WO2002031118A1 - Levure résistant au séchage - Google Patents

Levure résistant au séchage Download PDF

Info

Publication number
WO2002031118A1
WO2002031118A1 PCT/JP2001/008668 JP0108668W WO0231118A1 WO 2002031118 A1 WO2002031118 A1 WO 2002031118A1 JP 0108668 W JP0108668 W JP 0108668W WO 0231118 A1 WO0231118 A1 WO 0231118A1
Authority
WO
WIPO (PCT)
Prior art keywords
yeast
minutes
dough
weight
frozen storage
Prior art date
Application number
PCT/JP2001/008668
Other languages
English (en)
French (fr)
Inventor
Toshiaki Katsumi
Kinya Ohtsuki
Yasuhiro Tashita
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP01972647A priority Critical patent/EP1331263A4/en
Priority to KR1020037004660A priority patent/KR100806005B1/ko
Priority to US10/398,253 priority patent/US20040022897A1/en
Priority to AU9233001A priority patent/AU9233001A/xx
Priority to AU2001292330A priority patent/AU2001292330B2/en
Publication of WO2002031118A1 publication Critical patent/WO2002031118A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • A21D8/04Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
    • A21D8/047Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes with yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast

Definitions

  • the present invention relates to a dry-resistant yeast, a dry yeast obtained by drying the yeast, a dough containing the yeast or the dry yeast, and a dough containing the yeast, which is suitable for bread making, particularly for making frozen dough.
  • Baker's yeast is roughly classified into two types, live yeast (hereinafter sometimes referred to as yeast before drying) and dried yeast (hereinafter sometimes referred to as yeast after drying).
  • yeasts having various functions such as yeast used for dough with higher sugar concentration, yeast used for frozen dough manufacturing, and yeast having low-temperature sensitivity, have been developed as live yeast.
  • yeast suitable for bread production has been put to practical use, and it is possible to handle various kinds of bread production.
  • live yeast requires refrigeration for storage and has a short shelf life.
  • dried yeast is obtained by drying live yeast for the purpose of improving the storage and storage properties, and has been put to practical use as active dried yeast or instant dried yeast.
  • the flavor unique to dry yeast is particularly preferred for breads with a low sugar concentration and has been put to practical use.
  • a dry yeast it is necessary to use a strain having tolerance to drought or to impart drought tolerance by adjusting the culture method.
  • a device for drying and a device such as temperature or emulsifier addition.
  • dried yeast is mainly used under conditions of a limited sugar concentration, particularly in a production method utilizing the flavor unique to dried yeast. Specifically, it is mainly used for making French bread with a scratch method and bread with low sugar concentration such as white bread. On the other hand, it is hardly used in the baking method using dough with a high sugar concentration or in the frozen production method using frozen dough or refrigerated dough. This is due to the fact that yeast having sufficient bread-making properties has not yet been obtained in those doughs. Examples of yeast that can be used as a dry yeast in a frozen dough production method include, for example, Japanese Patent Application Laid-Open No. H11-155555 / 1999, which discloses that a dough having a very low sugar concentration has a freeze resistance and a dry tolerance.
  • the present invention relates to a yeast which has excellent fermentation power in various doughs from sugar-free to high sugar concentration and has drying resistance and is suitable for bread making, particularly for frozen dough making.
  • Yeast which shows high fermentative power from sugar to ultra-high sugar dough and has drought tolerance
  • Yeast which shows high fermentative power from sugar-free to high sugar dough and has drought tolerance
  • High fermentative power from sugar-free to low sugar dough Yeast which has a high freezing resistance and / or floor resistance from medium sugar to high sugar dough and has a high freezing resistance and / or floor resistance from medium sugar to high sugar dough
  • Yeast which is resistant and drought-resistant
  • yeast which has high freezing resistance and Z or floor resistance and is drought-resistant in sugar-free to low-sugar dough
  • An object of the present invention is to provide a yeast having dry tolerance.
  • the present invention provides a dried yeast obtained by drying the yeast, which is excellent in storability and preservability, can exhibit the same fermentative power as a live yeast, and is particularly suitable for bread making frozen dough. Is an issue. Further, the present invention provides a dough and a frozen dough containing the yeast or the dried yeast, and an excellent bread of stable quality using the dough. That is the task. Disclosure of the invention
  • the present inventors have conducted intensive studies in view of the above problem, and as a result, have found a yeast having desired characteristics, and have completed the present invention.
  • the fermentative power of dry yeast is expressed as the amount of gas generated at 30 ° C per 150 g per 85 g of dough with a sugar concentration of 30% by weight (1.5% by weight of dry yeast).
  • yeast having fermentative power in a dough having a sugar concentration of 0 to 30% by weight and having drying resistance
  • the fermentative power of dry yeast is 140 ml or more when expressed as the amount of gas generated in 85 minutes at 30 ° C per 85 g of dough with a sugar concentration of 0% by weight (dry yeast 1% by weight).
  • the dough with a sugar concentration of 30% by weight (1.5% by weight of dried yeast) is 200ml or more when expressed as the amount of gas generated at 85 ° C for 15 minutes at 30 ° C.
  • yeast having fermentative power in a dough having a sugar concentration of 0 to 5% by weight and having tolerance to drying [8] When the fermentative power of dry yeast is expressed as the amount of gas generated in 85 minutes at 3 O per 85 g of dough (dry yeast 1% by weight) with a sugar concentration of 0% by weight, it is 220 ml or more. (7) the yeast described,
  • the fermentative power of dry yeast is 160 ml or more when expressed in 85 minutes at 85 ° C per 85 g of dough with a sugar concentration of 5% by weight (1% by weight of dry yeast) at 30 ° C.
  • the dry fermentation power of dry yeast is expressed as the amount of gas generated for 120 minutes at 38 ° C per 20 g of dough with a sugar concentration of 10% by weight (dry yeast 2% by weight).
  • Floor time 60 minutes
  • the yeast according to (10), wherein the dough after frozen storage for 4 weeks is 90 ml or more.
  • the ratio of fermentation power after frozen storage for 4 weeks after floor time 30 minutes and after storage frozen for 4 weeks after floor time 90 minutes is 0.20 or more.
  • the fermentative power of dry yeast is expressed as the amount of gas generated for 20 minutes at 38 ° C per 20 g of dough with a sugar concentration of 15% by weight (2.5% by weight of dry yeast).
  • the yeast according to (10), wherein the dough after frozen storage for 4 weeks is 70 ml or more,
  • the ratio of fermentation power (floor time 90 minutes, floor time 30 minutes) after frozen storage for 4 weeks after floor time 30 minutes and frozen storage for 4 weeks after floor time 90 minutes is 0.20 or more.
  • (14) or the yeast according to (15) [17] The dry fermentation power of dry yeast expressed as the amount of gas generated in 20 minutes at 38 ° C per 20 g of dough with a sugar concentration of 25% by weight (dry yeast 3% by weight) The yeast according to (10), wherein the dough after frozen storage for 4 weeks after floor time 90 minutes is 50 ml or more.
  • the fermentative power of dry yeast is expressed as the amount of gas generated at 20 ° C for 120 minutes at 38 ° C per 20 g of dough with a sugar concentration of 0 wt% (dry yeast 2 wt%). Even after 60 minutes, the yeast according to the above (20), which is 100 ml or more of the dough after frozen storage for 4 weeks,
  • the dry fermentation power of dry yeast is expressed as the amount of gas generated in 20 minutes at 38 ° C per 20 g of dough with a sugar concentration of 5% by weight (dry yeast 2% by weight). Even after 60 minutes, the yeast according to any one of the above [20;] to [23], wherein the dough after frozen storage for 4 weeks is 70 ml or more.
  • the ratio of fermentation power after frozen storage for 4 weeks after floor time 30 minutes and after frozen storage for 90 minutes after floor time 90 minutes is 0.
  • the fermentative power when dry yeast is expressed as the amount of gas generated in 20 minutes at 38 ° C per 20 g of dough with a sugar concentration of 25% by weight (dry yeast 3% by weight)
  • the floor time is 120 ml or more for the dough that has been frozen for 4 weeks after 60 minutes, and the floor time is 90 ml or more for the dough after frozen for 4 weeks after 90 minutes.
  • the yeast according to any one of to
  • the ratio of fermentation power before and after frozen storage (after frozen storage / before frozen storage) is 0.70 or more for 4 weeks after floor time 60 minutes, and 4 weeks after floor time 90 minutes.
  • a yeast having freeze resistance and / or floor resistance in a dough having a sugar concentration of 0 to 3% by weight, and having drying resistance [34]
  • the fermentative power of dry yeast is expressed as the amount of gas generated at a sugar concentration of 0% by weight (dry yeast 2% by weight) at a rate of 38 per 20 g for 120 minutes, the floor time after 60 minutes 4
  • the yeast according to the above (33), wherein the dough after frozen storage for one week is 100 ml or more
  • the ratio of fermentation power (floor time 60 minutes / floor time 0 minutes) after frozen storage for 4 weeks and frozen storage for 60 minutes after floor time 0 minutes is 0.80 or more. (34) or the yeast according to (35),
  • the ratio of fermentation power (floor time: 60 minutes, floor time: 0 minutes) after floor time 0 minutes after 4 weeks frozen storage and floor time 60 minutes after 4 weeks freeze storage is 0.35 or more.
  • the yeast according to (38) is 0.35 or more.
  • [41] The yeast according to any one of [1] to [40], wherein the residual fermentation power ratio (the ratio of fermentation power before and after drying (after drying / before drying)) is 0.70 or more.
  • yeast according to any one of the above [10] to [19] and [: 41], which is Saccharomyces cerevisiae strain D66785 (FERM BP-7687);
  • the yeast according to any one of (20) to (32) and (1), which is Saccharomyces cerevisiae (Saccharomyces cerevis iae) D92 764 strain (FERM BP-7690).
  • FIG. 1 is a graph comparing the freezing resistance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 0% by weight (floor time: 60 minutes).
  • the black circles The dried yeast of the present invention (D8092 1)
  • the black square is the dry yeast of the present invention (D92764)
  • the black triangle is the commercially available dry yeast Saf_instant (Red)
  • the white square is the commercially available dry yeast.
  • the results of the yeast Fermip an Red are shown.
  • the fermentation power at each time point of the freezing storage when the fermentation power before the frozen storage of each yeast is 1.0 is shown as the degree of freezing tolerance.
  • the sugar concentration was described as 0%.
  • FIG. 2 is a graph comparing the freezing resistance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 3% by weight (floor time: 60 minutes).
  • the closed circles indicate the results of the dried yeast (D80921) of the present invention
  • the closed triangles indicate the results of the commercially available dry yeast Saf-instant (Red)
  • the open squares indicate the results of the commercially available dry yeast Fermipan Red.
  • the fermentation power at each time point of the freezing and storage when the fermentation power of each yeast before freezing and storage was 1.0 is shown as the degree of cold / freezing resistance.
  • FIG. 3 is a graph comparing the freezing resistance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 5% by weight (floor time: 60 minutes).
  • the black squares indicate the results of the dried yeast of the present invention (D 927664)
  • the black triangles indicate the results of the commercially available dry yeast Saf_instant (Re)
  • the white squares indicate the results of the commercially available dry yeast Fermipan Red.
  • the fermentation power at each time point of frozen preservation is given as the degree of freezing tolerance, assuming that the fermentation power of each yeast before preservation was 1.0.
  • FIG. 4 is a graph comparing the freezing resistance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 10% by weight (floor time: 60 minutes).
  • the black squares indicate the dry yeast of the present invention (D 92764)
  • the black circles indicate the dry yeast of the present invention (D 67685)
  • the solid triangles indicate the commercially available dry yeast Saf-instant (Red )
  • Open squares indicate the results of a commercially available dry yeast Ferm ipan Red
  • open circles indicate the results of a commercially available dry yeast Saf-instant (Gold)
  • open triangles indicate the results of a commercially available dry yeast Fermipan Brown.
  • FIG. 5 is a graph comparing the freezing resistance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 15% by weight (floor time: 60 minutes).
  • Black circle in graph Indicates the results of the dried yeast of the present invention (D666785), the open circles indicate the results of the commercially available dry yeast Saf-instant (Gold), and the open triangles indicate the results of the commercially available dry yeast Fermipan Brown.
  • the fermentation power at each point of the freezing and storage when the fermentation power of each yeast before freezing and storage is 1.0 is shown as the degree of freezing tolerance.
  • FIG. 6 is a graph comparing the freezing resistance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 25% by weight (floor time: 90 minutes).
  • the closed circles indicate the dried yeast of the present invention (D 66785)
  • the solid squares indicate the dried yeast of the present invention (D 92764)
  • the open circles indicate the commercially available dried yeast Saf-instant (Gold)
  • Open triangles indicate the results of the commercially available dry yeast Fermi pan Brown.
  • the fermentation power at each point of the freezing and storage when the fermentation power of each yeast before freezing and storage was 1.0 is shown as the degree of freezing tolerance.
  • FIG. 7 is a graph comparing the floor tolerance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 0% by weight.
  • the black squares represent the dry yeast of the present invention (D 92764)
  • the black circles represent the dry yeast of the present invention (D 809 21)
  • the solid triangles represent the commercially available dry yeast Saf-ins ant ( Red) and open squares indicate the results of the commercially available dried yeast Fermipan Red.
  • the vertical axis shows the floor tolerance expressed as the ratio of the fermentation power after frozen storage (floor time 60 minutes / floor time 0 minutes).
  • FIG. 8 is a graph comparing the floor tolerance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 3% by weight.
  • the closed circles indicate the results of the dried yeast of the present invention (D80921)
  • the closed triangles indicate the results of the commercially available dried yeast Saf-instant (Red)
  • the open squares indicate the results of the commercially available dried yeast Fermipan Red.
  • the vertical axis shows the floor resistance expressed as the ratio of the fermentation power after frozen storage (floor time: 60 minutes, no floor time: 0 minutes).
  • FIG. 9 is a graph comparing the floor resistance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 5% by weight.
  • FIG. 10 is a graph comparing the floor resistance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 10% by weight.
  • the black squares indicate the dried yeast of the present invention (D 92764), the black circles indicate the dry yeast of the present invention (D 67685), and the solid triangles indicate the commercially available dried yeast Saf-ins ant ( Red), open circles indicate the results of the commercially available dry yeast Saf_instant (Gold), open squares indicate the results of the commercially available dry yeast Fermipan Red, and open triangles indicate the results of the commercially available dry yeast Fermipan Brown.
  • the vertical axis shows the floor tolerance expressed as the ratio of the fermentation power after frozen storage (floor time 90 minutes Z floor time 30 minutes).
  • FIG. 11 is a graph comparing the floor tolerance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 15% by weight.
  • the closed circles indicate the results of the dried yeast of the present invention (D666785)
  • the closed triangles indicate the results of the commercially available dry yeast Saf-instant (Gold)
  • the open squares indicate the results of the commercially available dry yeast Fermipan Brown.
  • the vertical axis shows the floor resistance expressed as the ratio of the fermentation power after frozen storage (floor time 90 minutes / floor time 30 minutes).
  • FIG. 12 is a graph comparing the floor resistance of the dry yeast of the present invention and a commercially available dry yeast in a dough having a sugar concentration of 25% by weight.
  • the black circles indicate the dried yeast of the present invention (D 66785)
  • the black squares indicate the dry yeast of the present invention (D 92764)
  • the open triangles indicate the commercially available dried yeast Fermipan Brown
  • the open circles indicate the commercially available yeast
  • the results of the dried yeast Saf-instant (Gold) are shown.
  • the vertical axis shows the floor tolerance expressed as the ratio of the fermentation power after frozen storage (floor time 90 minutes // floor time 30 minutes).
  • the yeast of the present invention is an yeast having excellent fermentation power in various doughs from sugar-free to high sugar concentrations, and also having drought resistance.
  • the yeast has particularly excellent properties from the viewpoint of baking properties, such as exhibiting excellent fermentation power, freezing resistance, floor resistance, and low-temperature sensitivity in dough in a specific sugar concentration range. According to the yeast of the present invention, it is not always necessary to use differently according to the sugar concentration of bread as in the prior art, and therefore, it is possible to cope with bread generally having any sugar concentration.
  • by limiting the sugar concentration and using an enzyme that can exhibit particularly excellent properties at the sugar concentration more excellent bread can be produced.
  • Dried yeast obtained by drying the yeast is excellent in storability and preservability, and is used in dough having a wide sugar concentration range from high sugar to ultra-high sugar dough, or from sugar-free to high sugar dough.
  • high-quality bread can be produced in any general sugar concentration range.
  • conventional dry yeasts for example, do not have sufficient freezing resistance and / or floor resistance, and have been difficult to use in a frozen dough manufacturing method.
  • the sugar concentration can be exhibited in a dough having a wide sugar concentration range from sugar-free to high sugar dough, or in a sugar-free to low sugar dough with high freezing resistance and Z or floor resistance, and also having drying resistance. Can be very suitably used for a frozen dough manufacturing method without being substantially restricted by the above.
  • dried yeasts are roughly classified into two types according to their manufacturing methods and properties.
  • One type is generally called active dry yeast (active drive yeast), which does not require special equipment for its production, and has a cell water content of about 10% by weight.
  • active dry yeast active drive yeast
  • the other type called instant dried yeast, has a cell moisture content of about 4% by weight and can be stored for a long period of time, and can be kneaded into dough without activation with warm water when used.
  • the term "dried yeast” refers to an instant dried yeast, which is a yeast having more excellent drought tolerance than a yeast that can be used only as the active dried yeast. Therefore, the dry yeast of the present invention has excellent storage properties and can be used immediately without activating with hot water when kneading the dough.
  • a dough suitable for the scratch dough method and a frozen dough method can be obtained, and an excellent bread having stable quality and using the dough can be provided.
  • the dried yeast, dough and bread are included in the present invention.
  • weight% when “weight%” is used as the sugar concentration of the dough, “weight part of sugar to 100 parts by weight of wheat flour” is indicated in accordance with the custom in the art, and for example, “sugar concentration of 5 weight parts” % Dough “means” a place where 100 parts by weight of flour is added with 5 parts by weight of sugar. " Frozen dough may include the concept of refrigerated dough.
  • sucrose-free dough refers to dough having a sugar concentration of 0% by weight
  • low sugar dough refers to dough having a sugar concentration of more than 0% by weight and up to 10% by weight
  • Medium sugar dough refers to dough with a sugar concentration exceeding 10% by weight and up to 15% by weight
  • high sugar dough refers to dough with a sugar concentration exceeding 15% by weight and up to 30% by weight.
  • ultra-high sugar dough refers to dough having a sugar concentration of more than 30% by weight and up to 40% by weight, respectively.
  • sucrose generally refers to sucrose, but the type thereof is not particularly limited, and any sugar can be used as long as it is added and used in the preparation of dough. Good.
  • high sugar dough may include the meaning of ultra high sugar dough.
  • H0BART table mixer
  • the sugar concentration is 0% by weight, the sugar concentration is 3% by weight, the sugar concentration is 5% by weight, the sugar concentration is 10% by weight, the sugar concentration is 15% by weight, and the sugar concentration is 25% by weight, respectively.
  • the dough was prepared by kneading each raw material at a kneading temperature of 29 with a table mixer (H0BART) according to the composition shown in Table 4 below.
  • the dough fermentation power at a sugar concentration of 0% by weight is obtained by preparing dough using dried yeast obtained by drying yeast as described below, and measuring the gas (carbon dioxide gas) from the dough measured under certain conditions. ) Expressed by the amount of generation. Specifically, the amount of gas generated (ml) was determined by mixing and kneading dough with a dough formulation having a sugar concentration of 0% by weight as shown in Table 1, dividing this dough into 85 g, and then using a conventional method. Measure with a graph (manufactured by Atto Corporation) (at 3 Ot for 85 minutes) to determine.
  • the dough fermentation power at a sugar concentration of 5% by weight refers to the amount of gas generated from the dough prepared under the condition that the dough is prepared using dried yeast obtained by drying the yeast as described below.
  • the amount of generated gas (ml) is determined by mixing and kneading dough with dough with a sugar concentration of 5% by weight as shown in Table 1, dividing the dough into 85 g, and According to the following procedure (30 to 85 minutes)
  • the dough fermenting power at a sugar concentration of 30% by weight is defined as a dough prepared using dried yeast obtained by drying a yeast as described below, and measuring the dough under a certain condition.
  • gas generation Expressed by gas generation. Specifically, the amount of generated gas (ml) is determined by mixing and kneading the dough with a dough with a sugar concentration of 30% by weight as shown in Table 1, dividing the dough into 85 g, and then adding the dough according to a conventional method. Measure with a graph (manufactured by Atto Corporation) (at 30 ° C for 115 minutes) to determine.
  • the dough fermentation power at a sugar concentration of 40% by weight refers to a dough prepared using dried yeast obtained by drying yeast as described below and measuring the dough under a certain condition. Expressed by gas generation. Specifically, the amount of generated gas (ml) was determined by mixing and kneading dough with dough with a sugar concentration of 40% by weight as shown in Table 1, dividing the dough into 85 g, and then using a conventional method. Measure with a graph (manufactured by Atto Co., Ltd.) (30 minutes for 115 minutes).
  • the amount of dough gas generated after the main kneading is a constant amount from the dough after the main kneading prepared by the saccharification seeding method using dried yeast obtained by drying yeast as described below. Expressed by the amount of gas generated under the conditions. Specifically, the amount of gas generation (ml) was determined by mixing the sweetened sponge dough shown in Table 2 and preparing the dough according to the dough preparation conditions of the sweetened sponge method shown in Table 3. After dividing it into 50 g, determine by means of a pharmograph (manufactured by Atto Corporation) according to a conventional method (at 30 ° C for 120 minutes). Table 2 Dough composition of sponge and sashimi in sweetened sponge dough
  • freeze resistance refers to a method of preparing a dough using dried yeast obtained by drying a yeast as described below, storing the dough in a frozen state for a certain period of time, and then setting the dried yeast as the yeast before the frozen storage. Means that it can exhibit usable fermentation power.
  • the fermentation power after cold storage was determined by dividing the dough obtained according to the formulation in Table 4 into 20 g, Take the floor time at 60 ° C or 90 minutes at ° C, then freeze at –20 for 4 weeks, then thaw at 25 ° C for 30 minutes and measure with a pharmograph (Ato Ichisha). It is expressed as the amount of gas generated (ml) from the dough obtained at (38 ° C for 120 minutes).
  • Freezing tolerance can also be expressed as the ratio of fermentation power before and after frozen storage (after frozen storage / before frozen storage), and more specifically, as the ratio of the amount of gas generated representing fermentation power before and after frozen storage. It is suitable for evaluating the freezing resistance in that the degree of fermentation power after frozen storage compared to that before storage can be immediately grasped. As the yeast of the present invention, it is more preferable that the yeast has a high ratio of both the fermentation power after frozen storage and the fermentation power before and after frozen storage.
  • the fermentation power before frozen storage is expressed as the amount of gas generated from the dough when the dough is not frozen and stored in the method described for the fermented mosquito after the frozen storage.
  • floor resistance refers to a method of preparing dough using dried yeast obtained by drying yeast as described below, and performing pre-fermentation (floor) before frozen storage.
  • floor resistance dough is prepared using the dry yeast, and two types of floor time are set for each dough for a long time and then the dough is kept for a certain period of time.
  • the ratio of the fermentation power after frozen storage when a short floor time is taken and when a long floor time is taken after a frozen storage (long floor time / short flow time).
  • the fermentation power is obtained as a gas generation amount, and expressed as a ratio of the obtained gas generation amount.
  • the floor time is set to 0 minutes and 60 minutes. Calculate the amount of gas generated and take the ratio. For dough with a sugar concentration of 10% by weight, dough with a sugar concentration of 15% by weight, and dough with a sugar concentration of 2.5% by weight, the floor time is set to 30 minutes and 90 minutes. Then, the fermentation power is calculated as the amount of gas generated, and the ratio is calculated.
  • the amount of gas generated (ml) was determined by using a dry yeast obtained by drying the yeast as described below, preparing dough according to the formulation in Table 4, dividing the dough into 20 g, and dividing the dough into 30 g. Take the specified floor time at, and store frozen at-20 ° C for 4 weeks, then thaw at 25 ° C for 30 minutes, and measure with a pharmograph (Ato Ichisha) (at 38 ° C). (120 minutes).
  • low-temperature sensitivity refers to a property that the fermentation power is low at a low temperature of preferably 0 ° C to 10 ° (: more preferably 3 ° C to 8 t:
  • the ratio of the dough fermentation power at 30 ° C to the dough fermentation power at 5 ° C of the dried yeast obtained by drying the yeast as described below was evaluated by the ratio (3 OX: dough fermentation power / 5 dough fermentation power). The higher the ratio, the better the low-temperature sensitivity.
  • the measurement method differs between the 5-dough fermentation power and the 30 ° C-dough fermentation power.
  • dough was prepared by kneading each component with a dough composition shown in Table 5 using a table mixer at a kneading temperature of 25 ° C to obtain dough.
  • the initial volume ml
  • the volume of the dough volume after fermentation
  • the difference between the volume after fermentation and the initial volume volume after fermentation-initial volume
  • the dough fermentation power was adjusted in the same way with the dough composition shown in Table 5, and kneaded to a kneading temperature of 29 ° C to prepare dough, and the obtained dough was divided into 85 g Thereafter, the amount of gas generation is measured by a thermograph (manufactured by Atto Corporation) according to a conventional method (30 ° ⁇ 3 for 85 minutes), and the amount of gas generation is defined as the dough fermentation power at 30 ° C.
  • live yeast pressed yeast
  • desiccation tolerance is expressed as the ratio of the fermentation power of yeast after drying to the fermentation power of yeast before drying (residual fermentation power ratio).
  • the yeast of the present invention is excellent in drying resistance, and thus can exhibit usable fermentative power even after drying in the same manner as yeast before drying.
  • the residual fermentative power ratio is determined as follows. That is, using each yeast before and after drying, each raw material is kneaded (kneading temperature: 29 t) with a table mixer (manufactured by H0BERT) in accordance with the composition shown in Table 6 to prepare dough.
  • the gas generation amount (ml) at 30 ° C for 85 minutes was measured with a thermograph, and the gas generation amount was determined as the fermentation power. I do. Then, the fermentation power of the yeast after drying, the fermentation power of the yeast before drying, the moisture content (% by weight) of the bacterial cells after drying, and the The cell water content (% by weight) is calculated by the following formula.
  • the moisture content of the cells after and before drying is determined by refining about lg of the cells to be measured (cell weight 1; g), and drying in a fully dried test tube at 110 ° C for 12 hours. And then weighed again (cell weight 2; g), using the following formula:
  • Cell water content [(cell weight 1-cell weight 2) cell weight 1] X I 0 0
  • a yeast which is suitably used particularly in a high sugar dough, has a high fermentation power in the dough, and has a drying resistance.
  • the yeast those having the following properties are preferable, and sufficiently exhibit the desired effects of the present invention.
  • the fermentation power of the dough with a sugar concentration of 30% by weight is preferably at least 200 ml, more preferably at least 250 ml, and the fermentation power of the dough with a Z or sugar concentration of 40% by weight. It is preferably at least 70 ml, more preferably at least 9 Om1. Further, the amount of dough gas generated after the main kneading is preferably 12 Oml or more, more preferably 170 ml or more, particularly preferably 175 m1 or more, and still more preferably 190 ml or more.
  • the residual fermentation power ratio is preferably 0.70 or more, and more preferably 0.80 or more. In this embodiment, when the residual fermentation power ratio is 0.70 or more, it can be suitably used for frozen dough.
  • a specific example of a suitable yeast in this embodiment is Saccharomyces cerevisiae D 75412 strain (F ERM BP-1 7688) described below.
  • a yeast which is suitably used in a dough having a sugar concentration of 0 to 30% by weight, has high fermentative power in the dough, and has drying resistance.
  • the yeast those having the following properties are preferable, and can sufficiently exhibit the desired effects of the present invention.
  • the dough fermentation power at a sugar concentration of 0% by weight is preferably at least 140 ml, more preferably at least 19 Oml, and the dough fermentation power at a sugar concentration of 30% by weight is preferably at least 200 ml. It is more preferably 23 Om 1 or more. Further, the dough gas generation amount after the main kneading is preferably at least 12 Om 1, more preferably at least 17 Om 1, particularly preferably at least 175 ml.
  • the residual fermentation power ratio is preferably 0.70 or more, and more preferably 0.80 or more. In this embodiment, when the residual fermentation power ratio is 0.70 or more, it can be suitably used for frozen dough.
  • yeast in this embodiment include Saccharomyces cerevisiae D20946 (FERM BP-7684) described below.
  • the present invention is preferably used in dough having a sugar concentration of 0 to 5% by weight.
  • a yeast having high fermentation power and desiccation resistance in the dough is preferable as the yeast, and can sufficiently exhibit the desired effects of the present invention.
  • the dough fermentative power at a sugar concentration of 0% by weight is preferably at least 220 ml, more preferably at least 24 Oml, and / or the dough fermentative power at a sugar concentration of 5% by weight is preferably at least 160 ml, more preferably Is more than 180ml.
  • the residual fermentation power ratio is preferably 0.70 or more, and more preferably 0.80 or more. In this embodiment, when the residual fermentation power ratio is 0.70 or more, it can be suitably used for frozen dough.
  • a specific example of a suitable yeast in this embodiment is Saccharomyces cer'evisiae D 46462 (FERM BP-7686) described below.
  • a yeast which is suitably used in dough having a sugar concentration of 10 to 30% by weight, has freeze resistance and / or floor resistance, and has dry resistance.
  • the yeast those having the following properties are preferable, and can sufficiently exhibit the desired effects of the present invention.
  • the fermentation power after frozen storage for 4 weeks after a floor time of 60 minutes is preferably 90 ml or more, more preferably 100 ml or more in terms of gas generation amount.
  • the ratio of fermentation power before and after freezing and storage for 4 weeks is preferably 0.50 or more, more preferably 0.55 or more.
  • the ratio of fermentation power (floor time 90 minutes / floor time 30 minutes) after 30 minutes of floor time frozen storage for 4 weeks and after 90 minutes of floor time storage for 4 weeks is preferably 0.20. Above, more preferably 0.35 or more.
  • the fermented mosquito after frozen storage for 60 minutes after floor time of 60 minutes is preferably 70 m1 or more, more preferably 10 Om1 or more, and still more preferably 13 Oml or more in terms of gas generation amount.
  • floor time 60 minutes after 4 weeks The ratio of the fermentation power before and after frozen storage is preferably 0.40 or more, more preferably 0.50 or more, and further preferably 0.65 or more.
  • the ratio of the fermentation power (floor time 90 minutes / floor time 30 minutes) after freeze storage for 4 weeks after floor time 30 minutes and freeze storage for 4 weeks after floor time 90 minutes is preferably 0.20 or more. More preferably, it is 0.30 or more, and still more preferably 0.45 or more.
  • the fermented bacterium after frozen for 4 weeks after a floor time of 90 minutes is preferably 50 ml or more, more preferably 60 ml or more, and still more preferably 90 ml or more in terms of gas generation amount.
  • the ratio of fermentation power before and after frozen storage for 4 weeks after a floor time of 90 minutes is preferably 0.60 or more, more preferably 0.63 or more.
  • the ratio of the fermentation power after frozen storage for 4 weeks after floor time 30 minutes and after storage for 90 minutes after floor time 90 minutes (floor time 90 minutes and floor time 30 minutes) is preferably 0.70 or more, and more preferably. Is more preferably 0.78 or more.
  • the residual fermentation power ratio is preferably 0.70 or more, and more preferably 0.80 or more.
  • a specific example of a suitable yeast in this embodiment is Saccharomyces cerevisiae strain D66785 (FERM BP-7687) described below.
  • a yeast which is suitably used in a dough having a sugar concentration of 0 to 30% by weight, has freeze resistance and Z or floor resistance in the dough, and has dry resistance.
  • the yeast having the following properties is preferable as the yeast, and can sufficiently exhibit the desired effects of the present invention.
  • the fermentation power after frozen storage for 4 weeks after a floor time of 60 minutes is preferably 10 Om1 or more, more preferably 105 m1 or more in terms of gas generation. Minutes after fermentation for 4 weeks It is preferably 0.88 or more, more preferably 0.90 or more.
  • the ratio of fermentation power (floor time 60 minutes / floor time 0 minutes) after floor-freezing for 4 minutes and storage for 4 weeks after freezing for 4 weeks is preferably 0.80 or more. It is more preferably 0.90 or more.
  • the fermentation power after frozen storage for 4 weeks after floor time of 60 minutes is preferably 7 Oml or more, more preferably 85 ml or more, and still more preferably 9 Oml or more in terms of gas generation amount.
  • the ratio of fermentation power before and after frozen storage for 4 weeks after floor time 60 minutes is preferably 0.40 or more, more preferably 0.70 or more.
  • the ratio of the fermentation power between the floor time of 0 minutes after 4 weeks frozen storage and the floor time of 60 minutes after 4 weeks frozen storage (floor time 60 minutes / floor time 0 minutes) is preferably 0.50 or more, more preferably Is more preferably 0.60 or more.
  • the fermentation power after frozen storage for 4 weeks after a floor time of 60 minutes is preferably 9 Oml or more, more preferably 100 m1 or more in terms of gas generation. It is preferable that the ratio of fermentation power before and after frozen storage for 4 weeks is preferably 0.50 or more, more preferably 0.55 or more, and still more preferably 0.65 or more. In addition, the ratio of fermentation power (floor time 90 minutes / floor time 30 minutes) after frozen storage for 4 weeks after floor time 30 minutes and after storage for 4 weeks after floor time 90 minutes is preferably 0.20 or more. It is preferably 0.35 or more, more preferably 0.40 or more.
  • the fermentation power after frozen storage for 4 weeks after a floor time of 60 minutes is preferably 125 ml or more, more preferably 130 ml or more, more preferably 14 Om1 or more in terms of gas generation amount.
  • the fermentation power after frozen storage for 4 weeks after 90 minutes from the floor time is preferably 5 Oml or more, more preferably 6 Oml or more, and still more preferably 9 Om1 or more in terms of gas generation amount.
  • the ratio of fermentation power before and after frozen storage for 4 weeks after floor time 60 minutes is preferably 0.70 or more, more preferably More preferably, it is 0.72 or more, and the ratio of fermentation power before and after frozen storage for 4 weeks after a floor time of 90 minutes is preferably 0.30 or more, more preferably 0.35 or more.
  • the ratio of fermentation power (floor time 90 minutes / floor time 30 minutes) after frozen storage for 4 weeks after floor time 30 minutes and after storage for 4 weeks after floor time 90 minutes is preferably 0.35 or more. It is more preferably 0.38 or more.
  • the residual fermentation power ratio is preferably 0.70 or more, and more preferably 0.80 or more.
  • a specific example of a suitable yeast according to this embodiment includes Saccharomyces cerevisiae D92764 (FERM BP-7690) described below.
  • a yeast which is suitably used in a dough having a sugar concentration of 0 to 3% by weight, has a freeze resistance and / or a floor resistance, and has a dry resistance.
  • the yeast those having the following properties are preferable, and can sufficiently exhibit the desired effects of the present invention.
  • the fermentation power after frozen storage for 4 weeks after a floor time of 60 minutes is preferably 100 ml or more, more preferably 110 m1 or more in terms of gas generation.
  • the ratio of the fermentation power before and after the freezing storage for 4 weeks is preferably 0.88 or more, more preferably 0.95 or more.
  • the ratio of fermentation power (floor time 60 minutes / floor time 0 minutes) after floor-freezing for 4 minutes and storage for 4 weeks after freezing for 4 weeks is preferably 0.80 or more. It is more preferably 0.90 or more.
  • the fermentation power after frozen storage for 60 minutes after floor time of 60 minutes is preferably 50 ml or more, more preferably 70 ml or more, more preferably 75 ml or more in terms of gas generation amount.
  • the ratio of fermentation power before and after frozen storage for 4 weeks after floor time 60 minutes is preferably 0.40 or more, and more preferably 0.40 or more. It is preferably 50 or more, more preferably 0.55 or more.
  • the ratio of fermentation power after freezing and storage for 4 minutes after floor time of 0 minutes and after 60 minutes after floor time for 60 minutes (floor time 60 minutes / floor time 0 minutes) is preferably 0.35 or more. It is more preferably 0.50 or more.
  • the residual fermentation power ratio is preferably 0.70 or more, and more preferably 0.80 or more.
  • a Saccharomyces cerevisiae D 80921 strain (FERM BP)
  • a yeast which is suitably used particularly in low sugar dough and has low temperature sensitivity and drought tolerance in the locality.
  • the ratio of 30 dough fermentative power to 5 ° C dough fermentative power (30 ° C dough fermentative power, Z5 ° C raw fermentative power) is preferably 0.70 or more, more preferably 0.80 or more.
  • the ratio of the residual fermentation power is preferably 0.70 or more, and more preferably 0.80 or more.
  • Saccharomyces cerevisiae strain D31735 F ERMBP
  • any strains having the above-mentioned properties in sugar-free to high sugar concentration doughs in particular, any strains exhibiting high fermentative power from high sugar to ultra-high sugar dough and having drought tolerance, sugar-free All strains that exhibit high fermentative power and high drought tolerance in high sugar doughs, all strains that exhibit high fermentative power in sugar-free to low sugar doughs and have high drought tolerance, and high freezing resistance in medium to high sugar doughs
  • All strains that have Z or floor resistance and are drought-resistant, high freezing and / or floor-resistant, and all drought-resistant strains that are high in sugar-free to high-sugar dough, high in sugar-free to low-sugar dough Freezing resistance and Z or floor resistance Includes all strains that have and are drought-tolerant, including all strains that are cold-sensitive and have drought-tolerance, regardless of whether they are artificially created or isolated from nature.
  • yeasts generally used to produce pans include, for example, Saccharomyces * serpice, which is frequently used, and Saccharomyces papamu, Saccharomyces esculusi. Any one may be used as long as the desired effect of the present invention can be obtained.
  • the yeast of the present invention can be obtained by various known methods. For example, based on various properties as described above, screening is performed more widely than in nature, yeasts having desired properties are selected, or each yeast is crossed by a known hybridization method, or various kinds of sudden A desired yeast can be obtained by causing a mutation and selecting a yeast having desired properties.
  • strains as a result of screening breeding strains produced by crossing strains isolated from the natural world based on the various properties, seven new strains having the above excellent properties were obtained, and Saccharomyces Serpice D 7 5 4 1 2 strains, Saccharomyces serpice D 2 0 9 4 6 strains, Saccharomyces serpice D 4 6 4 6 2 strains, Saccharomyces serpice D 6 6 7 8 5 6 4 strains, Saccharomyces serpice D 80921 and Saccharomyces serpice D3 173 5 (hereinafter abbreviated as strains), and the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology Deposited.
  • Table 7 to Table 20 show the mycological properties of the yeast of the present invention.
  • Table 7 Mycological properties of the strain D 75412 of the present invention Part 1
  • Ascospores 1 to 4 spherical to oval ascospores are formed, and ascids do not cleave.
  • Ascospores 1 to 4 spherical to elliptical ascospores, with no cleavage.
  • Ascospores One to four spherical to elliptical ascospores are formed, and the child i is not cleaved.
  • Optimum growth conditions PH 5.0, temperature: 30 ° C, aerobic growth Range of growth pH: 3.5-6.5, temperature: 5-40, aerobic growth Table 18: Strain D of the present invention Mycological properties of 80921 Part 2
  • Ascospores 1 to 4 spherical to oval ascospores are formed, and ascids do not cleave.
  • Trehalose + NT Each of the above strains has the above-described mycological properties, and was compared with “The Yeasts, A Taxonomic Study” (4th edition). ⁇ It was confirmed to belong to Serpice. Further, as described above, each of them exhibits a high fermentative power from a high-sugar to an ultra-high-sugar dough and is resistant to drying. It has high fermentative power from sugar-free to low-sugar dough and has resistance to drying.It has high freezing and / or floor resistance from medium sugar to high-sugar dough and has drying resistance.
  • the method for culturing each yeast is not particularly limited as long as it is a method used for ordinary baker's yeast.
  • the optimum growth pH, the range of pH at which growth is possible, the optimum growth temperature, the temperature range at which growth is possible, and the like are the same as those for ordinary baker's yeast.
  • cells can be produced by a molasses fed-batch method. Molasses can be substituted for other assimilating molasses, and the source of nitrogen and phosphoric acid is not limited. Further, a growth promoting factor may be added.
  • the yeast cells obtained by the culture are collected, washed, and then dehydrated to obtain the yeast of the present invention as a pressed yeast.
  • the present invention also provides a dried yeast obtained by drying the yeast.
  • the dry yeast referred to in the present specification refers to a dried yeast, preferably a yeast having a water content of 5% by weight or less in yeast cells.
  • the amount of water in the cells can be measured by the method described above.
  • conventionally it has been difficult to prepare dried yeast having desired baking properties.
  • the method for drying yeast is not particularly limited.
  • a known method can be used as a method for producing the same.
  • a dried yeast can be obtained as follows. Water emulsion of sorbitan fatty acid ester was added to the pressed yeast at 1.5% by weight per dry yeast and mixed, and then passed through a 0.5 mm screen mesh with an extruder to form a thread. It is fluid-dried with warm air at the initial entrance temperature of the dryer of 44 ° C, and the drying end point is when the water content in the cells becomes 5% by weight or less, and dried yeast can be obtained.
  • the dough of the present invention can be prepared by kneading the above-described yeast of the present invention (yeast before drying) or dried yeast together with various raw materials.
  • the dough referred to in the present specification is obtained by adding water to flour typified by flour and, if desired, fats and oils such as shortening; sugars such as sugar, glucose, fructose, and liquid sugar; salt; eggs; skim milk powder, milk, Dairy products such as fermented milk; yeast food; kneaded with additives such as emulsifiers such as monoglyceride, etc. It is not particularly limited, but mainly refers to bread dough.
  • the dough of the present invention also includes pie dough, bun dough, and pizza dough.
  • the flour, water and additives are not particularly limited, and known ones can be used as appropriate.
  • the yeast or dried yeast of the present invention has excellent fermentation power in various doughs from sugar-free to high sugar concentration, and is resistant to desiccation. In the dough having a sugar concentration range of, it has particularly excellent properties from the viewpoint of baking properties. Therefore, it is possible to cope with the production of bread having a general sugar concentration. By limiting the sugar concentration range, more excellent bread can be produced.
  • the content of the yeast or the dried yeast in the dough is not particularly limited, but in the case of live yeast, preferably 1 to 6 parts by weight, based on 100 parts by weight of flour, In this case, the amount is preferably 0.5 to 3 parts by weight based on 100 parts by weight of the flour.
  • the method for producing the bread of the present invention is not particularly limited, and examples thereof include a straight method, a medium seed method, a refrigerated dough method, and a frozen dough method.
  • the yeast or the dry yeast of the present invention is preferably used in a scratch production method in a sugar concentration of 0 to 40% by weight, more preferably 0 to 30% by weight, from the viewpoint of achieving the desired effects of the present invention. It is effective to use it in In addition, it is effective to use yeast having freezing tolerance in the refrigerated or frozen dough method.
  • the above-mentioned place of cultivation is before the bread is made through the baking step.
  • frozen dough is usually prepared by kneading at a relatively low temperature with a dough composition similar to that of so-called straight dough other than frozen dough, and is pre-fermented for 30 to 120 minutes. (Floor), divided, molded, frozen and stored. Then, the frozen dough is thawed, final fermented, and baked to obtain excellent bread with stable quality.
  • Various materials have been known in the past for the production of these doughs and breads, and they can be appropriately referred to, and the kneading conditions, temperature conditions, and the like are not particularly limited.
  • the present invention will be described with reference to examples, but the present invention is not limited to these examples.
  • Example 1 Example 1
  • the yeast of the present invention commercially available general-purpose yeast Kaneka Red Yeast (manufactured by Kane-buchi Chemical Industry Co., Ltd.), low-temperature sensitive yeast Kanekai Sed White (manufactured by Kane-buchi Chemical Industry Co., Ltd.), and Kaneki Yeast AL (Kanebuchi Chemical Industry Co., Ltd.), Frozen Tolerant Yeast FD-I (0 company), Frozen Tolerant Yeast FD-II (0 company) and YF (Manufactured by J Company), dried yeasts were prepared, and their drying tolerance was compared.
  • Water emulsion of sorbitan fatty acid ester was added to each pressed yeast to 1.5% by weight per dry yeast, mixed and then passed through a screen mesh to 0.5 mm by an extruder to form a thread. Fluid drying was performed using warm air at the initial inlet temperature of the layer dryer of 44 ° C, and the drying was terminated when the water content of the cells became 5% by weight or less, and each dried yeast was obtained.
  • Drying resistance was evaluated by the method described in (9) Drying resistance. The results are shown in Table 21.
  • the residual yeast fermentation power ratio of the commercially available yeast is 0.50 or less, whereas the residual yeast fermentation power ratio of the dried yeast of the present invention is 0.70 or more, indicating that the yeast has excellent drying resistance.
  • Dried yeast was prepared from the yeast of the present invention and a commercially available Maur ipan low sugar (manufactured by BP) as a control, and the drying resistance was compared at different drying temperatures.
  • BP Maur ipan low sugar
  • water emulsion of sorbitan fatty acid ester was added to each pressed yeast at 1.5% by weight per dry yeast and mixed, and then screened to 0.5 mm by an extruder. mesh was made into a thread form, and fluidized and dried with warm air at an initial inlet temperature of 44 ° C of a fluidized-bed dryer.
  • dried yeast was obtained by changing the inlet temperature of the fluidized dryer from 50 ° C to 65 ° C. The drying end point was the time when the water content of the cells became 5% by weight or less, and each of the dried yeasts was obtained.
  • Drying resistance was evaluated by the method described in (9) Drying resistance. The results are shown in Table 22.
  • the dry yeast (D46462) of the present invention and Mauripan low sugar (manufactured by BP) have a residual fermentation power ratio of about 0.8 when dried at 44 ° C, but remain as the temperature rises. The difference in the fermentation power ratio widened, and the residual fermentation power ratio when dried at 65 was 0.64 for the dry yeast (D46462) of the present invention, and 0.51 for Mauripan low suga] (8?). Clearly, this indicates that the yeast D 46462 of the present invention is more resistant to drought. Table 22 Comparison of residual fermentation power ratio depending on drying temperature
  • the yeast D 46462 of the present invention was compared with a commercially available yeast Mauripan low sugar (manufactured by BP) as a comparative control. Dry yeast was sometimes called Mauripan low sugarj.) After squeezing yeast was prepared by cultivation, dried yeast was prepared and examined for drought tolerance.
  • the dry yeast prepared from the commercially available yeast showed a sharp decrease in the low sugar dough fermentability at an emulsifier addition concentration of 1.0% by weight or less, whereas the yeast of the present invention Had a residual fermentation power ratio of 0.60 even at 0.8% by weight. From this, it can be said that the amount of the emulsifier to be added when producing dried yeast from yeast can be suppressed, and it can be said that the present invention makes it possible to obtain dried yeast that matches highly demanded nature-oriented foods. .
  • yeast D 7 5 4 12 of the present invention With respect to the yeast D 7 5 4 12 of the present invention, the dough fermenting power at a sugar concentration of 30% by weight and the dough fermenting power at a sugar concentration of 40% by weight were measured.
  • the dough fermenting power of each dough was evaluated by the method described in (3) Dough fermenting power at a sugar concentration of 30% by weight and (4) Dough fermenting power at a sugar concentration of 40% by weight.
  • Yeast D 7 5 4 1 2 of the present invention was dried yeast in the same manner as in Example 1. Was.
  • Commercially available dry yeast Saf-instant (Gold) manufactured by S Company
  • Fermipan Brown manufactured by D Company
  • the fermentation power of the dough at a sugar concentration of 30% by weight was less than 200 ml for the commercially available dry yeast, whereas the dry yeast D 75412 of the present invention was 26 lm 1, which was excellent for fermentation. It turns out that it has power. Furthermore, the fermentation power of a dough with a sugar concentration of 40% by weight is less than 70 ml for a commercially available dry yeast, whereas the dry yeast of the present invention (D7 5412) is 11 lm 1 and a dough with a sugar concentration of 40% by weight. It can be seen that the composition also has excellent fermentation power. This fermentation power indicates that it is most suitable for sweet buns that contain a lot of sugar, such as anpan.
  • the dough fermenting power at a sugar concentration of 0% by weight and the dough fermenting power at a sugar concentration of 30% by weight were measured.
  • the dough fermenting power of each dough was evaluated by the method described in (1) Dough fermenting power with a sugar concentration of 0% by weight and (3) Dough fermenting power with a sugar concentration of 30% by weight.
  • Yeast D 20946 of the present invention was dried in the same manner as in Example 1.
  • the dry yeast (D20946) of the present invention has a sufficiently high dough fermentative power of 196 m 1 at a sugar concentration of 0% by weight, and a dough fermentative power of 236 m 2 at a sugar concentration of 30% by weight. As it was sufficiently high at 1, the fermentation power was sufficient to produce high-sugar dough such as sweet bread from unsweetened dough such as French bread.
  • the dough fermentative power at a sugar concentration of 0% by weight and the dough fermentative power at a sugar concentration of 5% by weight were measured.
  • the dough fermenting power of each dough was evaluated by the method shown in (1) Dough fermenting power with a sugar concentration of 0% by weight and (2) Dough fermenting power with a sugar concentration of 5% by weight.
  • the yeast D464462 of the present invention was dried in the same manner as in Example 1.
  • the dough fermenting power of 0% by weight and the dough fermenting power of a sugar concentration of 5% by weight were measured.
  • Table 26 Table 2 6 Dough fermentation power at 0% by weight of sugar and dough at 5% by weight of sugar
  • the commercially available dried yeast had a dough fermentative power of less than 220 ml at a sugar concentration of 0% by weight, and a dough fermentative power of less than 160 ml at a sugar concentration of 5% by weight.
  • the yeast D 46462 of the present invention has a dough fermentative power of 244 m 1 at a sugar concentration of 0% by weight, and a dough fermentative power of 5% by weight at a sugar concentration of 193 ml, which is far higher than that of a commercially available dry yeast. Showed power.
  • the amount of gas generated after the main kneading and the amount of gas generated after the introduction into the hood were measured in the sweetened dough.
  • commercially available dry yeasts Saf-instant (Gold) manufactured by S Company
  • Fermipan Brown manufactured by D Company
  • the amount of dough gas generated after the main kneading was measured by the method shown in (5) The amount of raw gas generated after the main kneading.
  • the amount of gas generated (ml) at 30 ° C for 2 hours was measured using a pharmograph (manufactured by Atto Corporation), and the amount of gas generated was injected into the mouth. The amount of gas generated later was used. Furthermore, the ratio of the volume of the bread to the weight of the bread after baking was measured as the specific volume of the bread (ml / g). Table 27 shows the results.
  • Table 27 Amount of gas generated after main kneading and feeding of hoist in the sweetened dough, and specific volume of bread after baking
  • the bread made with the dry yeast of the present invention is remarkably large bread, and its specific volume is 5.89 ml Zg for the dry yeast (D75412) of the present invention, and 5.89 ml Zg for the dry yeast of the present invention (D 20946) was 5.54 mlZg.
  • the yeasts D 92764 and D 80921 of the present invention were examined for freezing resistance.
  • the freezing resistance was evaluated by the method described in the above (6) Freezing resistance.
  • Example of yeast of the present invention A dried yeast was prepared in the same manner as in 1.
  • commercially available dry yeast Saf-instant (Red) manufactured by S Company
  • Fermipan Red manufactured by D Company
  • the dough had a sugar concentration of 0% by weight.
  • Table 28 Dough with a sugar concentration of 0% by weight, fermentability before and after frozen storage for 4 weeks after flooring for 60 minutes
  • the fermentation power after frozen storage was less than 100 m1 for the commercially available dry yeast, whereas it was 110 m for the dry yeast of the present invention (D92764).
  • Is 11 Oml which indicates that it has excellent fermentation power after frozen storage.
  • the ratio of fermentation power before and after frozen storage is less than 0.88 for the commercially available dried yeast, whereas it is 0.92 for the dried yeast of the present invention (D92764) and 0.9% for the dry yeast of the present invention (D80921). 97, indicating that it has excellent freezing resistance.
  • Fig. 1 shows the results. As shown in Fig. 1, under the condition of a dough with a sugar concentration of 0% by weight and a floor time of 60 minutes, as compared to the dry yeasts commercially available for 1 week, 2 weeks, and 4 weeks, compared to the commercially available dry yeast. Thus, the dry yeast of the present invention showed remarkable freezing resistance.
  • the yeast D 80921 of the present invention was examined for freezing resistance.
  • the freezing resistance was evaluated by the method described in the above (6) Freezing resistance.
  • the yeast of the present invention was dried yeast in the same manner as in Example 1.
  • commercially available dry yeast Saf-instant (Red) manufactured by S Company
  • Fermipan Red manufactured by D Company
  • the sugar concentration of the dough was 3% by weight.
  • the fermentation power after frozen storage was less than 50 ml for the commercially available dry yeast, whereas the dry yeast of the present invention (D 80921) was 79 ml, which was excellent after the frozen storage. It can be seen that the fermentation power is Furthermore, the ratio of the fermentation power before and after the freezing storage is less than 0.35 for the commercially available dried yeast, whereas the ratio for the dried yeast of the present invention is 0.58, indicating that the yeast has excellent freezing resistance.
  • Fig. 2 shows the results. As shown in Fig. 2, under the condition of 60 minutes after floor time using dough with a sugar concentration of 3% by weight, commercial dry yeast was not used for 1 week, 2 weeks or 4 weeks of frozen storage. Thus, the dry yeast of the present invention showed remarkable freezing resistance.
  • the yeast D92764 of the present invention was examined for freezing resistance. Freezing resistance was evaluated by the method described in the above (6) Freezing resistance.
  • the yeast of the present invention was dried yeast in the same manner as in Example 1.
  • commercially available dry yeast Saf-instant (Red) manufactured by S
  • Fermipan Red manufactured by D
  • the dough had a sugar concentration of 5% by weight.
  • Table 30 The results are shown in Table 30. Table 3 0 Dough with a sugar concentration of 5% by weight, fermentability before and after frozen storage for 4 weeks after flooring for 60 minutes
  • the fermentation power after frozen storage was less than 7 Oml for the commercially available dry yeast, whereas the dry yeast of the present invention was 9 lml, indicating excellent fermentation power after the frozen storage. It can be seen that Furthermore, the ratio of the fermentation power before and after frozen storage is less than 0.40 for the commercially available dried yeast, whereas the dried yeast of the present invention is 0.72, indicating that the yeast has excellent freezing resistance. I understand.
  • the fermentation power after frozen storage was measured by setting the frozen storage period to 1 week, 2 weeks, and 4 weeks.
  • Figure 3 shows the results. As shown in Fig. 3, under the conditions of a dough with a sugar concentration of 5% by weight and a floor time of 60 minutes, the commercially available dried yeast was frozen for 1 week, 2 weeks, and 4 weeks. In contrast, the dried yeast of the present invention exhibited remarkable freezing resistance.
  • Example 1 1
  • the freeze resistance of the yeasts D92764 and D66785 of the present invention was examined.
  • the freezing resistance was evaluated by the method described in the above (6) Freezing resistance.
  • the yeast of the present invention was dried yeast in the same manner as in Example 1.
  • commercially available dried yeasts Saf-instant (Red), Saf-instant (Gold) (manufactured by S), Fermipan Red, Fermipan Brown (manufactured by D) were used.
  • the dough had a sugar concentration of 10% by weight.
  • Table 31 Dough with a sugar concentration of 10% by weight, fermentability before and after frozen storage for 4 weeks after flooring for 60 minutes
  • the fermentation power after frozen storage was 80 ml or less for commercially available dry yeast, whereas the dry yeast (D92764) of the present invention was 112 ml, and the dry yeast (D66785) was 109 ml. And has excellent fermentation power after frozen storage. . Furthermore, the ratio of fermentation power before and after frozen storage is less than 0.45 for the commercially available dry yeast, whereas it is 0.69 for the dry yeast of the present invention (D92764) and 0.56 for the dry yeast of the present invention (D66785). It can be seen that it has excellent freezing resistance.
  • Fig. 4 shows the results. As shown in Fig. 4, under the conditions of a dough with a sugar concentration of 10% by weight and a floor time of 60 minutes, the commercially available dry yeast can be stored for 1 week, 2 weeks, or 4 weeks. In contrast, the dry yeast of the present invention showed remarkable freezing resistance. '' Example 12
  • the yeast D66785 of the present invention was examined for freezing resistance.
  • the freezing resistance was evaluated by the method described in the above (6) Freezing resistance.
  • the yeast of the present invention was dried yeast in the same manner as in Example 1.
  • commercially available dry yeast Saf-instant (Gold) manufactured by S Company
  • Fermipan Brown manufactured by D Company
  • the sugar concentration of the dough was 15% by weight. The results are shown in Table 32.
  • Table 32 Dough with sugar concentration of 15% by weight, fermentability before and after frozen storage for 4 weeks after flooring for 60 minutes
  • the fermentation power after frozen storage was 62 m1 or less for commercially available dry yeast.
  • the dry yeast (D66785) of the present invention is 132 ml, which indicates that it has excellent fermentation power after frozen storage.
  • the ratio of fermentation power before and after frozen storage is less than 0.35 for the commercially available dry yeast, whereas it is 0.66 for the dry yeast (D66685) of the present invention, and has excellent freezing resistance. You can see that.
  • Fig. 5 shows the results. As shown in Fig. 5, under the conditions of a dough with a sugar concentration of 15% by weight and a floor time of 60 minutes, the commercially available dry yeast was stored for 1 week, 2 weeks, and 4 weeks in the frozen storage period. In contrast, the dry yeast of the present invention showed remarkable freezing resistance.
  • the freeze resistance of the yeasts D92764 and D66785 of the present invention was examined.
  • the freezing resistance was evaluated by the method described in the above (6) Freezing resistance.
  • the yeast of the present invention was dried yeast in the same manner as in Example 1.
  • commercially available dry yeast Saf-instant (Gold) manufactured by S
  • Fermipan Brown manufactured by D
  • the dough had a sugar concentration of 25% by weight. The results are shown in Table 33 and Table 34.
  • the fermentation power after frozen storage was 120 ml or less for commercially available dry yeast
  • the dry yeast of the present invention Is 138 ml, the same (D 66785) is 145 ml, and when the floor time is set to 90 minutes, the fermentation power after frozen storage is 4% for commercially available dry yeast. While it is less than 0 ml, the dry yeast (D92764) of the present invention has a capacity of 65 ml, and the dry yeast (D66785) has a capacity of 119 ml, which indicates that the yeast has excellent fermentation power after frozen storage.
  • the ratio of fermentation power before and after frozen storage is less than 0.70 for the commercially available dry yeast when the floor time is 60 minutes, whereas the ratio for the dry yeast of the present invention (D 92 764) is 0.72. (D 66785) is 0.78, and when the floor time is 90 minutes, the commercially available dry yeast is less than 0.25, whereas the dry yeast (D 92764) of the present invention is less than 0.25. 36, (D 66785) is 0.64, which means that it has excellent freezing resistance.
  • Fig. 6 shows the results. As shown in Fig. 6, under the condition of a dough with a sugar concentration of 25% by weight after a floor time of 90 minutes, the commercially available dry yeast can be stored for 1 week, 2 weeks, or 4 weeks. In contrast, the dry yeast of the present invention showed remarkable freezing resistance.
  • the floor resistance of yeasts D92764 and D80921 of the present invention was examined.
  • the floor resistance was evaluated by the method described in (7) Floor resistance.
  • the yeast of the present invention was dried yeast in the same manner as in Example 1.
  • commercially available dry yeast Saf-instant (Red) manufactured by S
  • Fermipan Red manufactured by D
  • the dough had a sugar concentration of 0% by weight. The results are shown in Table 35.
  • Table 3 5 Floor resistance of dough with a sugar concentration of 0% by weight after frozen storage for 4 weeks
  • the ratio of fermentation power indicating floor resistance is less than 0.70 for commercially available dry yeast
  • the dry yeast (D92764) of the present invention has a 1.00 value and the dry yeast (D80921) has a value of 0.90, indicating that it has excellent floor resistance.
  • Fig. 7 shows the results.
  • the dough with the sugar concentration of 0% by weight showed that the dried yeast of the present invention was different from the commercially available dried yeast during the frozen storage periods of 1 week, 2 weeks and 4 weeks. Showed remarkable floor resistance.
  • the ratio of fermentation power indicating floor resistance is less than 0.30 for commercially available dry yeast.
  • the dry yeast (D80912) of the present invention has 0.54, indicating that it has excellent floor resistance.
  • the ratio of fermentation power indicating floor resistance is less than 0.50 for commercially available dry yeast.
  • the dry yeast (D 92764) of the present invention had 0.67, indicating that it had excellent floor resistance.
  • the frozen storage period was 1 week, 2 weeks, and 4 weeks, and the floor resistance at each time point was examined.
  • Fig. 9 shows the results.
  • the dry yeast of the present invention is remarkably different from the commercially available dry yeast, especially when the frozen storage period is long (2 weeks or 4 weeks).
  • Floor resistance Example 17
  • the ratio of fermentation power indicating floor resistance is less than 0.15 for commercially available dry yeast.
  • the dry yeast (D 92764) of the present invention has 0.45 and the dry yeast (D 67685) has 0.39, indicating that it has excellent floor resistance. .
  • Example 18 The floor resistance at each time point was examined by setting the frozen storage period to 1 week, 2 weeks, and 4 weeks. The results are shown in FIG. As is clear from FIG. 10, in the dough having a sugar concentration of 10% by weight, the dried yeast of the present invention was compared with the commercially available dried yeast during any of the frozen storage periods of one week, two weeks, and four weeks. Showed remarkable floor resistance.
  • Example 18 In the dough having a sugar concentration of 10% by weight, the dried yeast of the present invention was compared with the commercially available dried yeast during any of the frozen storage periods of one week, two weeks, and four weeks. Showed remarkable floor resistance. Example 18
  • the ratio of fermentation power indicating floor resistance is less than 0.15 for commercially available dry yeast.
  • the dry yeast (D66785) of the present invention is 0.48, which indicates that the yeast has excellent resistance to bacteria.
  • the ratio of fermentation power indicating floor resistance was 0.30 or less for commercially available dry yeast.
  • the dry yeast (D92764) of the present invention has 0.38 and the dry yeast (D66785) has 0.79, indicating that the yeast has excellent floor resistance.
  • the floor resistance at each time point was examined by setting the frozen storage period to 1 week, 2 weeks, and 4 weeks.
  • Fig. 12 shows the results.
  • the dry yeast of the present invention is remarkably different from the commercially available dry yeast during the frozen storage period of one week, two weeks, and four weeks, as is clear from FIG. Floor resistance.
  • Example 20 The low-temperature sensitivity of the dry yeast D3135 of the present invention was measured by the method described in the above (8) Low-temperature sensitivity.
  • yeast having excellent fermentation power in various doughs from sugar-free to high sugar concentration and having drying resistance is suitable for bread making, especially for frozen dough making.
  • Yeast that has high fermentative power in ultra-high sugar dough and has drought tolerance yeast that has high fermentative power in sugar-free to high sugar dough and has high dry fermentability
  • a yeast having a tolerance to drought tolerance a yeast having a high freezing resistance and a no or floor resistance in a sugar-free to low-sugar dough and having a drought tolerance
  • a yeast having drought tolerance is provided.
  • a dry yeast which is obtained by drying the yeast, has excellent storage properties and preservability, and can exhibit the same fermentative power as a live yeast. Further according to the invention, a dough and a frozen dough containing the yeast or the dried yeast, and an excellent bread of stable quality using the dough are provided.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Description

明 細 書 乾燥耐性酵母 技術分野
本発明は、 製パン用、 特に冷凍生地製パン用として好適な、 乾燥耐性を有する 酵母、 当該酵母を乾燥してなる乾燥酵母、 前記酵母または前記乾燥酵母を含有し てなる生地、 ならびに当該生地を用いてなるパンに関する。 背景従来
パン酵母には生酵母 (以下、 乾燥前の酵母という場合がある) と乾燥酵母 (以 下、 乾燥後の酵母という場合がある) の大きく分けて 2種類の形態がある。 生酵 母としては、 より糖濃度の高い生地に用いられる酵母、 冷凍生地製法に用いられ る酵母、 低温感受性を有している酵母など種々の機能を持った酵母が開発されて おり、 目的のパンの製造に適した酵母が実用化され、 様々な製パンへの対応が可 能である。 しかしながら、 生酵母は貯蔵に冷蔵が必要であり、 保存期間も短い。 一方、 乾燥酵母は、 保存性、 貯蔵性の向上を目的として生酵母を乾燥されたも のであり、 活性乾燥酵母やインスタント乾燥酵母として実用化されている。 さら に、 乾燥酵母特有の風味が特に糖濃度が低いパンに好まれ、 実用化されている。 かかる乾燥酵母の製造には乾燥耐性を有した菌株を用いたり、 又は培養方法を調 整することによって乾燥耐性を付与することが必要である。 また、 乾燥において も乾燥装置の工夫と、 温度又は乳化剤添加などの工夫が必要である。 このように 、 乾燥時の性能低下を最小限に防ぎ、 発酵力等の機能を生酵母そのままに保ち乾 燥酵母製品にすることは難しく、 生酵母に比べその機能は十分とは言えない。 そ こで、 貯蔵性や保存性に優れ、 なおかつ生酵母でみられるような様々の機能を同 程度に有する乾燥酵母の実現が待ち望まれていた。 現在、 乾燥酵母は限られた糖濃度の条件で、 特に乾燥酵母特有の風味を生かし た製法において主に使用されている。 具体的には、 スクラッチ製法のフランスパ ンと、 食パンなど糖濃度の低いパンの製造への使用が主流である。 一方、 糖濃度 の高い生地を用いる製パン法や、 冷凍生地もしくは冷蔵保存生地を用いる冷凍生 地製法にはほとんど使用されていない。 これは、 それらの生地において充分な製 パン性を有する酵母が未だ得られていないことによる。 乾燥酵母として冷凍生地 製法において使用し得る酵母としては、 たとえば、 特開平 1 1— 1 5 5 5 5 9号 公報に、 ごく限られた低い糖濃度の生地において冷凍耐性を有し、 かつ乾燥耐性 を有するパン酵母が記載されている。 しかしながら、 未だ無糖から高糖濃度まで の種々の生地において高い冷凍耐性を発揮し得る酵母については報告された例は なく、 当然ながら、 そのような特性を有する乾燥酵母についても報告はない。 本発明は、 無糖から高糖濃度までの種々の生地において優れた発酵力を有し、 かつ乾燥耐性を有する、 製パン用、 特に冷凍生地製パン用として好適な酵母、 詳 しくは、 高糖から超高糖生地において高い発酵力を示し、 かつ乾燥耐性を有する 酵母;無糖から高糖生地において高い発酵力を示し、 かつ乾燥耐性を有する酵母 ;無糖から低糖生地において高い発酵力を示し、 かつ乾燥耐性を有する酵母;中 糖から高糖生地において高い冷凍耐性及び/又はフロア耐性を有し、 かつ乾燥耐 性を有する酵母;無糖から高糖生地において高い冷凍耐性及び/又はフロア耐性 を有し、 かつ乾燥耐性を有する酵母;無糖から低糖生地において高い冷凍耐性及 び Z又はフロア耐性を有し、 かつ乾燥耐性を有する酵母;および低温感受性を有 し、 かつ乾燥耐性を有する酵母を提供することを課題とする。 また本発明は、 前 記酵母を乾燥してなる、 貯蔵性や保存性に優れ、 生酵母と同程度の発酵力を発揮 しうる、 特に冷凍生地製パン用として好適な乾燥酵母を提供することを課題とす る。 さらに本発明は、 前記酵母または前記乾燥酵母を含有してなる生地および冷 凍生地、 ならびに当該生地を用いてなる、 品質の安定した優れたパンを提供する ことを課題とする。 発明の開示
本発明者らは前期課題に鑑み鋭意検討した結果、 所望の特性を有する酵母を見 出し、 本発明を完成させるに至った。
即ち、 本発明は
〔1〕 高糖生地において発酵力を有し、 かつ乾燥耐性を有する酵母、
〔2〕 乾燥酵母とした時の発酵力を糖濃度 30重量%の生地 (乾燥酵母 1. 5 重量%) 85 g当たり 30°Cにおける 1 15分間のガス発生量で表した時、 20
0ml以上である前記 〔1〕 記載の酵母、
〔3〕 乾燥酵母とした時の発酵力を糖濃度 40重量%の生地 (乾燥酵母 1. 5 重量%) 85 g当たり 30°Cにおける 1 15分間のガス発生量で表した時、 70 m l以上である前記 〔1〕 または 〔2〕 記載の酵母、
〔4〕 糖濃度 0〜30重量%の生地において発酵力を有し、 かつ乾燥耐性を有 する酵母、
〔5〕 乾燥酵母とした時の発酵力を糖濃度 0重量%の生地 (乾燥酵母 1重量% ) 85 g当たり 30°Cにおける 85分間のガス発生量で表した時、 140m l以 上であり、 かつ糖濃度 30重量%の生地 (乾燥酵母 1. 5重量%) 85 g当たり 30°Cにおける 1 15分間のガス発生量で表した時、 200ml以上である前記
〔4〕 記載の酵母、
〔6〕 乾燥酵母とした時の発酵力を加糖中種法における本捏後の生地 (糖濃度 28重量%、 乾燥酵母 1. 5重量%) 50 g当たり 30°Cにおける 120分間の ガス発生量で表した時、 120ml以上である前記 〔1〕 〜 〔5〕 いずれか記載 ' の酵母、
〔7〕 糖濃度 0〜5重量%の生地において発酵力を有し、 かつ乾燥耐性を有す る酵母、 〔8〕 乾燥酵母とした時の発酵力を糖濃度 0重量%の生地 (乾燥酵母 1重量% ) 85 g当たり 3 O における 85分間のガス発生量で表した時、 220m l以 上である前記 〔7〕 記載の酵母、
〔9〕 乾燥酵母とした時の発酵力を糖濃度 5重量%の生地 (乾燥酵母 1重量% ) 85 g当たり 30°Cにおける 85分間のガス発生量で表した時、 160m l以 上である前記 〔7〕 または 〔8〕 記載の酵母、
〔10〕 糖濃度 10〜30重量%の生地において冷凍耐性及び/又はフロア耐 性を有し、 かつ乾燥耐性を有する酵母、
[1 1〕 乾燥酵母とした時の発酵力を糖濃度 10重量%の生地 (乾燥酵母 2重 量%) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フロア タイム 60分後 4週間冷凍保存後の生地で 90ml以上である前記 〔10〕 記載 の酵母、
〔12〕 さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 ( 冷凍保存後/冷凍保存前) が 0. 50以上である前記 〔1 1〕 記載の酵母、
〔13〕 さらに、 フロアタイム 30分後 4週間冷凍保存後とフロアタイム 90 分後 4週間冷凍保存後での発酵力の比 (フロアタイム 90分 Zフロアタイム 30 分) が 0. 20以上である前記 〔1 1〕 又は 〔12〕 記載の酵母、
〔14〕 乾燥酵母とした時の発酵力を糖濃度 15重量%の生地 (乾燥酵母 2. 5重量%) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フ ロアタイム 60分後 4週間冷凍保存後の生地で 70ml以上である前記 〔10〕 記載の酵母、
〔1 5〕 さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 ( 冷凍保存後/冷凍保存前) が 0. 40以上である前記 〔14〕 記載の酵母、
〔16〕 さらに、 フロアタイム 30分後 4週間冷凍保存後とフロアタイム 90 分後 4週間冷凍保存後での発酵力の比 (フロアタイム 90分 フロアタイム 30 分) が 0. 20以上である前記 〔14〕 又は 〔15〕 記載の酵母、 〔1 7〕 乾燥酵母とした時の発酵力を糖濃度 2 5重量%の生地 (乾燥酵母 3重 量%) 2 0 g当たり 3 8 °Cにおける 1 2 0分間のガス発生量で表した時、 フロア タイム 9 0分後 4週間冷凍保存後の生地で 5 0 m l以上である前記 〔1 0〕 記載 の酵母、
〔1 8〕 さらに、 フロアタイム 9 0分後 4週間冷凍保存前後での発酵力の比 ( 冷凍保存後/冷凍保存前) が 0 . 6 0以上である前記 〔1 7〕 記載の酵母、
〔1 9〕 さらに、 フロアタイム 3 0分後 4週間冷凍保存後とフロアタイム 9 0 分後 4週間冷凍保存後での発酵力の比 (フロアタイム 9 0分 Zフロアタイム 3 0 分) が 0 . 7 0以上である前記 〔1 7〕 又は 〔1 8〕 記載の酵母、
〔2 0〕 糖濃度 0〜 3 0重量%の生地において冷凍耐性及び/又はフロァ耐性 を有し、 かつ乾燥耐性を有する酵母、
〔2 1〕 乾燥酵母とした時の発酵力を糖濃度 0重量%の生地 (乾燥酵母 2重量 %) 2 0 g当たり 3 8 °Cにおける 1 2 0分間のガス発生量で表した時、 フロア夕 ィム 6 0分後 4週間冷凍保存後の生地で 1 0 0 m l以上である前記 〔2 0〕 記載 の酵母、
〔2 2〕 さらに、 フロアタイム 6 0分後 4週間冷凍保存前後での発酵力の比 ( 冷凍保存後/冷凍保存前) が 0 . 8 8以上である前記 〔2 1〕 記載の酵母、
〔2 3〕 さらに、 フロアタイム 0分 4週間冷凍保存後とフロアタイム 6 0分後 4週間冷凍保存後での発酵力の比 (フロアタイム 6 0分ノフロアタイム 0分) が 0 . 8 0以上である前記 〔2 1〕 又は 〔2 2〕 記載の酵母、
〔2 4〕 乾燥酵母とした時の発酵力を糖濃度 5重量%の生地 (乾燥酵母 2重量 %) 2 0 g当たり 3 8 °Cにおける 1 2 0分間のガス発生量で表した時、 フロア夕 ィム 6 0分後 4週間冷凍保存後の生地で 7 0 m l以上である前記 〔2 0;] 〜 〔2 3〕 いずれか記載の酵母、
〔2 5〕 さらに、 フロアタイム 6 0分後 4週間冷凍保存前後での発酵力の比 ( 冷凍保存後 Z冷凍保存前) が 0 . 4 0以上である前記 〔2 4〕 記載の酵母、 〔2 6〕 さらに、 フロアタイム 0分 4週間冷凍保存後とフロアタイム 6 0分後 4週間冷凍保存後での発酵力の比 (フロアタイム 6 0分ノフロアタイム 0分) が 0 . 5 0以上である前記 〔2 4〕 又は 〔2 5〕 記載の酵母、
〔2 73 乾燥酵母とした時の発酵力を糖濃度 1 0重量%の生地 (乾燥酵母 2重 量%) 2 0 g当たり 3 8 °Cにおける 1 2 0分間のガス発生量で表した時、 フロア タイム 6 0分後 4週間冷凍保存後の生地で 9 O m l以上である前記 〔2 0〕 〜 〔 2 6〕 いずれか記載の酵母、
〔2 8〕 さらに、 フロアタイム 6 0分後 4週間冷凍保存前後での発酵力の比 ( 冷凍保存後/冷凍保存前) が 0 . 5 0以上である前記 〔2 7〕 記載の酵母、
〔2 9〕 さらに、 フロアタイム 3 0分後 4週間冷凍保存後とフロアタイム 9 0 分後 4週間冷凍保存後での発酵力の比 (フロアタイム 9 0分 Zフロアタイム 3 0 分) が 0 . 2 0以上である前記 〔2 7〕 又は 〔2 8〕 記載の酵母、
〔3 0〕 乾燥酵母とした時の発酵力を糖濃度 2 5重量%の生地 (乾燥酵母 3重 量%) 2 0 g当たり 3 8 °Cにおける 1 2 0分間のガス発生量で表した時、 フロア タイム 6 0分後 4週間冷凍保存後の生地で 1 2 5 m l以上であり、 かつフロア夕 ィム 9 0分後 4週間冷凍保存後の生地で 5 0 m l以上である前記 〔2 0〕 〜 〔2 9〕 いずれか記載の酵母、
〔3 1〕 さらに、 フロアタイム 6 0分後 4週間冷凍保存前後での発酵力の比 ( 冷凍保存後/冷凍保存前) が 0 . 7 0以上であり、 かつフロアタイム 9 0分後 4 週間冷凍保存前後での発酵力の比 (冷凍保存後 Z冷凍保存前) が 0 . 3 0以上で ある前記 〔3 0〕 記載の酵母、
〔3 2〕 さらに、 フロアタイム 3 0分後 4週間冷凍保存後とフロアタイム 9 0 分後 4週間冷凍保存後での発酵 の比 (フロアタイム 9 0分 //フロアタイム 3 0 分) が 0 . 3 5以上である前記 〔3 0〕 又は 〔3 1〕 記載の酵母、
〔3 3〕 糖濃度 0〜 3重量%の生地において冷凍耐性及び/又はフロア耐性を 有し、 かつ乾燥耐性を有する酵母、 〔34〕 乾燥酵母とした時の発酵力を糖濃度 0重量%の生埤 (乾燥酵母 2重量 %) 20 g当たり 38 における 120分間のガス発生量で表した時、 フロアタ ィム 60分後 4週間冷凍保存後の生地で 100m 1以上である前記 〔33〕 記載 の酵母、
〔35〕 さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 ( 冷凍保存後/冷凍保存前) が 0. 88以上である前記 〔34〕 記載の酵母、
〔36〕 さらに、 フロアタイム 0分 4週間冷凍保存後とフロアタイム 60分後 4週間冷凍保存後での発酵力の比 (フロアタイム 60分/フロアタイム 0分) が 0. 80以上である前記 〔34〕 又は 〔35〕 記載の酵母、
〔37〕 乾燥酵母とした時の発酵力を糖濃度 3重量%の生地 (乾燥酵母 2重量 %) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フロア夕 ィム 60分後 4週間冷凍保存後の生地で 5 Om l以上である前記 〔33〕 〜 〔3 6〕 いずれか記載の酵母、
〔38〕 さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 ( 冷凍保存後/冷凍保存前) が 0. 40以上である前記 〔37〕 記載の酵母、
〔39〕 さらに、 フロアタイム 0分 4週間冷凍保存後とフロアタイム 60分後 4週間冷凍保存後での発酵力の比 (フロアタイム 60分ノフロアタイム 0分) が 0. 35以上である前記 〔37〕 又は 〔38〕 記載の酵母、
〔40〕 低温感受性を有し、 かつ乾燥耐性を有する酵母、
〔41〕 さらに、 残存発酵力比 〔乾燥前後での発酵力の比 (乾燥後/乾燥前) 〕 が 0. 70以上である前記 〔1〕 〜 〔40〕 いずれか記載の酵母、
〔42〕 サッカロマイセス 'セルピシェ(Saccharomyces cerevisiae) D 75 412株 (FERM BP— 7688) である前記 〔1〕 〜 〔3〕 および 〔41 〕 いずれか記載の酵母、
〔43〕 サッカロマイセス 'セルピシェ(Saccharomyces cerevisiae) D 20 946株 (FERM BP— 7684) である前記 〔4〕 〜 〔6〕 および 〔41 〕 いずれか記載の酵母、
〔44〕 サッカロマイセス 'セルピシェ(Saccharomyces cerevisiae) D 46 462株 (FERM BP— 7686) である前記 〔7〕 〜 〔9〕 および 〔41 〕 いずれか記載の酵母、
〔45〕 サッカロマイセス ·セノレピシェ(Saccharomyces cerevisiae) D 66 785株 (FERM BP— 7687) である前記 〔10〕 〜 〔19〕 および [: 41〕 いずれか記載の酵母、
〔46〕 サッカロマイセス 'セルピシェ(Saccharomyces cerevis iae) D 92 764株 (FERM BP— 7690) である前記 〔20〕 〜 〔32〕 および 〔 1〕 いずれか記載の酵母、
〔47〕 サッカロマイセス ·セルピシェ(Saccharomyces cerevisiae) D 80 92 1株 (FERM BP— 7689) である請求項 〔33〕 〜 〔39〕 および 〔41〕 いずれか記載の酵母、
〔48〕 サッカロマイセス 'セルピシェ(Saccharomyces cerevisiae) D 31 735株 (FERM BP— 7685) である前記 〔40〕 および 〔41〕 記載 の酵母、
〔49〕 酵母が乾燥酵母である前記 〔1〕 〜 〔48〕 いずれか記載の酵母、 〔50〕 冷凍生地用の前記 〔10〕 〜 〔49〕 いずれか記載の酵母、
〔51〕 前記 〔1〕 〜 〔50〕 いずれかに記載の酵母を含有してなる生地、 ならびに
〔52〕 前記 〔51〕 に記載の生地を用いてなるパン、
に関する。 図面の簡単な説明
第 1図は、 糖濃度 0重量%の生地 (フロアタイム 60分) における本発明の乾 燥酵母と市販の乾燥酵母の冷凍耐性を比較したグラフである。 グラフ中、 黒丸は 本発明の乾燥酵母 (D 8 0 9 2 1 ) 、 黒四角は本発明の乾燥酵母 (D 9 2 7 6 4 ) 、 黒三角は市販の乾燥酵母 Saf_ins tant (Red)、 白四角は市販の乾燥酵母 Fermip an Redの結果を示す。 また、 縦軸には、 各酵母の冷凍保存前の発酵力を 1 . 0 とした場合の冷凍保存の各時点での発酵力を冷凍耐性度として示す。 なお、 糖濃 度は 0 %と記した。 以下、 各図につき同様である。
第 2図は、 糖濃度 3重量%の生地 (フロアタイム 6 0分) における本発明の乾 燥酵母と市販の乾燥酵母の冷凍耐性を比較したグラフである。 グラフ中、 黒丸は 本発明の乾燥酵母 (D 8 0 9 2 1 ) 、 黒三角は市販の乾燥酵母 Saf- ins tant (Red) 、 白四角は市販の乾燥酵母 Fermipan Redの結果を示す。 また、 縦軸には、 各酵 母の冷凍保存前の発酵力を 1 . 0とした場合の冷凍保存の各時点での発酵力を冷 凍耐性度として示す。
第 3図は、 糖濃度 5重量%の生地 (フロアタイム 6 0分) における本発明の乾 燥酵母と市販の乾燥酵母の冷凍耐性を比較したグラフである。 グラフ中、 黒四角 は本発明の乾燥酵母 (D 9 2 7 6 4 ) 、 黒三角は市販の乾燥酵母 Saf_ins tant (Re 、 白四角は市販の乾燥酵母 Fermipan Redの結果を示す。 また、 縦軸には、 各 酵母の冷凍保存前の発酵力を 1 . 0とした場合の冷凍保存の各時点での発酵力を 冷凍耐性度として示す。
第 4図は、 糖濃度 1 0重量%の生地 (フロアタイム 6 0分) における本発明の 乾燥酵母と市販の乾燥酵母の冷凍耐性を比較したグラフである。 グラフ中、 黒四 角は本発明の乾燥酵母 (D 9 2 7 6 4 ) 、 黒丸は本発明の乾燥酵母 (D 6 6 7 8 5 ) 、 黒三角は市販の乾燥酵母 Saf- ins tant (Red)、 白四角は市販の乾燥酵母 Ferm ipan Red, 白丸は市販の乾燥酵母 Saf- ins t ant (Gold)、 白三角は市販の乾燥酵母 Fermipan Brownの結果を示す。 また、 縦軸には、 各酵 #の冷凍保存前の発^力 を 1 . 0とした場合の冷凍保存の各時点での発酵力を冷凍耐性度として示す。 第 5図は、 糖濃度 1 5重量%の生地 (フロアタイム 6 0分) における本発明の 乾燥酵母と市販の乾燥酵母の冷凍耐性を比較したグラフである。 グラフ中、 黒丸 は本発明の乾燥酵母 (D 6 6 7 8 5 ) 、 白丸は市販の乾燥酵母 Saf- ins tant (Gold )、 白三角は市販の乾燥酵母 Fermipan Brownの結果を示す。 また、 縦軸には、 各 酵母の冷凍保存前の発酵力を 1 . 0とした場合の冷凍保存の各時点での発酵力を 冷凍耐性度として示す。
第 6図は、 糖濃度 2 5重量%の生地 (フロアタイム 9 0分) における本発明の 乾燥酵母と市販の乾燥酵母の冷凍耐性を比較したグラフである。 グラフ中、 黒丸 は本発明の乾燥酵母 (D 6 6 7 8 5 ) 、 黒四角は本発明の乾燥酵母 (D 9 2 7 6 4 ) 、 白丸は市販の乾燥酵母 Saf- ins tant (Gold)、 白三角は市販の乾燥酵母 Fermi pan Brownの結果を示す。 また、 縦軸には、 各酵母の冷凍保存前の発酵力を 1 . 0とした場合の冷凍保存の各時点での発酵力を冷凍耐性度として示す。
第 7図は、 糖濃度 0重量%の生地における本発明の乾燥酵母と市販の乾燥酵母 のフロア耐性を比較したグラフである。 グラフ中、 黒四角は本発明の乾燥酵母 ( D 9 2 7 6 4 ) 、 黒丸は本発明の乾燥酵母 (D 8 0 9 2 1 ) 、 黒三角は市販の乾 燥酵母 Saf-ins t ant (Red)、 白四角は市販の乾燥酵母 Fermipan Redの結果を示す 。 また、 縦軸には、 冷凍保存後の発酵力の比 (フロアタイム 6 0分/フロアタイ ム 0分) として表わされるフロア耐性を示す。
第 8図は、 糖濃度 3重量%の生地における本発明の乾燥酵母と市販の乾燥酵母 のフロア耐性を比較したグラフである。 グラフ中、 黒丸は本発明の乾燥酵母 (D 8 0 9 2 1 ) 、 黒三角は市販の乾燥酵母 Saf- ins tant (Red)、 白四角は市販の乾燥 酵母 Fermipan Redの結果を示す。 また、 縦軸には、 冷凍保存後の発酵力の比 ( フロアタイム 6 0分ノフロアタイム 0分) として表わされるフロア耐性を示す。 第 9図は、 糖濃度 5重量%の生地における本発明の乾燥酵母と市販の乾燥酵母 のフロア耐性を比較したグラフである。 グラフ中、 黒四角は本発明の ¾燥酵母 ( D 9 2 7 6 4 ) 、 黒三角は市販の乾燥酵母 Saf- ins tant (Red)、 白四角は市販の乾 燥酵母 Fermipan Redの結果を示す。 また、 縦軸には、 冷凍保存後の発酵力の比 (フロアタイム 6 0分/フロアタイム 0分) として表わされるフロア耐性を示す 第 1 0図は、 糖濃度 1 0重量%の生地における本発明の乾燥酵母と市販の乾燥 酵母のフロア耐性を比較したグラフである。 グラフ中、 黒四角は本発明の乾燥酵 母 (D 9 2 7 6 4 ) 、 黒丸は本発明の乾燥酵母 (D 6 6 7 8 5 ) 、 黒三角は市販 の乾燥酵母 Saf- ins t ant (Red)、 白丸は市販の乾燥酵母 Saf_ins tant (Gol d)、 白四 角は市販の乾燥酵母 Fermipan Red, 白三角は市販の乾燥酵母 Fermipan Brownの 結果を示す。 また、 縦軸には、 冷凍保存後の発酵力の比 (フロアタイム 9 0分 Z フロアタイム 3 0分) として表わされるフロア耐性を示す。
第 1 1図は、 糖濃度 1 5重量%の生地における本発明の乾燥酵母と市販の乾燥 酵母のフロア耐性を比較したグラフである。 グラフ中、 黒丸は本発明の乾燥酵母 (D 6 6 7 8 5 ) 、 黒三角は市販の乾燥酵母 Saf- ins tant (Go ld)、 白四角は市販 の乾燥酵母 Fermipan Brownの結果を示す。 また、 縦軸には、 冷凍保存後の発酵 力の比 (フロアタイム 9 0分/フロアタイム 3 0分) として表わされるフロア耐 性を示す。
第 1 2図は、 糖濃度 2 5重量%の生地における本発明の乾燥酵母と市販の乾燥 酵母のフロア耐性を比較したグラフである。 グラフ中、 黒丸は本発明の乾燥酵母 (D 6 6 7 8 5 ) 、 黒四角は本発明の乾燥酵母 (D 9 2 7 6 4 ) 、 白三角は市販 の乾燥酵母 Fermipan Brown, 白丸は市販の乾燥酵母 Saf- ins t ant (Go l d)、 の結果 を示す。 また、 縦軸には、 冷凍保存後の発酵力の比 (フロアタイム 9 0分/ /フロ ァタイム 3 0分) として表わされるフロア耐性を示す。 発明を実施するための最良の形態
本発明の酵母は、 無糖から高糖濃度までの種々の生地にお て優れた発酵力を 有し、 かつ乾燥耐性を有する酵母である。 また、 当該酵母は特定の糖濃度範囲の 生地において、 特に、 優れた発酵力、 冷凍耐性、 フロア耐性、 低温感受性を発揮 するなど、 製パン性の観点より特に優れた性質を有する。 本発明の酵母によれば、 パンの糖濃度に応じた従来のような使い分けの必要は 必ずしもないので、 一般的なあらゆる糖濃度のパンの製造に対応することができ る。 また、 糖濃度を限定し、 当該糖濃度において特に優れた性質を発揮しうる酵 母を使用することで、 より優れたパンの製造が可能となる。 また、 当該酵母を乾 燥してなる乾燥酵母は、 貯蔵性や保存性に優れ、 しかも高糖から超高糖生地にお いて、 又は無糖から高糖生地の広い糖濃度範囲の生地において、 又は無糖から低 糖生地において生酵母と同程度の発酵力を発揮しうることから、 一般的なあらゆ る糖濃度範囲において質のよいパン製造を行うことができる。 また、 従来の乾燥 酵母には、 例えば、 十分な冷凍耐性及び/又はフロア耐性を有するものはなく、 冷凍生地製法への使用は困難であつたが、 前記乾燥酵母は中糖から高糖生地にお いて、 又は無糖から高糖生地の広い糖濃度範囲の生地において、 又は無糖から低 糖生地において高い冷凍耐性及び Z又はフロア耐性を発揮しえ、 かつ乾燥耐性を 有することから、 糖濃度による制限を実質的に受けることなく、 冷凍生地製法に 非常に好適に使用することができる。
ところで、 乾燥酵母は、 その製法と性状から大きく 2種類に分類される。 一方 は、 その製造に特殊な機器を必要としない一般にアクティブ乾燥酵母 (ァクティ ブドライブイースト) と呼ばれるもので、 菌体水分量 1 0重量%程度である。 使 用に際しては、 温水 (ショ糖を添加する場合もある) に溶解して数十分間に渡り 活性化を行った後にパン生地に混捏する。 もう一方は、 インスタント乾燥酵母と 呼ばれるもので、 菌体水分量は 4重量%程度で長期間の保存が可能であり、使用 に際しては温水で活性化することなしに生地に混捏することができる。
本明細書において 「乾燥酵母」 とはインスタント乾燥酵母をいい、 前記ァクテ ィブ乾燥酵母としてのみ使用可能な酵母に比べ、 より乾燥耐性に優れた酵母から なる。 従って、 本発明の乾燥酵母は、 貯蔵性に非常に優れると共に、 生地に混捏 する際に温水での活性化なしに直ちに使用可能である。
さらに、 本発明によれば、 前記酵母又は前記乾燥酵母を含有してなる、 例えば 、 スクラッチ製法の生地及び冷凍生地製法に好適な生地が得られ、 当該生地を用 いてなる、 品質の安定した優れたパンを提供することができる。
なお、 前記乾燥酵母、 生地及びパンは本発明に包含される。 また本明細書にお いて、 生地の糖濃度として 「重量%」 を用いる場合、 当業界の慣習に従って 「小 麦粉 1 0 0重量部に対する糖の重量部」 を示し、 たとえば、 「糖濃度 5重量%の 生地」 という場合、 「小麦粉 1 0 0重量部に対し糖 5重量部が添加されてなる生 地」 をいう。 冷凍生地には冷蔵生地の概念を含む場合がある。 また本明細書にお いて、 「無糖生地」 とは糖濃度 0重量%である生地を、 「低糖生地」 とは糖濃度 が 0重量%を超えて 1 0重量%までの生地を、 「中糖生地」 とは糖濃度が 1 0重 量%を超えて 1 5重量%までの生地を、 「高糖生地」 とは糖濃度が 1 5重量%を 超えて 3 0重量%までの生地を、 「超高糖生地」 とは糖濃度が 3 0重量%を超え て 4 0重量%までの生地を、 それぞれいう。 なお、 本明細書において、 「糖」 と は一般にショ糖をいうが、 その種類は特に限定されるものではなく、 生地の調製 の際に添加して使用される糖であればいずれのものでもよい。 また、 高糖生地に は超高糖生地の意が含まれる場合がある。
以下、 本発明の酵母の性質について説明する。
なお、 スクラッチ製法において示す、 糖濃度 0重量%、 糖濃度 5重量%、 糖濃 度 3 0重量%、 糖濃度 4 0重量%の各々の生地は、 表 1に示す配合にしたがい、 各原料を卓上ミキサー (H0BART社製) により、 捏ね上げ温度 2 9 Xで混捏し、 調 製したものである。
表 1 スクラッチ生地組成
Figure imgf000015_0001
同様に、 冷凍生地製法において示す、 糖濃度 0重量%、 糖濃度 3重量%、 糖濃 度 5重量%、 糖濃度 1 0重量%、 糖濃度 1 5重量%、 糖濃度 2 5重量%の各々の 生地は、 後述する表 4に示す配合にしたがい、 各原料を卓上ミキサー (H0BART社 により、 捏ね上げ温度 2 9 で混捏し、 調製したものである。
本発明の酵母の各性質の定義ならぴにその評価の方法をまとめて示す。
( 1 ) 糖濃度 0重量%の生地発酵力
本明細書において糖濃度 0重量%の生地発酵力は、 酵母を後述するようにして 乾燥して得た乾燥酵母を用いて生地を調製し、 一定条件下に測定した生地からの ガス (炭酸ガス) 発生量で表す。 具体的には、 当該ガス発生量 (m l ) は、 表 1 に示す糖濃度 0重量%の生地配合で生地を混捏 ·調製し、 この生地を 8 5 gに分 割後、 常法に従ってファーモグラフ (アト一社製) で測定 (3 O tで 8 5分間) して求める。
( 2 ) 糖濃度 5重量%の生地発酵力
本明細書において糖濃度 5重量%の生地発酵力とは、 酵母を後述するようにし て乾燥して得た乾燥酵母を用いて生地を調製し、 一定条件下に測定した生地から のガス発生量で表す。 具体的には、 当該ガス発生量 (m l ) は、 表 1に示す糖濃 度 5重量%の生地配合で生地を混捏 ·調製し、 この生地を 8 5 gに分割後、 常法 に従ってファーモグラフ (アト一社製) で測定 (3 0 で 8 5分間) して求める
( 3 ) 糖濃度 3 0重量%の生地発酵力
本明細書において糖濃度 3 0重量%の生地発酵力とは、 酵母を後述するように して乾燥して得た乾燥酵母を用いて生地を調製し、 一定条件下に測定した生地か らのガス発生量で表す。 具体的には、 当該ガス発生量 (m l ) は、 表 1に示す糖 濃度 3 0重量%の生地配合で生地を混捏 ·調製し、 この生地を 8 5 gに分割後、 常法に従ってファーモグラフ (アト一社製) で測定 (3 0 °Cで 1 1 5分間) して 求める。
( 4 ) 糖濃度 4 0重量%の生地発酵力
本明細書において糖濃度 4 0重量%の生地発酵力とは、 酵母を後述するように して乾燥して得た乾燥酵母を用いて生地を調製し、 一定条件下に測定した生地か らのガス発生量で表す。 具体的には、 当該ガス発生量 (m l ) は、 表 1に示す糖 濃度 4 0重量%の生地配合で生地を混捏 ·調製し、 この生地を 8 5 gに分割後、 常法に従ってファーモグラフ (アト一社製) で測定 (3 0 で 1 1 5分間) して 求める。
( 5 ) 本捏後の生地ガス発生量
本明細書において本捏後の生地ガス発生量とは、 酵母を後述するようにして乾 燥して得た乾燥酵母を用い、 加糖中種法により調製した本捏後の生地からの、 一 定条件下に測定したガス発生量で表す。 具体的には、 当該ガス発生量 (m l ) は 、 表 2に示す加糖中種生地配合で表 3に示す加糖中種法の生地作製条件に従つて 生地を調製し、 本捏後の生地を 5 0 gに分割後、 常法に従ってファーモグラフ ( アト一社製) で測定 (3 0 °Cで 1 2 0分間) して求める。 表 2 加糖中種生地における中種及び本捏の生地組成
Figure imgf000017_0001
表 3 加糖中種法の中種及び本捏の生地作製条件
Figure imgf000017_0002
( 6 ) 冷凍耐性
本明細書において冷凍耐性とは、 酵母を後述するようにして乾燥して得た乾燥 酵母を用いて生地を調製し、 当該生地を一定期間冷凍保存後、 当該乾燥酵母が、 冷凍保存前の酵母と同様に使用可能な発酵力を発揮し得ることをいう。 なお、 冷 凍保存後の発酵力は、 表 4の配合に従って得られた生地を 2 0 gに分割し、 3 0 °Cでフロアタイムを 6 0分間又は 9 0分間とり、 次いで— 2 0でで 4週間冷凍保 存後、 2 5 °Cで 3 0分間解凍し、 ファーモグラフ (アト一社製) で測定 (3 8 °C で 1 2 0分間) して得た生地からのガス発生量 (m l ) として表す。 表 4 冷凍生地組成表
Figure imgf000018_0001
また、 冷凍耐性は、 冷凍保存前後での発酵力の比 (冷凍保存後/冷凍保存前) 、 詳しくは、 発酵力を表すガス発生量の冷凍保存前後での比として表すこともで き、 冷凍保存前と比較した冷凍保存後の発酵力の程度を直ちに把握することがで きる点で、 冷凍耐性を評価するのに好適である。 本発明の酵母としては、 その冷 凍耐性において、 前記冷凍保存後の発酵力と冷凍保存前後での発酵力の比が共に 高いものがより好適である。 なお、 冷凍保存前の発酵力は、 前記冷凍保存後の発 酵カについて示す方法において、 生地を冷凍保存しない場合の生地からのガス発 生量として表す。
( 7 ) フロア耐性
本明細書においてフロア耐性とは、 酵母を後述するようにして乾燥して得た乾 燥酵母を用いて生地を調製し、 冷凍保存の前に前発酵 (フロア) しても、 前発酵 しないか、 あるいは実質的に前発酵しない場合と同様に使用可能な発酵力を発揮 し得ることをいう。 フロア耐性は、 前記乾燥酵母を用いて生地を調製し、 個々の 生地に対し長短時間の 2通りのフロアタイムをとり、 次いで当該生地を一定期間 冷凍保存後、 短時間のフロアタイムをとつた場合と長時間のフロアタイムをとつ た場合における冷凍保存後の発酵力の比 (長時間のフロアタイム/短時間のフロ ァタイム) 、 詳しくは、 前記冷凍耐性と同様、 発酵力をガス発生量として求め、 得られたガス発生量の比として表す。
すなわち、 糖濃度 0重量%の生地、 糖濃度 3重量%の生地、 糖濃度 5重量%の 生地では、 フロアタイム 0分と 6 0分間とし、 4週間冷凍保存後、 解凍し、 各々 発酵力をガス発生量として求め、 それらの比をとる。 また、 糖濃度 1 0重量%の 生地、 糖濃度 1 5重量%の生地、 糖濃度 2 .5重量%の生地では、 フロアタイムを 3 0分間と 9 0分間とし、 4週間冷凍保存後、 解凍し、 各々発酵力をガス発生量 として求め、 それらの比をとる。 なお、 ガス発生量 (m l ) は、 酵母を後述する ようにして乾燥して得た乾燥酵母を用い、 表 4の配合に従って生地を調製し、 当 該生地を 2 0 gに分割し、 3 0でで所定のフロアタイムをとり、 次いで— 2 0 °C で 4週間冷凍保存後、 2 5 °Cで 3 0分間解凍し、 ファーモグラフ (アト一社製) で測定 (3 8 °Cで 1 2 0分間) して求める。
( 8 ) 低温感受性
本明細書において低温感受性とは、 好ましくは 0 °C〜1 0 ° (:、 より好ましくは 3 °C〜 8 t:の低温において発酵力が低いという性質をいい、 本発明において具体 的には、 酵母を後述するようにして乾燥して得た乾燥酵母の 5 °Cにおける生地発 酵カに対する 3 0 °Cにおける生地発酵力の比 (3 O X:生地発酵力 / 5 生地発酵 力) により評価した。 当該比の値が大きいほど低温感受性に優れる。
当該乾燥酵母の 5 °Cにおける発酵力は微弱であるため、 5 生地発酵力と 3 0 °C生地発酵力とでは、 その測定方法が異なる。 すなわち、 5 —生地発酵力を測定 する場合、 表 5に示す生地組成で各成分を卓上ミキサーを用い、 捏ね上げ温度 2 5 °Cになるように混捏して生地を調製し、 得られた生地をシリンダーに入れて、 あらかじめ初期体積 (m l ) を測定する。 次いで、 そのままの状態で 5 にて 2 0時間発酵させた後に生地の体積 (発酵後体積) を測定し、 発酵後体積と初期体 積との差 (発酵後体積一初期体積) を 5 °C生地発酵力とする。 一方、 3 0で生地 発酵力は、 表 5に示す生地組成で同様にして、 捏ね上げ温度 2 9 °Cになるように 混捏して生地を調製し、 得られた生地を 8 5 gに分割後、 常法に従ってファーモ グラフ (アト一社製) でガス発生量を測定 (3 0 °<3で8 5分間) し、 当該ガス発 生量を 3 0 °C生地発酵力とする。 なお、 酵母として生酵母 (圧搾酵母) を使用す る場合は、 表 5において乾燥酵母 1 gの替わりに生酵母 2 gを使用する。 表 5 5 °C生地発酵力測定用及び 3 0 生地発酵力測定用生地組成
Figure imgf000020_0001
( 9 ) 乾燥耐性
本発明において乾燥耐性は、 乾燥前の酵母の発酵力に対する乾燥後の酵母の発 酵力の比 (残存発酵力比) として表す。 本発明の酵母は乾燥耐性に優れており、 従って、 乾燥後においても乾燥前の酵母と同様に使用可能な発酵力を発揮し得る なお、 残存発酵力比は以下のようにして求める。 すなわち、 乾燥前及び乾燥後 の各々の酵母を用い、 表 6の配合に従って各原料を卓上ミキサー (H0BERT社製) により混捏 (捏ね上げ温度 2 9 t ) して生地を調製する。 得られた生地を 8 5 g に分割した後、 各場合について、 ファーモグラフにて 3 0 °Cで 8 5分間のガス発 生量 (m l ) を測定し、 当該ガス発生量を発酵力とする。 次いで、 乾燥後の酵母 の発酵力、 乾燥前の酵母の発酵力、 乾燥後の菌体水分量 (重量%) 及び乾燥前の 菌体水分量 (重量%) を、 以下の式
乾燥後の酵母の発酵力/ (100—乾燥後の菌体水分量)
残存発酵力比:
乾燥前の酵母の発酵力/ (100—乾燥前の菌体水分量)
に適用して残存発酵力比を求める。 乾燥後及び乾燥前の菌体水分量は、 測定する 菌体約 l gを精枰し (菌体重量 1 ; g ) 、 充分に乾燥した試験管内において 1 1 0 °Cで 1 2時間乾燥を行った後、 再度精秤し (菌体重量 2 ; g ) 、 以下の式:
菌体水分量 (重量%) = 〔 (菌体重量 1ー菌体重量 2 ) ノ菌体重量 1〕 X I 0 0
により求める。
表 6 残存発酵力比測定用生地組成
Figure imgf000021_0001
本発明の一態様として、 特に高糖生地において好適に使用される、 当該生地に おいて高い発酵力を有し、 かつ乾燥耐性を有する酵母を提供する。 当該酵母とし ては以下の性質を有するものが好適であり、 本発明の所望の効果を充分に奏しう る。
糖濃度 3 0重量%の生地発酵力としては好ましくは 2 0 0 m 1以上、 より好ま しくは 2 5 0 m l以上である、 および Zまたは糖濃度 4 0重量%の生地発酵力と しては好ましくは 70ml以上、 より好ましくは 9 Om 1以上である。 また、 さ らに本捏後の生地ガス発生量が、 好ましくは 12 Oml以上、 より好ましくは 1 70ml以上、 特に好ましくは 175 m 1以上、 さらに好ましくは 190m l以 上であるのがより好ましい。
乾燥耐性としては、 残存発酵力比が好ましくは 0. 70以上、 より好ましくは 0. 80以上である。 なお、 本態様において、 残存発酵力比が 0. 70以上であ る場合、 冷凍生地用としても好適に使用することができる。
本態様における好適な酵母の一例として具体的には、 後述するサッカロマイセ ス ·セルピシェ(Saccharomyces cerevisiae)D 75412株 (F ERM B P 一 7688) を挙げることができる。
また本発明の一態様として、 糖濃度 0〜30重量%の生地において好適に使用 される、 当該生地において高い発酵力を有し、 かつ乾燥耐性を有する酵母を提供 する。 当該酵母としては以下の性質を有するものが好適であり、 本発明の所望の 効果を充分に奏しうる。
糖濃度 0重量%の生地発酵力としては好ましくは 140 m 1以上、 より好まし くは 1 9 Om l以上であり、 かつ糖濃度 30重量%の生地発酵力としては好まし くは 200m l以上、 より好ましくは 23 Om 1以上である。 また、 さらに本捏 後の生地ガス発生量が好ましくは 12 Om 1以上、 より好ましくは 17 Om 1以 上、 特に好ましくは 175ml以上であるのがより好ましい。
乾燥耐性としては、 残存発酵力比が好ましくは 0. 70以上、 より好ましくは 0. 80以上である。 なお、 本態様において、 残存発酵力比が 0. 70以上であ る場合、 冷凍生地用としても好適に使用することができる。
本態様における好適な酵母の一例として具体的には、 後述するサッカロマイセ ス 'セルピシェ(Saccharomyces cerevis iae) D 20946株 (FERM BP - 7684) を挙げることができる。
また本発明の一態様として、 糖濃度 0〜 5重量%の生地において好適に使用さ れる、 当該生地において高い発酵力を有し、 かつ乾燥耐性を有する酵母を提供す る。 当該酵母としては以下の性質を有するものが好適であり、 本発明の所望の効 果を充分に奏しうる。
糖濃度 0重量%の生地発酵力としては好ましくは 220ml以上、 より好まし くは 24 Om l以上である、 および/または糖濃度 5重量%の生地発酵力として は好ましくは 160m l以上、 より好ましくは 180m l以上である。
乾燥耐性としては、 残存発酵力比が好ましくは 0. 70以上、 より好ましくは 0. 80以上である。 なお、 本態様において、 残存発酵力比が 0. 70以上であ る場合、 冷凍生地用としても好適に使用することができる。
本態様における好適な酵母の一例として具体的には、 後述するサッカロマイセ ス ·セルピシェ(Saccharomyces cer'evisiae) D 46462株 (FERM BP - 7686) を挙げることができる。
また本発明の一態様として、 糖濃度 10〜30重量%の生地において好適に使 用される、 当該生地において冷凍耐性及び/又はフロア耐性を有し、 かつ乾燥耐 性を有する酵母を提供する。 当該酵母としては以下の性質を有するものが好適で あり、 本発明の所望の効果を充分に奏しうる。
糖濃度 10重量%の生地の場合、 フロアタイム 60分後 4週間冷凍保存後の発 酵カは、 ガス発生量で好ましくは 90m l以上、 より好ましくは 100ml以上 であり、 さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比が好 ましくは 0. 50以上、 より好ましくは 0. 55以上であるのが好適である。 加 えて、 フロアタイム 30分後 4週間冷凍保存後とフロアタイム 90分後 4週間冷 凍保存後での発酵力の比 (フロアタイム 90分/フロアタイム 30分) が好まし くは 0. 20以上、 より好ましくは 0. 35以上であるのがより好適である。 糖濃度 15重量%の生地の場合、 フロアタイム 60分後 4週間冷凍保存後の発 酵カは、 ガス発生量で好ましくは 70m 1以上、 より好ましくは 10 Om 1以上 、 さらに好ましくは 13 Oml以上であり、 さらに、 フロアタイム 60分後 4週 間冷凍保存前後での発酵力の比が好ましくは 0. 40以上、 より好ましくは 0. 50以上、 さらに好ましくは 0. 65以上であるのが好適である。 加えて、 フロ ァタイム 30分後 4週間冷凍保存後とフロアタイム 90分後 4週間冷凍保存後で の発酵力の比 (フロアタイム 90分/フロアタイム 30分) が好ましくは 0. 2 0以上、 より好ましくは 0. 30以上、 さらに好ましくは 0. 45以上であるの がより好適である。
糖濃度 25重量%の生地の場合、 フロアタイム 90分後 4週間冷凍保存後の発 酵カは、 ガス発生量で好ましくは 50m l以上、 より好ましくは 60m l以上、 更に好ましくは 90m 1以上であり、 さらに、 フロアタイム 90分後 4週間冷凍 保存前後での発酵力の比が好ましくは 0. 60以上、 より好ましくは 0. 63以 上であるのが好適である。 加えて、 フロアタイム 30分後 4週間冷凍保存後とフ ロアタイム 90分後 4週間冷凍保存後での発酵力の比 (フロアタイム 90分 フ ロアタイム 30分) が好ましくは 0. 70以上、 より好ましくは 0. 78以上で あるのがより好適である。
乾燥耐性としては、 残存発酵力比が好ましくは 0. 70以上、 より好ましくは 0. 80以上である。
本態様における好適な酵母の一例として具体的には、 後述するサッカロマイセ ス ·セルピシェ(Saccharomyces cerevisiae) D 66785株 (FERM B P - 7687) を挙げることができる。
また本発明の一態様として、 糖濃度 0〜30重量%の生地において好適に使用 される、 当該生地において冷凍耐性及び Z又はフロア耐性を有し、 かつ乾燥耐性 を有する酵母を提供する。 当該酵母としては以下の性質を有するものが好適であ り、 本発明の所望の効果を充分に奏しうる。
糖濃度 0重量%の生地の場合、 フロアタイム 60分後 4週間冷凍保存後の発酵 力は、 ガス発生量で好ましくは 10 Om 1以上、 より好ましくは 105m 1以上 であり、 さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比が好 ましくは 0. 88以上、 より好ましくは 0. 90以上であるのが好適である。 加 えて、 フロアタイム 0分 4週間冷凍保存後とフロアタイム 60分後 4週間冷凍保 存後での発酵力の比 (フロアタイム 60分/フロアタイム 0分) が好ましくは 0 . 80以上、 より好ましくは 0. 90以上であるのがより好適である。
さらに糖濃度 5重量%の生地の場合、 フロアタイム 60分後 4週間冷凍保存後 の発酵力は、 ガス発生量で好ましくは 7 Oml以上、 より好ましくは 85ml以 上、 さらに好ましくは 9 Oml以上であり、 さらに、 フロアタイム 60分後 4週 間冷凍保存前後での発酵力の比が好ましくは 0. 40以上、 より好ましくは 0. 70以上であるのが好適である。 加えて、 フロアタイム 0分 4週間冷凍保存後と フロアタイム 60分後 4週間冷凍保存後での発酵力の比 (フロアタイム 60分/ フロアタイム 0分) が好ましくは 0. 50以上、 より好ましくは 0. 60以上で あるのがより好適である。
さらに糖濃度 10重量%の生地の場合、 フロアタイム 60分後 4週間冷凍保存 後の発酵力は、 ガス発生量で好ましくは 9 Oml以上、 より好ましくは 100m 1以上であり、 さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の 比が好ましくは 0. 50以上、 より好ましくは 0. 55以上、 さらに好ましくは 0. 65以上であるのが好適である。 加えて、 フロアタイム 30分後 4週間冷凍 保存後とフロアタイム 90分後 4週間冷凍保存後での発酵力の比 (フロアタイム 90分/フロアタイム 30分) が好ましくは 0. 20以上、 より好ましくは 0. 35以上、 さらに好ましく 0. 40以上であるのがより好適である。
さらに糖濃度 25重量%の生地の場合、 フロアタイム 60分後 4週間冷凍保存 後の発酵力は、 ガス発生量で好ましくは 125ml以上、 より好ましくは 130 ml以上、 更に好ましくは 14 Om 1以上であり、 かつフロアタイム 90分後 4 週間冷凍保存後の発酵力は、 ガス発生量で好ましくは 5 Oml以上、 より好まし くは 6 Oml以上、 更に好ましくは 9 Om 1以上である。 さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比が好ましくは 0. 70以上、 より好 ましくは 0. 72以上であり、 かつフロアタイム 90分後 4週間冷凍保存前後で の発酵力の比が好ましくは 0. 30以上、 より好ましくは 0. 35以上であるの が好適である。 加えて、 フロアタイム 30分後 4週間冷凍保存後とフロアタイム 90分後 4週間冷凍保存後での発酵力の比 (フロアタイム 90分/フロアタイム 30分) は好ましくは 0. 35以上、 より好ましくは 0. 38以上であるのがよ り好適である。
乾燥耐性としては、 残存発酵力比が好ましくは 0. 70以上、 より好ましくは 0. 80以上である。
本態様における好適な酵母の一例として具体的には、 後述するサッカロマイセ ス ·セルピシェ(Saccharomyces cerevisiae) D 92764株 (FERM BP - 7690) を挙げることができる。
また本発明の一態様として、 糖濃度 0〜 3重量%の生地において好適に使用さ れる、 当該生地において冷凍耐性及び 又はフロア耐性を有し、 かつ乾燥耐性を 有する酵母を提供する。 当該酵母としては以下の性質を有するものが好適であり 、 本発明の所望の効果を充分に奏しうる。
糖濃度 0重量%の生地の場合、 フロアタイム 60分後 4週間冷凍保存後の発酵 力は、 ガス発生量で好ましくは 100ml以上、 より好ましくは 1 10m 1以上 であり、 さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比が好 ましくは 0. 88以上、 より好ましくは 0. 95以上であるのが好適である。 加 えて、 フロアタイム 0分 4週間冷凍保存後とフロアタイム 60分後 4週間冷凍保 存後での発酵力の比 (フロアタイム 60分/フロアタイム 0分) が好ましくは 0 . 80以上、 より好ましくは 0. 90以上であるのがより好適である。
さらに糖濃度 3重量%の生地の場合、 フロアタイム 60分後 4週間冷凍保存後 の発酵力は、 ガス発生量で好ましくは 50ml以上、 より好ましくは 70m l以 上、 さらに好ましくは 75m 1以上であり、 さらに、 フロアタイム 60分後 4週 間冷凍保存前後での発酵力の比が好ましくは 0. 40以上、 より好ましくは 0. 50以上、 さらに好ましくは 0. 55以上であるのが好適である。 加えて、 フロ ァタイム 0分 4週間冷凍保存後とフロアタイム 60分後 4週間冷凍保存後での発 酵力の比 (フロアタイム 60分/フロアタイム 0分) が好ましくは 0. 35以上 、 より好ましくは 0. 50以上であるのがより好適である。
乾燥耐性としては、 残存発酵力比が好ましくは 0. 70以上、 より好ましくは 0. 80以上である。
本態様における好適な酵母の一例として具体的には、 後述するサッカロマイセ ス ·セルピシェ(Saccharomyces cerevisiae)D 80921株 (FERM B P
- 7689) を挙げることができる。
また本発明の一態様として、 特に低糖生地において好適に使用される、 当該生 地において低温感受性及び乾燥耐性を有する酵母を提供する。 低温感受性として は、 5 °C生地発酵力に対する 30 生地発酵力の比 (30°C生地発酵力 Z5°C生 地発酵力) が好ましくは 0. 70以上、 より好ましくは 0. 80以上である。 一 方、 乾燥耐性としては、 残存発酵力比が好ましくは 0. 70以上、 より好ましく は 0. 80以上である。
本態様における好適な酵母の一例として具体的には、 後述するサッカロマイセ ス ·セルピシェ(Saccharomyces cerevisiae)D 31735株 (F E RM B P
- 7685) を挙げることができる。
本発明の酵母としては無糖から高糖濃度の生地において前記したような性質を 有するあらゆる菌株、 特に、 高糖から超高糖生地において高い発酵力を示しかつ 乾燥耐性を有するあらゆる菌株、 無糖から高糖生地において高い発酵力を示しか つ乾燥耐性を有するあらゆる菌株、 無糖から低糖生地において高い発酵力を示し かつ乾燥耐性を有するあらゆる菌株、 中糖から高糖生地において高い冷凍耐性及 び Z又はフロア耐性を有し、 かつ乾燥耐性を有するあらゆる菌株、 無糖から高糖 生地において高い冷凍耐性及び/又はフロア耐性を有し、 かつ乾燥耐性を有する あらゆる菌株、 無糖から低糖生地において高い冷凍耐性及び Z又はフロア耐性を 有し、 かつ乾燥耐性を有するあらゆる菌株、 低温感受性を有し、 かつ乾燥耐性を 有するあらゆる菌株を包含し、 人工的に作出したもの、 自然界から分離したもの を問わず、 全て包含するものである。 たとえば、 既知の酵母でよく、 一般的にパ ンを製造するのに利用されている酵母、 たとえば、 多用されるサッカロマイセス *セルピシェ、 その他、 サッカロマイセス ·ゥパゥム、 サッカロマイセス .ェク シギユーズゃトルラボラ属等が挙げられ、 本発明の所望の効果を奏しうる限り、 いずれのものでもよい。
本発明の酵母は公知の各種方法により得ることができる。 たとえば、 前記した ような各種性質に基づいて自然界より広くスクリーニングを実施し、 所望の性質 を有する酵母を選抜し、 若しくは公知の交雑法により各酵母を掛け合わせ、 或い は公知の方法に従って各種突然変異を引き起こし、 所望の性質を有する酵母を選 抜することで、 所望の酵母を取得できる。
本発明においては、 自然界より分離した菌株ゃ交雑により作製した育種菌株を 前記の各種性質に基づいてスクリーニングした結果、 前記のような優れた性質を 有する 7種の新規菌株を取得し、 それぞれサッカロマイセス ·セルピシェ D 7 5 4 1 2株、 サッカロマイセス ·セルピシェ D 2 0 9 4 6株、 サッカロマイセス · セルピシェ D 4 6 4 6 2株、 サッカロマイセス ·セルピシェ D 6 6 7 8 5株、 サ ッカロマイセス ·セルピシェ D 9 2 7 6 4株、 サッカロマイセス ·セルピシェ D 8 0 9 2 1株、 およびサッカロマイセス ·セルピシェ D 3 1 7 3 5株 (以下、 株 を省略する) と命名し、 独立行政法人産業技術総合研究所特許生物寄託センター に寄託した。
以下、 前記新規菌株について説明する。
〔菌学的性質〕
本発明の酵母の菌学的性質を表 7〜表 2 0に示す。 表 7 本発明菌株 D 75412の菌学的性質 その 1
栄養細胞の形態 卵形〜伸長形
(3~8) X (6〜10) f m
増殖形式 多極出芽
生育の様相 良好に生育、 コロニー形成 (白色、 平滑、 光沢あり)
(25 、 3日間、 YPD培地)
子嚢胞子 1〜 4個の球形〜楕円形の子嚢胞子を形成し、 子嚢は 開裂しない。
(25°C、 3日間、 アダムス培地)
ビ夕ミン欠培地での 生育しない
生育
シクロへキシミド存在下
での生育
(lOOOppm) 生育しない
(lOOppm) 生育しない
尿素分解 分解しない
最適生育条件 P H: 5. 0、 温度: 30 °C、 好気性で発育 生育の範囲 p H: 3. 5〜6. 5、 温度: 5〜40 、 好気性で 発育 表 8 本発明菌株 D 75412の菌学的性質 その 2
項目 資化性 発酵性
(窒素源)
硝酸塩 一 N.T.
ェチルァミン 一 N.T.
カダベリン ― N.T.
灰素源)
グルコース + +
ガラク卜ース + +
シユークロース + +
マルトース + +
ラク卜一ス
ラフイノース + +
セロビオース 一 N.T.
卜レハロース + — 表 9 本発明菌株 D 2 0 9 4 6の菌学的性質 その 1
Figure imgf000030_0001
表 1 0 本発明菌株 D 2 0 9 4 6の菌学的性質 その 2 項目 資化性 発酵性
(窒素源)
硝酸塩 N.T. ェチルァミン N.T. カダベリン N.T.
(炭素源)
グルコース N.T. + ガラク卜ース + + シュ一クロース + + マルト一ス + + ラクトース
ラフィノース N.T.
セロビオース N.T. トレハロース + N.T. 本発明菌株 D 4 6 4 6 2の菌学的性質 その
Figure imgf000031_0001
表 1 2 本発明菌株 D 4 6 4 6 2の菌学的性質 その 2 項目 資化性 発酵性
(窒素源)
硝酸塩 N.T. ェチルァミン N.T. カダベリン N.T. 灰素源)
グルコース + + ガラクトース + + シユークロース + + マル! ^一ス + + ラク卜ース
ラフイノ一ス + N.T. セロビオース
トレハロース + + 表 1 3 本発明菌株 D 6 6 7 8 5の菌学的性質 その
Figure imgf000032_0001
表 1 4 本発明菌株 D 6 6 7 8 5の菌学的性質 その 2 項目 資化性 発酵性
(窒素源)
硝酸塩 N.T. ェチルァミン N.T. カダベリン N.T.
(炭素源)
グルコース + + ガラク卜ース + + シユークロース + + マルトース + + ラク卜ース
ラフイノ一ス + + セロビオース N.T. 卜レハロース + 表 1 5 本発明菌株 D 92764の菌学的性質 その 1
栄養細胞の形態 卵形〜伸長形
(3〜8) X (6~ 1 0) ΐίΐ
増殖形式 多極出芽
生育の様相 良好に生育、 コロニー形成 (白色、 平滑、 光沢あり)
(25 :、 3日間、 YPD培地)
子嚢胞子 1〜 4個の球形〜楕円形の子嚢胞子を形成し、 子義は 開裂しない。
(25°C、 3日間、 アダムス培地)
ビ夕ミン欠培地での 生育しない
生育
シクロへキシミド存在下
での生育
(lOOOppm) 生育しない
(lOOppm) 生育しない
尿素分解 分解しない
最適生育条件 P H: 5. 0、 温度: 30°C、 好気性で発育
生育の範囲 p H: 3. 5〜6. 5、 温度: 5〜40で、 好気性で 発育 表 1 6 本発明菌株 D 92764の菌学的性質 その 2
項目 資化性 発酵性
(窒素源)
硝酸塩 一 N.T.
ェチルァミン 一 N.T.
力ダべリン 一 N.T.
(炭素源)
グノレコース N.T. +
ガラク卜ース + +
シュ一クロース + +
マル! ^一ス + +
ラクト一ス
ラフイノース N.T. 一
セロビオース - N.T.
卜レハロース + N.T. 表 17 本発明菌株 D 80921の菌学的性質 その
栄養細胞の形態 卵形〜伸長形
(3〜8) X (6~ 10) rn
増殖形式 多極出芽
生育の様相 良好に生育、 コロニー形成 (白色、 平滑、 光沢あり)
(25°C、 3日間、 YPD培地)
子嚢胞子 1〜 4個の球形〜楕円形の子嚢胞子を形成し、 子 iは 開裂しない。
(25°C、 3日間、 アダムス培地)
ピ'タミン欠培地での 生育しない
生育
シクロへキシミド存在下
での生育
(lOOOppm) 生育しない
(lOOppm) 生育しない
尿素分解 分解しない
最適生育条件 P H: 5. 0、 温度: 30°C、 好気性で発育 生育の範囲 p H: 3. 5〜6. 5、 温度: 5〜40で、 好気性で 発育 表 18 本発明菌株 D 80921の菌学的性質 その 2
項目 資化性 発酵性
(窒素源)
硝酸塩 - N.T.
ェチルァミン 一 N.T.
カダベリン - N.T.
(炭素源)
グルコース + +
ガラク卜一ス + +
シユークロース + +
マルトース + +
ラクト一ス
ラフィノース + +
セロビオース 一 N.T.
卜レハ口一ス + — 表 19 本発明菌株!) 31735の菌学的性質 その 1
栄養細胞の形態 卵形〜伸長形
(4〜6) X (5~ 10) τη
増殖形式 多極出芽
生育の様相 良好に生育、 コロニー形成 (白色、 平滑、 光沢あり)
(25°C、 3日間、 YPD培地)
子嚢胞子 1〜 4個の球形〜楕円形の子嚢胞子を形成し、 子嚢は 開裂しない。
(25°C、 3日間、 アダムス培地)
ビタミン欠培地での 生育しない
生育
シクロへキシミド存在下
での生育
(lOOOppm) 生育しない
(lOOppm) 生育しない
尿素分解 分解しない
最適生育条件 p H: 5. 0、 温度: 30 °C、 好気性で発育 生育の範囲 p H: 3. 5〜6. 5、 温度: 5〜40°C、 好気性で 発育 表 20 本発明菌株 D 31735の菌学的性質 その 2
項目 資化性 発酵性
(窒素源)
硝酸塩 一 N.T.
ェチルァミン - N.T.
力ダべリン 一 N.T.
(炭素源)
グルコース + +
ガラク卜ース + +
シユークロース + +
マルトース + +
ラクトース
ラフイノース N.T. +
セロビオース 一 N.T.
卜レハロース + N.T. 前記菌株はそれぞれ、 上記のような菌学的性質を有し、 「ジ ィースッ、 ァ タキソノミック スタディー (The Yeas t s, A Taxonomi c Study) (第 4版) 」 と照合したところ、 いずれの菌株ともサッカロマイセス ·セルピシェに属するも のと確認された。 さらに、 前記するように、 それぞれ、 高糖から超高糖生地にお いて高い発酵力を示しかつ乾燥耐性を有するという特徴、 無糖から高糖生地にお いて高い発酵力を示しかつ乾燥耐性を有するという特徴、 無糖から低糖生地にお いて高い発酵力を示しかつ乾燥耐性を有するという特徴、 中糖から高糖生地にお いて高い冷凍耐性及び/又はフロア耐性を有しかつ乾燥耐性を有するという特徴 、 無糖から高糖生地において高い冷凍耐性及び 又はフロア耐性を有しかつ乾燥 耐性を有するという特徴、 無糖から低糖生地において高い冷凍耐性及び 又はフ ロア耐性を有しかつ乾燥耐性を有するという特徴、 低温感受性を有しかつ乾燥耐 性を有するという特徴を持っていることから、 前記菌株はいずれも従来の菌株に は見当たらず、 新規菌株と認定した。
〔培養条件〕
前記各酵母の培養方法としては通常のパン酵母に用いられる方法であれば特に 限定はない。 また、 最適生育 p H、 生育可能な p H範囲、 最適生育温度、 生育可 能な温度範囲等も通常のパン酵母と同様である。 例えば、 糖蜜の流加方式にて菌 体を作製することができる。 糖蜜は他の資化性糖蜜に代用でき、 また窒素源 リ ン酸源も限定するものではない。 さらに成長促進因子を加えても良い。 培養によ り得られた酵母菌体を集菌、 洗浄後、 脱水し、 圧搾酵母として本発明の酵母を得 ることができる。
本発明はまた、 前記酵母を乾燥して得られる乾燥酵母を提供する。 本明細書に いう乾燥酵母とは酵母を乾燥させたものをいい、 好ましくは、 酵母菌体中の水分 量が 5重量%以下であるものをいう。 なお、 菌体中の水分量の測定は前記の方法 により行うことができる。 前記したように、 従来、 所望の製パン性を有する乾燥酵母を調製することは困 難であつたが、 本発明においては、 酵母の乾燥方法には特に限定はなく、 たとえ ば、 一般に乾燥酵母を作製する方法として公知である方法を使用することができ る。 たとえば、 以下のようにして乾燥酵母を得ることができる。 圧搾酵母に乾燥 酵母当たり 1 . 5重量%になるようにソルビタン脂肪酸エステルの水ェマルジョ ンを添加して混合し、 次いで、 ェクストルーダーにより 0 . 5 mmのスクリーン メッシュをパスさせて糸状とし、 流動乾燥機の初期入り口温度 4 4 °Cの温風によ り流動乾燥させ、 乾燥終点を菌体中の水分量が 5重量%以下になつた時点とし、 乾燥酵母を得ることができる。
本発明の生地は、 前記する本発明の酵母 (乾燥前の酵母) 又は乾燥酵母を、 各 種原料と共に混捏することで調製することができる。 本明細書にいう生地とは、 小麦粉に代表される穀粉に水を加えて、 所望により、 ショートニング等の油脂; 砂糖、 ブドウ糖、 果糖、 液糖等の糖類;食塩;卵;脱脂粉乳、 牛乳、 発酵乳等の 乳製品;イーストフード;モノグリセリド等の乳化剤等の添加物を入れて混捏し たものをいい、 特に限定されるものではないが、 主としてパン生地をいう。 本発 明の生地としては、 パイ生地、 饅頭生地、 ピザ生地等も包含する。 前記穀粉、 水 、 添加物は特に限定されるものではなく、 公知のものを適宜使用するごとができ る。 本発明の酵母又は乾燥酵母は、 無糖から高糖濃度までの種々の生地において 優れた発酵力を有し、 かつ乾燥耐性を有する酵母であり、 また、 前記するように 、 当該酵母はそれぞれ特定の糖濃度範囲の生地において、 製パン性の観点より、 特に優れた性質を有する。 従って、 一般的なあらゆる糖濃度のパンの製造に対応 することができ、 また、 糖濃度範囲を限定することで、 より優れたパンの製造が 可能となる。 なお、 本発明の酵母又は乾燥酵母の生地における含有量は特に限定 されるものではないが、 生酵母の場合、 小麦粉 1 0 0重量部に対し、 好ましくは 1〜6重量部、 一方、 乾燥酵母の場合、 小麦粉 1 0 0重量部に対し、 好ましくは 0 . 5〜 3重量部である。 本発明のパンの製造方法としては特に限定はなく、 たとえば、 ストレート法、 中種法、 冷蔵生地法、 冷凍生地法を挙げることができる。 本発明の酵母又は乾燥 酵母は、 本発明の所望の効果の発現の観点から、 スクラッチ製法においては、 好 ましくは糖濃度 0〜4 0重量%、 より好ましくは 0〜3 0重量%の配合で使用す ることが効果的である。 また、 冷凍耐性を持った酵母については冷蔵もしくは冷 凍生地法において当該生地用として使用することが効果的である。 なお、 前記生 地は、 これらのパンの製造方法において、 焼成工程を経てパンとなる前のもので ある。
たとえば、 公知の冷凍生地法では、 通常、 冷凍生地は、 冷凍生地以外のいわゆ るストレート生地と同様の生地組成で比較的低温で捏ね上げて調製され、 3 0〜 1 2 0分間の前発酵 (フロア) 、 分割、 成形の後、 冷凍保存される。 次いで、 冷 凍保存された生地を解凍後、 最終発酵、 焼成することにより品質の安定した優れ たパンが得られる。 これらの生地およびパンの製造に関しては過去様々な資料が 知られており、 それらを適宜参考にすることができ、 混捏条件、 温度条件等は特 に限定されるものではない。 以下、 本発明を実施例を挙げて説明するが、 本発明はこれらの実施例により何 ら限定されるものではない。 実施例 1
本発明酵母サッカロマイセス 'セルピシェ D 7 5 4 1 2、 D 2 0 9 4 6 , D 4 6 4 6 2、 D 6 6 7 8 5 , D 9 2 7 6 4 , D 8 0 9 2 1 , D 3 1 7 3 5について 、 乾燥耐性を検討した。 本発明酵母と、 比較対照として市販の汎用酵母カネカレ ッドイースト (鐘淵化学工業株式会社製) 、 低温感受性酵母カネカイースドホヮ イト(鐘淵化学工業株式会社製)、 カネ力イースト A L (鐘淵化学工業株式会社製 ) 、 冷凍耐性酵母 F D— I (0社製) 、 冷凍耐性酵母 F D - I I (0社製) と Y F ( J社製) から、 乾燥酵母を作製し、 その乾燥耐性を比較した。 各々の圧搾酵母 について乾燥酵母当たり 1 . 5重量%になるようにソルビタン脂肪酸エステルの 水ェマルジヨンを添加して混合し、 次いでェクストルーダーにより 0 . 5 mmに スクリーンメッシュをパスさせて糸状とし、 流動層乾燥機の初期入り口温度 4 4 °Cの温風により流動乾燥させ、 乾燥終点は菌体水分量が 5重量%以下になつた時 点とし、 それぞれの乾燥酵母を得た。
乾燥耐性は、 前記 (9 ) 乾燥耐性に示す方法により評価した。 その結果を表 2 1に示す。 市販の酵母の残存発酵力比が 0 . 5 0以下であるのに対して、 本発明 の乾燥酵母の残存発酵力比は 0 . 7 0以上であり、 優れた乾燥耐性を有すること が分かる。
表 2
Figure imgf000040_0001
実施例 2
本発明酵母サッカロマイセス ·セルピシェ D 4 6 4 6 2について、 乾燥温度を 変えての乾燥後の残存発酵力比を測定した。 本発明酵母と、 比較対照として市販 の Maur ipan low sugar (BP社製)から、 乾燥酵母を作製し、 その乾燥耐性を乾燥 温度を変えて比較した。 実施例 1と同様に、 各々の圧搾酵母について乾燥酵母当 たり 1 . 5重量%になるようにソルビタン脂肪酸エステルの水ェマルジヨンを添 加して混合し、 次いでェクストルーダーにより 0 . 5 mmにスクリーンメッシュ をパスさせて糸状とし、 流動層乾燥機の初期入り口温度 44 °Cの温風により流動 乾燥させた。 同様に、 流動乾燥機の入り口温度を 50°Cから 65°Cまで変化させ 乾燥酵母を得た。 乾燥終点は菌体水分量が 5重量%以下になつた時点とし、 それ ぞれの乾燥酵母を得た。
乾燥耐性は、 前記 (9) 乾燥耐性に示す方法により評価した。 その結果を表 2 2に示す。 本発明の乾燥酵母 (D46462) と Mauripan low sugar (BP社製) は、 44°Cで乾燥させた時の残存発酵力比は 0. 8程度とほぼ同等であるが、 温 度の上昇と共に残存発酵力比の差は広がり、 65 で乾燥させた時の残存発酵力 比は本発明の乾燥酵母 (D46462) が 0. 64に対し、 Mauripan low suga ] (8?社製)は0. 51と明らかに、 本発明の酵母 D 46462がより乾燥耐性の 強いことを示している。 表 22 乾燥温度の違いによる残存発酵力比の比較
Figure imgf000041_0001
実施例 3
圧搾酵母より乾燥酵母を調製する際に、 乾燥による発酵力の低下を押さえる目 的で乳化剤の添加は不可欠である。 しかし、 近年消費者の自然指向の強まりと共 に、 できるだけ添加剤を押さえた製パンを求められるようになつている。 乾燥時 に添加する乳化剤の濃度を変えて、 本発明の酵母 D 46462と、 比較対照とし て市販の酵母 Mauripan low sugar (BP社製) (本明細書においては、 製品の乾燥 酵母を 「市販の乾燥酵母 Mauripan low sugarj という場合がある) より培養に より圧搾酵母を調製後、 乾燥酵母を作製し、 乾燥耐性を検討した。 各々の圧搾酵母について、 乾燥酵母当たり 0 . 8、 1 . 0、 1 . 2、 1 . 5、 3 . 0重量%になるようにソルビ夕ン脂肪酸エステルの水ェマルジヨンを添加し て混合し、 次いでェクストルーダーにより 0 . 5 mmのスクリーンメッシュをパ スさせて糸状とし、 入り口温度を 4 4 °Cの温風により流動乾燥させ、 乾燥終点は 菌体水分量が 5重量%以下になつた時点とし、 それぞれの乾燥酵母を得た。 乾燥耐性は、 前記 (9 ) 乾燥耐性に示す方法により評価した。 その結果を表 2 3に示す。 表 2 3 乳化剤濃度の違いによる残存発酵力比の比較
Figure imgf000042_0001
表 2 3から明らかなように、 市販の酵母から調製した乾燥酵母は、 乳化剤添加 濃度が 1 . 0重量%以下で急激な低糖生地発酵力の低下がおこったのに対して、 本発明の酵母は 0 . 8重量%でも 0 . 6 0の残存発酵力比を保持していた。 この ことから、 酵母から乾燥酵母を作製する際に添加する乳化剤の量を押さえること が可能で、 本発明により、 強く求められている自然志向の食品にマッチした乾燥 酵母を得ることが出来るといえる。 実施例 4
本発明の酵母 D 7 5 4 1 2について、 糖濃度 3 0重量%の生地発酵力と糖濃度 4 0重量%の生地発酵力を測定した。 それぞれの生地発酵力は、 前記 (3 ) 糖濃 度 3 0重量%の生地発酵力と (4 ) 糖濃度 4 0重量%の生地発酵力に示す方法に より評価した。 本発明の酵母 D 7 5 4 1 2は実施例 1と同様にして乾燥酵母とし た。 また比較対照として、 菓子パン製造に適するとされる市販の乾燥酵母 Saf - in stant(Gold) (S社製)、 Fermipan Brown(D社製)を用いた。 結果を表 24に示す
表 24 糖濃度 30重量%の生地発酵力及び糖濃度 40重量%の生地発酵力
Figure imgf000043_0001
表 24に示すように、 糖濃度 30重量%の生地発酵力は、 市販の乾燥酵母が 2 00ml未満であるのに対し、 本発明の乾燥酵母 D 75412は 26 lm 1であ り、 優れた発酵力を有することが分かる。 さらに、 糖濃度 40重量%の生地発酵 力は、 市販の乾燥酵母が 70ml未満であるのに対し、 本発明の乾燥酵母 (D7 5412) は 1 1 lm 1であり、 糖濃度 40重量%の生地においても優れた発酵 力を有することが分かる。 この発酵力は、 あんパンなど糖を多く含む菓子パン生 地に最適なことを示している。 実施例 5
本発明の酵母 D 20946について、 糖濃度 0重量%の生地発酵力と糖濃度 3 0重量%の生地発酵力を測定した。 それぞれの生地発酵力は、 前記 (1) 糖濃度 0重量%の生地発酵力と (3) 糖濃度 30重量%の生地発酵力に示す方法により 評価した。 本発明の酵母 D 20946は実施例 1と同様にして乾燥酵母とした。 比較対照として、 食パン製造に適するとされる市販の乾燥酵母 Saf- instant (RE D) (S社製) 、 Fermipan RED (D社製) 2品と、 菓子パン製造に適するとされる 市販の乾燥酵母 Saf- instant (Gold) (S社製) 、 Fermipan Brown (D社製) 2品 の合計 4品について糖濃度 0重量%の生地発酵力と糖濃度 30重量%の生地発酵 力を測定した。 得られた結果を表 25に示す。 表 25 糖濃度 0重量%の生地発酵力及び糖濃度 30重量%の生地発酵力
Figure imgf000044_0001
表 25に示すように、 市販の乾燥酵母で糖濃度 0重量%の生地発酵力が 170 ml以上の充分に高い菌株でも糖濃度 30重量%の生地発酵力は 100ml未満 となり、 高糖濃度の菓子パンを製造するには適さないものであった。 また、 糖濃 度 30重量%の生地発酵力が 180ml以上あり、 菓子パン製造に適した市販の 乾燥酵母では、 糖濃度 0重量%の生地発酵力が 140ml未満であり、 フランス パンを製造するには適さないものであった。
それに対し、 本発明の乾燥酵母 (D 20946) は糖濃度 0重量%の生地発酵 力が 196m 1と充分に高く、 また、 糖濃度 30重量%の生地発酵力も 236m 1と十分に高いため、 フランスパンのような無糖生地から、 菓子パンのような高 糖生地を製造するのに充分な発酵力を示した。 実施例 6
本発明の酵母 D 4 6 4 6 2について、 糖濃度 0重量%の生地発酵力と糖濃度 5 重量%の生地発酵力を測定した。 それぞれの生地発酵力は、 前記 (1 ) 糖濃度 0 重量%の生地発酵力と (2 ) 糖濃度 5重量%の生地発酵力に示す方法により評価 した。 本発明の酵母 D 4 6 4 6 2は実施例 1と同様にして乾燥酵母とした。 比較 対照として、 食パン製造に適するとされる市販の乾燥酵母 Bruggeman Blue (B R社製)、 Saf - ins tant (RED) ( S社製)、 および Maur ipan l ow sugar (BP社製) について糖濃度 0重量%の生地発酵力と糖濃度 5重量%の生地発酵力を測定した 。 得られた結果を表 2 6に示す。 表 2 6 糖濃度 0重量%の生地発酵力及び糖濃度 5重量%の生地発酵力
Figure imgf000045_0001
表 2 6に示すように、 市販の乾燥酵母は糖濃度 0重量%の生地発酵力が 2 2 0 m l未満で、 かつ糖濃度 5重量%の生地発酵力が 1 6 0 m l未満であった。 それ に対し、 本発明の酵母 D 46462は糖濃度 0重量%の生地発酵力が 244 m 1 であり、 更に、 糖濃度 5重量%の生地発酵力が 193mlと市販の乾燥酵母より 遙かに高い発酵力を示した。 実施例 7
本発明酵母 D 75412、 D 20946について、 加糖中種生地における本捏 後のガス発生量及びホイ口投入後のガス発生量 (ホイ口中のガス発生量) を測定 した。 比較対照として、 菓子パン製造に適するとされる市販の乾燥酵母 Saf- inst ant(Gold) (S社製)、 Fermipan Brown (D社製)を使用した。 前記 (5) 本捏後の生 地ガス発生量に示す方法で、 本捏後の生地ガス発生量を測定した。 同様に、 成型 後の生地を 50 gに分割した後、 ファーモグラフ (アト一社製) により 30°Cで 2時間のガス発生量 (ml) を測定し、 当該ガス発生量をホイ口投入後のガス発 生量とした。 さらに、 焼成後のパンの重量に対するパンの容積の割合をパンの比 容積 (m l/g) として測定した。 得られた結果を表 27に示す。
表 27 加糖中種生地での本捏後とホイ口投入後のガス発生量、 及び焼成後 のパンの比容積
Figure imgf000047_0001
表 27で示すように、 市販の乾燥酵母はいずれも本捏後のガス発生量が 120 m 1以下であるのに対して、 本発明の乾燥酵母 (D 75412) は 193ml、 本発明の乾燥酵母 (D 20946) は 176m 1と顕著に高かった。 この本捏後 のガス発生量の高さは、 引き続いて行われるホイ口投入後のガス発生量の差を生 みだしている。 最終的に焼成されたパンは、 市販の乾燥酵母のものはパンの膨ら みが悪く、 比容積が 4. 6m 1 以下と小さいものであった。 それに対し、 本 発明の乾燥酵母で作成されたパンは、 顕著に大きなパンが焼成され、 その比容積 は、 本発明の乾燥酵母 (D 75412) は 5. 89ml Zg、 本発明の乾燥酵母 (D 20946) は 5. 54mlZgであった。 実施例 8
本発明の酵母 D 92764、 D 80921について冷凍耐性を検討した。 冷凍 耐性は、 前記 (6) 冷凍耐性に示す方法により評価した。 本発明の酵母は実施例 1と同様にして乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf-instant ( Red) (S社製) 、 Fermipan Red (D社製) を用いた。 冷凍耐性の評価におい ては、 生地の糖濃度は 0重量%とした。 結果を表 28に示す。 表 28 糖濃度 0重量%の生地、 60分フロア後 4週間冷凍保存前後の発酵力
Figure imgf000048_0001
表 28に示すように、 冷凍保存後の発酵力は、 市販の乾燥酵母が 100 m 1未 満であるのに対し、 本発明の乾燥酵母 (D 92764) は 1 10mし 同 (D 8 0921) は 1 1 Omlであり、 優れた冷凍保存後の発酵力を有することが分か る。 さらに、 冷凍保存前後の発酵力の比は、 市販の乾燥酵母が 0. 88未満であ るのに対し、 本発明の乾燥酵母 (D 92764) は 0. 92、 同 (D 80921 ) は 0. 97であり、 優れた冷凍耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして冷凍保存後の発酵力を測 定した。 その結果を第 1図に示す。 糖濃度 0重量%の生地でのフロアタイム 60 分後の条件では、 第 1図から明らかなように、 1週、 2週、 4週のいずれの冷凍 保存期間においても、 市販の乾燥酵母に対して本発明の乾燥酵母が顕著な冷凍耐 性を示した。 実施例 9
本発明の酵母 D 80921について冷凍耐性を検討した。 冷凍耐性は、 前記 ( 6) 冷凍耐性に示す方法により評価した。 本発明の酵母は実施例 1と同様にして 乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf- instant (Red) (S社製 ) 、 Fermipan Red (D社製) を用いた。 冷凍耐性の評価においては、 生地の 糖濃度は 3重量%とした。 結果を表 29に示す。 表 29 糖濃度 3重量%の生地、 60分フロア後 4週間冷凍保存前後の発酵力
Figure imgf000049_0001
表 29に示すように、 冷凍保存後の発酵力は、 市販の乾燥酵母が 50 m 1未満 であるのに対し、 本発明の乾燥酵母 (D 80921) は 79m lであり、 優れた 冷凍保存後の発酵力を有することが分かる。 さらに、 冷凍保存前後の発酵力の比 は、 市販の乾燥酵母が 0. 35未満であるのに対し、 本発明の乾燥酵母は 0. 5 8であり、 優れた冷凍耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして冷凍保存後の発酵力を測 定した。 その結果を第 2図に示す。 糖濃度 3重量%の生地でのフロアタイム 60 分後の条件では、 第 2図から明らかなように、 1週、 2週、 4週のいずれの冷凍 保存期間においても、 市販の乾燥酵母に対して本発明の乾燥酵母が顕著な冷凍耐 性を示した。 実施例 1 0
本発明の酵母 D 9 2 7 6 4について冷凍耐性を検討した。 冷凍耐性は、 前記 ( 6 ) 冷凍耐性に示す方法により評価した。 本発明の酵母は実施例 1と同様にして 乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf- ins t ant (Red) ( S社製 ) 、 Fermipan Red (D社製) を用いた。 冷凍耐性の評価においては、 生地の 糖濃度は 5重量%とした。 結果を表 3 0に示す。 表 3 0 糖濃度 5重量%の生地、 6 0分フロア後 4週間冷凍保存前後の発酵力
Figure imgf000050_0001
表 3 0に示すように、 冷凍保存後の発酵力は、 市販の乾燥酵母が 7 O m l未満 であるのに対し、 本発明の乾燥酵母は 9 l m lであり、 優れた冷凍保存後の発酵 力を有することが分かる。 さらに、 冷凍保存前後の発酵力の比は、 市販の乾燥酵 母が 0 . 4 0未満であるのに対し、 本発明の乾燥酵母は 0 . 7 2であり、 優れた 冷凍耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして冷凍保存後の発酵力を測 定した。 その結果を第 3図に示す。 糖濃度 5重量%の生地でのフロアタイム 6 0 分後の条件では、 第 3図から明らかなように、 1週、 2週、 4週のいずれの冷凍 保存期間においても、 市販の乾燥酵母に対して本発明の乾燥酵母が顕著な冷凍耐 '性を示した。 実施例 1 1
本発明の酵母 D 92764、 D 66785について冷凍耐性を検討した。 冷凍 耐性は、 前記 (6) 冷凍耐性に示す方法により評価した。 本発明の酵母は実施例 1と同様にして乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf- instant ( Red) 、 Saf - instant (Gold) (S社製) 、 Fermipan Red、 Fermipan Brown (D社 製) を用いた。 冷凍耐性の評価においては、 生地の糖濃度は 10重量%とした。 結果を表 31に示す。 表 31 糖濃度 10重量%の生地、 60分フロア後 4週間冷凍保存前後の発酵力
Figure imgf000051_0001
表 31に示すように、 冷凍保存後の発酵力は、 市販の乾燥酵母が 80ml以下 であるのに対し、 本発明の乾燥酵母 (D 92764) は 1 12m 1、 同 (D 66 785) は 109mlであり、 優れた冷凍保存後の発酵力を有することが分かる 。 さらに、 冷凍保存前後の発酵力の比は、 市販の乾燥酵母が 0. 45未満である のに対し、 本発明の乾燥酵母 (D 92764) は 0. 69、 同 (D 66785) は 0. 56であり、 優れた冷凍耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして冷凍保存後の発酵力を測 定した。 その結果を第 4図に示す。 糖濃度 10重量%の生地でのフロアタイム 6 0分後の条件では、 第 4図から明らかなように、 1週、 2週、 4週のいずれの冷 凍保存期間においても、 市販の乾燥酵母に対して本発明の乾燥酵母が顕著な冷凍 耐性を示した。 ' 実施例 12
本発明の酵母 D 66785について冷凍耐性を検討した。 冷凍耐性は、 前記 ( 6) 冷凍耐性に示す方法により評価した。 本発明の酵母は実施例 1と同様にして 乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf- instant (Gold) (S社製 ) 、 Fermipan Brown (D社製) を用いた。 冷凍耐性の評価においては、 生地の 糖濃度は 1 5重量%とした。 結果を表 32に示す。 表 32 糖濃度 15重量%の生地、 60分フロア後 4週間冷凍保存前後の発酵力
Figure imgf000052_0001
表 32に示すように、 冷凍保存後の発酵力は、 市販の乾燥酵母が 62m 1以下 であるのに対し、 本発明の乾燥酵母 (D 66785) は 132mlであり、 優れ た冷凍保存後の発酵力を有することが分かる。 さらに、 冷凍保存前後の発酵力の 比は、 市販の乾燥酵母が 0. 35未満であるのに対し、 本発明の乾燥酵母 (D 6 6785) は 0. 66であり、 優れた冷凍耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして冷凍保存後の発酵力を測 定した。 その結果を第 5図に示す。 糖濃度 15重量%の生地でのフロアタイム 6 0分後の条件では、 第 5図から明らかなように、 1週、 2週、 4週のいずれの冷 凍保存期間においても、 市販の乾燥酵母に対して本発明の乾燥酵母が顕著な冷凍 耐性を示した。 実施例 13
本発明の酵母 D 92764、 D 66785について冷凍耐性を検討した。 冷凍 耐性は、 前記 (6) 冷凍耐性に示す方法により評価した。 本発明の酵母は実施例 1と同様にして乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf- instant ( Gold) (S社製) 、 Fermipan Brown (D社製) を用いた。 冷凍耐性の評価におい ては、 生地の糖濃度は 25重量%とした。 結果を表 33と表 34に示す。
表 33 糖濃度 25重量%の生地、 60分フロア後 4週間冷凍保存前後の発酵力
Figure imgf000054_0001
表 34 糖濃度 25重量%の生地、 90分フロア後 4週間冷凍保存前後の発酵力
Figure imgf000054_0002
表 33と表 34に示すように、 フロアタイムを 60分とした時、 冷凍保存後の 発酵力は、 市販の乾燥酵母が 120m l以下であるのに対し、 本発明の乾燥酵母 (D 92764) は 138ml、 同 (D 66785) は 145mlであり、 また 、 フロアタイムを 90分とした時、 冷凍保存後の発酵力は、 市販の乾燥酵母が 4 0m l未満であるのに対し、 本発明の乾燥酵母 (D 92764) は 65m 1、 同 (D 66785) は 1 19mlであり、 優れた冷凍保存後の発酵力を有すること が分かる。 さらに、 冷凍保存前後の発酵力の比は、 フロアタイムを 60分とした 時、 市販の乾燥酵母が 0. 70未満であるのに対し、 本発明の乾燥酵母 (D 92 764) は 0. 72、 同 (D 66785) は 0. 78であり、 また、 フロアタイ ムを 90分とした時、 市販の乾燥酵母が 0. 25未満であるのに対し、 本発明の 乾燥酵母 (D 92764) は 0. 36、 同 (D 66785) は 0. 64であり、 優れた冷凍耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして冷凍保存後の発酵力を測 定した。 その結果を第 6図に示す。 糖濃度 25重量%の生地でのフロアタイム 9 0分後の条件では、 第 6図から明らかなように、 1週、 2週、 4週のいずれの冷 凍保存期間においても、 市販の乾燥酵母に対して本発明の乾燥酵母が顕著な冷凍 耐性を示した。 実施例 14
本発明の酵母 D 92764、 D80921についてフロア耐性を検討した。 フ ロア耐性は、 前記 (7) フロア耐性に示す方法により評価した。 本発明の酵母は 実施例 1と同様にして乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf- inst ant (Red) (S社製) 、 Fermipan Red (D社製) を用いた。 フロア耐性の評 価においては、 生地の糖濃度は 0重量%とした。 結果を表 35に示す。
表 3 5 糖濃度 0重量%の生地の 4週間冷凍保存後のフロア耐性
Figure imgf000056_0001
表 35に示すように、 フロア耐性を表わす発酵力の比 (フロアタイム 60分で の発酵力 フロアタイム 0分での発酵力) は、 市販の乾燥酵母が 0. 70以下で あるのに対し、 本発明の乾燥酵母 (D 92764) は 1. 00、 同 (D 8092 1) は 0. 90であり、 優れたフロア耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして各時点でのフロア耐性を 検討した。 その結果を第 7図に示す。 糖濃度 0重量%の生地では、 第 7図から明 らかなように、 1週、 2週、 4週のいずれの冷凍保存期間においても、 市販の乾 燥酵母に対して本発明の乾燥酵母が顕著なフロア耐性を示した。 実施例 15
本発明の酵母 D 80921についてフロア耐性を検討した。 フロア耐性は、 前 記 (7) フロア耐性に示す方法により評価した。 本発明の酵母は実施例 1と同様 にして乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf- instant (Red) ( S社製) 、 Fermipan Red (D社製) を用いた。 フロア耐性の評価においては 、 生地の糖濃度は 3重量%とした。 結果を表 36に示す。 表 3 6 糖濃度 3重量%の生地の 4週間冷凍保存後のフロア耐性
Figure imgf000057_0001
表 3 6に示すように、 フロア耐性を表わす発酵力の比 (フロアタイム 6 0分で の発酵力/フロアタイム 0分での発酵力) は、 市販の乾燥酵母が 0 . 3 0未満で あるのに対し、 本発明の乾燥酵母 (D 8 0 9 2 1 ) は 0 . 5 4であり、 優れたフ ロア耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして各時点でのフロア耐性を 検討した。 その結果を第 8図に示す。 糖濃度 3重量%の生地では、 第 8図から明 らかなように、 1週、 2週、 4週のいずれの冷凍保存期間においても、 市販の乾 燥酵母に対して本発明の乾燥酵母が顕著なフロア耐性を示した。 実施例 1 6
本発明の酵母 D 9 2 7 6 4についてフロア耐性を検討した。 フロア耐性は、 前 記 (7 ) フロア耐性に示す方法により評価した。 本発明の酵母は実施例 1と同様 にして乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf- ins tant (Red) ( S 社製) 、 Fermipan Red (D社製) を用いた。 フロア耐性の評価においては、 生 地の糖濃度は 5重量%とした。 結果を表 3 7に示す。 表 37 糖濃度 5重量%の生地の 4週間冷凍保存後のフロア耐性
Figure imgf000058_0001
表 37に示すように、 フロア耐性を表わす発酵力の比 (フロアタイム 60分で の発酵力/フロアタイム 0分での発酵力) は、 市販の乾燥酵母が 0. 50未満で あるのに対し、 本発明の乾燥酵母 (D 92764) は 0. 67であり、 優れたフ ロア耐性を有することが分かる。
また、 冷凍保存期間を 1週.間、 2週間、 4週間にして各時点でのフロア耐性を 検討した。 その結果を第 9図に示す。 糖濃度 5重量%の生地では、 第 9図から明 らかなように、 特に冷凍保存期間が長期に渡る場合 (2週または 4週間) 、 市販 の乾燥酵母に対して本発明の乾燥酵母が顕著なフロア耐性を示した。 実施例 17
本発明の酵母 D 92764、 D 66785についてフロア耐性を検討した。 フ ロア耐性は、 前記 (7) フロア耐性に示す方法により評価した。 本発明の酵母は 実施例 1と同様にして乾燥酵母とした。 比較対照として市販の乾燥酵母 Sai- inst ant (Red) 、 Saf-instant (Gold) (S社製) 、 Fermipan Red、 Fermipan Brown (D社製) を用いた。 フロア耐性の評価においては、 生地の糖濃度は 10重量 %とした。 結果を表 38に示す。 表 3 8 糖濃度 1 0重量%の生地の 4週間冷凍保存後のフロア耐性
Figure imgf000059_0001
表 3 8に示すように、 フロア耐性を表わす発酵力の比 (フロアタイム 9 0分で の発酵力 Zフロアタイム 3 0分での発酵力) は、 市販の乾燥酵母が 0 . 1 5未満 であるのに対し、 本発明の乾燥酵母 (D 9 2 7 6 4 ) は 0 . 4 5、 同 (D 6 6 7 8 5 ) は 0 . 3 9であり、 優れたフロア耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして各時点でのフロア耐性を 検討した。 その結果を第 1 0図に示す。 糖濃度 1 0重量%の生地では、 第 1 0図 から明らかなように、 1週、 2週、 4週のいずれの冷凍保存期間においても、 市 販の乾燥酵母に対して本発明の乾燥酵母が顕著なフロア耐性を示した。 実施例 1 8
本発明の酵母 D 6 6 7 8 5についてフロア耐性を検討した。 フロア耐性は、 前 記 (7) フロア耐性に示す方法により評価した。 本発明の酵母は実施例 1と同様 にして乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf_instant (Gold) ( S社製) 、 Fermipan Brown (D社製) を用いた。 フロア耐性の評価においては 、 生地の糖濃度は 15重量%とした。 結果を表 39に示す。 表 39 糖濃度 1 5重量%の生地の 4週間冷凍保存後のフロア耐性
Figure imgf000060_0001
表 39に示すように、 フロア耐性を表わす発酵力の比 (フロアタイム 90分で の発酵力/フロアタイム 30分での発酵力) は、 市販の乾燥酵母が 0. 15以下 であるのに対し、 本発明の乾燥酵母 (D 66785) は 0. 48であり、 優れた フ口ァ耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして各時点でのフロア耐性を 検討した。 その結果を第 1 1図に示す。 糖濃度 15重量%の生地では、 第 1 1図 から明らかなように、 1週、 2週、 4週のいずれの冷凍保存期間においても、 市 販の乾燥酵母に対して本発明の乾燥酵母が顕著なフロア耐性を示した。 実施例 19
本発明の酵母 D 92764、 D 66785についてフロア耐性を検討した。 フ ロア耐性は、 前記 (7) フロア耐性に示す方法により評価した。 本発明の酵母は 実施例 1と同様にして乾燥酵母とした。 比較対照として市販の乾燥酵母 Saf-inst ant (Gold) (S社製) 、 Fermipan Brown (D社製) を用いた。 フロア耐性の評 価においては、 生地の糖濃度は 25重量%とした。 結果を表 40に示す。 表 40 糖濃度 25重量%の生地の 4週間冷凍保存後のフロア耐性
Figure imgf000061_0001
表 40に示すように、 フロア耐性を表わす発酵力の比 (フロアタイム 90分で の発酵力 /フロアタイム 30分での発酵力) は、 市販の乾燥酵母が 0. 30以下 であるのに対し、 本発明の乾燥酵母 (D 92764) は 0. 38、 同 (D667 85) は 0. 79であり、 優れたフロア耐性を有することが分かる。
また、 冷凍保存期間を 1週間、 2週間、 4週間にして各時点でのフロア耐性を 検討した。 その結果を第 12図に示す。 糖濃度 25重量%の生地では、 第 12図 から明らかなように、 1週、 2週、 4週のいずれの冷凍保存期間においても、 巿 販の乾燥酵母に対して本発明の乾燥酵母が顕著なフロア耐性を示した。 実施例 20 本発明乾燥酵母 D 3 1 7 3 5の低温感受性を前記 (8 ) 低温感受性に示す方法 により測定した。 比較対照として、 市販の低温感受性の圧搾酵母 カネカイース ト A L (鐘淵化学工業 (株) ) と、 市販の乾燥酵母 6種、 Saf- ins tant (RED) (S社 製) 、 Saf - ins tant (Gold) (S社製)、 Maur ipan low sugar (BP社製)、 Bruggeman Blue (BR社製)、 Fermipan RED (D社製)、 Fermipan Brown (D社製)を用いた。 その 結果を表 4 1に示す。 表 4 1 本発明の乾燥酵母と市販の乾燥酵母の低温感受性の比較
Figure imgf000062_0001
表 4 1から明らかなように、 低温感受性を有する市販の圧搾酵母の 5 生地発 酵カに対する 3 0°C生地発酵力の比が 1. 02に対し、 本発明の乾燥酵母では 1 . 0 1であり、 ほぼ同等の低温感受性を有していることを示している。 それに対 し、 市販の乾燥酵母 6種は、 いずれもその比が 0. 64以下であり、 本発明の乾 燥酵母に比べ、 低温感受性が劣ることが分かる。 寄託された生物材料
(1) 寄託機関の名称,あて名
独立行政法人産業技術総合研究所特許生物寄託センター
日本国茨城県つくば巿東 1丁目 1番地 1中央第 6 (郵便番号 305- 8566)
(2) 寄託された微生物
①サッカロマイセス ·セルピシェ(Saccharomyces cerevisiae) D 7 541 2 原寄託日 : 2000年 9月 8日
国際寄託への移管請求日 : 200 1年 8月 1日
受託番号: FERM BP - 7688
②サッカロマイセス ·セルピシェ(Saccharomyces cerevisiae) D 20946 原寄託日 : 2000年 9月 8日
国際寄託への移管請求日 : 200 1年 8月 1日
受託番号: FERM BP- 7684
③サッカロマイセス ·セルピシェ(Saccharomyces cerevisiae) D 46462 原寄託日 : 2000年 9月 8日
国際寄託への移管請求日 : 2001年 8月 1日
受託番号: FERM BP— 7686
④サッカロマイセス ·セルピシェ(Saccharomyces cerev】siae)D 6 Ό ί 8 o 原寄託日 : 2000年 9月 8日
国際寄託への移管請求日 : 200 1年 8月 1日
受託番号: FERM BP— 768 7 ⑤サッカロマイセス ·セルピシェ(Saccharomyces cerevisiae D 9 ^ 04 原寄託日 : 2001年 2月 20日
国際寄託への移管請求日 : 2001年 8月 1日
受託番号: FERM BP - 7690
⑥サッカロマイセス ·セルピシェ(Saccharomyces cerevisiae) D 80921 原寄託日 : 2000年 9月 8日
国際寄託への移管請求日 : 2001年 8月 1日
受託番号: FERM BP— 7689
⑦サッカロマイセス ·セルピシェ(Saccharomyces cerevisiae) D 31735 原寄託日 : 2000年 9月 8日
国際寄託への移管請求日 : 2001年 8月 1日
受託番号: FERM BP— 7685 産業上の利用可能性
本発明により、 無糖から高糖濃度までの種々の生地において優れた発酵力を有 し、 かつ乾燥耐性を有する、 製パン用、 特に冷凍生地製パン用として好適な酵母 、 詳しくは、 高糖から超高糖生地において高い発酵力を示し、 かつ乾燥耐性を有 する酵母;無糖から高糖生地において高い発酵力を示し、 かつ乾燥耐性を有する 酵母;無糖から低糖生地において高い発酵力を示し、 かつ乾燥耐性を有する酵母 ;中糖から高糖生地において高い冷凍耐性及び/又はフロア耐性を有し、 かつ乾 燥耐性を有する酵母;無糖から高糖生地において高い冷凍耐性及び Z又はフロア 耐性を有し、 かつ乾燥耐性を有する酵母;無糖から低糖生地において高い冷凍耐 性及びノ又はフロア耐性を有し、 かつ乾燥耐性を有する酵母;および低温感受性 を有し、 かつ乾燥耐性を有する酵母が提供される。 また本発明により、 前記酵母 を乾燥してなる、 貯蔵性や保存性に優れ、 生酵母と同程度の発酵力を発揮しうる 、 特に冷凍生地製パン用として好適な乾燥酵母が提供される。 さらに本発明によ り、 前記酵母または前記乾燥酵母を含有してなる生地および冷凍生地、 ならびに 当該生地を用いてなる、 品質の安定した優れたパンが提供される。

Claims

請求の範囲
1. 高糖生地において発酵力を有し、 かつ乾燥耐性を有する酵母。
2. 乾燥酵母とした時の発酵力を糖濃度 30重量%の生地 (乾燥酵母 1. 5重 量%) 85 g当たり 30°Cにおける 115分間のガス発生量で表した時、 200 m 1以上である請求項 1記載の酵母。
3. 乾燥酵母とした時の発酵力を糖濃度 40重量%の生地 (乾燥酵母 1. 5重 量%) 85 g当たり 30°Cにおける 115分間のガス発生量で表した時、 70m 1以上である請求項 1または 2記載の酵母。
4. 糖濃度 0〜30重量%の生地において発酵力を有し、 かつ乾燥耐性を有す る酵母。
5. 乾燥酵母とした時の発酵力を糖濃度 0重量%の生地 (乾燥酵母 1重量%) 85 g当たり 30 における 85分間のガス発生量で表した時、 14 Om 1以上 であり、 かつ糖濃度 30重量%の生地 (乾燥酵母 1. 5重量%) 85 g当たり 3 0 における 115分間のガス発生量で表した時、 200ml以上である請求項 4記載の酵母。
6. 乾燥酵母とした時の発酵力を加糖中種法における本捏後の生地 (糖濃度 2 8重量%、 乾燥酵母 1. 5重量%) 50 g当たり 30 における 120分間のガ ス発生量で表した時、 12 Oml以上である請求項 1〜 5いずれか記載の酵母。
7. 糖濃度 0〜5重量%の生地において発酵力を有し、 かつ乾燥耐性を有する 酵母。
8. 乾燥酵母とした時の発酵力を糖濃度 0重量%の生地 (乾燥酵母 1重量%) 85 g当たり 30°Cにおける 85分間のガス発生量で表した時、 220m 1以上 である請求項 7記載の酵母。 '
9. 乾燥酵母とした時の発酵力を糖濃度 5重量%の生地 (乾燥酵母 1重量%) 85 g当たり 30°Cにおける 85分間のガス発生量で表した時、 160ml以上 である請求項 7または 8記載の酵母。
10. 糖濃度 10〜30重量%の生地において冷凍耐性及び/又はフロア耐性 を有し、 かつ乾燥耐性を有する酵母。
11. 乾燥酵母とした時の発酵力を糖濃度 10重量%の生地 (乾燥酵母 2重量 %) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フロア夕 ィム 60分後 4週間冷凍保存後の生地で 9 Oml以上である請求項 10記載の酵 母。
12. さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 (冷 凍保存後 冷凍保存前) が 0. 50以上である請求項 11記載の酵母。
13. さらに、 フロアタイム 30分後 4週間冷凍保存後とフロアタイム 90分 後 4週間冷凍保存後での発酵力の比 (フロアタイム 90分 Zフロアタイム 30分 ) が 0. 20以上である請求項 11又は 12記載の酵母。
14. 乾燥酵母とした時の発酵力を糖濃度 15重量%の生地 (乾燥酵母 2. 5 重量%) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フロ ァタイム 60分後 4週間冷凍保存後の生地で 70ml以上である請求項 10記載 の酵母。
15. さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 (冷 凍保存後/冷凍保存前) が 0. 40以上である請求項 14記載の酵母。
16. さらに、 フロアタイム 30分後 4週間冷凍保存後とフロアタイム 90分 後 4週間冷凍保存後での発酵力の比 (フロアタイム 90分/フロアタイム 30分 ) が 0. 20以上である請求項 14又は 15記載の酵母。
17. 乾燥酵母とした時の発酵力を糖濃度 25重量%の生地 (乾燥酵母 3重量 %) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フロアタ ィム 90分後 4週間冷凍保存後の生地で 50ml以上である請求項 10記載の酵 母。
18. さらに、 フロアタイム 90分後 4週間冷凍保存前後での発酵力の比 (冷 凍保存後/冷凍保存前) が 0. 60以上である請求項 17記載の酵母。
19. さらに、 フロアタイム 30分後 4週間冷凍保存後とフロアタイム 90分 後 4週間冷凍保存後での発酵力の比 (フロアタイム 90分/フロアタイム 30分 ) が 0. 70以上である請求項 17又は 18記載の酵母。
20. 糖濃度 0〜30重量%の生地において冷凍耐性及び Z又はフロア耐性を 有し、 かつ乾燥耐性を有する酵母。
21. 乾燥酵母とした時の発酵力を糖濃度 0重量%の生地 (乾燥酵母 2重量% ) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フロアタイ ム 60分後 4週間冷凍保存後の生地で 100ml以上である請求項 20記載の酵 母。
22. さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 (冷 凍保存後/冷凍保存前) が 0. 88以上である請求項 21記載の酵母。
23. さらに、 フロアタイム 0分 4週間冷凍保存後とフロアタイム 60分後 4 週間冷凍保存後での発酵力の比 (フロアタイム 60分/フロアタイム 0分) が 0 . 80以上である請求項 21又は 22記載の酵母。
24. 乾燥酵母とした時の発酵力を糖濃度 5重量%の生地 (乾燥酵母 2重量% ) 20 g当たり 38 :における 120分間のガス発生量で表した時、 フロアタイ ム 60分後 4週間冷凍保存後の生地で 70ml以上である請求項 20〜23いず れか記載の酵母。
25. さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 (冷 凍保存後 Z冷凍保存前) が 0. 40以上である請求項 24記載の酵母。
26. さらに、 フロアタイム 0分 4週間冷凍保存後とフロアタイム 60分後 4 週間冷凍保存後での発酵力の比 (フロアタイム 60分 フロアタイム 0分) が 0 . 50以上である請求項 24又は 25記載の酵母。
27. 乾燥酵母とした時の発酵力を糖濃度 10重量%の生地 (乾燥酵母 2重量 %) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フロア夕 ィム 60分後 4週間冷凍保存後の生地で 90ml以上である請求項 20〜 26い ずれか記載の酵母。
28. さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 (冷 凍保存後/冷凍保存前) が 0. 50以上である請求項 27記載の酵母。
29. さらに、 フロアタイム 30分後 4週間冷凍保存後とフロアタイム 90分 後 4週間冷凍保存後での発酵力の比 (フロアタイム 90分/フロアタイム 30分 ) が 0. 20以上である請求項 27又は 28記載の酵母。
30. 乾燥酵母とした時の発酵力を糖濃度 25重量%の生地 (乾燥酵母 3重量 %) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フロア夕 ィム 60分後 4週間冷凍保存後の生地で 125ml以上であり、 かつフロアタイ ム 90分後 4週間冷凍保存後の生地で 50ml以上である請求項 20〜29いず れか記載の酵母。
31. さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 (冷 凍保存後/冷凍保存前) が 0. 70以上であり、 かつフロアタイム 90分後 4週 間冷凍保存前後での発酵力の比 (冷凍保存後/冷凍保存前) が 0. 30以上であ る請求項 30記載の酵母。
32. さらに、 フロアタイム 30分後 4週間冷凍保存後とフロアタイム 90分 後 4週間冷凍保存後での発酵力の比 (フロアタイム 90分/フロアタイム 30分 ) が 0. 35以上である請求項 30又は 31記載の酵母。
33. 糖濃度 0〜3重量%の生地において冷凍耐性及び/又はフロア耐性を有 し、 かつ乾燥耐性を有する酵母。
34. 乾燥酵母とした時の発酵力を糖濃度 0重量%の生地 (乾燥酵母 2重量% ) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フロアタイ ム 60分後 4週間冷凍保存後の生地で 100ml以上である請求項 33記載の酵 母。
35. さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 (冷 凍保存後/冷凍保存前) が 0. 88以上である請求項 34記載の酵母。
36. さらに、 フロアタイム 0分 4週間冷凍保存後とフロアタイム 60分後 4 週間冷凍保存後での発酵力の比 (フロアタイム 60分/フロアタイム 0分) が 0 . 80以上である請求項 34又は 35記載の酵母。
37. 乾燥酵母とした時の発酵力を糖濃度 3重量%の生地 (乾燥酵母 2重量% ) 20 g当たり 38°Cにおける 120分間のガス発生量で表した時、 フロアタイ ム 60分後 4週間冷凍保存後の生地で 50ml以上である請求項 33〜36いず れか記載の酵母。
38. さらに、 フロアタイム 60分後 4週間冷凍保存前後での発酵力の比 (冷 凍保存後ノ冷凍保存前) が 0. 40以上である請求項 37記載の酵母。
39. さらに、 フロアタイム 0分 4週間冷凍保存後とフロアタイム 60分後 4 週間冷凍保存後での発酵力の比 (フロアタイム 60分 Zフロアタイム 0分) が 0 . 35以上である請求項 37又は 38記載の酵母。
40. 低温感受性を有し、 かつ乾燥耐性を有する酵母。
41. さらに、 残存発酵力比 〔乾燥前後での発酵力の比 (乾燥後/乾燥前) 〕 が 0. 7 0以上である請求項 1〜 40いずれか記載の酵母。
42. サッカロマイセス ·セレビシェ (Saccharomyces cerevisiae) D 7 54 1 2株 (FERM BP— 7688) である請求項 1〜 3および 41いずれか記 載の酵母。
43. サッカロマイセス ·セルピシェ(Saccharomyces cerevisiae) D 209 46株 (FERM BP— 7684) である請求項 4〜 6および 41いずれか記 載の酵母。
44. サッカロマイセス ·セレビシェ(Saccharomyces cerevisiae) D 464 62株 (FERM BP— 7686) である請求項?〜 9および 41いずれか記 載の酵母。
45. サッカロマイセス 'セルピシェ(Saccharomyces cerevisiae) Ό 6 6 7 8 5株 (FERM BP— 7687) である請求項 10〜1 9および 41いずれ か記載の酵母。
46. サッカロマイセス 'セルピシェ(Saccharomyces cerevisiae) D 9 27 64株 (FERM BP— 7690) である請求項 20〜32および 41いずれ か記載の酵母。
47. サッカロマイセス ·セルピシェ(Saccharomyces cerevisiae) D 809 21株 (FERM BP— 7689) である請求項 33〜39および 41いずれ か記載の酵母。
48. サッカロマイセス ·セルピシェ(Saccharomyces cerevisiae) D 3 17 35株 (FERM BP— 7685) である請求項 40および 41記載の酵母。
49. 酵母が乾燥酵母である請求項 1〜48いずれか記載の酵母。
50. 冷凍生地用の請求項 10〜49いずれか記載の酵母。
5 1. 請求項 1〜50いずれかに記載の酵母を含有してなる生地。
52. 請求項 51に記載の生地を用いてなるパン。
PCT/JP2001/008668 2000-10-02 2001-10-02 Levure résistant au séchage WO2002031118A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01972647A EP1331263A4 (en) 2000-10-02 2001-10-02 YEAST RESISTANT TO DRYING
KR1020037004660A KR100806005B1 (ko) 2000-10-02 2001-10-02 건조 내성 효모
US10/398,253 US20040022897A1 (en) 2000-10-02 2001-10-02 Drying-resistant yeast
AU9233001A AU9233001A (en) 2000-10-02 2001-10-02 Drying-resistant yeast
AU2001292330A AU2001292330B2 (en) 2000-10-02 2001-10-02 Drying-resistant yeast

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2000302168 2000-10-02
JP2000302166 2000-10-02
JP2000302167 2000-10-02
JP2000-302169 2000-10-02
JP2000-302166 2000-10-02
JP2000-302167 2000-10-02
JP2000302169 2000-10-02
JP2000-302168 2000-10-02
JP2000-307268 2000-10-06
JP2000307268 2000-10-06
JP2000-307267 2000-10-06
JP2000307267 2000-10-06
JP2001-165097 2001-05-31
JP2001165097 2001-05-31

Publications (1)

Publication Number Publication Date
WO2002031118A1 true WO2002031118A1 (fr) 2002-04-18

Family

ID=27566997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008668 WO2002031118A1 (fr) 2000-10-02 2001-10-02 Levure résistant au séchage

Country Status (7)

Country Link
US (1) US20040022897A1 (ja)
EP (1) EP1331263A4 (ja)
KR (1) KR100806005B1 (ja)
CN (1) CN1247769C (ja)
AU (2) AU2001292330B2 (ja)
TW (4) TW200517494A (ja)
WO (1) WO2002031118A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004015239D1 (de) * 2004-01-30 2008-09-04 Lesaffre & Cie Bäckereihefen mit verbesserter Toleranz gegenüber einem hohen Zuckergehalt im Teig und gegenüber schwachen organischen Säuren
WO2005112652A1 (en) * 2004-05-12 2005-12-01 General Mills Marketing, Inc. Method of producing frozen dough, and related products
US8414941B2 (en) * 2007-12-20 2013-04-09 General Mills, Inc. Chemically leavened dough compositions and related methods, involving low temperature inactive yeast
CN101575577B (zh) * 2008-05-05 2011-06-01 安琪酵母股份有限公司 一种耐冷冻酵母及其组合物、面团
KR102500337B1 (ko) * 2022-07-28 2023-02-16 에스피씨 주식회사 우수한 발효 특징을 가진 신규 제빵용 효모 사카로마이세스 세레비지애 spc y76lt

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1105318A (en) * 1976-12-24 1981-07-21 Philippe Clement Strains of yeast for bread making and a process for the obtention thereof
EP0388262A1 (en) * 1989-03-14 1990-09-19 National Food Research Institute, Ministry Of Agriculture, Forestry And Fisheries Novel Bakers' yeast
EP0451896A1 (en) * 1990-03-28 1991-10-16 Gist-Brocades N.V. New yeast strains with enhanced trehalose content, process to obtain such yeasts and the use of these yeasts
JPH09149785A (ja) * 1995-11-28 1997-06-10 Nippon Beet Sugar Mfg Co Ltd パン酵母の取得と製パン法
JPH10191964A (ja) * 1997-01-09 1998-07-28 Kanegafuchi Chem Ind Co Ltd 新規酵母及び該酵母を含有する生地
EP1036841A1 (en) * 1999-03-12 2000-09-20 Oriental Yeast Co., Ltd. Sugar super-tolerant yeast for confectionery and bakery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306107B1 (en) * 1987-09-03 1996-07-31 Gist-Brocades N.V. New yeast strains providing for an enhanced rate of the fermentation of sugars, a process to obtain such yeasts and the use of these yeats
US5190877A (en) * 1987-09-03 1993-03-02 Gist-Brocades N.V. Saccharomyces strains for maltose fermentation
FR2675815B1 (fr) * 1991-04-23 1994-11-04 Lesaffre & Cie Nouvelles souches de levure de panification et leur procede d'obtention, nouvelles levures fraiche et seche correspondantes.
CA2113098C (en) * 1991-07-18 2003-12-23 David J. Domingues Yeast-leavened refrigerated dough products
US6077550A (en) * 1993-08-04 2000-06-20 Kyowa Hakko Kogyo Co., Ltd. Process for making bread
ATE187603T1 (de) * 1993-09-24 2000-01-15 Dsm Nv Verbesserung der herstellung von gas und alkohol von hefestämmen
US5997914A (en) * 1994-02-09 1999-12-07 Kyowa Hakko Kogo Co., Ltd. Process for making bread
US5741685A (en) 1995-06-07 1998-04-21 Children's Medical Center Corporation Parenchymal cells packaged in immunoprotective tissue for implantation
FR2744729B1 (fr) * 1996-02-08 1998-04-10 Lesaffre & Cie Nouvelles levures de panification sensibles au froid
JPH11155559A (ja) * 1997-11-26 1999-06-15 Oriental Yeast Co Ltd 冷凍生地製パン用インスタント乾燥酵母

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1105318A (en) * 1976-12-24 1981-07-21 Philippe Clement Strains of yeast for bread making and a process for the obtention thereof
EP0388262A1 (en) * 1989-03-14 1990-09-19 National Food Research Institute, Ministry Of Agriculture, Forestry And Fisheries Novel Bakers' yeast
EP0451896A1 (en) * 1990-03-28 1991-10-16 Gist-Brocades N.V. New yeast strains with enhanced trehalose content, process to obtain such yeasts and the use of these yeasts
JPH09149785A (ja) * 1995-11-28 1997-06-10 Nippon Beet Sugar Mfg Co Ltd パン酵母の取得と製パン法
JPH10191964A (ja) * 1997-01-09 1998-07-28 Kanegafuchi Chem Ind Co Ltd 新規酵母及び該酵母を含有する生地
EP1036841A1 (en) * 1999-03-12 2000-09-20 Oriental Yeast Co., Ltd. Sugar super-tolerant yeast for confectionery and bakery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1331263A4 *

Also Published As

Publication number Publication date
EP1331263A4 (en) 2006-09-27
TW200517492A (en) 2005-06-01
KR20030045099A (ko) 2003-06-09
EP1331263A1 (en) 2003-07-30
TW200517494A (en) 2005-06-01
TWI324180B (ja) 2010-05-01
AU9233001A (en) 2002-04-22
CN1468300A (zh) 2004-01-14
TW200517491A (en) 2005-06-01
KR100806005B1 (ko) 2008-02-26
US20040022897A1 (en) 2004-02-05
TW200517493A (en) 2005-06-01
CN1247769C (zh) 2006-03-29
AU2001292330B2 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
CN101575577B (zh) 一种耐冷冻酵母及其组合物、面团
TWI330665B (en) Baker&#39;s yeast and bread made by using the same
US3963835A (en) Fermented flour and method of preparation
JP5085124B2 (ja) サワードゥパン種
CN104388326B (zh) 新型面包酵母
CN109477061B (zh) 抗冷冻酵母及其用途
WO2002031118A1 (fr) Levure résistant au séchage
JPH10191964A (ja) 新規酵母及び該酵母を含有する生地
JPH11155559A (ja) 冷凍生地製パン用インスタント乾燥酵母
JP4565789B2 (ja) 新規パン酵母および該酵母を含有する生地
JPS59203441A (ja) パン生地
JPH02238876A (ja) 新規パン酵母
JP4268355B2 (ja) 乾燥耐性酵母
JPH09234058A (ja) 新規酵母および該酵母を含有するパンの製造方法
JP4376346B2 (ja) 製菓、製パン用冷凍耐性酵母
JP4361158B2 (ja) 製菓、製パン用超耐糖性酵母
JP2004041189A (ja) 新規パン酵母
Wongkhalaung et al. Characterization of new baker’s yeast strains and their leavening ability in bread dough
JP4849721B2 (ja) 産業用パン酵母の遺伝的バックグラウンドに劣性を導入する方法
JP3563755B2 (ja) 新規パン酵母
JPH08332084A (ja) 新規酵母及び当該酵母を利用するパン類の製造法
JP2003304863A (ja) 乾燥酵母
JP2006166716A (ja) パン用酵母製造用種およびパン用酵母の製造方法
JPH06245687A (ja) パン生地及びパン類の製法
Al-khamaiseh et al. Food Bioscience

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001292330

Country of ref document: AU

Ref document number: 1020037004660

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018167470

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001972647

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037004660

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10398253

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001972647

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001972647

Country of ref document: EP