WO2001057417A1 - Transmission a variation continue de type toroidale - Google Patents

Transmission a variation continue de type toroidale Download PDF

Info

Publication number
WO2001057417A1
WO2001057417A1 PCT/JP2001/000607 JP0100607W WO0157417A1 WO 2001057417 A1 WO2001057417 A1 WO 2001057417A1 JP 0100607 W JP0100607 W JP 0100607W WO 0157417 A1 WO0157417 A1 WO 0157417A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
signal
toroidal
adjusting
continuously variable
Prior art date
Application number
PCT/JP2001/000607
Other languages
English (en)
French (fr)
Inventor
Yasuharu Misada
Original Assignee
Koyo Seiko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co., Ltd. filed Critical Koyo Seiko Co., Ltd.
Priority to EP01949027A priority Critical patent/EP1179692B1/en
Priority to US09/937,928 priority patent/US6666790B2/en
Priority to DE60110165T priority patent/DE60110165T2/de
Priority to JP2001556028A priority patent/JP4807547B2/ja
Priority to AT01949027T priority patent/ATE293764T1/de
Publication of WO2001057417A1 publication Critical patent/WO2001057417A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings
    • F16H61/6649Friction gearings characterised by the means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings

Definitions

  • the invention places the rotor in the toroidal gap formed between the input and output disks
  • the present invention also relates to a toroidal-type continuously variable transmission that transmits torque between both disks via a rotor.
  • a plurality of groups of rotors whose position is variable include input and output rotors that rotate in opposite directions to each other. 0 Transfers tractive force between corresponding toroidal orbital surfaces formed on opposing surfaces of a force coaxial disk.
  • the input disk and the output disk have a center hole through which the input shaft connected to the power source passes, and the input disk is connected to the input shaft so as to be integrally rotatable, and the output disk is connected to the input shaft. It is supported rotatably.
  • the rotation speed transmitted from the input disk to the output disk changes as the position of the rotor changes. That is, if the rotor contacts the input disk at a relatively high radius and contacts the output disk at a relatively low radius, the output disk rotates faster than the input disk and Overnight is set to a high gear ratio.
  • the rotor is rotatably supported by a carriage extending in a direction perpendicular to its support axis, and the axis of the carriage is inclined at a predetermined caster angle with respect to a plane including the center circle of the trace. It is like that.
  • the rotor is also pressed against the orbital surface of the disk by the hydraulic cylinder via the carriage that supports them. Has been energized.
  • a force that balances the torque transmitting force received by the rotor is applied to the rotor via the carriage.
  • the mouth angle changes so that the torque of the output disk is balanced with the torque of the input disk. Maintain a proper torque ratio.
  • lubricating oil is supplied by directly injecting lubricating oil to the rolling surface on the outer periphery of the rotor, thereby lubricating the rolling of the rotor with respect to the raceway surface.
  • the rotor heats up due to frictional heat and the lubricating oil on the raceway evaporates, causing abnormalities such as raceway surface separation.
  • the oil between the contact surfaces of the rotor and the disc is heated at a high temperature, so that the torque is reduced and the transmission efficiency of the transmission is reduced.
  • An object of the present invention is to provide a toroidal-type continuously variable transmission that can prevent the rotor from being heated to a high temperature, improve the transmission efficiency of the transmission, and can achieve a reduction in size and weight.
  • a preferred embodiment of the present invention includes a pair of opposed disks.
  • a rotor is provided in a toroidal gap formed between the disks and transmits torque between the pair of disks, and means for detecting the speed of the rotor is provided.
  • the apparatus may further include means for detecting the speed of the disk, signal output means for outputting a signal based on the detection result of the means for detecting the speed of the rotor, and the means for detecting the speed of the disk.
  • the most influential factor on the rotor's high temperature is the rotor's slip with respect to the disk. Slip also affects the traction at the contact between the rotor and the disk.
  • the transmission efficiency of the transmission can be improved. It is preferable that a number of undulations are provided on the side surface of the rotor. In this case, since the surface area of the rotor can be increased by the undulating portions, the heat radiation of the rotor can be improved, and the rotor can be prevented from becoming hot.
  • the undulating portion may include at least one of the convex portion, the concave portion, and the through hole.
  • the undulating portions are arranged at equal intervals so as to be arranged on a circumference around the rotation axis of the rotor.
  • FIG. 1 is a partially cutaway schematic view of a toroidal type continuously variable transmission according to an embodiment of the present invention.
  • FIG. 2 is a partially broken schematic perspective view of a main part of the toroidal-type continuously variable transmission.
  • FIG. 3 is a side view of the roller.
  • Fig. 4 is a flow chart showing the flow of control for monitoring the operation state of the roller.
  • Fig. 5 is a schematic cross-sectional view of the rotor and its surroundings for explaining the details of the speed sensor. You.
  • FIG. 6A and FIG. 6B are schematic diagrams of the rotor and the speed sensor, respectively, each showing a modified example of the undulating portion provided on the rotor.
  • FIG. 7 is a block diagram showing a main part of an electrical configuration of a toroidal-type continuously variable transmission according to another embodiment of the present invention.
  • FIG. 8 is a flowchart showing a control flow in the embodiment of FIG.
  • FIG. 9 is a block diagram showing a main part of an electrical configuration of a toroidal-type continuously variable transmission according to another embodiment of the present invention.
  • FIG. 10 is a flowchart showing the flow of control in the embodiment of FIG. 9.
  • FIGS. 11A, 11B and 11C are diagrams each showing an electric configuration of still another embodiment of the present invention. It is a block diagram of a principal part.
  • FIG. 12 is a flowchart showing a control flow according to still another embodiment of the present invention.
  • FIG. 1 is a schematic sectional view of a toroidal type continuously variable transmission according to an embodiment of the present invention.
  • a variator 1 of the continuously variable transmission A has an input shaft 3 driven by a power source 2 of a vehicle, and one end of the input shaft 3 is connected to the power source 2.
  • the input shaft 3 supports input disks 5, 6 near both ends thereof. These input disks 5 and 6 are connected to the input shaft 3 using the key 7, thereby preventing the input disks 5 and 6 from rotating with respect to the input shaft 3. Because of the key combination, relative axial movement in a limited range is allowed between the input shaft 3 and the input disks 5 and 6.
  • An annular output disk 10 constituting an output portion of the variator 1 is rotatably supported via a rolling bearing 11 at a central portion of the input shaft 3 in the axial direction.
  • This output disk 1 0 Partially toroidal orbital surfaces 12 are formed on both side surfaces.
  • gear teeth 13 are formed on the outer peripheral surface of the output disk 10, and a gear 14 having gear teeth corresponding to the gear teeth 13 is provided so as to be integrally rotatable. It is arranged parallel to 3.
  • a gear transmission mechanism B for transmitting torque from the output disk 10 to the output shaft 16 is constituted by the gear teeth 13 and the gear 14. The rotation of the output shaft 16 is transmitted to the drive wheels of the vehicle.
  • a part of a toroidal gap S is formed between each track surface 12 of the output disk 10 and the corresponding input disk 5, 6, and is partially toroidal on the input disk 5, 6.
  • the traction force is transmitted between the orbital surface 15 of the vehicle and a partially toroidal orbital surface 12 on the output disk 10 via rollers 17 as a plurality of groups of rotors.
  • the roller 17 is supported by a carriage 18 so as to be rotatable around a rotation axis K.
  • each roller 17 is set to be on the imaginary center circle 20 of the common trace of the raceway surfaces 1 2, 15, but in operation, it moves back and forth along this circle You can move within a limited area.
  • the hydraulic circuit 21 includes a hydraulic cylinder 22 and controls the position of the roller 17 via the carriage 18.
  • the carriage 18 has a pair of side plates 23, 24 opposed to each other with a predetermined gap provided on each of a pair of side surfaces 17 a of the roller 17, and a peripheral surface of the roller 17. It has a U-shaped cross-section having a connecting portion 25 that opposes a part with a predetermined gap and that connects the base ends of both side plates 23 and 2.
  • a corresponding end of a support shaft 27 of a roller 17 is rotatably supported at a tip end of each of the side plates 23 and 24 via a rolling bearing 26, respectively.
  • the connecting part 15 of the carriage 18 is turned to the tip of the piston rod 28 of the hydraulic cylinder 22 via the connecting shaft 29. It is movably connected.
  • a plurality of through holes 31 penetrating through roller 17 in a direction parallel to rotation axis 30 are formed in side surface 17a of roller 17.
  • the through holes 31 are arranged at equal intervals on a circumference around the rotation axis 30 of the roller 17.
  • An electromagnetic speed sensor 32 is held on one side plate 24 of the carriage 18 at a position facing the through-hole 31, and the speed sensor 32 changes the magnetic flux due to the rotation of the roller 17.
  • a signal D1 is output along with the driving, and the control unit 33, which receives the signal D1, calculates the rotation speed V1 of the roller 17 by the control unit 33.
  • a signal D 2 relating to the rotational speed of the vehicle driving source and a signal D 3 relating to the rotational speed of the wheels and the like as the final output speed are input from a speed sensor (not shown) to the control unit 33.
  • the control unit 33 calculates the rotation speed V2 of the input disks 5 and 6 based on the former signal D2, and calculates the rotation speed V3 of the output disk 10 based on the latter signal D3. I do.
  • the signals from the speed sensors are provided to the control unit 33 as digital signals via a sensor circuit (not shown).
  • each data is initialized such as setting the flag F to 0 (step S 1).
  • signals D 1, D 2 and D 3 from the respective speed sensors are inputted (step S 2), and the rotational speeds V of the rollers 7, the input disks 5 and 6 and the output disk 10 are determined based on the input data.
  • V2 and V3 are calculated (step S3).
  • step S4 using the determined rotational speeds VI, V2, and V3, the speeds of the contact portions of the discs 5 (or 6) and 10 corresponding to the roller 17 are determined, and the difference in speed between the contact portions is used to determine the speed of the contact.
  • the slip ratio R of the roller 17 is calculated (step S4).
  • the rate R is a value obtained by dividing the speed difference (V 1 ⁇ V 3) between the two by the average speed (V 1 + V 3) / 2 of the two.
  • the flag F is set to 1 and, for example, a signal D4 for notifying an abnormality to urge the driver to stop driving is transmitted to the vehicle interior signal.
  • step S8 determines whether or not a warning is being issued. If the flag F is returned to 0 and the signal D5 for canceling the Kogori is output (steps S9 and S10), the process returns to step S2 to continuously monitor the slip rate, while the information is being sent. If not, the process returns from step S8 to step S2 and continues to monitor the slip rate.
  • the speed sensor 32 may be a photoelectric sensor.
  • the light emitting unit 36 and the light receiving unit 37 of the photoelectric type speed sensor 32 are arranged on a pair of side plates 23, 24 of the carriage 18 sandwiching the roller 17 respectively.
  • the light from the light emitting section 36 is received by the light receiving section 37 through the through hole 31.
  • the surface area of the mouthpiece 17 can be increased, so that the heat dissipation of the mouthpiece 17 can be improved. High-temperature dangling can be prevented. Therefore, even if each of the discs 5, 6, 10 and the roller 17 is small, there is no possibility that the raceway surfaces 12, 15 due to the deterioration of the lubricating oil will occur. Furthermore, since the high temperature lubrication of the lubricating oil at the contact portion between the roller 17 and each of the disks 5, 6, 10 can be prevented, the reduction of the fraction can be prevented. As a result, the continuously variable transmission 1 can be substantially reduced in size and weight as much as possible. In particular, if the through hole 31 is used, the weight of the roller 17 can be further reduced.
  • a convex portion 39 may be provided on one side surface 17a of the roller 17.
  • the control unit ⁇ 33 receives the signals D 1, D 2, and D 3 from the speed sensor and controls the vehicle drive source control unit 40 to control the rotational speed of the vehicle drive source. adjust May be output. For example, as shown in FIG. 8, when the slip ratio R is equal to or greater than the allowable value Ra, a signal for decreasing the rotation speed of the vehicle drive source is output to the vehicle drive source controller 40. Then, when the slip ratio R is less than the allowable value Ra, the output of the signal for lowering the rotation speed is canceled (steps S5 to S10). The rest of the control flow in FIG. 8 is the same as the example in FIG.
  • the control unit 33 receives signals D 1, D 2, and D 3 from the speed sensor and urges the input disks 5 and 6 to the output disk 10 side.
  • the hydraulic control unit 41 outputs a signal 42 to the hydraulic control unit 41 that controls the oil pressure to the cylinder 9, and controls the hydraulic cylinder 22 that urges the rollers 17 to the discs 5, 6, and 10.
  • a signal 44 may be output to 43.
  • Step S when the slip ratio R is equal to or more than the allowable value Ra, a signal for decreasing the oil pressure is output to each of the pressure control units 41 and 43 (Step S). 5 to S7), when the slip ratio R is less than the allowable value Ra, the output of the signal for lowering the oil pressure is released (steps S5 to S10).
  • the rest of the control flow in FIG. 10 is the same as the example in FIG.
  • the signal for reducing the rotational speed of the drive source or the signal for reducing the contact condition between the roller and the disk is used.
  • a signal for lowering the oil pressure is output.
  • the present invention is not limited to this.
  • the signal for relaxing the contact condition between the roller and the disc is used as a signal as shown in FIG.
  • a signal 45 for lowering the temperature of the lubricating oil supplied to the contact portion between the roller and the disk is output to the lubricating oil temperature control unit 46, or as shown in Fig. May be output to the lubricating oil supply amount control unit 48.
  • a cooling mechanism for directly cooling the disk and rollers such as supplying a refrigerant to the inside of the rotating shaft of the disk and cooling the disk, is provided, and a signal 49 for controlling the cooling mechanism is provided by a cooling mechanism.
  • the information may be output to the control unit 50.
  • the above contact conditions are the contact load, contact surface pressure, relative speed, temperature, surface roughness, or oil film thickness between the contact surfaces, oil film parameters, oil temperature, etc.
  • the relaxation of the above-mentioned contact conditions means that the contact load is reduced, the relative speed is reduced, or the lubricating oil This means lowering the temperature or increasing the lubricating oil supply.
  • the slip ratio R is calculated based on the speed in the contact area of 0, and the slip state R is used to determine the contact state between the roller 17 and the disks 5, 6, and 10.
  • the present invention is not limited to this.
  • the difference between the speeds of the contact areas of the roller 17 and the discs 5, 6, 10 may be used, or the ratio of the speeds may be used. It may be a value including the ratio of the difference and the speed. Alternatively, any other value may be used as long as the speed of the contact area between the roller 17 and the disks 5, 6, and 10 can be compared.
  • the speed ratio X is calculated in step S4, and if the speed ratio X is equal to or larger than the predetermined value Xa in step S5, a signal for relaxing the contact condition is output. Then (steps S6 to S7), if it is less than the predetermined value Xa, the output of the signal for relaxing the contact condition may be canceled (steps S9 to S10).
  • the signal for relaxing the contact condition may include at least one of the above-described signals.
  • the vehicle drive source control unit 40 and the hydraulic control unit Signals may be output to at least one of 41, 43, the lubricating oil temperature controller 46, the lubricating oil supply amount controller 48, and the cooling mechanism controller 50.
  • various changes can be made within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)

Description

明 細 書
卜ロイダル型無段変速機
〈技術分野〉
本発明は入力円板と出力円板の間に形成されるトロイド状間隙に回転子を配置
5 し、 回転子を介して両円板間に卜ルクを伝達する卜ロイダル型無段変速機に関す るものである。
<背景技術 >
この種のトロイダル型無段変速機では、 特表平 6 - 5 0 2 4 7 6号公報に示す ように、 位置可変の複数群の回転子が、互いに反対方向に回転する入力用及び出 !0 力用の同軸円板の対向する面に形成された一部トロイダル状の対応する軌道面間 で牽引力を伝える。 入力円板及び出力円板は、動力源に連なる入力軸を揷通させ る中心孔を有しており、 入力円板が入力軸に一体回転可能に連結されると共に、 出力円板が入力軸に回転自在に支持されている。
上記の入力円板から出力円板に伝えられる回転速度は、 回転子の位置が変わる と変化する。 すなわち、 回転子が相対的に高い半径位置で入力円板と接触すると 共に、相対的に低い半径位置で出力円板と接触する場合、 出力円板は入力円板よ りも早く回転し、 バリエ一夕は高ギヤ比に設定される。
一方、 回転子が相対的に低い半径位置で入力円板と接触すると共に、相対的に 高い半径位置で出力円板と接触する場合、 出力円板は入力円板よりも遅く回転し 20 、 バリエ一夕は低ギヤ比に設定される。
通例、 回転子はその支軸に直交する方向へ延びるキヤリッジによって回転自在 に支持されており、 卜一ラスの中心円を含む平面に対してキヤリッジの軸線が所 定のキャスタ角を持つて傾斜するようにしてある。
また、 入力円板と出力円板は油圧シリンダにより互いに近づけられる方向に付 25 勢されている一方、 回転子もこれを支持するキャリッジを介して油圧シリンダに より円板の軌道面に押し付けられる方向に付勢されている。 そして、 これら油圧 シリンダが発生する油圧を制御することにより、 回転子が受けるトルク伝達力に バランスする力を、 キャリッジを介して回転子に与える。 これにより、 入力円板 のトルクに対する出力円板のトルクが釣り合うように口一ラ角度が変化し、 適切 なトルク比に維持する。
実際には、各種の必須パラメ一夕 (例えば、 操作者の要求、 エンジン負荷、 ェ ンジン速度、 及び最終出力速度等) の種々の組み合わせに関して、 ローラが受け る固有のトルク負荷があるので、制御システムは、 すべての必須パラメ一夕を表 す入力を受け取り、 入力円板と出力円板のトルク比を適切に保つ時、 ローラが受 けるトルク反力に合致した適切な油圧を油圧シリンダ内で設定するようにしてい る。
—方、 回転子の外周の転動面には、潤滑油を直接噴射して潤滑油が供給される ようになつており、 これにより回転子の軌道面に対する転動が潤滑される。 ところで、 従来、 回転子の速度を検出しておらず、 このため、 回転子が異常な 挙動を示すおそれがあり、 これに対処することができなかった。 というのは、 入 力円板と出力円板の回転速度を検出することにより、変速比は検出できても、 回 転子が円板に対してどの程度スリップしているかの検出ができないからである。 例えば回転子のスリップ率が大きいまま運転を続けていると、 摩擦熱によって回 転子が高温化すると共に軌道面の潤滑油が蒸発し、 軌道面の剥離等の異常を生ず ることになる。 また、 回転子と円板の接触面間の油が高温ィ匕するため、 トラクシ ヨンが減少し、 変速機の伝達効率が低下する。
また、 車両に搭載されるトロイダル型無段変速機については、 できるだけ小型 、軽量ィ匕したいという要請があり、 そのため、 各円板や各ローラも小型にしなけ ればならない。
しかしながら、 そのような条件にて所要のトルクを伝達しょうとすると、 円板 と回転子との接触圧力が高くなる。 特に、 小型化によって、 回転子の表面積が減 少すると、 放熱が悪くなるため、 回転子の温度が上昇して潤滑油の劣化を促進し 、 その結果、軌道面に剥離が生ずるおそれがある。
本発明の目的は、 回転子の高温化を防止できると共に変速機の伝達効率を向上 でき、 ひいては小型、軽量化を達成できるトロイダル型無段変速機を提供するこ とである。
〈発明の開示〉
上記目的を達成するため、 本発明の好ましい態様は、相対向する一対の円板と 、 これら円板間に形成されるトロイド状間隙に配置され一対の円板間にトルクを 伝達する回転子と、 回転子の速度を検出する手段とを備えることを特徴とするも のである。
本態様では、 実際の回転子の速度を監視することが可能になるので、 異常な挙 動の発生を防止して、 回転子が高温になることを防止することができる。 その糸; 果、 トロイダル型無段変速機の小型、軽量ィ匕を達成することも可能となる。 また、 円板の速度を検出する手段と、 回転子の速度を検出する手段および円板 の速度を検出する手段の検出結果に基づいて信号を出力する信号出力手段とをさ らに備えていれば好ましい。 回転子の高温ィ匕に最も影響を及ぼすのは、 円板に対 する回転子のスリップである。 また、 回転子と円板の接触部のトラクシヨンにも 、 スリップが影響を与える。 本態様では、 回転子のスリップに関連する情報を得 ることが可能になるので、 回転子の高温化をより確実に防止することができる。 さらに、 スリップに関連する情報を利用して回転子と円板の接触部のトラクショ ンを最適に制御できるため、変速機の伝達効率を向上させることができる。 上記回転子の側面に多数の起伏部を設けてあれば好ましい。 この場合、起伏部 によって回転子の表面積を増大できるので、 回転子の放熱を良くして、 回転子が 高温になることを防止できる。 したがって、 円板や回転子を小型にしても、潤滑 油劣化に起因する軌道面の剥離が生ずるおそれがなく、 これにより、無段変速機 の小型、軽量ィ匕に実質的に寄与できる。 起伏部は、 凸部、 凹部および貫通孔の少 なくとも一つを含んでいれば良い。 特に、上記起伏部は回転子の回転軸線を中心 とする円周上に並べて等間隔に配置されていれば好ましい。
〈図面の簡単な説明〉
図 1は本発明の一実施の形態のトロイダル型無段変速機の一部破断概略図であ る。
図 2はトロイダル型無段変速機の要部の一部破断概略斜視図である。
図 3はローラの側面図である。
図 4は ローラの動作状態を監視する制御の流れを示すフ口一チャートである 図 5は速度センサの詳細を説明するための回転子とその周辺の概略断面図であ る。
図 6 Aおよび図 6 Bはそれぞれ回転子および速度センサの概略図であり、 回転 子に設けられる起伏部の変更例をそれぞれ示している。
図 7は本発明の別の実施の形態のトロイダル型無段変速機の電気的構成の要部 を示すブロック図である。
図 8は図 7の実施の形態において、制御の流れを示すフローチャートである。 図 9は本発明の別の実施の形態の卜ロイダル型無段変速機の電気的構成の要部 を示すブロック図である。
図 1 0は図 9の実施の形態において、制御の流れを示すフローチャートである 図 1 1 A, 図 1 1 B及び図 1 1 Cはそれぞれ本発明のさらに別の実施の形態の 電気的構成の要部のプロック図である。
図 1 2は本発明のさらに別の実施の形態の制御の流れを示すフローチ一トであ る。
〈発明を実施するための最良の形態〉
本発明の好ましい実施の形態を添付図面を参照しつつ説明する。
図 1は本発明の一実施の形態のトロイダル型無段変速機の概略断面図である。 図 1を参照して、 本無段変速機 Aのバリエ一タ 1は車両の動力源 2により駆動さ れる入力軸 3を備えており、 入力軸 3の一端には動力源 2に連結するためのスプ ライン 4が形成されている。 入力軸 3はその両端近傍にそれぞれ入力円板 5, 6 を支持している。 これらの入力円板 5, 6はキー 7を用いて入力軸 3に結合され 、 これにより、 入力円板 5 , 6の入力軸 3に対する回転が阻止されている。 キー 結合であるため、 入力軸 3と入力円板 5, 6の間には限られた範囲での相対的軸 方向移動が許容されている。 これは適当な油圧動力源 8と連結した油圧シリンダ 9により入力円板 6を他方の入力円板 5側へ付勢することにより、ノ リエ一夕 1 に所要の 「端末負荷」 を加えるためである。 なお、 キー,結合に代えてスプライン 結合を用いても良い。
入力軸 3の軸方向中央部にはバリエータ 1の出力部を構成する環状の出力円板 1 0が転がり軸受 1 1を介して回転自在に支持されている。 この出力円板 1 0の 両側面には、 一部トロイダル状の軌道面 1 2が形成されている。 また、 出力円板 1 0の外周面にはギヤ歯 1 3が形成され、 このギヤ歯 1 3に嚙み合うギヤ歯を有 するギヤ 1 4を一体回転可能に設ける出力軸 1 6が入力軸 3と平行に配置されて いる。 ギヤ歯 1 3、 ギヤ 1 4によって出力円板 1 0から出力軸 1 6にトルクを伝 達するための歯車伝動機構 Bが構成されている。 出力軸 1 6の回転は車両の駆動 輪に伝達されるようになっている。
出力円板 1 0の各軌道面 1 2と対応する入力円板 5 , 6との間は、一部トロイ ド状間隙 Sに形成されており、 入力円板 5 , 6上の一部トロイダル状の軌道面 1 5と、 出力円板 1 0上の一部トロイダル状の軌道面 1 2との間で複数群の回転子 としてのローラ 1 7を介して牽引力を伝達する。 ローラ 1 7はキャリッジ 1 8に より回動軸線 Kの回りに回転自在に支持されている。
入力円板 5と出力円板 1 0との間には何組かのローラ/キヤリッジが介在して いるが、 図 1では i組だけを示してある。 入力円板 6と出力円板 1 0との間にも 同様に 1組だけ図示してある。 実際には、 1組の円板の間に 3個 1組のローラが 設けられているのが普通であり、 この 3個のローラは、 入力軸 3の中心軸線 Cを 中心とする円周上の等間隔に配置される。 6個のローラの位置はすべて共通の油 圧制御装置により制御され、運転中は常時等し 、変速比を伝達するようになって いる。
各ローラ 1 7の中心 1 9は軌道面 1 2 , 1 5の共通ト一ラスの想像上の中心円 2 0上にあるように設定されているが、作動上は、 この円に沿って前後に限られ た範囲で移動することができる。 油圧回路 2 1は油圧シリンダ 2 2を含みキヤリ ッジ 1 8を介してローラ 1 7の位置を制御するものである。
次いで、 図 2を参照して、 キヤリッジ 1 8はローラ 1 7の一対の側面 1 7 aに それぞれ所定の隙間を設けて対向する一対の側板 2 3 , 2 4と、 ローラ 1 7の周 面の一部に所定の隙間を設けて対向し、 両側板 2 3 , 2 の基端部同士を連結す る連結部 2 5とを有する断面コの字型をなしている。
各側板 2 3 , 2 4の先端部には、 それぞれ転がり軸受 2 6を介してローラ 1 7 の支軸 2 7の対応する端部が回転自在に支持されている。 キャリッジ 1 8の連結 部 1 5は油圧シリンダ 2 2のビストンロッド 2 8の先端に連結軸 2 9を介して回 動自在に連結されている。
図 2および図 3を参照して、 ローラ 1 7の側面 1 7 aには、 回転軸線 3 0に平 行な方向にローラ 1 7を貫通する複数の貫通孔 3 1が形成されており、 これら貫 通孔 3 1はローラ 1 7の回転軸線 3 0を中心とする円周上に等間隔で配置されて いる。
また、 キヤリッジ 1 8の一方の側板 2 4には、 貫通孔 3 1に臨む位置に電磁式 の速度センサ 3 2が保持されており、 この速度センサ 3 2はローラ 1 7の回転に 伴う磁束変ィ匕に伴って信号 D 1を出力し、 これを受けた信号出力手段としての制 御部 3 3によってローラ 1 7の回転速度 V 1が演算される。
—方、 制御部 3 3には、 車両の駆動源の回転速度に係わる信号 D 2や、最終出 力速度として車輪の回転速度等に係わる信号 D 3が図示しない速度センサから入 力されている。 制御部 3 3では、前者の信号 D 2に基づいて、 入力円板 5 , 6の 回転速度 V 2を演算し、後者の信号 D 3に基づいて出力円板 1 0の回転速度 V 3 を演算する。 なお、各速度センサからの信号は図示しないセンサ回路を介してデ イジタル信号として制御部 3 3に与えられるようになつている。
次いで、 図 4を参照して、制御部 3 3がローラ 1 7のスリップ率を監視する動 作について説明する。 まず、 フラッグ Fを 0とする等、各データをィニシャライ ズする (ステップ S 1 ) 。 次いで、 各速度センサからの信号 D 1, D 2および D 3を入力し (ステップ S 2 ) 、 入力データに基づいてローラ 7、 入力円板 5, 6 および出力円板 1 0の各回転速度 Vし V 2および V 3を演算する (ステップ S 3 ) 。
次いで、 求められた回転速度 V I, V 2および V 3を用いて、 ローラ 1 7と対 応する円板 5 (又は 6 ) , 1 0の接触部の速度を求め、 接触部の速度差により口 ーラ 1 7のスリップ率 Rを演算する (ステップ S 4 ) 。
例えば回転速度 V Iであるローラ 1 7と、 回転速度 V 3である出力円板 1 0の 間のスリッフ。率 Rは、両者の速度差 (V 1— V 3 ) を両者の平均速度 (V 1 + V 3 ) / 2で除した値である。
求められたスリップ率 Rが許容値 R a以上であると、 フラッグ Fを 1として、 例えば、 運転の停止を促すために異常を報知する信号 D 4を車室内のィンジケ一 タ等の報知部 3 4へ出力した (ステップ S 5〜S 7 ) 後、 ステップ S 2に戻って 引き続きスリップ率を監視する。
一方、 求められたスリップ率 Rがステップ S 5での判定にて許容値 R a未満で ある場合には、 ステップ S 8にて警告報知中であるか否かを確認し、報知中であ ればフラッグ Fを 0に戻すと共に幸艮知を解除する信号 D 5を出力した (ステップ S 9、 S 1 0 )後、 ステップ S 2に戻ってスリップ率を継続して監視する一方、 報^!中でなければステップ S 8からそのままステップ S 2に戻って引き続きスリ ッフ °率を監視する。
なお、 速度センサ 3 2としては光電式のものであっても良い。 その場合、 図 5 に示すように、 光電式の速度センサ 3 2の発光部 3 6と受光部 3 7をローラ 1 7 を挟むキャリッジ 1 8の一対の側板 2 3 , 2 4にそれぞれ配置し、発光部 3 6か らの光を貫通孔 3 1を介して受光部 3 7に受光させることになる。
本実施の形態によれば、貫通孔 3 1を設けることによって、 口一ラ 1 7の表面 積を増大できるので、 口一ラ 1 7の放熱性を良くすることができる結果、 ローラ 1 7の高温ィ匕を防止できる。 したがって、各円板 5 , 6, 1 0やローラ 1 7を小 型にしても、潤滑油劣化に起因する軌道面 1 2, 1 5の剥離が生ずるおそれがな い。 さらに、 ローラ 1 7と各円板 5 , 6 , 1 0の接触部の潤滑油の高温ィ匕を防止 できるため、 トラクシヨンの低下を防止することができる。 その結果、可及的に 無段変速機 1の小型、軽 化を実質的に達成できる。 特に、貫通孔 3 1であれば 、 ローラ 1 7の軽量化をより促進できる。
また、貫通孔 3 1を利用してローラ 1 7の速度を検出することにより、 ローラ 1 7が異常にスリップしている場合等に運転を停止させる等の警告を発すること が可能となり、 無段変速機 Aの信頼性が高まる。
なお、 本発明は上記実施の形態に限定されるものではなく、 例えば、貫通孔 3 1に代えて、 図 6 Aに示すように、 ローラ 1 7の一側面 1 7 aに凹部 3 8を設け たり、或いは、 図 6 Bに示すように、 ローラ 1 7の一側面 1 7 aに凸部 3 9を設 けるようにしても良い。
また、 図 7に示すように、制御吉 β 3 3が速度センサからの信号 D 1, D 2 , D 3を入力し、車両駆動源制御部 4 0に対して車両の駆動源の回転速度を調整する ための信号 4 1を出力するようにしても良い。 例えば、 図 8に示すように、 スリ ップ率 Rが許容値 R a以上である場合に車両駆動源制御部 4 0に対して、 車両の 駆動源の回転速度を低下させるための信号を出力し (ステップ S 5〜S 7 ) 、 ス リップ率 Rが許容値 R a未満である場合には、上記回転速度を低下させるための 信号の出力を解除する (ステップ S 5〜S 1 0 ) 。 図 8における制御の流れにお いて、他は図 4の例と同様である。
また、 図 9に示すように、 制御部 3 3が速度センサからの信号 D 1 , D 2 , D 3を入力し、 入力円板 5 , 6を出力円板 1 0側へ付勢する油圧シリンダ 9への油 圧を制御する油圧制御部 4 1に対して信号 4 2を出力すると共に、 ローラ 1 7を 円板 5, 6, 1 0に付勢する油圧シリンダ 2 2を制御する油圧制御部 4 3に対し て信号 4 4を出力するようにしても良い。
例えば、 図 1 0に示すように、 スリップ率 Rが許容値 R a以上である場合に各 圧力制御部 4 1 , 4 3に対して、 油圧を低下させるための信号を出力し (ステツ プ S 5〜S 7 ) 、 スリップ率 Rが許容値 R a未満である場合には、上記油圧を低 下させるための信号の出力を解除する (ステップ S 5〜S 1 0 ) 。 図 1 0におけ る制御の流れにおいて、他は図 4の例と同様である。
図 8や図 1 0の実施の形態では、 スリップ率 Rが R a以上である場合に、 ロー ラと円板の接触条件を緩和する信号として、駆動源の回転速度を低下させるため の信号や、油圧を低下させるための信号を出力するようにしたが、 これに限らず 、 スリップ率 Rが R a以上である場合に、 ローラと円板の接触条件を緩和する信 号として、 図 1 i Aに示すように、 ローラと円板の接触部に供給する潤滑油の温 度を下げる信号 4 5を潤滑油温度制御部 4 6に出力したり、 図 1 1 Bに示すよう に、潤滑油の量を増加させる信号 4 7を潤滑油供給量制御部 4 8に出力するよう にしても良い。 また、 例えば、 円板の回転軸内部に冷媒を供給し、 円板を冷却す る等、 円板やローラを直接冷却する冷却機構を設け、 この冷却機構を制御する信 号 4 9を冷却機構制御部 5 0に出力するようにしても良い。
ここで、上記の接触条件とは、 回転子と円板の接触部の接触荷重、 接触面圧、 相対速度、温度、 表面粗さ、 又は接触面間の油膜厚さ、油膜パラメータ、油温等 であって、接触部の損傷や寿命、 トラクシヨン、 伝達効率、振動等に影響を及ぼ す条件をいう。 したがって、上記の接触条件の緩和するとは、 接触部の損傷を防 止するために、 あるいは接触部のトラクシヨンの低下を防止するために接触荷重 を低減したり、相対速度を低減したり、潤滑油温度を下げたり、潤滑油量の供給 量を増加したりすることである。
上記の図 4、 図 8および図 1 0においては、 ローラ 1 7および円板 5, 6, 1
0の接触領域の速度に基づいて、 スリップ率 Rを演算し、 これを用いてローラ 1 7と円板 5, 6, 1 0の接触状態を判断するようにしたが、 これに限らない。 例 えば、上記のスリップ率 Rに代えて、 ローラ 1 7および円板 5, 6 , 1 0の接触 領域の速度の差であっても良いし、 速度の比であっても良いし、 速度の差および 速度の比を含む値であっても良い。 あるいは、 これら以外でも、 ローラ 1 7と円 板 5, 6, 1 0の接触領域の速度を比較できる値であれば良い。
例えば、 図 1 2のフローチャートに示すように、 ステップ S 4にて速度比 Xを 演算し、 ステップ S 5にて速度比 Xが所定値 X a以上であると、 接触条件を緩和 する信号を出力し (ステップ S 6〜S 7 ) 、所定値 X a未満であると、 接触条件 を緩和する信号の出力を解除する (ステップ S 9〜S 1 0 ) ようにしても良い。 接触条件を緩和する信号としては、上述した信号の少なくとも一つを含んでいれ ば良い。
図 4の実施の形態では、 スリップ率 Rが許容値 R aを超えると、報知するよう にし、 また、 図 8、 図 1 0、 図 i 1 A、 図 1 1 B及び図 1 1 Cの各実施の形態で は、 スリツフ。率 Rが許容値 R aを超えると、 口一ラ 1 7と円板 5, 6 , 1 0との 接触圧力等の接触条件を緩和するようにし、 さらに、 図 1 2の実施の形態では、 速度差 Xが所定値 X a以上になると、 接触条件を緩和するようにしたが、 これに 限らない。 例えば、 スリップ率 Rが所定値 R aを超えないように (或いは、 速度 差 Xが所定値 X aを超えないように) 接触条件を調整するべく、 車両駆動源制御 部 4 0、油圧制御部 4 1 , 4 3、 潤滑油温度制御部 4 6、 潤滑油供給量制御部 4 8、 冷却機構制御部 5 0の少なくとも一つに信号を出力するようにしても良い。 その他、 本発明の範囲で種々の変更を施すことができる。

Claims

請求の範囲
1 . 相対向する一対の円板と、
これら円板間に形成される卜ロイド状間隙に配置され一対の円板間にトルク を伝達する回転子と、
回転子の速度を検出する手段とを備えることを特徴とするトロイダル型無段 変速機。
2 . 円板の速度を検出する手段と、
回転子の速度を検出する手段および円板の速度を検出する手段の検出結果に 基づいて信号を出力する信号出力手段とをさらに備える請求の範囲第 1項に記 載のトロイダル型無段変速機。
3 . 上記信号出力手段の出力する信号は、 回転子と回転子に対応する円板の接触 領域の速度の比較結果に応じた信号を含む請求の範囲第 2項に記載のトロイダ ル型無段変速機 o
4 . 上記比較結果は、 回転子と対応する円板の接触領域の速度の差および比の少 なくとも一つをパラメ一夕として含む請求の範囲第 3項に記載のトロイダル型
5 . 上記信号出力手段が出力する信号は、 比較結果に応じて回転子と円板の接触 条件を調整するための信号を含む請求の範囲第 3項に記載のトロイダル型無段
6 . 上記信号出力手段が出力する信号は、 上記比較結果が所定値以上にならない ように、 回転子と円板の接触条件を調整するための信号を含む請求の範囲第 3 項に記載のト口ィダル型無段変速機。
7 . 上記信号出力手段が出力する信号は、上記比較結果が所定値以上になると、 回転子と円板の接触条件を緩和するための信号を含む請求の範囲第 3項に記載 のトロイダル型無段変速機。
8 . 上記接触条件を調整するための信号は、 一対の円板を互いに近づける方向に 付勢する手段の付勢力を調整するための信号を含む請求の範囲第 5項に記載の トロイダル型無段変速機。
9 . 上記一対の円板を互いに近づける方向に付勢する手段は油圧ァクチユエ一夕 を含み、
上記接触条件を調整するための信号は油圧ァクチユエ一夕に供給される油圧 を調整するための信号を含む請求の範囲第 8項に記載のトロイダル型無段変速 機。
1 0 . 上記接触条件を調整するための信号は、 回転子を回転自在に支持するキヤ リッジを介して回転子を一対の円板に付勢する手段の付勢力を調整するための 信号を含む請求の範囲第 5項に記載の卜口ィダル型無段変速機。
1 1 . 上記回転子を一対の円板に付勢する手段は油圧ァクチユエ一夕を含み、 上記接触条件を調整するための信号は油圧ァクチユエ一夕に供給される油圧 を調整するための信号を含む請求の範囲第 1 0項に記載の卜口ィダル型無段変
1 . 上記接触条件を調整するための信号は、 車両の駆動源の回転速度を調整す るための信号を含む請求の範囲第 5項に記載の卜口ィダル型無段変速機。
1 3 . 上記接触条件を調整するための信号は、 回転子と円板の接触部に供給する 油の温度及び供給量の少なくとも一つを調整するための信号を含む請求の範囲 第 5項に記載のト口ィダル型無段変速機。
1 4 . 上記接触条件を調整するための信号は、 回転子と円板の接触部の温度を調 整するための信号を含む請求の範囲第 5項に記載のトロイダル型無段変速機。
1 5 . 上記信号出力手段が出力する信号は、 報知手段に報知させるための信号を 含む請求の範囲第 1項に記載のト口ィダル型無段変速機。
1 6 . 上記回転子の側面に多数の起伏部を設けたことを特徴とする請求の範囲第 1項に記載の卜ロイダル型無段変速機。
1 7 . 上記起伏部は回転子の回転軸線を中心とする円周上に並べて等間隔に配置 された貫通孔、 凹部および凸部の少なくとも一つを含む請求の範囲第 1 6項に 記載のトロイダル型無段変速機。
1 8 . 相対向する一対の円板と、
これら円板間に形成されるトロイド状間隙に配置され一対の円板間にトルク を伝達する回転子とを備え、
上記回転子の側面に多数の起伏部を設けたことを特徴とするトロイダル型無
9 . 上記起伏部は回転子の回転軸線を中心とする円周上に並べて等間隔に配置 された貫通孔、 凹部おょぴ凸部の少なくとも一つを含む請求の範囲第 1 8項に 記載の卜口ィダル型無段変速機。
PCT/JP2001/000607 2000-02-02 2001-01-30 Transmission a variation continue de type toroidale WO2001057417A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01949027A EP1179692B1 (en) 2000-02-02 2001-01-30 Toroidal type continuously variable transmission
US09/937,928 US6666790B2 (en) 2000-02-02 2001-01-30 Toroidal type continuously variable transmission
DE60110165T DE60110165T2 (de) 2000-02-02 2001-01-30 Stufenlos regelbares getriebe der toroidalen bauart
JP2001556028A JP4807547B2 (ja) 2000-02-02 2001-01-30 トロイダル型無段変速機
AT01949027T ATE293764T1 (de) 2000-02-02 2001-01-30 Stufenlos regelbares getriebe der toroidalen bauart

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-25485 2000-02-02
JP2000025485 2000-02-02

Publications (1)

Publication Number Publication Date
WO2001057417A1 true WO2001057417A1 (fr) 2001-08-09

Family

ID=18551342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000607 WO2001057417A1 (fr) 2000-02-02 2001-01-30 Transmission a variation continue de type toroidale

Country Status (7)

Country Link
US (1) US6666790B2 (ja)
EP (1) EP1179692B1 (ja)
JP (1) JP4807547B2 (ja)
KR (1) KR100475555B1 (ja)
AT (1) ATE293764T1 (ja)
DE (1) DE60110165T2 (ja)
WO (1) WO2001057417A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961692A1 (de) * 1999-12-21 2001-06-28 Zahnradfabrik Friedrichshafen Stufenloses Reibradgetriebe
DE10223425A1 (de) * 2002-05-25 2003-12-04 Bayerische Motoren Werke Ag Stufenlos regelbares Reibrollen-Toroidgetriebe
WO2013040315A1 (en) * 2011-09-16 2013-03-21 Sentient Corporation Method and system for predicting surface contact fatigue life
US20210406429A1 (en) 2020-06-26 2021-12-30 Sentient Science Corporation Method and system for predicting wear and crack growth in a rail system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492749U (ja) * 1977-12-14 1979-06-30
JPS5917163A (ja) * 1982-07-20 1984-01-28 Nippon Soken Inc 回転検出器
JPS60188308U (ja) * 1984-05-25 1985-12-13 トヨタ自動車株式会社 内燃機関制御用回転角検出装置
JPS6362954A (ja) * 1986-08-29 1988-03-19 Fuji Heavy Ind Ltd Vベルト式無段変速機のベルトスリツプ検出方法
JPS6418663U (ja) * 1987-07-24 1989-01-30
US5338268A (en) * 1990-11-16 1994-08-16 Torotrak (Development) Limited Toroidal-race rolling-traction type transmission
JPH06257662A (ja) * 1993-03-01 1994-09-16 Nissan Motor Co Ltd 摩擦車式無段変速機の変速制御装置
JPH07208567A (ja) * 1994-01-17 1995-08-11 Nissan Motor Co Ltd 摩擦車式無段変速機の変速制御装置
JPH07259948A (ja) * 1994-03-25 1995-10-13 Nissan Motor Co Ltd トロイダル型無段変速装置
JPH09112683A (ja) * 1995-10-17 1997-05-02 Nippon Seiko Kk トロイダル型無段変速機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492749A (en) 1977-12-29 1979-07-23 Ricoh Co Ltd Heat fixing device
JPS60188308A (ja) 1984-03-08 1985-09-25 Kanebo Ltd W/o型乳化フアンデ−シヨン組成物
JP2794694B2 (ja) 1987-07-15 1998-09-10 セイコーエプソン株式会社 紙送り機構
US5711741A (en) * 1995-02-27 1998-01-27 Isuzu Motors Limited Fail safe for toroidal continuous variable transmission
DE19650218A1 (de) * 1996-12-04 1998-06-10 Zahnradfabrik Friedrichshafen Verfahren zur Steuerung eines CVT
US6387009B1 (en) * 1999-11-22 2002-05-14 General Motors Corporation Traction drive with slip control and method of controlling the slip

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492749U (ja) * 1977-12-14 1979-06-30
JPS5917163A (ja) * 1982-07-20 1984-01-28 Nippon Soken Inc 回転検出器
JPS60188308U (ja) * 1984-05-25 1985-12-13 トヨタ自動車株式会社 内燃機関制御用回転角検出装置
JPS6362954A (ja) * 1986-08-29 1988-03-19 Fuji Heavy Ind Ltd Vベルト式無段変速機のベルトスリツプ検出方法
JPS6418663U (ja) * 1987-07-24 1989-01-30
US5338268A (en) * 1990-11-16 1994-08-16 Torotrak (Development) Limited Toroidal-race rolling-traction type transmission
JPH06257662A (ja) * 1993-03-01 1994-09-16 Nissan Motor Co Ltd 摩擦車式無段変速機の変速制御装置
JPH07208567A (ja) * 1994-01-17 1995-08-11 Nissan Motor Co Ltd 摩擦車式無段変速機の変速制御装置
JPH07259948A (ja) * 1994-03-25 1995-10-13 Nissan Motor Co Ltd トロイダル型無段変速装置
JPH09112683A (ja) * 1995-10-17 1997-05-02 Nippon Seiko Kk トロイダル型無段変速機

Also Published As

Publication number Publication date
EP1179692A1 (en) 2002-02-13
KR20010111281A (ko) 2001-12-17
KR100475555B1 (ko) 2005-03-10
JP4807547B2 (ja) 2011-11-02
US6666790B2 (en) 2003-12-23
DE60110165D1 (de) 2005-05-25
DE60110165T2 (de) 2006-03-09
EP1179692B1 (en) 2005-04-20
US20020155918A1 (en) 2002-10-24
ATE293764T1 (de) 2005-05-15
EP1179692A4 (en) 2003-02-12

Similar Documents

Publication Publication Date Title
JP3440287B2 (ja) 航空機搭載発電機の定速駆動方法および定速駆動装置
US6074320A (en) Continuously variable transmission
US6261200B1 (en) Continuously variable transmission
JP2004301251A (ja) フルトロイダル型無段変速機
JPH0579855B2 (ja)
US9995349B2 (en) Rotation transmission device and wind power generation device equipped with the same
EP1671832A3 (en) Electric wheel drive apparatus
WO2001057417A1 (fr) Transmission a variation continue de type toroidale
JP2007155039A (ja) トラクション変速装置
US6375593B2 (en) Power roller bearing and a troidal type continuously variable transmission system
JP2007107626A (ja) トロイダル型無段変速機
US6682457B1 (en) Toroidal type continuously variable transmission
JP2004278740A (ja) トロイダル型無段変速機
JP2009052666A (ja) 遊星ローラ装置
JP2591052B2 (ja) トロイダル型無段変速機
JP2004340180A (ja) トロイダル型無段変速機及びトロイダル型無段変速機用試験装置
JPH09324841A (ja) トロイダル型無段変速機
JP2020128776A (ja) 無段変速機
JP2586115Y2 (ja) 電動式パワーステアリング装置
JPH05322677A (ja) トルク検出機能を有する動力伝達機構
JP5120365B2 (ja) トロイダル型無段変速機及びトロイダル型無段変速機を搭載した車両
JP2002276755A (ja) トロイダル型無段変速機
JPH0638198Y2 (ja) トロイダル型無段変速機の摩擦ローラ
JP3705719B2 (ja) トロイダル型無段変速機
JP2003232415A (ja) トロイダル型無段変速機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020017012220

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2001 556028

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09937928

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001949027

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001949027

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001949027

Country of ref document: EP