CN112941407B - 反应堆用纳米氧化物强化铁素体钢、管材及其制备方法 - Google Patents

反应堆用纳米氧化物强化铁素体钢、管材及其制备方法 Download PDF

Info

Publication number
CN112941407B
CN112941407B CN202110109344.6A CN202110109344A CN112941407B CN 112941407 B CN112941407 B CN 112941407B CN 202110109344 A CN202110109344 A CN 202110109344A CN 112941407 B CN112941407 B CN 112941407B
Authority
CN
China
Prior art keywords
nano
reactor
pipe
oxide reinforced
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110109344.6A
Other languages
English (en)
Other versions
CN112941407A (zh
Inventor
张瑞谦
孙永铎
孙超
王改霞
刘彬
李垣明
柴晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Power Institute of China
Original Assignee
Nuclear Power Institute of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Power Institute of China filed Critical Nuclear Power Institute of China
Priority to CN202110109344.6A priority Critical patent/CN112941407B/zh
Publication of CN112941407A publication Critical patent/CN112941407A/zh
Application granted granted Critical
Publication of CN112941407B publication Critical patent/CN112941407B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Abstract

本发明公开了反应堆用纳米氧化物强化铁素体钢、管材及其制备方法,解决了现有的ODS钢的性能无法进一步满足更高要求的热管式反应堆的特定环境对结构材料的要求,同时ODS钢材现有的加工方式受到ODS钢材的加工性能的局限,不利于制造热管式反应堆中的管材的技术问题。本发明的纳米氧化物强化铁素体钢的原料组分如下:Cr:12~15%,W:1~5%,Ti:0.2~0.8%,Si:0.1~0.6%,Zr:0.3~0.8%,Y2O3:0.2~0.7%,Fe:余量。本发明的纳米氧化物强化铁素体钢具有力学性能及抗辐照肿胀能力好以及实现材料的近净成型等优点。

Description

反应堆用纳米氧化物强化铁素体钢、管材及其制备方法
技术领域
本发明涉及核动力管道支撑技术领域,具体涉及反应堆用纳米氧化物强化铁素体钢、管材及其制备方法。
背景技术
在先进核能系统中不仅要求材料具有良好的高温抗蠕变性能,而且还要具有更强的抗辐照损伤性能。由于传统的铁素体/马氏体钢以及奥氏体钢的工作温度最高仅能达到550~650℃,因此就需要开发新一代反应堆用结构材料以应对更为严苛的工作环境。氧化物弥散强化(Oxide Dispersion Strengthened,ODS)钢以其特有的微观结构,可将实际工作温度提高到700℃以上,从而满足新一代核电用材料要求。其中,ODS铁素体钢不仅在200dpa的中子辐照条件下仍保持较低的辐照肿胀率,还具有优异的高温蠕变性能。同时热管式反应堆也具有高中子注量、堆芯运行温度高等特点。
由于在热管式反应堆的特定环境中一方面需要结构材料高的抗蠕变性能与抗辐照性能。因此,针对热管式反应堆系统特殊的性能要求,现有的ODS并不能完全满足,因此,需要研发新型钢材料,使之在具有高强度和超抗辐照性能。
同时热管式反应堆的堆芯结构材料主要包括了燃料包壳管材以及热管管材,在解决材料本身的强度和抗辐照性能的同时,还需要考虑所用材质制作成管材的加工性能,而ODS钢因为强度高,塑性差,在加工成管材时存在加工难度大,其管材加工周期长、成才率低的问题,因此,也需要对其加工方式进行进一步的改进。
发明内容
本发明所要解决的技术问题是:现有的ODS钢的性能无法进一步满足更高要求的热管式反应堆的特定环境对结构材料的要求,同时ODS钢材现有的加工方式受到ODS钢材的加工性能的局限,不利于制造热管式反应堆中的管材。
本发明通过下述技术方案实现:
反应堆用纳米氧化物强化铁素体钢,以质量百分含量计,原料由下列成分组成:
Cr:12~15%,W:1~5%,Ti:0.2~0.8%,Si:0.1~0.6%,Zr:0.3~0.8%,Y2O3:0.2~0.7%,Fe:余量。
本发明优选的反应堆用纳米氧化物强化铁素体钢,以质量百分含量计,原料由下列成分组成:
Cr:13~14%,W:1~3%,Ti:0.3~0.6%,Si:0.2~0.4%,Zr:0.4~0.6%,Y2O3:0.3~0.5%,Fe:余量。
进一步地,所述纳米氧化物强化铁素体钢的合金粉末杂质含量控制在C≤0.005%,N≤0.005%。
本发明中,纳米氧化物强化铁素体钢中Ti和Zr的同时加入可明显细化纳米析出相尺寸,相比于单一Y-Ti-O析出相,Y-Ti-O和Y-Zr-O纳米团簇同时存在时可得到更小的晶粒和析出相尺寸,以及更高的析出相分布密度,进而提高材料力学及抗辐照性能;Si的添加可以提高材料腐蚀抗力、降低合金烧结温度和提高抗辐照肿胀性能。
反应堆用纳米氧化物强化铁素体钢的制备方法,包括如下步骤:
步骤1:获取Fe-Cr-W-Ti-Si-Zr预合金粉末;
步骤2:通过机械合金化法将Y2O3引入Fe-Cr-W-Ti-Si-Zr预合金粉末中制得预烧结合金粉末;
步骤3:制备不锈钢包套,装填步骤2中的预烧结合金粉末,再经热等静压烧结得到烧结合金坯;
步骤4:去除步骤3中烧结合金坯的包套,得到预挤压坯料,然后再对预挤压坯料进行热挤压,热挤压后进行退火得到退火合金钢;
步骤5:通过热轧加冷轧的复合轧制工艺对退火合金钢进行轧制,每道次热轧和冷轧后均进行退火。
反应堆用纳米氧化物强化铁素体钢管材的制备方法,包括如下步骤:
步骤(1):通过氩气高压雾化法制备Fe-Cr-W-Ti-Si-Zr预合金粉末,Fe-Cr-W-Ti-Si-Zr预合金粉末按照权利要求1或2所述的纳米氧化物强化铁素体钢的原料成分进行配比;
步骤(2):通过机械合金化法将Y2O3引入Fe-Cr-W-Ti-Si-Zr预合金粉末中制得预烧结合金粉末;
步骤(3):制备管状不锈钢包套,装填步骤(2)中预烧结合金粉末,再经热等静压烧结得到烧结合金坯;
步骤(4):去除步骤3中烧结合金坯的包套,得到预挤压坯料,然后再对预挤压坯料进行热挤压,热挤压后进行退火得到退火后的挤压管材;
步骤(5):通过热轧加冷轧的复合轧制工艺对退火后的挤压管材进行轧制,热轧和冷轧后分别进行退火。
本发明采用管状包套实现材料的近净成型,材料经热等静压后无需进行穿孔等工艺即可进行挤压和轧制制备管材,最大程度上避免了对原料的损耗,极大地降低了纳米氧化物强化钢管材制备成本,且制备工艺简单经济,适合大批量纳米氧化物强化钢管材制备。
本发明的组分和制备方法获得的纳米氧化物强化铁素体钢得到的晶粒细小而致密,利于提高力学性能和抗辐照性能。
本发明优选的反应堆用纳米氧化物强化铁素体钢管材的制备方法,所述步骤(1)中的预合金粉末粒径为100-300目。
本发明优选的反应堆用纳米氧化物强化铁素体钢管材的制备方法,所述步骤(2)中Y2O3粉末粒径为20~150nm。
本发明优选的反应堆用纳米氧化物强化铁素体钢管材的制备方法,所述步骤(2)中机械合金化法采用干法球磨,所述干法球磨中采用氩气保护,干法球磨的球料比为(5~15):1,转速为行星转150~250转/分,翻转5~15转/分,球磨时间为30~50小时。
进一步地,所述干法球磨的参数优选为:料球比(10~15):1,行星转200~230转/分,翻转7~12转/分;球磨时间为35~45小时。
本发明优选的反应堆用纳米氧化物强化铁素体钢管材的制备方法,所述步骤(3)中,热等静压烧结温度为1000~1300℃,烧结压力为100~200MPa,烧结时间为1.5~3小时。
本发明优选的反应堆用纳米氧化物强化铁素体钢管材的制备方法,步骤(4)中的热挤压预热温度为1150~1300℃,保温时间1~2小时,挤压比为(4~20):1;热挤压后进行退火,退火温度为900~1300℃,保温时间0.5~2小时;对退火后挤压管材进行矫直处理。
本发明优选的反应堆用纳米氧化物强化铁素体钢管材的制备方法,所述步骤(5)中,热轧温度为600~900℃,热轧与冷轧的单道次变形量在15%~50%之间,热轧和冷轧后均进行退火处理,所述退火温度均为900~1300℃。
本发明具有如下的优点和有益效果:
1、本发明的组分和制备方法获得的纳米氧化物强化铁素体钢得到的晶粒细小而致密,利于提高力学性能和抗辐照性能。
2、本发明所设计纳米氧化物强化铁素体钢成分中同时含有Ti和Zr两种可与Y、O元素结合形成纳米团簇的合金元素,与只添加Ti或Zr的纳米氧化物强化钢相比,本发明所制备材料具有尺寸更细小(<5nm)、分布密度更高的纳米析出相特征,进一步提高了纳米氧化物强化钢的力学性能及抗辐照肿胀能力。
2、本发明采用管状包套实现材料的近净成型,材料经热等静压后无需进行穿孔等工艺即可进行挤压和轧制制备管材,最大程度上避免了对原料的损耗,极大地降低了纳米氧化物强化钢管材制备成本,且制备工艺简单经济,适合大批量纳米氧化物强化钢管材制备。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为机械合金化后得到的预烧结合金粉末的微观形貌图。
图2为本发明的纳米氧化物强化铁素体钢管材的TEM电镜图。
图3为本发明的纳米氧化物强化铁素体钢管材的EBSD微观形貌图。
图4为纳米氧化物强化铁素体钢管材高温力学性能测试曲线。
图5为纳米氧化物强化铁素体钢管材成品宏观形貌图。
附图中零部件名称:
1-纳米氧化物强化铁素体钢包壳管材。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
反应堆用纳米氧化物强化铁素体钢管材的制备方法,包括如下步骤:
步骤(1):获得Fe-13Cr-2.5W-0.4Ti-0.4Si-0.5Zr(wt.%)预合金粉末,所述预合金粉末的粒径为200目,所述预合金粉末的形貌图如图1所示。
步骤(2):机械合金化法制备预烧结合金粉
将Fe-13Cr-2.5W-0.4Ti-0.4Si-0.5Zr(wt.%)预合金粉末与粒度为50nm的Y2O3粉末装入不锈钢球磨罐中,所述Y2O3粉末占预合金粉末的质量分数为0.35wt.%,采用氩气为保护气体,经反复抽气-充气5次后,再行星转210转/分,翻转8转/分,球料比(10~12):1的条件下进行粉末机械合金化球磨42小时得到预烧结合金粉末。
步骤(3):静压烧结制备烧结合金坯
将步骤(2)所得的预烧结合金粉末装入圆柱形管状不锈钢包套中,经振动台振实后抽气封焊,在温度1200℃,压力160MPa的条件下保温2小时进行热等静压烧结得到烧结合金坯。
步骤(4):去包套热挤压制备挤压管材
所得管状烧结合金坯经机加工后去除内外表面包套,并适当打磨提高光洁度,得到预挤压管坯,将预挤压管状坯料置于真空热处理炉中,在1200~1250℃下保温1.2小时,在材料热透后取出并在内外表面涂覆玻璃粉,随后在挤压比为4~6:1,挤压速度为50~60mm/s的挤压条件下进行热挤压变形并空冷。将挤压后管坯置于真空热处理炉中进行去应力退火,退火温度为1000~1050℃,保温0.5~1小时后随炉冷却至室温,对退火管材进行矫直得到预轧制管坯材料。
步骤(5):热轧和冷轧制备
按照表1所列轧制工艺对管坯材料进行热轧和冷轧变形,对轧制后管材在900℃下进行热处理,得到外径为10mm,壁厚为1mm的纳米氧化物强化铁素体钢包壳管材1。
表1管材轧制工艺参数
Figure BDA0002918680820000051
Figure BDA0002918680820000061
对所制备的纳米氧化物强化铁素体钢包壳管材进行力学性能检测和形貌检测,从图2的TEM形貌图可以看出,本发明的纳米氧化物强化铁素体钢包壳管材的纳米析出相尺寸小,且密度高,这有利于提高纳米氧化物强化铁素体钢包壳管材的力学性能和抗辐照性能,第二相颗粒主要为YTi2O6,Y2SiO5,Y4Zr3O12,Y2O3等纳米颗粒。
从图3的EBSD形貌图可以看出,本制备的纳米氧化物强化铁素体钢包壳管材的晶粒细小而致密,这有利于提高纳米氧化物强化铁素体钢包壳管材的力学性能和抗辐照性能。
从图4的应力-应变曲线也可以直接看到,室温下ODS钢抗拉强度达到~1100MPa,而在400~600℃下仍可保持>400MPa的抗拉强度,在800℃下的抗拉强度>200MPa,在测试温度范围内ODS钢具有较为良好的塑性以及较高的高温强度。
本发明通过合金成分的设计和制备方法的改进,获得了细小的晶粒以及纳米析出相,提高了整个纳米氧化物强化铁素体钢的力学性能和抗辐照性能;且通过制备方法的改进,实现了纳米氧化物强化钢的近净成型,减少了材料损耗,降低生产成本的同时提高了生产效率,对实现纳米氧化物强化钢的实际生产和应用有着重要的促进作用。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.反应堆用纳米氧化物强化铁素体钢管材的制备方法,其特征在于,包括如下步骤:
步骤(1):获取Fe-Cr-W-Ti-Si-Zr预合金粉末;
步骤(2):通过机械合金化法将Y2O3引入Fe-Cr-W-Ti-Si-Zr预合金粉末中制得预烧结合金粉末,所述预烧结合金粉末以量百分含量计,原料由下列成分组成:
Cr:12~15%,W:1~5 %,Ti:0.2~0.8 %,Si:0.1~0.6 %,Zr:0.3~0.8 %,Y2O3:0.2~0.7 %,Fe:余量;
步骤(3):制备管状不锈钢包套,装填步骤(2)中的预烧结合金粉末,再经热等静压烧结得到烧结合金坯;
步骤(4):去除步骤3中烧结合金坯的包套,得到预挤压坯料,然后再对预挤压坯料进行热挤压,热挤压后进行退火得到退火后的挤压管材;
步骤(5):通过热轧加冷轧的复合轧制工艺对退火后的挤压管材进行轧制,热轧和冷轧后均进行退火。
2.根据权利要求1所述的反应堆用纳米氧化物强化铁素体钢管材的制备方法,其特征在于,所述步骤(1)中的预合金粉末粒径为100-300目。
3.根据权利要求1或2所述的反应堆用纳米氧化物强化铁素体钢管材的制备方法,其特征在于,所述步骤(2)中Y2O3粉末粒径为20~150 nm。
4.根据权利要求1或2所述的反应堆用纳米氧化物强化铁素体钢管材的制备方法,其特征在于,所述步骤(2)中机械合金化法采用干法球磨,所述干法球磨中采用氩气保护,干法球磨的球料比为(5~15):1,转速为行星转150~250转/分,翻转5~15转/分,球磨时间为30~50小时。
5.根据权利要求1或2所述的反应堆用纳米氧化物强化铁素体钢管材的制备方法,其特征在于,所述步骤(3)中,热等静压烧结温度为1000~1300℃,烧结压力为50~200 MPa,烧结时间为0.5~5小时。
6.根据权利要求1或2所述的反应堆用纳米氧化物强化铁素体钢管材的制备方法,其特征在于,步骤(4)中的热挤压预热温度为1150~1300 ℃,保温时间1~2小时,挤压比为(4~20):1;热挤压后进行退火,退火温度为900~1300 ℃,保温时间0.5~2小时;对退火后挤压管材进行矫直处理。
7.根据权利要求1或2所述的反应堆用纳米氧化物强化铁素体钢管材的制备方法,其特征在于,所述步骤(5)中,热轧温度为600~900 ℃,热轧与冷轧的单道次变形量均在15 %~50%之间,所述中间退火温度和最终退火温度均为900~1300 ℃。
CN202110109344.6A 2021-01-27 2021-01-27 反应堆用纳米氧化物强化铁素体钢、管材及其制备方法 Active CN112941407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110109344.6A CN112941407B (zh) 2021-01-27 2021-01-27 反应堆用纳米氧化物强化铁素体钢、管材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110109344.6A CN112941407B (zh) 2021-01-27 2021-01-27 反应堆用纳米氧化物强化铁素体钢、管材及其制备方法

Publications (2)

Publication Number Publication Date
CN112941407A CN112941407A (zh) 2021-06-11
CN112941407B true CN112941407B (zh) 2022-07-01

Family

ID=76237630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110109344.6A Active CN112941407B (zh) 2021-01-27 2021-01-27 反应堆用纳米氧化物强化铁素体钢、管材及其制备方法

Country Status (1)

Country Link
CN (1) CN112941407B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976659A (zh) * 2021-10-26 2022-01-28 上海工程技术大学 一种基于外场辅助增材制造金属管材的方法
CN115198163B (zh) * 2022-05-24 2023-04-25 北京科技大学 一种具有拉伸塑性的多纳米相强化ods合金的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426737A (ja) * 1990-05-22 1992-01-29 Sumitomo Metal Ind Ltd 酸化物分散強化型フェライト鋼
CN104073725A (zh) * 2013-03-29 2014-10-01 韩国原子力研究院 提高常温及高温强度的铁素体氧化物弥散强化合金及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533760A (en) * 1965-04-02 1970-10-13 Sherritt Gordon Mines Ltd Dispersion strengthened nickel-chromium alloy composition
AT6955U1 (de) * 2003-09-19 2004-06-25 Plansee Ag Ods-molybdän-silizium-bor-legierung
CN102277525B (zh) * 2011-08-23 2012-12-05 北京科技大学 氧化物弥散强化型不锈钢粉末制备方法及不锈钢
CN107541666B (zh) * 2017-09-08 2019-06-25 中国科学院合肥物质科学研究院 一种氧化物弥散强化钢的制备方法
CN109182882B (zh) * 2018-09-30 2020-05-19 中国科学院金属研究所 一种高强度氧化物弥散强化Fe基合金的制备方法
CN110863153B (zh) * 2019-12-05 2021-04-06 中国核动力研究设计院 一种先进核燃料元件包壳用FeCrAl基ODS合金材料的制备方法
CN111057958B (zh) * 2019-12-22 2022-01-14 中国科学院金属研究所 一种耐腐蚀、抗辐照、高强度的超级ods钢及制备方法
CN111172447B (zh) * 2020-01-03 2021-02-12 北京科技大学 两步法制备高强高韧含铝氧化物弥散强化铁素体钢的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426737A (ja) * 1990-05-22 1992-01-29 Sumitomo Metal Ind Ltd 酸化物分散強化型フェライト鋼
CN104073725A (zh) * 2013-03-29 2014-10-01 韩国原子力研究院 提高常温及高温强度的铁素体氧化物弥散强化合金及其制造方法

Also Published As

Publication number Publication date
CN112941407A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN112941407B (zh) 反应堆用纳米氧化物强化铁素体钢、管材及其制备方法
CN110004367B (zh) 一种氧化物弥散强化FeCrAl合金管材的制备方法
CN108145156B (zh) 一种高性能tzm钼合金棒材的制备方法
CN108950343A (zh) 一种基于高熵合金的wc基硬质合金材料及其制备方法
CN109338193B (zh) 一种无芯-环结构金属陶瓷合金及其制备方法
CN101328562A (zh) 氧化物弥散强化低活化马氏体钢材料及其制备方法
CN108179317B (zh) 一种700℃用高性能易加工钛材的制备方法
CN108145157A (zh) 一种高性能钼铼合金棒材的制备方法
CN112322933A (zh) 一种高性能近α高温钛合金及其粉末冶金制备方法
CN103627942A (zh) 一种高性能WC-Co纳米晶硬质合金的制备方法
CN109570508B (zh) 双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法
CN109897991B (zh) 一种高熵晶界修饰的纳米晶合金粉末及其制备方法
CN111560531B (zh) 一种低氧化物夹杂高性能粉末冶金镍基高温合金的制备方法
CN111304479A (zh) 一种VCrNbMoW难熔高熵合金制备方法
CN108546863A (zh) 一种多主元高温合金及其制备方法
CN108396199B (zh) 一种钴铬镍合金材料及其粉末冶金制备方法
JP2014198900A (ja) フェライト系酸化物分散強化合金及びその製造方法
CN110016603B (zh) 一种超高强度高热稳定性纳米晶ods钢及其制备方法和应用
CN114318057A (zh) 一种高强韧耐蚀锆钴二元合金及其制备方法
CN111036893B (zh) 一种钼铼合金管材的挤压制备方法
CN112355312A (zh) 一种超细晶纯钼金属材料的活化烧结制备方法
CN109719298B (zh) 一种具有核壳结构的TiAl基合金材料及其制备方法
CN114318152B (zh) 一种复合强化铁基高温合金及其制备方法
CN114657433A (zh) 一种固溶强化金属陶瓷及其制备方法
CN115198163B (zh) 一种具有拉伸塑性的多纳米相强化ods合金的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant