EP1664362A1 - Ods-molybdän-silizium-bor-legierung - Google Patents

Ods-molybdän-silizium-bor-legierung

Info

Publication number
EP1664362A1
EP1664362A1 EP04761036A EP04761036A EP1664362A1 EP 1664362 A1 EP1664362 A1 EP 1664362A1 EP 04761036 A EP04761036 A EP 04761036A EP 04761036 A EP04761036 A EP 04761036A EP 1664362 A1 EP1664362 A1 EP 1664362A1
Authority
EP
European Patent Office
Prior art keywords
molybdenum
oxides
alloy
alloy according
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04761036A
Other languages
English (en)
French (fr)
Other versions
EP1664362B1 (de
Inventor
Pascal Jehanno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
PLANSEE GmbH
Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLANSEE GmbH, Plansee GmbH filed Critical PLANSEE GmbH
Publication of EP1664362A1 publication Critical patent/EP1664362A1/de
Application granted granted Critical
Publication of EP1664362B1 publication Critical patent/EP1664362B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/18Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a Mo-Si-B alloy consisting of the intermetallic phases molybdenum silicide and molybdenum borosilicate, optionally additionally molybdenum boride, the total content of intermetallic phase components being 25 to 90% by volume and the proportion of other structural components being ⁇ 5% by volume and the rest consists of molybdenum or mixed molybdenum crystal.
  • Molybdenum and molybdenum alloys are widely used in industry because of their good mechanical strength properties at high temperatures. A problem with these alloys is their poor resistance to oxidation at temperatures above about 600 ° C.
  • the known measures for improving the oxidation properties are correspondingly diverse. They range from the application of superficial protective layers to alloying measures.
  • EP 0 804627 describes an oxidation-resistant molybdenum alloy which consists of a molybdenum matrix and intermetallic phase regions dispersed therein from 10 to 70% by volume Mo-B silicide, optionally up to 20% by volume Mo-boride and optionally up to 20 vol.% Mo silicide exists.
  • the alloy comprises the elements C, Ti, Hf, Zr, W, Re, Al, Cr, V, Nb, Ta, B and Si in the form that one or more elements from the group Ti, Zr, Hf and Al must be present in the Mo mixed crystal phase in a proportion of 0.3-10% by weight.
  • the alloy can optionally contain up to 2.5 vol.% Carbide.
  • the alloy can be manufactured by various methods, preferably by means of powder metallurgical methods or by means of layer deposition methods. Alloys according to EP 0804627 form a borosilicate layer at temperatures above 540 ° C, which prevents further penetration of oxygen into the interior of the body.
  • the addition of elements such as Ti, Zr, Hf or Al promotes the wetting of the boron-silicate layer, increases its melting point and leads to the formation of a high-melting oxide layer below the boron-silicate layer, which reduces further oxygen transport into the interior.
  • the addition of carbides leads to an increase in mechanical strength. A serious disadvantage of such alloys is their low fracture toughness.
  • alloys with an optimum silicon and boron content with regard to their oxidation resistance can no longer be produced using forming technology.
  • the material according to the invention consists of the intermetallic phases molybdenum silicide and molybdenum boron silicide, optionally also molybdenum boride and molybdenum or molybdenum mixed crystal.
  • Other structural components are also possible, although tests have shown that their volume content must be ⁇ 5%.
  • Mo 3 Si and Mo 5 SiB 2 may be mentioned as preferred molybdenum silicide or molybdenum boron silicide phases.
  • Oxides or mixed oxides, which have a vapor pressure of ⁇ 5x10 "2 bar at 1500 ° C, are finely distributed in this alloy matrix.
  • the preferred mean particle size is ⁇ 5 ⁇ m.
  • oxide additives in Mo-Si-B alloys not only increase the strength, as is customary in the case of ODS alloys, but surprisingly also to a high degree the ductility properties.
  • Alloys with the structure according to the invention have an elongation at break which is at least 3 times higher at 1200 ° C. than Mo-Si-B alloys according to the prior art with the same silicon and boron content, but without the oxide additives according to the invention.
  • a steam pressure at 1500 ° C of ⁇ 5x10 "2 is required to ensure adequate processability guarantee.
  • the preferred oxides are: Y 2 O 3) ZrO 2 , Hf0 2 , TiO 2 , Al 2 O 3 , CaO, MgO and SrO.
  • the alloy according to the invention can contain elements which form a mixed crystal with molybdenum. These include Re, Ti, Zr, Hf, V, Nb, Ta, Cr and AI. An Nb addition has proven particularly advantageous.
  • Nb 5 atomic% Nb to a Mo-Si-B alloy with 8.8 atomic% Si and 7.6 atomic% B and 0.5 vol.% Yttrium oxide, the tensile strength can be changed at a test temperature of 1000 ° C 5% can be increased while increasing the elongation at break by 80%.
  • the silicon and boron contents are advantageously chosen so that the composition in the three-substance system molybdenum silicon boron is in the range Mo-Mo 3 Si-T 2 (Mo 5 SiB 2 ) - Mo 2 B. This is the case if the Si content is 0.1-8.9% by weight and the B content is 0.1-5.3% by weight.
  • a particularly advantageous concentration range in terms of strength, creep resistance, fracture toughness and oxidation behavior is 2-6% by weight Si, 0.5-2% by weight B and 0.2-1% by volume oxide.
  • Powder mixtures consisting of the corresponding components are treated by mechanical alloying, whereby both elementary powders and pre-alloyed powders can be used.
  • Usual high-energy mills such as attritors, ball mills or vibrating mills are suitable as units.
  • Hot isostatic pressing has proven itself as a compacting process.
  • the ground powder is poured into a Mo alloy jug, welded in a vacuum-tight manner and compacted at temperatures in the range of 1300 ° C - 1500 ° C.
  • Other pressure-assisted hot compacting processes, such as powder extrusion can also be used.
  • melt metallurgy manufacturing processes can also be used. Particularly noteworthy are spray compacting processes where oxide additives are added during the spray phase.
  • 0.5% by weight of yttrium oxide powder with a mean grain size according to Fisher of 0.8 ⁇ m was mixed with 96.5% by weight of Mo with a grain size of 4.12 ⁇ m, 3.1% by weight of Si with a grain size of 4.41 ⁇ m and 1, 14 wt.% B with a grain size of 0.92 ⁇ m and mechanically alloyed.
  • Mechanical alloying was carried out in an attritor under hydrogen. The attritor volume was 50 l and 100 kg balls made of a Fe-Cr-Ni alloy with a diameter of 9 mm were used. The attraction time was 10 hours. After mechanical alloying, only molybdenum and Y 2 Ü3 could be detected using XRD.
  • the powder was placed in a jug made of an Mo-based alloy.
  • the jug was evacuated and vacuum-sealed.
  • the jug and powder were heated to a temperature of 1500 ° C. in an indirect oven and compacted by extrusion.
  • the extrusion ratio was 1: 6.
  • Tensile specimens were worked out from the extrusions thus produced by means of erosion and turning processes.
  • a material without yttrium oxide was also produced for comparison purposes, the process steps mentioned above being used.
  • the samples according to the invention and the comparative samples were characterized by a hot tensile test, the elongation rate being 10 '4 seconds "1.
  • the test temperature was increased successively until a temperature could be determined at which the elongation of the tested sample was at least 10%.
  • a temperature of 1000 ° C. could be determined in the sample according to the invention. For the material without the addition of oxide, this was 1300 ° C. The corresponding strength values at 1300 ° C were 300 MPa for the sample according to the invention and 200 MPa for the sample without added oxide.
  • La (OH) 3 powder with an average grain size of 0.2 ⁇ m was mixed with 93.9% by weight of Mo with a powder grain size of 4.25 ⁇ m, 3.9% by weight of Si with a powder grain size of 4.30 ⁇ m and 1.4% by weight of B with a powder grain size of 1.15 ⁇ m and mechanically alloyed. Mechanical alloying was again carried out in an attritor under hydrogen for 10 hours. The powder was cold isostatically pressed at 2000 bar and then compacted by a sintering treatment at 1350 ° C. for 5 hours under hydrogen. The determination of the density showed that 91% of the theoretical density (8.7 g / cm 3 ) could be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung betrifft eine Mo-Si-B-Legierung mit einer Matrix aus Mo oder einem Mo-Mischkristall, in die 25 Vol.% bis 90 Vol.% Molybdänsilizid und Molybdänborsilizid, wahlweise zusätzlich Molybdänborid eingelagert sind. Die Legierung enthält weiters fein verteilt 0,1 - 5 Vol.% eines oder mehrerer Oxide oder Mischoxide mit einem Dampfdruck bei 1500 °C von < 5X10<-2> bar. Durch den Oxidzusatz wird nicht nur die Warmfestigkeit sondern in hohem Maße auch die Duktilität verbessert.

Description

ODS-MOLYBDÄN-SILIZIUM-BOR-LEGIERUNG
Die Erfindung betrifft eine Mo-Si-B-Legierung, bestehend aus den intermetallischen Phasen Molybdänsilizid und Molybdänborsilizid, wahlweise zusätzlich Molybdänborid, wobei der Summengehalt intermetallischer Phasenbestandteile 25 bis 90 Vol.% und der Anteil weiterer Gefügebestandteile < 5 Vol.% beträgt und der Rest aus Molybdän oder Molybdänmischkristall besteht.
Molybdän und Molybdän-Legierungen finden wegen ihrer guten mechanischen Festigkeitseigenschaften bei hohen Temperaturen verbreitet technische Verwendung. Ein Problem dieser Legierungen ist deren geringe Oxidationsbeständigkeit bei Temperaturen oberhalb etwa 600°C. Entsprechend vielfältig sind die bekannten Maßnahmen zur Verbesserung der Oxidationseigenschaften. Sie reichen vom Aufbringen oberflächlicher Schutzschichten bis zu legierungstechnischen Maßnahmen.
Die EP 0 804627 beschreibt eine oxidationsbeständige Molybdän-Legierung, die aus einer Molybdän-Matrix und darin dispergierten, intermetallischen Phasenbereichen aus 10 - 70 Vol.% Mo-B-Silizid, wahlweise bis zu 20 Vol.% Mo-Borid und wahlweise bis zu 20 Vol.% Mo-Silizid besteht. Die Legierung umfasst neben Molybdän die Elemente C, Ti, Hf, Zr, W, Re, AI, Cr, V, Nb, Ta, B und Si in der Form, dass neben den oben genannten Phasen eines oder mehrere Elemente der Gruppe Ti, Zr, Hf und AI in einem Anteil von 0,3 - 10 Gew.% in der Mo-Mischkristallphase vorhanden sein muss. Wahlweise kann die Legierung bis zu 2,5 Vol.% Karbid enthalten. Die Legierung lässt sich nach verschiedenen Verfahren fertigen, vorzugsweise mittels pulvermetallurgischer Verfahren oder über Schichtabscheideverfahren. Legierungen gemäß der EP 0804627 bilden bei Temperaturen über 540°C eine Borsilikat-Schicht aus, die ein weiteres Eindringen von Sauerstoff ins Körperinnere verhindert. Die Zugabe von Elementen wie Ti, Zr, Hf oder AI fördert die Benetzung der Bor-Silikatschicht, erhöht deren Schmelzpunkt und führt zur Bildung einer hochschmelzenden Oxidschicht unterhalb der Bor- Silikatschicht, welche einen weiteren Sauerstofftransport ins Innere verringert. Die Zugabe von Karbiden führt zu einer Steigerung der mechanischen Festigkeit. Ein schwerwiegender Nachteil derartiger Legierungen ist deren niedrige Bruchzähigkeit. Es schränkt nicht nur die technische Anwendung ein, sondern erschwert und beschränkt die Formgebung von daraus gefertigten Bauteilen. So lassen sich Legierungen mit einem in Hinblick auf deren Oxidationsbeständigkeit optimalen Silizium- und Bor-Gehalt (ca. 4 Gew.% Si, ca. 1 ,5 Gew.% B) umformtechnisch nicht mehr herstellten.
Aufgabe der vorliegenden Erfindung ist danach die Bereitstellung einer oxidationsbeständigen Mo-Si-B-Legierung mit hoher Festigkeit, welche gegenüber bekannten Legierungen eine verbesserte Bruchzähigkeit und ein verbessertes Umformvermögen bei Temperaturen von ca. 1000°C besitzt.
Gelöst wird diese Aufgabe durch eine Mo-Si-B-Legierung, die 0,1 - 5 Vol.% eines oder mehrerer Oxide oder Mischoxide mit einem Dampfdruck bei 1500 °C von < 5x10"2 bar enthält.
Der erfindungsgemäße Werkstoff besteht aus den intermetallischen Phasen Molybdänsilizid und Molybdänborsilizid, wahlweise auch Molybdänborid und Molybdän bzw. Molybdänmischkristall. Auch weitere Gefügebestandteile sind möglich, wobei Versuche gezeigt haben, dass deren Volumengehalt < 5 % betragen muss. Als bevorzugte Molybdänsilizid bzw. Molybdänborsilizid Phasen sind dabei Mo3Si und Mo5SiB2 zu nennen. In dieser Legierungsmatrix sind Oxide oder Mischoxide, die einen Dampfdruck bei 1500°C von < 5x10"2 bar aufweisen, feinst verteilt. Die bevorzugte, mittlere Teilchengröße liegt dabei bei < 5 μm.
Es hat sich gezeigt, dass Oxidzusätze bei Mo-Si-B-Legierungen nicht nur, wie bei ODS-Legierungen üblich, die Festigkeit erhöhen, sondern überraschenderweise auch in hohem Maße die Duktilitätseigenschaften. So weisen Legierungen mit dem erfindungsgemäßen Aufbau eine bei 1200°C um zumindest den Faktor 3 höhere Bruchdehnung auf, als Mo-Si-B-Legierungen nach dem Stand der Technik mit gleichem Silizium- und Bor-Gehalt, jedoch ohne den erfindungsgemäßen Oxidzusätzen. Ein Dampfdruck bei 1500°C von < 5x10"2 ist erforderlich, um eine ausreichende Verarbeitbarkeit zu gewährleisten. Als bevorzugte Oxide sind dabei zu nennen: Y2O3) ZrO2, Hf02, TiO2, AI2O3, CaO, MgO und SrO. Ein erfindungsgemäßer Effekt kann auch dann erzielt werden, wenn Mischoxide zum Einsatz kommen.
Weiters kann die erfindungsgemäße Legierung Elemente enthalten, die mit Molybdän einen Mischkristall bilden. Zu nennen sind dabei Re, Ti, Zr, Hf, V, Nb, Ta, Cr und AI. Besonders vorteilhaft hat sich dabei ein Nb-Zusatz erwiesen. Durch die Zugabe von 5 Atom% Nb zu einer Mo-Si-B-Legierung mit 8,8 Atom% Si und 7,6 Atom% B und 0,5 Vol.% Yttriumoxid kann die Zugfestigkeit bei einer Prüftemperatur von 1000°C um 5 % gesteigert werden, bei gleichzeitiger Erhöhung der Bruchdehnung um 80 %.
Die Silizium- und Bor-Gehalte sind vorteilhafterweise so zu wählen, dass sich die Zusammensetzung im Dreistoffsystem Molybdän-Silizium-Bor im Bereich Mo-Mo3Si-T2 (Mo5SiB2) - Mo2B befindet. Dies ist dann der Fall, wenn der Si- Gehalt bei 0,1 - 8,9 Gew.% und der B-Gehalt bei 0,1 - 5,3 Gew.% liegt. Ein besonders vorteilhafter Konzentrationsbereich sowohl im Hinblick auf Festigkeit, Kriechbeständigkeit, Bruchzähigkeit und Oxidationsverhalten liegt bei 2 - 6 Gew.% Si, 0,5 - 2 Gew.% B und 0,2 - 1 Vol.% Oxidanteil. Bei Anwendung geeigneter pulvermetallurgischer Verfahrenstechniken ist gewährleistet, dass die Oxidzusätze in ausreichender Feinheit und Homogenität in der Legierungsmatrix vorliegen. Dabei werden Pulverrriischungen, die aus den entsprechenden Komponenten bestehen durch mechanisches Legieren behandelt, wobei sowohl elementare Pulver, als auch vorlegierte Pulver zum Einsatz kommen können. Als Aggregate sind dabei übliche Hochenergiemühlen wie beispielsweise Attritoren, Kugelfallmühlen oder Schwingmühlen geeignet. Um eine Oxidation der Legierungskomponenten zu vermeiden, ist es vorteilhaft, den Mahlprozess unter Wasserstoff durchzuführen. Als Kompaktierverfahren hat sich das heißisostatische Pressen bewährt. Dabei wird das gemahlene Pulver in eine Kanne aus einer Mo-Legierung gefüllt, vakuumdicht verschweißt und bei Temperaturen im Bereich von 1300°C - 1500°C verdichtet. Auch andere druckunterstützte Warmkompaktierverfahren, wie beispielsweise Pulverstrangpressen, können zum Einsatz kommen. Um eine Gefügefeinung und Homogenisierung zu erreichen, ist es vorteilhaft, den kompaktierten Körper einem Umformprozess zu unterziehen. Dies erweist sich besonders dann als günstig, wenn die Warmkompaktierung durch druckloses Sintern erfolgt. Dabei werden die nach dem Sintern grob vorliegenden intermetallischen Phasenanteile zerkleinert. Eine nennenswerte Vergröberung der intermetallischen Phasenanteile während der thermomechanischen Behandlung wird durch die Oxidzusätze verhindert. Zudem wird eine Rekristallisation, speziell auch der molybdän reichen Phasenanteile, vermieden.
Neben pulvermetallurgischen Verfahrenstechniken können grundsätzlich auch schmelzmetallurgische Herstellprozesse zum Einsatz kommen. Zu nennen sind dabei besonders Sprühkompaktierverfahren, wo Oxidzusätze während der Sprühphase beigemengt werden.
Im Folgenden wird die Erfindung durch Beispiele näher beschrieben.
Beispiel 1
0,5 Gew.% Yttriumoxidpulver mit einer mittleren Korngröße nach Fisher von 0,8 μm wurde mit 96,5 Gew.% Mo mit einer Korngröße von 4,12 μm, 3,1 Gew.% Si mit einer Korngröße von 4,41 μm und 1 ,14 Gew.% B mit einer Korngröße von 0,92 μm vermengt und mechanisch legiert. Das mechanische Legieren erfolgte in einem Attritor unter Wasserstoff. Das Attritorvolumen betrug 50 I und es kamen 100 kg Kugeln aus einer Fe-Cr-Ni-Legierung mit einem Durchmesser von 9 mm zum Einsatz. Die Attritierzeit betrug 10 Stunden. Nach dem mechanischen Legieren konnten mittels XRD nur Molybdän und Y2Ü3 detektiert werden. Das Pulver wurde in ein Kanne aus einer Mo-Basislegierung gefüllt. Die Kanne wurde evakuiert und vakuumdicht verschweißt. Kanne und Pulver wurden in einem Indirektofen auf eine Temperatur von 1500°C erhitzt und durch Strangpressen verdichtet. Das Strangpressverhältnis betrug dabei 1 : 6. Aus den so hergestellten Strangpresslingen wurden Zugproben mittels Erosion und Drehverfahren herausgearbeitet. Zu Vergleichszwecken wurde auch ein Werkstoff ohne Yttriumoxid hergestellt, wobei die oben erwähnten Verfahrensschritte zum Einsatz kamen. Die Charakterisierung der erfindungsgemäßen Proben und der Vergleichsproben erfolgte durch einen Warmzugversuch, wobei die Dehnrate 10'4Sek"1 betrug. Die Prüftemperatur wurde dabei sukzessive erhöht, bis eine Temperatur ermittelt werden konnte, bei der die Dehnung der geprüften Probe zumindest 10 % betrug. Bei der erfindungsgemäßen Probe konnte dabei eine Temperatur von 1000°C bestimmt werden. Beim Werkstoff ohne Oxidzusatz betrug diese 1300°C. Die korrespondierenden Festigkeitswerte bei 1300 °C betrugen dabei 300 MPa für die erfindungsgemäße Probe und 200 MPa für die Probe ohne Oxidzusatz.
Beispiel 2
0,7 Gew.% La(OH)3-Pulver mit einer mittleren Korngröße von 0,2 μm wurde mit 93,9 Gew.% Mo mit einer Pulverkorngröße von 4,25 μm, 3,9 Gew.% Si mit einer Pulverkorngröße von 4,30 μm und 1 ,4 Gew.% B mit einer Pulverkorngröße von 1 ,15 μm vermengt und mechanisch legiert. Das mechanische Legieren erfolgte wiederum in einem Attritor unter Wasserstoff während 10 Stunden. Das Pulver wurde kaltisostatisch bei 2000 bar verpresst und anschließend durch eine Sinterbehandlung bei 1350°C / 5 Stunden unter Wasserstoff verdichtet. Die Bestimmung der Dichte zeigte, dass 91 % der theoretischen Dichte (8,7 g/cm3) erreicht werden konnte. Da der Anteil an offener Porosität vernachlässigbar gering war, konnte eine weitere Verdichtung durch heißisostatisches Pressen ohne die Verwendung einer Kanne erfolgen. Die Temperatur betrug dabei 1500°C, der Druck 1980 bar und die HIP-Zeit 4 Stunden. Die Dichte nach dem heißisostatischen Pressen betrug 9,5 g/cm3, was 99 % der theoretischen Dichte entspricht. Aus dieser Legierung gefertigte Proben wurden eine Oxidationsbehandlung bei 1200°C unterzogen. Die Gewichtsmessung erfolgte nach 1 , 3, 10 und 30 Stunden. Diese Werte und Werte eines Werkstoffes ohne Oxidzusatz, ansonsten jedoch gleicher Zusammensetzung und Herstellung, sind in nachstehender Tabelle wiedergegeben.

Claims

Patentansprüche
1. Mo-Si-B-Legierung bestehend aus den intermetallischen Phasen Molybdänsilizid und Molybdänborsilizid, wahlweise zusätzlich Molybdänborid, wobei der Summengehalt intermetallischer Phasenbestandteile 25 bis 90 Vol.% und der Anteil weiterer Gefügebestandteile < 5 Vol.% beträgt und der Rest aus Molybdän oder Molybdänmischkristall besteht, d a d u r c h g e k e n n z e i c h n e t, dass die Legierung 0,1 - 5 Vol.% eines oder mehrerer Oxide oder Mischoxide mit einem Dampfdruck bei 1500 °C von < 5x10"2 bar enthält.
2. Mo-Si-B-Legierung nach Anspruch 1 , dadurch gekennzeichnet, dass die Oxide oder Mischoxide eine mittlere Teilchengröße < 5 μm aufweisen.
3. Mo-Si-B-Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oxide oder Mischoxide einen Dampfdruck von < 5 x 10"4 bar aufweisen.
4. Mo-Si-B-Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oxide oder Mischoxide aus der Gruppe der Oxide der Metalle Y, Lanthanide, Zr, Hf, Ti, AI, Ca, Mg und Sr stammen.
5. Mo-Si-B-Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Summengehalt an Molybdänsilizid und Molybdänborsilizid 40 - 80 Vol.% beträgt.
6. Mo-Si-B-Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mo-Mischkristall ein oder mehrere Metalle aus der Gruppe Re, Ti, Zr, Hf, V, Nb, Ta, Cr und AI enthält.
7. Mo-Si-B-Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese aus 0,1 - 8,9 Gew.% Si, 0,1 - 5,3 Gew.% B und 0,1 - 5 Vol.% eines oder mehrerer Oxide oder Mischoxide der Metalle der Gruppe Y, Lanthanide, Zr, Hf, Ti, AI, Ca, Mg und Sr, Rest Mo besteht.
8. Mo-Si-B-Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese aus 2 - 6 Gew.% Si, 0,5 - 2 Gew.% B, 0,2 - 1 Vol.% Y2O3, Rest Mo besteht.
9. Mo-Si-B-Legierung Ansprüche, dadurch gekennzeichnet, dass diese aus 0,1 - 8,9 Gew.% Si, 0,1 - 5,3 Gew.% B, 1 - 25 Gew.% Nb, 0,1 - 5 Vol.% eines oder mehrerer Oxide oder Mischoxide der Metalle der Gruppe Y, Lanthanide, Zr, Hf, Ti, AI, Ca, Mg und Sr, Rest Molybdän besteht.
10. Mo-Si-B-Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese aus 2 - 6 Gew.% Si, 0,5 - 2 Gew.% B, 0,2 - 1 Vol.% Y2O3, 5 - 10 Gew.% Nb, Rest Molybdän besteht.
11.Verfahren zur Herstellung einer Mo-Si-B-Legierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass pulvermetallurgische Verfahrenstechniken zum Einsatz kommen.
12. Verfahren zur Herstellung einer Mo-Si-B-Legierung nach Anspruch 11 , dadurch gekennzeichnet, dass die Oxide oder Mischoxide durch mechanisches Legieren in das Legierungspulver, das in elementarer oder vorlegierter Form vorliegen kann, eingemahlen werden.
13. Verfahren zur Herstellung einer Mo-Si-B-Legierung nach Anspruch 11 und 12, dadurch gekennzeichnet, dass das mechanisch legierte Pulver durch Warmkompaktieren verdichtet wird.
EP04761036A 2003-09-19 2004-09-15 Ods-molybdän-silizium-bor-legierung Expired - Lifetime EP1664362B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0064003U AT6955U1 (de) 2003-09-19 2003-09-19 Ods-molybdän-silizium-bor-legierung
PCT/AT2004/000314 WO2005028692A1 (de) 2003-09-19 2004-09-15 Ods-molybdän-silizium-bor-legierung

Publications (2)

Publication Number Publication Date
EP1664362A1 true EP1664362A1 (de) 2006-06-07
EP1664362B1 EP1664362B1 (de) 2012-02-01

Family

ID=32234844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04761036A Expired - Lifetime EP1664362B1 (de) 2003-09-19 2004-09-15 Ods-molybdän-silizium-bor-legierung

Country Status (5)

Country Link
US (1) US7806995B2 (de)
EP (1) EP1664362B1 (de)
CN (1) CN1852999B (de)
AT (2) AT6955U1 (de)
WO (1) WO2005028692A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017217082A1 (de) 2017-09-26 2019-03-28 Siemens Aktiengesellschaft Pulver aus einer Molybdän, Silizium und Bor enthaltenden Legierung, Verwendung dieses Pulvers und additives Herstellungsverfahren für ein Werkstück aus diesem Pulver

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090011266A1 (en) * 2007-07-02 2009-01-08 Georgia Tech Research Corporation Intermetallic Composite Formation and Fabrication from Nitride-Metal Reactions
CN101397617B (zh) * 2008-10-28 2010-11-24 西安交通大学 一种纳米稀土氧化物掺杂钼-硅-硼合金的制备方法
CN102424928B (zh) * 2011-12-03 2013-07-31 西北有色金属研究院 一种Mo-Si-B-W多相复合材料及其制备方法
US9884367B2 (en) * 2011-12-28 2018-02-06 A.L.M.T. Corp. Mo—Si—B-based alloy powder, metal-material raw material powder, and method of manufacturing a Mo—Si—B-based alloy powder
WO2013177028A1 (en) * 2012-05-21 2013-11-28 Dow Corning Corporation Silicothermic reduction of metal oxides to form eutectic composites
JP5394582B1 (ja) 2012-06-07 2014-01-22 株式会社アライドマテリアル モリブデン耐熱合金
WO2014164859A2 (en) 2013-03-11 2014-10-09 Rolls-Royce Corporation Compliant layer for ceramic components and methods of forming the same
US9358613B2 (en) * 2013-04-08 2016-06-07 Baker Hughes Incorporated Hydrophobic porous hard coating with lubricant, method for making and use of same
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
US9994937B1 (en) 2014-05-20 2018-06-12 Imaging Systems Technology, Inc. Mo-Si-B manufacture
DE102015214730A1 (de) * 2014-08-28 2016-03-03 MTU Aero Engines AG Kriech- und oxidationsbeständige Molybdän - Superlegierung
DE102015209583A1 (de) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Molybdän-Silizium-Borlegierung und Verfahren zur Herstellung sowie Bauteil
CN105220051B (zh) * 2015-10-28 2017-04-12 西北有色金属研究院 一种Mo‑Si‑B金属间化合物棒材及其制备方法
CN105506331B (zh) * 2016-01-19 2017-10-03 西安航天新宇机电设备厂 一种Mo‑Si‑B‑Ti‑Zr‑Al‑Nb复合材料及其制备方法
CN105821272B (zh) * 2016-05-18 2017-07-28 金堆城钼业股份有限公司 一种抗磨削的钼合金材料及其制备方法
CN108034875B (zh) * 2017-11-21 2020-03-31 西安理工大学 一种掺杂稀土氧化物的Mo-Si-B合金及其制备方法
CN108015445B (zh) * 2017-12-06 2024-05-10 中广核研究院有限公司 微合金化连接方法及微合金化连接结构
CN108193115B (zh) * 2017-12-14 2019-09-24 昆山胜典机电科技进出口有限公司 一种钼合金的制备方法、钼合金及其应用
CN108060338B (zh) * 2017-12-21 2019-11-08 陕西理工大学 一种铈锌共强化钼硅硼合金及其制备方法
DE102018113340B4 (de) 2018-06-05 2020-10-01 Otto-Von-Guericke-Universität Magdeburg Dichteoptimierte Molybdänlegierung
AT16308U3 (de) * 2018-11-19 2019-12-15 Plansee Se Additiv gefertigtes Refraktärmetallbauteil, additives Fertigungsverfahren und Pulver
CN109518053B (zh) * 2018-11-30 2019-09-24 江苏东浦钨钼制品有限责任公司 一种高纯钼铼镧三元合金导杆及其生产工艺
CN111041319B (zh) * 2019-12-31 2020-12-08 中国人民解放军空军工程大学 一种强韧抗高温氧化钼合金及其制备的方法
CN112176235A (zh) * 2020-09-14 2021-01-05 自贡硬质合金有限责任公司 一种钼合金及其制备方法
US11761064B2 (en) * 2020-12-18 2023-09-19 Rtx Corporation Refractory metal alloy
CN112941407B (zh) * 2021-01-27 2022-07-01 中国核动力研究设计院 反应堆用纳米氧化物强化铁素体钢、管材及其制备方法
CN114540814A (zh) * 2022-03-08 2022-05-27 南京理工大学 一种高温耐磨抗氧化涂层
CN114406284A (zh) * 2022-03-09 2022-04-29 南京理工大学 一种低密度高强度抗高温氧化的Mo-Si-B-Ti合金

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195247A (en) * 1978-07-24 1980-03-25 General Electric Company X-ray target with substrate of molybdenum alloy
JPS6075545A (ja) * 1983-09-29 1985-04-27 Toshiba Corp ダイス及びその製造方法
JPS60197839A (ja) * 1984-03-22 1985-10-07 Toshiba Corp セラミツクス焼結用治具及びその製造方法
US4755712A (en) 1986-12-09 1988-07-05 North American Philips Corp. Molybdenum base alloy and lead-in wire made therefrom
AT395493B (de) * 1991-05-06 1993-01-25 Plansee Metallwerk Stromzufuehrung
US5693156A (en) 1993-12-21 1997-12-02 United Technologies Corporation Oxidation resistant molybdenum alloy
NO180361C (no) * 1995-01-20 1997-04-09 Modulvegger Marketing As Anordning ved en knekt, såsom en hylleknekt, og et profil tilknyttet en lettvegg
US5865909A (en) * 1995-07-28 1999-02-02 Iowa State University Research Foundation, Inc. Boron modified molybdenum silicide and products
US5868876A (en) * 1996-05-17 1999-02-09 The United States Of America As Represented By The United States Department Of Energy High-strength, creep-resistant molybdenum alloy and process for producing the same
AT2017U1 (de) * 1997-05-09 1998-03-25 Plansee Ag Verwendung einer molybdän-/wolfram-legierung in bauteilen für glasschmelzen
CN1083900C (zh) * 1999-04-06 2002-05-01 株洲硬质合金厂 一种掺杂钼合金的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005028692A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017217082A1 (de) 2017-09-26 2019-03-28 Siemens Aktiengesellschaft Pulver aus einer Molybdän, Silizium und Bor enthaltenden Legierung, Verwendung dieses Pulvers und additives Herstellungsverfahren für ein Werkstück aus diesem Pulver

Also Published As

Publication number Publication date
US7806995B2 (en) 2010-10-05
ATE543921T1 (de) 2012-02-15
US20060169369A1 (en) 2006-08-03
AT6955U1 (de) 2004-06-25
CN1852999B (zh) 2012-05-30
EP1664362B1 (de) 2012-02-01
WO2005028692A1 (de) 2005-03-31
CN1852999A (zh) 2006-10-25

Similar Documents

Publication Publication Date Title
EP1664362B1 (de) Ods-molybdän-silizium-bor-legierung
EP1718777B1 (de) Verfahren zur herstellung einer molybdän-legierung
DE69128692T2 (de) Titanlegierung aus Sinterpulver und Verfahren zu deren Herstellung
DE69223194T2 (de) Verfahren zur Herstellung von Verbundlegierungspulver mit Aluminiummatrix
DE69734515T2 (de) Gesinterte hartlegierung
EP3802898B1 (de) Dichteoptimierte molybdänlegierung
DE69227503T2 (de) Hartlegierung und deren herstellung
DD158799A5 (de) Verfahren zur herstellung von sinterfaehigen legierungspulvern auf der basis von titan
DE2232884A1 (de) Verfahren zum herstellen von pulver aus verbundteilchen
DE3238555C2 (de)
DE69207257T2 (de) Wärmebeständige gesinterte Oxiddispersionsgehärtete Legierung
EP0183017B2 (de) Sinterverfahren für vorlegierte Wolframpulver
WO2019120347A1 (de) Partikelverstärkter hochtemperaturwerkstoff
DE112021005360T5 (de) Pulverisier-/rühr-/misch-/knetmaschinenkomponente
EP3015199A2 (de) Verfahren zur herstellung einer hochtemperaturfesten ziellegierung, eine vorrichtung, eine legierung und ein entsprechendes bauteil
DE2539002B2 (de) Verwendung von legierungen zur herstellung von magnetkoepfen
DE102018101391A1 (de) Verfahren zur Herstellung eines dispersionsverfestigten Kupferwerkstoffes und dispersionsverfestigter Kupferwerkstoff
DE3637930C1 (en) Mfg. composite material for armour piercing ammunition - using alloy powder contg. tungsten@, nickel@, iron@, copper@, titanium@, aluminium@ and/or molybdenum@
EP0207268A1 (de) Aluminiumlegierung, geeignet für rasche Abkühlung aus einer an Legierungsbestandteilen übersättigten Schmelze
WO1995033079A1 (de) Bildung von intermetallischähnlichen vorlegierungen
DE102019104492B4 (de) Verfahren zur herstellung einer kristallinen aluminium-eisen-silizium-legierung
WO2009112192A2 (de) Verbundwerkstoff auf basis von übergangsmetalldiboriden, verfahren zu dessen herstellung und dessen verwendung
DE1558494C3 (de) Verfahren zur Herstellung harter Wolframcarbid-Sinterkörper
DE19752805A1 (de) Dispersionsverfestigter Kupferwerkstoff
DE112022005758T5 (de) Warmverformung einer ausscheidungshärtenden Pulvermetalllegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANSEE SE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100503

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 543921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013275

Country of ref document: DE

Effective date: 20120329

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120601

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120920

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120921

Year of fee payment: 9

26N No opposition filed

Effective date: 20121105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121010

Year of fee payment: 9

Ref country code: NL

Payment date: 20120920

Year of fee payment: 9

Ref country code: BE

Payment date: 20120920

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013275

Country of ref document: DE

Effective date: 20121105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120501

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 543921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120915

BERE Be: lapsed

Owner name: PLANSEE SE

Effective date: 20130930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120915

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013275

Country of ref document: DE

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040915

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401