WO2001048935A1 - Commutateur haute frequence, module de commutation haute frequence et dispositif de communications sans fil - Google Patents

Commutateur haute frequence, module de commutation haute frequence et dispositif de communications sans fil Download PDF

Info

Publication number
WO2001048935A1
WO2001048935A1 PCT/JP2000/009435 JP0009435W WO0148935A1 WO 2001048935 A1 WO2001048935 A1 WO 2001048935A1 JP 0009435 W JP0009435 W JP 0009435W WO 0148935 A1 WO0148935 A1 WO 0148935A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
circuit
band
frequency switch
filter
Prior art date
Application number
PCT/JP2000/009435
Other languages
English (en)
French (fr)
Inventor
Shigeru Kemmochi
Mitsuhiro Watanabe
Tsuyoshi Taketa
Hiroyuki Tai
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to AT00986004T priority Critical patent/ATE488052T1/de
Priority to US09/914,448 priority patent/US7003312B2/en
Priority to JP2001548537A priority patent/JP4336931B2/ja
Priority to DE60045215T priority patent/DE60045215D1/de
Priority to EP00986004A priority patent/EP1168650B1/en
Publication of WO2001048935A1 publication Critical patent/WO2001048935A1/ja
Priority to HK02104780.4A priority patent/HK1043263B/zh
Priority to US11/242,926 priority patent/US7471962B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter

Definitions

  • the present invention relates to a branching circuit used in a high-frequency band such as a microwave band, and in a high-frequency circuit such as a digital cellular phone, a branching circuit for branching high-frequency signals in a plurality of frequency bands and a signal using the same.
  • the present invention relates to a high-frequency switch circuit for switching the transmission path of the same, a high-frequency switch module built in or mounted in a sheet layer to form an integrated laminate, and a wireless communication device such as a mobile phone using the same.
  • GSM Global System for Mobile Communications
  • DCS 1800 Digital Cellular System 1800
  • PCS Personal Communications Services
  • PDC Personal Digital CeUular
  • a splitter that distributes the received signal to either the low-frequency side or the high-frequency side according to the frequency band of each system, and the signal in the signal path of the reception path and the transmission path
  • a high-frequency switch module is used in which a high-frequency switch circuit for switching paths is modularized.
  • a duplexer consisting of a band-pass filter using the frequency difference between the reception frequency and the transmission frequency may be used instead of the high-frequency switch that switches the path.
  • H8-321738 discloses that a first band-pass filter and a first phase shifter and a second band-pass filter and a second phase shifter are combined to reduce the frequency without using a high-frequency switch.
  • a duplexer for splitting different signals is disclosed.
  • Japanese Patent Application Laid-Open No. H8-321738 discloses that such a duplexer and a high-frequency switch are combined to form a high-frequency switch circuit corresponding to more frequency bands, and to obtain a small and lightweight wireless communication device. No mention is made of modularizing the circuit.
  • an object of the present invention is to provide a branching circuit suitable for downsizing a multi-band high-frequency switch module that handles signals in a plurality of frequency bands.
  • An object of the present invention is to provide a high-frequency switch circuit whose circuit configuration is simple and inexpensive by using such a branching circuit and whose power consumption is reduced.
  • Still another object of the present invention is to connect these high-frequency switch circuits to electrode electrodes.
  • Still another object of the present invention is to provide a wireless communication device such as a small-sized mobile phone provided with the high-frequency switch module.
  • This high-frequency switch module consists of a DCS1800 system (transmission TX: 1710 to 1785 MHz, reception RX: 1805 to 1880 MHz) as the first transmission / reception system, and a PCS system (transmission X: 1850 to: 1910 MHz, It supports three systems: a reception RX: 1930 to 1990 MHz) and a GSM system (transmission TX: 880 to 915 MHz, reception RX: 925 to 960 MHz) as the third transmission / reception system. , GSM, DCS, and PCS transmission and reception circuits.
  • This triple-band high-frequency switch module connects the first and second transmission / reception systems (for example, DCS and PCS) on the high frequency side and the third transmission / reception system (for example, GSM) on the low frequency side from terminals connected to the ANT.
  • a demultiplexing circuit block 103 composed of a high-pass fill filter HPF and a mouth-pass filter filter LPF is provided.
  • a path connecting the transmission circuit GSM T of the third transmission / reception system GSM to the demultiplexer block, and a reception circuit of the third transmission / reception system A second switch circuit block for switching a path connecting the GSM RX and the branching circuit block.
  • the first switch circuit block 101 is an SPDT (Single Pole Dual Throw) type comprising a terminal 501, a terminal 504 connected to the transmitting circuit DCS / PCS TX, and a terminal 505 connected to the receiving circuit DCS RX and PCS TX. It consists of a high-frequency switch and an SPDT-type high-frequency switch that switches the output terminal 502 to the first receiving circuit GSM RX and the output terminal 503 to the second receiving circuit (PCS RX) after the terminal 505. . If a diode switch circuit using a plurality of diodes disclosed in, for example, Japanese Patent Publication No. Hei 6-197040 is used as the switch circuit, the first switch circuit block 101 surrounded by a dashed line in FIG. 4 diodes as shown in 16 It is configured as a high frequency switch composed of
  • the diodes 203 and 204 are turned on. And it is sufficient. That is, the high-frequency signal input to the terminal 501 has the diode 202 in the OFF state, does not appear at the terminal 504 due to the high impedance, and the diode 201 is in the OFF state.
  • terminal 505 and terminal 501 are connected via transmission line 401 and appear at terminal 505. Further, since the diode 203 is in the ON state and has a low impedance, the transmission line 403 is grounded at a high frequency, the impedance of the transmission line 403 viewed from the terminal 505 increases, and the high-frequency signal appears at the terminal 502. However, since the diode 204 is in the ON state and has a low impedance, the high-frequency signal input to the terminal 501 appears at the terminal 503.
  • each of the above high-frequency switches uses three so-called SPDT switches, each having one input terminal and two output terminals, so that the structure is complicated. Furthermore, when the high-frequency switch module was constructed, the circuit and the laminate itself became large, and it was found that there was a problem especially in the case of triple band or more.
  • a high-frequency switch module that can further reduce the size of a mobile phone is desired. Therefore, the present inventors focused on the impedance characteristic of the band-pass filter, and improved the input loss characteristics by combining a branching circuit combining a phase shifter and a band-pass filter and a high-frequency switch. Therefore, a high-frequency switch circuit with a simple overall circuit configuration and reduced power consumption and its module can be obtained. Discovered and reached the present invention.
  • the high-frequency switch circuit according to the first aspect of the present invention which shares high-frequency signals in a plurality of frequency bands,
  • a first high-frequency switch for blocking a reception signal in the band Connected to the first terminal through which high-frequency signals are input / output to pass the transmission signal of the first frequency band or the transmission signal of the second frequency band, but the reception signal and the second frequency of the first frequency band.
  • a first high-frequency circuit including a first phase shifter connected to the first terminal and a first band-pass filter disposed at a subsequent stage; and a second high-frequency circuit connected to the first terminal.
  • a demultiplexer circuit having a second high-frequency circuit including a phase shifter and a second band-pass filter disposed at a subsequent stage,
  • the transmission line constituting the first phase shifter has a line length such that the impedance on the input side of the first high-frequency circuit is substantially open at the passing band frequency of the second band-pass filter.
  • the transmission line constituting the second phase shifter has a line length at which the impedance on the input side of the second high-frequency circuit is substantially open at the pass band frequency of the first band-pass filter. It is characterized in that one of the first and second frequency bands is passed while the other is cut off.
  • the transmission signal of the second transmission and reception system (for example, PCS) is transmitted to the reception circuit (GSM RX) side of the first transmission and reception system (for example, DCS). It is necessary to block the flow into the high-frequency circuit of 1 and pass the received signal of the first frequency band or the received signal of the second frequency band between the first terminal and the branching circuit. It is effective to arrange a second high-frequency switch that blocks the transmission signal in the second frequency band and the transmission signal in the second frequency band.
  • the high-frequency switch circuit according to the second aspect of the present invention which shares high-frequency signals of a plurality of frequency bands,
  • First and second filter circuits connected to the antenna terminal and having different pass bands from each other;
  • the second filter circuit is connected to the second filter circuit, and transmits the first frequency band transmission signal or the second frequency band transmission signal, but receives the first frequency band reception signal and the second frequency band reception signal.
  • a first high frequency switch for blocking the signal The second filter circuit is connected to the second filter circuit and passes the first frequency band reception signal or the second frequency band reception signal, but transmits the first frequency band transmission signal and the second frequency band transmission signal.
  • a second high frequency switch for blocking the signal is connected to the second filter circuit, and transmits the first frequency band transmission signal or the second frequency band transmission signal, but transmits the first frequency band transmission signal and the second frequency band transmission signal.
  • a demultiplexer circuit connected to the second high-frequency switch, for passing any one of the first and second frequency bands but cutting off the other, and the second high-frequency switch side
  • a first high-frequency circuit including a first phase shifter connected to a terminal of the first phase shifter and a first band-pass filter arranged at a subsequent stage thereof, a second phase shifter connected to the terminal of the first phase shifter, and a subsequent stage
  • a second high-frequency circuit consisting of a second band-pass filter disposed at
  • a high-frequency switch circuit connected to the first filter circuit for switching between a transmission signal and a reception signal of a third transmission / reception system
  • the high-frequency switch circuit according to the third embodiment of the present invention which shares high-frequency signals of a plurality of frequency bands,
  • First and second filter circuits connected to the antenna terminal and having different pass bands from each other;
  • a signal path connected to the second filter circuit for transmitting a transmission signal of the first frequency band and a transmission signal of the second frequency band; and a transmission path of the reception signal and the second frequency band of the first frequency band.
  • a first high-frequency switch for switching between a signal path through which a received signal passes;
  • a demultiplexer circuit connected to the first high-frequency switch and configured to pass either one of the first or second frequency band reception signals but block the other, and the first high-frequency switch side
  • a first high-frequency circuit including a first phase shifter connected to a terminal of the first phase shifter and a first band-pass filter arranged at a subsequent stage thereof, a second phase shifter connected to the terminal of the first phase shifter, and a subsequent stage
  • a second high-frequency circuit consisting of a second band-pass filter disposed at
  • a high-frequency switch circuit connected to the first filter circuit for switching between a transmission signal and a reception signal of a third transmission / reception system
  • the high-frequency switch circuit according to the fourth aspect of the present invention which shares high-frequency signals of a plurality of frequency bands,
  • First and second filter circuits connected to the antenna terminal and having different pass bands from each other;
  • the second filter circuit is connected to the second filter circuit, and transmits the first frequency band transmission signal or the second frequency band transmission signal, but receives the first frequency band reception signal and the second frequency band reception signal.
  • a first high frequency switch for blocking the signal is connected to the second filter circuit, and transmits the first frequency band transmission signal or the second frequency band transmission signal, but receives the first frequency band reception signal and the second frequency band reception signal.
  • the second filter circuit is connected to the second filter circuit and passes the first frequency band reception signal or the second frequency band reception signal, but transmits the first frequency band transmission signal and the second frequency band transmission signal.
  • a second high frequency switch for blocking the signal is connected to the second filter circuit and passes the first frequency band reception signal or the second frequency band reception signal, but transmits the first frequency band transmission signal and the second frequency band transmission signal.
  • a branching circuit connected to the second high-frequency switch and configured to pass a reception signal of one of the first and second frequency bands but cut off the other, and to a terminal on the second high-frequency switch side;
  • the first phaser connected and the
  • a first high-frequency circuit including a first band-pass filter, a second high-frequency circuit including a second phase shifter connected to the terminal, and a second band-pass filter disposed at a subsequent stage.
  • a demultiplexing circuit having
  • the third filter circuit is connected to the first filter circuit, and transmits the third frequency band transmission signal or the fourth frequency band transmission signal, but receives the third frequency band reception signal and the fourth frequency band reception signal.
  • the third filter circuit is connected to the first filter circuit, and passes the third frequency band reception signal or the fourth frequency band reception signal, but transmits the third frequency band transmission signal and the fourth frequency band transmission signal.
  • a fourth high frequency switch for blocking the signal is connected to the first filter circuit, and passes the third frequency band reception signal or the fourth frequency band reception signal, but transmits the third frequency band transmission signal and the fourth frequency band transmission signal.
  • a branching circuit that is connected to the fourth high-frequency switch and that passes one of the third or fourth frequency band reception signals but blocks the other, and is connected to a terminal on the fourth high-frequency switch side.
  • the first phaser connected and the
  • a first high-frequency circuit including a first band-pass filter, a second high-frequency circuit including a second phase shifter connected to the terminal, and a second band-pass filter disposed at a subsequent stage.
  • a demultiplexing circuit having
  • the high-frequency switch circuit according to the fifth aspect of the present invention which shares high-frequency signals of a plurality of frequency bands,
  • First and second filter circuits connected to the antenna terminal and having different pass bands from each other;
  • a signal path connected to the second filter circuit for transmitting a transmission signal of the first frequency band and a transmission signal of the second frequency band; and a transmission path of the reception signal and the second frequency band of the first frequency band.
  • a first high-frequency switch for switching between a signal path through which a received signal passes;
  • a branching circuit connected to the first high-frequency switch and configured to pass a reception signal in one of the first and second frequency bands but block the other, and to a terminal on the first high-frequency switch side;
  • a first high-frequency circuit including a connected first phase shifter and a first band-pass filter disposed at a subsequent stage, a second phase shifter connected to the terminal, and disposed at a subsequent stage
  • a demultiplexing circuit having a second high-frequency circuit including a second band-pass filter;
  • a branching circuit connected to the second high-frequency switch, for passing a received signal in one of a third and a fourth frequency band but blocking the other, and a terminal on the second high-frequency switch side;
  • a first high-frequency circuit including a first phase shifter connected to the first phase shifter and a first band-pass filter arranged at a subsequent stage, and a second phase shifter connected to the terminal and a second phase shifter arranged at a subsequent stage.
  • a second high-frequency circuit comprising a second band-pass filter
  • the above is the configuration of the high frequency switch circuit for the dual band, the triple band, and the quadro band in order.
  • the high-frequency switches for the triple band and the quadruple band it is preferable that the former is constituted by an SPST-type high-frequency switch and the latter is constituted by an SPDT-type high-frequency switch.
  • the phase shift angle of the phase circuit in one of the high-frequency circuits is appropriately adjusted so that the input impedance of the pass band of the filter in the other high-frequency circuit becomes high. There is almost no leakage of both frequency components corresponding to the passband filter of. Therefore, the output can be extracted only by the transmission loss at the filter, and the insertion loss is low.
  • phase circuit adjusts the phase shift angle to make the input impedance almost open, and can also be called a phase shift circuit. Since this branching circuit is used as a substitute for the high-frequency switch, the number of diodes is reduced and power consumption is reduced. In addition, the SPST-type high-frequency switch simplifies the circuit configuration, and the use of the SPDT-type switch reduces the number of high-frequency switches by one compared to the circuit in Fig. 15. Modules can be provided. This is more effective as the number of frequency bands handled for dual band, triple band, and quadro band is increased.
  • the transmission circuits of the first, second, third and fourth transmission / reception systems are shared, thereby simplifying and downsizing the entire high-frequency switch circuit.
  • the first and second phase shifters may be constituted by a transmission line and a capacitor element, and the line length of the transmission line is preferably human / 10 to ⁇ / 4.
  • the line length is the actual length of a spiral or meander line.
  • the first and second band-pass filters are a surface acoustic wave filter, a laminated dielectric filter, a coaxial resonator filter, and a bulk wave filter. Among them, a surface acoustic wave filter (balanced output) is used. Surface acoustic wave filters and unbalanced output surface acoustic wave filters) are preferred.
  • a transmission line or a capacitor element constituting a phase shifter is formed by electrode patterns on a plurality of green sheets made of a dielectric material, and the green sheets are laminated and sintered to form an integrated laminate. It is preferable to use a one-chip duplexer. Further, it is preferable that a band-pass filter (for example, a surface-mount type surface acoustic wave filter) is mounted on an integrated laminate.
  • a band-pass filter for example, a surface-mount type surface acoustic wave filter
  • an unbalanced output type surface acoustic wave filter is used for the band-pass filter of the demultiplexing circuit, and the surface acoustic wave filter is used. It is preferable to connect a balun to the output of. By connecting a balun circuit that performs unbalanced-balanced conversion to the output of the unbalanced input-unbalanced output type elastic surface wave filter, circuits and electronic components at the subsequent stage of the unbalanced output type surface acoustic wave filter can be connected. If is a balanced input type, there is no need to provide a separate conversion circuit. In particular, when the balun circuit is incorporated in the integrated laminate, the number of components can be reduced and the mounting area can be reduced.
  • a diode transistor is preferable, but a diode switch is the most effective.
  • the duplexer module which handles a plurality of transmission / reception systems having different passbands, includes a first phase shifter connected to a first terminal for inputting / outputting a high-frequency signal, and a first phase shifter arranged at a subsequent stage. , A second phase shifter connected to the first terminal, and a second band-pass filter arranged at a subsequent stage, wherein the first phase shifter and the second
  • the second phaser is built in a laminated body obtained by laminating and sintering dielectric green sheets, and the first passband filter and the second passband filter are disposed on the laminate. It is characterized by being mounted on.
  • the first phase shifter is constituted by a transmission line having a line length whose input side impedance is almost open at the pass band frequency of the second band pass filter, and It is preferable that the transmission line is constituted by a transmission line having a line length in which the impedance on the input side is substantially open at the pass band frequency of the first band pass filter.
  • the high-frequency switch module of the present invention which handles a plurality of transmission / reception systems having different pass bands, comprises a phase shifter, a band-pass filter, and first and second filter circuits of the high-frequency switch circuit, each of which includes a transmission line and a capacitor element. It is characterized by having
  • the phase shifter, the band-pass filter, the transmission line of the first and second filter circuits and the capacitor element, and at least one of the transmission lines of the first to fourth high-frequency switches is provided.
  • the part is formed by an electrode pattern on a plurality of green sheets made of a dielectric, and the green sheets are formed. It is preferable that the diode constituting the high-frequency switch, which is incorporated in an integrated laminate obtained by laminating and sintering, be mounted on the integrated laminate.
  • the element including the band-pass filter is embedded in the laminate with an electrode pattern, and the high-frequency switch module is integrated into a single-layer laminate. It is a high-frequency component with a high degree of freedom. It is preferable that the electrode pattern of the transmission line of the phase shifter be provided below the layer of the electrode pattern constituting the bandpass filter. By providing the electrode pattern of the transmission line of the phase shifter in the lower layer of the bandpass filter, it is possible to improve the input loss characteristics and the isolation characteristics.
  • a wireless communication device includes the high-frequency switch module.
  • a mobile phone is preferred as the wireless communication device.
  • a mobile phone includes the high-frequency switch circuit and a voltage control circuit that applies a voltage for determining an operation mode of the high-frequency switch circuit.
  • the mobile phone of the present invention uses a small and lightweight high-frequency switch module having good insertion loss characteristics and low power consumption, it has high reception sensitivity and a long reception standby time.
  • FIG. 1 is a block diagram showing a branching circuit according to the present invention.
  • FIG. 2 is a Smith chart showing the impedance characteristic of the bandpass filter
  • FIG. 3 is a Smith chart showing the impedance characteristic of the bandpass filter
  • FIG. 4 is a block diagram showing another example of the branching circuit of the present invention.
  • FIG. 5 is a block diagram showing an example of a high frequency switch circuit for dual band of the present invention.
  • FIG. 6 is a diagram showing an equivalent circuit of the dual-band high-frequency switch circuit of FIG.
  • FIG. 7 is a block diagram showing another example of the dual-band high-frequency switch circuit of the present invention.
  • FIG. 8 is a block diagram showing still another example of the high frequency switch circuit for dual band of the present invention.
  • FIG. 9 is a diagram showing an equivalent circuit of the dual-band high-frequency switch circuit of FIG.
  • FIG. 10 is a block diagram showing an example of the triple-band high-frequency switch circuit of the present invention.
  • FIG. 11 is a block diagram showing an example of a high-frequency switch circuit for a quadroband according to the present invention.
  • FIG. 12 is a diagram showing an equivalent circuit of an example of the triple-band high-frequency switch circuit of the present invention.
  • FIG. 13 is a development view showing a green sheet having an electrode pattern constituting the integrated laminate of the present invention.
  • FIG. 14 is a perspective view showing the appearance of an integrated laminate having a built-in high-frequency switch circuit for triple band.
  • FIG. 15 is a block diagram showing an example of a high-frequency switch module for triple band.
  • FIG. 16 is a diagram showing an equivalent circuit of the triple-band high-frequency switch module of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the DCS transmission TX: 1710 to 1785 MHz, reception RX: 1805 to: 1880 MHz
  • the PCS transmission is used as the second signal frequency band £ 2.
  • GSM transmission TX: 880 to 915 ⁇ , reception RX: 925 to 960 MHz
  • a DAMPS Digital Advanced Mobile Phone Service ⁇ transmission TX: 824-849 MHz, reception KS: 869-894 MHz
  • the present invention can be applied to other communication systems. it can.
  • FIG. 1 is a block diagram showing an example of the branching circuit of the present invention.
  • This splitter is a dual-band splitter for splitting the DCS (fl) and PCS (f2) received signals.
  • the first phase shifter connected to the shared terminal 10 3, a first high-frequency circuit of the DCS system including a first band-pass filter 5 arranged in the subsequent stage, and
  • a second phase shifter 4 also connected to the terminal 10;
  • a second high-frequency circuit of the PCS system comprising a second band-pass filter 6 arranged in the PCS.
  • FIG. 4 is a block diagram showing another example of the branching circuit of the present invention.
  • capacitors 31 and 32 are connected before and after the first phase shifter 3, and capacitors 41 and 42 are connected before and after the second phase shifter 4.
  • the demultiplexing circuit of this example has an advantage that the transmission line can be shortened.
  • the phase shifters 3 and 4 are composed of transmission lines, and are configured such that the actual line length is approximately human / 10 to human / 4 in the frequency bands fl and f2, respectively.
  • the first bandpass filter 5 has an input impedance characteristic of approximately 50 ⁇ in the DCS system reception frequency band and almost short-circuiting in the PCS system reception frequency band.
  • the second bandpass filter 6 has almost 50 ⁇ in the PCS system reception frequency band, and almost short-circuits in the DCS system reception frequency band. It consists of a surface acoustic wave filter (SAW) with input impedance characteristics.
  • SAW surface acoustic wave filter
  • the first band-pass filter 5 has an attenuation characteristic required in the system with the DCS reception band as the pass band fl, and the impedance as viewed from the input side of the first band-pass filter 5 is obtained.
  • One dance characteristic is: The PCS is almost short-circuited in the reception passband f2.
  • the impedance characteristic of the second band-pass filter 6 has an attenuation characteristic required for the system with the PCS reception band as the pass band f2, and the impedance seen from the second band-pass filter 6 side. The characteristics are almost short in the DCS reception passband.
  • This demultiplexing circuit is configured to satisfy the following conditions. That is, by providing the phase shifter 3 in front of the first band-pass filter 5, the impedance characteristic viewed from the terminal 10 side of the first high-frequency circuit is almost open in the reception band of PCS £ 2. Become. Also, a phase shifter 4 should be installed before the second bandpass filter 6. Accordingly, in the DCS reception band fl, the impedance characteristic as viewed from the terminal 10 side of the second high-frequency circuit is substantially open.
  • the second phase shifter 4 when a signal in the DCS reception band fl is sent to the first reception circuit, if the second phase shifter 4 is not provided, the input impedance of the second bandpass filter 6 in the DCS reception band fl is Since it is almost short, the signal is absorbed in the second band-pass filter 6.
  • the impedance seen from the terminal 10 side of the second high-frequency circuit in the DCS reception band fl is phase-inverted and becomes almost open, so that the high-frequency signal becomes the first high-frequency signal. It flows to the first receiving circuit via the circuit.
  • the impedance seen from the terminal 10 side of the first high-frequency circuit in the PCS reception band f2 is indicated by a shaded area on the Smith chart in FIG. Therefore, it is necessary to adjust the line length of the first transmission line 3 so that it can enter.
  • FIG. 5 is a block diagram showing a dual-band high-frequency switch circuit according to the first embodiment of the present invention for sharing both DCS and GSM systems.
  • This high-frequency switch circuit uses the above-mentioned demultiplexing circuit as a means for demultiplexing the DCS and GSM received signals, respectively, uses the DCS transmission system and the GSM transmission system as shared circuits, and uses shared terminals.
  • the first high-frequency switch SW1 provided in the transmission path is an SPST (Single Pole Single Throw) type switch, and the DCS and GSM reception signals enter the transmission circuit.
  • SPST Single Pole Single Throw
  • FIG. 6 shows an equivalent circuit of the dual-band high-frequency switch circuit SW1 of the embodiment of FIG.
  • the common terminal 10 is connected to the antenna ANT, and switches between DCS / GSM transmission TX and DCS or GSM reception RX for the antenna ANT.
  • the first switch circuit SW1 has a diode 202 and a transmission line 402 as main elements, a cathode of the diode 202 is connected to the input / output terminal 10, and an anode is provided with a capacitor 303 in the transmission system TX shared by DCS and GSM. And a transmission line 402 connected to ground via a capacitor 304.
  • this branching circuit operates so that either the DCS or GSM reception signal is passed regardless of the voltage control of the diode, but the other is cut off, so that leakage of both reception signals is eliminated. Therefore, a switch circuit using a diode becomes unnecessary, and the structure is simplified.
  • FIG. 7 shows a high-frequency switch circuit according to the second embodiment of the present invention.
  • a high-frequency switch SW2 is arranged before the phase shifters 3 and 4 in FIG. With such a structure, it can be used even when the receiving band of the DCS and a part of the transmitting band of the PCS 'overlap like the DCS and the PCS.
  • the high-frequency switches SW1 and SW2 are of the SPST type, but they may be of the SPDT type as shown in FIG.
  • FIG. 9 shows an equivalent circuit when the high-frequency switch 1 and the high-frequency switch 2 in the high-frequency switch circuit of FIG. 8 are constituted by diode switches. The difference from the circuit of FIG.
  • a transmission line 401 is connected between the common terminal 10 on the antenna side and the demultiplexer on the receiving side, and a diode 201 having an anode connected to the receiving side is connected.
  • a capacitor 302 is connected between the cathode of the diode 201 and the ground, and a voltage control circuit VC1 for controlling the diode is connected between the diode 201 and the capacitor 302. It is.
  • the demultiplexing circuit shown in FIG. 1 is inserted between the anode of the diode 201 and each reception RX of DCS and PCS. Also in this example, the switch circuit for switching between DCS RX and PCS RX is omitted, which simplifies the configuration of the high-frequency switch circuit.
  • FIG. 1 The demultiplexing circuit shown in FIG. 1 is inserted between the anode of the diode 201 and each reception RX of DCS and PCS. Also in this example, the switch circuit for switching between DCS RX and PCS RX is omitted, which simplifie
  • the 10 shows a high-frequency switch circuit according to the third embodiment of the present invention.
  • This circuit is a high-frequency switch circuit for a tribble node for sharing the three systems of DCS, PCS and GSM.
  • the same demultiplexing circuit as described above is used as means for demultiplexing the DCS and PCS reception signals.
  • the first and second filter circuits Fl and F2 are connected to the antenna ANT.
  • the first filter circuit F1 is a single-pass filter LPF, to which a high-frequency switch SW5 for switching between a GSM receiving circuit RX and a transmitting circuit TX is connected.
  • the second filter circuit F2 is a high-pass filter HPF, to which the high-frequency switch circuit for DCS and PCS is connected.
  • a single pass filter 7 is provided between the SPDT high-frequency switch SW4 and the transmission TX of the DCS / PCS, and a transmission signal is transmitted between the high-frequency switch SW5 and the transmission TX of the GSM. There is a mouth-to-pass filter for evenings 8.
  • FIG. 12 shows an example of an equivalent circuit of the triple-band high-frequency switch module described in detail below.
  • FIG. 11 shows a high-frequency switch circuit according to a fourth embodiment of the present invention.
  • This high-frequency switch circuit is a high-frequency switch circuit for a quatro band for sharing the four systems of DCS, PCSs GSM and DAMPS.
  • This high-frequency switch circuit also uses the above-described demultiplexing circuit as means for demultiplexing the DCS and PCS reception signals and the GSM and DAMPS reception signals.
  • the GSM / DAMPS transmission circuit is shared, and a mouth-to-pass filter 8 and a high-frequency switch SW6 are added here.
  • Other configurations are the same as those of the triple-band high-frequency switch circuit shown in FIG.
  • a balun circuit which is an unbalanced-balanced conversion circuit
  • SAW surface acoustic wave
  • the first and second filter circuits Fl, 2 connected to the antenna ANT consist of a transmission line and a capacitor element.
  • GSM transmit / receive signals are passed, but DCS and PCS transmit / receive signals are attenuated.
  • the first filter has a configuration in which a transmission line LF1 and a capacitor CF1 are connected in parallel, and a capacitor CF3 is connected between the transmission line LF1 and the ground.
  • the second filter F2 has a configuration in which the transmission line LF2 and the capacitor CF2 are connected in parallel, the transmission line LF3 is arranged between the transmission line LF2 and the ground, and the capacitor CF4 is connected in series with the transmission line LF2 and the capacitor CF2. .
  • the first and second filters Fl and F2 the following configurations a to h can also be adopted.
  • the first fill circuit consists of a low-pass fill circuit and the second fill circuit consists of a band-pass fill circuit.
  • the first fill circuit consists of a bandpass fill circuit and the second fill circuit Is composed of a no-passfill evening.
  • a third high-frequency switch circuit SW5 which is disposed after the first and second filters Fl and F2 and switches between the GSM transmission circuit TX and the reception circuit RX, a DCSZPCS transmission circuit and a DCS reception circuit DCS RX High-frequency switch circuit SW4 that switches between PCS receiving circuit and PCS EX, and branching circuit that separates DCS receiving circuit DCS RX and PCS receiving circuit PCS RX while passing one received signal but blocking the other.
  • the third high-frequency switch circuit SW5 is an upper switch circuit in FIG. 12, and switches between the GSM transmission circuit TX and the reception circuit.
  • the switch circuit SW5 has two diodes DG1 and DG2 and two transmission lines LG1 and LG2 as main components.
  • the diode DG1 is arranged between the input / output terminal IP1 of GSM transmission / reception signals and the GSM TX.
  • the anode is connected to the output terminal IP1, and the transmission line LG1 is connected between the power source and ground.
  • a transmission line LG2 is connected between the input / output terminal IP1 and the GSM RX, a force sword of the diode DG2 is connected to the GSM RX side end of the transmission line LG2, and a connection is made between the anode of the diode DG2 and the ground.
  • the capacitor CG6 is connected, and the voltage control circuit Vg is connected between the anode of the diode DG2 and the capacitor CG6 via the resistor RG and the capacitor CG5 whose one end is grounded.
  • the transmission lines LG1 and LG2 have a line length such that the resonance frequency is within the frequency band of the GSM transmission signal.
  • each resonance frequency is set to approximately the intermediate frequency (897.5) of the GSM transmission signal frequency. MHz), it is possible to obtain excellent insertion loss characteristics within a desired frequency band.
  • the low-pass filter circuit inserted between the first filter F1 and the GSM TX consists of a transmission line and a capacitor.
  • a 7-inch open path filter composed of a transmission line LG3 and capacitors CG3, CG4, and CG7 is inserted between the diode DG1 and the transmission line LG1.
  • the high-frequency switch circuit SW4 is a lower switch circuit in FIG. 12, and switches between a DCS receiving circuit DCS X, a PCS receiving circuit PCS RX, and a DCS / PCS transmitting circuit DCS / PCS TX.
  • These switch circuits mainly include two diodes DP1 and DP2, the above-described demultiplexing circuit, and two transmission lines LP1 and LP2.
  • Daio -DPI is placed between the input / output terminal IP2 of DCS / PCS transmission / reception signal and DCS / PCS TX, the anode is connected to the input / output terminal IP2, and the transmission line LP1 is connected between the power source and ground. I have.
  • a transmission line LP2 is connected between the input / output terminal IP2 and the demultiplexer, and a diode DP2 with a power source connected to the transmission line LP2 is placed between one end of the transmission line LP2 on the demultiplexer side and ground.
  • the capacitor CP6 is connected between the anode of the diode DP2 and the ground.
  • the voltage control circuit Vd is connected between the diode of the diode DP2 and the capacitor CP6 via the resistor RP and the capacitor CP5 whose one end is grounded.
  • Transmission line LP5 and band-pass filter (band bus filter)
  • the first high-frequency circuit on the DCS RX side connected to DCS SAW
  • the second high-frequency circuit on the PCS RX side connected to transmission line LP6 and band-pass filter PCS SAW
  • the high-frequency circuit is connected in parallel to the DP2 force source to form a demultiplexing circuit.
  • the transmission lines LP1 and LP2 have line lengths such that the resonance frequencies are both within the lower and upper frequency bands (1710 MHz to 1910 MHz) of the DCS and PCS transmission signals. More preferably, if the resonance frequencies of the transmission lines LP1 and LP2 are set to DCS and approximately the intermediate frequency (1810 MHz) of the PCS transmission signal frequency, excellent electrical characteristics can be obtained in each mode.
  • the transmitted signal can be handled by one circuit.
  • the circuit configuration can be simplified and the number of circuit components can be reduced as compared with a case where the DCS and PCS transmission systems are separately handled.
  • the switch module can be downsized.
  • the one-pass filter circuit inserted between the second filter F2 and the DCS / PCS TX consists of a transmission line and a capacitor.
  • a 7 ⁇ type port-pass filter composed of a transmission line LP3 and capacitors CP3, CP4, and CP7 is inserted between the diode DPI and the distributed parameter line LPl.
  • the line length of the distributed parameter line LP3 It is preferable that the ratio is set to human / 8 to input / 12 with respect to the intermediate frequency of the transmission signal of the transmission / reception system of DCS and PCS.
  • the intermediate frequency of the transmission signal means, for example, if the first transmission / reception system is DCS and the second transmission / reception system is PCS, the intermediate frequency between the DCS transmission signal 1710 to 1785 MHz and the PCS transmission signal 1850 to 1910 MHz Frequency, ie 1810 MHz.
  • the line length of the transmission line LP3 is equal to or greater than / 8
  • the passband characteristic becomes narrower with respect to this intermediate frequency, and the desired insertion loss characteristic is obtained at the lower limit frequency of the DCS transmission signal and near the PCS transmission signal. I can't get it.
  • it is less than 12
  • the attenuation in high frequency regions such as the second harmonic and the third harmonic will be deteriorated. In either case, the characteristics of the high-frequency switch module are deteriorated, which is not preferable.
  • the high-frequency switch circuit of the present invention selects one of the first, second, and third transmission / reception systems by controlling the ON / OFF of a diode switch by supplying an external voltage from a voltage control circuit. It is.
  • the operation of the high-frequency switch circuit having the equivalent circuit shown in FIG. 12 will be described in detail below.
  • a positive voltage is supplied from the voltage control circuit Vd.
  • the positive voltage supplied from the voltage control circuit Vd is converted to a direct current by the capacitors of CB2, CP3 S CP4, CP5, CP6, CF4 and the band pass filter of DCS SAWs PCS SAW.
  • the diodes DP1 and DP2 are turned on. When the diode DPI is turned on, the impedance between the first and second transmitting circuits DCS ⁇ PCS TX and the connection point IP2 is reduced.
  • the transmission line LP2 is grounded at high frequency due to the diode DP2 and the capacitor CP6 that are turned on, and resonates.
  • the first and second receiving circuits DCS RX and PCS RX are viewed from the connection point IP2.
  • the dance becomes very large. Therefore, the transmission signals from the first and second transmission circuits DCS / PCS TX are transmitted to the second filter without leaking to the first reception circuit DCS RX and the second reception circuit PCS RX. .
  • the diodes DP1 and DP2 When connecting the first receiving circuit DCS RX and the second filter F2, When a voltage of 0 is applied from the roll circuit Vd, the diodes DP1 and DP2 are turned off. When the diode DPI is turned off, the impedance between the connection point IP2 and the first and second transmission circuits DCS PCS TX increases. The connection point IP2 and the connection point IP3 are connected via the transmission line LP2 by the diode DP2 in the OPT state.
  • the second high-frequency circuit based on the combination of the transmission line LP6 and the band-pass filter PCS SAW provides an in-band signal in the first frequency band DCS reception band fl when the second reception circuit PCS RX side is viewed from IP3.
  • the reception signal of the reception band f1 of the first frequency band DCS from the second filter F2 leaks to the first and second transmission circuits DCS / PCS TX and the second reception circuit PCS RX. And transmitted to the first receiving circuit DCS RX.
  • a positive voltage is supplied from the voltage control circuit Vg.
  • the positive voltage supplied from the voltage control circuit Vg is converted into a direct current by the capacitors CB1, CG6s CG5 N CG4, CG3, CGI and the GSM SAW band-pass filter, and the diodes DG2, Applied to the circuit including DG1, the diodes DG2 and DG1 are turned on.
  • the diode DG1 is turned on, the impedance between the third transmitting circuit GSM TX and the connection point IP1 decreases.
  • the transmission line LG2 is grounded at a high frequency due to the diode DG2 and the capacitor CG6 that are turned on, and resonates.As a result, the impedance seen from the connection point IP1 to the third receiving circuit GSM RX side is extremely high. growing. Therefore, the transmission signal from the third transmission circuit GSM TX is transmitted to the first filter without leaking to the third reception circuit GSM RX. (5) GSM RX mode
  • the diodes DG1 and DG2 are turned off by applying a voltage of 0 to the voltage control circuit Vg. Due to the diode DG2 being turned off, the transmission line LG2 The connection point IP1 and the third receiving circuit GSM are connected via the. When the diode DG1 is turned off, the impedance between the connection point IP1 and the third transmitting circuit GSM TX increases. Therefore, the reception signal from the first filter F1 is transmitted to the third reception circuit GSM R without leaking to the third transmission circuit GSM TX1.
  • Another feature of the present invention is that at least a part of the phase shifter, the bandpass filter, the first and second filter circuits, the transmission line and the capacitor element constituting the one-pass filter, etc. in each of the above aspects.
  • at least a part of the distributed constant line of each high-frequency switch is formed as an electrode pattern on a plurality of green sheets made of a dielectric material, and the green sheets with electrode patterns are stacked and sintered to form an integrated stack.
  • a high-frequency switch module is formed in a body, and these elements are incorporated in the laminate, and a diode for forming the high-frequency switch is mounted on the integrated laminate to provide a small high-frequency switch module.
  • FIG. 14 is a perspective view showing the appearance of a laminate according to one embodiment of the present invention
  • FIG. 13 is an internal structure of the laminate.
  • the transmission lines of the first and second filter circuits, the one-pass filter circuit, and the switch circuit are configured in a laminated body, and the diode and the band-pass filter circuit and the built-in circuit are included in the laminated body.
  • a high-frequency switch module for a one-chip triple band is provided by mounting a capacitor with an incapable high capacitance value on a laminate as a chip capacitor.
  • the laminate of the high-frequency switch module is made of a ceramic dielectric material that can be fired at a low temperature, and a green sheet with a thickness of 50 to 200 / m is prepared.
  • the green sheet is mainly composed of Ag.
  • the conductive paste is printed to form a desired electrode pattern, which is appropriately laminated and integrally fired.
  • the line electrode is formed exclusively with a line width of 100 / m to 400 ⁇ m.
  • a ground electrode 41 is formed on substantially the entire surface of the lower green sheet 20. Then, through holes for connection to terminal electrodes formed on the back surface are provided in the periphery of the four sides. Next, four capacitors (constituting the capacitance between the ground) connected between the voltage control circuits Vg and Vd and the diodes DG2 and DP2, respectively, are printed on the electrodes in a green pattern. Sheet 21 is laminated. A green sheet 22 having a ground electrode 42 formed on the front surface is laminated thereon, and a green sheet 23 having five capacitor electrodes and four line electrodes forming a low-pass filter and the like are laminated thereon.
  • a green sheet 24 on which two capacitor electrodes and five line electrodes are formed is laminated thereon.
  • eight line electrodes are formed, two of which are stacked with green sheets 25 constituting transmission lines LP5 and LP6, followed by seven line electrodes, two of which are transmission lines.
  • Green sheets 26 forming LP5 and LP6 are stacked, and a green sheet 27 forming four line electrodes and a green sheet 28 forming two line electrodes are further stacked thereon.
  • Line electrodes 43 and 44 are connected by through-hole electrodes to form an equivalent circuit transmission line LP5, and line electrodes 45 and 46 are connected by through-hole electrodes to form an equivalent circuit transmission line LP6 and other lines.
  • the electrodes are also connected by through-hole electrodes, forming the equivalent transmission lines LG2, LP2, LG3, and LP3.
  • a step is provided in the laminate so that the SAW filter, which is a surface-mount bandpass filter, is mounted, and DCS, PCS, and GSM It has three SAW phil evenings.
  • a ground electrode is formed on half of the green sheet 29.
  • electrodes for capacitors are appropriately formed.
  • the green sheet 33 laminated thereon has only through holes, and the green sheet 34 above it has the transmission lines LF1, LF2, LP1, and LG1 that constitute the first and second filter circuits Fl and F2. Are formed between the green sheets 35.
  • lands for connecting mounted elements are formed, and diodes DG1, DG2, DPI, DP2, capacitor CGI and resistors RG, RP are mounted.
  • Table 1 shows the control logic of each voltage control circuit Vg, Vd of the high-frequency switch module of this embodiment. This control logic changes each mode of GSM, DCS and PCS.
  • a high-frequency switch circuit having a simple circuit configuration and low power consumption, a lightweight, small, and inexpensive high-frequency switch module capable of handling signals in a plurality of frequency bands, and a portable using the high-frequency switch module
  • a wireless communication device such as a telephone

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Electronic Switches (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Transmitters (AREA)

Description

高周波スィッチ回路、 及びこれを用いた
高周波スィツチモジュール並びに無線通信装置 技術分野
本発明はマイクロ波帯等の高周波帯域で用いられる分波回路に関し、 デイジ タル携帯電話等の高周波回路において、 複数の周波数帯の高周波信号を分波す る分波回路と、 それを用いた信号の伝送経路を切り変えるための高周波スィッ チ回路、 及びそれらをシート層内に内蔵あるいは搭載して一体型積層体とした 高周波スィツチモジュール、 更にこれらを用いた携帯電話等の無線通信装置に 関する。
近年の無線通信装置、 例えば携帯電話の普及には、 目を見張るものがあり、 携帯電話の機能、 サービスの向上が益々図られている (以下、 携帯電話を例に とって説明する)。携帯電話のシステムとしては、例えば主に欧州で盛んな GSM ( Global System for Mobile Communications ) 方式、 DCS 1800 (Digital Cellular System 1800) 方式、 米国で盛んな PCS (Personal Communications Services)方式、 日本で採用されている: PDC (Personal Digital CeUular)方式 等の様々なシステムがあるが、 昨今の携帯電話の急激な普及にともない、 特に 先進国の主要な大都市部においては各システムに割り当てられた周波数帯では システム利用者を賄い切れず、 接続が困難であったり、 通話途中で接続が切断 する等の問題が生じている。 そこで、 前記利用者が複数のシステムを利用でき るようにして、 実質的に利用可能な周波数の増加を計り、 さらにサービス区域 の拡充ゃ各システムの通信インフラの有効活用することが提唱されている。 そこで、 この新たなシステムを持った携帯電話として、 デュアルバンド携帯 電話 (特許第 2983016号参照)、 トリプルバンド携帯電話等の提案がなされて いる。 このデュアルバンド携帯電話は、 通常の携帯電話が一つの送受信系のみ を取り扱うのに対し、 2つの送受信系を取り扱うものであり、 トリプルバンド 携帯電話は、 3つの送受信系を取り扱うものである。 これにより、複数のシステ ムの中から利用者は都合の良い送受信系を選択して利用することができるもの である。
このような携帯電話では、 それぞれのシステムの周波数帯に応じて低周波側 と高周波側のいずれかのシステムに受信信号を振り分ける分波器 (Diplexer) と、 受信経路と送信経路の信号経路の信号経路を切り換える高周波スィッチ回 路とをモジュール化した高周波スィツチモジュールが用いられている。 また受 信と送信を分離する手段として経路を切り換える高周波スィツチに代えて受信 周波数と送信周波数の周波数差を利用して帯域通過フィル夕からなる分波器 (Duplexer) を用いることもある。例えば特開平 8-321738号は、 第 1の帯域 通過フィル夕と第 1の位相器及び第 2の帯域通過フィル夕と第 2の位相器を組 み合わせることによって高周波スィツチを用いないで周波数の異なる信号を分 波する分波器を開示している。 しかしながら、特開平 8-321738号はこのような 分波器と高周波スィツチとを複合化して、 より多くの周波数帯に応じた高周波 スィツチ回路とすること、 及び小型軽量の無線通信装置を得るためにその回路 をモジュール化することに全く言及していない。
発明の目的
従って本発明の目的は、 複数の周波数帯の信号を取り扱うマルチバンド用高 周波スィッチモジュ一ルを小型化するのに好適な分波回路を提供することであ 本発明のもう一つの目的は、 かかる分波回路を用いて回路構成を簡単で安価 にし、 かつ電力消費を小さくした高周波スィツチ回路を提供することである。 本発明のさらにもう一つの目的は、 これらの高周波スィツチ回路を電極パ夕
―ンを有する複数の誘電体グリーンシートを積層一体化することにより形成し た高周波スィツチモジュールを提供することである。
本発明のさらにもう一つの目的は、 前記高周波スィッチモジュールを具備す る小型の携帯電話等の無線通信装置を提供することである。
発明の開示
本発明者等は、 複数の周波数帯の信号を取り扱うトリプルバンド用高周波ス ィツチモジュール等の高周波回路に用いる高周波スィツチ回路について鋭意研 究した結果、図 15に示すトリプルバンド携帯電話用高周波スィツチモジュール に想到した。 この高周波スイッチモジュールは、 第 1の送受信系として DCS1800システム(送信 TX: 1710〜1785 MHz、受信 RX: 1805〜1880 MHz)、 第 2の送受信系として PCSシステム (送信 X: 1850〜: 1910 MHz, 受信 RX: 1930〜1990 MHz)、第 3の送受信系として GSMシステム(送信 TX : 880〜915 MHz, 受信 RX: 925〜960 MHz) の 3つのシステムに対応し、 トリブルノ ンド 携帯電話のアンテナ ANTと、 GSM系、 DCS系、 PCS系のそれぞれの送受信回 路とを振り分けて用いられる。
このトリプルバンド用高周波スィツチモジュールは、. ANTに接続される端子 から高周波側の第 1及び第 2の送受信系(例えば DCS及び PCS)と低周波側の 第 3の送受信系 (例えば GSM) とを分波するために、 ハイパスフィル夕 HPF と口一パスフィル夕 LPFとから構成された分波回路ブロック 103を有する。こ の分波回路ブロック 103 の口一パスフィル夕側の後段には、 第 3の送受信系 GSMの送信回路 GSM T と分波回路プロックとを接続する経路と、 第 3の送 受信系の受信回路 GSM RXと分波回路プロックとを接続する経路を切り換える 第 2のスイッチ回路ブロック 102とを有する。 また分波回路ブロック 103のハ ィパスフィル夕側の後段には、 第 1の送受信系の受信回路 DCS RXと分波回路 ブロックとを接続する経路と、 第 2の送受信系の受信回路 PCS RXと分波回路 ブロックとを接続する経路と、 第 1及び第 2の送受信系の送信回路 DCS/PCS TX と分波回路プロックとを接続する経路を切り換える第 1のスィッチ回路ブ ロック 101を有する。
第 1のスィツチ回路プロック 101は、端子 501と送信回路 DCS/PCS TXに接 続される端子 504と受信回路 DCS RX及び PCS TXに接続される端子 505から なる SPDT (Single Pole Dual Throw) 型の高周波スィツチと、 端子 505の後 段に第 1の受信回路 GSM RXへの出力端子 502と第 2の受信回路 (PCS RX) への出力端子 503を切り換える SPDT型の高周波スイッチとにより構成されて いる。上記スィツチ回路として例えば特閧平 6-197040号等に開示された複数の ダイォードを用いたダイォ一ドスィツチ回路を用いると、図 15の一点鎖線で囲 んだ第 1のスィヅチ回路ブロック 101は、図 16に示すように 4つのダイォ一ド からなる高周波スィツチとして構成される。
第 1のスィツチ回路ブロック 101において、 端子 501と端子 503を接続する には、 スィツチ回路を切り替えるための電圧コントロール回路 VC1から正の電 圧を与え、 電圧コントロール回路 VC2に 0の電圧を与えることにより、 ダイォ —ド 201, 202を OFF状態とし、 スィッチ回路を切り替えるための電圧コント ロール回路 VC4から正の電圧を与え、 電圧コントロール回路 VC3に 0の電圧 を与えることにより、ダイオード 203,204を ON状態とすればよい。すなわち、 端子 501に入力する高周波信号は、前記ダイォ一ド 202が OFF状態となってお り、高インピ一ダンスであるために端子 504には現れず、ダイォード 201が OFF 状態となっており、 高インピ一ダンスであるために端子 505と端子 501が伝送 線路 401を介して接続され、 端子 505に現れる。 さらにダイオード 203が ON 状態となっており低インピーダンスとなるために、 伝送線路 403が高周波的に 接地され、 端子 505から見た伝送線路 403のインピーダンスが高くなり、 端子 502には前記高周波信号は現れず、 ダイォ一ド 204が ON状態となっており低 インピーダンスとなるために、 端子 501に入力した高周波信号が端子 503に現 れる。
ところが上記回路において端子 501と端子 503を接続するとき、 換言すれば 携帯電話の受信時に、 前記電圧コントロール回路 VC3— VC4間に少なくとも 1 mA程度の電流を流すことが必要となり、 その分バッテリーが消費される。 よ つて、 携帯電話としては受信の待ち受け時間が短くなり、 また低消費電流化が 困難である。 また上記各高周波スィツチは入力端子 1つに対して出力端子が 2 つある、 いわゆる SPDT型のスィッチを 3つ用いているため、 構造が複雑にな る。 さらに高周波スィツチモジュールを構成したとき回路も積層体自体も大き くなり、 特にトリプルバンド以上の場合に問題があることが分かった。
従って、 さらに携帯電話の小型化を可能にする高周波スィッチモジュールが 望まれている。 そこで本発明者等は、 帯域通過フィル夕のインピ一ダンス特性 に着目し、 位相器と帯域通過フィル夕とを組み合わせた分波回路及び高周波ス イッチを組合せることにより、 揷入損失特性が良く、 全体の回路構成が簡単で 消費電力が低減した高周波スィツチ回路及びそのモジュールが得られることを 発見し、 本発明に想到した。
複数の周波数帯の高周波信号を共用する本発明の第 1の態様による高周波ス ィツチ回路は、
高周波信号が入出力する第 1の端子に接続され、 第 1の周波数帯の送信信号 又は第 2の周波数帯の送信信号を通過させるが、 第 1の周波数帯の受信信号及 び第 2の周波数帯の受信信号を遮断する第 1の高周波スィツチと、
前記第 1の端子に接続された第 1の位相器とその後段に配置された第 1の帯 域通過フィル夕とからなる第 1の高周波回路と、 前記第 1の端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる第 2 の高周波回路とを有する分波回路とを備え、
前記第 1の位相器を構成する伝送線路を、 前記第 2の帯域通過フィル夕の通 過帯域周波数で前記第 1の高周波回路の入力側のィンピ一ダンスがほぼ開放と なる線路長とするとともに、 前記第 2の位相器を構成する伝送線路を、 第 1の 帯域通過フィル夕の通過帯域周波数で前記第 2の高周波回路の入力側のインピ —ダンスがほぼ開放となる線路長とし、 もって第 1及び第 2の周波数帯の一方 の受信信号を通過させるが他方を遮断することを特徴とする。
第 1及び第 2の周波数帯の送受信信号が一部重複する場合、 第 2の送受信系 (例えば PCS)の送信信号が第 1の送受信系(例えば DCS)の受信回路(GSM RX) 側の第 1の高周波回路に流入するのを遮断する必要があり、 第 1の端子と 分波回路の間に第 1の周波数帯の受信信号又は第 2の周波数帯の受信信号を通 過させ、 第 1の周波数帯の送信信号及び第 2の周波数帯の送信信号を遮断する 第 2の高周波スィツチを配置するのが効果的である。
複数の周波数帯の高周波信号を共用する本発明の第 2の態様による高周波ス ィツチ回路は、
アンテナ端子に接続され、 互いに通過帯域が異なる第 1及び第 2のフィル夕 回路と、
前記第 2のフィル夕回路に接続され、 第 1の周波数帯の送信信号又は第 2の 周波数帯の送信信号を通過させるが、 第 1の周波数帯の受信信号及び第 2の周 波数帯の受信信号を遮断する第 1の高周波スィツチと、 前記第 2のフィル夕回路に接続され、 第 1の周波数帯の受信信号又は第 2の 周波数帯の受信信号を通過させるが、 第 1の周波数帯の送信信号及び第 2の周 波数帯の送信信号を遮断する第 2の高周波スィツチと、
前記第 2の高周波スィツチに接続され、 前記第 1及び第 2の周波数帯のいず れか一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 2の高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置され た第 1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続さ れた第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる 第 2の高周波回路とを有する分波回路と、
前記第 1のフィル夕回路に接続され、 第 3の送受信系の送信信号と受信信号 とを切り換える高周波スィツチ回路と
を具備することを特徴とする。
複数の周波数帯の高周波信号を共用する本発明の第 3の態様による高周波ス ィツチ回路は、
アンテナ端子に接続され、 互いに通過帯域が異なる第 1及び第 2のフィル夕 回路と、
前記第 2のフィル夕回路に接続され、 第 1の周波数帯の送信信号及び第 2の 周波数帯の送信信号を通過させる信号経路と、 第 1の周波数帯の受信信号及び 第 2の周波数帯の受信信号を通過させる信号経路とを切り替える第 1の高周波 スィッチと、
前記第 1の高周波スィツチに接続され、 前記第 1又は第 2の周波数帯のいず れか一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 1の高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置され た第 1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続さ れた第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる 第 2の高周波回路とを有する分波回路と、
前記第 1のフィル夕回路に接続され、 第 3の送受信系の送信信号と受信信号 とを切り換える高周波スィッチ回路と
を具備することを特徴とする。 複数の周波数帯の高周波信号を共用する本発明の第 4の態様による高周波ス ィツチ回路は、
アンテナ端子に接続され、 互いに通過帯域が異なる第 1及び第 2のフィル夕 回路と、
前記第 2のフィル夕回路に接続され、 第 1の周波数帯の送信信号又は第 2の 周波数帯の送信信号を通過させるが、 第 1の周波数帯の受信信号及び第 2の周 波数帯の受信信号を遮断する第 1の高周波スィヅチと、
前記第 2のフィル夕回路に接続され、 第 1の周波数帯の受信信号又は第 2の 周波数帯の受信信号を通過させるが、 第 1の周波数帯の送信信号及び第 2の周 波数帯の送信信号を遮断する第 2の高周波スィツチと、
前記第 2の高周波スィツチに接続され、 第 1又は第 2の周波数帯のいずれか 一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 2の 高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置された第
1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる第 2 の高周波回路とを有する分波回路と、
前記第 1のフィル夕回路に接続され、 第 3の周波数帯の送信信号又は第 4の 周波数帯の送信信号を通過させるが、 第 3の周波数帯の受信信号及び第 4の周 波数帯の受信信号を遮断する第 3の高周波スィツチと、
前記第 1のフィル夕回路に接続され、 第 3の周波数帯の受信信号又は第 4の 周波数帯の受信信号を通過させるが、 第 3の周波数帯の送信信号及び第 4の周 波数帯の送信信号を遮断する第 4の高周波スィツチと、
前記第 4の高周波スィツチに接続され、 第 3又は第 4の周波数帯のいずれか 一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 4の 高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置された第
1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる第 2 の高周波回路とを有する分波回路と
を具備することを特徴とする。 複数の周波数帯の高周波信号を共用する本発明の第 5の態様による高周波ス ィツチ回路は、
アンテナ端子に接続され、 互いに通過帯域が異なる第 1及び第 2のフィル夕 回路と、
前記第 2のフィル夕回路に接続され、 第 1の周波数帯の送信信号及び第 2の 周波数帯の送信信号を通過させる信号経路と、 第 1の周波数帯の受信信号及び 第 2の周波数帯の受信信号を通過させる信号経路とを切り替える第 1の高周波 スィッチと、
前記第 1の高周波スィツチに接続され、 第 1又は第 2の周波数帯のいずれか 一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 1の 高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置された第 1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる第 2 の高周波回路とを有する分波回路と、
前記第 1のフィル夕回路に接続され、 第 3の周波数帯の送信信号及び第 4の 周波数帯の送信信号を通過させる信号経路と、 第 3の周波数帯の受信信号及び 第 4の周波数帯の受信信号を通過させる信号経路とを切り替える第 2の高周波 スィツチと、
前記第 2の高周波スィツチに接続され、 第 3又は第 4の周波数帯のいずれか —方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 2の 高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置された第 1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる第 2 の高周波回路とを有する分波回路と
を具備することを特徴とする。
以上は順にデュアルバンド用、 トリプルバンド用、 クヮトロバンド用の高周 波スィツチ回路の構成である。 トリプルバンド用、 クヮトロバンド用の高周波 スィツチにおいては、 前者は SPST型の高周波スィツチにより構成し、 後者は SPDT型の高周波スイッチにより構成するのが好ましい。 本発明の分波回路においては、 一方の高周波回路における位相回路の位相の 移動角度を、 他方の高周波回路におけるフィル夕の通過帯域の入力インピーダ ンスが高くなるように適宜調整しているので、 それぞれの通過帯域フィル夕に 対応した双方の周波数成分の漏れがほとんどない。 そのためフィル夕の伝送損 失だけで出力を取り出せ、 挿入損失が低い。 なお位相回路は入力インピーダン スをほぼ開放とするために位相の移動角度を調整するもので、 移相回路と言う こともできる。 この分波回路を高周波スィッチの代わりとして用いるので、 ダ ィオードの数が減り、 低消費電力となる。 また SPST型の高周波スィッチであ ればそれだけ回路構成が簡単になるし、 SPDT型を用いた場合でも図 15の回路 に比べて高周波スィッチを 1つ削減することができるので、 より安価な高周波 スイッチモジュールを提供することができる。 これはデュアルバンド用、 トリ プルバンド用、 クヮトロバンド用と取り扱う周波数帯が多くなるほど効果的で ある。
本発明の特徴の 1つは、 第 1、 第 2、 第 3及び第 4の送受信系の各送信回路 を共用することであり、 これにより高周波スィッチ回路全体の簡略化及び小型 化が図られる。 また第 1及び第 2の位相器は伝送線路とコンデンサ素子により 構成しても良く、伝送線路の線路長は人/ 10~ λ/4であるのが好ましい。線路 長はスパイラル状又はミアンダ状等にした線路の実際の長さである。
第 1及び第 2の帯域通過フィル夕は、 弾性表面波フィル夕、 積層型誘電体フ ィル夕、 同軸型共振器フィル夕及びバルク波フィル夕であり、 中でも弾性表面 波フィル夕 (平衡出力型弾性表面波フィル夕及び不平衡出力型弾性表面波フィ ル夕を含む) が好ましい。
本発明において、 位相器を構成する伝送線路又はコンデンサ素子を、 誘電体 からなる複数のグリーンシート上に電極パターンにより形成し、 このグリーン シートを積層、 焼結して一体的な積層体に構成し、 ワンチップ化した分波器と するのが好ましい。 また帯域通過フィルタ (例えば面実装型の弾性表面波フィ ル夕) は一体型積層体上に搭載するのが好ましい。
各バンド用の高周波スィツチ回路において、 分波回路の帯域通過フィル夕に 不平衡出力型弾性表面波フィル夕を用いるとともに、 この弾性表面波フィル夕 の出力にバランを接続するのが好ましい。 不平衡入力—不平衡出力型である弾 性表面波フィル夕の出力に不平衡—平衡変換をするバラン回路を接続すること により、 不平衡出力型弾性表面波フィル夕の後段の回路や電子部品が平衡入力 型となっている場合には、 別途変換回路を設ける必要がない。 特にバラン回路 を一体型積層体に内蔵した場合、部品点数を削減でき、実装面積も削減できる。 もっとも不平衡入カー平衡出力型の弾性表面波フィル夕を用いた場合は、 この ような配慮はいらない。 またこれらの高周波スィツチ回路に用いるスィツチ素 子としてはダイォ一ドゃトランジス夕が好ましいが、 ダイォードスィツチが最 も効果的である。
通過帯域の異なる複数の送受信系を扱う本発明の分波器モジュールは、 高周 波信号が入出力する第 1の端子に接続された第 1の位相器と、 その後段に配置 された第 1の帯域通過フィル夕と、 前記第 1の端子に接続された第 2の位相器 と、 その後段に配置された第 2の帯域通過フィル夕とからなり、 前記第 1の位 相器と前記第 2の位相器は、 誘電体グリーンシートを積層し、 焼結してなる積 層体に内蔵されており、 前記第 1の通過帯域フィル夕及び第 2の通過帯域フィ ル夕は前記積層体上に搭載されていることを特徴とする。
上記分波器モジュールにおいて、 第 1の位相器は、 第 2の帯域通過フィル夕 の通過帯域周波数で入力側のインピーダンスがほぼ開放となる線路長の伝送線 路により構成され、 第 2の位相器は、 第 1の帯域通過フィル夕の通過帯域周波 数で入力側のインピーダンスがほぼ開放となる線路長の伝送線路により構成さ れているのが好ましい。
通過帯域の異なる複数の送受信系を扱う本発明の高周波スィツチモジュール は、 上記高周波スィッチ回路の位相器、 帯域通過フィル夕及び第 1及び第 2の フィル夕回路は伝送線路とコンデンサ素子により構成されていることを特徴と する。
上記高周波スイッチモジュールにおいて、 位相器、 帯域通過フィル夕及び第 1及び第 2のフィルタ回路の伝送線路及びコンデンサ素子の少なくと一部、 及 び前記第 1〜4の高周波スィッチの伝送線路の少なくとも一部は、誘電体からな る複数のグリーンシート上に電極パターンにより形成し、 このグリーンシート を積層、 焼結してなる一体型積層体に内蔵され、 前記高周波スィッチを構成す るダイオードは前記一体型積層体上に搭載されているのが好ましい。
位相器を伝送線路により構成することによつて帯域通過フィル夕を含む素子 を積層体内に電極パターンで内蔵して高周波スィツチモジュールを一体型積層 体にワンチップィ匕することにより、 小型軽量化できるとともに設計の自由度の 高い高周波部品となる。 位相器の伝送線路の電極パターンは帯域通過フィル夕 を構成する電極パターンの層よりも下層に設けるのが好ましい。位相器の伝送 線路の電極パターンの配置を帯域通過フィル夕の下層に設けることにより、 揷 入損失特性及びアイソレーション特性を向上させることができる。
本発明の無線通信装置は、 上記高周波スィッチモジュールを具備する。 無線 通信装置としては携帯電話機が好ましい。
本発明の好ましい態様においては、 携帯電話機は上記高周波スィヅチ回路と、 前記高周波スィツチ回路の動作モードを決めるための電圧を付与する電圧コン トロール回路とを具備する。
本発明の携帯電話機は、 挿入損失特性が良く低消費電力型の小型軽量の高周 波スィツチモジュールを用いるので受信感度が高く、 かつ受信の待ち受け時間 が長い。 図面の簡単な説明
図 1は本発明の分波回路を示すプロック図であり、
図 2は帯域通過フィル夕のインピーダンス特性を示すスミスチャートであり、 図 3は帯域通過フィル夕のインピーダンス特性を示すスミスチャートであり、 図 4は本発明の分波回路の他の例を示すプロック図であり、
図 5は本発明のデュアルバンド用高周 スィツチ回路の一例を示すブロック 図であり、
図 6は図 5のデュアルバンド用高周波スィツチ回路の等価回路を示す図であ り、
図 7は本発明のデュアルバンド用高周波スィツチ回路の他の例を示すプロッ ク図であり、 図 8は本発明のデュアルバンド用高周波スィツチ回路のさらに他の例を示す プロック図であり、
図 9は図 8のデュアルバンド用高周波スィツチ回路の等価回路を示す図であ り、
図 10は本発明のトリプルバンド用高周波スィツチ回路の一例を示すプロック 図であり、
図 11は本発明のクヮトロバンド用高周波スィツチ回路の一例を示すブロック 図であり、
図 12は本発明のトリプルバンド用高周波スィツチ回路の一例の等価回路を示 す図であり、
図 13は本発明の一体型積層体を構成する電極パターンを有するグリーンシー トを示す展開図であり、
図 14はトリプルバンド用高周波スィツチ回路を内蔵した一体型積層体の外観 を示す斜視図であり、
図 15はトリプルバンド用高周波スィヅチモジュールの一例を示すプロック図 であり、
図 16は図 15のトリプルバンド用高周波スィヅチモジュールの等価回路を示 す図である。 発明を実施するための最良の形態
本発明の実施形態を添付図面を参照して、以下詳細に説明する。説明の簡略ィ匕 のため、 第 1の信号周波数帯 flとして DCS (送信 TX: 1710〜1785 MHz, 受 信 RX: 1805〜: 1880 MHz) システム、 第 2の信号周波数帯 £2として PCS (送 信 TX: 1850〜1910 MHz、 受信: X: 1930〜: 1990 MHz) システム、 第 3の信 号周波数帯 f3として GSM (送信 TX:880〜915 ΜΗζ、受信 RX:925〜960 MHz) システム、 第 4の信号周波数帯 f4として DAMPS (Digital Advanced Mobile Phone Service^ 送信 TX: 824〜849MHz、 受信 KS: 869~894MHz) システ ムを例に取るが、 勿論本発明を他の通信システムに適用することもできる。
[1]分波回路 図 1は本発明の分波回路の一例を示すブロック図である。 この分波回路は、 DCS (fl) と PCS (f2) の受信信号を分波するためのデュアルバンド対応の分 波回路であり、 (a)共用の端子 10に接続された第 1の位相器 3と、 その後段に 配置された第 1の帯域通過フィル夕 5とからなる DCS系の第 1の高周波回路と、 (b) 同じく端子 10に接続された第 2の位相器 4と、 その後段に配置された第 2 の帯域通過フィル夕 6とからなる PCS系の第 2の高周波回路とからなる。
図 4は本発明の分波回路の別の例を示すプロック図である。この分波回路は、 第 1の位相器 3の前後にコンデンサ 31、 32が接続されているとともに、第 2の 位相器 4の前後にコンデンサ 41、 42が接続されているものである。この例の分 波回路は伝送線路を短くできるという利点を有する。
位相器 3及び 4は伝送線路からなり、 それぞれ周波数帯域 fl、 f2で実際の線 路長がほぼ人/ 10〜人 /4となるように構成されている。第 1の帯域通過フィル 夕 5は、図 2のスミスチャートで示すように、 DCS系の受信周波数帯でほぼ 50 Ωとなり、 PCS系の受信周波数帯でほぼショートするような入力インピーダン ス特性を有する弾性表面波フィル夕 (SAW) からなる。 また第 2の帯域通過フ ィル夕 6は、 図 3のスミスチャートで示すように、 PCS系の受信周波数帯でほ ぼ 50 Ωとなり、 DCS系の受信周波数帯でほぼショ一トするような入カインピー ダンス特性を有する弾性表面波フィル夕 (SAW) からなる。
以上のように第 1の帯域通過フィル夕 5は、 DCSの受信帯域を通過帯域 flと してシステム上必要な減衰特性を有するとともに、 第 1の帯域通過フィル夕 5 の入力側から見たィンピ一ダンス特性は: PCSの受信通過帯域 f2でほぼショート の状態となっている。 一方、 第 2の帯域通過フィル夕 6のインピーダンス特性 は、 PCSの受信帯域を通過帯域 f2としてシステム上必要な減衰特性を有すると ともに、第 2の帯域通過フィル夕 6側から見たィンピ一ダンス特性は DCSの受 信通過帯域でほぼショ一トの状態となっている。
この分波回路は以下の条件を満たすように構成されている。 すなわち、 第 1 の帯域通過フィル夕 5の前段に位相器 3を設けることにより、 PCSの受信帯域 £2で、前記第 1の高周波回路の端子 10側からみたインピーダンス特性がほぼ開 放の状態となる。 また第 2の帯域通過フィル夕 6の前段に位相器 4を設けるこ とにより、 DCSの受信帯域 flで、 前記第 2の高周波回路の端子 10側からみた インピーダンス特性がほぼ開放の状態となる。従って、 DCSの受信帯域 flの信 号を第 1の受信回路に送る場合、 第 2の位相器 4がなければ、 第 2の帯域通過 フィル夕 6の DCSの受信帯域 flでの入カインピーダンスがほぼショ一トであ るので、 第 2の帯域通過フィル夕 6に信号は吸収されてしまう。 しかしながら 第 2の位相器 4を設けることにより、 DCSの受信帯域 flでの第 2の高周波回路 の端子 10側から見たインピーダンスは位相反転されほぼ開放状態となるので、 高周波信号は第 1の高周波回路を介して第 1の受信回路へ流れる。
PCSの受信帯域 f2の信号を第 2の受信回路に送る場合も同様であり、第 1の 位相器 3を設けることにより、 PCSの受信帯域 f2での第 1の高周波回路の端子 10側から見たィンピ一ダンスは位相反転されほぼ開放状態となり、 高周波信号 は第 2の高周波回路を介して第 2の受信回路へ流れる。
「ほぼ開放状態」 とは、 インピーダンス Zを Z=R+jXで表すときの実数部 R を 150 Ω以上に調整した場合、及び虚数部 Xの絶対値を 100 Ω以上に調整した場 合である。 これをスミスチャート上で表すと、 例えば図 2及び図 3の右端より の斜線部分が「ほぼ開放状態」に該当する。従って、 DCSの受信帯域 flの信号 を第 1の受信回路に送る場合、 DCSの受信帯域 flでの第 2の高周波回路の端子 10側からみたインピーダンスが図 3のスミスチャート上で斜線領域に入るよう に、 第 2の伝送線路 4の線路長を調整する必要がある。 また PCSの受信帯域 f2 の信号を第 2の受信回路に送る場合、 PCSの受信帯域 f2での第 1の高周波回路 の端子 10側からみたィンピ一ダンスが図 2のスミスチャート上で斜線領域に入 るように、 第 1の伝送線路 3の線路長を調整する必要がある。
[2] 高周波スィツチ回路
図 5は DCSと GSMの両システムを共用するための本発明の第 1の態様によ るデュアルバンド用高周波スィッチ回路を示すプロック図である。 この高周波 スィツチ回路は、 DCSと GSMの受信信号をそれぞれ分波する手段として前記 分波回路を用い、 DCS系の送信系と GSM系の送信系を共用回路とし、 共用端 子を用いる。送信経路に設けた第 1の高周波スィツチ SW1は SPST(Single Pole Single Throw)型のスィツチで DCSと GSMの受信信号が送信回路に進入する のを防ぐ。
図 6は図 5の実施例のデュアルバンド用高周波スィツチ回路 SW1の等価回路 を示す。 共用端子 10はアンテナ ANTに接続されており、 アンテナ ANTに対 して DCS/GSMの送信 TXと DCS又は GSMの受信 RXを切り換える。 第 1 のスィツチ回路 SW1はダイオード 202と伝送線路 402を主要素子とし、 ダイ ォ一ド 202のカソ一ドは入出力端子 10に接続され、 アノードは DCSと GSM 共用の送信系 TXにコンデンサ 303を介して接続され、 またコンデンサ 304を 介してアースに接続される伝送線路 402に接続されている。 また伝送線路 402 とコンデンサ 304の間にダイオード制御用の電圧コントロール回路 VC2がある c 共用端子 10と DCSと GSMの各受信系 KSとの間には図 1に示す分波回路 が挿入されており、 この分波回路は、 ダイオードの電圧制御とは関係なく DCS と GSMのいずれか一方の受信信号を通過させるが、他方を遮断し、 もって双方 の受信信号の漏れがなくなるように作動する。 従って、 ダイオードを用いたス イッチ回路が不要になり、 構造が簡略化される。
図 7は本発明の第 2の態様による高周波スィツチ回路を示す。この回路では、 図 5の位相器 3、 4の前段に高周波スイッチ SW2が配置されている。 このよう な構造にすれば、 DCSと PCSのように DCSの受信帯域と PCS 'の送信帯域の 一部が重複する場合でも使用できる。 本例では高周波スィッチ SW1、 SW2 は SPST型であるが、図 8に示すように SPDT型の高周波スイッチにしてもよい。 図 9は、 図 8の高周波スィツチ回路において高周波スィツチ 1及び高周波ス ィツチ 2をダイォ一ドスィツチにより構成した場合の等価回路を示す。 図 6の 回路と異なる点は、 アンテナ側の共用端子 10と受信側の分波回路との間に伝送 線路 401が接続され、 受信側にアノードが接続されたダイォ一ド 201が接続さ れ、 ダイオードの 201のカソ一ドにはアースとの間にコンデンサ 302が接続さ れ、 ダイォ一ドの 201とコンデンサ 302の間にダイォード制御用の電圧コント 口一ル回路 VC 1が接続されている点である。ダイオード 201のアノードと DCS と PCSの各受信 RXとの間に、 図 1に示す分波回路が挿入されている。 この例 でも DCS RXと PCS RXを切り換えるスィッチ回路のダイォ一ドが省略されて いるので、 高周波スイッチ回路の構成は簡単になる。 図 10は本発明の第 3の態様による高周波スィッチ回路を示す。 この回路は、 DCSと PCS及び GSMの 3システムを共用するためのトリブルノ ^ンド用高周波 スィヅチ回路である。 この高周波スィツチ回路でも DCSと PCSの受信信号を それぞれ分波する手段として前記と同様の分波回路を用いる。アンテナ ANTに は第 1及び第 2のフィル夕回路 Fl, F2 を接続している。 第 1のフィル夕回路 F1は口一パスフィル夕 LPFであり、 ここには GSMの受信回路 RXと送信回路 TXを切り換える高周波スィッチ S W 5 が接続している。 第 2のフィル夕回路 F2はハイパスフィル夕 HPFであり、 ここには DCSと PCS用の上記高周波ス ィツチ回路が接続している。 なお SPDT型高周波スィヅチ SW4と DCS/PCS の送信 TXとの間には口一パスフィル夕 7が設けられており、また高周波スィヅ チ S W 5と GSMの送信系 TXとの間には送信信号を送るための口一パスフィル 夕 8が設けている。
図 12は、以下詳述するトリプルバンド用高周波スィツチモジュールの等価回 路の一例を示す。
図 11は本発明の第 4の態様による高周波スイッチ回路を示す。 この高周波ス ィツチ回路は、 DCS、 PCSs GSM及び DAMPSの 4システムを共用するため のクヮトロバンド用高周波スィツチ回路である。 この高周波スィツチ回路も、 DCSと PCSの受信信号の分波、及び GSMと DAMPSの受信信号をそれぞれ分 波する手段として、 前記分波回路を用いる。 また GSM/DAMPSの送信回路を 共用とし、 ここに口一パスフィル夕 8と高周波スイッチ SW6を付加している。 その他の構成については、 図 10に示すトリプルバンド用高周波スィツチ回路と 同じであるので、 説明は省略する。
上記各態様の高周波スィッチ回路において、 弾性表面波 (SAW) フィル夕の 後段に不平衡ー平衡変換回路であるバラン回路 (BAL) を接続しても良い。 弾 性表面波フィル夕は不平衡入力ー不平衡出力型であるので、 ここに予めバラン 回路を設けることにより、 弾性表面波フィル夕の後段の回路や電子部品が平衡 入力型となっている場合には、 別途変換回路を設ける必要がなく、 特にバラン 回路を一体型積層体に内蔵した場合に部品点数を削減でき、 かつ実装面積も削 減できる。 図 10に示すトリプルバンド用高周波スィツチ回路の等価回路を、 図 12を参 照して詳細に説明する。アンテナ ANTと接続する第 1及び第 2のフィル夕回路 Fl, 2は伝送線路とコンデンサ素子により構成されている。 図 12に示す等価 回路では、 GSMの送受信信号を通過させるが DCS及び PCSの送受信信号を減 衰させる第 1のフィル夕 F1として口一パスフィル夕と、 DCS及び: PCSの送受 信信号を通過させるが GSMの送受信信号を減衰させる第 2のフィル夕 F2とし てハイパスフィル夕を備えている。 第 1のフィル夕 ΡΊは、 伝送線路 LF1 とコ ンデンサ CF1を並列接続し、さらにアースとの間にコンデンサ CF3を接続した 構成を有する。 また第 2のフィル夕 F2は、 伝送線路 LF2とコンデンサ CF2を 並列接続し、 アースとの間に伝送線路 LF3を配置し、伝送線路 LF2とコンデン サ CF2にコンデンサ CF4を直列に接続した構成を有する。このような構成によ り、 第 1の送受信系と第 2及び第 3の送受信系の受信信号を分波することがで きる。前記第 1及び第 2のフィル夕 Fl, F2としては、他に下記 a〜hの構成も 採用できる。
a . 第 1のフィル夕回路が口一パスフィル夕からなり、 第 2のフィル夕回路が ノツチフィル夕からなる構成、
b . 第 1のフィル夕回路がノッチフィル夕からなり、 第 2のフィル夕回路がバ ンドパスフィル夕からなる構成、
c 第 1のフィル夕回路がローパスフィル夕からなり、 第 2のフィル夕回路が バンドパスフィル夕からなる構成、
d . 第 1のフィル夕回路がノッチフィル夕からなり、 第 2のフィル夕回路がノ ツチフィル夕からなる構成、
e . 第 1のフィル夕回路がノッチフィル夕からなり、 第 2のフィル夕回路がハ ィパスフィル夕からなる構成、
f . 第 1のフィル夕回路がバンドパスフィル夕からなり、 第 2フィル夕回路が ノ ンドパスフィル夕からなる構成、
g . 第 1のフィル夕回路がバンドパスフィル夕からなり、 第 2のフィル夕回路 がノツチフィル夕からなる構成、
h . 第 1のフィル夕回路がバンドパスフィル夕からなり、 第 2のフィル夕回路 がノヽィパスフィル夕からなる構成。
第 1及び第 2のフィル夕 Fl, F2の後段に配置され、 GSMの送信回路 TX、 受信回路 RXを切り替える第 3の高周波スィヅチ回路 SW5と、 DCSZPCSの 送信回路 ΤΧと DCSの受信回路 DCS RXと PCSの受信回路 PCS EXとを切り 換える高周波スィツチ回路 SW4と、一方の受信信号を通過させるが他方を遮断 して DCSの受信回路 DCS RXと PCSの受信回路 PCS RXとを選別する分波回 路とは伝送線路を主構成とする。
第 3の高周波スィッチ回路 SW5は、 図 12上で上側のスィヅチ回路であり、 GSMの送信回路 TXと受信回路 を切り換える。 スイッチ回路 SW5は、 2 つのダイオード DG1、 DG2と、 2つの伝送線路 LG1、 LG2を主構成とし、 ダ ィォ一ド DG1は GSMの送受信信号の入出力端 IP1と GSM TX間に配置され、 入出力端 IP1にアノードが接続し、 力ソードとアース間に伝送線路 LG1が接続 されている。 入出力端 IP1と GSM RXとの間には伝送線路 LG2が接続し、 伝 送線路 LG2の GSM RX側端部にダイォード DG2の力ソードが接続され、 ダイ オード DG2のアノードとアースとの間にコンデンサ CG6が接続し、 ダイォー ド DG2のアノードとコンデンサ CG6との間に、 抵抗 RGと一端がアースした コンデンサ CG5を介して電圧コントロール回路回路 Vgが接続している。
伝送線路 LG1と伝送線路 LG2は、その共振周波数が GSMの送信信号の周波 数帯域内となるような線路長にしてあり、 好ましくはそれぞれの共振周波数を GSMの送信信号周波数のほぼ中間周波数(897.5 MHz) とすれば、 所望の周波 数帯域内で優れた挿入損失特性を得ることができる。 第 1のフィル夕 F1 から GSM TX間に挿入されるローパスフィル夕回路は、 伝送線路とコンデンサによ り構成されている。 図 12に示す等価回路において、 伝送線路 LG3及びコンデ ンサ CG3、 CG4、 CG7により構成された 7Γ型の口一パスフィル夕は、 ダイォ一 ド DG1と伝送線路 LG1の間に挿入されている。
高周波スイッチ回路 SW4は、 図 12上で下側のスイッチ回路であり、 DCSの 受信回路 DCS Xと、 PCSの受信回路 PCS RXと、 DCS及び PCSの送信回路 DCS/PCS TXとを切り換える。これらのスィヅチ回路は、 2つのダイォード DP1、 DP2と上記分波回路と、 2つの伝送線路 LP1、 LP2とを主構成とする。 ダイォ ―ド DPIは DCS/PCSの送受信信号の入出力端 IP2と DCS/PCS TXとの間に 配置され、 入出力端 IP2にアノードが接続し、 力ソードとアース間に伝送線路 LP1が接続されている。 また入出力端 IP2と分波回路間に伝送線路 LP2が接続 され、 伝送線路 LP2の分波回路側一端とアースとの間に、 力ソードが伝送線路 LP2と接続されたダイォ一ド DP2が配置され、 ダイォ一ド DP2のアノードと アースとの間にコンデンサ CP6が接続されている。ダイォ一ド DP2のァノ一ド とコンデンサ CP6との間に、抵抗 RPと一端がアースしたコンデンサ CP5を介 して電圧コントロール回路 Vdが接続している。 伝送線路 LP5と帯域通過フィ ルタ (バンドバスフィル夕) DCS SAWを接続した DCS RX側の第 1の高周波 回路と、伝送線路 LP6と帯域通過フィル夕 PCS SAWを接続した PCS RX側の 第 2の高周波回路とは DP2の力ソードに並列に接続して、 分波回路を構成して いる。
伝送線路 LP1及び LP2は、共振周波数がともに DCSと PCSの送信信号の下 限周波数と上限周波数の周波数帯域内 (1710 MHz〜 1910 MHz) にあるような 線路長を有する。さらに好ましくは、伝送線路 LP1と LP2の共振周波数を DCS と: PCSの送信信号周波数のほぼ中間周波数 (1810 MHz) とすれば、 それぞれ のモードにおいて優れた電気的特性を得ることができ、 2つの送信信号を 1つ の回路で取り扱うことができる。
このように構成すれば、 DCSと PCSの送信系を別々に取り扱う場合に比べ、 回路構成が簡略ィ匕できるとともに回路の構成部品を少なくすることができ、 優 れた電気的特性を得ながら高周波スィツチモジュールを小型化できる。 また第 1及び第 2の送受信系の送信回路の部品の一部 (例えばアンプ) を共用化する ことも可能であり、 高周波スィツチモジュールを用いた携帯電話機を更に小 型 ·軽量化し得る。
第 2のフィル夕 F2から DCS/PCS TX間に挿入される口一パスフィル夕回路 は、 伝送線路とコンデンサにより構成されている。図 12に示す等価回路におい て、 伝送線路 LP3及びコンデンサ CP3、 CP4、 CP7により構成された 7Γ型の口 —パスフィル夕回路は、ダイォ一ド DPIと分布定数線路 LPlの間に挿入されて いる。 この口一パスフィル夕回路においては、 その分布定数線路 LP3の線路長 を DCS、 PCSの送受信系の送信信号の中間周波数に対し、 人 /8〜入/ 12とす るのが好ましい。 ここで送信信号の中間周波数とは、 例えば第 1の送受信系を DCSとし、第 2の送受信系を PCSとすれば、 DCSの送信信号 1710〜1785 MHz, PCSの送信信号 1850〜1910 MHzの中間周波数、 即ち 1810 MHzである。 こ の中間周波数に対し、 伝送線路 LP3の線路長が人 /8以上であれば、 通過帯域 特性が狭帯域となり、 DCSの送信信号の下限周波数及び PCSの送信信号近傍で 所望の挿入損失特性が得られない。 またえ 12未満では、 2倍波、 3倍波等の 高周波数域における減衰量が劣化する。 いずれの場合も、 高周波スィッチモジ ユールとしての特性が劣化するため、 好ましくない。
本発明の高周波スィッチ回路は、 電圧コントロール回路から外部電圧を給電 してダイオードスィッチの ON/OFFを制御することにより、 第 1、 第 2、 第 3 の送受信系のいずれか一つを選択するものである。図 12に示す等価回路を有す る高周波スィッチ回路の動作を、 以下詳細に説明する。
(1) DCS/PCS TXモ一ド
第 1及び第 2の送信回路 DCS/PCS TXと第 2のフィル夕 F2とを接続する場 合、電圧コントロール回路 Vdから正の電圧が与えられる。電圧コントロール回 路 Vdから与えられた正の電圧は、 CB2、 CP3S CP4、 CP5、 CP6、 CF4のコン デンサ及び DCS SAWs PCS SAWの帯域通過フィル夕によつて直流分が力ヅト され、 ダイオード DP1、 DP2 を含む回路に印加され、 ダイオード DP1、 DP2 が ON状態となる。 ダイオード DPIが ON状態となることにより、第 1及び第 2の送信回路 DCS^PCS TXと接続点 IP2との間のィンピ一ダンスが低くなる。 また ON状態となったダイオード DP2及びコンデンサ CP6によって、 伝送線 路 LP2が高周波的に接地されることにより共振し、 接続点 IP2から第 1及び第 2の受信回路 DCS RX、PCS RX側を見たィンピ一ダンスが非常に大きくなる。 このため、第 1及び第 2の送信回路 DCS/PCS TXからの送信信号が第 1の受信 回路 DCS RX及び第 2の受信回路 PCS RXに漏洩することなく、 第 2のフィル 夕に伝送される。
(2) GSM RXモード
第 1の受信回路 DCS RXと第 2のフィルタ F2を接続する場合、 電圧コント ロール回路 Vdから 0の電圧が与えられることにより、ダイオード DP1、 DP2、 が OFF状態となる。ダイオード DPIが OFF状態となると、接続点 IP2と第 1 及び第 2の送信回路 DCS PCS TXの間のィンピ一ダンスが大きくなる。 OPT 状態となったダイォード DP2によつて、伝送線路 LP2を介して接続点 IP2と接 続点 IP3が接続される。 また伝送線路 LP6と帯域通過フィル夕 PCS SAWの組 合せによる第 2の高周波回路は、 IP3から第 2の受信回路 PCS RX側をみた場 合の第 1の周波数帯 DCSの受信帯域 flでのインビ一ダンスがほぼオープンと なるように調整されている。 このため、第 2のフィル夕 F2からの第 1の周波数 帯 DCSの受信帯域 f 1の受信信号は第 1及び第 2の送信回路 DCS/PCS TX及び 第 2の受信回路 PCS RXに漏洩することなく、 第 1の受信回路 DCS RXに伝送 される。
(3) PCS RXモ一ド
GSM RXモードと同じであるので、 説明を省略する。
(4) GSM TXモード
第 3の送信回路 GSM TXと第 1のフィル夕 F1とを接続する場合、 電圧コン トロール回路 Vgから正の電圧が与えられる。 電圧コントロール回路 Vgから与 えられた正の電圧は、 CB1、 CG6s CG5N CG4、 CG3、 CGIのコンデンサ及び GSM SAWの帯域通過フィル夕によつて直流分が力ヅトされ、ダイォ一ド DG2、 DG1を含む回路に印加され、 ダイオード DG2、 DG1が ON状態となる。 ダイ オード DG1が ON状態となることにより、 第 3の送信回路 GSM TXと接続点 IP1の間のインピーダンスが低くなる。 また ON状態となったダイオード DG2 及びコンデンサ CG6によって、 伝送線路 LG2が高周波的に接地されることに より共振して、接続点 IP1から第 3の受信回路 GSM RX側を見たインピーダン スが非常に大きくなる。 このため、 第 3の送信回路 GSM TXからの送信信号は 第 3の受信回路 GSM RXに漏洩することなく、 第 1のフィル夕に伝送される。(5) GSM RXモード
第 3の受信回路 GSM RXと第 1のフィル夕 F1とを接続する場合、 電圧コン トロール回路 Vgに 0の電圧が与えられることにより、 ダイオード DG1、 DG2 が OFF状態となる。OFF状態となったダイォード DG2によつて、伝送線路 LG2 を介して接続点 IP1と第 3の受信回路 GSM が接続される。またダイオード DG1が OFF状態となることにより接続点 IP1と第 3の送信回路 GSM TXの間 のインピーダンスが大きくなる。このため、第 1のフィル夕 F1からの受信信号 は第 3の送信回路 GSM TX1に漏洩することなく、第 3の受信回路 GSM R に 伝送される。
[3]高周波スィッチモジュ一ル
本発明のもう一つの特徴は、 前記各態様における位相器、 帯域通過フィル夕 及び第 1及び第 2のフィル夕回路、 口一パスフィル夕等を構成する伝送線路及 びコンデンサ素子の少なくと一部、 及び各高周波スィッチの分布定数線路の少 なくとも一部を誘電体からなる複数のグリーンシート上に電極パターンで形成 し、電極パ夕一ン付きグリーンシートを積層、焼結して一体型積層体に形成し、 これらの素子を積層体内に内蔵するとともに、 前記高周波スィツチを耩成する ダイォ一ドを前記一体型積層体上に搭載して、 小型の高周波スィツチモジユー ルとすることである。
本発明の一実施例による積層体の外観を図 14の斜視図に示すとともに、前記 積層体の内部構造を図 13に示す。この実施例は、第 1及び第 2のフィル夕回路、 口一パスフィル夕回路、 スィッチ回路の伝送線路を積層体内に構成し、 ダイォ —ドと、 帯域通過フィル夕及び積層体内に内蔵することのできない高容量値の コンデンサをチップコンデンサとして積層体上に搭載し、 ワンチヅプィヒしたト リプルバンド用の高周波スィツチモジュールを提供する。
高周波スィツチモジュールの積層体は、 低温焼成が可能なセラミヅク誘電体 材料からなり、 厚さが 50〃m〜200 /mのグリーンシートを用意し、 そのグリ —ンシ一ト上に Agを主体とする導電ペーストを印刷して、所望の電極パターン を形成し、 それを適宜積層し、 一体的に焼成させて構成される。 ライン電極は 専らライン幅 100 /m〜400 〃mで形成する。
高周波スィツチモジュールの内部構造を積層順に説明する。 まず下層のグリ ーンシート 20上には、グランド電極 41がほぼ全面に形成されている。そして、 裏面に形成される端子電極に接続するためのスルーホールが 4辺の周辺部に設 けられている。 次に、 電圧コントロール回路 Vg, Vdとダイォ一ド DG2, DP2の間にそれぞ れ接続される 4つのコンデンサ (アースとの間の容量を構成する) を電極パ夕 —ン状に印刷したグリーンシート 21が積層される。その上にほぼ前面にグラン ド電極 42が形成されたグリーンシート 22が積層され、 その上にローパスフィ ル夕等を構成する 5つのコンデンサ電極と 4つのライン電極が形成されたグリ —ンシート 23が積層され、 さらにその上に 2つのコンデンサ電極と 5つのライ ン電極が形成されたグリーンシート 24が積層される。さらに 8つのライン電極 が形成されており、その内の 2つが伝送線路 LP5と LP6を構成するグリーンシ —ト 25が積層され、 続いて 7つのライン電極が形成され、 その内の 2つが伝送 線路 LP5と LP6を構成するグリーンシート 26が積層され、 さらにその上に 4 つのライン電極を構成するグリーンシ一ト 27と 2つのライン電極を構成するグ リーンシート 28が積層される。
これらのライン電極はスルーホールを介して適宜接続され、 第 1、 第 2及び 第 3のスィッチ回路 SW1, SW2, SW5用の伝送線路や位相器 3 , 4用の伝送 線路、 第 1及び第 2のフィル夕回路及び口一パスフィル夕の伝送線路を形成し ている。 ライン電極 43と 44はスルーホール電極で接続され、 等価回路の伝送 線路 LP5を構成し、 ライン電極 45と 46はスル一ホール電極で接続され、 等価 回路の伝送線路 LP6を構成し、他のライン電極もスルーホール電極で接続され、 等価回路の伝送線路 LG2、 LP2、 L G 3、 LP3を構成している。
グリーンシート 28の上に積層されるグリーンシート 29からは、 面実装型の 帯域通過フィル夕である SAW フィル夕が搭載されるように積層体に段差が設 けられて、 DCS、 PCS, GSMの 3つの SAWフィル夕が搭載されている。 また このグリーンシ一ト 29の半分にはグランド電極が形成されている。その上に積 層されるグリーンシート 30、 31、 32には適宜コンデンサ用の電極が形成されて いる。 その上に積層されるグリーンシート 33にはスルーホールのみで、 その上 のグリーンシート 34には、 第 1及び第 2のフィル夕回路 Fl, F2を構成する伝 送線路 LF1、 LF2や LP1、 LG1を構成する各ライン電極がグリーンシート 35 の間で形成されている。その上のグリーンシート 36と最上部のグリーンシート 37には、搭載素子接続用のランドが形成されて、ダイォ一ド DG1、 DG2、 DPI, DP2及びコンデンサ CGIと抵抗 RG, RPが搭載される。
これらのグリ一ンシートを圧着し、 一体焼成して外形寸法が 6.7 mm X 5.0 mm X 1.0 mmの積層体を得た。 この積層体の上に、 ダイオード DG1、 DG2、 DP1、 DP2、 チヅプコンデンサ CF3、 チップ抵抗 RP、 R G及び帯域通過フィル 夕 GSM SAWs DCS SAW、 PCS SAWを搭載した。 図 13はこの素子を搭載し た状態を示す。
この実施例の高周波スィヅチモジュールの各電圧コントロール回路 Vg、 Vd の制御ロジックを表 1に示す。 この制御ロジックにより、 GSM、 DCS, PCSの 各モードを変更する。
Figure imgf000026_0001
この高周波モジュールをマルチバンド用携帯電話に用いたところ、 ノ ヅテリ —の消費が少なく、 また低消費電流の携帯電話が得られることが分かった。 以上の説明において DCS, PCS, GSMシステムを用いたが、 他のシステム (例えば GPS, D-AMPSs TD-SCDMA) と組み合わせても、 同じ効果が得ら れる。
本発明によれば、 回路構成が簡単で電力消費の小さな高周波スィツチ回路、 及び複数の周波数帯の信号を取り扱うことができる軽量 ·小型で安価な高周波 スイッチモジュール、 及びかかる高周波スイッチモジュールを用いた携帯電話 等の無線通信装置が得られる。

Claims

請求の範囲
1. 複数の周波数帯の高周波信号を共用する高周波スィツチ回路であって、 高周波信号が入出力する第 1の端子に接続され、 第 1の周波数帯の送信信号 又は第 2の周波数帯の送信信号を通過させるが、 第 1の周波数帯の受信信号及 び第 2の周波数帯の受信信号を遮断する第 1の高周波スィツチと、
前記第 1の端子に接続された第 1の位相器とその後段に配置された第 1の帯 域通過フィル夕とからなる第 1の高周波回路と、 前記第 1の端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる第 2 の高周波回路とを有する分波回路とを備え、
前記第 1の位相器を構成する伝送線路を、 前記第 2の帯域通過フィル夕の通 過帯域周波数で前記第 1の高周波回路の入力側のインピーダンスがほぼ開放と なる線路長とするとともに、 前記第 2の位相器を構成する伝送線路を、 第 1の 帯域通過フィル夕の通過帯域周波数で前記第 2の高周波回路の入力側のィンピ 一ダンスがほぼ開放となる線路長とし、 もって第 1及び第 2の周波数帯の一方 の受信信号を通過させるが他方を遮断することを特徴とする高周波スィツチ回
Jt§o
2. 請求項 1に記載の高周波スィツチ回路において、前記第 1の端子と分波回 路の間に第 1の周波数帯の受信信号又は第 2の周波数帯の受信信号を通過させ るが、 第 1の周波数帯の送信信号及び第 2の周波数帯の送信信号を遮断する第 2の高周波スィツチが配置されていることを特徴とする高周波スィツチ回路。
3. 複数の周波数帯の高周波信号を共用する高周波スィツチ回路であって、 アンテナ端子に接続され、 互いに通過帯域が異なる第 1及び第 2のフィル夕 回路と、
前記第 2のフィルタ回路に接続され、 第 1の周波数帯の送信信号又は第 2の 周波数帯の送信信号を通過させる.が、 第 1の周波数帯の受信信号及び第 2の周 波数帯の受信信号を遮断する第 1の高周波スィツチと、
前記第 2のフィル夕回路に接続され、 第 1の周波数帯の受信信号又は第 2の 周波数帯の受信信号を通過させるが、 第 1の周波数帯の送信信号及び第 2の周 波数帯の送信信号を遮断する第 2の高周波スィツチと、
前記第 2の高周波スィツチに接続され、 前記第 1及び第 2の周波数帯のいず れか一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 2の高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置され た第 1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続さ れた第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる 第 2の高周波回路とを有する分波回路と、
前記第 1のフィル夕回路に接続され、 第 3の送受信系の送信信号と受信信号 とを切り換える高周波スィツチ回路と
を具備することを特徴とする高周波スィツチ回路。
4. 複数の周波数帯の高周波信号を共用する高周波スィツチ回路であって、 アンテナ端子に接続され、 互いに通過帯域が異なる第 1及び第 2のフィル夕 回路と、
前記第 2のフィル夕回路に接続され、 第 1の周波数帯の送信信号及び第 2の 周波数帯の送信信号を通過させる信号経路と、 第 1の周波数帯の受信信号及び 第 2の周波数帯の受信信号を通過させる信号経路とを切り替える第 1の高周波 スィツチと、
前記第 1の高周波スィッチに接続され、 前記第 1又は第 2の周波数帯のいず れか一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 1の高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置され た第 1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続さ れた第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる 第 2の高周波回路とを有する分波回路と、
前記第 1のフィルタ回路に接続され、 第 3の送受信系の送信信号と受信信号 とを切り換える高周波スィツチ回路と
を具備することを特徴とする高周波スィツチ回路。
5. 複数の周波数帯の高周波信号を共用する高周波スィツチ回路であって、 アンテナ端子に接続され、 互いに通過帯域が異なる第 1及び第 2のフィル夕 回路と、 前記第 2のフィル夕回路に接続され、 第 1の周波数帯の送信信号又は第 2の 周波数帯の送信信号を通過させるが、 第 1の周波数帯の受信信号及び第 2の周 波数帯の受信信号を遮断する第 1の高周波スィツチと、
前記第 2のフィル夕回路に接続され、 第 1の周波数帯の受信信号又は第 2の 周波数帯の受信信号を通過させるが、 第 1の周波数帯の送信信号及び第 2の周 波数帯の送信信号を遮断する第 2の高周波スィツチと、
前記第 2の高周波スィツチに接続され、 第 1又は第 2の周波数帯のいずれか 一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 2の 高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置された第 1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる第 2 の高周波回路とを有する分波回路と、
前記第 1のフィル夕回路に接続され、 第 3の周波数帯の送信信号又は第 4の 周波数帯の送信信号を通過させるが、 第 3の周波数帯の受信信号及び第 4の周 波数帯の受信信号を遮断する第 3の高周波スィツチと、
前記第 1のフィル夕回路に接続され、 第 3の周波数帯の受信信号又は第 4の 周波数帯の受信信号を通過させるが、 第 3の周波数帯の送信信号及び第 4の周 波数帯の送信信号を遮断する第 4の高周波スィツチと、
前記第 4の高周波スィツチに接続され、 第 3又は第 4の周波数帯のいずれか 一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 4の 高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置された第 1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる第 2 の高周波回路とを有する分波回路と
を具備することを特徴とする高周波スィツチ回路。
6. 複数の周波数帯の高周波信号を共用する高周波スィツチ回路であって、 アンテナ端子に接続され、 互いに通過帯域が異なる第 1及び第 2のフィル夕 回路と、'
前記第 2のフィル夕回路に接続され、 第 1の周波数帯の送信信号及び第 2の 周波数帯の送信信号を通過させる信号経路と、 第 1の周波数帯の受信信号及び 第 2の周波数帯の受信信号を通過させる信号経路とを切り替える第 1の高周波 スィツチと、
前記第 1の高周波スィツチに接続され、 第 1又は第 2の周波数帯のいずれか 一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 1の 高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置された第 1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる第 2 の高周波回路とを有する分波回路と、
前記第 1のフィル夕回路に接続され、 第 3の周波数帯の送信信号及び第 4の 周波数帯の送信信号を通過させる信号経路と、 第 3の周波数帯の受信信号及び 第 4の周波数帯の受信信号を通過させる信号経路とを切り替える第 2の高周波 スィツチと、
前記第 2の高周波スィツチに接続され、 第 3又は第 4の周波数帯のいずれか —方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 2の 高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置された第 1の帯域通過フィル夕とからなる第 1の高周波回路と、 前記端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィル夕とからなる第 2 の高周波回路とを有する分波回路と
を具備することを特徴とする高周波スィツチ回路。
7. 請求項 1〜6のいずれかに記載の高周波スィツチ回路において、 前記送受 信系の送信回路における複数の周波数帯の送信回路を共用することを特徴とす る高周波スィヅチ回路。
8. 請求項 1〜7のいずれかに記載の高周波スィッチ回路において、 前記伝送 線路の線路長が人/ ^10〜人 /4であることを特徴とする高周波スィツチ回路。
9. 請求項 1〜8のいずれかに記載の高周波スィツチ回路において、 前記第 1 及び第 2の帯域通過フィル夕が、弾性表面波フィル夕、積層型誘電体フィル夕、 同軸型共振器フィル夕、 又はバルク波フィル夕であることを特徴とする高周波 スィツチ回路。
10. 請求項 1〜8のいずれかに記載の高周波スィツチ回路において、 前記分 波回路の帯域通過フィル夕に不平衡出力型弾性表面波フィル夕を用いるととも に、 前記不平衡出力型弾性表面波フィル夕の出力に不平衡—平衡変換機能を有 するバランが接続されていることを特徴とする高周波スィツチ回路。
11. 請求項 1〜8のいずれかに記載の高周波スィヅチ回において、前記高周波 スィヅチにダイオードを用いることを特徴とする高周波スィヅチ回路。
12. 高周波信号が入出力する第 1の端子に接続された第 1の位相器と、 その 後段に配置された第 1の帯域通過フィル夕と、 前記第 1の端子に接続された第 2の位相器と、 その後段に配置された第 2の帯域通過フィル夕とからなり、 前 記第 1の位相器と前記第 2の位相器は、 誘電体グリーンシートを積層し、 焼結 してなる積層体に内蔵されており、 前記第 1の通過帯域フィル夕及び第 2の通 過帯域フィル夕は前記積層体上に搭載されていることを特徴とする分波器モジ ュ——レ。
13. 請求項 12 に記載の分波器モジュールにおいて、 前記第 1の位相器は、 前記第 2の帯域通過フィル夕の通過帯域周波数で入力側のィンピーダンスがほ ぼ開放となる線路長の伝送線路により構成され、 前記第 2の位相器は、 前記第 1の帯域通過フィル夕の通過帯域周波数で入力側のインピーダンスがほぼ開放 となる線路長の伝送線路により構成されていることを特徴とする分波器モジュ ール。
14. 通過帯域の異なる複数の送受信系を扱う高周波スイッチモジュールであ つて、 請求項 1〜11のいずれかに記載の高周波スィッチ回路の位相器、 帯域通 過フィル夕及び第 1及び第 2のフィル夕回路は伝送線路とコンデンサ素子によ り構成されていることを特徴とする高周波スィヅチモジュール。
15. 請求項 14に記載の高周波スイッチモジュールにおいて、 前記位相器、 帯域通過フィル夕及び第 1及び第 2のフィル夕回路の伝送線路及びコンデンサ 素子の少なくと一部、及び前記第 1〜4の高周波スィツチの伝送線路の少なくと も一部は、 誘電体からなる複数のグリーンシート上に電極ノ 夕一ンにより形成 し、 このグリーンシートを積層、 焼結してなる一体型積層体に内蔵され、 前記 高周波スィツチを構成するダイォードは前記一体型積層体上に搭載されている ことを特徴とする高周波スィツチモジュール。
16. 請求項 14又は 15に記載の高周波スィツチモジュールを具備することを 特徴とする無線通信装置。
17. 請求項 14又は 15に記載の高周波スィツチモジュールを具備することを 特徴とする携帯電話機。
18. 請求項 1〜: 11のいずれかに記載の高周波スィツチ回路と、前記高周波ス ィツチ回路の動作モ一ドを決めるための電圧を付与する電圧コント口一ル回路 とを具備することを特徴とする携帯電話機。
J P 00/9435
補正書の請求の範囲
[2001年 5月 1 8日 (1 8. 05. 97 ) 国際事務局受理:出願当初の請求の範囲 3, 4 及び 1 1一 1 3は補正された;他の請求の範囲は変更なし。 ( 5頁) ]
Figure imgf000033_0001
Statement
条約 1 9条に基づく説明書
補正書の請求の範囲
[ 2 0 0 1年 5月 1 8日 (1 8 . 0 5 . 9 7 ) 国際事務局受理:出願当初の請求の範囲 3, 4 及び 1 1一 1 3は補正された;他の請求の範囲は変更なし。 (6頁) ]
1. 複数の周波数帯の高周波信号を共用する高周波スィツチ回路であって、 高周波信号が入出力する第 1の端子に接続され、 第 1の周波数帯の送信信号 又は第 2の周波数帯の送信信号を通過させるが、 第 1の周波数帯の受信信号及 び第 2の周波数帯の受信信号を遮断する第 1の高周波スィツチと、
前記第 1の端子に接続された第 1の位相器とその後段に配置された第 1の帯 域通過フィルタとからなる第 1の高周波回路と、 前記第 1の端子に接続された 第 2の位相器とその後段に配置された第 2の帯域通過フィルタとからなる第 2 の高周波回路とを有する分波回路とを備え、
前記第 1の位相器を構成する伝送線路を、 前記第 2の帯域通過フィルタの通 過帯域周波数で前記第 1の高周波回路の入力側のインピーダンスがほぼ開放と なる線路長とするとともに、 前記第 2の位相器を構成する伝送線路を、 第 1の 帯域通過フィルタの通過帯域周波数で前記第 2の高周波回路の入力側のインピ 一ダンスがほぼ開放となる線路長とし、 もって第 1及ぴ第 2の周波数帯の一方 の受信信号を通過させるが他方を遮断することを特徴とする高周波スィ'ッチ回 路。
2. 請求項 1に記載の高周波スィツチ回路において、前記第 1の端子と分波回 路の間に第 1の周波数帯の受信信号又は第 2の周波数帯の受信信号を通過させ るが、 第 1の周波数帯の送信信号及び第 2の周波数帯の送信信号を遮断する第 2の高周波スィツチが配置されていることを特徴とする高周波スィツチ回路。
3. (補正後) 複数の周波数帯の高周波信号を共用する高周波スィッチ回路で めってヽ
アンテナ端子に接続され、 互いに通過帯域が異なる第 1及び第 2のフィルタ 回路と、
前記第 2のフィルタ回路に接続され、 第 1の周波数帯の送信信号又は第 2の 周波数帯の送信信号を通過させるが、 第 1の周波数帯の受信信号及び第 2の周 波数帯の受信信号を遮断する第 1の高周波スィッチと、
前記第 2のフィルタ回路に接続され、 第 1の周波数帯の受信信号又は第 2の
31
補正された用紙 (条約第 19条) 周波数帯の受信信号を通過させるが、 第 1の周波数帯の送信信号及び第 2の周
32 正された用紙 (条約第 19条) 波数帯の送信信号を遮断する第 2の高周波スィツチと、
前記第 2の高周波スィツチに接続され、 前記第 1及ぴ第 2の周波数帯のいず れか一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 2の高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置され た第 1の帯域通過フィルタとからなる第 1の高周波回路と、 前記端子に接続さ れた第 2の位相器とその後段に配置された第 2の帯域通過フィルタとからなる 第 2の高周波回路とを有する分波回路と、
前記第 1のフィルタ回路に接続され、 第 3の送受信系の送信信号経路と受信 信号経路とを切り換える高周波スィツチ回路と
を具備することを特 ¾とする高周波スィツチ回路。
4. (補正後) 複数の周波数帯の高周波信号を共用する高周波スィッチ回路で あって、
ァンテナ端子に接続され、 互いに通過帯域が異なる第 1及び第 2のフィルタ 回路と、
前記第 2のフィルタ回路に接続され、 第 1の周波数帯の送信信号及ぴ第 2の 周波数帯の送信信号を通過させる信号経路と、 第 1の周波数帯の受信信号及び 第 2の周波数帯の受信信号を通過させる信号経路とを切り替える第 1の高周波 前記第 1の高周波スィツチに接続され、 前記第 1又は第 2の周波数帯のいず れか一方の受信信号を通過させるが他方を遮断する分波回路であって、 前記第 1の高周波スィツチ側の端子に接続された第 1の位相器とその後段に配置され た第 1の帯域通過フィルタとからなる第 1の高周波回路と、 前記端子に接続さ れた第 2の位相器とその後段に配置された第 2の帯域通過フィルタとからなる 第 2の高周波回路とを有する分波回路と、
前記第 1のフィルタ回路に接続され、 第 3の送受信系の送信信号経路と受信 信号経路とを切り換える高周波スィツチ回路と
を具備することを特徴とする高周波スィツチ回路。
5. 複数の周波数帯の高周波信号を共用する高周波スィツチ回路であって、 ァンテナ端子に接続され、 互いに通過帯域が異なる第 1及ぴ第 2のフィルタ
33
捕正された用紙 (条約第 19条) 回路と、
34 正された用紙 (条約第 19条)
10. 請求項 1〜8のいずれかに記載の高周波スィッチ回路において、前記分 波回路の帯域通過フィルタに不平衡出力型弾性表面波フィルタを用いるととも に、 前記不平衡出力型弾性表面波フィルタの出力に不平衡一平衡変換機能を有 するパランが接続されていることを特徴とする高周波スィツチ回路。
11. (補正後) 請求項 1〜8のいずれかに記載の高周波スィッチ回路において、 前記高周波スィツチにダイオードを用いることを特徴とする高周波スィツチ回 路。
12. (補正後) 高周波信号が入出力する第 1の端子に接続された第 1の位相器 とその後段に配置された第 1の帯域通過フィルタとからなる第 1の高周波回路 と、 前記第 1の端子に接続された第 2の位相器とその後段に配置された第 2の 帯域通過フィルタからなる第 2の高周波回路と力 らなり、 前記第 1の位相器と 前記第 2の位相器は、 誘電体グリーンシートを積層し、 焼結してなる積層体に 内蔵されており、 前記第 1の通過帯域フィルタ及び第 2の通過帯域フィルタは 前記積層体上に搭載されていることを特徴とする分波器モジュール。
13. (補正後) 請求項 12に記載の分波器モジュールにおいて、前記第 1の位相 器は、 前記第 2の帯域通過フィルタの通過帯域周波数で前記第 1の高周波回路 の入力側のインピーダンスがほぼ開放となる線路長の伝送線路により構成され、 前記第 2の位相器は、 前記第 1の帯域通過フィルタの通過帯域周波数で前記第 2の高周波回路の入力側のインピーダンスがほぼ開放となる線路長の伝送線路 により構成されていることを特徴とする分波器モジュール。
14. 通過帯域の異なる複数の送受信系を扱う高周波スィツチモジュールであ つて、 請求項 1〜11のいずれかに記載の高周波スィッチ回路の位相器、 帯域通 過フィルタ及ぴ第 1及ぴ第 2のフィルタ回路は伝送線路とコンデンサ素子によ り構成されていることを特徴とする高周波スィッチモジュール。
15. 請求項 14に記載の高周波スィッチモジュールにおいて、 前記位相器、 帯域通過フィルタ及ぴ第 1及ぴ第 2のフィルタ回路の伝送線路及ぴコンデンサ 素子の少なくと一部、及ぴ前記第 1〜4の高周波スィッチの伝送線路の少なくと も一部は、 誘電体からなる複数のグリーンシート上に電極パターンにより形成 し、 このグリーンシートを積層、 焼結してなる一体型積層体に内蔵され、 前記
35
補正された用紙 (条約第 19条) 高周波スィツチを構成するダイォードは前記一体型積層体上に搭載されている
36 き正された甩紙 (条約第二.条)
条約 1 9条に基づく説明書
請求の範囲第 3項は、 本発明の高周波スィッチ回路が備える送受信信号の切り換え る高周波スィッチ回路を明らかにしたものである。 請求の範囲第 4項は、 本発明の高周波スィツチ回路が備える送受信信号の切り換え る高周波スィツチ回路を明らかにしたものである。 請求の範囲第 1 1項は、 誤記の訂正である。 請求の範囲第 1 2項は、 分波器モジュールを明らかにしたものである。 請求の範囲第 1 3項は、 分波器モジュールを明らかにしたものである。
37
PCT/JP2000/009435 1999-12-28 2000-12-28 Commutateur haute frequence, module de commutation haute frequence et dispositif de communications sans fil WO2001048935A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT00986004T ATE488052T1 (de) 1999-12-28 2000-12-28 Hochfrequenzschalter, hochfrequenz-schaltermodul und drahtloses nachrichtengerat
US09/914,448 US7003312B2 (en) 1999-12-28 2000-12-28 High-frequency switch circuit, high-frequency switch module and wireless communication device
JP2001548537A JP4336931B2 (ja) 1999-12-28 2000-12-28 高周波スイッチモジュール
DE60045215T DE60045215D1 (de) 1999-12-28 2000-12-28 Hochfrequenzschalter, hochfrequenz-schaltermodul und drahtloses nachrichtengerat
EP00986004A EP1168650B1 (en) 1999-12-28 2000-12-28 High-frequency switch, high-frequency switch module, and wireless communication device
HK02104780.4A HK1043263B (zh) 1999-12-28 2002-06-27 高頻開關、高頻開關模組與無線通訊裝置
US11/242,926 US7471962B2 (en) 1999-12-28 2005-10-05 High-frequency switch circuit, high-frequency switch module and wireless communications device comprising it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP37274799 1999-12-28
JP11-372747 1999-12-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09914448 A-371-Of-International 2000-12-28
US11/242,926 Division US7471962B2 (en) 1999-12-28 2005-10-05 High-frequency switch circuit, high-frequency switch module and wireless communications device comprising it

Publications (1)

Publication Number Publication Date
WO2001048935A1 true WO2001048935A1 (fr) 2001-07-05

Family

ID=18500988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009435 WO2001048935A1 (fr) 1999-12-28 2000-12-28 Commutateur haute frequence, module de commutation haute frequence et dispositif de communications sans fil

Country Status (7)

Country Link
US (2) US7003312B2 (ja)
EP (2) EP1168650B1 (ja)
JP (3) JP4336931B2 (ja)
AT (2) ATE545206T1 (ja)
DE (1) DE60045215D1 (ja)
HK (2) HK1144986A1 (ja)
WO (1) WO2001048935A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223634A2 (en) 2000-12-26 2002-07-17 Matsushita Electric Industrial Co., Ltd. High-frequency switch, laminated high-frequency switch, high-frequency radio unit, and high-frequency switching method
JP2003037472A (ja) * 2001-07-23 2003-02-07 Hitachi Metals Ltd 複合高周波部品及びそれを用いた無線送受信装置
EP1283599A1 (fr) * 2001-08-09 2003-02-12 Sagem SA Système d'émission/réception pour téléphone mobile multibande et multimode
EP1283600A1 (fr) * 2001-08-09 2003-02-12 Sagem SA Système d'émission/réception pour téléphone mobile multibande et multimode
JP2003143033A (ja) * 2001-11-01 2003-05-16 Hitachi Metals Ltd 高周波スイッチモジュール
JP2003209487A (ja) * 2001-12-13 2003-07-25 Agilent Technol Inc 差動受信ポート付きデュプレクサによるフィルタリング方法
EP1473847A1 (en) * 2002-01-31 2004-11-03 Hitachi Metals, Ltd. Switch circuit and composite high-frequency part
JP2005020368A (ja) * 2003-06-26 2005-01-20 Nippon Telegr & Teleph Corp <Ntt> マルチビームアンテナ
JP2005064778A (ja) * 2003-08-11 2005-03-10 Sony Ericsson Mobilecommunications Japan Inc フロントエンドモジュール
WO2005057803A1 (ja) * 2003-12-11 2005-06-23 Hitachi Metals, Ltd. マルチバンド高周波回路、マルチバンド高周波回路部品及びこれを用いたマルチバンド通信装置
JP2006237978A (ja) * 2005-02-24 2006-09-07 Hitachi Metals Ltd マルチバンド高周波モジュールおよびこれを用いたマルチバンド通信装置
US7356349B2 (en) 2003-06-05 2008-04-08 Murata Manufacturing Co., Ltd. High-frequency module and communication apparatus
JP2008522533A (ja) * 2004-12-02 2008-06-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 分散型ダイプレクサ
US7397324B2 (en) * 2005-05-31 2008-07-08 Industrial Technology Research Institute Multilayer chip-type triplexer
US7420438B2 (en) 2003-02-14 2008-09-02 Tdk Corporation Front end module
US7659795B2 (en) 2005-08-05 2010-02-09 Hitachi, Ltd. Antenna duplexer and wireless terminal using the same
JP2010523050A (ja) * 2007-03-26 2010-07-08 トムソン ライセンシング 6ポート線形ネットワークシングルワイヤマルチスイッチ送受信機

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027779B2 (en) * 2000-08-22 2006-04-11 Hitachi Metals, Ltd. Laminated-type high-frequency switch module
EP1333588B1 (en) * 2000-11-01 2012-02-01 Hitachi Metals, Ltd. High-frequency switch module
JP2002204135A (ja) * 2000-12-28 2002-07-19 Matsushita Electric Ind Co Ltd 高周波低域通過フィルタ
JP2002246942A (ja) * 2001-02-19 2002-08-30 Sony Corp スイッチ装置および携帯通信端末装置
DE60208660T2 (de) * 2001-03-29 2006-07-13 Matsushita Electric Industrial Co., Ltd., Kadoma Hochfrequenzschalter , funkkommunikationsgerät und hochfrequenzschaltungsverfahren
US6865376B2 (en) * 2001-07-03 2005-03-08 Kyocera Wireless Corp. System and method for a GPS enabled antenna
US7027777B2 (en) * 2001-10-30 2006-04-11 Matsushita Electric Industrial Co., Ltd. High frequency switch and high frequency radio communication apparatus
JP2003347963A (ja) * 2002-05-27 2003-12-05 Samsung Electro Mech Co Ltd 高周波複合部品
GB0217932D0 (en) * 2002-08-02 2002-09-11 Koninkl Philips Electronics Nv High frequency module
DE60330173D1 (de) * 2002-10-14 2009-12-31 Nxp Bv Sende- und empfangsantennenschalter
EP1414102A1 (de) * 2002-10-25 2004-04-28 Siemens Aktiengesellschaft Antennenschalter
US7295814B2 (en) 2003-02-05 2007-11-13 Hitachi Metals, Ltd. Antenna switch circuit and antenna switch module
US7221922B2 (en) * 2003-02-14 2007-05-22 Hitachi Metals, Ltd. Switch circuit and composite high frequency elements
US7376440B2 (en) * 2003-04-16 2008-05-20 Kyocera Wireless Corp. N-plexer systems and methods for use in a wireless communications device
US7049906B2 (en) 2003-05-29 2006-05-23 Sony Ericsson Mobile Communications Ab Quad band antenna interface modules including matching network ports
JP3905866B2 (ja) * 2003-06-26 2007-04-18 ソニー株式会社 アンテナ切り替え回路およびこれを用いた無線通信装置
US7245882B1 (en) * 2003-07-17 2007-07-17 Atheros Communications, Inc. Method and apparatus for a signal selective RF transceiver system
JP3810011B2 (ja) * 2003-08-08 2006-08-16 Tdk株式会社 高周波スイッチモジュールおよび高周波スイッチモジュール用多層基板
DE10352642B4 (de) * 2003-11-11 2018-11-29 Snaptrack, Inc. Schaltung mit verringerter Einfügedämpfung und Bauelement mit der Schaltung
CN1875549A (zh) * 2003-11-11 2006-12-06 株式会社村田制作所 高频模件
US20050245201A1 (en) * 2004-04-30 2005-11-03 Nokia Corporation Front-end topology for multiband multimode communication engines
US7773956B2 (en) * 2004-06-30 2010-08-10 Hitachi Metals, Ltd. Multi-band high frequency circuit, multi-band high-frequency component and multi-band communications apparatus
DE602005010202D1 (de) * 2005-02-28 2008-11-20 Tdk Corp Zweimoden Antennenschaltmodul
US7187230B2 (en) * 2005-03-18 2007-03-06 Nokia Corporation Transferred-impedance filtering in RF receivers
US20070173210A1 (en) * 2006-01-26 2007-07-26 Lg Innotek Co., Ltd Signal processing apparatus
US20080102762A1 (en) * 2006-10-30 2008-05-01 Lianjun Liu Methods and apparatus for a hybrid antenna switching system
DE102006052433A1 (de) * 2006-11-07 2008-05-08 Rohde & Schwarz Gmbh & Co. Kg Hochfrequenz-Umschalter
DE102007021581B4 (de) * 2007-05-08 2018-09-27 Snaptrack Inc. Elektrisches Bauelement mit einer Frontend-Schaltung
US8260347B2 (en) * 2008-05-20 2012-09-04 Intel Mobile Communications GmbH Radio frequency communication devices and methods
US20090289861A1 (en) * 2008-05-20 2009-11-26 Infineon Technologies Ag Radio frequency communication devices and methods
US8565814B2 (en) * 2008-08-28 2013-10-22 Intel Mobile Communications GmbH Radio frequency communication devices and methods
US9320039B2 (en) * 2008-10-31 2016-04-19 Unwired Planet, Llc Method and arrangement for user equipment switching between carriers in different frequency bands
US8457685B1 (en) * 2009-04-20 2013-06-04 Rf Micro Devices, Inc. Method and system for increasing efficiency in a radio front-end
JP2012023440A (ja) * 2010-07-12 2012-02-02 Sony Corp 通信装置、通信システム及び通信方法
JP5187361B2 (ja) * 2010-08-16 2013-04-24 株式会社村田製作所 高周波モジュール
US9252830B2 (en) 2010-12-10 2016-02-02 Blackberry Limited Communications device with multiple receive and transmit paths and related methods
CN102104392B (zh) 2010-12-15 2013-10-09 华为技术有限公司 多频段多路收发设备及方法、基站系统
WO2012093539A1 (ja) * 2011-01-06 2012-07-12 株式会社村田製作所 高周波モジュール
US8324964B2 (en) 2011-01-25 2012-12-04 Rf Micro Devices, Inc. High efficiency multiple power mode linear radio frequency power amplifier
US8750809B2 (en) * 2011-08-03 2014-06-10 Blackberry Limited Mobile wireless communications device with selectively controlled antenna and filter switches and related methods
KR20130127782A (ko) * 2012-05-15 2013-11-25 삼성전기주식회사 스위칭 회로 및 이를 포함하는 무선통신 시스템
US20140179241A1 (en) * 2012-12-20 2014-06-26 Qualcomm Incorporated Concurrent matching network using transmission lines for low loss
US9843342B2 (en) 2014-08-12 2017-12-12 Qorvo Us, Inc. Tunable RF transmit/receive multiplexer
US9780866B2 (en) 2014-08-12 2017-10-03 Qorvo Us, Inc. Configurable RF transmit/receive multiplexer
US10312960B2 (en) * 2014-08-12 2019-06-04 Qorvo Us, Inc. Switchable RF transmit/receive multiplexer
KR102462478B1 (ko) * 2014-08-29 2022-11-02 스카이워크스 솔루션즈, 인코포레이티드 반송파 집성을 위한 도미노 회로 및 관련 아키텍처들 및 방법들
US10547336B2 (en) * 2015-10-23 2020-01-28 Qorvo Us, Inc. Radio frequency circuitry for carrier aggregation
JP6545398B2 (ja) * 2016-11-08 2019-07-17 三菱電機株式会社 マルチバンドフィルタ
US10560867B2 (en) 2016-12-29 2020-02-11 Qorvo Us, Inc. Reducing intermodulation distortion in a radio frequency circuit
KR101912288B1 (ko) * 2017-06-12 2018-10-29 삼성전기 주식회사 파워 증폭 시스템의 밴드 선택 스위치 장치
CN110022160B (zh) 2017-12-07 2022-07-05 英飞凌科技股份有限公司 用于射频滤波器的系统和方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677707A (ja) * 1992-07-08 1994-03-18 Matsushita Electric Ind Co Ltd アンテナスイッチ共用器
JPH0697315A (ja) * 1992-09-09 1994-04-08 Hitachi Ltd 回路素子モジュール
JPH07202505A (ja) * 1993-12-28 1995-08-04 Murata Mfg Co Ltd 高周波スイッチ
JPH07226607A (ja) * 1994-02-10 1995-08-22 Hitachi Ltd 分波器、分波器モジュールおよび無線通信装置
JPH08237166A (ja) * 1995-02-24 1996-09-13 Murata Mfg Co Ltd Rfスイッチ内蔵アンテナ共用器
JPH09505706A (ja) * 1993-12-02 1997-06-03 ノーザン・テレコム・リミテッド 倍モード表面波共振器
JPH10261934A (ja) * 1997-03-18 1998-09-29 Mitsubishi Materials Corp 圧電薄膜共振子
JPH11154804A (ja) * 1997-11-20 1999-06-08 Hitachi Ltd 高周波回路装置
JPH11225089A (ja) * 1997-12-03 1999-08-17 Hitachi Metals Ltd マルチバンド用高周波スイッチモジュール
JPH11355174A (ja) * 1998-06-11 1999-12-24 Tokin Corp アンテナ共用器
JP2000165288A (ja) * 1998-11-27 2000-06-16 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置
JP2000188522A (ja) * 1998-12-22 2000-07-04 Hitachi Ltd 移動無線端末及び弾性表面波アンテナ共用器
JP2000286609A (ja) * 1999-03-31 2000-10-13 Kyocera Corp アンテナ回路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB233669A (ja) 1924-05-06 1925-12-17 J.P. Bemberg Aktiengesellschaft
JP2874496B2 (ja) 1992-12-26 1999-03-24 株式会社村田製作所 高周波スイッチ
JP3445833B2 (ja) 1994-07-08 2003-09-08 アルパイン株式会社 車載用ナビゲーション装置
JPH08321738A (ja) 1995-05-24 1996-12-03 Matsushita Electric Ind Co Ltd 二周波数帯域通過フィルタ及び二周波数分波器及び二周波数合成器
US5926466A (en) * 1995-05-16 1999-07-20 Matsushita Electric Industrial Co., Ltd. Time division multiple access FDD wireless unit and time division multiple access FDD/TDD dual mode wireless unit
JP3139327B2 (ja) * 1995-05-31 2001-02-26 株式会社村田製作所 高周波複合部品
US5786738A (en) * 1995-05-31 1998-07-28 Fujitsu Limited Surface acoustic wave filter duplexer comprising a multi-layer package and phase matching patterns
US5790000A (en) * 1995-06-16 1998-08-04 Northern Telecom Limited Cascaded surface wave device filters providing balanced and unbalanced signal connections
DE69612041T2 (de) * 1995-07-24 2001-08-02 Murata Manufacturing Co Hochfrequenzschalter
US6070059A (en) * 1995-12-05 2000-05-30 Murata Manufacturing Co., Ltd. High-frequency switch
US5915212A (en) * 1996-08-29 1999-06-22 Ericsson Inc. System and method for achieving extended radio coverage and additional capacity using extended frequency bands
JP3094920B2 (ja) * 1996-10-11 2000-10-03 日本電気株式会社 半導体スイッチ
JPH10145270A (ja) * 1996-11-14 1998-05-29 Murata Mfg Co Ltd 高周波デバイス
JP3191213B2 (ja) * 1998-04-28 2001-07-23 日立金属株式会社 高周波スイッチモジュール
JP2983016B2 (ja) 1997-12-03 1999-11-29 日立金属株式会社 マルチバンド用高周波スイッチモジュール
EP1418679B1 (en) * 1997-12-03 2006-07-26 Hitachi Metals, Ltd. Multiband high-frequency switching module

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677707A (ja) * 1992-07-08 1994-03-18 Matsushita Electric Ind Co Ltd アンテナスイッチ共用器
JPH0697315A (ja) * 1992-09-09 1994-04-08 Hitachi Ltd 回路素子モジュール
JPH09505706A (ja) * 1993-12-02 1997-06-03 ノーザン・テレコム・リミテッド 倍モード表面波共振器
JPH07202505A (ja) * 1993-12-28 1995-08-04 Murata Mfg Co Ltd 高周波スイッチ
JPH07226607A (ja) * 1994-02-10 1995-08-22 Hitachi Ltd 分波器、分波器モジュールおよび無線通信装置
JPH08237166A (ja) * 1995-02-24 1996-09-13 Murata Mfg Co Ltd Rfスイッチ内蔵アンテナ共用器
JPH10261934A (ja) * 1997-03-18 1998-09-29 Mitsubishi Materials Corp 圧電薄膜共振子
JPH11154804A (ja) * 1997-11-20 1999-06-08 Hitachi Ltd 高周波回路装置
JPH11225089A (ja) * 1997-12-03 1999-08-17 Hitachi Metals Ltd マルチバンド用高周波スイッチモジュール
JPH11355174A (ja) * 1998-06-11 1999-12-24 Tokin Corp アンテナ共用器
JP2000165288A (ja) * 1998-11-27 2000-06-16 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置
JP2000188522A (ja) * 1998-12-22 2000-07-04 Hitachi Ltd 移動無線端末及び弾性表面波アンテナ共用器
JP2000286609A (ja) * 1999-03-31 2000-10-13 Kyocera Corp アンテナ回路

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223634A2 (en) 2000-12-26 2002-07-17 Matsushita Electric Industrial Co., Ltd. High-frequency switch, laminated high-frequency switch, high-frequency radio unit, and high-frequency switching method
JP2003037472A (ja) * 2001-07-23 2003-02-07 Hitachi Metals Ltd 複合高周波部品及びそれを用いた無線送受信装置
JP4737580B2 (ja) * 2001-07-23 2011-08-03 日立金属株式会社 複合高周波部品及びそれを用いた無線送受信装置
EP1283599A1 (fr) * 2001-08-09 2003-02-12 Sagem SA Système d'émission/réception pour téléphone mobile multibande et multimode
EP1283600A1 (fr) * 2001-08-09 2003-02-12 Sagem SA Système d'émission/réception pour téléphone mobile multibande et multimode
FR2828626A1 (fr) * 2001-08-09 2003-02-14 Sagem Systeme d'emission/reception pour telephone mobile multibande et multimode
FR2828624A1 (fr) * 2001-08-09 2003-02-14 Sagem Systeme d'emission/reception pour telephone mobile multibande et multimode
JP2003143033A (ja) * 2001-11-01 2003-05-16 Hitachi Metals Ltd 高周波スイッチモジュール
JP2003209487A (ja) * 2001-12-13 2003-07-25 Agilent Technol Inc 差動受信ポート付きデュプレクサによるフィルタリング方法
JP4495905B2 (ja) * 2001-12-13 2010-07-07 アバゴ・テクノロジーズ・ワイヤレス・アイピー(シンガポール)プライベート・リミテッド 差動受信ポート付きデュプレクサによるフィルタリング方法
US7167687B2 (en) 2002-01-31 2007-01-23 Hitachi Metals, Ltd. Switch circuit and composite high-frequency part
EP1473847A4 (en) * 2002-01-31 2005-04-27 Hitachi Metals Ltd SWITCHING CIRCUIT AND HIGH-FREQUENCY COMPOSITE PART
EP1473847A1 (en) * 2002-01-31 2004-11-03 Hitachi Metals, Ltd. Switch circuit and composite high-frequency part
US7420438B2 (en) 2003-02-14 2008-09-02 Tdk Corporation Front end module
US7356349B2 (en) 2003-06-05 2008-04-08 Murata Manufacturing Co., Ltd. High-frequency module and communication apparatus
JP2005020368A (ja) * 2003-06-26 2005-01-20 Nippon Telegr & Teleph Corp <Ntt> マルチビームアンテナ
JP2005064778A (ja) * 2003-08-11 2005-03-10 Sony Ericsson Mobilecommunications Japan Inc フロントエンドモジュール
US7924117B2 (en) 2003-12-11 2011-04-12 Hitachi Metals Ltd. Multi-band high-frequency circuit, multi-band high-frequency circuit component and multi-band communication apparatus using same
JPWO2005057803A1 (ja) * 2003-12-11 2008-04-17 日立金属株式会社 マルチバンド高周波回路、マルチバンド高周波回路部品及びこれを用いたマルチバンド通信装置
US7518469B2 (en) 2003-12-11 2009-04-14 Hitachi Metals Ltd. Multi-band high-frequency circuit, multi-band high-frequency circuit component and multi-band communication apparatus using same
WO2005057803A1 (ja) * 2003-12-11 2005-06-23 Hitachi Metals, Ltd. マルチバンド高周波回路、マルチバンド高周波回路部品及びこれを用いたマルチバンド通信装置
US7982554B2 (en) 2003-12-11 2011-07-19 Hitachi Metals, Ltd. Multi-band high-frequency circuit, multi-band high frequency circuit component and multi-band communication apparatus using same
JP4548610B2 (ja) * 2003-12-11 2010-09-22 日立金属株式会社 マルチバンド高周波回路、マルチバンド高周波回路部品及びこれを用いたマルチバンド通信装置
JP2008522533A (ja) * 2004-12-02 2008-06-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 分散型ダイプレクサ
JP2006237978A (ja) * 2005-02-24 2006-09-07 Hitachi Metals Ltd マルチバンド高周波モジュールおよびこれを用いたマルチバンド通信装置
JP4552193B2 (ja) * 2005-02-24 2010-09-29 日立金属株式会社 マルチバンド高周波モジュールおよびこれを用いたマルチバンド通信装置
US7397324B2 (en) * 2005-05-31 2008-07-08 Industrial Technology Research Institute Multilayer chip-type triplexer
US7659795B2 (en) 2005-08-05 2010-02-09 Hitachi, Ltd. Antenna duplexer and wireless terminal using the same
JP2010523050A (ja) * 2007-03-26 2010-07-08 トムソン ライセンシング 6ポート線形ネットワークシングルワイヤマルチスイッチ送受信機
US8699983B2 (en) 2007-03-26 2014-04-15 Thomson Licensing Six port linear network single wire multi switch transceiver

Also Published As

Publication number Publication date
ATE488052T1 (de) 2010-11-15
EP2239863A2 (en) 2010-10-13
HK1043263A1 (en) 2002-09-06
US20060030355A1 (en) 2006-02-09
EP2239863A3 (en) 2010-11-10
US20020183016A1 (en) 2002-12-05
JP4458304B2 (ja) 2010-04-28
JP2009089412A (ja) 2009-04-23
EP1168650A4 (en) 2007-04-11
DE60045215D1 (de) 2010-12-23
EP1168650B1 (en) 2010-11-10
JP4324814B2 (ja) 2009-09-02
ATE545206T1 (de) 2012-02-15
JP2009207168A (ja) 2009-09-10
US7003312B2 (en) 2006-02-21
HK1043263B (zh) 2011-02-18
JP4336931B2 (ja) 2009-09-30
EP1168650A1 (en) 2002-01-02
EP2239863B1 (en) 2012-02-08
US7471962B2 (en) 2008-12-30
HK1144986A1 (en) 2011-03-18

Similar Documents

Publication Publication Date Title
JP4336931B2 (ja) 高周波スイッチモジュール
JP4257481B2 (ja) 高周波スイッチモジュール
JP4784791B2 (ja) 高周波複合部品及びこれを用いた無線通信装置
JP5702303B2 (ja) Rfフロントエンドモジュールおよびアンテナシステム
KR100757915B1 (ko) 고주파 스위치모듈
JP4525949B2 (ja) 高周波スイッチモジュール
WO2004038913A1 (ja) 平衡−不平衡型マルチバンドフィルタモジュール
WO2001045285A1 (fr) Composant composite, haute frequence, de commutation
US7356349B2 (en) High-frequency module and communication apparatus
JP2004166258A (ja) 平衡−不平衡型マルチバンドフィルタモジュール
JP3304901B2 (ja) 複合高周波部品及びそれを用いた移動体通信装置
JP2004253953A (ja) アンテナスイッチ回路及びこれを用いたアンテナスイッチモジュール並びに通信装置
JP2004260737A (ja) 高周波スイッチモジュール及びそれを用いた無線電話通信装置
JP4505777B2 (ja) 周波数分波回路、およびマルチバンドアンテナスイッチ積層モジュール複合部品
JP2004320244A (ja) マルチバンド高周波送受信モジュール
JP4210861B2 (ja) 高周波スイッチモジュール
JP2004260744A (ja) 高周波スイッチモジュール及びそれを用いた無線電話通信装置
JP2001352202A (ja) 高周波スイッチモジュール
JP2004104523A (ja) マルチバンド用アンテナスイッチモジュール
JP2006203946A (ja) 高周波スイッチモジュール
JP2004260739A (ja) 高周波スイッチモジュール及びそれを用いた無線電話通信装置
JP2002300070A (ja) 高周波信号処理回路及びそれを用いた無線電話通信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 548537

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09914448

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000986004

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000986004

Country of ref document: EP