基濃度が全末端基の 1 5〜4 5モル%である第 1芳香族ポリカー ボネ一卜を生成し、 次いで ( 2 ) この第 1芳香族ポリカーボネートを、 芳香族モノヒドロキシ化合物を脱離 する第 1エステル交換反応および芳香族炭酸ジエステルを脱離する第 2 エステル交換反応を伴う重合に、 該芳香族モノヒドロキシ化合物対該芳香 族炭酸ジエステルのモル比が 1対 0 . 1〜1の生成割合となるように、 付 して、 粘度平均分子量が第 1芳香族ポリカーボネートの粘度平均分子量よ りも大きくかつ 1 0 , 0 0 0以上でありしかも全末端基に対する末端ヒド 口キシル基の濃度が第 1芳香族ポリカーボネートの末端ヒドロキシル基 の濃度よりも低い第 2芳香族ポリカーボネートを生成せしめる。
ことを特徴とする芳香族ポリカーボネートの製造法によって達成される。
本発明によれば、 本発明の上記目的および利点は、 第 2に、
本発明の上記方法で製造された、 末端ヒドロキシル基濃度が全末端基の 3 5モ ル%以下であり、 0 . 5 m以上の粒子の含有量が 5 0, 0 0 0個 8以下でぁ り、 そして粘度平均分子量が 1 0, 0 0 0以上である、
ことを特徵とする芳香族ポリ力一ポネートによって達成される。
本発明によれば、 本発明の上記目的および利点は、 第 3に、
本発明の上記方法で製造された芳香族ポリカーボネート並びに、 脂肪族アルコ ールと脂肪族カルボン酸とのエステル、 無機充填剤およびポリカーボネート以外 の熱可塑性樹脂よりなる群から選ばれる少なくとも 1種からなる組成物によって 達成される。
図面の簡単な説明
図 1は、 1軸反応器の断面図である。
図 2は、 図 1の AA断面図である。
図 3は、 図 1中の尾翼付き支持羽根の例を示す図である。
図 4は、 2軸反応器の斜視図である。
図 5は、 2軸反応器の平面断面図である。
図 6は、 2軸反応器の断面図である。
図 7は、 図 5の A領域に使用する攪拌単位の詳細図である。
図 8は、 図 5と図 1 2の B領域に使用する攪挣単位の組立図である。 図 9は、 図 5と図 1 2の B領域に使用する攪拌単位を示す図である。
図 1 0は、 図 5の B領域に使用する攪拌単位を示す図である。
図 1 1は、 図 1 2の A領域に使用する攪拌単位の詳細図である。
図 1 2は、 2軸反応器の断面図である。
図 1 3は、 2軸反応器の断面図である。
図 1 4は、 1軸反応器の表面積算出のための説明図である。
図 1 5は、 2軸反応器のベントの詳細図である。
発明の好ましい実施形態
以下、 本発明について説明する。 まず、 本発明方法について説明する。
工程 (1 ) では、 芳香族ジヒドロキシ化合物と芳香族炭酸ジエステルとをエス テル交換反応せしめて粘度平均分子量が少なくとも 4, 0 0 0でありかつ末端ヒ ドロキシル基濃度が全末端基の 1 5〜4 5モル%である第 1芳香族ポリカーポネ 一卜を生成せしめる。
上記芳香族ジヒドロキシ化合物としては、 例えばビス (4ーヒドロキシフエ二 ル) メタン、 2 , 2—ビス (4ーヒドロキシフエニル) プロパン、 2, 2—ビス ( 4—ヒドロキシ— 3—メチルフエニル) プロパン、 4, 4—ビス (4—ヒドロ キシフエニル) ヘプタン、 2, 2—ビス (4—ヒドロキシ— 3, 5—ジクロロフ ェニル) プロパン、 2, 2—ビス (4—ヒドロキシ— 3 , 5—ジブロモフエニル) プロパン、 ビス (4—ヒドロキシフエニル) オキサイド、 ビス (3, 5—ジクロ 口— 4—ヒドロキシフエニル)オキサイド、 p , p '—ジヒドロキシジフエニル、 3 , 3, 一ジクロ口— 4, 4, 一ジヒドロキシジフエニル、 ビス (ヒドロキシフ ェニル) スルホン、 レゾルシノール、 ハイドロキノン、 1, 4ージヒドロキシ一 2 , 5—ジクロロベンゼン、 1 , 4—ジヒドロキシ一 3—メチルベンゼン、 ビス ( 4—ヒドロキシフエニル) スルフイド、 ビス (4—ヒドロキシフエニル) スル ホキシド等が用いられる。 これらのうち、 2 , 2—ビス (4—ヒドロキシフエ二 ル) プロパン (通称:ビスフエノール A) が好ましい。
上記芳香族炭酸ジエステルとしては、 例えばジフエ二ルカーボネート、 ジトリ —ルカ一ボネート、 ビス (クロ口フエニル) カーボネート、 m—クレジルカーポ ネート、 ジナフチルカーボネート、 ビス (ジフエニル) カーボネート等が用いら れる。 これらのうち、 特にジフエ二ルカーボネートが好ましい。
本発明で用いられるポリカーボネートは、 必要に応じ、 共重合成分として、 例 えば、 エチレングリコール、 1, 4一ブタンジオール、 1 , 4—シクロへキサン ジメタノール、 1 , 1 0—デカンジオールのごとき脂肪族ジオールを含有しても よく、 また例えば、 コハク酸、イソフタル酸、 2 , 6—ナフ夕レンジカルボン酸、 アジピン酸、 シクロへキサンカルボン酸、 テレフタル酸のごときジカルボン酸成 分や、 例えば、 乳酸、 p—ヒドロキシ安息香酸、 6—ヒドロキシー 2 _ナフトェ 酸のごときォキシ酸成分を含有してもよい。
本発明において、 溶融重合に使用されるエステル交換触媒としては、 アルカリ 金属化合物、 アルカリ土類金属化合物、 含窒素塩基性化合物を使用することがで きる。
アル力リ金属化合物としては、例えばアル力リ金属の水酸化物、炭酸水素化物、 炭酸塩、 酢酸塩、 硝酸塩、 亜硝酸塩、 亜硫酸塩、 シアン酸塩、 チォシアン酸塩、 ステアリン酸塩、 水素化ホウ素塩、 安息香酸塩、 リン酸水素化物、 ビスフエノー ル、 フエノールの塩等が挙げられる。 その具体例としては、 τΚ酸化ナトリウム、 水酸化カリウム、 水酸化リチウム、 炭酸水素ナトリウム、 炭酸水素カリウム、 炭 酸水素リチウム、 炭酸ナトリウム、 炭酸カリウム、 炭酸リチウム、 酢酸ナトリウ ム、 酢酸カリウム、 酢酸リチウム、 硝酸ナトリウム、 硝酸カリウム、 硝酸リチウ ム、 亜硝酸ナトリウム、 亜硝酸カリウム、 亜硝酸リチウム、 亜硫酸ナトリウム、 亜硫酸カリウム、 亜硫酸リチウム、 シアン酸ナトリウム、 シアン酸カリウム、 シ アン酸リチウム、 チォシアン酸ナトリウム、 チォシアン酸カリウム、 チォシアン 酸リチウム、 ステアリン酸ナトリウム、 ステアリン酸カリウム、 ステアリン酸リ チウム、 水素化ホウ素ナトリウム、 水素化ホウ素カリウム、 水素化ホウ素リチウ ム、 フエニル化ホウ酸ナトリウム、 安息香酸ナトリウム、 安息香酸カリウム、 安 息香酸リチウム、 リン酸水素ジナトリウム、 リン酸水素ジカリウム、 リン酸水素 ジリチウム、ビスフエノール Αのジナトリウム塩、ジカリウム塩、ジリチウム塩、 フエノールのナトリウム塩、 カリウム塩、 リチウム塩等が挙げられる。 また、アル力リ土類金属化合物としては、例えばアル力リ土類金属の水酸化物、 炭酸水素化物、 炭酸塩、 酢酸塩、 硝酸塩、 亜硝酸塩、 亜硫酸塩、 シアン酸塩、 チ オシアン酸塩、 ステアリン酸塩、 安息香酸塩、 ビスフエノール、 フエノールの塩 等が挙げられる。これらの具体例としては、水酸化カルシウム、水酸化バリウム、 水酸化ストロンチウム、 炭酸水素カルシウム、 炭酸水素バリウム、 炭酸水素スト ロンチウム、 炭酸カルシウム、 炭酸バリウム、 炭酸ストロンチウム、 酢酸カルシ ゥム、 酢酸バリウム、 酢酸ストロンチウム、 硝酸カルシウム、 硝酸バリウム、 硝 酸ストロンチウム、亜硝酸カルシウム、亜硝酸バリウム、亜硝酸ストロンチウム、 亜硫酸カルシウム、 亜硫酸バリウム、 亜硫酸ストロンチウム、 シアン酸カルシゥ ム、 シアン酸バリウム、 シアン酸ストロンチウム、 チォシアン酸カルシウム、 チ オシアン酸バリウム、 チォシアン酸ストロンチウム、 ステアリン酸カルシウム、 ステアリン酸バリゥム、ステアリン酸スト口ンチウム、水素化ホウ素カルシウム、 水素化ホウ素バリウム、 水素化ホウ素ストロンチウム、 安息香酸カルシウム、 安 息香酸バリウム、 安息香酸ストロンチウム、 ビスフエノール Aのカルシウム塩、 ノ リウム塩、 ストロンチウム塩、 フエノールのカルシウム塩、 ノ リウム塩、 スト ロンチウム塩等が挙げられる。
本発明においては、 所望により、 触媒のアルカリ金属化合物として、 (i) 周 期律表第 14族の元素のアート錯体のアルカリ金属塩または (ii) 周期律表第 1 4族の元素のォキソ酸のアルカリ金属塩を用いることができる。 ここで周期律表 第 14族の元素とは、 ゲイ素、 ゲルマニウム、 スズのことをいう。
上記 (i) の周期率表第 14族元素のアート錯体のアルカリ金属塩としては、 特開平 7— 268091号公報に記載のものをいうが、 具体的には、 ゲルマニウ ム (Ge) の化合物として、 NaGe (OMe) 5、 NaGe (OE t) 5、 Na Ge (OP r) 5、 NaGe (OBu) 5、 NaGe (OPh) 5、 L i Ge (〇 Me) 5、 L i Ge (OBu) 5、 L i Ge (OPh) 5を挙げることができ、 ス ズ (Sn) の化合物として、 NaSn (OMe) 3、 NaSn (OMe) 2 (OE t) 、 NaSn (OP r) 3、 NaSn (〇一 n— C6H13) 3、 NaSn (〇M e) 5、 NaSn (〇E t) 5、 NaSn (OBu) 5、 NaSn (〇一 n— C12 H25) 5、 NaSn (OE t) 3、 Na S n (OPh) 5、 Na S nBu2 (〇Me) 3を挙げることができる。
また、 上記 (ii) の周期律表第 14族元素のォキソ酸のアルカリ金属塩として は、例えば、 ゲイ酸(s i l i c i c ac i d) のアルカリ金属塩、 スズ酸 (s t an i c a c i d) のアルカリ金属塩、 ゲルマニウム (Π) 酸 (g e rma nou s ac i d) のアルカリ金属塩、 ゲルマニウム (IV) 酸 (g e rma n i c ac i d) のアルカリ金属塩を好ましいものとして挙げることができる。 ケィ酸のアルカリ金属塩は、例えば、モノゲイ酸(mono s i 1 i c i c a c i d) またはその縮合体の酸性あるいは中性アルカリ金属塩であり、 その具体 例としては、 オルトケィ酸モノナトリウム、 オルトゲイ酸ジナトリウム、 オルト ゲイ酸トリナトリゥム、 オルトゲイ酸テトラナトリゥムを挙げることができる。 スス のアルカリ金属塩は、 例えば、 モノスズ (mono s t an i c a c i d) またはその縮合体の酸性あるいは中性アルカリ金属塩であり、 その具体 例としてはモノス;mジナトリウム塩(Na2Sn03- xH2〇、 x=0〜5)、 モノスス テトラナトリウム塩 (Na4Sn〇4) を挙げることができる。
ゲルマニウム(Π)酸(ge rmanou s ac i d)のアルカリ金属塩は、 例えばモノゲルマニウム酸またはその縮合体の酸性あるいは中性アルカリ金属塩 であり、 その具体例としてはゲルマニウム酸モノナトリウム塩(NaHGe02) を挙げることができる。
ゲルマニウム GV) 酸 (ge rman i c ac i d) のアルカリ金属塩は、 例えば、 モノゲルマニウム (IV) 酸またはその縮合体の酸性あるいは中性アル力 リ金属塩であり、 その具体例としてはオルトゲルマニウム酸モノリチウム塩 (L i H3Ge04) 、 オルトゲルマニウム酸ジナトリウム塩、 オルトゲルマニウム酸 テトラナトリウム塩、 ジゲルマニウム酸ジナトリウム塩 (Na2Ge 205) 、 テ トラゲルマニウム酸ジナトリウム塩 (Na2Ge49) 、 ペン夕ゲルマニウム酸 ジナトリウム塩 (Na2Ge50lx) を挙げることができる。
触媒としてのアル力リ金属化合物またはアル力リ土類金属化合物は、 当該触媒 中のアル力リ金属元素またはアル力リ土類金属元素が芳香族ジヒドロキシ化合物 1モル当り 1 X 10— 8〜5 X 10— 5当量となる割合で好ましく使用される。より 好ましい割合は、同じ基準に対し 5 X 10一7〜 1 X 10— 5当量となる割合である。 当該触媒中のアルカリ金属元素量またはアルカリ土類金属元素量が芳香族ジヒ ドロキシ化合物 1モル当り 1 X 10— 8〜5 X 10— 5当量の範囲を逸脱すると、得 られるポリ力一ポネートの諸物性に悪影響をおよぼしたり、 また、 エステル交換 反応が十分に進行せず高分子量のポリカーボネートが得られない等の問題が生じ ることがあるので、 好ましくない。
また、 触媒としての含窒素塩基性化合物としては、 例えば、 テトラメチルアン モニゥムヒドロキシド (Me4NOH) 、 テトラエチルアンモニゥムヒドロキシ ド (E t4N〇H) 、 テトラプチルアンモニゥムヒドロキシド (Bu4NOH) 、 ベンジルトリメチルアンモニゥムヒドロキシド [Φ— CH2 (Me) 3N〇H] 、 へキサデシルトリメチルアンモニゥムヒドロキシド等のアルキル、 ァリール、 ァ ルキルァリ一ル基等を有するァンモニゥムヒドロォキシド類、トリェチルァミン、 トリプチルァミン、 ジメチルペンジルァミン、 へキサデシルジメチルァミン等の 3級ァミン類、 あるいは、 テトラメチルアンモニゥムポロハイドライド (Me4 NBH4) 、 テトラプチルアンモニゥムボロハイドライド (Bu4NBH4) 、 テ トラプチルアンモニゥムテトラフエ二ルポレート (Me4NBPh4) 、 テトラブ チルアンモニゥムテトラフエ二ルポレート (Bu4NBPh4) 等の塩基性塩を挙 げることができる。
上記含窒素塩基性化合物は、 含窒素塩基性化合物中のアンモニゥム窒素原子が 芳香族ジヒドロキシ化合物 1モル当り 1 X 10— 5〜5 X 10— 3当量となる割合 で用いるのが好ましい。より好ましい割合は同じ基準に対し 2 X 10— 5〜5X 1 0一4当量となる割合である。特に好ましい割合は同じ基準に対し 5 X 10一5〜 5 X 1 CI—4当量となる割合である。
本発明において、 上記のようなエステル交換触媒は工程 (1) のエステル交換 反応の開始時に加えればよぐ重合反応の進行に伴って、例えば後述する工程(2) の後期重縮合において、 新たに加える必要は特にない。
工程 (1) のエステル交換反応によれば、 粘度平均分子量が少なくとも 4, 0 0 0でありかつ末端ヒドロキシル基濃度が全末端基の 1 5〜4 5モル%である第 1芳香族ポリカーボネートが生成される。 粘度平均分子量は、 好ましくは 4 , 0 0 0以上 1 0, 0 0 0未満であり、 より好ましくは 4 , 0 0 0以上 8 , 0 0 0未 満である。 また末端ヒドロキシル (OH) 基濃度は全末端基の 2 0〜4 0モル% である。
第 1芳香族ポリカーボネートの末端 OH基含有率を制御する操作は回分設備を 使用する場合と連続設備を使用する場合で若干異なる。
すなわち、 回分設備を使用する場合は、 重合槽内の反応物の分子量や OH基含 有率は重合槽内で連続的に変化する。 このため、 重合槽内の反応物をサンプリン グにより分析し、 エステル交換反応によって発生する芳香族モノヒドロキシ化合 物を主体とする副生成物量と反応物の分子量との関係、 および原料として使用し た芳香族炭酸ジエステルと芳香族ジヒドロキシ化合物とのモル比と重合槽内の反 応物の〇^^末¾ ^有率との関係をあらかじめ測定しておくことにより、 第 1芳香 族ポリカーボネートの分子量と O H基含有率とを所定の範囲に維持することがで きる。
回分設備の場合は任意の分子量で反応槽内の反応物の OH含有率をチェックす ることが可能である。
連続設備を使用する場合は、 複数の反応器を直列に配置して重合を行うが、 反 応物の粘度平均分子量は重合槽間でステップ状に変化する。 このため、 反応器の 出口における反応物の粘度平均分子量が 4, 0 0 0以上となる条件で操作されて いる少なくとも 1基の重合槽の反応器出口における反応物の OH末端含有率を 1 5〜4 5モル%の間に維持する必要がある。
オリゴマーの OH末端含有率は回分設備か連続設備かを問わず、 通常、 芳香族 ジヒドロキシ化合物と芳香族炭酸ジエステルとのモル比を調整することによって 制御され、 その割合は使用する装置の特性によって変化するが、 一般的には、 芳 香族ジヒドロキシ化合物 1モルに対して芳香族炭酸ジエステルを 1 . 0 0 - 1 .- 1モル使用する割合が選定される。 選定された原料使用比率は 0 . 5 %の精度で 維持することが好ましい。 オリゴマ一を製造するために使用する反応器の形式には特に制限がなく、 一般 に知られた反応器を使用することができるが、縦型攪拌槽が好ましく使用される。 また、 原料として使用する芳香族炭酸ジエステルの系外への留出を抑える目的で 精留塔を付設した縦型攪拌槽も好ましく使用される。
オリゴマーを製造するために使用される反応器の材質に特に制限はないが、 少 なくとも反応液と接触する反応器の内面は通常ステンレススチールやニッケルな どの鉄分の含有量の少ない材質が使用される。
オリゴマーを製造するための反応温度は一般に知られた反応温度を使用するこ とができ、通常は 100〜300で、好ましくは 180〜270でが用いられる。 またこの時の反応圧力としては、 通常、 常圧から 133Pa (ImmHg) 、 好 ましくは 66, 500 P a (50 OmmHg)〜1, 330Pa (1 OmmHg) が用いられる。
また、 工程 (1) で原料として使用される芳香族ジヒドロキシ化合物と芳香族 炭酸ジエステルとは、 工程 (1) を実施する前に、 それらの混合物として、 芳香 族ジヒドロキシ化合物の融点以下の温度であらかじめフィルタ一で濾過して使用 するのが望ましい。
フィルタ一としては、 公称濾過精度 0. 1〜1 mである金属繊維からなる濾 過層を有するものが好ましく用いられる。 このようにすることで、 重縮合によつ て得られるポリカーボネートの異物数を低減させることができると共に、 色相を 向上させることができる。 この原因は定かではないが、 1 m以上の異物の中に は、 ポリカーボネートの色相を悪化させる物質が存在すると共に、 反応阻害物質 が多く存在し、 それらを取り除くことによって重縮合反応速度が向上し、 よって 熱履歴の少ない色相の良いポリカーボネートが得られるものと考えられる。
本発明に使用される上記フィルターは S U Sなどの原料混合物に不活性な金属 繊維で構成された濾過層を有するフィルタ一であり、 このようなフィルタ一とし ては金属繊維を湿式または乾式で抄紙した金属不織布ゃ該不織布を焼結したフィ ルターを挙げることができる。 このような金属繊維フィルタ一はメンブランフィ ルターと比較して耐熱性ゃ耐薬品性に優れるだけでなく、 フィルター寿命も長く なることが分った。 この原因は明確ではないが、 メンブランフィルタ一は濾材の 表面で異物を捕集するのに対し、 金属繊維フィルタ一は厚み全体で異物を捕集す るため、 捕集容量が増大するものと推定される。 このため、 金属繊維フィルタ一 を用いた場合、 各々の原料をあらかじめ濾過しなくても 0 . l〜l z mという細 かい目開きのフィルターを使用しても長時間濾過することが可能となる。
次に、 本発明方法の工程 (2 ) では、 工程 (1 ) で生成された第 1芳香族ポリ 力一ポネートをさらに重合せしめる。
このとき、 重合反応における芳香族モノヒドロキシ化合物を脱離する第 1エス テル交換反応および芳香族炭酸ジエステルを脱離する第 2エステル交換反応を、 該芳香族モノヒドロキシ化合物対該芳香族炭酸ジエステルのモル比が 1対 0 . 1
〜1、 好ましくは 0 . 2〜0 . 7の生成割合となるように行う。
このような割合で芳香族モノヒドロキシ化合物の脱離反応とジァリールカーボ ネート脱離反応が起っていることは、 反応槽から発生する副生物蒸気を組成変更 させることなく捕集し、 捕集物に含まれる芳香族モノヒドロキシ化合物とジァリ 一ルカ一ボネートとのモル比を測定することによって確認することができる。 この範囲よりもジァリールカーボネート脱離反応の割合が大きいと得られるポ リカーポネートの OH末端含有率が大きくなり好ましくない。 また、 この範囲よ りもジァリールカーボネート脱離反応の割合が小さくなると重合に要する時間が 長くなり、 得られるポリカーボネートの品質が低下するので好ましくない。 上記工程 (2 ) の重合反応の第 1エステル交換反応と第 2エステル交換反応を 上記のごとく進行させるには、 薄膜形成性に優れる反応器を使用するのが好まし い。 かかる反応器としては、 例えば反応器内のポリマーの表面積のうち、 5 0 m m以下の液深を有するポリマーの表面積を 5 0 %以上に制御しうるものが好まし い。
このような 5 0 mm以下の液深を有する薄膜は 5 0 mm以下のクリアランスを 有するスクレーパー等で、 反応器の鏡板や胴壁といった器壁の、 スクレーパー等 に対向する部分に反応物を塗布する方法や、 反応器内の、 円板、 支持羽根、 攪拌 単位、 スクレーパーといった攪拌翼の構成要素 (以下単に攪拌翼構成要素という 場合がある) やポリマー流下用のワイヤーのような支持体に沿って反応物を流下 する方法や、 反応物を自由落下させる方法によって形成することができる。 なお、 本明細書で攪拌翼とは、 横型 1軸反応器では、 端部円板、 中空円板、 支 持羽根等の攪拌翼構成要素を含んでおり、 横型 2軸反応器の場合は、 攪拌単位等 の攪拌翼構成要素を含む攪拌機能を有する部材を意味する。
また、 「攪拌軸方向」は攪拌翼が回転するときの回転の中心となる線を意味し、 攪拌軸が実際に存在することを意味するとは限らない。 このことは 「横型 2軸反 応器」 についても同様であり、 この場合の 「2軸」 も、 攪拌翼が 2セットあるこ とを意味し、 攪拌軸が実際に存在することを意味するとは限らない。
ここで、 ポリマー表面は実際の反応状態においては副生する低沸点物の蒸発に よって多くの気泡を含み不規則に変形しているが、 本発明の液深算定や表面積を 算定するに当たっては気泡による変形を無視し、 なだらかな平面を形成するもの として取り扱い、液深とはこのようななだらかな平面を彼定した場合、該平面(湾 曲していてもよい) に垂直に液深を測定した場合の液厚みを指す。
例えば、 反応器壁にポリマーを塗布する場合は器壁に対向する支持羽根のクリ ァランスを 5 O mm以下とすることにより、 本発明の実施に適した薄膜が形成で き、 薄膜の表面積は反応物が塗布された器壁表面積に相当することとなる。 また、 反応器空間に設置された支持体に沿って液膜状やストランド状に流下す る場合は供給量 V (mmVm i n) と平均流下時間 t (m i n ) の積を平均流 下長 G (mm) および支持体数 Mで除し、 平均断面積 S (mm2) を求め、 支持 体が面で反応物と接触する場合は Sを流下長に垂直な支持体の濡れ幅 J (mm) で除し、 液深を求める。
支持体がワイヤーなどであり、 実質的に線で反応物と接触する場合は Sを円と 仮定し、 S = 7T r 2より相当する半径を求め液深とする。 この方法では供給量や 支持体の形状、 長さ、 本数を調整することにより液深を本発明に適した 5 O mm 以下にすることが可能であり、 その表面積は G X J X Mまたは 2 7T r GMに相当 する。
反応物を自由落下させて液膜を形成する場合は、 多孔板より反応物を押し出し 自由落下させる場合と上部に拘束されない空間を有する容器より反応物を流し出 し、 自由落下させる場合とに分れる。
前者は反応物を押し出す多孔板の孔形と同じ断面を有する落下物が得られると 考え、 液深および表面積を算出する。 例えば、 孔形が円の場合は孔の半径 rが液 深に相当し、 表面積は孔数を M、 落下長を Gとして、 2 ?r r GMで求められる。 後者の場合、 形成される液膜の厚みは 1 0 O mm以下であり、 液深はその 1ノ 2の 5 O mm以下と見なせる。 液膜の表面積は落下長を G、 液膜幅を】、 液膜数 を Mとすると 2 MG Jで表される。
これを添付図面の図 1および図 1 4を例にとってさらに具体的に説明する。 図 1 4は図 1に示す横型反応器の攪拌軸方向の断面図を示しており、 1は反応 器の胴壁、 1 1は中空円板、 1 3は中空円板 1 1の間に攪拌軸方向に設置された 支持羽根を示す。
図 1 4において、 支持羽根 1 3は反応胴壁 1と狭い間隔を保って設置されてお り、 支持羽根の外側 (胴壁側) 端面によって反応液を胴壁に塗布し薄膜を形成す ると共に、 反応器胴壁 1と複数の中空円板 1 1と中空円板間に設置された支持羽 根 1 3とで形成される空間が、 上部に拘束されない空間を有する容器に相当し、 支持羽根の回転に伴い該空間で反応液を汲み上げ、 次いで、 支持羽根の内側 (反 応器の中心側) 端面より自由落下させて薄膜を形成する機能を有する。
この場合、 自由落下液膜を形成し得る支持羽根の位置は反応液搔き揚げ開始点 (y - zの位置) から支持羽根が鉛直となる f点までの間の任意の位置を取るこ とができるが、 本発明の自由落下液膜の表面積計算においては、 f点に支持羽根 がある場合の自由落下長の総和 (MG) を求め、 自由落下薩の表面積を算出す る。
すなわち、 支持羽根と支持羽根外端 eと中心 cを結ぶ線が成す角 (支持羽根取 り付け角) を δとすると Z a c fは δ + 9 0 ° となり、 反応器胴径 中空円板外 径 =D、 支持羽根幅を W、 中空円板内径を dとすると、 f点の支持羽根から落下 する液膜の落下長は (1ノ2 ) · D · s i n ( a c f ) -W · s i n (Z a c ί - δ ) + ( 1 / 2 ) · dとなる。 中空円板に M枚の支持羽根が設置されている場合、 a f間に別の複数 (i個) の支持羽根が存在でき、 その点を X ,とすると c は δ + 90— 360 · i /M ( i
Figure imgf000018_0001
) となり、 各々の支持羽根から落下す る液膜の落下長は (1/2) · D · s i n (Z a c x;) -W · s i n (Z a c x,-(5) + (1/2) - dとなる。
図 14では 8個の支持羽根を有する場合が示されており、 δ = 45° の場合は i =3、 自由落下長の総和 (MG) は 1. 20— +2(1となり、 支持羽根の奥 行き幅 (図 1における中空円板間の長さ) を Jとすると自由落下する薄膜の総表 面積 (八 は2】 (1. 2D— W+ 2 d) となる。
また、 支持羽根によって反応器胴壁に塗布された薄膜の面積 (As) は反応液 面と胴壁の交点を y, zとすると、 J (πΌ - (36 O-Zy c z) /360) となる。 ただし、 Zyc z = 2 · c o s—1 (d/D) である。
反応器の下部にホールドされる液深が 50 mmを超える反応液の表面積(A V) は J (D2-d2) 1/2で表されるから、 反応器内のポリマー表面積の内、 50m m以下の液深を有する表面積の割合は (As +Af) / (As +Af +Av) よ り計算することができる。 なお、 薄膜の形成される面としては反応液面より上に ある中空円板面や支持羽根面も該当するが、 通常はこれらを無視して計算してよ い。
本発明においては反応器内の全液量 (V) を反応液全表面積 (S) で除した V ZSはさほど重要ではなく、 薄膜形成部分が全体に占める割合が重要である。 こ の理由は定かではないが、 エステル交換反応によって発生する芳香族モノヒドロ キシ化合物と芳香族炭酸ジエステル (以下ジァリ一ルカ一ボネ一トということが ある) とを比較した場合、 後者の分子サイズが一般に大きいため、 反応液中をこ れらのエステル交換副生物が拡散する場合、 液深の増加によって、 分子サイズの 大きいジァリールカーボネートの拡散速度が芳香族モノヒドロキシ化合物の拡散 速度よりも大きな影響を受けて遅くなると考えられること、 および、 オリゴマー をポリカーボネートとする重合領域においては反応液の粘度が上昇するため拡散 速度が遅く、 全体のエステル交換反応速度に無視できない影響をおよぼすためと 考えられることによると思われる。
すなわち、 ジァリールカーボネートの脱離を伴うエステル交換反応を円滑に実 施するには分子サイズの大きいジァリールカーボネートを速やかに液表面に移動 させ反応系外に除去することが重要であり、 好ましい割合の芳香族モノヒドロキ シ化合物脱離反応とジァリールカーボネート脱離反応とは液深の浅い部分で主と して生じており、 このため、 平均的な液深を表す VZSではなく全体に占める薄 膜形成部分の割合が重要な意味を持つものと考えられる。
このような薄膜形成性の優れる反応器を具体的に示すと、 例えば反応胴壁に近 接した支持羽根によって反応胴壁に反応液を塗布 ·更新させると共に支持羽根に よって反応液の一部を汲み上げ、 次いで汲み上げた液を重力により自由液膜を形 成しつつ落下させる構造の横型 1軸円筒型反応器を挙げることができる。
このような横型 1軸円筒型反応器を、 1例を挙げて構成部位毎にさらに詳しく 説明する。 ただし、 本発明がこれによつて特別な限定を受けるものでないことは いうまでもない。
横型 1軸円筒型反応器は、 例えば、 図— 1に示すような、 ジャケット外壁 2で おおわれた入口鏡板 5と出口鏡板 6と容器胴壁 1で構成された円筒容器内に 2枚 の端部円板 9、 9 ' 、 2枚の端部円板間に配設された複数枚の中空円板 1 1、 端 部円板と中空円板および中空円板同士を所定の間隔で連結しかつ固定する複数枚 の支持羽根 1 3および 2枚の端部円板の中央部に固定された独立した 2本の端部 回転軸 8、 8 ' からなる、 複数の中空円板間に、 実際の回転軸を持たない構造を 持つ攪拌翼を有する反応器である。 そしてこの反応器において、 該端部円板およ び中空円板は該攪拌翼の仮想回転軸に対し垂直である。
(攪拌翼)
図 1において、 端部円板 9、 9 ' の間に配設された複数個の中空円板 1 1は回 転方向と逆に傾斜または湾曲した支持羽根 1 3によって、 所定間隔に連結固定さ れている。 また端部円板 9、 9 ' の中央部は端部攪拌軸 8、 8 ' で支持されてい る。
端部円板と中空円板および中空円板同士の間隔において、 複数枚の支持羽根の 少なくとも 1枚は反応器の胴壁に近接しかつ近接する先端部位が該胴壁に平行で ある。 それによつて、 先端部と容器胴壁 1とで形成される空間部により攪拌回転 と共に液が汲み上げられ、次いで重力により自由液膜を形成しつつ落下し、かつ、 支持羽根 1 3によって、 容器胴壁 1の気相部分に液を塗布 ·更新する構造を有す る。
すなわち、 上記各間隔において、 上記少なくとも 1枚の支持羽根は攪拌翼の仮 想回転軸方向に伸びる平板であるのが好ましく、 特に攪拌翼の仮想回転軸に対す る垂直な円筒断面における接線に対し 3 0〜6 0度の角度を持っているのがさら に好ましい。
この場合、 容器胴壁に塗布された液膜の厚み (液深) は支持羽根先端と容器胴 壁との間のクリアランスに相当し、 汲み上げられた液が落下する時に形成する自 由液膜の液深は 5 O m 以下に相当する。
かかる構造の攪拌翼を用いることにより、 ホールドァップを高めても支持羽根 1 3の先端と容器胴壁 1とで形成される空間部により、 攪拌回転と共に液が汲み 上げられ、 次いで重力により自由液膜を形成しつつ落下し、 かつ、 支持羽根 1 3 によって容器胴壁の気相部分に液が塗布されるため、 反応液の表面液の内、 5 0 mm以下の液深を有する表面積の割合が 5 0 %以上に保たれ、 その結果として芳 香族モノヒドロキシ化合物脱離反応とジァリールカーポネ一ト脱離反応との割合 が好ましい範囲に維持でき、 高い反応速度が達成され、 品質の向上したポリマー を得ることができる。
また、 支持羽根 1 3の先端の回転に伴って、 常に容器胴壁 1の液膜が搔き取ら れ更新されるため、 ゲル、 異物、 色相低下の原因物質が発生せず良好な品質のポ リマーを得る一助となる。 さらに、 端部攪拌軸 8と端部攪拌軸 8 ' との間には攪 拌軸が存在しないため、 攪拌軸周りの滞留部分が発生せず、 ポリマーの品質が一 層向上する。
(端部円板)
端部円板 9は反応器の鏡板部分の液の滞留を防止する目的で多数の開口を有す るものが好ましい。 かかる形状としては、 例えば、 多数の開口、 切り欠きを有す る円板、 中心部から延びた複数の支持板を有する中空円板が用いられる。 これら の内、 図 2に示すような開口 1 0を有する切り欠き円板であることが好ましい。
(支持羽根)
支持羽根 1 3は、 図 3 ( 1 ) 、 ( 2 ) 、 ( 3 ) に示すような、 先端部に回転方 向と逆方向に延在し、 容器胴壁 1と小間隙を保持する尾翼部分 1 4を有してもよ レ^ かかる尾翼部分 1 4の設置は反応液の粘度が低い場合に容器胴壁への液膜の 塗布と反応液の汲み上げ性とを向上させる効果を有する。
すなわち、 尾翼部分 1 4は容器胴壁への液膜の塗布と反応液の汲み上げ性とを 有する形状を有する。 容器胴壁への靈の塗布の機能を果たすため、 当該反応器 の胴壁に平行する部位を有する。
力 る構成からなる装置を用いて第 1芳香族ポリカーボネートの重合を行う場 合、 支持羽根はモータ一によってゆっくりと、 好ましくは 1〜1 5 r p mの回転 数で回転される。
このような装置はオリゴマーの回分重合に使用してもよく、 連続重合に使用し てもよい。
連続重合に使用する場合、 液は図 1に示す入り口 3より連続的に注入され、 供 給された第 1芳香族ポリ力一ポネートは案内羽根 7によって入り口の側壁 5の内 部を塗布 ·更新する一方、 支持羽根 1 3あるいは尾翼部分 1 4によって搔き上げ られ気相部の胴壁 1に反応液を塗布、 更新する。 さらにこれらにより反応液は膜 状を形成しながら落下し中空円板 1 1の開口部 1 2より次室に流れ込み順次同様 な作用を繰返して液出口 4に向かって送られ、 液出口 4から重合度の高められた 第 2芳香族ポリ力一ポネートを得ることができる。
本発明の薄膜形成性に優れる反応器の別の具体的態様として、 平行に延びた 2 つの円筒を組合せることによって形成された繭型の断面を有する横型 2軸反応器 であって、 次の構造要素を有するものを挙げることができる。 .
a ) 反応器入り口側鏡板、 該鏡板の反対方向にある反応器出口側鏡板、 該反応 器内を実質的に水平方向に延びる複数の攪拌単位を持つ第 1の攪拌翼および該第 1の攪拌翼と平行でかつ反応器内に実質的に水平に配置された複数の攪拌単位を 持つ第 2の攪拌翼を有する。
b ) 第 1の攪拌翼と第 2の攪拌翼とが互いに嚙み合うように近接して配置され ておりそして同期しながら同方向に回転することによつて反応液を相互の攪拌単 位および反応器胴壁に薄膜状に塗布、 更新する機能を有する。
c ) 反応器入り口側鏡板に近接しかつ第 1の攪搾軸の上方に設けられた反応液 の入り口と、 反応器出口側鏡板に近接した反応器の下部に設けられた反応液の出 口とを有する。
ここで、 第 1の攪拌翼とは回転によつて反応器上部の反応液を相対して設置さ れたもう一つの攪拌軸の攪捽単位から遠ざける方向に移動させる攪拌翼を意味す る。
また 「攪拌単位」 の形状としては経験的に高粘度物質の混練、 混合等に適した 構造を選択することができる。 例を図 4に示す。
かかる構造の反応器は前述した横型 1軸反応器では対応できないような高分子 量のポリカーボネートを製造しょうとした場合に好ましく使用される。 このよう な高分子量を具体的に示すと、 粘度平均分子量が 1 5, 0 0 0を超える場合、 好 ましくは 2 0, 0 0 0を超える場合に相当し、 第 1芳香族ポリカーポネ一トを直 接このような横型 2軸反応器で重合してもよく、 第 1芳香族ポリカーポネートを 横型 1軸反応器で重合した後、 引き続き横型 2軸反応器を用いて重合を行っても よい。
このような横型 2軸反応器を、 1例を挙げて構成部位毎にさらに詳しく説明す る。 ただし、 本発明がこれによつて特別な限定を受けるものでないことはいうま でもない。 例えば攪拌軸の一部を実際に欠く構造も許容される。
(全体構成)
本発明で用いられる横型 2軸反応器の好ましい態様を示す透視斜視図、 上方か ら見た平面断面図、 側面断面図をそれぞれ、 図 4, 5および 6 A, Bに示す。 な お、 以下の説明において、 「攪拌軸」 は実際に存在する攪拌軸を意味する。 本発明に好ましく使用される横型 2軸反応器は反応器入り口側鏡板 1 0 5と該 鏡板の反対方向にある反応器出口側鏡板 1 0 6と、 該反応器内を実質的に水平方 向に延びる第 1の攪拌軸 1 0 2とこれに平行に実質的に水平に配置された第 2の 攪拌軸 1 0 3とを有する。 各々の攪拌軸には互いに嚙み合うように近接して配置 された複数の攪拌単位 1 2 0、 1 2 1、 1 2 7が取り付けられており、 これらの 攪拌軸は同期して同方向に回転する。
また、 反応器胴壁 1は攪拌単位と狭い隙間を保っており、 2つの円筒を組合せ ることによって形成された繭型の断面を有している。 また、 反応器入り口側鏡板 1 0 5に近接し、 かつ、 第 1の攪拌軸 1 0 2の上方に反応液の入り口 1 1 1が設 置されており、 反応器出口側鏡板 1 0 6近傍の反応器下部に反応液の出口 1 1 2 が設置されており、 反応液の出口には、 粘度の高まった反応液の排出を行うため に反応液抜出しスクリユー 1 1 3が設置されている。 またエステル交換反応によ つて発生する芳香族モノヒドロキシ化合物とジァリールカーボネートは、 ベント 口 1 5に接続された真空配管 1 1 7、 1 1 6を通って反応器外へ排出される。 こ の時、 副生物蒸気に同伴した高沸点物は真空配管 1 1 7 , 1 1 6の間に設置した 留出物受器 1 1 8に捕集される。
ここで、 第 1の攪拌軸とは、 本発明の明細書においては、 攪拌軸が回転した場 合、 反応器上部の反応液を相対して設置されたもう一つの攪拌軸の攪拌単位から 遠ざける方向に移動させる攪拌軸を意味し、 具体的には図 1 3の場合は攪拌軸 1 0 2が第 1の攪拌軸に相当し、 攪拌軸の回転方向が図 1 3に示す方向と逆の場合 には攪拌軸 1 0 3が第 1の攪拌軸に相当する。
本発明の各々の攪拌軸には反応物を攪拌し、薄膜を形成する役目を持つ図 7 A、 7 B、 9、 1 1 A、 1 1 Bに示すような複数の攪拌単位が設置されている。
攪拌単位
本発明に使用する攪拌単位は図 7 A、 9、 1 1 Aに示すように実質的に凸レン ズ状 (紡錘形状) の断面を有する。 図 5および本発明の横型 2軸反応器の好まし い態様を示す別の平面断面図である図 1 2の Aで示す反応器入り口から中央にか けては送液機能を有せずかつ強い攪拌機能を有する攪拌単位が用いられ、 Bで示 す反応器出口部分では送液機能を有する攪拌単位を使用することが好ましい。 このようにすることにより、 反応液のホールドァップを高め薄膜形成機能を向 上させると共に、 反応器出口側鏡板に反応液を強制的に送り込むことにより反応 器出口側鏡板部分に生じ易い反応液の滞留部分をなくし、 品質の向上したポリ力 —ポネートを得ることが可能となる。
図 5および図 1 2の Aの領域に使用される攪拌単位としては図 7 Aおよび図 1 1 Aに示す攪拌単位が好ましく使用される。 図 7 Aにおいて、 攪拌部分 aは実質 的に凸レンズ状の断面を有しており、 攪拌軸方向に一定の間隔 cを空けて対向す る攪拌部分 bと位相を 9 0 ° ずらして取り付けられている。 また、 該攪拌単位の 先端部に、 取り付け間隔 cより僅かに短い長さの、 反応器胴壁と僅かの間隔を空 けて回転軸と平行に設置された、 胴壁に対するスクレーパー (以後、 S—スクレ —パーと称する) d、 e、 f、 gを有している。 使用においては攪拌単位の組み 立てを容易にするために S—スクレーパーを有する攪拌部分 a、 bを所定間隔 c を保つて一体構造とした攪拌構成が好ましく使用される。 図 7 Aはこの一体化さ れた攪拌構成を 1 2 0で示している。
この攪拌単位 1 2 0は第 1の攪拌軸と第 2の攪拌軸とに位相を 9 0 ° ずらして 設置されており、 かつ、 回転に伴い一方の軸に取り付けられた攪拌単位の S—ス クレ一パーが他方の攪拌軸に取り付けられた攪拌単位の S—スクレーパーと攪拌 軸との間の空間に 5 0 mm以下の僅かな隙間を空けて入り込むように設置されて いる。
また、 攪拌単位の先端は反応器胴壁および対向する攪拌単位と 5 0 mm以下の 僅かな隙間を保つように設置される。 これによつて反応液は反応器胴壁および攪 拌単位の全面に薄膜状に塗布 ·更新され、 反応器内のポリマー表面積の内、 5 0 mm以下の液深を有する表面積の割合を 5 0 %以上にすることを可能としている。 図 5および図 1 2の Aの領域に使用される攪拌単位の別の態様としては図 1 1 Aに示す攪拌単位 1 2 8がある。
該攪拌単位は実質的に凸レンズ状の断面を有しており攪拌軸方向に位相を 9 0 ° ずらして取り付けられると共に、 第 1の攪泮軸と第 2の攪拌軸との間でも攪 拌単位の位相が 9 0 ° ずれるように設置されている。
また、 攪拌単位の先端は反応器胴壁および対向する攪拌単位と 5 0 mm以下の 僅かな隙間を保つように設置される。 これによつて反応液は攪拌軸の回転ととも に、 反応器胴壁および攪拌単位の全面に薄膜状に塗布 ·更新され、 本発明の実施 の要件である反応器内のポリマー表面積の内、 5 0 mm以下の液深を有する表面 積の割合を 5 0 %以上にすることを可能としている。
図 5および 1 2の Bの領域に使用される攪拌単位の別の態様としては図 9に示 す攪拌単位 1 2 7が好ましく使用される。
該攪拌単位 1 2 7は実質的に凸レンズ状の断面を有しており、 図 9に示すよう に上面と下面で若干ねじれた形状を有している。 このねじれの程度を図 1 0のァ で表した場合、 ァが 5〜6 0 ° の範囲にある場合に送液性やセルフクリーニング 性が向上し、 好ましい。 特にァが 5〜4 5 ° の範囲にある場合は最も優れた性能 を示す。
本発明において攪拌単位 1 2 7は図 8に示すように攪拌軸方向に位相をずらし、 全体として実質的にスクリュ一形状を取るように攪拌軸に取り付けられる。 この ときの位相のずれを αとすると、 αは 1 5〜6 0 ° の範囲にあることが好ましく、 3 0 ± 1 0 ° の範囲が特に好ましい。
αが上記の範囲を外れて小さくなると、 攪拌単位 1 2 7の側面に筋状のポリマ 一流れができ、 ドライスポット部分 (ポリマーで濡れない部分) でゲル、 異物等 が発生する。
αが範囲を外れて大きい場合は、 各々の攪拌単位が独立した状態となり、 前後 の攪拌単位の影響を受けなくなるため、 攪拌単位の濡れが低下しゲル、 異物等が 発生する。 また、 送液性も弱くなるため、 反応器出口側鏡板部分に送られる反応 液量が低下し、 反応器出口側鏡板部分にデッドスペースを生じポリマー品質が低 下する。
第 1の攪拌軸と第 2の攪拌軸に上記のようにして全体としてスクリユー形状を なすように設置された攪拌単位 1 2 7は互いに嚙み合うように設置され、 攪拌単 位の先端は反応器胴壁および対向する攪拌単位と 5 O mm以下の僅かな隙間を保 つように設置される。
これによつて反応液は攪拌軸の回転に伴い、 反応器出口側鏡板に向かって送ら れると共に反応器胴壁および攪拌単位の全面に薄膜状に塗布 ·更新され、 反応器 内のポリマー表面積の内、 5 0 mm以下の液深を有する表面積の割合を 5 0 %以 上にすることを可能とする。
本発明の攪拌単位 1 2 0、 1 2 7、 1 2 8の内、 攪拌軸の両端に取り付けられ る攪拌単位は極力鏡板に近接して取り付けることが望ましい。
この中でも入り口鏡板に対向して設置される攪拌単位としては図 7 Bや 1 1 B に示される鏡板に対するスクレーパー (以後、 P—スクレーパーと称する) 1 2 2, 1 2 3を有する攪拌単位を使用することが好ましい。
P—スクレーパーは凸レンズ形状の頂点を 0 ° 、 1 8 0 ° 、 攪拌単位の回転方 向を正とした場合、攪拌単位の鏡板に対向する面の外周であって、 9 0〜1 8 0 ° の領域および 2 7 0〜3 6 0 ° の領域の各々少なくとも一部に点対称に設置され る。
P—スクレーパーは回転に伴い鏡板部分の反応液を攪拌単位頂部から攪拌軸に 向けて強制的に流動させる効果を有しており、 これによつて、 攪拌軸近傍に発生 し易いデッドスペースをなくし、 品質の優れたポリカーボネートを製造すること を可能とする。
なお、 上記説明において記載した間隔は使用温度における寸法であり、 冷時に 測定した値ではない。
(反応液入り口)
本発明の横型 2軸反応器に反応液を供給する位置は反応器の入り口鏡板に近接 し、 かつ、 第 1の攪拌軸の上方とすることが好ましい。 このような位置から反応 液を供給することによって、 入り口に生じ易いデッドスペースを解消することが でき、 優れた品質のポリカーポネートを得ることができる。
なお、 近接とは具体的には、 間隔が実質的に 5 0 0 mm以内であることを意味 する。 より望ましくは 3 0 0 mm以下である。
このような供給位置をさらに具体的に示すと、 一つの態様として図 6 Aの 1 1 1に示すように、 第 1の攪拌軸の上部の反応器入り口側鏡板に直接供給口を設置 する方法がある。 また、別の態様としては図 6 Bの 1 1 1に示すように、入り口鏡板に近接して、 第 1の攪拌軸の上方にベント口を設け、 このベント口の内部から反応液を入り口 鏡板に近接して供給する方法がある。
(ベント口)
本発明の横型 2軸反応器はエステル交換反応によって発生する芳香族モノヒド ロキシ化合物ゃジァリールカーボネートといった副生成物を反応器外に除去し、 反応器内圧を減圧に保っためのベントロ 1 5を第 1の攪拌軸の上方の反応器胴壁 に設置することが好ましい。
また、 反応器胴壁に設置したベント口の大きさはその内径を、 一つの攪拌単位 が通過する時、 該ベント口上から見える S—スクレーパーを含む攪拌単位の寸法 の 1 . 1 5倍以上にすることが好ましく、 1 . 1 5倍から 2. 5倍の範囲とする ことがさらに好ましい。 このようにすることにより攪拌単位によって形成された 反応液の液膜がベント口から系外に飛散するベントアップと呼ばれる現象を防止 することが可能となり品質の優れたポリ力一ポネ一トを長期に渡り安定に製造す ることができる。
図 1 5はベント口をさらに詳細に示した平面図であり、 ベント口 1 5は第 1の 攪拌軸 1 0 2の上方の胴壁 1に設置されており、 該ベント口の内径 Xは、 該ベン ト部を通過する S—スクレーパーを含む攪拌単位の長さ Yの 1 . 1 5倍以上とす ることが好ましい。
(攪拌軸)
本発明の横型反応器 (1軸および 2軸のいずれも) の攪拌軸は鏡板から軸受け にかけて攪拌軸スリーブ 1 0 7、 1 0 8、 1 0 9、 1 1 0内に、 反応液の侵入を 防ぐ目的で、 または侵入した反応液を反応器内部に戻さず、 系外に排出する目的 で螺旋状の溝を施工することが好ましい。
図 5はこれを模式的に示したものであり、 攪拌軸の鏡板から軸受けにかけて螺 旋状の溝を施工する部分は 1 2 4、 1 2 5で示されている。 この内、 1 2 5は攪 拌軸の回転により侵入したポリマーを反応器内部に押し戻す方向に螺旋状の溝を 施工した攪拌軸を示している。 また、 1 2 4は攪拌軸の回転により侵入したポリマーを軸受け方向に送り込む 働きをする螺旋状の溝を施工した攪拌軸を示している。 そして図 6は 1 2 4のポ リマーを軸受け方向に送り込む方向の溝と 1 2 5の反応器内部に押し戻す方向の 溝とがぶつかる位置に対応する攪拌軸スリーブに侵入ポリマー排出口 1 2 6を設 け、 該排出口から反応液を系外に排出する場合を示している。
このような溝を攪拌軸の軸受け部に施すことにより; ポリマー劣化物の発生を 抑制し優れた品質のポリカーポネ一トを得ることができる。
本発明において、 薄膜形成性に優れる反応器の材質に特に制限はなく、 通常の 材質が使用できるが、 反応液が接触する反応器の内面はステンレススチールや二 ッケルなどの鉄含有量の少ない材質を使用することが好ましい。
工程 (2 ) は、 上記のごとき薄膜形成性に優れる反応器中で、 第 1芳香族ポリ カーボネートを、 通常、 2 0 0〜3 5 0 :、 1, 3 3 0 P a ( 1 O mmH g) 以 下、 好ましくは 2 5 0〜3 2 0で、 6 6 5 P a ( 5 mmH g) 以下の条件で重合 せしめる。
工程 (2 ) によれば、 粘度平均分子量が第 1芳香族ポリカーボネートの粘度平 均分子量よりも大きくかつ 1 0, 0 0 0以上でありしかも全末端基に対する末端 ヒドロキシル基の濃度が第 1芳香族ポリカーボネートの末端ヒドロキシル基の濃 度よりも低い第 2芳香族ポリカーポネートが生成される。
上記第 2芳香族ポリカーボネートの粘度平均分子量は、 好ましくは 1 0 , 0 0 0〜1 0 0, 0 0 0であり、 また全末端に対する OH末端含有率は、 好ましくは 3 5モル%以下である。 さらに、 第 2芳香族ポリカーボネートは、 好ましくは芳 香族モノヒドロキシ化合物および芳香族炭酸ジエステルをいずれも高々 5 0 0 p p mでしか含有しない。 このため第 2芳香族ポリカーボネートを脱揮処理するこ とにより容易に芳香族モノヒドロキシ化合物および芳香族炭酸ジエステルの含有 量をそれぞれ 2 0 0 p p m以下に低減することができる。 さらに、 第 2芳香族ポ リカーボネートは、 好ましくは 0 . 5 m以上の異物含有量が 5 0, 0 0 0個 Z g以下であり、 異物含有量の変動が + 2 0 %以下、 粘度平均分子量の変動が土 2 %以下であり、 高品質のポリカーボネートである。 このポリカーボネートは優れた色相を持つ外、 末端 OH含有率が少ないため、 優れた耐久性を有し、 さらに異物含有量が少ないため、 衝撃特性や精密な成形特 性にも優れ、 シートや射出成形物などの用途に用いられる。
このうち、 光記録媒体としては特に、 粘度平均分子量 1 0, 0 0 0〜1 8, 0 0 0、 全末端に対する〇H末端含有率 3 5モル%以下、 0 . 5 m以上の異物含 有量が 1 0, 0 0 0個/ g以下であり、 異物含有量の変動が + 1 0 %以下、 粘度 平均分子量の変動が土 1 %以下の高品質なものが好適に使用される。
さらに、 本発明で得られたポリカーボネートは予期せぬ特性を有していること が明らかとなった。 すなわち、 本発明のポリカーボネートを使用してディスク基 板の連続成形を実施した場合、金型汚れが減少し金型清掃周期を大幅に延長でき、 さらに、 クラウドの発生も大幅に減少することが判明した。
この原因は明らかではないがエステル交換反応の制御によりポリカーボネート 中に存在するオリゴマーをはじめとする微量挟雑物が変化しそれ自身または添加 剤との相互作用が微妙に変わり予期せぬ効果を生じたものと考えられる。
本発明でこのようにして得られたポリカーボネートは、 有機スルホン酸化合物
( b) 、 およびリン化合物、 耐熱安定剤、 離型剤、 加工安定剤、 酸化防止剤、 光 安定剤、 紫外線吸収剤、 金属不活性化剤、 金属石鹼類、 造核剤、 帯電防止剤、 難 燃剤、 防黴剤、 着色剤、 防曇剤、 天然油、 合成油、 ワックス等の添加剤 (c ) を 含むことができる。
このようなスルホン酸化合物 (b) としては下記式 (Π )
A2— S O g X 1 …… (Π )
(ここで、 A2は置換基を有していてもよい炭素数 1〜2 0の炭化水素基であり、 X 1はアンモニゥムカチオンまたはホスホニゥムカチオンである。 ) のスルホン 酸化合物 (b) を添加するのが好適である。 これを添加することで、 溶融重縮合 に使用したアル力リ金属またはアル力リ土類金属化合物の活性を低下もしくは失 活させることができ、 色相、 耐熱性、 耐加水分解性等の品質に優れたポリカーボ ネートを得ることができる。
なかでも、 スルホン酸化合物 (b) が下記式 (Π)
Figure imgf000030_0001
(ここで、 A3、 A4、 A5、 A6および A7は、 互いに独立に、 炭素数 1〜2 0の 1価の炭化水素基である。 )
で示されるスルホン酸ホスホニゥム塩であるとき、 その効果が大きいので、 特に 好ましい。
このようなスルホン酸化合物 (b ) は、 ポリカーボネート製造時のエステル交 換触媒の失活剤として機能し、 ポリマーの熱安定性を高める。
これらのスルホン酸化合物 (b) としては、 特開平 8— 5 9 9 7 5号公報記載 のような公知の触媒失活剤が有効に使用される。 この中でも、 スルホン酸のアン モニゥム塩、 スルホン酸のホスホニゥム塩が好ましい。 さらには、 ドデシルペン ゼンスルホン酸のアンモニゥム塩、 ホスホニゥム塩、 パラトルエンスルホン酸の アンモニゥム塩、 ホスホニゥム塩ゃベンゼンスルホン酸のアンモニゥム塩、 ホス ホニゥム塩も好ましく使用される。
本発明においては、 これらのうちでも、 特にドデシルベンゼンスルホン酸テト ラブチルホスホニゥム塩、 パラトルエンスルホン酸テトラプチルアンモニゥム塩 は効果が良好であり最適である。
触媒失活剤は触媒の活性を著しく低下させるものであり、 このような触媒失活 剤は単独でポリカーボネートに添加してもよく、 水と触媒失活剤の混合液として 同時にポリカーボネート樹脂に添加してもよい。
溶融重縮合により得られたポリカーボネートに対するスルホン酸化合物 (b ) 力^なる触媒失活剤の添加量は、 アル力リ金属化合物およびアル力リ土類金属化 合物より選ばれた前記主重縮合触媒 1モル当り 0 . 5〜 5 0モルの割合で、 好ま しくは 0 . 5〜 1 0モルの割合で、 さらに好ましくは 0 . 8〜 5モルの割合で使 用される。 これは通常、 ポリカーボネートに対し 0 . l〜5 0 0 p pmの割合で 使用することに相当する。 添加剤(C ) として使用されるリン化合物としては、例えばリン酸、亜リン酸、 次亜リン酸、 ピロリン酸、 ポリリン酸、 リン酸エステルおよび亜リン酸エステル を用いることができる。
このようなリン酸エステルの具体例としては、 トリメチルホスフェート、 トリ ェチルホスフェート、 トリブチルホスフェート、 トリオクチルホスフェート、 ト リデシルホスフェート、 トリオクタデシルホスフェート、 ジステアリルペンタエ リスリチルジホスフエ一ト等のトリアルキルホスフエ一ト、 トリシクロへキシル ホスフェート等のトリシクロアルキルホスフエ一ト、トリフエニルホスフェート、 トリクレジルホスフェート、 トリス (ノニルフエニル) ホスフェート、 2—ェチ ルフエニルジフエニルホスフェート等のトリァリールホスフェート等を挙げるこ とができる。
また、 亜リン酸エステルとしては、 下記式 (IV) で表される化合物を挙げるこ とができる。
P (O R) 3 …… (IV)
(式中、 Rは脂肪族炭ィ匕水素基、 脂環族炭化水素基または芳香族炭化水素基を表 す。 3個の Rは同一であっても異なっていてもよい)
上記式 (IV) で表される化合物の具体例として、 トリメチルホスファイト、 ト リエチルホスファイト、 トリブチルホスファイト、 トリオクチルホスファイト、 卜リス (2—ェチルへキシル) ホスファイト、 トリノニルホスファイト、 トリデ シルホスファイト、 トリオクタデシルホスフアイト、 トリステアリルホスフアイ ト等のトリアルキルホスフアイト、 トリシクロへキシルホスフアイト等のトリシ クロアルキルホスファイト、 トリフエニルホスファイト、 トリクレジルホスファ イト、 トリス (ェチルフエニル) ホスファイト、 トリス (2 , 4—ジ— t一プチ ルフエニル) ホスファイト、 トリス (ノニルフエニル) ホスファイト、 トリス (ヒ ドロキシフエニル) ホスファイト等のトリァリールホスファイト、 フエ二ルジデ シルホスファイト、 ジフエ二ルデシルホスファイト、 ジフエ二ルイソォクチルホ スフアイト、 フエ二ルイソォクチルホスフアイト、 2—ェチルへキシルジフエ二 ルホスフアイト等のァリールアルキルホスフアイト等を挙げることができる。 さ らに、 亜リン酸エステルとして、 ジステアリルペンタエリスリチルジホスフアイ ト、 ビス (2 , 4—ジ— t—プチルフエニル) ペンタエリスリチルジホスフアイ ト等を用いることもできる。
これらの化合物は単独で、 あるいは組合せて用いることができる。 これらのう ちリン化合物として、 リン酸、 亜リン酸およびこれらのエステルが好ましく、 上 記式 (IV) で表される亜リン酸エステルがより好ましく、 特に芳香族亜リン酸ェ ステルが好ましく用いられる。
本発明ではリン化合物は、 ポリカーボネート 1 0 0重量部に対し、 0 . 0 0 0 1〜0. 1重量部、 好ましくは 0 . 0 0 1〜0 . 0 5重量部の量で添加しうる。 上記範囲を逸脱するとリン化合物の添加効果が十分に発現しないか、 もしくはポ リマー品質へ悪影響をおよぼす等の問題が生じることがあるので、好ましくない。 本発明において、 使用することができる離型剤としては例えば脂肪族アルコー ルと脂 «カルボン酸とのエステル化合物が挙げられる。 fl旨肪族アルコールとし てはエチレングリコール、 グリセリン、 トリメチロールプロパン、 ネオペンチル グリコールおよびペンタエリスリトール等を挙げることができ、 また脂肪族カル ボン酸としてはラウリン酸、 ドデシル酸、 ペン夕デシル酸、 パルミチン酸、 ヘプ 夕デシル酸、 ステアリン酸、 ノナデカン酸、 ァラキン酸、 ベヘン酸およびリグノ セリン酸等が挙げられる。
これらの中でも脂 アルコールとしてグリセリン、 ペン夕エリスリトールを 用い、 ϋ旨肪族カルボン酸としてステアリン酸を用いた部分エステルや完全エステ ルが好ましく使用される。
脂肪族アルコールと脂肪族カルボン酸とのエステルは好ましくは本発明の芳香 族ポリカーボネートが溶融状態にある間に添加され、混練されることが好ましい。 また、 混練後溶融状態にある間にフィルタ一例えば公称濾過精度 1〜 5 0 Ai mの フィルターで濾過することが望ましい。
本発明で使用する脂肪族アルコールと脂肪族カルボン酸とのエステル化合物は、 ポリカーボネート 1 0 0重量部に対し、 0 . 0 0 1〜1重量部、 好ましくは 0 . 0 1〜0. 5重量部の量で添加しうる。 上記範囲を逸脱すると離型性の向上効果 が十分に発現しないか、 もしくはポリマー品質へ悪影響をおよぼす等の問題が生 じることがあるので、 好ましくない。
加工安定剤としては、 例えば、 2— t—プチルー 6— ( 3— t—ブチル—2— ヒドロキシー 5—メチルベンジル)—4一メチルフエニルァクリレート、 2 _ [ 1 - ( 2—ヒドロキシ— 3, 5—ジ— t—ペンチルフエニル) ェチル] —4, 6 - ジー t一ペンチ^/フエ二ルァクリレート等が挙げられる。
光安定剤としては、 例えば、 2— ( 3— t—プチルー 2—ヒドロキシ— 5—メ チルフエニル) —5—クロ口べンゾトリァゾール、 2— ( 3, 5—ジ— t—プチ ル—2—ヒドロキシフエニル) ベンゾトリアプール、 2— ( 2—ヒドロキシー 5 —メチルフエニル) ベンゾトリアゾ一ル、 2— ( 2—ヒドロキシー5— tーォク チルフエニル) ベンゾトリァゾール、 2— ( 3, 5—ジ— t—ペンチルー 2—ヒ ドロキシフエニル)ベンゾトリアゾール、 2—〔2—ヒドロキシー 3— ( 3 , 4 , 5 , 6—テトラヒドロフタルイミドメチル) フエニル〕 ベンゾトリァゾ一ル、 2 - [ 2—ヒドロキシ一 3, 5—ビス (α, α—ジメチルベンジル) フエニル] ベ ンゾトリアゾール等のベンゾトリアゾール系化合物; 2—ヒドロキシ— 4—ォク チルォキシベンゾフエノン、 2—ヒドロキシ一 4—メトキシベンゾフエノン等の ベンゾフエノン系化合物; 2, 4ージー t—ブチルフエニル、 3, 5—ジ— t— プチルー 4—ヒドロキシベンゾェ一ト等のヒドロキシベンゾフエノン系化合物; ェチル一 2—シァノー 3 , 3—ジフエニルァクリレート等のシァノアクリレート 系化合物等の紫外線吸収剤、 ニッケルジブチルジチォカーバメート、 [ 2, 2 ' —チォビス (4— t一才クチルフエノラ一ト) ] —2—ェチルへキシルァミン二 ッケル等のニッケル系クェンチヤ一等が挙げられる。
金属不活性化剤としては、 例えば、 N, N ' — [ 3— ( 3 , 5—ジ— t—プチ ル—4ーヒドロキシフエニル) プロピオニル] ヒドラジン等が、 金属石鹼類とし ては、例えば、ステアリン酸カルシウム、ステアリン酸ニッケル等が挙げられる。 また、 造核剤としては、 例えば、 ジ (4— t—ブチルフエニル) ホスホン酸ナ トリウム、 ジベンジリデンソルビトール、 メチレンビス (2 , 4—ジ一 t—プチ ルフエノール) アシッドホスフェートナトリウム塩等のソルビトール系、 リン酸 塩系化合物が挙げられる。
帯電防止剤としては、 例えば、 ( 一ラウラミドプロピル) トリメチルアンモ ニゥムメチルスルフエート等の第 4級アンモニゥム塩系、 アルキルホスフエ一ト 系化合物が挙げられ、 難燃剤としては、 例えばトリス (2—クロロェチル) ホス フェート等の含ハロゲンリン酸エステル類、 へキサブ口モシクロドデカン、 デカ ブロモフエ二ルォキサイド等のハロゲン化物、 三酸化アンチモン、 五酸化アンチ モン、 水酸化アルミニウム等の金属無機化合物類、 これらの混合物等が挙げられ る。
上記のスルホン酸化合物 (b) および各種添加剤 (c ) を本発明のポリカーボ ネートに添加する方法については特に制限はなく、 各成分の配合順序も任意であ る。 例えば、 溶融状態にあるポリカーボネートに、 リン化合物をはじめとする添 加剤 (c ) および Zまたはスルホン酸化合物 (b) を加えて混練してもよく、 ま た、 ポリカーボネートの溶液に加えて混練してもよい。
より具体的には、 重合反応が終了して得られる溶融状態にある反応器内または 押出機内の反応生成物であるポリカーボネートに、 直接リン化合物をはじめとす る添加剤 (c ) および Zまたはスルホン酸化合物 (b) 、 を別々にまたは同時的 に加えて混練する方法、 あるいは、 得られたポリ力一ポネートをペレット化し、 このペレットをリン化合物をはじめとする添加剤 (c ) および Zまたはスルホン 酸化合物 (b) と共に 1軸または 2軸押出機等に供給して溶融混練する方法、 さ らに、 得られたポリカーボネートを適当な溶媒 (例えば、 塩化メチレン、 クロ口 ホルム、 トルエン、 テトラヒドロフラン等) に溶解させ、 この溶液に別々にまた は同時的に加えて攪拌する方法等を用いることができる。
溶融状態の熱履歴時間および再溶融回数を減らすという点からは、 溶融重縮合 で得られた溶融状態のポリ力一ポネートにリン化合物をはじめとする添加剤(c )、 スルホン酸化合物 (b) を添加-混練しペレット化するのが好ましい。 特に、 混 練後ペレツト化する前にフィルタ一で濾過するのが望ましい。 フィル夕一として は公称濾過精度 1〜 5 0 のものが有利に用いられる。
また、反応器や 2軸押出機などの混練設備に供給するスルホン酸化合物(b)、 リン化合物をはじめとする添加剤 (C) の形態は溶融状態であってもよく、 適当 な溶剤に溶解した溶液であってもよく、 分散したェマルジヨンであってもよく、 ポリカーボネートに分散したマスター粉体でもよく、 ポリカーボネートのマスタ 一ポリマーでもよい。 さらに、 後述する無機充填剤やポリカーボネート以外の榭 脂との組成物を作成する場合はこれらの無機充填剤や樹脂を媒体としたマス夕一 粉体やマスターポリマーを使用することもできる。
これらの添加剤はその形態に応じて公知の定量的供給方法で供給することがで き、 例えば、 溶融液や溶液などの液体の場合はプランジャーポンプやダイアフラ ムポンプやギアポンプなどが使用でき、 マスターパウダーなどの固体の場合は定 量供給器とサイドフィーダ一とを組合せた設備などが好ましく使用できる。 本発明では、 ポリ力一ポネートを減圧処理することが好ましい。 減圧処理に際 しては、 処理、 装置は特に限定されないが、 例えば減圧装置付反応器、 減圧装置 付押出機を用いることができる。
減圧装置付反応器は、 縦型槽型反応器、 横型槽型反応器のいずれでもよいが、 横型槽型反応器が好ましい。 減圧装置付押出機は、 ベント付の 1軸押出機、 2軸 押出機のいずれでもよく、 押出機で減圧処理をしながらペレタイズすることもで さる。
その際の圧力は、 減圧処理を反応器において行う場合には、 0. 05〜750 mmH (6. 7〜: L O O, O O OPa) 、 特に 0. 05〜50mmHg (6. 7〜6, 700 P a)とするのが好ましく、また、押出機を用いて行う場合には、 l〜750mmHg (133〜: L 00, O O OPa) 、 特に 5〜700mmHg (670〜 93, O O OPa) とするのが好ましい。
このような減圧処理は 240〜350 で行うのが好ましく、 また、 反応器を 用いる場合には 5分〜 3時間程度、 押出機を用いる場合には 10秒〜 15分間程 度の時間で行うのが好ましい。
ポリ力一ポネートを減圧処理するタイミングに特に制限はないが、 エステル交 換触媒の活性が保持されている状態で減圧処理を施すと重合度が変化したり、 ポ リマーが劣化したりする場合があるため、 スルホン酸化合物 (b) を添加 ·混練 した後、 もしくは添加 ·混練と同時に減圧処理を行うことが好ましい。
また、 各種の添加剤 (C ) を加える場合は添加剤の沸点に応じて、 加えた添加 剤がポリマー中に残存するように減圧処理のタイミングを設定することが好まし い。
このようにしてポリカーボネートに減圧処理を施すと、 残留モノマ一やオリゴ マ一を低減させたポリカーボネートを得ることができる。 また、 減圧処理を施す 際、 残留モノマーやオリゴマーを低減させる目的で水もしくは飽和脂肪族炭化水 素、 窒素等を加圧混練後減圧処理を行うことも必要に応じて実施しうる。
例えば、 炭酸ジエステルとしてジフエ二ルカーポネートを用いて溶融重縮合を 行った場合、 減圧処理によってポリカーボネート中のジフエ二ルカ一ポネートや フエノ一ルの残留量を減少させることができる。
本発明のポリカーボネー卜では、 このようなジァリ一ルカ一ポネ一トおよび芳 香族モノヒドロキシ化合物の含有量 (残存量) はいずれも上記のとおり重量で 2 0 0 p p m以下であることが好ましいので、 上記減圧処理は有効である。
本発明で製造される芳香族ポリ力一ポネートからシートを作成することができ る。 このようなシートは、難燃性、帯電防止性に加え、予想しなかったことである が、 優れた接着性や印刷性を有していることが分った。 この理由は定かではない が、 エステル交換反応の違いが特性に影響をおよぼしている可能性もある。 このようなシートは、 その特性を生かして電気部品、 建材部品、 自動車部品等 に広く利用され、 具体的には各種窓材すなわち一般家屋、 体育館、 野球ドーム、 車両 (建設機械、 自動車、 バス、 新幹線、 電車車両等) 等の窓材のグレージング 製品、 また各種側壁板 (スカイドーム、 トップライト、 アーケード、 マンション の腰板、道路側壁板)、車両等の窓材、 OA機器のディスプレーや夕ツチパネル、 メンブレンスイッチ、 写真カバ一、 水槽用ポリカーボネート樹脂積層板、 プロジ ド、 光ディスクや偏光板との組合せによる液晶セル、 位相差補正板等の光学用途 等に有用である。
かかる芳香族ポリカーボネートシートの厚みは特に制限する必要はないが、 通 常 0 . 1〜: L 0 mm、 好ましくは 0 . 2〜8 mm、 特に好ましくは 0 . 2〜3 m mである。 また、 かかる芳香族ポリカーボネートシートに、 新たな機能を付加す る各種加工処理 (耐候性を改良するための各種ラミネート処理、 表面硬度改良の ための耐擦傷性改良処理、 表面のしぼ加工、 半および不透明化加工等) を施して ちょい。
本発明では、 このようにして得られたスルホン酸化合物 (b) および Zまたは その他の添加剤 (c ) を含有するかまたは含有しないポリカーボネートに充填剤 好ましくは無機充填剤 (B) および Zまたはポリ力一ポネート以外の樹脂 (C) を添加 ·混練することにより組成物を得ることができる。
このようにして得られたポリ力一ポネ一ト組成物はべ一スとして使用したポリ カーボネートが従来のエステル交換法で得られたポリ力一ポネートと比較して優 れた色相や低い異物含有量を有し、 また、 分子量の均一性が高いという特性を反 映し、 優れた色相と成形性とを有し、 機械的強度に優れた成形物を与える。 このような無機充填剤 (B) としては、 例えばタルク、 マイ力、 シリカ、 アル ミナ、 粘土、 ガラスフレーク、 ガラスビーズ、 炭酸カルシウム、 酸化チタン等の 板状または粒状の無機充填剤やガラス繊維、 ガラスミルドファイバー、 ワラスト ナイト、 炭素繊維、 金属系導電性繊維などの繊維状充填剤を使用することができ る。 また、 ァラミド繊維、 架橋アクリル粒子、 架橋シリコーン粒子等の有機充填 剤も同様に使用することができる。
これら無機および有機充填剤の配合量は本発明のポリ力一ポネート 1 0 0重量 部に対して 1〜1 5 0重量部が好ましく、 3〜1 0 0重量部がさらに好ましい。 また、 本発明で使用可能な無機充填剤および有機充填剤はシランカップリング 剤等で表面処理されていてもよい。 この表面処理により、 ポリカーボネートの分 解が抑制されるなど良好な結果が得られる。
本発明の組成物に使用されるポリカーボネート以外の樹脂 (C) としては、 例 えば、 ポリアミド樹脂、 ポリイミド樹脂、 ポリエーテルイミド樹脂、 ポリウレタ ン榭脂、 ポリフエ二レンエーテル樹脂、 ポリフエ二レンスルフイド樹脂、 ポリス ルホン樹脂、 ポリエチレン、 ポリプロピレン、 ポリブタジエン等のポリオレフィ ン樹脂、 ポリエチレンテレフタレート、 ポリテトラメチレンテレフ夕レート等の ポリエステル樹脂、非晶性ポリアリレート樹脂、ポリスチレン樹脂、 H I P S (高 衝撃強度ポリスチレン) 、 アクリロニトリル スチレン共重合体 (A S樹脂) 、 アクリロニトリルノブタジエン スチレン共重合体 (AB S榭 Ji旨) 、 ポリメタク リレート榭脂、 フエノール樹脂、 エポキシ樹脂等の樹脂が挙げられる。 これらの 中でも AB S樹 Ji旨、 ポリエチレンテレフ夕レート、 ポリテトラメチレンテレフ夕 レート等のポリエステル樹脂、 ポリプロピレン、 A S樹脂、' H I P S , ポリブタ ジェンが好ましく、 特に A B S樹脂とポリエステル樹脂が好ましい。
本発明において、 これらポリカーボネート以外の樹脂 (C) の配合量は本発明 のポリカーボネート 1 0 0重量部に対して 1〜1 0 , 0 0 0重量部の範囲で使用 することが好ましく、 さらに好ましくは 1 0〜1, 0 0 0重量部、 最も好ましく は 1 0〜: I 0 0重量部である。
本発明の組成物を得る方法は特に制限がなく、 公知の混練方法 ·設備を使用す ることができるが、 複数の供給口を有する 2軸ルーダーを使用することが好まし い。
2軸ルーダーを使用する場合、 本発明のポリカーボネートはペレツトゃ粉末な どの固体の状態でルーダーに供給し溶融させて無機充填剤 (B) や本発明のポリ カーボネート以外の樹脂 (C) と混練してもよいし、 重合で得られた溶融状態の 本発明のポリカーボネートに必要に応じ、 スルホン酸化合物 (b ) およびその他 の添加剤 (C ) を添加する処理や減圧処理を施した後、 一旦固化することなく、 溶融状態のままでルーダーに供給して無機充填剤 (B) や本発明のポリ力一ポネ —ト以外の樹脂 (C) と混練してもよい。 これらの内、 熱履歴を減少させる観点 力 ^は後者の方法が好ましい。
また、 2軸ルーダーを使用する場合、 無機充填剤 (B) はポリカーボネートま たはポリカーボネート以外の樹脂の供給部の下流側から溶融している樹脂中に供 給することが好ましい。 このようにすることにより、 無機充填剤とルーダーセグ メントがドライの状態で接触することを防ぎ、 無機充填剤の望ましくない粉碎ゃ セグメントの摩耗を軽減することができる。 無機充填剤 (B) の供給は定量フィーダ一で供給量を制御しつつ、 ポリカーボ ネート供給部の下流側に設置したサイドフィーダ一を使用して所定量供給を行う ことが好ましい。
本発明のポリカーボネート以外の樹脂 (C) は本発明のポリカーボネートの供 給位置の上流、 下流、 同時の如何なる場所から供給してもよい。 供給に当たって は固体状態で樹脂 (C) を供給してもよく、 一旦別のルーダー等で溶融後、 ポリ 力一ポネートとの組成物を作成するためのルーダーに供給してもよい。
通常は熱履歴の軽減および設備を簡略化する目的で前者が使用される場合が多 く、 定量フィーダ一で連続計量した樹脂 (C) を直接組成物作成用ルーダーに供 給する方法や、 連続計量した樹脂 (C) をサイドフィーダ一を用いて組成物作成 用ルーダーに供給する方法が用いられる。
本発明においては、 混練温度はポリ力一ポネート以外の樹脂 (C) の種類等に よって異なるが、 一般に 2 0 0〜 3 8 0 ^の温度が用いられる。 また、 必要に応 じ、 酸素や水分の混入を防ぐ目的で窒素などの不活性ガスで供給部をシールして もよく、 混練した組成物を減圧処理してもよい。
組成物作成において、 本発明のポリカーボネートはスルホン酸化合物 (b ) や 各種の添加剤 (c ) を含むものも含まないものも好ましく使用できるが、 得られ た組成物に必要に応じ前記スルホン酸化合物 (b ) や各種添加剤 (c ) をさらに 前記添加方法に準じて添加することも'できる。
本発明で製造されるポリカーボネート組成物から射出成形法などにより、 難燃 性、帯電防止性、塵付着防止性、耐久性、安定性が良好な成形品を得ることができる。 以上のとおり.、 本発明によれば、 芳香族ジヒドロキシ化合物と芳香族炭酸ジェ ステルとを溶融重縮合反応させることによりポリカーボネートを製造する方法に おいて、 薄膜形成性の優れる反応器を使用して特定のオリゴマーを重縮合させる ことによりオリゴマ一をポリ力一ポネ一トとする重合過程で生じる芳香族モノヒ ドロキシ化合物の脱離を伴うエステル交換反応とジァリ一ルカーポネートの脱離 を伴うエステル交換反応との比率を好ましい範囲に制御し、 それによつて OH末 端含有率の少ないポリカーポネートを短い反応時間で得ることができる。 このようにして得られたポリカーボネートは良好な色相と少ない異物含有量と を有しており、 品質のバラツキも少なく、 光学用途を始めとした高精度の成形物 を作成する用途に好ましく使用される。 また他の樹脂や無機物との組成物として ポリ力一ポネートの改良された特性を反映し優れた機械特性と成形性を有し、 各 種の成形用途に好ましく使用できる。
実施例
以下、 実施例および比較例に基づき、 本発明の具体例を詳細に説明するが、 本 発明は、 これらによって限定されるものではない。
なお、 分析は下記の方法によった。
色相:
日本電色工業 (株) 製の Co l o r and Co l o r D i f f e r e nc e Me t e r ND— 1001 D Pを用いて C o 1 o r bを測定した。 末端基構造:
NMR測定法にて全末端基に対する OH末端基の割合 (%) を求めた。
固有粘度および粘度平均分子量:
0. 7 g/d 1の塩化メチレン溶液をウベローデ粘度計を用い固有粘度を測定 し、 次式により粘度平均分子量を求めた。
[η] =1. 23X 10"4Μ°· 83
0. 5 m以上の異物含有量:
ペレット 40gを塩化メチレン 2Lに溶解し、 光散乱遮断法にて異物量をカウ ントした。 結果は個 Zgに換算した。
重合副生物中のジフエ二ルカーボネート (DPC) 、 フエノール (Ph〇H) の 測定法:
サンプル 0. 5 gをアセトン 1 OmLに溶解し調整液とする。 ガスクロマトグ ラフィ一 (日立 G5000A) を使用し、 DPCはキヤビラリカラム (DB— 1 60 m、 I DO. 25、 F i ImO. 25w)、 Ph OHはパックドカラム (1 mX 3mm ガラスカラム PEG20M TPAュニポート 5% 80/1 00メッシュ) にて定量した。 ポリマ一中の DP C、 フエノールの測定法:
サンプル 1 gをメチレンクロライド 1 OmLに溶解し、 次いでァセトニトリル
90mLと混合し、 ポリマーを再沈し濾別した。 濾液を濃縮しメチレンクロライ ドを除去し調整液とし、 液体クロマトグラフィー (東ソ一 SC 8020) を使用 して定量した。
離型性:
射出成形機、 住友重機械工業製 D I S K 3 M IEに CD専用の金型を取り付 け、 この金型にピットの入ったニッケル製の CD用スタンパーを装着し、 成形材 料を自動搬送にて成形機のホッパに投入し、 シリンダー温度 320 、 金型温度 65でにて連続的に成形を行った。 連続成形開始後、 離型異常が生じることによ り連続成形が中断されるまでの成形枚数を求めた。
クラウド:
射出成形機、 住友重機械工業製 D I S K 3 M IEに CD専用の金型を取り付 け、 この金型にピットの入ったニッケル製の CD用スタンパーを装着し、 成形材 料を自動搬送にて成形機のホツバに投入し、 シリンダー温度 320で、 金型温度 65でにて連続的に成形を行った。 連続成形開始後、 クラウドを目視で観察し、 クラウド不良基板の生産枚数が増加し、 100枚単位当りの不良基板枚数が 5 % を超えるまでの成形枚数を求めた。
実施例 1
(ポリカーボネートの製造)
粉体状のビスフエノール A (BP Aという) と液体状のジフエ二ルカ一ボネー ト (D PCという) とを 0. 70キロモル対 0. 722キロモルの割合になるよ う連続的に原料調製槽に仕込み、 140t:で溶解し、 ついで、 この混合溶液を公 称濾過精度が 0. 5 mである SUS 316製の金属繊維からなる濾過層を有す るプリーツフィルターを通して毎時ビスフエノール A換算で 0. 16キロモルの 量で連続的に第 1重合槽に供給した。 また、 別途調製したビスフエノール Aジナ トリウム塩とテトラメチルアンモニゥムヒドロキシドとを PhOHZ水 =90/
10 (重量/重量) に溶解した触媒溶液をビスフエノール A 1モル当りビスフエ ノール Aジナトリウム塩を 1 X 10— 6当量、 テトラメチルアンモニゥムヒドロキ シドを 100X 10— 6モルの割合となるように、第 1重合槽に原料を供給するラ インから連続的に供給し、 原料と触媒を混合後、 第 1重合槽に供給した。
第 1重合槽は温度 220 、 圧カ100丁01: (13, 30 OP a) で操作 され、 第 1重合槽から発生するフエノールと DPCとを分離し DPCを再び第 1 重合槽に戻すための精留塔と攪拌機とを有していた。
第 1重合槽の反応液は底部よりギヤポンプを用いて連続的に抜き出し、 第 2重 合槽に供給した。 第 2重合槽は温度 260で、 圧力 15To r r (1, 995 P a) で操作され、 第 2重合槽から発生するフエノールと DPCとを分離し DPC を再び第 2重合槽に戻すための精留塔と攪拌機とを有していた。
かくして、 第 2重合槽から粘度平均分子量が 6, 000、 全末端基に対する 0 H末端の割合が 34. 3モル%の第 1芳香族ポリカーボネートを連続的に得、 こ れを第 2重合槽底部よりギヤポンプを用いて連続的に抜き出し、 第 3重合槽に供 給した。
第 3重合槽は図 1に示す横型 1軸反応器であり、 第 2重合槽から抜き出された 第 1芳香族ポリカーボネートを受け入れる反応液入り口 3と第 3重合槽の反応液 の出口 4と反応で発生するフエノールと DPCとを主体とする低沸物を除去し、 反応器内を減圧に保っためのベントロ 15を有しており、図 1に示す端部円板 9、 9' の間に配設された複数個の中空円板 11を回転方向と逆に傾斜した支持羽根 13によって、 所定間隔に連結固定し、 かつ、 端部円板 9、 9' の中央部を端部 攪拌軸 8、 8' で支持した構造の攪拌翼を有していた。 また、 攪拌翼を構成する 中空円板の外径 Dは 80 Omm, 中空円板の内径 dは 325mm、 支持羽根取り 付け角 <5は 45° 、 支持羽根幅 Wは 17 Ommであり、 支持羽根の枚数は 8枚で あり、 支持羽根の外端と反応器胴壁とのクリアランスは 2 Ommであった。
この結果、 第 3重合槽内のポリマ一表面積の内、 5 Omm以下の液深を有する 表面積の割合は 86%となっていた。 第 3重合槽を温度 270°C、 圧力 1 To r r (133Pa) に保って第 1芳香族ポリカーボネートをさらにエステル交換さ せた結果、 粘度平均分子量が 15, 200、 全末端に占める 0H末端の割合が 2 5 . 5モル%、 0 . 5 m以上の異物含有量が 9 6 0個/ gの第 2芳香族ポリ力 ーポネートが連続的に得られた。 また、 この第 2芳香族ポリカーボネートをペレ ット化して色相を測定した結果、 b値は— 0 . 5であり極めて優れた色相を有し ていた。
第 3重合槽から発生する蒸気中の P h OHと D P Cとのモル比を測定した結果、 1 : 0 . 3であり、 脱フエノールを伴うエステル交換反応 1に対し脱 D P C反応 を伴うエステル交換反応が 0 . 3の割合で生じていた。
ポリカーボネートの後処理と成形性評価:
第 3重合槽で得られたポリカーボネートを引き続き、 溶融状態のままで配管を 通し、 空気に触れることなくベント式 2軸ルーダーに導き、 重合触媒の失活、 ポ リマー中に含まれる低沸点物の除去、 添加剤の添加よりなる後処理を行つた。 使用したベント式 2軸ルーダーは混練部とベント部とよりなる処理ゾーンを 5 個有している同方向嚙み合い型 2軸ルーダーであった。
ルーダーの第 1の処理ゾーンでは混練部に、 水に分散させたドデシルベンゼン スルホン酸テトラブチルホスホニゥム塩をポリマーに対し分散液が 1重量%でか つ、 重合触媒として使用したビスフエノール Aジナトリゥム塩に対し 2倍当量の ドデシルベンゼンスルホン酸テトラブチルホスホニゥム塩となるようにダイヤフ ラム式定量ポンプを用いて連続的に供給し、 重合触媒を失活させるとともに、 マ テリアルシールを介して該混練部の直後に設置されたベント部で 1 5 T o r r ( 1, 9 9 5 P a ) でポリマーを減圧処理しポリ力一ポネート中に含まれるフエ ノールおよび D P Cを失活剤の溶媒として用いた水と共に除去した。
第 2、第 3、第 4の処理ゾーンではそれぞれの混練部にポリマーに対し 1重量% の水をダイヤフラム式定量ポンプを用いて連続的 (こ供給し、 引き続き、 マテリア ルシールを介して混練部の直後に設置された各々のベント部で 1 5 T o r r ( 1, 9 9 5 P a) でポリマーを減圧処理することによりポリ力一ボネート中に含まれ るフエノールおよび D P Cを水と共に除去する操作を行つた。
第 5の処理ゾーンでは該混練部に離型剤としてステアリン酸モノグリセリドを ポリマーに対し 5 0 0 p p m、 熱安定剤としてトリス (2 , 4—ジ— t—ブチル フエニル) ホスフアイトをポリマーに対し 1 0 0 p p mとなるように各々溶融状 態で定量ポンプを用いて連続的に添加し、 引き続きベント部で 1 5 T o r rで減 圧処理した。
添加剤の添加を終えたポリカーボネートをルーダーから押し出し、 ギヤポンプ で昇圧後、 2 0 ja mの目開きを有するポリマ一フィルターで濾過し、 ダイを通し てペレット化した。 得られたポリカーボネートは低沸成分を測定した結果、 2 0 p pmのフエノールと 8 0 p p mの D P Cとを含んでおり、 色相 b値および 0 . 5 m以上の異物含有量は第 3重合槽出側で測定した値と同一であり、 粘度平均 分子量は 1 5 , 1 0 0、 〇H末端含有率は 2 5 . 6モル%と第 3重合槽出側で測 定した値と殆ど同一であった。
成形性評価:
このようにして得たペレツトのディスク成形性評価を行った。
離型不良が発生するまでの成形枚数は 3 5 4, 6 0 0枚であり、 クラウドに関 しては連続成形枚数は 3 1 7 , 8 0 0枚と良好なレベルであった。
実施例 2
(ポリカーボネー卜の製造)
実施例 1と同様にして重合を行い、 第 3重合槽から得られた粘度平均分子量 1 5 , 2 0 0のポリカーボネートを第 4重合槽に供給しさらに重合を行つた。
第 4重合槽は図 4 (斜視図) 、 5 (平面図) 、 6 A (側面図) 、 1 3 (断面図) に示される横型 2軸反応器であり、 第 1の攪拌軸 1 0 2の上方の、 反応器入り口 側鏡板 1 0 5に反応液の入り口 1 1 1と、 反応器出口側鏡板 1 0 6の近くの反応 器の下部に反応液の出口 1 1 2と、 反応で発生するフエノールおよび D P Cを主 体とする低沸点物を除去し、 反応系内を減圧に保っためのベント口 1 5を有して おり、 第 1の攪拌軸と第 2の攪拌軸に取り付けられた攪拌単位の相互のクリアラ ンスおよび攪拌単位と反応器胴壁とのクリアランスは共に 1 O mmであり、 相互 に嚙み合うように設置されており、 同期しながら 1 0 r p mで同方向に回転して いた。
また、 図 5の Aで示される反応器上流側の攪拌単位は図 1 3に示すように実質 的に凸レンズ状の断面を有しており、 その先端部には図 7 Aの d、 e、 f、 gで 示す反応器胴壁用スクレーパーが攪拌単位の取り付け間隔 cよりも 1 Omm短い 長さで攪拌軸と平行に取り付けられており、 相互の攪拌単位を 90° 位相をずら して設置することにより反応液の輸送機能は有していなかつた。
図 5の Bで示される反応器下流側の攪拌単位は図 9、 10に示すような反応器 胴壁用スクレーパーを有しない凸レンズ状断面を有する攪拌単位であり、 ねじれ 角ァを 30° 、 位相角 αを 30° とすることで実質的にスクリユー形状を形成し、 反応器出口側鏡板方向に反応液を輸送する機能を有していた。
この反応器は攪拌単位の先端に小さな反応液溜りを有するものの、 1軸反応器 とは異なり明確な液面を有しない。 従って、 反応器胴壁や攪拌単位の全面に形成 された反応液膜が略全ての反応表面に相当し、 5 Omm以下の液深を有する表面 積の割合は略 100%に相当すると見なせる。
また、 攪拌軸の反応器内室から軸受けにかけて、 軸受けに侵入した反応液を攪 拌軸の回転に伴って反応室内に押し戻す方向の螺旋状の溝が攪拌軸に施工されて いた。
第 4重合槽を温度 285 、 圧力 0. 8To r r (106 P a) に保ってさら にエステル交換させた結果、 粘度平均分子量が 24, 000、 全末端に占める〇 H末端の割合が 18. 8モル%、 0. 5 /zm以上の異物含有量が 2, 130個ノ gのポリカーボネートが連続的に得られた。 また、 このポリカーボネートをペレ ット化して色相を測定した結果、 b値は一 0. 1であり極めて優れた色相を有し ていた。
第 4重合槽から発生する蒸気中の PhOHと DPCとのモル比を測定した結果、 1 : 0. 44であり、 脱フエノールを伴うエステル交換反応 1に対し脱 DPC反 応を伴うエステル交換反応が 0. 44の割合で生じていた。
ポリカーボネートの後処理:
第 4重合槽で得られたポリカーボネートを引き続き、 溶融状態のままで配管を 通し、 空気に触れることなくベント式 2軸ルーダーに導き、 重合触媒の失活、 ポ リマ一中に含まれる低沸点物の除去、 添加剤の添加よりなる後処理を実施例 1に 準じて行った。 ただし、 使用したベント式 2軸ルーダーは混練部とベント部とよ りなる処理ゾーンを 2個有している同方向嚙み合い型 2軸ルーダーであった。 ルーダーの第 1の処理ゾーンでは実施例 1と同様にして触媒の失活と、 ポリ力
—ボネート中に含まれる低沸点物の除去を行った。
第 2の処理ゾーンでは実施例 1における第 5の処理ゾーンで行った操作に準じ、 離型剤としてステアリン酸モノグリセリドをポリマーに対し 1, 000 ppm、 熱安定剤としてトリス (2, 4ージ _ t—ブチルフエニル) ホスファイトをポリ マ一に対し 300 p pm添加した。
添加剤の添加を終えたポリカーボネートをルーダーから押し出し、 ギヤポンプ で昇圧後、 40 / mの目開きを有するポリマ一フィルタ一で濾過し、 ダイを通し てペレット化した。 得られたポリ力一ポネートは低沸成分を測定した結果、 30 p pmのフエノールと 120 p pmの DP Cとを含んでおり、色相 b値および 0. 5 izm以上の異物含有量は第 4重合槽出側で測定した値と同一であり、 粘度平均 分子量は 23, 500、 OH末端含有率は 19. 5モル%と第 4重合槽出側で測 定した値と殆ど同一であった。
実施例 3
シート評価例
添加剤として、 ステアリン酸モノグリセリドとトリス (2, 4—ジ— t—プチ ルフエニル) ホスファイトに代えてリン系安定剤として SANDOSTAB P -EPQ (C l a r i an t社製) をポリマーに対し 30 p pm添加した以外は 上記実施例 2と同様にして製造したポリカーボネートペレツトを溶融した後、 ギ ァポンプで定量供給し、 成形機の Tダイに送った。 鏡面冷却ロールと鏡面ロール で挟持し、 または片面夕ツチで厚さ 2 mmまたは 0. 2mm、 幅 800mmのシ 一卜に溶融押出した。
得られた芳香族ポリカーボネートシート (2mm厚み) の片面に可視光硬化型 プラスチック接着剤 ( (株) ァーデレ BENEF I X PC) を塗布し、 同じ シートを気泡が入らないように一方に押し出すようにしながら積層後、 可視光線 専用メタルハライドタイプを備えた光硬化装置により 5, 00 OmJZcm2の 光を照射して得られた積層板の接着強度を J I S K- 6852 (接着剤の圧縮 せん断接着強さ試験方法) に準拠して測定した結果、 接着強度が 12. 6 MP a (128Kg f/cm2) で良好であった。
一方、得られた厚み 0. 2 mmの芳香族ポリ力一ポネートシートに、インキ(ナ ッダ 70— 9132 :色 136Dスモーク) および溶剤 (イソホロン シク 口へキサン イソブ夕ノール =40Z40 20 (重量%) ) を混合させて均一 にし、 シルクスクリーン印刷機で印刷を行い、 100でで 60分間乾燥させた。 印刷されたィンキ面には転写不良もなく、 良好な印刷であつた。
実施例 4〜10
ポリマーブレンドコンパウンドの評価
添加剤としてトリメチルホスフエ一ト 50 p pmを使用した以外は実施例 2と 同様にして製造したポリ力一ポネートに、 表 1, 2記載の各成分を, タンブラ一 を使用して均一に混合した後、 3 Οιηπιφベント付き 2軸押出機(神戸製鋼(株) 製 ΚΤΧ— 30) により、 シリンダ一温度 260 、 1. 33 kP a (10mm Hg) の真空度で脱揮しながらペレット化し、 得られたペレットを 120でで 5 時間乾燥後、射出成形機(住友重機械工業(株)製 S G 150 U型)を使用して、 シリンダー温度 270で、 金型温度 80での条件で測定用の成形片を作成し、 下 記の評価を実施した。 結果を表 1、 2に示す。 なお、 表 1、 2記載の各成分の記 号は下記の通りである。
ABS:スチレン一ブタジエン一アクリロニトリル共重合体;サンタック UT - 61 (三井化学 (株) 製) 、
AS:スチレン一アクリロニトリル共重合体;スタイラック一AS 767 R 27 (旭化成工業 (株) 製) 、
PET:ポリエチレンテレフタレート; TR— 8580 (帝人 (株) 製、 固有 粘度 0. 8) 、
PBT:ポリブチレンテレフ夕レート; TRB— H (帝人 (株) 製、 固有粘度 1. 07) 、
MBS :メチル (メタ) ァクリレート一ブタジエン—スチレン共重合体;カネ エース B— 56 (鐘淵化学工業 (株) 製) 、
E— 1 :ブタジエン—アルキルァクリレート—アルキルメタァクリレー卜共重 合体;パラロイド EXL— 2602 (呉羽化学工業 (株) 製) 、
E-2 :ポリオルガノシロキサン成分およびポリアルキル (メタ) ァクリレー トゴム成分が相互侵入網目構造を有している複合ゴム;メ夕ブレン S— 2001 (三菱レイヨン (株) 製) 、
T :タルク; HS— TO. 8 (林化成 (株) 製、 レーザー回折法により測定さ れた平均粒子径し=5/ 111、 L/D=8) 、
G:ガラス繊維;チョップドストランド ECS— 03 T— 511 (日本電気硝 子 (株) 製、 ウレタン集束処理、 瞧径 13 m) ,
W:ワラストナイト;サイ力テック NN— 4 (巴工業 (株) 製、 電子顕微鏡観 察により求められた数平均の平均繊維径 D=l. 5 m, 平均繊維長 17 ΠΙ、 ァスぺクト比 LZD=20) 、
WAX: α—ォレフィンと無水マレイン酸との共重合によるォレフィン系ヮッ クス;ダイヤカルナ一 Ρ 30 (三菱化成 (株) 製 (無水マレイン酸含有量 = 10 重量%) ) 、
表 1、 2の結果の測定法は次の通りである。
(1) 曲げ弾性率
ASTM D 790により、 曲げ弾性率を測定した。
(2) ノッチ付衝撃値
ASTM D256により厚み 3. 2 mmの試験片を用いノッチ側からおもり を衝撃させ衝撃値を測定した。
(3) 流動性
シリンダー温度 250で、 金型温度 80 、 射出圧力 98. IMP aでアルキ メデス型スパイラルフロー (厚さ 2mm、 幅 8mm) により流動性を測定した。
Figure imgf000049_0001
表 2
Figure imgf000049_0002
比較例 1
ポリカーボネー卜の製造
実施例 1と同様にして第 2重合槽ょり粘度平均分子量が 6 0 0 0、 全末端基 に対する〇H末端の割合が 3 4 . 3モル%第 1芳香族ポリ力一ポネートを連続的 に得、 これを第 2重合槽底部よりギヤポンプを用いて連続的に抜き出し、 第 3重 合槽に供給した。 第 3重合槽は精留塔を持たない縦型攪拌槽であり、 第 3重合槽 内のポリマ一表面積の内、 50 mm以下の液深を有する表面積の割合は 5 %以下 であった。 実施例 1と同様に第 3重合槽を温度 270 :、 圧力 lTo r r (13 3 Pa) に保ってオリゴカーボネートをさらにエステル交換させた結果、 実施例 1よりも 4. 8倍の重合時間を要して、 粘度平均分子量が 15, 200のポリ力 ーボネートが得られた。 このポリカーボネートは全末端に占める OH末端の割合 が 12. 0モル%であり、 0. 5 以上の異物含有量が 55, 700個 Zgで あり、 ペレット色相の b値は 0. 5であり、 色相や異物含有量で劣ったものであ つた。
第 3重合槽から発生する蒸気中の P h OHと D P Cとのモル比を測定した結果、 1 : 0. 09であり、 脱フエノールを伴うエステル交換反応 1に対し脱 DP C反 応を伴うエステル交換反応が 0. 09の割合でしか生じていなかった。
ポリ力一ポネートの後処理と成形性評価
実施例 1と同様にして重合触媒の失活、ポリマー中に含まれる低沸点物の除去、 添加剤の添加よりなる後処理を行った。
得られたポリカーボネートは低沸成分を測定した結果、 22 ppmのフエノー ルと 81 ppmの DPCとを含んでおり、 色相 b値および 0. 5 m以上の異物 含有量は第 3重合槽出側で測定した値と同一であり、 粘度平均分子量は 15, 1
00、 OH末端含有率は 12. 5モル%と第 3重合槽出側で測定した値と殆ど同 一であった。
成形性評価
このようにして得たぺレットのディスク成形性評価を行つた。
離型不良が発生するまでの成形枚数は 122, 300枚であり、 クラウドに関 しては連続成形枚数は 108, 800枚と劣ったレベルであった。
比較例 2
ポリカーボネートの製造
実施例 1と同様にして第 2重合槽より粘度平均分子量が 6, 000、 全末端基 に対する OH末端の割合が 34. 3モル%のオリゴカーボネートを連続的に得、 これを第 2重合槽底部よりギヤポンプを用いて連続的に抜き出し、 第 3重合槽に 供給した。 第 3重合槽は実施例 1と同様の装置を使用し、 温度 270t、 圧力 1 To r r (133 P a) に保つと共に、 ビスフエノール Aに対し 200 X 10一6 モルのテトラメチルアンモニゥムヒドロキシドを第 3重合槽に連続的に供給して 脱 D P C反応を伴うエステル交換反応を促進させてオリゴカーボネートをさらに 重合させた結果、粘度平均分子量が 15, 200のポリカーボネートが得られた。 このポリカーボネートは全末端に占める OH末端の割合が 70.0モル%であり、 0. 5 m以上の異物含有量が 12, 200個 であり、 ペレット色相の b値 は— 0. 1であった。 色相や異物含有量は大きな低下を示さなかったが OH末端 含有率は高い値を示した。
第 3重合槽から発生する蒸気中の P h OHと D P Cとのモル比を測定した結果、 1 : 2. 17であり、 脱フエノールを伴うエステル交換反応 1に対し脱 DPC反 応を伴うエステル交換反応が 2. 17の割合で生じていた。
比較例 3
ポリカーボネートの製造
ビスフエノール AO. 70キロモルに対し DPCを 0. 698キロモル使用す る以外は実施例 1と同様にして重合を行い第 2重合槽ょり粘度平均分子量が 6 , 000、 全末端基に対する OH末端の割合が 51. 4モル%のオリゴカーボネー トを連続的に得、 これを第 2重合槽底部よりギヤポンプを用いて連続的に抜き出 し、 第 3重合槽に供給した。 第 3重合槽は実施例 1と同様の装置を使用し、 温度 270 、 圧力 lTo r r ( 133 P a) に保ちオリゴカ一ポネートをさらに重 合させた結果、 粘度平均分子量が 15, 200のポリカーボネートが得られた。 このポリ力一ポネートは全末端に占める OH末端の割合が 60.5モル%であり、 0. 5 m以上の異物含有量が 10, 400個/ gであり、 ペレット色相の b値 は— 0. 4であった。 色相や異物含有量は大きな低下を示さなかったが OH末端 含有率は高い値を示した。
第 3重合槽から発生する蒸気中の Ph〇Hと DPCとのモル比を測定した結果、 1 : 0. 081であり、 脱フエノールを伴うエステル交換反応 1に対し脱 DP C 反応を伴うエステル交換反応が 0. 081の割合でしか生じていなかった。

Claims

請求の範囲
1 . ( 1 ) 芳香族ジヒドロキシ化合物と芳香族炭酸ジエステルとをエステル交換 反応せしめて粘度平均分子量が少なくとも 4 , 0 0 0でありかつ末端ヒドロキシ ル基濃度が全末端基の 1 5〜4 5モル%である第 1芳香族ポリカーボネートを生 成し、 次いで
( 2 ) この第 1芳香族ポリカーボネートを、 芳香族モノヒドロキシ化合物を脱離 する第 1エステル交換反応および芳香族炭酸ジエステルを脱離する第 2エステル 交換反応を伴う重合に、 該芳香族モノヒドロキシ化合物対該芳香族炭酸ジエステ ルのモル比が 1対 0. 1〜1の生成割合となるように、 付して、 粘度平均分子量 が第 1芳香族ポリカーボネートの粘度平均分子量よりも大きくかつ 1 0, 0 0 0 以上でありしかも全末端基に対する末端ヒドロキシル基の濃度が第 1芳香族ポリ 力一ボネ一トの末端ヒド口キシル基の濃度よりも低い第 2芳香族ポリカーボネー トを生成せしめる、
ことを特徴とする芳香族ポリカーボネートの製造法。
2 . 第 1芳香族ポリカーボネートの末端ヒドロキシル基の濃度が全末端基の 2 0 〜 4 0モル%である請求項 1に記載の方法。
3 . 第 2芳香族ポリカーボネートの末端ヒドロキシル基の濃度が全末端基の 3 5 モル%以下である請求項 1に記載の方法。
4. 第 1エステル交換反応と第 2エステル交換反応を伴う重合が、 芳香族モノヒ ドロキシ化合物対芳香族炭酸ジエステルのモル比が 1対 0. 2〜0 . 7の生成割 合となるように、 行われる請求項 1に記載の方法。
5 . 工程 (1 ) を、 芳香族ジヒドロキシ化合物 1モル当り、 1 X 1 0— 8〜5 X 1 0一 5当量の、 アル力リ金属化合物およびアル力リ土類金属化合物よりなる群から 選ばれる少なくとも 1種の金属化合物、並びに 1 X 1 0 _5〜5 X 1 0 _3当量の含 窒素塩基性ィ匕合物の組合せからなるエステル交換触媒の存在下で行う、 請求項 1 に記載の方法。
6 . 工程 (1 ) を実施する前に芳香族ジヒドロキシ化合物と芳香族炭酸ジエステ ルを、 それらの混合物として芳香族ジヒドロキシ化合物の融点以下の濃度でフィ ルターで濾過する請求項 1に記載の方法。
7 . フィル夕一が公称濾過精度 0 . 1〜1 / mである金属 H !からなる濾過層を 有する請求項 6に記載の方法。
8. 芳香族ジヒドロキシ化合物が、 2, 2—ビス (4—ヒドロキシフエニル) プ 口パンでありそして芳香族炭酸ジエステルがジフエ二ルカーポネートである、 請 求項 1に記載の方法。
9 . 工程 (2 ) の重合を行う反応器において、 反応器内のポリマーの表面積のう ち、 5 O mm以下の液深を有するポリマーの表面積を 5 0 %以上に制御する請求 項 1に記載の方法。
1 0 . 工程 (2 ) の重合を行う反応器が横型 1軸円筒型反応器であり、 該横型 1 軸円筒型反応器は、 2枚の端部円板、 2枚の端部円板間に配設された複数枚の中 空円板、 端部円板と中空円板および中空円板同士を所定の間隔で連結し、 固定す る複数枚の支持羽根および 2枚の端部円板の中央部に固定された独立した 2本の 端部回転軸からなる、 複数の中空円板間に、 実際の回転軸を持たない構造を持つ 攪拌翼を有し、 そして該端部円板および中空円板は該攪拌翼の仮想回転軸に対し 垂直である、 請求項 1または 9に記載の方法。
1 1 . 端部円板と中空円板および中空円板同士の間隔において、 複数枚の支持羽 根の少なくとも 1枚が反応器の胴壁に近接しかつ近接する先端部位が該胴壁に平 行である、 請求項 1 0に記載の方法。
1 2 . 上記各間隔において、 上記少なくとも 1枚の支持羽根が攪拌翼の仮想回転 軸方向に伸びる平板である請求項 1 1に記載の方法。
1 3 . 上記各間隔において、 上記少なくとも 1枚の支持羽根が、 攪拌翼の仮想回 転軸に対する垂直な円筒断面における接線に対し 3 0〜6 0度の角度を持ってい る請求項 1 2に記載の方法。
1 4. 2枚の端部円板が切り欠き開口を有する請求項 1 0に記載の方法。
1 5 . 横型 1軸円筒型反応器が鏡板と胴壁で規定される、 攪拌翼を収容する反応 器内室、 2本の端部回転軸を支える 2つの軸受けおよび鏡板と軸受けの間に位置 し、 端部回転軸の回転に伴い、 それに付着したポリマーを反応器内室へ戻す方向 に螺旋状溝が設けられたポリマー戻し機構からなる、 請求項 1 0に記載の方法。
1 6 . 工程 (2 ) の重合を行う反応器が平行に延びた 2つの円筒を組合せて形成 された繭型断面を有する横型 2軸反応器であって、
a ) 反応器入り口側鏡板、 該鏡板の反対方向にある反応器出口側鏡板、 該反応 器内を実質的に水平方向に延びる複数の攪拌単位を持つ第 1の攪拌翼および該第 1の攪拌翼と平行でかつ反応器内に実質的に水平に配置された複数の攪拌単位を 持つ第 2の攪拌翼とを有し、
b ) 第 1の攪拌翼と第 2の攪拌翼とが互いに嚙み合うように近接して配置され ておりそして同期しながら同方向に回転することによつて反応液を相互の攪拌単 位および反応器胴壁に薄膜状に塗布、 更新する機能を有し、 そしてさらに c ) 反応器入り口側鏡板に近接しかつ第 1の攪拌軸の上方に設けられた反応液 の入り口と、 反応器出口側鏡板に近接した反応器の下部に設けられた反応液の出 口とを有する
請求項 1または 9に記載の方法。
1 7 . 反応器の反応液の供給口が第 1の攪拌軸の上方であってかつ反応器入り口 側鏡板の上方に設けられているものである請求項 1 6に記載の方法。
1 8 . 反応器の反応液の供給口が、 反応器入り口側鏡板に隣接した当該反応器の 胴壁の上方に設けられているものである請求項 1 6に記載の方法。
1 9 . 攪拌軸方向に見た場合に、 攪拌単位が、 実質的に凸レンズ状断面を有し、 そして攪拌翼の両端にある攪拌単位が当該鏡板に近接している請求項 1 6に記載 の方法。
2 0 .各々の攪拌軸に取り付けられた攪拌単位の少なくとも 1部が次の要件( i ) 〜 (m) を満たしており、
i )攪拌軸方向に見た場合に、実質的に凸レンズ状または紡錘形状の断面を有し、 ii ) 攪拌軸方向に沿って間隔を空けて取り付けられており、 そして
iii) 攪拌単位の紡錘形状の頂点にあたる先端部分には、 上記 ii ) の攪拌単位の取 り付け間隔に略相当する長さを有する、 反応器胴壁用スクレーパーが、 攪拌軸の 方向に沿って取り付けられている、
かつ、 攪拌翼の両端にある攪拌単位は反応器の鏡板に近接して設置されている 請求項 1 6に記載の方法。
2 1 . 反応器入り口側鏡板に近接して設置された攪拌単位の当該鏡板に対向する 面に、 反応液を捕捉して攪拌翼の回転の中心方向に排出する働きを有する、 鏡板 用スクレーパーが設置されている請求項 1 6に記載の方法。
2 2 . 紡錘形状の頂点の一方を 0 ° とし、 残る一方を 1 8 0 ° とし、 攪拌単位の 回転方向を正とした場合、 鏡板に対向する攪拌単位の、 鏡板に対向する面の外周 上であって、 かつ、 攪拌単位の回転方向で 9 0〜1 8 0 ° の領域および 2 7 0〜 3 6 0 ° の領域の各々少なくとも 1部に、 鏡板用スクレーパーが、 点対称に設置 されている請求項 2 1に記載の方法。
2 3 .横型 2軸反応器が鏡板と胴壁で規定される、攪拌翼を収容する反応器内室、 2本の端部回転軸を支える 2つの軸受および鏡板と軸受けの間に位置し、 端部回 転軸の回転に伴い、 それに付着したポリマーを反応器内室へ戻す方向に螺旋状溝 が設けられたポリマー戻し機構からなる、 請求項 1 6に記載の方法。
2 4. 反応器出口側鏡板に対向する位置に設置された攪拌単位が反応器出口側鏡 板の方向にポリマーを輸送する機能を備えた攪拌単位であることを特徴とする請 求項 1 6に記載の方法。
2 5 . 反応器出口側鏡板に対向する位置に設置された攪拌単位が実質的にスクリ ュ一形状の攪拌要素である請求項 2 4に記載の方法。
2 6 . 請求項 1の方法で製造された末端ヒドロキシル基濃度が全末端基の 3 5モ ル%以下であり、 0. 5 m以上の粒子の含有量が 5 0 , 0 0 0個 Z g以下であ り、 そして粘度平均分子量が 1 0, 0 0 0以上である、
ことを特徴とする芳香族ポリ力一ポネート。
2 7 . 芳香族モノヒドロキシ化合物および芳香族炭酸ジエステルをいずれも高々 2 0 0 p pmでしか含有しない請求項 2 6に記載の芳香族ポリカーボネート。
2 8 . 有機スルホン酸化合物およびリン化合物よりなる群から選ばれる少なくと も 1種の化合物をさらに含有する、請求項 2 6に記載の芳香族ポリカーボネー卜。
2 9 . 請求項 1の方法で製造された芳香族ポリカーボネートが溶融状態にある間 に、 有機スルホン酸化合物およびリン化合物よりなる群から選ばれる少なくとも 1種の化合物を添加して混練したのち、 フィルターで濾過して製造された、 請求 項 2 6に記載の芳香族ポリカーボネート。
3 0 . フィルターの公称濾過精度が 1〜 5 O /i mである請求項 2 9に記載の芳香 族ポリカーボネー卜。
3 1 . 有機スルホン酸化合物がドデシルベンゼンスルホン酸テトラブチルホスホ ニゥム塩およびパラトルエンスルホン酸テトラブチルアンモニゥム塩よりなる群 から選ばれる少なくとも 1種であり、 リン化合物がリン酸、 亜リン酸およびそれ らのエステルよりなる群から選ばれる少なくとも 1種である請求項 2 8または 2 9に記載の芳香族ポリ力一ポネート。 ·
3 2 . 請求項 1の方法で製造された芳香族ポリ力一ポネート並びに、 脂肪族アル コールと脂肪族カルボン酸とのエステル、 無機充填剤およびポリカーボネート以 外の熱可塑性樹脂よりなる群から選ばれる少なくとも 1種からなる組成物。
3 3 . 請求項 1の方法で製造された芳香族ポリ力一ポネ一ト並びに脂肪族アルコ ールと脂肪族力ルボン酸とのエステルからなる組成物。
3 4. 請求項 1の方法で製造された芳香族ポリカーボネートが溶融状態にある間 に、脂肪族アルコールと脂肪族カルボン酸とのエステルを添加して混練したのち、 フィルターで濾過して製造された請求項 3 3の組成物。
3 5 . 脂肪族アルコールと脂肪族カルボン酸とのエステルがグリセリンのステア リン酸エステルおよびペン夕エリスリトールのステアリン酸エステルよりなる群 から選ばれる少なくとも 1種のエステルである請求項 3 2〜3 4のいずれかに記 載の組成物。
36.無機充填剤がガラス繊維、炭素繊維、雲母、炭酸カルシウム、酸化チタン、 シリカ、 アルミナおよび粘土よりなる群から選ばれる少なくとも 1種である請求 項 32に記載の組成物。
37. ポリカーボネート以外の熱可塑性樹脂がポリエチレンテレフ夕レート (P ET) 、 ポリテトラメチレンテレフタレート (PBT) 、 アクリロニトリル ブ 夕ジェン スチレン共重合樹脂 (ABS) および耐衝撃性ポリスチレン (HI P S) よりなる群から選ばれる少なくとも 1種である請求項 32に記載の組成物。
PCT/JP2001/009874 2000-11-14 2001-11-12 Polycarbonate aromatique, son procede de production et composition contenant celui-ci WO2002040569A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01996572A EP1275677A4 (en) 2000-11-14 2001-11-12 AROMATIC POLYCARBONATE, PROCESS FOR PRODUCING THE SAME, AND COMPOSITION CONTAINING THE SAME
JP2002543573A JPWO2002040569A1 (ja) 2000-11-14 2001-11-12 芳香族ポリカーボネート、その製造法およびそれを含む組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-347136 2000-11-14
JP2000347136 2000-11-14

Publications (1)

Publication Number Publication Date
WO2002040569A1 true WO2002040569A1 (fr) 2002-05-23

Family

ID=18820916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009874 WO2002040569A1 (fr) 2000-11-14 2001-11-12 Polycarbonate aromatique, son procede de production et composition contenant celui-ci

Country Status (7)

Country Link
US (1) US20030027941A1 (ja)
EP (1) EP1275677A4 (ja)
JP (1) JPWO2002040569A1 (ja)
KR (1) KR100767227B1 (ja)
CN (1) CN1249120C (ja)
TW (1) TW548293B (ja)
WO (1) WO2002040569A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807728B2 (en) 2004-12-21 2010-10-05 Asahi Kasei Chemicals Corporation Method for recycling recovered polycondensation polymer
JP2011026557A (ja) * 2009-06-29 2011-02-10 Mitsubishi Gas Chemical Co Inc ポリカーボネート樹脂の製造方法
WO2013147223A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 ポリカーボネート樹脂の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357161A1 (de) * 2003-12-06 2005-06-30 Bayer Materialscience Ag Verfahren zur Herstellung von Polycarbonaten mit geringem Gehalt an flüchtigen Verbindungen nach dem Umesterungsverfahren
US7919644B2 (en) * 2004-06-17 2011-04-05 Asahi Kasei Chemicals Corporation Process for producing an aromatic carbonate
US7655737B2 (en) * 2006-11-16 2010-02-02 Sabic Innovative Plastics Ip B.V. Polycarbonate-polyester blends, methods of manufacture, and methods of use
JP5245272B2 (ja) * 2007-03-29 2013-07-24 三菱化学株式会社 芳香族ポリカーボネートの製造方法
EP3511359B1 (en) * 2012-08-29 2021-01-06 SABIC Global Technologies B.V. Process for the production of melt polycarbonate compositions
CN104877330B (zh) 2015-05-27 2016-08-24 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN105440624B (zh) * 2015-05-27 2019-05-07 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN105315641B (zh) * 2015-05-27 2018-09-28 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN104987689B (zh) * 2015-06-08 2016-09-14 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN105038174B (zh) * 2015-07-03 2017-05-31 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN108948340B (zh) * 2018-06-05 2021-03-09 金聚合科技(宁波)有限公司 一种制备芳香族聚碳酸酯的装置及方法
CN108854881A (zh) * 2018-06-20 2018-11-23 北京濮源新材料技术研究院(普通合伙) 用于生产聚碳酸酯的新型圆盘反应器
CN114563312B (zh) * 2022-01-27 2022-12-06 苏州大学 一种薄膜力学性能的测量方法及测量装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310632A (ja) * 1998-04-28 1999-11-09 Daicel Chem Ind Ltd ポリカーボネートの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU183978B (en) * 1982-06-28 1984-06-28 Gyogyszerkutato Intezet Process for preparing the propagative material of plants in tissue culture
NL8402555A (nl) * 1984-08-20 1986-03-17 Gen Electric Polymeermengsel, dat een aromatisch polycarbonaat hars en een slagsterkte verbeterend middel bevat.
RU2004551C1 (ru) * 1987-09-28 1993-12-15 Асахи Касеи Когио Кабусики Кайс (JP) Способ получени высокомолекул рного поликарбоната
US4948871A (en) * 1987-09-28 1990-08-14 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing a crystallized aromatic polycarbonate, and a crystallized aromatic polycarbonate obtained thereby
JPH0794546B2 (ja) * 1987-09-28 1995-10-11 旭化成工業株式会社 芳香族ポリカーボネートの製造方法及びそれによって得られた結晶性芳香族ポリカーボネート粉体
NL8702632A (nl) * 1987-11-04 1989-06-01 Gen Electric Polycarbonaat met lage relatieve viscositeit en polymeermengsels.
US5864006A (en) * 1997-04-08 1999-01-26 The Dow Chemical Company Method of making polycarbonate prepolymer and method of making high molecular weight polycarbonate
US6300459B1 (en) * 1998-03-17 2001-10-09 Teijin Limited Process for producing aromatic polycarbonate
WO2001070882A1 (fr) * 2000-03-22 2001-09-27 Teijin Limited Composition polycarbonate aromatique
TWI281483B (en) * 2000-03-30 2007-05-21 Teijin Ltd Aromatic polycarbonate composition, production process therefor and molded product thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310632A (ja) * 1998-04-28 1999-11-09 Daicel Chem Ind Ltd ポリカーボネートの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807728B2 (en) 2004-12-21 2010-10-05 Asahi Kasei Chemicals Corporation Method for recycling recovered polycondensation polymer
JP2011026557A (ja) * 2009-06-29 2011-02-10 Mitsubishi Gas Chemical Co Inc ポリカーボネート樹脂の製造方法
WO2013147223A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 ポリカーボネート樹脂の製造方法

Also Published As

Publication number Publication date
JPWO2002040569A1 (ja) 2004-03-25
EP1275677A4 (en) 2003-03-12
KR20020069243A (ko) 2002-08-29
KR100767227B1 (ko) 2007-10-17
TW548293B (en) 2003-08-21
CN1395592A (zh) 2003-02-05
CN1249120C (zh) 2006-04-05
US20030027941A1 (en) 2003-02-06
EP1275677A1 (en) 2003-01-15
EP1275677A9 (en) 2003-04-09

Similar Documents

Publication Publication Date Title
WO2002040569A1 (fr) Polycarbonate aromatique, son procede de production et composition contenant celui-ci
US5525701A (en) Method for the manufacture of aromatic polycarbonate
US20030154859A1 (en) Twin screw extruder, method of making aromatic polycarbonate using a twin screw extruder, and method of removing volatiles from an aromatic polycarbonate melt
US20040147655A1 (en) Aromatic polycarbonate resin composition
JP2003530478A (ja) ポリカーボネートの再分配法
KR20020054337A (ko) 방향족 폴리카보네이트 및 그 제조법
CN110072918B (zh) 借助相容剂制造含硅氧烷的嵌段共聚碳酸酯
JP3197416B2 (ja) 芳香族ポリカーボネートの製造法
KR101211979B1 (ko) 폴리카보네이트 수지의 제조 방법
EP1120435B1 (en) Apparatus and method for producing resin
JP4836299B2 (ja) 芳香族ポリカーボネート樹脂の製造方法
CN108699328B (zh) 芳香族聚碳酸酯树脂组合物和芳香族聚碳酸酯树脂的制造方法
JP2001031754A (ja) ポリカーボネート樹脂の製造方法
JPH10218985A (ja) 芳香族ポリカーボネートの製造方法
JPH02153924A (ja) ポリカーボネートの製造方法
JP4700166B2 (ja) 芳香族ポリカーボネートの製造方法
JP2001240667A (ja) 芳香族ポリカーボネートの製造方法
JP4422246B2 (ja) ポリカーボネートの製造方法
KR100767888B1 (ko) 폴리카보네이트의 재분배 방법
JP4376359B2 (ja) ポリカーボネート樹脂組成物の連続製造方法
JP4169433B2 (ja) ポリカーボネート樹脂粉粒体の製造方法
JP4414519B2 (ja) 樹脂の製造設備および製造方法
KR20240036575A (ko) 적어도 1개의 특수 축합 반응기를 사용하는 폴리실록산-폴리카르보네이트 블록 공중합체의 제조 방법
JPH0632887A (ja) 芳香族ポリカーボネートの製造法
KR20240036576A (ko) 폴리실록산-폴리카르보네이트 블록 공중합체의 제조 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2002 543573

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020027008870

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10181028

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001996572

Country of ref document: EP

Ref document number: 018037461

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027008870

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001996572

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001996572

Country of ref document: EP