WO2001046484A1 - Pulvermischungen bzw. verbundpulver, verfahren zu ihrer herstellung und ihre verwendung in verbundwerkstoffen - Google Patents

Pulvermischungen bzw. verbundpulver, verfahren zu ihrer herstellung und ihre verwendung in verbundwerkstoffen Download PDF

Info

Publication number
WO2001046484A1
WO2001046484A1 PCT/EP2000/012484 EP0012484W WO0146484A1 WO 2001046484 A1 WO2001046484 A1 WO 2001046484A1 EP 0012484 W EP0012484 W EP 0012484W WO 0146484 A1 WO0146484 A1 WO 0146484A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
type
composite
metal
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2000/012484
Other languages
German (de)
English (en)
French (fr)
Inventor
Bernd Mende
Gerhard Gille
Ines Lamprecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Priority to EP00991157A priority Critical patent/EP1242642B1/de
Priority to US10/168,272 priority patent/US6887296B2/en
Priority to AT00991157T priority patent/ATE251228T1/de
Priority to CA002394844A priority patent/CA2394844A1/en
Priority to PL00356370A priority patent/PL356370A1/xx
Priority to AU31564/01A priority patent/AU3156401A/en
Priority to JP2001546978A priority patent/JP4969008B2/ja
Priority to IL14980800A priority patent/IL149808A/xx
Priority to DE50003952T priority patent/DE50003952D1/de
Publication of WO2001046484A1 publication Critical patent/WO2001046484A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • Powder mixtures or composite powders processes for their production and their use in composite materials
  • the present invention relates to powder mixtures or composite powders which consist of at least two types of powder or solid phases in disperse form and which are used as precursors for particle composites or as wettable powders for surface coatings.
  • these composite powders contain refractory metals (such as W and Mo) or hard materials (such as WC, TiC, TiN, Ti (C, N) TaC, NbC and Mo 2 C) or ceramic
  • Binding metals such as Fe, Ni, Co, Cu and Sn
  • mixed crystals and alloys of these binding metals on the other hand.
  • the invention further relates to processes for producing these composite powders and their use for particle composites and wettable powders. The most important
  • particle composites are hard metals, cermets, heavy metals and functional materials with special electrical (contact and switching materials) and thermal properties (heat sinks).
  • the effective properties of these particle composites e.g. Hardness, modulus of elasticity, fracture toughness, strength and wear resistance, but also electrical and thermal conductivity are determined in addition to the properties and proportions of the phases primarily by the degree of dispersion, the homogeneity and the topology of these phases as well as by structural defects (pores, impurities). These structural characteristics of the particle composites are in turn determined by the powdery raw materials and their powder metallurgical processing (pressing, sintering) into compact materials.
  • Hard metals are particle composites of at least two phases, the WC hard material phase (97 - 70 m%) and the eutectic Co-WC binder metal phase (3 - 30 m%), which is formed by dissolving W and C in Co in liquid phase sintering and binds the toilet particles.
  • the hard metals can carry out other phases of hard material such as the cubic (W, Ti) and (W, Ta / Nb) mixed carbides with proportions of 1 to 15 m% included. If the hard metals are particularly corrosive, the Co-based binder is completely or partially replaced by Ni, Cr (Fe) alloys. B. VC and Cr C 2 ( ⁇ 1 m%) to control grain growth and microstructure.
  • the hard material particles are carriers of hardness, wear resistance and high temperature properties, while the binding metals primarily determine the fracture toughness, the thermal shock resistance and the flexural strength.
  • Hard metals are characterized in particular by very favorable combinations of hardness and toughness as well as high temperature stability and wear /
  • Corrosion resistance This is achieved in that either the hard material particles are fully dispersed in the binder metal or, with decreasing binder metal content, two mutually penetrating phase regions of hard material and binder are formed. During sintering, this structure runs parallel to the compaction of the compact. The compression during the
  • Sintering process takes place to 70 - 85% of the density increase in the stage of solid phase sintering, ie the WC grains move under the action of the viscous flowing and wetting binder metal in energetically preferred positions, see e.g. B. GILLE, SZESNY, LEITNER; Proc. 14 l Int. Plansee Seminar, Vol. 2, Reutte 1997.
  • the eutectic composition is finally achieved and the binding metal melts via the simultaneous diffusion of W and C into the co-particles.
  • the remaining 15 - 30% of the compression then takes place via further particle rearrangements and pore filling with liquid binder.
  • the final phase of compression and structure formation takes place through OSTWALD ripening, ie small hard material particles dissolve in the liquid binder due to the higher solution pressure and separate out from larger, adjacent hard material particles.
  • the state of the art of hard metal production is shown, for example, in SCHEDLER, Hartmetall für die Praktiker, Düsseldorf 1988.
  • the hard metal composition the separately produced hard material and binder metal powders are first weighed, mixed and ground.
  • the WC starting powders with their grain sizes range from 0.5 ... 50 ⁇ m, are mostly slightly agglomerated and must have sufficient chemical purity.
  • important properties such as hardness, toughness and wear resistance can be varied to a great extent and adapted to the specific application.
  • the wet powder used today is used to transfer the various powder components into a finely divided mixture.
  • Organic liquids such as z. B. hexane, heptane, gasoline, tetralin, alcohol or acetone.
  • Grinding liquid and medium hard metal balls
  • the powder mixture is sieved from the grinding balls and evaporated from the
  • the grinding takes place mainly in attritors and ball mills, sometimes also in vibrating mills.
  • the currently dominant form of drying that has been used on an industrial scale for around 20 years is spray drying under inert gas, with simultaneous granulation of the composite powders.
  • the dried and optionally granulated mixtures are pressed, extruded or injection molded (MIM) into molded parts and then sintered.
  • MIM injection molded
  • the actual compression process is preceded by dewaxing, ie the expulsion of pressing aids and the pre-sintering for deoxidation and pre-compression.
  • Sintering takes place either under vacuum or inert gas pressures up to 100 bar at temperatures between 1350 and 1500 ° C.
  • the ductility of the binding metals during grinding can lead to the powders not only being deagglomerated or dispersed more finely, but, in contrast to flat discs (flakes) or other unfavorable shapes, being plastically deformed and forged. This occurs particularly in the case of the plastically easily deformable binder metals with a motor vehicle structure and can lead to inhomogeneous binder distribution and to strength-reducing pores in the sintered hard metal.
  • wet grinding can result in complete deagglomeration, a partial breakdown of primary particles and a homogeneous, finely dispersed distribution of the powder components.
  • WO 95/26843 (EP-A 752 922, US-A 5 529 804) describes a process in which hard particles in polyols with reducing properties, such as, for example Ethylene glycol, with the addition of soluble cobalt or nickel salts. At the boiling point of the solvent and a 5 hour reduction time, cobalt or nickel is deposited on the hard material particles. The resulting composite powder actually results in dense microstructures in the, without costly grinding after separation of the solid material, washing, drying, pressing and sintering
  • the reduction reaction in the liquid phase is terminated after a stoichiometric amount of polyol has been consumed, based on the amount of metal used, in order to suppress the formation of undesired by-products and to be able to recirculate the excess polyol.
  • the intermediate product is filtered and subsequently reduced to the finished composite powder in a dry way under hydrogen at 550 ° C. and a very long reduction time of approx. 24 h.
  • the hard material is suspended in an aqueous solution containing Co or Ni, and a metal compound is deposited on the surface of the hard material particles by adding ammonia or a hydroxide. After separating the solution, this intermediate product reduced at elevated temperature under hydrogen. The reduced amount of polyols used as solvents and reducing agents and the suppression of side reactions must be compensated for by a significantly longer post-reduction of the intermediate under hydrogen and at an elevated temperature.
  • alcohols are also used in order to reduce metal compounds dissolved therein to the metal or alloy powder or to deposit them as a metal film on a substrate dispersed in the solvent.
  • glass powder, Teflon, graphite, aluminum powder and fibers are used as substrates.
  • the composite powder obtained in this way can be used to obtain sintered bodies with a pore-free structure under normal conditions.
  • the disadvantages of this process are comparatively high solvent losses, corresponding safety precautions and double thermal treatment, process engineering problems due to the handling with highly viscous mixtures when evaporating the solvent and time-consuming cleaning / disposal of the decomposition products when the organic shell burns out in the first thermal process step.
  • US-A 5 352 269 describes the Spray Conversion Process (NANODYNE Inc.). According to this process, aqueous solutions, e.g. B. W and Co in suitable concentrations and proportions and for example made of ammonium metatungstate and cobalt chloride, spray dried.
  • the metals W and Co are mixed at the atomic level in the amorphous precursor powders formed in the process.
  • finely crystalline WC particles with grain dimensions of 20-50 nm are formed, which are, however, strongly agglomerated and interspersed or bound with cobalt areas and as hollow spherical aggregates have a diameter of approx. 70 ⁇ m.
  • WC and co-particles in this spray conversion process can no longer be produced separately and are already available as a mixture at the end of this process, but grinding is still necessary to improve the homogeneity of the phase distribution and above all the compression and shrinkage behavior.
  • the decisive disadvantage of these composite powders is, however, that the process-related, low carburization temperature ( ⁇ 1000 ° C) leads to severely disturbed WC crystal lattices and this in turn leads to strong grain growth during sintering. An increase in the carburization temperature to form a more perfect crystal lattice is not possible due to the presence of the binding metal, since otherwise a sintering process between the toilet and the like would start.
  • the mixture of W and Cu present in the oxide at the atomic level is used to achieve highly disperse W and Cu areas or particles in the metal mixture (W and Cu are in fact not soluble in one another).
  • W and Cu are in fact not soluble in one another.
  • Impregnation processes this is done with a relatively complex and expensive process, i.e. with tungsten synthesis, reduction and powder metallurgical processing.
  • expensive raw materials such as the ammonium metatungstate can be used.
  • composite powders with very good homogeneity, dispersity and possibly also special topology of the components / phases can be produced by the desired binder metal powder (phases) in suspensions which already contain the other components of the composite powder, such as high-melting metal or contain hard material or ceramic powder, as
  • Oxalate can be felled. After the mixed precipitation, there is a multicomponent suspension with at least two different solid phases, for example the previously suspended WC particles and the precipitated Co, Fe, Ni, Cu, Sn binder metals.
  • This reaction product is washed and dried, treated thermally under a reducing atmosphere and can then, if necessary after agglomeration, be pressed and sintered without further expensive grinding.
  • the sintered products produced in this way are at least equivalent or superior to conventionally manufactured products with regard to porosity, microstructure and mechanical-physical properties.
  • the present invention relates to a process for producing powder mixtures or composite powders from at least a first type of powder from the group of refractory metals, hard materials and ceramic powders and at least one second type of powder from the group of binder metals, binder metal mixed crystals and binder metal alloys, which is characterized in that is that the second type of powder is produced from precursor compounds in the form of aqueous salts in an aqueous suspension of the first type of powder by precipitation as oxalate, removal of the mother liquor and reduction to the metal.
  • Metals with melting points above 2000 ° C. such as molybdenum, tungsten, tantalum, niobium and / or rhenium, are suitable as high-melting metals.
  • molybdenum and tungsten have gained technical importance.
  • TiB 2 or B 4 C are suitable as ceramic powders. Powders and mixtures of high-melting metals, hard materials and / or ceramic powders can also be used.
  • the first type of powder can be used in particular in the form of finely divided powders with average particle diameters in the nanometer range up to more than 10 ⁇ m.
  • Particularly suitable binding metals are cobalt, nickel, iron, copper and tin and their alloys.
  • the binder metals are used as precursor compounds in the form of their water-soluble salts and their mixtures in aqueous solution.
  • Suitable salts are chlorides, sulfates, nitrates or complex salts. Chlorides and sulfates are generally preferred for ease of availability.
  • Oxalic acid or water-soluble oxalates such as ammonium oxalate or sodium oxalate are suitable for the precipitation as oxalate.
  • the oxalic acid component can be used as an aqueous solution or suspension.
  • the first type of powder can be suspended in the aqueous solution of the precursor compound of the second type of powder and an aqueous solution or suspension of the oxalic acid component can be added. It is also possible to stir the oxalic acid component in powder form into the suspension which contains the first type of powder.
  • the first type of powder can also be suspended in the aqueous solution or suspension of the oxalic acid component and the aqueous solution of the precursor compound for the second type of powder can be added.
  • the two suspensions or the suspension are preferably mixed with the solution with vigorous stirring.
  • the precipitation can be carried out continuously by simultaneous, continuous introduction into a flow reactor with continuous withdrawal of the precipitation product. It can also be carried out discontinuously by presenting the suspension containing the first type of powder and introducing the second precipitation partner. It can ensure a uniform precipitation over the precipitation reactor volume be expedient to stir the oxalate component in the form of a solid powder into the suspension of the first type of powder and solution of the precursor compound for the second type of powder, so that the oxalate component can be distributed evenly before the precipitation occurs through its dissolution. Furthermore, the particle size for the precipitation product can be controlled via the depot effect of the use of a solid oxalate component.
  • the oxalic acid component is preferably used in 1.02 to 1.2 times the stoichiometric amount, based on the precursor compound, for the second type of powder.
  • the concentration of the oxalic acid component in the precipitation suspension can be 0.05 to 1.05 mol / 1, particularly preferably more than 0.6, particularly preferably more than 0.8 mol / 1.
  • the solid mixture of precipitate and first type of powder is separated from the mother liquor. This can be done by filtration, centrifugation or decanting.
  • the solid mixture of the first type of powder and precipitate is treated under a reducing gas atmosphere at temperatures of preferably 350 to 650 ° C.
  • Hydrogen or a hydrogen / inert gas mixture is preferably used as the reducing gas, more preferably a nitrogen / hydrogen mixture.
  • the oxalate is completely broken down into gaseous components, some of which promote the reduction (H 2 O, CO 2 , CO), and the second type of powder is produced by reduction to metal.
  • the oxalate decomposition and reduction can be carried out continuously or batchwise in a moving or static bed, for example in tube furnaces or rotary tube furnaces or push-through furnaces, and under flowing, reducing gases. Any reactor suitable for carrying out solid-gas reactions, such as fluidized bed furnaces, is also suitable.
  • the powders of the first and second types are present partly as separate (“powder mixture”) and partly as mutually adhering (“composite powder”) components in an extremely uniform distribution, essentially without the formation of agglomerates. They can be processed without any further treatment.
  • the powders are suitable for the production of hard metals, cermets, heavy metals, metal-bound diamond tools or electrotechnical functional materials by sintering, optionally using organic binders for producing sinterable green bodies. They are also suitable for the surface coating of parts and tools, for example by thermal or plasma spraying or for processing by extrusion or metal injection molding (MIM).
  • a hard metal test was carried out with this powder according to the following procedure without any other treatment: producing a green body with a pressure of 150 MPa, heating the green body in vacuo at a rate of 20 K / min to 1 100 ° C., holding for 60 minutes at this temperature , further heating at a rate of 20 K / min to 1400 ° C., holding for 45 minutes at this temperature, cooling to 1100 ° C., holding for 60 minutes at this temperature and then cooling to room temperature.
  • tungsten carbide of the DS 80 grade (supplier HCStarck) and 1 g of carbon black were homogeneously dispersed in a suspension of 465.4 g of oxalic acid dihydrate in 1.6 l of deionized water over a period of 60 minutes. Then 2 l of Co solution with 893.4 g of CoCl 2 * 6H 2 O were added quickly and the mixture was stirred for a further 10 min to complete the precipitation. After filtration and washing of the precipitate with deionized water (until chloride was no longer detectable in the drain), the mixture was spray-dried and then in a tubular oven for 90 minutes at 420 ° C. in an atmosphere of 4% by volume hydrogen and 96% by volume. % Nitrogen reduced. The resulting composite powder contained 8.24% Co, 5.63% total carbon, 0.06% carbon free (according to DIN ISO 3908), 0.395% oxygen and
  • a hard metal test was carried out with this powder under conditions similar to those in Example 1 and the following properties were measured on the resulting sintered body: density 14.71 g / cm 3 , coercive force 19.1 kA / m or 240 Oe, hardness HV30 1626 kg / mm 2 or HRA 92.0, magnetic saturation 157.8 G cm 3 / g or 15.8 ⁇ TmVkg, low porosity A00 B02 COO and a homogeneous, microdisperse structure.
  • the resulting composite powder contained 3.60% Co, 2.50% Ni, 2.56% Fe, 5.53% total carbon, 0.07% carbon free, 0.596% oxygen and 0.0176% nitrogen.
  • the SEM analysis shows a well deagglomerated
  • the resulting composite powder had the following chemical composition: 4.46% Ni, 4.26% Fe, 5.52% total carbon, 0.08% carbon free, 0.653% oxygen, 0.0196% nitrogen, the rest tungsten.
  • the SEM analysis shows a well deagglomerated powder (FIG. 9) with a uniform Fe and Ni distribution (FIGS. 10 and 11).
  • tungsten metal powder grade HC 100, supplier HCStarck
  • tungsten metal powder grade HC 100, supplier HCStarck
  • a solution of 1.592 kg of CuSO 4 * 5H 2 O in 6 l of deionized water was added, and the resulting precipitation suspension was stirred for a further 30 minutes to complete the precipitation and homogenize the suspension.
  • the precipitate was subsequently filtered, washed free of anions with deionized water, then spray-dried and reduced in a tubular oven at 500 ° C. for 120 minutes under hydrogen.
  • the resulting composite powder contained 80.78% W and 18.86% Cu in addition to a residual oxygen content of 0.37%.
  • the SEM analysis shows a very fine-grained powder (FIG. 12) and, in the case of energy-dispersive evaluation, a uniform distribution of the copper in the tungsten powder matrix (FIG. 13).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Medicinal Preparation (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
PCT/EP2000/012484 1999-12-22 2000-12-11 Pulvermischungen bzw. verbundpulver, verfahren zu ihrer herstellung und ihre verwendung in verbundwerkstoffen Ceased WO2001046484A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP00991157A EP1242642B1 (de) 1999-12-22 2000-12-11 Verfahren zur herstellung von pulvermischungen bzw. verbundpulver
US10/168,272 US6887296B2 (en) 1999-12-22 2000-12-11 Powder mixture or composite powder, a method for production thereof and the use thereof in composite materials
AT00991157T ATE251228T1 (de) 1999-12-22 2000-12-11 Verfahren zur herstellung von pulvermischungen bzw. verbundpulver
CA002394844A CA2394844A1 (en) 1999-12-22 2000-12-11 Powder mixture or composite powder, a method for production thereof and the use thereof in composite materials
PL00356370A PL356370A1 (pl) 1999-12-22 2000-12-11 Mieszanki proszkowe i proszki kompozytowe, sposoby wytwarzania mieszanek proszkowych i proszków kompozytowych oraz zastosowanie mieszanek proszkowychi proszków kompozytowych w materiałach kompozytowych
AU31564/01A AU3156401A (en) 1999-12-22 2000-12-11 Powder mixture or composite powder, a method for production thereof and the use thereof in composite materials
JP2001546978A JP4969008B2 (ja) 1999-12-22 2000-12-11 粉末混合物と複合粉末、その製造方法、及び複合材料におけるその使用
IL14980800A IL149808A (en) 1999-12-22 2000-12-11 Process for the preparation of powder mixtures or composite powders
DE50003952T DE50003952D1 (de) 1999-12-22 2000-12-11 Verfahren zur herstellung von pulvermischungen bzw. verbundpulver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19962015.6 1999-12-22
DE19962015A DE19962015A1 (de) 1999-12-22 1999-12-22 Pulvermischungen bzw. Verbundpulver, Verfahren zu ihrer Herstellung und ihre Verwendung in Verbundwerkstoffen

Publications (1)

Publication Number Publication Date
WO2001046484A1 true WO2001046484A1 (de) 2001-06-28

Family

ID=7933814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/012484 Ceased WO2001046484A1 (de) 1999-12-22 2000-12-11 Pulvermischungen bzw. verbundpulver, verfahren zu ihrer herstellung und ihre verwendung in verbundwerkstoffen

Country Status (16)

Country Link
US (1) US6887296B2 (enExample)
EP (1) EP1242642B1 (enExample)
JP (1) JP4969008B2 (enExample)
KR (1) KR100747805B1 (enExample)
CN (1) CN1159464C (enExample)
AT (1) ATE251228T1 (enExample)
AU (1) AU3156401A (enExample)
CA (1) CA2394844A1 (enExample)
CZ (1) CZ20022198A3 (enExample)
DE (2) DE19962015A1 (enExample)
ES (1) ES2208465T3 (enExample)
IL (1) IL149808A (enExample)
PL (1) PL356370A1 (enExample)
PT (1) PT1242642E (enExample)
TW (1) TWI232211B (enExample)
WO (1) WO2001046484A1 (enExample)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045612A1 (en) * 2001-11-28 2003-06-05 Omg Americas, Inc. Method of producing composite metal powders
GB2399824A (en) * 2002-09-21 2004-09-29 Univ Birmingham Metal coated metallurgical particles
DE102007004937A1 (de) 2007-01-26 2008-07-31 H.C. Starck Gmbh Metallformulierungen
US7510680B2 (en) * 2002-12-13 2009-03-31 General Electric Company Method for producing a metallic alloy by dissolution, oxidation and chemical reduction
CN101745644A (zh) * 2010-03-09 2010-06-23 南京寒锐钴业有限公司 钴粉的生产方法
CN113857474A (zh) * 2021-09-01 2021-12-31 河海大学 一种添加Ce元素的WC表面包覆Co粉末制备方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9901244D0 (sv) * 1999-04-08 1999-04-08 Sandvik Ab Cemented carbide insert
DE10041194A1 (de) * 2000-08-23 2002-03-07 Starck H C Gmbh Verfahren zur Herstellung von Verbundbauteilen durch Pulver-Spritzgießen und dazu geeignete Verbundpulver
WO2003049889A2 (en) * 2001-12-05 2003-06-19 Baker Hughes Incorporated Consolidated hard materials, methods of manufacture, and applications
US7416697B2 (en) 2002-06-14 2008-08-26 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
US7169731B2 (en) * 2003-02-12 2007-01-30 Symyx Technologies, Inc. Method for the synthesis of a fuel cell electrocatalyst
US7485390B2 (en) * 2003-02-12 2009-02-03 Symyx Technologies, Inc. Combinatorial methods for preparing electrocatalysts
JP4073886B2 (ja) * 2004-03-30 2008-04-09 アンリツ株式会社 可変波長光源
KR100581259B1 (ko) * 2004-06-18 2006-05-22 한국기계연구원 금속이 코팅된 비정질 분말의 제조방법
DE102004045206B4 (de) * 2004-09-17 2009-09-10 Sintec Keramik Gmbh Vorgefertigte Platte und Verfahren zum Herrichten eines Verdampferkörpers und dessen Betreiben in einer PVD-Metallisierungsanlage
US7531021B2 (en) 2004-11-12 2009-05-12 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US20090022994A1 (en) * 2004-12-27 2009-01-22 Hossein Aminian Composite Powder Products for Hardmetals
DE102005030862B4 (de) * 2005-07-01 2009-12-24 Sintec Keramik Gmbh Erstbenetzungshilfsmaterial für einen Verdampferkörper, seine Verwendung zum Herrichten der Verdampferfläche eines Verdampferkörpers und ein elektrisch beheizbarer keramischer Verdampferkörper
CA2625521C (en) * 2005-10-11 2011-08-23 Baker Hughes Incorporated System, method, and apparatus for enhancing the durability of earth-boring bits with carbide materials
WO2007149541A2 (en) * 2006-06-20 2007-12-27 University Of Utah Research Foundation Methods for making carbide-metal nanocomposite powders
US7820238B2 (en) * 2006-12-20 2010-10-26 United Technologies Corporation Cold sprayed metal matrix composites
KR101551853B1 (ko) * 2008-04-03 2015-09-08 사켐,인코포레이티드 오늄 디카르복실레이트를 사용하여 세라믹 분말을 제조하는 방법
JP5294458B2 (ja) * 2008-11-21 2013-09-18 日本新金属株式会社 複合粉末及びその製造方法
US9187810B2 (en) * 2008-12-16 2015-11-17 Sandvik Intellectual Property Ab Cermet body and a method of making a cermet body
DE102009004829A1 (de) * 2009-01-13 2010-07-22 Gkn Sinter Metals Holding Gmbh Mischung zur Verhinderung von Oberflächenflecken
JP5676161B2 (ja) 2010-07-02 2015-02-25 株式会社フジミインコーポレーテッド 溶射用粉末及び溶射皮膜の形成方法
CN102621176B (zh) * 2011-01-27 2015-08-26 厦门钨业股份有限公司 一种Ti(C,N)中氮含量的分析方法
RU2472866C2 (ru) * 2011-04-26 2013-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") Порошковый износостойкий материал и способ его изготовления
CN102350508B (zh) * 2011-10-13 2013-07-03 北京科技大学 一种掺杂钨基复合粉体的制备方法
TWI457186B (zh) * 2012-01-13 2014-10-21 Kunshan Nano New Material Technology Co Ltd 刀具、其製造方法及其均質化碳化鎢的製造方法
JP6567259B2 (ja) * 2013-10-01 2019-08-28 日東電工株式会社 軟磁性樹脂組成物、軟磁性フィルム、軟磁性フィルム積層回路基板および位置検出装置
IN2013CH04500A (enExample) 2013-10-04 2015-04-10 Kennametal India Ltd
CN103834841A (zh) * 2014-03-14 2014-06-04 邓湘凌 手表材料
CN103862038A (zh) * 2014-03-14 2014-06-18 中南大学 一种超粗硬质合金包裹粉末及其制备方法
CN103962546B (zh) * 2014-03-18 2015-09-30 河北瑞驰伟业科技有限公司 铜镍铬钼基合金粉末及其熔覆方法
US9719159B2 (en) * 2014-09-24 2017-08-01 Cyntec Co., Ltd. Mixed magnetic powders and the electronic device using the same
CN104889384A (zh) * 2015-06-10 2015-09-09 深圳市威勒达科技开发有限公司 一种W-Re复合粉末材料及其制备方法
GB201522503D0 (en) * 2015-12-21 2016-02-03 Element Six Gmbh Method of manufacturing a cemented carbide material
CN107385302A (zh) * 2017-07-24 2017-11-24 苏州宏久航空防热材料科技有限公司 一种高硬度Ti(C,N)基金属陶瓷刀具复合材料
EP3527306A1 (de) * 2018-02-14 2019-08-21 H.C. Starck Tungsten GmbH Pulver umfassend beschichtete hartstoffpartikel
EP3802893A4 (en) 2018-05-30 2022-03-02 Hela Novel Metals LLC PROCESS FOR PRODUCTION OF FINE METAL POWDER FROM METAL COMPOUNDS
US12220744B2 (en) * 2018-06-20 2025-02-11 Desktop Metal, Inc. Methods and compositions for the preparation of powders for binder-based three-dimensional additive metal manufacturing
CN109175396B (zh) * 2018-11-15 2021-07-06 中南大学 一种纳米包覆复合粉末的制备方法
CN109530177B (zh) * 2018-11-26 2021-08-31 吉林大学 一种梯度功能化金刚石复合材料及其制备方法和应用
CN110014163A (zh) * 2019-04-19 2019-07-16 广东省材料与加工研究所 钨合金粉末及其制备方法和应用
WO2021067036A1 (en) * 2019-09-30 2021-04-08 The Penn State Research Foundation Cold sintering process for densification and sintering of powdered metals
CN111745155B (zh) * 2020-07-10 2022-07-12 郑州机械研究所有限公司 低熔包覆合金粉末及其制备方法和铁基金刚石胎体
CN112935241A (zh) * 2021-01-23 2021-06-11 晋城鸿刃科技有限公司 成型剂以及硬质合金的成型方法
KR102305040B1 (ko) * 2021-06-23 2021-09-24 주식회사 스카이에스티 법랑분말과 Fe계 비정질 합금분말을 포함하는 혼합분말 및 이를 이용한 코팅방법
KR102305041B1 (ko) * 2021-06-23 2021-09-24 주식회사 스카이에스티 혼합분말을 이용한 백주철금속의 코팅방법
CN113579246B (zh) * 2021-09-29 2021-12-07 西安石油大学 一种纳米高熵合金粉末的制备方法
CN114535588A (zh) * 2022-01-07 2022-05-27 中交隧道工程局有限公司 一种Co/Ni共包覆WC粉体及其制备方法
CN114769583B (zh) * 2022-05-13 2024-02-02 赣南师范大学 一种核-壳结构复合粉末及其制备方法
CN115582539A (zh) * 2022-10-20 2023-01-10 中交隧道工程局有限公司 一种Ni/Co包覆添加碳化钨硬质合金的制备方法
CN116060614B (zh) * 2023-02-20 2025-03-25 山东易斯特工程工具有限公司 一种激光熔覆用Fe-Ni基碳化钛涂层合金粉末和一种Fe-Ni基碳化钛涂层
CN118291829B (zh) * 2024-06-04 2024-08-23 崇义章源钨业股份有限公司 一种粗晶硬质合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB383327A (en) * 1930-08-21 1932-11-17 Deutsche Edelstahlwerke Ag A hard metal and method of producing the same
US3923496A (en) * 1945-04-26 1975-12-02 Us Energy Nickel powder and a process for producing it
US5248328A (en) * 1990-07-18 1993-09-28 General Research Institute For Non-Ferrous Metals Process for preparing rare earth containing hard alloy
EP0846658A1 (en) * 1996-12-05 1998-06-10 Nanodyne Incorporated Method of forming metal carbides and metal carbide composites

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB346743A (en) 1929-10-14 1931-04-14 Jones & Lamson Mach Co Improvements in or relating to machines for grinding fluted tools
US3925114A (en) * 1973-05-04 1975-12-09 Victor Company Of Japan Process for preparation of magnetic alloy powder
JPS62260027A (ja) * 1986-05-06 1987-11-12 Nippon Mining Co Ltd 焼結複合材料の製造方法
CA2045125A1 (en) 1989-11-09 1991-05-10 Larry E. Mccandlish Spray conversion process for the production of nanophase composite powders
FR2665184B1 (fr) * 1990-07-24 1993-10-15 Centre Nal Recherc Scientifique Poudres composites alumine/metal, cermets realises a partir desdites poudres et procedes de fabrication.
US5439638A (en) 1993-07-16 1995-08-08 Osram Sylvania Inc. Method of making flowable tungsten/copper composite powder
SE504244C2 (sv) 1994-03-29 1996-12-16 Sandvik Ab Sätt att tillverka kompositmaterial av hårdämnen i en metallbindefas
SE502754C2 (sv) 1994-03-31 1995-12-18 Sandvik Ab Sätt att framställa belagt hårdämnespulver
US5470549A (en) 1994-12-22 1995-11-28 Osram Sylvania Inc. Method of making tungsten-copper composite oxides
US5468457A (en) 1994-12-22 1995-11-21 Osram Sylvania Inc. Method of making tungsten-copper composite oxides
SE507212C2 (sv) 1995-09-29 1998-04-27 Sandvik Ab Sätt att belägga hårdämnespulver med Co eller Ni genom reduktion med polyol
US5759230A (en) 1995-11-30 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Nanostructured metallic powders and films via an alcoholic solvent process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB383327A (en) * 1930-08-21 1932-11-17 Deutsche Edelstahlwerke Ag A hard metal and method of producing the same
US3923496A (en) * 1945-04-26 1975-12-02 Us Energy Nickel powder and a process for producing it
US5248328A (en) * 1990-07-18 1993-09-28 General Research Institute For Non-Ferrous Metals Process for preparing rare earth containing hard alloy
EP0846658A1 (en) * 1996-12-05 1998-06-10 Nanodyne Incorporated Method of forming metal carbides and metal carbide composites

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045612A1 (en) * 2001-11-28 2003-06-05 Omg Americas, Inc. Method of producing composite metal powders
GB2399824A (en) * 2002-09-21 2004-09-29 Univ Birmingham Metal coated metallurgical particles
US7510680B2 (en) * 2002-12-13 2009-03-31 General Electric Company Method for producing a metallic alloy by dissolution, oxidation and chemical reduction
DE102007004937A1 (de) 2007-01-26 2008-07-31 H.C. Starck Gmbh Metallformulierungen
DE102007004937B4 (de) * 2007-01-26 2008-10-23 H.C. Starck Gmbh Metallformulierungen
CN101745644A (zh) * 2010-03-09 2010-06-23 南京寒锐钴业有限公司 钴粉的生产方法
CN113857474A (zh) * 2021-09-01 2021-12-31 河海大学 一种添加Ce元素的WC表面包覆Co粉末制备方法

Also Published As

Publication number Publication date
IL149808A0 (en) 2002-11-10
ES2208465T3 (es) 2004-06-16
EP1242642B1 (de) 2003-10-01
US6887296B2 (en) 2005-05-03
CN1413268A (zh) 2003-04-23
DE50003952D1 (de) 2003-11-06
AU3156401A (en) 2001-07-03
DE19962015A1 (de) 2001-06-28
JP4969008B2 (ja) 2012-07-04
TWI232211B (en) 2005-05-11
US20030000340A1 (en) 2003-01-02
CA2394844A1 (en) 2001-06-28
ATE251228T1 (de) 2003-10-15
CZ20022198A3 (cs) 2003-03-12
KR100747805B1 (ko) 2007-08-08
CN1159464C (zh) 2004-07-28
PL356370A1 (pl) 2004-06-28
PT1242642E (pt) 2004-02-27
KR20020064950A (ko) 2002-08-10
IL149808A (en) 2005-09-25
JP2003518195A (ja) 2003-06-03
EP1242642A1 (de) 2002-09-25

Similar Documents

Publication Publication Date Title
EP1242642B1 (de) Verfahren zur herstellung von pulvermischungen bzw. verbundpulver
EP1079950B1 (de) Sinteraktive metall- und legierungspulver für pulvermetallurgische anwendungen und verfahren zu deren herstellung und deren verwendung
DE69113966T2 (de) Verbundpulver aus aluminiumoxyd/metall, cermets daraus und verfahren zu ihrer herstellung.
EP0326861B1 (de) Agglomerierte Metall-Verbund-Pulver, Verfahren zu ihrer Herstellung sowie deren Verwendung
DE60121242T2 (de) Molybdän-Kupfer-Verbundpulver sowie dessen Herstellung und Verarbeitung zu einer Pseudolegierung
EP2010687B1 (de) Hartmetallkörper und verfahren zu dessen herstellung
DE60301069T2 (de) Vorlegierte bindepulver
EP1999070A1 (de) Gesinterter werkstoff, sinterfähige pulvermischung, verfahren zur herstellung des werkstoffs und dessen verwendung
DE69803332T2 (de) Hartmolybdänlegierung, verschliessfeste Legierung und Verfahren zu ihrer Herstellung
EP0956173A1 (de) Metallpulver-granulat, verfahren zu seiner herstellung sowie dessen verwendung
EP1664362A1 (de) Ods-molybdän-silizium-bor-legierung
AT394188B (de) Verfahren zur herstellung von feinkoernigen, sinteraktiven nitrid- und carbonitridpulvern des titans
DE2018032A1 (de) Infiltrierte zementierte Karbide
DE102018116728A1 (de) Sinterpulver und sintercarbidzusammensetzungen
EP2205381A2 (de) Metallpulvermischung und deren verwendung
WO2008031122A1 (de) Verfahren zur herstellung von kompositpulvern sowie kompositpulver
DE102006057004A1 (de) Metallpulver
EP1560799A2 (de) Keramik-metall- oder metall-keramik-komposite
WO1995033079A1 (de) Bildung von intermetallischähnlichen vorlegierungen
WO2007124523A1 (de) Verfahren zur herstellung eines hartmetallproduktes
DE102004051288B4 (de) Polykristallines Hartstoffpulver, Kompositwerkstoff mit einem polykristallinen Hartstoffpulver und Verfahren zur Herstellung eines polykristallinen Hartstoffpulvers
DE10244555A1 (de) Verfahren zur Herstellung feiner, pulverförmiger Metall-Bor-Verbindungen
DE1521443C (de) Verfahren zum Verbessern der Verdich tungseigenschaften von Pulver aus nichtro stendem Stahl
EP1022353A1 (de) Verfahren zur Herstellung metallbeschichteter Hartstoffe
DE202015006046U1 (de) Vorrichtung zur Gewinnung eines Pulver aus Partikeln von Wolfram oder Wolframverbindungen mit einer Partikelgröße im Nano-, Mikron- oder Submikronbereich

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000991157

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 149808

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/00744/MU

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2001 546978

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10168272

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2394844

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PV2002-2198

Country of ref document: CZ

Ref document number: 008176434

Country of ref document: CN

Ref document number: 1020027008010

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027008010

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000991157

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV2002-2198

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2000991157

Country of ref document: EP