WO2001036539A1 - Composition a base de resine thermoplastique contenant un polymere thermoplastique a groupes alicycliques; objet moule - Google Patents

Composition a base de resine thermoplastique contenant un polymere thermoplastique a groupes alicycliques; objet moule Download PDF

Info

Publication number
WO2001036539A1
WO2001036539A1 PCT/JP2000/008087 JP0008087W WO0136539A1 WO 2001036539 A1 WO2001036539 A1 WO 2001036539A1 JP 0008087 W JP0008087 W JP 0008087W WO 0136539 A1 WO0136539 A1 WO 0136539A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
resin composition
thermoplastic resin
meth
Prior art date
Application number
PCT/JP2000/008087
Other languages
English (en)
French (fr)
Other versions
WO2001036539A8 (fr
Inventor
Michio Yamaura
Nobuaki Kido
Shunichi Matsumura
Kaoru Iwata
Kiyonari Hashidzume
Kazuteru Kohno
Original Assignee
Teijin Limited
Bayer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited, Bayer Ag filed Critical Teijin Limited
Priority to EP00976293A priority Critical patent/EP1266937A4/en
Priority to AU14140/01A priority patent/AU1414001A/en
Publication of WO2001036539A1 publication Critical patent/WO2001036539A1/ja
Publication of WO2001036539A8 publication Critical patent/WO2001036539A8/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2538Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycycloolefins [PCO]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2536Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polystyrene [PS]

Definitions

  • the present invention relates to a thermoplastic resin composition containing a thermoplastic polymer containing an alicyclic group, and a molded product thereof. More specifically, a thermoplastic resin composition capable of giving a molded product with reduced molecular weight even when molded at a high temperature and with reduced craze spots when used under high temperature and high humidity. Then, it relates to a molded article having the above characteristics.
  • Conventional technology a thermoplastic resin composition containing a thermoplastic polymer containing an alicyclic group, and a molded product thereof. More specifically, a thermoplastic resin composition capable of giving a molded product with reduced molecular weight even when molded at a high temperature and with reduced craze spots when used under high temperature and high humidity. Then, it relates to a molded article having the above characteristics.
  • Thermoplastic polymers containing a bulky alicyclic group in the main chain or side chain are synthesized with excellent transparency, heat resistance, chemical resistance, solvent resistance, moisture resistance, dielectric resistance and various mechanical properties. It is a resin and is widely used in various fields. These are amorphous because they contain a bulky alicyclic group in the main chain or side chain, are highly transparent, and are widely used as optical materials.
  • Such cyclic olefin polymers are roughly classified into those having an alicyclic group in a main chain and those having an alicyclic group in a side chain. The former is further classified into an addition polymer and a hydrogenated ring-opening polymer. It is subdivided into On the other hand, a hydrogenated styrene-based polymer (polyvinylcyclohexane-based polymer) is known as a typical example of the latter.
  • the above-mentioned addition polymer is generally obtained by addition polymerization of a cyclic olefin such as norportene-tetracyclododecene and ethylene or ⁇ -lefin.
  • cyclic olefins such as norbornene-tetracyclododecene and ethylene or ⁇ -lefin.
  • a hydrogenated styrene-based polymer (polyvinylcyclohexane-based polymer) is generally obtained by hydrogenating an aromatic group in a side chain of the styrene-based polymer.
  • the cyclic hexyl group in the side chain of the polymer itself is a ring with a small distortion, but is large in the main chain due to steric hindrance between adjacent cyclohexyl groups incorporated in the polymer chain. Distortion is applied.
  • the main chain and the cyclohexane group each contain one tertiary hydrogen that is prone to thermal cleavage, which triggers thermal decomposition.
  • these cyclic olefin polymers are formed (shaped) by a melt molding method.
  • melt molding requires high resin fluidity, so molding at a high resin temperature is required.
  • molding at higher temperatures is inevitable.
  • Japanese Patent Application Laid-Open No. H05-224252 discloses an optical disc substrate comprising a polyvinylcyclohexane resin blended with a hindered phenol-based heat stabilizer, a phosphorus-based stabilizer and a metal salt of a long-chain saturated fatty acid. It has been disclosed.
  • the hindered phenol-based heat stabilizer and the phosphorus-based stabilizer both require that the 5% weight loss temperature measured with a thermogravimeter be 295 T: or more.
  • WO 99/13007 discloses hydrogenated aromatic polymers, And compositions containing hindered phenolic compounds.
  • a molded product of a hydrogenated styrene-based polymer used as an optical material taking advantage of its characteristics is used in a high-temperature, high-humidity atmosphere
  • the degraded product of the polymer and Z or such Spots of several meters to several tens of meters appear to be caused by the decomposition products of the stabilizer.
  • this molded product it is difficult to use this molded product as an optical material in a high-temperature, high-humidity atmosphere.
  • the S / N ratio of the optical disk is significantly reduced, and its commercial value is significantly reduced.
  • Japanese Patent Application Laid-Open No. 59-71341 discloses the following formula:
  • a phenolic compound represented by the formula can be used as a synthetic resin stabilizer.
  • the publication discloses only polyethylene, polypropylene, polystyrene, high-impact polystyrene, ABS, polyacetal, polyamide and polyurethane as the synthetic resins of interest. It is also disclosed that this stabilizer has heat and oxidation stability and heat discoloration.
  • An object of the present invention is to provide a novel molding material which suppresses a decrease in molecular weight of a thermoplastic polymer containing an alicyclic group in a main chain or a side chain during melt molding.
  • Another object of the present invention is to melt the above thermoplastic resin such as a hydrogenated styrene polymer.
  • An object of the present invention is to provide a thermoplastic resin composition (molding material) that suppresses mechanical brittleness due to a decrease in molecular weight during molding and does not cause craze spots even when used in a high-temperature, high-humidity atmosphere.
  • Still another object of the present invention is to provide a molded product obtained by melt-molding such a molding material, particularly a substrate of an optical recording medium.
  • Still another object of the present invention is to provide a substrate of an optical recording medium that hardly causes a decrease in SZN ratio even when used at high temperature and high humidity.
  • thermoplastic polymer containing an alicyclic group
  • thermoplastic polymer (B) an addition-type stabilizer capable of undergoing an addition reaction to a radical generated by cleavage of this thermoplastic polymer
  • thermoplastic resin composition containing 0.01 to 5% by weight based on the thermoplastic polymer.
  • a molded product such as an optical molded product by melt molding from the thermoplastic resin composition of the present invention.
  • the third at a temperature 8 0, when exposed 5 0 0 hours to an atmosphere of relative humidity of 8 5%, 1 cm 2 per 0 on the surface of the substrate No more than crazes are observed and
  • optical disc substrate mainly composed of a thermoplastic resin containing an alicyclic group.
  • FIG. 1 is an infrared absorption spectrum diagram of Samples # 1 to # 3 obtained by separating a cyclohexane solution of the polymer obtained in Reference Example 1.
  • FIG. 2 shows that the disk substrate obtained in Comparative Example 1 was subjected to accelerated deterioration for 500 hours in an atmosphere at a temperature of 80 and a relative humidity of 85%, and then the microscopic radiance of craze spots observed by microscopic observation.
  • FIG. FIG. 3 is a Raman spectrum diagram used for comparison in Reference Example 2.
  • FIG. 4 is a UV-VIS spectrum diagram of Sample X and Sample Y obtained in Reference Example 3.
  • thermoplastic polymer containing an alicyclic group
  • thermoplastic polymer containing an alicyclic group used in the present invention is mainly classified into a thermoplastic polymer containing an alicyclic group in a main chain and a thermoplastic polymer containing an alicyclic group in a side chain. Separated. The former is further subdivided into addition-type polymers and hydrogenated ring-opening polymers.
  • the addition polymer is obtained by copolymerizing cyclic olefin and ethylene and / or ⁇ -olefin. These are disclosed in JP-A-60-168708, JP-A-61-115916, JP-A-61-221206, and JP-A-61-292601.
  • cyclic Orefin for example, norbornene, 5-phenylalanine norbornene, tetracyclo [4. 4. 0. I 2 '5 I 7.' 1 0] - 3- dodecene, 8-phenylene Rutetorashikuro [4. 4.0 I 2 ' 5.
  • I 7 ' 1 °] Cyclic monoolefins such as 3-dodecene; cyclopentene, dicik, penborn, norbornadiene, 5-ethylidene norbornene, norbornadiene, 8-ethylidenetetracyclo [4. 4. 0. I 2 ' 5. I 7 ' 10 ] — 3—Dodecene, 8-Isopropylidenetetracyclo [4. 4. 0. I 2 ' 5. 17 ' 1 °] 1 3-Dodecene A cyclic gen such as is preferred. If among them of the availability of raw materials and consideration of the heat resistance of the polymer, norbornene, tetracyclo [4. 4. 0.
  • ⁇ -olefins examples include ⁇ -olefins having 3 to 20 carbon atoms such as propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, and 1-dodecene. Is used. Cyclic olefins ⁇ Ethylene is most preferred as a monomer copolymerized with cyclic olefins from the viewpoint of reactivity. However, propylene is also preferably used. These may be used alone or in combination of two or more. In general, such an addition polymer can be easily synthesized in the presence of a Tieder's catalyst or a meta-aqueous catalyst.
  • the hydrogenated ring-opened polymer is obtained by hydrogenating a ring-opened polymer as a precursor.
  • Ring-opened polymers can be obtained by polymerizing cyclic olefins and cyclic olefins in the presence of catalyst. These are disclosed in JP-A-60-26024, JP-A-63-218726, JP-A-2-133413, and JP-A-3-109418.
  • As monomer used nor bornene, 5-phenylalanine norbornene, tetracyclo [4. 4. 0. I 2 '5 . 1 7' 10] -3- dodecene, 8-phenylene Rutetorashikuro [4. 4.0 I 2 ' 5.
  • the ring-opening polymer is further hydrogenated in the presence of a hydrogenation catalyst.
  • a hydrogenation catalyst for example, a noble metal such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium or a compound such as an oxide, a salt, or a complex thereof is converted into a porous carrier such as carbon, alumina, silica, silica-alumina, and diatomaceous earth.
  • Solid catalysts or transition metals such as vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, acetyl acetonate complexes, carboxylate complexes, naphthate complexes, trifluoroacetate
  • Transition metals such as vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, acetyl acetonate complexes, carboxylate complexes, naphthate complexes, trifluoroacetate
  • Homogeneous catalysts such as complexes and stearate complexes are exemplified.
  • the other group of the thermoplastic polymer containing an alicyclic group used in the present invention includes a hydrogenated styrene polymer containing a cyclohexyl group in a side chain.
  • the hydrogenated styrene polymer used in the present invention is a corresponding styrene polymer
  • polyvinylcyclohexane described in Japanese Patent Publication No. 7-1140300 also corresponds to this.
  • the styrene monomer unit constituting the styrene polymer include styrene, dimethyl styrene, P-methyl styrene, and vinyl naphthylene. Of these, styrene is most preferably used in view of availability and polymer properties. These monomers can be used alone or in combination of two or more.
  • styrene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentane, 1,3-hexadiene, and the like. Of these, 1,3-butadiene and isoprene are preferred from the viewpoints of polymerization activity and economy. These may be used alone or in combination of two or more. By introducing these copolymer components, the mechanical properties can be significantly improved without impairing the transparency of the target hydrogenated styrene polymer.
  • the preferred introduction ratio is 1 to 30% by weight, particularly preferably 3 to 20% by weight, based on all monomers. From the viewpoint of improving the mechanical properties such as impact resistance, it is better to have as many conjugated components as possible. However, if it is too large, transparency and heat resistance (glass transition temperature, heat deformation temperature) decrease. Not preferred. On the other hand, if the conjugated component content is less than 1% by weight, the effect of improving the toughness is small, which is not preferable.
  • the method for producing these styrene polymers is not particularly limited, and a general radical polymerization method, anion polymerization method, a cationic polymerization method, or the like is used.
  • Examples of the bonding mode of the styrene copolymer obtained by introducing a copolymer component into the styrene polymer include a random copolymer, a block copolymer, and a radial block copolymer. Of these, a block copolymer is used when heat resistance is important, and a radial block copolymer (star block copolymer, that is, three or more blocks from the center core) when fluidity during molding is important. Polymers having extended chains) are particularly preferred.
  • the hydrogenation reaction is carried out in an inert solvent, under hydrogen pressure, and at a high temperature in the presence of a hydrogenation catalyst.
  • the hydrogenation catalyst used here include noble metals such as nickel, palladium, platinum, cobalt, ruthenium and rhodium or compounds such as oxides, salts and complexes thereof, for example, carbon, alumina, silica, silica and diatomaceous earth.
  • a solid catalyst supported on a porous carrier such as the above is used.
  • nickel, palladium, rhodium and platinum supported on alumina, silica, silica / alumina and diatomaceous earth are preferably used because of their high activity.
  • the hydrogenated catalyst is preferably used in the range of 0.5 to 40% by weight based on the styrene polymer, depending on the catalytic activity.
  • a hydrocarbon solvent is preferably used as the inert solvent used in the hydrogenation reaction.
  • aliphatic hydrocarbons such as pentane, hexane, heptane, octane and decane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, cyclooctane and decalin
  • benzene examples thereof include aromatic hydrocarbons such as toluene, xylene, and tetralin.
  • hydrocarbon solvents cyclohexane or methylcyclohexane, which is inert to the hydrogenation catalyst and is advantageous in solubility, reactivity and economy, is preferably used.
  • a polar solvent may be used in combination from the viewpoint of controlling the hydrogenation reaction and suppressing decomposition during the hydrogenation reaction.
  • a chain, branched or cyclic ether such as tetrahydrofuran, dioxane, diethylene glycol, dimethyl ether, getyl ether, methyl-tert-butyl ether and the like is preferably used.
  • These hydrocarbon solvents and polar solvents may be used alone or as a mixture of two or more.
  • the concentration of the reaction solution containing the styrene-based polymer is preferably 5 to 40% by weight, more preferably 10 to 30% by weight. If the concentration is lower than this, productivity decreases, and if it exceeds that, it is difficult to control the hydrogenation reaction, which is not preferable.
  • the hydrogenation reaction conditions are typically a hydrogen pressure 3 0 ⁇ 2 5 0 kgf / cm 2 ( about 2.9 to 2 4 5P a), a reaction temperature range of 70 to 250 is employed. If the reaction temperature is too low, the reaction does not proceed easily, and if the reaction temperature is too high, the molecular weight is liable to decrease due to molecular chain scission. In order to prevent a decrease in molecular weight due to molecular chain breakage and to allow the reaction to proceed smoothly, hydrogen is applied at an appropriate temperature and hydrogen pressure appropriately determined by the type and concentration of the catalyst used, the solution concentration of the styrene polymer, the molecular weight, etc. It is preferred to carry out a chemical reaction.
  • the method for purifying the hydrogenated styrene polymer thus obtained is not particularly limited, and an ordinary method can be employed.
  • the catalyst can be removed by centrifugation or filtration from the hydrogenated styrene polymer solution obtained in the hydrogenation reaction step, and the solvent can be distilled off from the obtained filtrate.
  • the residual metal component in the composition must be as small as possible, and the amount of the residual catalytic metal is preferably 10 ppm or less, more preferably Is less than 5 ppm, more preferably less than 2 ppm.
  • the molecular weight of the hydrogenated styrene polymer used in the present invention is expressed as polystyrene-equivalent weight average molecular weight (Mw) measured by GPC (gel permeation chromatography), taking into account the mechanical strength and moldability of the molded product. , 30,000 to 1,000,000, more preferably 50,000 to 500,000, and still more preferably 80,000 to 400,000. If the weight average molecular weight (Mw) is lower than this, the mechanical strength is insufficient, and if it is higher than that, the melt viscosity is too high and the fluidity is insufficient, and molding becomes difficult, which is not preferable.
  • the reduced viscosity (vsp / C) measured at 3 in a 0.5 gZdL toluene solution is 0.1 to 10 dL, preferably 0.2 to 10 dL. 3 dL, more preferably 0.3 to 1.0 dLZg.
  • the addition type stabilizer used in the present invention is capable of undergoing an addition reaction to a radical generated by cleavage of the thermoplastic polymer (A).
  • thermoplastic polymer (A) is based on the fact that weak C--H bonds in the molecular chain are equal. It is said to start by the cleavage that results in the formation of free radicals (free radicals or radicals) in the main chain. The c—c bond containing the free radical is further cleaved, resulting in molecular chain scission. The resulting split chain (fragment) has a free carbon atom at the end
  • Terminal C-radical This terminal C-radical is very active and stabilizes itself by depriving nearby weak C-H bonds of hydrogen atoms as free hydrogen atoms (H-radicals). However, at the same time, free radicals are newly generated in the main chain, and C-C cleavage occurs again. These series of elementary reactions are repeated, and cleavage progresses in a chain.
  • Hindered phenol which is used as a typical stabilizer, releases hydrogen radicals and stabilizes C-radicals generated in the main chain or at the end of the cleaved chain, and therefore, hindered phenol-based stabilizers It is said that by adding an agent, thermal decomposition can be suppressed, and further reduction in molecular weight can be suppressed. However, as the amount of the decomposed hindered phenol that contributed to stabilization increases, it aggregates and separates into fine particles and precipitates in the molded product. Therefore, the amount of microparticles is much higher than without the addition of hindered dophenol.
  • hindered phenol stabilizers are stable by releasing hydrogen atoms of phenolic hydroxyl groups as free radicals into free radicals in the polymer generated by thermal decomposition and reacting with the free radicals in the polymer. And suppresses the subsequent chain decomposition reaction.
  • the other hindered phenol free radicals remain in the moldings as hindered phenol degradation products.
  • the addition-type stabilizer (B) used in the present invention is, for example, hindered phenol.
  • hindered phenol for example, hindered phenol.
  • addition-type stabilizer (B) used in the present invention a phenol compound having a (meth) acrylate group is preferably used.
  • RR 2 and R 3 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and P is a number of 0 to 13 , provided that a plurality of R 1 , a plurality of R 2 and a plurality of Each of R 3 may be the same or different. 35 to 65 mol% of the hydroxyl groups of the chain phenol-aldehyde condensate represented by is converted to (meth) acryloyloxy group Compound,
  • R 4 and R 5 are the same or different, are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and Q is a number of 4 to 15;
  • R 6 and R 7 are the same or different and are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and r is a number of 4 to 15;
  • the above-mentioned compounds can be used alone or in combination of two or more as addition-type stabilizers.
  • This phenol-aldehyde condensate is roughly divided into a chain phenol-aldehyde condensate of the formula (1) and a cyclic phenol-aldehyde condensate of the formulas (2) and (3).
  • phenols which are not substituted at two ortho positions (called O-position and o'-position) with respect to the hydroxyl group, except for phenol for the terminal phenol residue of the phenol-aldehyde condensate are used.
  • O-position and o'-position the electrophilic substitution reaction to phenols has a high activity at the O-, O'- and para-positions (P-positions).
  • the phenol residue adjacent to the (meth) acrylic group of the (meth) acrylated phenol is aldehyde This is because they come to a spatially advantageous position via an aldehyde-derived bridging group (hereinafter, simply referred to as a bridging group) formed by a condensation reaction with a compound. Therefore, such a structure exerts a large radical stabilizing effect.
  • unsubstituted or p-substituted phenols are preferably used.
  • examples thereof include p-substituted phenols having an alkyl group having 1 to 10 carbon atoms, such as dimethylpropylphenol, p-octylphenol, and p-decylphenol.
  • P-cresol (P-methylphenol), p-tert-butylphenol, and p-1,1-dimethylpropylphenol are particularly preferably used. .
  • the phenols located at both ends of the chain phenol-aldehyde condensate may be those in which one ortho position is unsubstituted. Rather, from the standpoint of the radical stabilizing mechanism, it is preferable that one ortho position is substituted with a sterically hindered substituent.
  • more preferred phenols are 2-methylphenol (o-cresol), 2,4-dimethylphenol, 2-tert-butyl-4-methylphenol, and 2-methylphenol.
  • the phenol in which the o-position has been replaced such as tert-butylphenol, 4-G tert-butylphenol, 2- (1,1-dimethylpropyl) -4-methylphenol, 2,4-di (1,1-dimethylpropyl) phenol, No. Among them, 2-tert-butyl-4-methylphenol, 2,4-di-tert-butylphenol, 2- (1,1-dimethylpropyl) -4-methylphenol and 2,4- (1,1-dimethylphenol) (Propyl) phenol is particularly preferably used.
  • phenols used in the present invention includes resorcinol (resorcinol) type bifunctional phenols.
  • the two different ortho positions for each of the two hydroxyl groups of resorcinol are active in electrophilic substitution reactions, and (meth) acrylated phenol-alde In the hydr condensate, the (meth) acryl group and the hydroxyl group are preferable because a favorable spatial arrangement can be obtained via a bridging group.
  • resorcinol-type bifunctional phenols include resorcinol and 5-methylresorcinol. In this case, the introduction of a group having a high degree of stereochemistry at the 5_ position is not preferable because it hinders the condensation reaction.
  • aldehyde used in the present invention an aliphatic aldehyde having 1 to 11 carbon atoms is used.
  • Aldehydes are selected in consideration of reactivity, availability, and spatial arrangement of hydroxyl groups existing via a (meth) acryl group and a bridging group. Specifically, formaldehyde, paraformaldehyde, acetoaldehyde, propionaldehyde, butanal, isobutanol, pivalaldehyde, oxaldehyde, and the like are preferably used. Among them, formaldehyde, paraformaldehyde, acetoaldehyde, butanol, and pivalaldehyde are preferably used.
  • the (meth) acrylated (phenolic) phenol monoaldehyde condensate is the most effective when the phenolic residue and the (meth) acrylated phenolic residue adjacent thereto are present as a pair. Exhibits the function as an addition type stabilizer.
  • the average phenol residue in one molecule of the phenol-aldehyde condensate is preferably 4 to 15, more preferably 4 to 12, particularly preferably 4 to 1. It is 0. If it is less than 4, the number of pairs will be less than 2 on average, and the function as a polyfunctional addition type stabilizer will be reduced, which is not preferable. In other words, it is not preferable because the chain elongation is reduced. On the other hand, if it exceeds 15, the probability of forming the above-mentioned pair in one molecule is not increased, and the molecular weight is increased.
  • tert-butyl group and 1,1-dimethylpropyl group are particularly preferably used as R 1 .
  • R 2 a methyl group, a tert-butyl group, and a 1,1-dimethylpropyl group are particularly preferably used.
  • R 3 is a hydrogen atom, a methyl group, a propyl group or a tert-butyl group. It is preferably used.
  • the average value of P is from 0 to 13, preferably from 0 to 10, more preferably from 0 to 8. In the case of a multifunctional addition type stabilizer, the average value of p is preferably 2 to 13, more preferably 2 to 10, and still more preferably 2 to 8.
  • R 4 and R 5 are respectively the same as R 2 and R 3 in the above formula (1).
  • q is 4 to 15, preferably 4 to 12, and more preferably 4 to 10.
  • R 7 is the same as R 3 in the above formula (1).
  • R 6 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom and a methyl group.
  • r is 4 to 15, preferably 4 to 12, more preferably 4;
  • the phenol-aldehyde condensate is (meth) acrylated in the range of 35 to 65 mol%, preferably 40 to 60 mol%, more preferably 45 to 55 mol% of the hydroxyl group.
  • (meth) acrylation exerts the function as an additional heat stabilizer.
  • the reason that the phenolic hydroxyl group remains partially is that when the free radical reacts with the (meth) acrylic group, a free radical is newly generated at the ⁇ -position.
  • the radical group is highly active and has the ability to abstract hydrogen radicals from saturated cyclic compounds.
  • the (meth) acrylic group and the hydroxyl group are balanced. From this viewpoint, if the (meth) acrylation ratio is less than 35%, the (meth) acrylic group becomes insufficient relative to the hydroxyl group, and if it exceeds 65%, the (meth) acrylic group becomes excessive relative to the hydroxyl group. The effect is reduced.
  • the addition type stabilizer ( ⁇ ) based on the chain phenol-aldehyde condensate preferably has the following formula ()
  • the definitions of RR 2 and R 3 are the same as in the above formula (1)
  • R 4 is a hydrogen atom or a methyl group
  • the addition type stabilizer represented by the above formula (1 ′) is generated at the end of the cleaved chain of the polymer without decomposing the product, and stabilizes the C-radical.
  • alkyl group represented by R 1 ! ⁇ 3 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert group.
  • a bulky alkyl group which causes steric hindrance such as an isopropyl group, a sec-butyl group, a tert-butyl group, and a 1,1-dimethylpropyl group is preferable in terms of effect and ease of production.
  • R 2 is preferably a methyl group, a tert-butyl group, or a 1,1-dimethylpropyl group from the viewpoint of ease of production.
  • a methyl group is liable to cause a side reaction accompanied by hydrogen abstraction. More preferred are a tert-butyl group and a 1,1-dimethylpropyl group.
  • R 3 an alkyl group which does not easily cause steric hindrance, such as a methyl group, an ethyl group, a propyl group, and an n-butyl group, is preferable from the viewpoint of production.
  • R 4 is a hydrogen atom or a methyl group.
  • the compound represented by the above formula ( ⁇ ) is obtained as a commercial product, for example, as trade names “Smi1izer GM” and “Smi1izer GS” manufactured by Sumitomo Chemical Co., Ltd. be able to.
  • These addition type stabilizers may be used alone or in combination of two or more.
  • a hindered phenol-based stabilizer such as “Irganox 1010” or “Irganox 1076” (Ciba Specialty 'Chemicals Co., Ltd.) may be used.
  • An antioxidant such as trade name “Irga fos 168” (manufactured by Ciba 'Specialty' Chemicals Co., Ltd.) may be used in combination.
  • the phenol-aldehyde condensate for the addition type stabilizer in the present invention can be synthesized by a method known per se.
  • a chain phenol-aldehyde condensate can be obtained by heating a phenol and an aldehyde, preferably in a solvent, under acidic or basic conditions.
  • the solvent depends on the type of the phenols and aldehydes, but includes, for example, linear, cyclic saturated hydrocarbons such as water, hexane, heptane, cyclopentane, cyclohexane and methylcyclohexane; benzene, toluene, Aromatic hydrocarbons such as xylene; alcohols such as methanol, ethanol, and isopropanol; linear and cyclic such as ethyl ether, methyl-tert-butyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran, 1,3-dioxolan, and dioxane Ethers; esters such as ethyl acetate, butyl
  • inorganic acids such as hydrogen chloride, hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; and organic acids such as acetic acid, dichloroacetic acid, methanesulfonic acid, and P-toluenesulfonic acid are preferably used.
  • Basic compounds such as sodium hydroxide, rhodium hydroxide, ammonia, calcium hydroxide and barium hydroxide are also preferably used.
  • the reaction temperature is generally in the range of 30 to 200, preferably 50 to 150.
  • the reaction time ranges from 1 to 50 hours, preferably from 2 to 25 hours.
  • cyclic phenol-aldehyde condensates are described, for example, in Journa 1 of Organic Chemistry, Vol. 54, p 1305 (1989), Organic synthesis, Vol. 68, p. 234 (1999) and the like can be easily synthesized.
  • the phenol-aldehyde condensate obtained in the present invention may be used after purification as it is, or may be used after fractionation as necessary. When a single compound is required, a fractionation technique based on liquid chromatography is preferably used.
  • the obtained phenol-aldehyde condensate is (meth) acrylated to obtain a (meth) acrylated phenol monoaldehyde condensate, and the phenol-aldehyde aldehyde condensate and (meth) acrylic acid or an active derivative thereof are used.
  • the condensation reaction of is used.
  • active derivatives such as (meth) acrylic acid esters, (meth) aryl acid chlorides and (meth) acrylic acid anhydrides, and particularly preferably (meth) acrylic acid chlorides are used.
  • the reaction is carried out in an inert solvent under cooling, at room temperature or under heating.
  • the inert solvent examples include chain and cyclic saturated hydrocarbons such as hexane, heptane, cyclopentane, cyclohexane and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; ethyl ether, methyl-tert.
  • Linear, cyclic and aromatic ethers such as monobutyl ether, ethylene glycol getyl ether, diethylene glycol getyl ether, tetrahydrofuran, dioxane, 1,3-dioxolane and anisol; methyl acetate, ethyl acetate, isobutyl acetate, etc.
  • Esters include linear, cyclic ketones such as acetone, methyl edil ketone, methyl isobutyl ketone, and cyclohexanone; high-boiling polar solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and dimethylsulfoxide; , Pyridines quinoline; methylene chloride, halogenated hydrocarbons such as black hole Holm; Asetonitoriru, nitrogen-containing solvents such as nitromethane and the like.
  • an acid acceptor such as a tertiary amine such as trimethylamine, triethylamine, tri-n-butylamine and pyridine together.
  • the reaction largely depends on the type of the active derivative used and the solvent, but is generally carried out in the range of 0 to 150 :, preferably 10 to 100 :.
  • the reaction time ranges from 1 hour to 50 hours, preferably from 2 hours to 25 hours.
  • the (meth) acrylated phenol-aldehyde condensate can also be obtained by reacting phenol and (meth) acrylated phenol with an aldehyde by heating.
  • the (meth) acrylated phenol can be synthesized by the (meth) acrylated method described above for the phenol, and the (meth) acrylated phenol-aldehyde condensate can be synthesized by the phenol-aldehyde condensate synthesis conditions described above. It can be synthesized by a method similar to the method.
  • a combination of a compound in which p is 0 in the above formula (1) and a compound in which p is 1 to 13 in the above formula (1) is used as the addition-type stabilizer (B). It is advantageously used.
  • the addition type stabilizer (B) is used in an amount of 0.01 to 5% by weight, preferably 0.05 to 3% by weight, and more preferably 0.1 to 3% by weight, based on the thermoplastic polymer (A). Used in the range of 2% by weight. If the addition and blending amount is less than this, the effect is insufficient, and if it exceeds this, the effect not only reaches saturation, but also agglomerates the thermal decomposition product of the addition type stabilizer itself without contributing to stabilization of thermal decomposition. Occurs, which is not preferable.
  • a polyfunctional (meth) acrylic compound and a polyfunctional (meth) aryl compound of an aliphatic or alicyclic polyol can be further used as a chain extender.
  • One or more of these chain extenders may be used together.
  • Such a polyfunctional (meth) acrylate compound preferably contains 2 to 10 (meth) acryloyloxy groups in one molecule.
  • Aliphatic or alicyclic bifunctional (meth) acrylate compounds such as acrylate, bis (phenol) -A ethylene oxide adduct di (meth) acrylate and tricyclodecanedi (meth) acrylate; glycerin tri (meth) acrylate, triacrylate Tri- or higher-functional (meth) acrylate compounds such as methylolpropane tri (meth) acrylate, pentayl erythritol
  • a compound containing a plurality of aryl ester groups, aryl ether groups or aryl carbonate groups in the molecule is preferably used.
  • the polyfunctional (meth) acrylate compound and the Z or polyfunctional (meth) aryl compound used as the chain extender in the present invention are added in an amount of 0.05 to 100 parts by weight of the thermoplastic polymer (A). To 5 parts by weight, preferably 0.1 to 3 parts by weight, and more preferably 0.2 to 2 parts by weight.
  • the thermoplastic resin composition of the present invention comprises a thermoplastic polymer (A) containing an alicyclic group, an addition type stabilizer (B) and optionally a polyfunctional (meth) acrylate compound and a Z- or polyfunctional (meth) acrylate compound. ) It is produced by mixing an aryl compound.
  • the timing of addition of the addition type stabilizer (B), etc. to the polymer (A) is not particularly limited, but it is preferable to add it to the thermoplastic polymer (B) solution obtained after removing the polymerization catalyst or the hydrogenation catalyst. It is preferable in terms of workability and effects. Addition in this process is preferable because it facilitates uniform mixing with the polymer and suppresses thermal decomposition in a high-temperature step such as a solvent removal step (flushing step), a pellet preparation step, and a molding step.
  • the thermoplastic resin composition of the present invention has a feature that the occurrence of cracks is small.
  • the content of foreign substances in the thermoplastic polymer is preferably small, and the content of foreign substances having a particle size of 0.5 ⁇ m or more is not more than 20,000, more preferably 10,000. Or less, more preferably 5,000 pieces 8 or less.
  • the foreign matter includes, for example, impurities contained in the raw material, impurities mixed in the production process, gelled polymer, residues of the polymerization catalyst, hydrogenation catalyst, and the like. If the content of foreign matter having a particle size of 0.5 micron or more is more than 20,000 g, when the optical disc substrate for high-density recording is molded using the polymer, the bit error rate becomes large and the recording of the disc becomes large. The reproduction characteristics are deteriorated, which is not preferable.
  • These contaminants can be removed by a method such as filtration using a filter in each manufacturing process, or performing a chipping process in a clean room.
  • thermoplastic resin composition of the present invention is injection-compressed and molded into a substrate having a diameter of 12 cm and a thickness of 1.2 mm at a resin temperature of 330, a mold temperature of 120 and a mold, for example, using a mold.
  • a resin temperature of 330 a resin temperature of 330
  • a mold temperature of 120 a mold
  • a mold a mold
  • no more than 10 crazes per cm 2 are observed on the surface of the substrate.
  • the molding material comprising the thermoplastic resin composition thus obtained can be formed by various known molding methods such as a melt molding method such as injection molding and extrusion molding, or a solution molding method such as solution casting and wet film formation. Molded article, for example, fiber, plate, etc.
  • injection molding can be suitably used for manufacturing an optical disk substrate.
  • a resin temperature of 270 to 370 ° (: preferably, a range of 280 to 35 Ot: is used. You. If the resin temperature exceeds that, excessive thermal decomposition occurs, which is not preferable. If it is lower than that, the melt fluidity becomes low, which is not preferable.
  • the mold temperature a range of 60 to 140 ° C., preferably 70 to 130 is used. If the mold temperature exceeds that, the molded product is undesirably deformed. On the other hand, if it is less than that, the transferability becomes poor, which is not preferable.
  • an optical disk substrate mainly composed of a thermoplastic resin containing a cyclic group for example, an optical disk substrate composed of the thermoplastic resin composition of the present invention is provided.
  • an optical disc is used by forming a reflective layer, a recording layer, and the like on a substrate sequentially by a method such as sputtering, and then forming a protective layer using an ultraviolet curable resin.
  • 0.6 mm thick optical discs used for DVD etc. are further used by laminating them with an ultraviolet curable resin. Irradiation with ultraviolet light is performed during curing, but depending on the stabilizer used for the substrate, there is a possibility that the ultraviolet light irradiation causes coloring to impair the characteristics of the optical disk substrate. In particular, when writing and reading information using a short-wavelength laser near 400 nm, which has been developed in recent years, this is considered to be a particular problem.
  • the optical disk substrate made of the resin composition of the present invention has little coloring even with the ultraviolet light irradiated during curing of the ultraviolet curable resin, it can be used as an optical disk substrate using a short wavelength laser near 400 nm. It can be preferably used.
  • a molding material of a polymer having an alicyclic group in which a decrease in molecular weight is suppressed during heating such as melt molding is obtained. As a result, it is possible to obtain a molded article having excellent transparency and heat resistance, being less colored by ultraviolet irradiation, and having excellent resistance and reliability under high temperature and high humidity.
  • the molding material of the present invention can be suitably melt-molded at a high temperature, and can be used for optical discs such as CD, CD-ROM, LD, MO, MD, and DVD, which require molding at a high temperature. It can be effectively used as a substrate of a representative optical recording medium.
  • Tg Glass transition temperature
  • Mass spectrometry (FD-MASS): Hitachi M-80B mass spectrometer was used.
  • Pyrolysis GC-MS Analysis of pyrolysis products was performed by pyrolysis GC-MS. The thermal decomposition was performed using a JHS-100 type space gas sampler at 30 O x 10 minutes in a nitrogen atmosphere. The cracked gas was cooled to -40 and absorbed by Tenax, then desorbed and separated using a Yokogawa GCD 1800 OA gas chromatograph. DB 1701 was used for the column. The obtained fractions were assigned using a GCD Yokogawa 180 OA mass spectrometer.
  • UV-visible spectrometer UV-visible spectrometer (UV_240), Shimadzu Corporation was used.
  • BIO-FTS-65A type manufactured by RAD FT-IRZS PECTRA-IR-PLAN microscope manufactured by TECH was used.
  • UV irradiation was performed at 6 OmWZ cm 2 for 5 seconds using a P150 type ultraviolet curing coater manufactured by FUS ION SYSTEMS. Transmission at 400 nm was measured using a Hitachi U-3200 S PECTRO PHOTOMETER.
  • the hydrogenation rate of this polymer determined by 1 H-NMR was 99.3%.
  • the reduced viscosity (rjspZC) determined at 30 using a toluene solution having a concentration of 0.5 gZdL was 0.47 dLZg.
  • the residual metals in the resin were determined to be 0.18 ppm for 11; 0.28 ppm for 81;
  • the glass transition temperature (Tg) measured by DSC was 149t :.
  • the hydrogenated styrene polymer was pulverized to prepare granules for molding. Then, 5 batches of the obtained granules are collected, and the resin temperature is set using a stamper for DVD.
  • a colorless and transparent disk substrate (diameter 12 cm, thickness 0.6 mm) was injection-molded at a mold temperature of 120.
  • the water absorption of this disk substrate was 0.01% by weight or less, the water absorption was extremely low, the total transmittance was 91%, and the haze value was 1.2%, showing extremely high transparency.
  • the birefringence of the inner peripheral portion of the obtained disk substrate was 5 nm, and showed an extremely low birefringence, in other words, high optical isotropy.
  • the transmittance at 400 nm of the disk substrate was 90%. After irradiating this disk substrate with ultraviolet light at 6 OmWZ cm 2 for 2 seconds, the transmittance at 400 nm was measured again, and it was 85%.
  • the disk substrate before ultraviolet irradiation was accelerated and degraded for 500 hours in an atmosphere at a temperature of 8 O: and a relative humidity of 85%, and the number of craze spots was counted by microscopic observation. As a result, the number of craze spots on the substrate was one per 1 cm 2 .
  • Example 1 which is a typical solder phenol, and a representative oxidation
  • the inhibitor “Irgafos 168” (Ciba Specialty Chemicals Co., Ltd.) was used for 3.lg and 3.1 g (0% for hydrogenated styrene polymer, respectively). (4% by weight), followed by distilling off the solvent to obtain a hydrogenated styrene polymer. — For NMR The more quantitative hydrogenation rate was 99.3%. Using a toluene solution with a concentration of 0.5 gZdL, the reduced viscosity (7) spZC) determined at 30 ° C was 0.47 dL / g.
  • the hydrogenated styrene polymer was pulverized to prepare granules for molding. Then, three batches of the obtained granules are collected, and using a stamper for DVD, at a resin temperature of 330 and a mold temperature of 120, a colorless and transparent disc substrate (diameter 12 cm, thickness 0.6 mm) was injection molded.
  • the number of craze spots was counted by microscopic observation. As a result, the number of craze spots was 100 or more in 1 cm 2 .
  • the hydrogenated styrene resin obtained in Comparative Example 1 was dissolved in cyclohexane to prepare a 20% solution. This solution was slightly cloudy. This solution was filtered using a membrane filter having a pore size of 0.45 xm to separate into a precipitate (P1) and a filtrate (F1). The precipitate (P1) was extracted and washed on the filter with chloroform, and separated into a filtrate (F2) and an undissolved substance (P2). Then, the filtrate (F 2) was dropped on the prepared slide, and the solvent was evaporated to dryness and distilled off. A small amount of solid obtained by washing the undissolved material (P 2) with methanol was used as sample # 2.
  • Sample # 3 provided a typical spectrum of hydrogenated polystyrene.
  • Sample # 2 had a peak derived from polystyrene in addition to the peak for hydrogenated polystyrene. In other words, this indicates that # 2 contains unhydrogenated styrene components.
  • sample # 1 in addition to the peaks derived from hydrogenated polystyrene and unhydrogenated styrene components, a strong absorption based on carbonyl groups was observed at 1.734 cm- 1 . This is "Ilganox 101 0 ”It is considered to be derived from the decomposition product. The fact that “Ilganox 1010” is not a degradation product but itself is evident from the fact that the former dissolves in cyclohexane.
  • the above cloudy substance is composed of a decomposition product of a polymer containing an unhydrogenated styrene component and a decomposition product of “Ilganox 1010”.
  • the optical disc substrate obtained in Comparative Example 1 was subjected to accelerated deterioration for 500 hours in an atmosphere at a temperature of 8 ⁇ and a relative humidity of 85%, and then observed under a microscope. As a result, it was found that a saber-like craze was running around a 1 / m-sized nucleus. Its size ranged from a few meters to tens of im. Microscopic Raman spectrum measurement was performed on this sample. The measurement was performed on three parts: the part containing the nucleus (area C), the craze part that avoided the nucleus (area B), and the part that avoided both the nucleus and the craze (area A).
  • Fig. 2 shows the obtained spectrum. In Fig.
  • C is the spectrum of the region containing the nucleus with a diameter of several meters (region C)
  • B is the spectrum of the craze portion (region B) avoiding the nucleus
  • A is the spectrum of the portion (region A) avoiding the nucleus and craze. It is a spectrum.
  • D is the difference spectrum between C and A. ⁇ in the figure indicates absorption based on an aromatic ring.
  • the area A shows a typical spectrum of hydrogenated styrene.
  • a very weak aromatic peak was observed at 1,600 cm- 1 .
  • Region B showed almost the same spectrum as region A.
  • region C a rather strong peak derived from aromatics observed in region B and region A was found at 1,600 cm- 1 . This indicates that the aromatic substances are concentrated in region C.
  • the difference vector (D) between region C and region A was determined.
  • Polystyrene also has two peaks in the vicinity of 1,600 cm- 1; however, the peak shape differs from that of the difference spectrum. Since no strong peak with a wavenumber slightly lower than the observed 1,000 cm- 1 is recognized, it is judged to be not polystyrene itself.
  • the difference spectrum can be concluded to correspond to the decomposition products of hydrogenated polystyrene containing unhydrogenated styrene units, and those derived from “Irganox 1010” and Z or “Irgafos 168”. .
  • the solvent was distilled off without adding a stabilizer to the colorless and transparent solution after filtration obtained in Example 1 to obtain a hydrogenated styrene polymer.
  • the hydrogenation rate determined by NMR was 99.3% or more.
  • the reduced viscosity (spZC) determined at 30 was 0.44 dLZg.
  • the hydrogenated styrene polymer was pulverized to prepare granules for molding.
  • the obtained granules were collected for three batches, and a disc substrate was molded using a stamper for CD.
  • Injection molding was performed using a resin temperature of 330 and a mold temperature of 12 O. However, the distortion of the disk substrate was large, and cracks almost occurred.
  • Example 2 To the colorless and transparent solution after filtration obtained in Example 1, 3.1 g (0.4% by weight based on the hydrogenated styrene polymer) of "ADK STAB AO 330" (manufactured by Asahi Denka Co., Ltd.) was added, and Subsequently, the solvent was distilled off to obtain a hydrogenated styrene polymer. — The hydrogenation rate determined by NMR was 99.3%. Using a toluene solution with a concentration of 0.5 gZdL, the reduced viscosity (7? SpZC) determined at 30 ⁇ was 0.5 AS dLg. The hydrogenated styrene polymer was pulverized to produce granules for molding.
  • ADK STAB AO 330 manufactured by Asahi Denka Co., Ltd.
  • the obtained granules were collected in three batches, and disk substrates were molded using a stamper for CD. ⁇
  • a colorless and transparent disk substrate was injection molded using a resin temperature of 330: and a mold temperature of 12 Ot :.
  • the number of craze spots was counted by microscopic observation. As a result, the number of claze spots was 43 within 1 cm 2 .
  • Example X Two samples of the colorless and transparent solution after filtration obtained in Example 1 were sampled. One of them was kept at a temperature of 260 or less and flushed under reduced pressure for 4 hours (Sample X). On the other hand, 0.4% of “ADK STAB AO 330” (manufactured by Asahi Denka Co., Ltd.) was added to the polymer and flushing was performed under the same conditions as for sample X (sample Y). A 20% cyclohexane solution of the obtained sample X and sample ⁇ was prepared. Sample X was slightly cloudy. On the other hand, sample ⁇ was extremely cloudy. Their UV-VIS spectra were measured for quantification. Fig. 4 shows the results. As is evident from Fig.
  • the hydrogenated styrene polymer was pulverized to prepare granules for molding. Five batches of the obtained granules were collected, and a resin temperature of 330: at a mold temperature of 120 using a CD stamper. A colorless and transparent disk substrate was injection molded. The water absorption of this disc substrate was 0.01% or less, the water absorption was extremely low, the total transmittance was 91%, and the haze value was 1.3%, showing extremely high transparency. Further, the birefringence of the inner peripheral portion of the obtained disk substrate was 8 nm, indicating an extremely low birefringence, in other words, high optical isotropy.
  • the disk substrate was accelerated and deteriorated for 500 hours in an atmosphere at a temperature of 80 and a relative humidity of 85%, and the number of craze spots was counted by microscopic observation. As a result, the number of craze spots on the substrate was 4 within 1 cm 2 .
  • the residual metal in the resin was found to be 0.25 ppm for Ni, 0.15 ppm for A1, 0.13 ppm for 51, and 0.13 ppm for 51K, all of which were 1 ppm or less by ICP emission analysis. .
  • the glass transition temperature (T g) measured by DSC was 147T.
  • the number of craze spots was counted by microscopic observation. As a result, the number of craze spots on the substrate was two per cm 2 .
  • GPC measurement a mixture containing 83% of the components corresponding to the four-branched chains and 17% of the components having a number average molecular weight of 48,000 corresponding to one single chain, ie, one uncoupled branched chain, was used. It turned out that it was.
  • the hydrogenation rate was determined by NMR measurement, it was 99.3%.
  • ICP emission analysis revealed that the residual metals in the resin were 0.23 ppm for ⁇ 1, 0.22 ppm for A1, and 0.15 ppm for 51, all less than 1 ppm. .
  • Melt viscosity measured at a temperature 300 share one rate 102S- 1 2 400 Boyes was at 10 3 s-1 850 Boyes.
  • the glass transition temperature (Tg) measured by DSC was 148.
  • the number of craze spots was counted by microscopic observation. As a result, the number of craze spots on the substrate was 0 per cm 2 .
  • Example 1 "SUMILIZER-1 GS" 3. Instead of lg, I RGANO X HP2225FF (HP 136 15%, IRGANOX 1010 42.5%, IRGAFOS 168 42.5%) 3.1 Except for using 3.1 g, a DVD disk substrate was molded in the same manner as in Example 1.
  • the transmittance at 400 nm of this disk substrate was 90%. After irradiating this disk substrate with ultraviolet rays at 6 OmWZ cm 2 for 2 seconds, the transmittance at 400 nm was measured again. As a result, the transmittance was 73% and the coloring was remarkable.
  • the resulting suspension (slurry) was subjected to pressure filtration using a membrane filter 1 (“Fluoropore” manufactured by Sumitomo Electric Industries, Ltd.) having a pore size of 0.1 xm.
  • a styrene polymer solution was obtained.
  • the hydrogenation rate of this polymer determined by 1 H-NMR was 99.3%.
  • the reduced viscosity 7? SpZC determined at 30 was 0.48 dL / g.
  • the residual metals in the resin should be 0.1 ppm or less, with Ni 0.18 1) 111, 81 1 0.22813 111, and 31 0.23 ppm. I understood.
  • the glass transition temperature measured by DSC was 149.
  • the hydrogenated styrene polymer composition (resin) was pulverized to prepare granules for molding.
  • the obtained granules were injection-molded using a stamper for CD at a resin temperature of 330 and a mold temperature of 120 ° C. to form a colorless and transparent disk substrate.
  • the reduced viscosity of the obtained disk substrate determined by using a toluene solution having a concentration of 0.5 gZdL in 30 at 7? Sp / C, was 0.43 dLZg, and the decrease in viscosity was small.
  • the glass transition temperature was 149, and no decrease in the glass transition temperature associated with the decrease in molecular weight was observed.
  • the water absorption of this disc substrate was 0.01% or less, the water absorption was extremely low, the total transmittance was 91%, and the haze value was 1.1%, showing extremely high transparency.
  • the inner peripheral portion of the obtained disk substrate had a birefringence of 5 nm, exhibiting an extremely low birefringence, in other words, high optical isotropy.
  • the number of craze spots was counted by microscopic observation. As a result, the number of craze spots on the substrate was one in 1 cm 2 .
  • Example 5 The solvent was distilled off under reduced pressure at 200 or less without adding a stabilizer to the colorless and transparent solution after filtration obtained in Example 5 to obtain a hydrogenated styrene polymer.
  • a toluene solution of a concentration of 0. SgZd L the reduced viscosity obtained at 3 Ot: 7? SpZC was 0.46 dLZg.
  • the thermal stability of the hydrogenated styrene polymer was evaluated using a Koka flow tester.
  • the melt viscosity of the resin kept at 340 for 5 minutes was 180 boise, which was extremely low.
  • the reduced viscosity of the extruded resin was 0.22 dLZg, which was extremely low. That is, a large decrease in molecular weight due to thermal decomposition was observed during the thermal stability evaluation.
  • the hydrogen ⁇ styrene polymer was pulverized to prepare granules for molding. The obtained granular material was formed into a disk substrate using a stamper for CD.
  • Injection molding was performed at a resin temperature of 330 and a mold temperature of 120 in the same manner as in Example 5, but the distortion of the disk substrate was large, and cracks occurred in the inner periphery in most cases.
  • the reduced viscosity 7? SpZC of the obtained disk substrate molded product measured at 30 ° C. was 0.29 dLZg. That is, it is considered that the distortion and cracking of the disk substrate were caused by a large decrease in molecular weight during the molding process.
  • a typical hindered phenol “Ilganox 1010” was added to the hydrogenated styrene polymer in an amount of 0.4% by weight to the colorless and transparent solution after filtration obtained in Example 5, and the solvent was subsequently added to the solution. The residue was distilled under reduced pressure to obtain a hydrogenated styrene polymer. Using a toluene solution having a concentration of 0.5 g dL, the reduced viscosity TJ S PZC ⁇ O. 46 dL / g determined at 30 was obtained.
  • the thermal stability of the hydrogenated styrene polymer composition was evaluated according to Koka Kazunichi Tesyuichi.
  • the melt viscosity of the resin kept at 340 for 5 minutes was 200 boise, which was extremely low.
  • the reduced viscosity of the extruded resin was 0.25 dLZg, which was extremely low. That is, a large decrease in molecular weight due to thermal decomposition was observed during the thermal stability evaluation.
  • the hydrogenated styrene polymer composition (resin) was pulverized to prepare granules for molding.
  • the obtained granules were injection-molded using a CD stamper at a resin temperature of 330 and a mold temperature of 120 at a mold temperature of 120, but the disk substrate was greatly distorted, and cracks occurred in the inner periphery in most cases. .
  • a resin temperature of 330 and a mold temperature of 120 a colorless and transparent disk substrate was molded.
  • the reduced viscosity 7? SpZC of the obtained disk substrate molded product determined at 30 was 0.30 dLZg. That is, it is considered that the distortion and cracking of the disk substrate were caused by a large decrease in molecular weight during the molding process.
  • “Sumilyzer-I "S” was added in an amount of 0.4% by weight to the hydrogenated styrene polymer, and subsequently the solvent was distilled off under reduced pressure at 200 ° C or lower to obtain a hydrogenated styrene polymer composition.
  • the reduced viscosity of the polymer obtained at 30 ° C using a toluene solution having a concentration of 0.5 gZd L was -7 sp / C, which was 0.47 dLZg.
  • the thermal stability of the hydrogenated styrene polymer composition (resin) was evaluated using a Koka flow tester.
  • the melt viscosity of the resin kept at 340 for 5 minutes was 380 boise.
  • the reduced viscosity of the extruded resin was 0.35 dL / g.
  • the thermal stability of the hydrogenated styrene polymer composition (resin) was evaluated using a Koka flow tester.
  • the melt viscosity of the resin kept at 340 for 5 minutes was 360 boise.
  • the reduced viscosity of the extruded resin was 0.35 dLZg.
  • the thermal stability of the obtained resin was evaluated by Koka Flotes Yuichi.
  • the melt viscosity of the resin kept at 340 for 5 minutes was 520 boise.
  • the reduced viscosity of the extruded resin was 0.41 dLZg, and the decrease in viscosity was small.
  • the hydrogenated styrene polymer composition (resin) was pulverized to prepare granules for molding.
  • the obtained granular material was subjected to injection molding of a disk substrate using a stamper for CD.
  • a resin temperature of 330 and a mold temperature of 12 a colorless and transparent disk substrate was formed.
  • the reduced viscosity 7? SpZC determined in 30 was 0.44 dL / g, and the decrease in viscosity was small.
  • the glass transition temperature was 149, and no decrease in the glass transition temperature due to the decrease in molecular weight was observed.
  • the water absorption of this disk substrate was 0.01% or less, the water absorption was extremely low, the total transmittance was 91%, and the haze value was 1.3%, showing extremely high transparency. Further, the birefringence of the inner peripheral portion of the obtained disk substrate was 8 nm, indicating a very low birefringence, in other words, high optical isotropy.
  • the number of craze spots was counted by microscopic observation. As a result, the number of craze spots on the substrate was two per cm 2 .
  • the obtained resin was evaluated for thermal stability using a Koka type flow tester.
  • the melt viscosity of the resin kept at 34 O for 5 minutes was 520 boise.
  • the reduced viscosity of the extruded resin was 0.40 dLZg, and the decrease in viscosity was small.
  • “Sumilyzer-1 GS” was added as a stabilizer in an amount of 0.4% by weight based on the hydrogenated styrene-isoprene copolymer, and a 1: 2 adduct of bisphenol A and ethylene oxide was used as a chain extender.
  • dimethyl acrylate (SR-348) was added to the hydrogenated styrene polymer at 1.0% by weight, concentrated under reduced pressure, flushed, and the solvent was distilled off to form a massive colorless and transparent linear hydrogenated styrene-isoprene.
  • a styrene terpolymer composition (resin) was obtained.
  • the reduced viscosity measured at 30 in a toluene solution of 0.5 gZdL of the copolymer at a concentration of 0.5 g-spZC was 0.47 dLZg.
  • the hydrogenation rate was determined by 1 H_NMR measurement to be 99.3%.
  • the residual metals in the resin were 0.25 ppm for Ni, 0.15 ppm for 81, and 0.13 ppm for Si ⁇ 0.13 ppm, all of which were 1 ppm or less. all right.
  • the glass transition temperature measured by DSC was 147.
  • the thermal stability of the obtained linear hydrogenated styrene-isoprene-styrene terpolymer composition (resin) was evaluated using a Koka type flow tester.
  • the reduced viscosity of the resin extruded by keeping it at 34 0 for 5 minutes was 0.44 dLZg, and the decrease in viscosity was extremely small.
  • An injection molding test was performed using the granules obtained by pulverizing the linear hydrogenated styrene-isoprene-styrene terpolymer composition (resin) thus obtained.
  • the molding was performed at a resin temperature of 300 and a mold temperature of 100.
  • the resulting test piece is strong and transparent Met.
  • the reduced viscosity of the test piece measured in a toluene solution having a concentration of 0.5 g / dL at 30 was 77 spLZC, which was 0.47 dL / g.
  • the water absorption of this molded product was 0.01% or less, the water absorption was extremely low, the total transmittance was 91%, and the haze value was 1.1%, showing extremely high transparency.
  • the isoprene content of the obtained copolymer was 9.0% by weight, and the reduced viscosity measured at 30 in a toluene solution having a concentration of 0.5 gZ dL at 7? SpZC was 0.73 dLZg.
  • “Sumilyzer-1 GM” was added as a stabilizer in an amount of 0.4% by weight based on the hydrogenated styrene polymer, and as a chain extender, dimethacrylate (SR), a 1: 2 adduct of bisphenol A and ethylene oxide was added. — 348) hydrogenated styrene After adding 0.4% by weight to the coalesced, the solution was concentrated under reduced pressure (flushing) at a temperature of 200 ° C or less to obtain a massive colorless hydrogenated styrene-isoprene radial copolymer composition (resin). Was.
  • the reduced viscosity measured at 3 in Example 3 was 7? SpZC, which was 0.44 dLZg.
  • the residual metal in the resin was Ni at 0.25 ppm, A1 at 0.12 ppm, and 51 0.20 ppm, all of which were 1 ppm or less. all right.
  • the glass transition temperature measured by DSC was 147 ° C.
  • the resin obtained in this manner was evaluated for thermal stability by Koka Type Flotes Yuichi.
  • the melt viscosity of the resin held at 340 for 5 minutes was 750 boise.
  • the reduced viscosity of the extruded resin was 0.42 dLZg, and the decrease in viscosity was extremely small.
  • An injection molding test was performed using the granulated material obtained by pulverizing the obtained resin.
  • the molding was performed at a resin temperature of 30 O: and a mold temperature of 100.
  • the obtained test piece was strong and transparent.
  • the reduced viscosity of the test piece in the toluene solution of 0.5 gZdL measured at 30 was 0.32 dL / g.
  • the water absorption of this molded product was 0.01% or less, the water absorption was extremely low, the total transmittance was 91%, and the haze value was 1.4%, showing extremely high transparency.
  • the solvent was distilled off under reduced pressure at 200 or less without adding a stabilizer to the colorless and transparent solution after filtration obtained in Example 9 to obtain a hydrogenated styrene polymer.
  • the reduced viscosity 7? SpZC determined at 30 was 0.40 dL Zg.
  • the thermal stability of the hydrogenated styrene-isoprene radial copolymer was evaluated using a Koka method.
  • the melt viscosity of the resin kept at 340 for 5 minutes was 180 vois, which was extremely low.
  • the reduced viscosity of the extruded resin was 0.22 dLZg, which was extremely low. In other words, a large decrease in molecular weight due to thermal decomposition was observed during the thermal stability test.
  • Example 10 A 3 L stainless steel reaction vessel, dicyclopentene 343 g, toluene 1,300 g, and triisobutylaluminum 35 g were added.
  • the autoclave is pressurized with 1.5 kg fZcm 2 (0.147 MPa) of ethylene, and a toluene solution containing 124 mg of isopropylidene- (9-fluorenyl) (cyclopentenyl) zirconium dichloride and 3 g of triisobutylaluminum. Then, a toluene solution of 250 mg of trityl-tetrakis (pentafluorophenyl) borate was added, and polymerization was carried out at 30.
  • the autoclave was pressurized with hydrogen of 40 kgZcm 2 (3.92 MPa), and a hydrogenation reaction was performed at 110 at 3 hours to obtain a hydrogenated ethylene-dicyclopentene copolymer.
  • the hydrogenated copolymer obtained here had a Tg of 153 ⁇ , a reduced viscosity of 0.47 dLZg, and a hydrogenation rate of 99.9% or more.
  • the obtained resin was injection-molded at a resin temperature of 300 and a mold temperature of 10 O :.
  • the obtained test piece was strong and transparent.
  • the reduced viscosity of 7 ⁇ ⁇ sp / C measured with 3 O: in a toluene solution of 0.1 S gZdL of this test piece was 0.47 dL / g, and no decrease in molecular weight was observed.
  • the water absorption of this molded product was 0.01% or less, the water absorption was extremely low, the total transmittance was 91%, and the haze value was 1.5%, showing extremely high transparency.
  • Sp / C is 0.65 dLZg.
  • the Tg measured using DSC was 186.
  • To the obtained reaction solution 7.8 g of lactic acid and 1.0 g of water were added at 100 with stirring, and reacted at the same temperature for 2 hours.
  • the reaction solution changed color from black-brown to a black turbid slurry.
  • the slurry was subsequently filtered.
  • the obtained filtrate was subjected to an adsorption treatment using basic alumina to obtain a colorless treatment liquid.
  • the solution thus obtained was added to a large amount of ethanol, and the deposited precipitate was separated by filtration and dried to obtain a colorless flaky polymer.
  • the obtained flaky polymer was dissolved in 1,100 g of toluene introduced into an autoclave.
  • the air in the autoclave containing the solution was sufficiently replaced with nitrogen gas.
  • 3.0 g of tris (acetylacetonato) cobalt and 4.8 g of triisobutylaluminum were added to the solution, and a hydrogenation reaction was performed at a hydrogen pressure of 45 kg / cm 2 (4.41 MPa) for 120 minutes.
  • a reaction solution was obtained. Aliquot a small amount of the reaction solution
  • the hydrogenation rate of the polymer obtained by the conventional purification method was 99.9% or more based on 1 H-NMR spectrum.
  • the reduced viscosity 7? Sp / C measured at 30 using a 0.5 g ZdL toluene solution at 0.5 was 0.54 dLZg, and the Tg measured using DSC was 140.
  • the hydrogenated ring-opened polymer composition (resin) was evaluated for thermal stability using a Koka flow tester.
  • the reduced viscosity of the resin kept at 340 for 5 minutes was 0.54 dL / g, and no decrease in viscosity was observed.
  • the obtained resin was injection-molded at a resin temperature of 340 and a mold temperature of 100.
  • the obtained test piece was strong and transparent.
  • the reduced viscosity of 7 ⁇ ⁇ sp_ / C measured at 30 in a toluene solution having a concentration of 0.5 gZdL at 0.5 gZdL was 0.54 dLZg, and no decrease in molecular weight was observed.
  • the water absorption of this molded product was 0.01% or less and the water absorption was extremely low.
  • the total transmittance was 90% and the haze value was 1.5%, indicating extremely high transparency.
  • the resulting suspension (slurry) was subjected to pressure filtration using a membrane filler Yuichi having a pore diameter of 0.1 micron (Fluoropore manufactured by Sumitomo Electric Industries, Ltd.). A solution was obtained. A portion of the solution was taken and poured into isopropanol, and the precipitated solid was separated by filtration, washed and dried to obtain hydrogenated polystyrene.
  • the hydrogenation rate determined by iH-NMR was 99.5%.
  • the reduced viscosity? 7 spZc determined at 30 was 0.49 dLZg.
  • the residual metal in the resin was less than lp pm, with ⁇ [1 being 0.21 ppm, Al being 0.25 ppm, and Si being 0.25 ppm. all right.
  • the glass transition temperature measured by DSC was 149X :.
  • the reduced viscosity 7? SpZc determined at 30 ⁇ was 0.46 dLZg, and the decrease in viscosity was small. Further, the glass transition temperature (Tg) was 149, and no decrease in the glass transition temperature associated with the decrease in the molecular weight was observed.
  • the water absorption of this disk substrate was 0.01% or less, the water absorption was extremely low, the total light transmittance was 91%, and the haze value was 1.4%, showing extremely high transparency.
  • the inner peripheral portion of the obtained disk substrate had a birefringence of 6 nm, exhibiting an extremely low birefringence, in other words, an extremely high optical isotropy.
  • the number of craze spots was counted by microscopic observation. As a result, the number of craze spots on the substrate was 3 within 1 cm 2 .
  • composition was subjected to stability evaluation using a Koka type flow tester. 34 Put the resin in a nozzle kept at 0 ° C, compress it, keep it warm for 5 minutes, The reduced viscosity (7? S PZC) of the resin extruded from the resin was measured. As a result, 71 S pZc was 0.44 dLZg, and the decrease in viscosity was small.
  • the solvent was distilled off to the colorless and transparent solution of hydrogenated styrene obtained in (1) of Example 12 without adding a polyfunctional addition type stabilizer to obtain a hydrogenated styrene polymer.
  • the polymer was pulverized to prepare granules for moldings.
  • the obtained granules were molded under the same conditions as in Example 12. As a result, it was found that the distortion of the disk substrate was large and cracks often occurred.
  • the 7 ⁇ ⁇ ⁇ ⁇ spZc of the obtained disk substrate was 0.39 dLZg. That is, it is considered that a large decrease in molecular weight occurred during the molding process.
  • stability evaluation was performed using the Koka type flow tester shown in Example 12.
  • rj s pZc was 0.27 dLZg, and a very large decrease in viscosity was recognized.
  • Irganox 1010 a typical phenolic stabilizer of the colorless and transparent solution of hydrogenated styrene obtained in (1) of Example 12, was added in an amount of 0.4 parts by weight based on 100 parts by weight of the hydrogenated styrene polymer.
  • the solvent was distilled off to obtain a hydrogenated styrene polymer.
  • the heat resistance of the polymer was evaluated by the stability evaluation method using a Koka type flow tester shown in Example 12. As a result, the value of 7? SpZc was 0.30 dL / g, indicating a very large decrease in viscosity.
  • Ilganox 10 10 which is a typical phenolic stabilizer of the colorless and transparent solution of hydrogenated styrene obtained in (1) of Example 12, and phosphorus containing A 1: 1 mixture of Irgafos 168 as a system stabilizer was added in an amount of 0.4 part by weight based on 100 parts by weight of the hydrogenated styrene polymer, and the solvent was distilled off to obtain a hydrogenated styrene polymer.
  • the heat resistance of the polymer was evaluated by a stability evaluation method using a Koka flow tester shown in Example 12. As a result, the 7? SpZc was 0.37 dL // g, indicating a very large decrease in viscosity.
  • the amount of the polyfunctional addition-type stabilizer added to the hydrogenated styrene in Example 12 was set to 0.2%, and the stability was evaluated using the same Koka type flow tester as in Example 12. After the resin was incubated at 340 for 5 minutes, 77 sppZc of the resin was 0.42 dLZg, and the decrease in viscosity was small.
  • the addition amount of the polyfunctional addition type stabilizer was set to 1.0 part by weight based on 100 parts by weight of the hydrogenated styrene polymer of Example 12, and the stability was evaluated by the same Koka type flow test as in Example 12. Was. After heating at 340 for 5 minutes, the resin had 0.45 dLZg, indicating a small decrease in viscosity.
  • the reduced viscosity 7-sp / c determined at 30 ° C. was 0.47 dL // g. —
  • the hydrogenation rate determined by NMR measurement was 99.5%.
  • the residual metal in the resin should be less than 1 ppm, with Ni being 0.280 1! 1, 81 being 0.15 ppm and Si being 0.22 ppm. I understood.
  • the glass transition temperature (Tg) measured by DSC was 147.
  • the reduced viscosity spZc determined at 30 using a toluene solution having a concentration of 0.1 S gZdL in the obtained disk substrate was 0.45 dL Zg, and the decrease in viscosity was small.
  • the glass transition temperature (Tg) was 147, and no decrease in the glass transition temperature due to the decrease in molecular weight was observed.
  • the water absorption of this disk substrate was 0.01% or less, the water absorption was extremely low, the total light transmittance was 91.5%, and the haze value was 1.2%, showing extremely high transparency.
  • the inner peripheral portion of the obtained disk substrate had a birefringence of 8 nm, exhibiting an extremely low birefringence, in other words, an extremely high optical isotropy.
  • the number of craze spots was counted by microscopic observation. As a result, the number of craze spots on the substrate was two per cm 2 .
  • the composition was subjected to stability evaluation using the Koka type flow tester described in Example 12.
  • the reduced viscosity (7? S pZc) of the resin kept at 340 ° C for 5 minutes is 0.44. dLZg, and the decrease in viscosity was small.
  • the solution was taken out of the autoclave and subjected to pressure filtration using a membrane filter having a pore size of 0.1 micron (Fluoropore manufactured by Sumitomo Electric Industries, Ltd.).
  • a colorless and transparent solution of hydrogenated styrene-isoprene radial copolymer was obtained.
  • a part of this solution was taken, poured into a large amount of isopropanol, and the deposited precipitate was separated by filtration, washed, and dried to obtain a hydride solid of radial polystyrene copolymer.
  • the solid was reduced in a 0.5 gZdL solution of toluene in a toluene solution measured at 30 T? S It was 49 dLZg.
  • GPC measurement showed that 83% of the components corresponded to 4 branches, and 17% of components with a number average molecular weight (Mn) of 48,000 corresponding to a single chain, ie, one uncoupled branched chain. % Of the mixture.
  • Mn number average molecular weight
  • NMR measurement of the hydrogenation rate was 99.3%.
  • the residual metal in the resin should be 0.2 ppp 111, 81 0.32 ppm, and Si 0.26 ppm, all of which are 1 ppm or less. I understood.
  • the 1 H-NMR spectrum of the solid in heavy-mouthed form showed (51.12 to 1.28 ppm of the tert-butyl proton, ⁇ 3.75 ppm of the bridged methylene proton, (55.81 Acrylic protons were found at pm, 6.15 ppm and 6.41 ppm, and aromatic protons were found at 66.80 to 7.22 ppm, and the formation of an acrylated phenol-aldehyde condensate was confirmed.
  • the intensity ratio between the peak derived from the acryl group and the peak derived from the tert-butyl group confirmed that the acrylate ratio was 40%, and the peak derived from the crosslinking group and the peak derived from the tert-butyl group. From the ratio, the average number of phenol residues was 5.
  • the evaporation start temperature of the obtained acrylated phenol-aldehyde condensate was 410, indicating that it was extremely difficult to volatilize.
  • the glass transition temperature (Tg) of the ethylenedicyclopentene copolymer obtained here is 153 :, the reduced viscosity is 7? SpZc is 0.76 dLZg, and the copolymerization of dicyclopentadiene units is achieved.
  • the molar fraction in the coalescence was 44%.
  • the copolymer was transferred to a 5 L autoclave, and a toluene solution containing 3.0 g (8.4 mmo 1) of tris (acetylacetonato) cobalt and 4.8 g of triisobutylaluminum was added.
  • the autoclave was pressurized with 3.9 MPa hydrogen gas, and a hydrogenation reaction was performed at 110 at 3 hours to obtain a hydrogenated ethylenedicyclopentene copolymer.
  • the hydrogenated copolymer obtained here had a glass transition temperature (T g) of 152, a reduced viscosity of 7? SpZc of 0.47 dL / g, and a hydrogenation rate of 99.9% or more.
  • the obtained mixture was poured into water, and the precipitated white solid was separated by filtration, washed with water, and dried.
  • the 1 H-NMR spectrum of the obtained solid in the form of a heavy-duty chromatograph shows an aromatic proton peak at ⁇ .02 ppm and 06.98 ppm, (55.90-6.50 01
  • An acrylic proton peak at 53.70 ppm, a methylene proton peak bridged at ⁇ 3.60 ppm, and tert-butyl proton peaks at 25 ppm and (51.10 ppm) were observed.
  • the glass transition temperature (Tg) measured using this was 188.
  • 7.8 g of lactic acid and 1.0 g of water were added with stirring at 100, and reacted at the same temperature for 2 hours.
  • the reaction solution changed color from black-brown to black cloudy slurry.
  • the slurry was subsequently filtered.
  • the obtained filtrate was subjected to an adsorption treatment using basic alumina to obtain a colorless treatment liquid.
  • the solution thus obtained was added to a large amount of ethanol, and the deposited precipitate was separated by filtration and dried to obtain a colorless flake.
  • the obtained flaky solid was dissolved in 1,100 g of toluene introduced into the autoclave.
  • the air in the autoclave containing the solution was sufficiently replaced with nitrogen gas.
  • 3.0 g of tris (acetylacetonato) cobalt and 4.8 g of triisobutylaluminum were added to the solution, and hydrogen was applied at a hydrogen pressure of 4.4 MPa for 120 minutes.
  • the reaction was carried out to obtain a reaction solution.
  • a small amount of the reaction solution was fractionated, and the polymer purified by a conventional method had a hydrogenation rate of 99.9% or more based on —NMR spectrum.
  • the reduced viscosity rj sp Zc measured at 30 ° C using a 0.5 g ZdL toluene solution was 0.55 dL / g, and the glass transition temperature (T g) measured using DSC was 142.
  • T g glass transition temperature
  • the 1 H-NMR spectrum of this material shows a hydroxyl proton peak at ⁇ 59.6 ppm, an aromatic proton peak at ⁇ .08 ppm, (54.38 ppm and ⁇ 3 ppm A bridging methylene proton peak at 5 ppm and a tert-butyl proton peak at ⁇ 1.25 ppm are observed.
  • R 4 is a tert-butyl group
  • R 5 is a hydrogen atom.
  • the obtained phenol monoaldehyde condensate was acrylated in the same manner as in the phenol-aldehyde condensate shown in Example 3 to obtain a white solid.
  • the 1 H-NMR spectrum of this solid in heavy-mouthed form shows the aromatic proton peak at ⁇ 6.50-7.20 ppm, the acrylic proton peak at 55.41-6.43 ppm, 22-3.92
  • the peak of the methylene proton bridged at 92 ppm and A tert-butyl proton peak was observed at ⁇ . 81 to 1.32 ppm, confirming the formation of an acrylated phenol-aldehyde condensate. From the intensity ratio between the tert-butyl proton peak and the bridged methylene proton peak, it was confirmed that the acrylation rate was 42% and the average number of phenol residues was 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

明 細 書 脂環式基を含む熱可塑性重合体を含有する熱可塑性樹脂組成物および成形物 技術分野
本発明は脂環式基を含む熱可塑性重合体を含有する熱可塑性樹脂組成物および それからの成形物に関する。 さらに詳しくは高温度で成形しても分子量低下の少 なくまた高温 ·高湿下で使用する際にクレーズ (c r a z e ) 斑点の発生が抑制 された成形物を与えることのできる熱可塑性樹脂組成物およびそれからの上記特 性を備えた成形物に関する。 従来の技術
主鎖または側鎖に嵩高い脂環式基を含む熱可塑性重合体は、 透明性、 耐熱性、 耐薬品性、 耐溶剤性、 耐湿性、 耐誘電特性および種々の機械的性質に優れた合成 樹脂であり、 様々な分野で広く用いられている。 これらは、 嵩高い脂環式基を主 鎖や側鎖に含むため非晶性であり、 透明性が高く光学材料として重用されている。 かかる環状ォレフィン系重合体は、 主鎖に脂環式基を含むものと、 側鎖に脂環 式基を含むものとに大別され、 前者はさらに、 付加重合体と水素化開環重合体に 細分される。 一方、 後者の代表例としては、 水素化スチレン系重合体 (ポリビニ ルシクロへキサン系重合体) が知られている。
上記の付加重合体は、 一般にノルポルネンゃテトラシクロドデセン等の環状ォ レフインとエチレンや α—才レフインとを付加重合して得られる。 一方、 水素化 開環重合体は、 一般にノルボルネンゃテトラシクロドデセン等の環状ォレフィン をメ夕セシス触媒の存在下で重合して C = C二重結合を含む前駆体に誘導し、 ひ き続き該 C = C二重結合を水素化することにより得られる。 これらはいずれも主 鎖に歪みのかかった脂環式基を含み、 環には熱開裂を起こしやすい三級水素を含 む。 そのために、 この重合体は熱化学安定性に欠ける、 言い換えれば熱分解を起 こしゃすい、 という問題がある。 一方、 水素化スチレン系重合体 (ポリビニルシクロへキサン系重合体) は、 一 般にはスチレン系重合体の側鎖の芳香族基を水素化することにより得られる。 こ の重合体の側鎖のシク口へキシル基はそれ自体は歪みの小さい環であるが、 ポリ マー鎖に組み込まれている隣接するシクロへキシル基同士の立体障害のために主 鎖に大きな歪みがかかる。 それに加えて熱開裂を起こしやすい三級水素が主鎖お よびシクロへキサン基にそれぞれ一個ずつ含まれるために、 それが引き金になつ て熱分解を起こしやすい。
これらの環状ォレフィン系重合体は、 多くの場合、 溶融成形法により成形 (賦 形) される。 一般に、 溶融成形には高い樹脂流動性が必要であるために、 高い樹 脂温度で成形する必要がある。 特に主用途である光ディスクのように微細なピッ トに対して高い転写性を要求される分野では、 さらに高温で成形することを余儀 なくされる。
このような厳しい条件での成形において、 重合体の熱分解による分子量低下が あると、 成形物の力学強度の低下を招くことになる。 特に、 成形に適する樹脂温 度と熱分解温度とが近接している水素化スチレン系重合体 (ポリビニルシクロへ キサン系重合体) においては、 このような熱分解は避けがたく、 その解決が求め られている。
近年、 光磁気記録ディスク (MO) の大容量化あるいはディジタル多用途ディ スク (D V D) の開発、 ブルーレーザ一の開発等に代表される記録の高密度化に 伴い、 高温での成形性は益々重要になってきている。 したがって、 このような分 野を主用途とする環状ォレフィン系重合体にあっては熱分解低減技術に対する要 望が益々高まっている。
特開平 5 _ 2 4 2 5 2 2号公報には、 ヒンダードフエノール系熱安定剤、 リン 系安定剤および長鎖飽和脂肪酸金属塩とを配合したポリビニルシク口へキサン系 樹脂からなる光ディスク基板が開示されている。 上記ヒンダードフエノール系熱 安定剤およびリン系安定剤はいずれも熱重量計で測定した 5 %重量減少温度が 2 9 5 T:以上であることが条件となっている。
W0 9 9 / 1 3 0 7号公報には、 水素化芳香族重合体、 ベ: びヒンダードフエノール系化合物を含有する組成物が開示されている。
上記のごとき安定剤によりある程度の分子量低下は抑制できるが、 その効果は 十分とは言い難い。
例えば、 その特性を生かして光学材料として使用される水素化スチレン系重合 体の成形物を高温 ·高湿の雰囲気で使用すると、 成形物内に一面に該重合体の分 解物および Zまたはかかる安定剤の分解物に起因すると思われる数 m〜十数 m程度の斑点 (ここではその斑点の実体から 「クレーズ斑点」 と呼ぶ) が生じる。 そのために、 この成形物は高温 ·高湿の雰囲気中で光学材料として用いることが 困難である。 特に、 光ディスク基板として使用する場合は、 基板内に極ぐ僅かで もこのような欠陥が生じると、 光ディスクの S /N比を著しく低下させ、 その商 品価値を著しく下げることになる。
また、 特開昭 5 9— 7 1 3 4 1号公報には、 下記式
Figure imgf000005_0001
ここで、 は炭素数 1〜4のアルキル基である、
で表されるフエノール系化合物およびこの化合物が合成樹脂安定剤として使用で きることが開示されている。 同公報には対象となる合成樹脂として、 ポリエチレ ン、 ポリプロピレン、 ポリスチレン、 耐衝撃性ポリスチレン、 A B S、 ポリアセ タール、 ポリアミドおよびポリウレタンだけが開示されている。 この安定剤は熱 および酸化安定性かつ耐熱変色性を持つことも開示されている。
発明の開示
本発明の目的は、 主鎖または側鎖に脂環式基を含む熱可塑性重合体の溶融成形 時の分子量低下を抑制した新規な成形材料を提供することにある。
本発明の他の目的は、 水素化スチレン重合体のごとき上記熱可塑性樹脂を溶融 成形する際の分子量低下に伴う力学的脆さを抑えると共に、 高温 ·高湿の雰囲気 で使用してもクレーズ斑点を生じないような熱可塑性樹脂組成物 (成形材料) を 提供することにある。
本発明のさらに他の目的は、 このような成形材料を溶融成形してなる成形体特 に光学記録媒体の基板を提供することにある。
本発明のさらに他の目的は、 高温 ·高湿で使用しても S ZN比の低下が殆どな い光学記録媒体の基板を提供することにある。
本発明のさらに他の目的および利点は、 以下の説明から明らかとなろう。 本発明によれば、 本発明の上記目的および利点は、 第 1に、
(A) 脂環式基を含む熱可塑性重合体および
( B ) この熱可塑性重合体が開裂して生成するラジカルに付加反応することが可 能な付加型安定剤
上記熱可塑性重合体に対して 0. 0 1〜5重量%を含有してなる熱可塑性樹脂 組成物によつて達成される。
本発明によれば、 本発明の上記目的および利点は、 第 2に、 本発明の上記熱可 塑性樹脂組成物からの溶融成形による成形物例えば光学用成形物によって達成さ れる。
本発明によれば、 本発明の上記目的および利点は、 第 3に、 温度 8 0で、 相対 湿度 8 5 %の雰囲気に 5 0 0時間暴露したとき、 基板の表面に 1 c m2当り 1 0 個以下のクレーズしか観察されずそして
脂環式基を含む熱可塑性樹脂から主としてなる、 光ディスク基板によつて達成さ れる。
図面の簡単な説明
図 1は、 参考例 1で得られたポリマーのシクロへキサン溶液を分離して得た試 料 # 1〜# 3の赤外吸収スペクトル図である。
図 2は、 比較例 1で得られたディスク基板を温度 8 0で、 相対湿度 8 5 %の雰 囲気で 5 0 0時間促進劣化を行った後、 顕微鏡観測により観測したクレーズ斑点 の顕微ラマンスぺクトル図である。 図 3は、 参考例 2で比較のために用いたラマンスぺクトル図である。
図 4は、 参考例 3で得られた試料 Xおよび試料 Yの UV— V I Sスぺクトル図 である。
発明の好ましい実施態様
(A) 脂環式基を含む熱可塑性重合体
本発明で使用される、 脂環式基を含む熱可塑性重合体は、 主鎖に脂環式基を含 む熱可塑性重合体と、 側鎖に脂環式基を含む熱可塑性重合体に大別される。 そし て前者は、 さらに、 付加型重合体と水素化開環重合体とに細分される。
付加型重合体は、 環状ォレフィンとエチレンおよび/または α—ォレフィンと を共重合して得られる。 これらは、 特開昭 60 - 168708号公報、 特開昭 6 1 - 1 15916号公報、 特開昭 61— 221206号公報、 特開昭 61— 29 2601号公報に開示されている。 環状ォレフィンとしては例えば、 ノルボルネ ン、 5—フエニルノルボルネン、 テトラシクロ [4. 4. 0. I 2' 5. I 7' 1 0] — 3—ドデセン、 8—フエ二ルテトラシクロ [4. 4. 0. I 2' 5. I 7' 1 °] — 3—ドデセンのごとき環状モノォレフィン;シクロペン夕ジェン、 ジシク 口ペン夕ジェン、 ノルボルナジェン、 5—ェチリデンノルボルネン、 ノルボルナ ジェン、 8—ェチリデンテトラシクロ [4. 4. 0. I 2' 5. I 7' 10] — 3— ドデセン、 8—イソプロピリデンテトラシクロ [4. 4. 0. I 2' 5. 17' 1 °] 一 3—ドデセンのごとき環状ジェンが好適に用いられる。 中でも原料の入手 性およびポリマーの耐熱性を勘案すると、 ノルポルネン、 テトラシクロ [4. 4. 0. I 2' 5. 17' 1Q] — 3—ドデセン、 ジシクロペン夕ジェンが特に好適であ る。 その内、 環状ジェンを用いた場合は、 生成重合体が C==C二重結合を含むた めに、 後述する水素化開環重合体の製造法と同様に付加重合体はさらに水素化す ることが好ましい。
また、 α—ォレフィンとしては、 例えばプロピレン、 1—ブテン、 1—ペンテ ン、 1—へキセン、 4—メチルー 1—ペンテン、 1—ヘプテン、 1—ドデセンの ごとき炭素数 3〜20の α—ォレフィンが用いられる。 環状ォレフィンゃ環状ジ ォレフィンと共重合する単量体としては反応性の上からエチレンが最も好ましい が、 その他プロピレンも好適に用いられる。 これらは単独で使用しても 2種類以 上組合せてもよい。 かかる付加重合体は、 一般にチ一ダラー触媒やメタ口セン触 媒の存在下において容易に合成することができる。
また、 水素化開環重合体は、 前駆体である開環重合体の水素化により得られる ものである。 開環重合体は、 環状ォレフィンや環状ジォレフインをメ夕セシス触 煤の存在下で重合することにより得られる。 これらは、 特開昭 60— 26024 号公報、 特開昭 63 - 218726号公報、 特開平 2— 133413号公報、 特 開平 3— 109418号公報に開示されている。 用いられる単量体として、 ノル ボルネン、 5—フエニルノルボルネン、 テトラシクロ [4. 4. 0. I2' 5. 1 7' 10] —3—ドデセン、 8—フエ二ルテトラシクロ [4. 4. 0. I 2' 5. 17' 10] — 3—ドデセンのごとき環状モノォレフィン:ジシクロペン夕ジェン、 ノ ルポルナジェン、 5—ェチリデンノルボルネン、 5—イソプロピリデンノルボル ネン、 8—ェチリデンテ卜ラシクロ [4. 4. 0. I 2' 5. I 7' 10] — 3—ド デセン、 8—イソプロピリデンテ卜ラシクロ [4. 4. 0. I2' 5. I7' 10] —3—ドデセンのごとき環状ジェンが好適に用いられる。 付加型重合体と異なり、 開環重合体には不可避的に c = C二重結合が含まれる。 このように C = C二重結 合を含む重合体は熱化学安定性に乏しく、 実用に耐えない。 そのために、 開環重 合体は水素化触媒の存在下で、 さらに水素化される。 かかる水素化触媒としては、 例えばニッケル、 パラジウム、 白金、 コバルト、 ルテニウム、 ロジウムのごとき 貴金属またはその酸化物、 塩、 錯体等の化合物をカーボン、 アルミナ、 シリカ、 シリカ ·アルミナ、 珪藻土のごとき多孔性担体に担持した固体触媒あるいはバナ ジゥム、 クロム、 マンガン、 鉄、 ルテニウム、 コバルト、 ロジウム、 ニッケル、 パラジウムのごとき遷移金属のハロゲン化物、 ァセチルァセトネート錯体、 カル ボキシレート錯体、 ナフテート錯体、 トリフルォロアセテート錯体、 ステアレー ト錯体等の均一触媒が挙げられる。
本発明において用いられる脂環式基を含む熱可塑性重合体のもう一方の群とし ては、 側鎖にシクロへキシル基を含む水素化スチレン重合体が挙げられる。
本発明において用いられる水素化スチレン重合体は、 対応するスチレン重合体 の芳香族基および共重合体の場合はスチレン成分の他にさらに共重合体成分に含 まれる C = C二重結合も水素化されたものである。 例えば特公平 7— 1 1 4 0 3 0号公報等に記載されたポリビニルシクロへキサンもこれに該当する。 このス チレン重合体を構成するスチレン単量体単位としては、 例えばスチレン、 ひーメ チルスチレン、 P—メチルスチレン、 ビニルナフ夕レン等が挙げられる。 このう ち、 入手性およびポリマー物性の上からスチレンが最も好適に用いられる。 これ らの単量体は単独でも 2種以上組合せても用いることができる。
また、 スチレン単量体と共重合可能な他の単量体も物性改良の上から好適に用 いられる。 かかる単量体としては一般に共役ジェンが用いられる。 このような共 役ジェンとしては、 1, 3 _ブタジエン、 イソプレン、 2, 3—ジメチル一 1, 3—ブタジエン、 1 , 3—ペン夕ジェン、 1 , 3—へキサジェン等が挙げられる。 これらの中でも重合活性、 経済性の面から 1, 3—ブタジエン、 イソプレンが好 ましい。 これらは単独で用いてもよいし、 2種類以上併用してもよい。 これらの 共重合成分を導入することにより、 目的とする水素化スチレン重合体の透明性を 損なうことなく力学物性を著しく向上させることができる。 好ましい導入率 (共 重合比率) は、 全単量体の 1〜3 0重量%、 特に好ましくは 3〜 2 0重量%であ る。 耐衝撃性等の力学特性を向上させる観点からは共役ジェン成分ができるだけ 多い方がよいが、 あまり多すぎると透明性の低下や耐熱性 (ガラス転移温度、 熱 変形温度) の低下を来すため好ましくない。 また、 共役ジェン成分が 1重量%ょ りも少ないと、 靱性改良効果が小さいために好ましくない。
これらのスチレン重合体の製造法は、 特に限定されず、 一般のラジカル重合法、 ァニオン重合法、 カチオン重合法等が用いられる。 また、 スチレン重合体に共重 合成分を導入したスチレン共重合体の結合様式としては、 ランダム共重合体、 ブ ロック共重合体、 ラジアルブロック共重合体が挙げられる。 これらのうち、 耐熱 性を重視する場合はブロック共重合体が、 また成形時の流動性を重視する場合は ラジアルプロック共重合体 (星型プロック共重合体すなわち中心コァから 3本以 上のブロック鎖が伸びている重合体) が特に好ましい。 これらは、 用途に応じて 適宜選定すればよい。 本発明においてスチレン重合体の水素化方法も、 特に限定されず、 重合体中の 芳香族基ならびに c = C二重結合を効率よく水素化できれる方法であれば如何な る方法でもよい。 一般には、 水素化触媒の存在下で、 不活性溶媒中、 水素加圧下、 高温で水素化反応を行う。 この際用いる水素化触媒としては、 例えばニッケル、 パラジウム、 白金、 コバルト、 ルテニウム、 ロジウム等の貴金属またはその酸化 物、 塩、 錯体等の化合物を、 例えばカーボン、 アルミナ、 シリカ、 シリカ 'アル ミナ、 珪藻土等の多孔性担体に担持した固体触媒が用いられる。 これらの中でも、 ニッケル、 パラジウム、 ロジウム、 白金をアルミナ、 シリカ、 シリカ ·アルミナ、 珪藻土に担持したものが活性が高いので好ましく用いられる。 かかる水素添加触 媒は、 その触媒活性にもよるが、 スチレン重合体に対して 0 . 5〜4 0重量%の 範囲で用いること力好ましい。
水素化反応で用いられる不活性溶媒としては、 炭化水素系溶媒が好ましく用い られる。 その具体例としては、 ペンタン、 へキサン、 ヘプタン、 オクタン、 デカ ン等の脂肪族炭化水素;シクロペンタン、 シクロへキサン、 メチルシクロへキサ ン、 シクロオクタン、 デカリン等の脂環族炭化水素;ベンゼン、 トルエン、 キシ レン、 テトラリン等の芳香族炭化水素を挙げることができる。 かかる炭化水素系 溶媒の中でも、 水素化触媒に対して不活性であり、 溶解性、 反応性、 経済性の点 で有利なシクロへキサンあるいはメチルシク口へキサンが好ましく使用される。 上記炭化水素系溶媒に加えて、 水素化反応の制御、 水素化反応時の分解抑制の 観点から、 極性溶媒を併用してもよい。 かかる極性溶媒としては、 テトラヒドロ フラン、 ジォキサン、 ジエチレングリコール、 ジメチルエーテル、 ジェチルエー テル、 メチルー t e r t —ブチルエーテル等の鎖状、 枝分かれ、 環状エーテル類 が好ましく用いられる。 これらの炭化水素溶媒や極性溶媒は単独で用いてもよい し 2種以上混合してもよい。
上記スチレン系重合体を含む反応溶液の濃度は、 好ましくは 5〜4 0重量%、 より好ましくは 1 0〜3 0重量%である。 濃度がそれ未満では生産性が落ち、 そ れを超えると水素化反応制御が困難となるために好ましくない。
水素化反応条件は、 通常水素圧 3 0〜2 5 0 k g f / c m2 (約 2 . 9〜2 4 . 5P a)、 反応温度 70〜250での範囲が採用される。 反応温度が低すぎる と反応が進行しにくく、 反応温度が高すぎると分子鎖の切断による分子量の低下 が起こりやすくなる。 分子鎖の切断による分子量低下を防ぎかつ円滑に反応を進 行させるには、 用いる触媒の種類および濃度、 スチレン重合体の溶液濃度、 分子 量等により適宜決定される適切な温度、 水素圧により水素化反応を行うことが好 ましい。
かくして得られる水素化スチレン重合体の精製法は、 特に限定はなく、 通常の 方法を採用することができる。 通常は、 水素化反応工程において得られた水素化 スチレン重合体溶液から遠心分離や濾過により触媒を除き、 得られた濾液から溶 媒を留去して得ることができる。 光学材料用途に好適な本発明の組成物 (成形材 料) においては、 該組成物内の残留金属成分は出来るだけ少なくする必要があり、 かかる残留触媒金属量が 10 ppm以下が好ましく、 より好ましくは 5 ppm以 下、 さらに好ましくは 2 ppm以下である。
本発明において用いられる水素化スチレン重合体の分子量は、 成形物の機械強 度ならびに成形加工性を勘案すると、 GPC (ゲルパーミエーシヨンクロマトグ ラフィー) により測定したポリスチレン換算の重量平均分子量 (Mw) で、 30, 000〜1, 000, 000の範囲のものが好ましく、 より好ましくは 50, 0 00〜500, 000の範囲、 さらに好ましくは 80, 000〜 400, 000 の範囲のものである。 重量平均分子量 (Mw) がそれ以下では機械的強度が不足 し、 それより高いと溶融粘度が高すぎて流動性が不足し、 成形が困難になり好ま しくない。 また、 分子量の一つの尺度である還元粘度で表示すると、 濃度 0. 5 gZdLのトルエン溶液中、 3 で測定した還元粘度 (v s p/C) が 0. 1 〜10 dL、 好ましくは 0. 2〜3 dLノ g、 さらに好ましくは 0. 3〜1. 0 dLZgの範囲である。
(B) 付加型安定剤
本発明において用いられる付加型安定剤は熱可塑性重合体 (A) が開裂して生 成するラジカルに付加反応することが可能なものである。
一般に、 熱可塑性重合体 (A) の熱分解は、 分子鎖内の弱い C—H結合が均等 開裂して、 主鎖内に遊離基 (フリーラジカルまたはラジカル) が生じることから 開始するといわれている。 その遊離基を含む c _ c結合はさらに開裂して分子鎖 の切断が起こる。 その結果生じた開裂鎖 (フラグメント) は末端に遊離炭素原子
(末端 C一ラジカル) を含む。 この末端 C一ラジカルは非常に活性であり、 近傍 の弱い C一 H結合から水素原子を遊離水素原子 (H—ラジカル) として奪ってそ れ自体は安定化する。 しかしながら、 同時に新たに主鎖内に遊離基が生成して、 再び C一 C開裂が起こる。 これらの一連の素反応が繰返されて、 連鎖的に開裂が 進行する。
代表的な安定剤として用いられているヒンダードフエノールは、 水素ラジカル を放出して、 主鎖内あるいは開裂鎖末端に生じた C一ラジカルを安定化し、 従つ て、 ヒンダ一ドフエノ一ル系安定剤を添加することにより熱分解を抑制すること ができ、 それ以上の分子量低下を抑制することができるといわれている。 しかし、 安定化に寄与したヒンダードフエノール分解物はその量が増えると共に凝集 ·分 離して微小粒子となって成形物内に析出する。 そのため、 微小粒子の量はヒンダ —ドフエノールを添加しない場合より遥かに多くなる。 一般に言われているよう に、 ヒンダードフエノール系安定剤は熱分解によって生じる重合体中の遊離基に フエノール性水酸基の水素原子を遊離基として放出して重合体中の遊離基と反応 せしめて安定化し、 ひき続き起こる連鎖的分解反応を抑制する。 しかしながら、 それと同時に、 他方のヒンダードフエノール遊離基はヒンダードフエノール分解 物として成形物内に残留する。
ヒンダードフエノールを含む熱可塑性重合体 (A) の成形物を高温 ·高湿雰囲 気に長時間曝すと、 斑点を生じ、 この斑点の発生は、 核を中心として生じたクレ ーズであり、 その核は重合体中に僅かに含まれる未水素化物由来分解物とヒンダ ードフエノール分解物の存在によることが明らかとされた。 このクレーズ斑点は 核よりはるかに大きいために、 極く僅かでも微小粒子が存在すると拡大される。 また、 上記のごとく、 ヒンダードフエノールの添加では、 連鎖的開裂に伴う分 子量低下は免れ得ない。
本発明において用いられる付加型安定剤 (B ) は、 ヒンダードフエノールのご とく、 ヒンダードフエノール分解物を生成せず、 しかも多官能性であるものは、 重合体の複数個の開裂末端と反応して、 連鎖的開裂に伴う分子量低下さえも抑制 することが明らかにされた。
本発明において用いられる付加型安定剤 (B) としては、 (メタ) ァクリレー ト基を有するフエノール化合物が好ましく用いられる。
かかる付加型安定剤としては、 例えば下記式 (1 )
Figure imgf000013_0001
ここで、 R R 2および R 3はそれぞれ独立に水素原子または炭素数 1〜1 0 のアルキル基でありそして Pは 0〜1 3の数である、 但し複数の R 1 , 複数の R 2および複数の R 3のそれぞれは同一であっても異なっていてもよい、 で表される鎖状フエノール—アルデヒド縮合体の水酸基の 3 5〜6 5モル%が (メタ) ァクリロイルォキシ基に変換された化合物、
下記式 (2 )
Figure imgf000013_0002
ここで、 R 4および R 5は同一もしくは異なり、 水素原子または炭素数 1〜1 0のアルキル基でありそして Qは 4〜1 5の数である、
で表される環状フエノール—アルデヒド縮合体の水酸基の 3 5〜6 5モル%が (メタ) ァクリロイルォキシ基に変換された化合物および下記式 (3 )
Figure imgf000014_0001
ここで、 R 6および R 7は同一もしくは異なり水素原子または炭素数 1〜1 0 のアルキル基でありそして rは 4〜 1 5の数である、
で表される環状フエノールーアルデヒド縮合体の水酸基の 3 5〜6 5モル%が (メタ) ァクリロイルォキシ基に変換された化合物を挙げることができる。
本発明では、 付加型安定剤として、 上記のごとき化合物を単独であるいは 2種 以上一緒に用いることができる。
上記式 (1 )、 ( 2 ) および (3 ) で表されるフエノール—アルデヒド縮合体は、 フエノール類とアルデヒド類が該フエノール類の水酸基に対してオルト位で縮合 し、 かつ一分子中の平均フエノール残基数が 2〜1 5 ( p = 0〜1 3 ) の縮合体 である。 このフエノールーアルデヒド縮合体は、 大きく式 (1 ) の鎖状フエノー ルーアルデヒド縮合体と式 (2 ) および (3 ) の環状フエノール—アルデヒド縮 合体に分けられる。
フエノール類としては、 フエノール—アルデヒド縮合体の末端フエノール残基 のためのフエノールを除いて、 水酸基に対して二個所のオルト位 (O—位および o ' —位と呼ぶ) が置換されていないフエノール類が用いられる。 その理由の一 つは、 フエノール類への親電子置換反応は、 O -位、 O ' —位およびパラ位 (P 一位) が活性が高い点にあり、 もう一つの理由は、 本発明における (メタ) ァク リル化フエノールの該 (メタ) アクリル基と隣接するフエノール残基がアルデヒ ド類との縮合反応により生成するアルデヒド由来の橋かけ基 (以下単に橋かけ基 とよぶ) を介して空間的に有利な位置にくるためである。 従って、 このような構 造がラジカルの大きな安定化効果を発揮するためである。
かかるフエノール類としては、 非置換または p—位が置換されたフエノール類 が好適に用いられる。 具体的には、 非置換フエノールおよび P—メチルフエノー ル、 p—ェチルフエノール、 p—イソプロピルフエノール、 p— n—ブチルフエ ノール、 p— s e c—ブチルフエノール、 p— t e r t—ブチルフエノール、 p — 1, 1—ジメチルプロピルフエノール、 p—ォクチルフエノール、 p—デシル フエノール等の炭素数 1〜 1 0のアルキル基を有する p—置換フェノールが挙げ られる。 その内、 また原料の入手しやすさを考慮すると、 P—クレゾール (P— メチルフエノール)、 p— t e r t—ブチルフエノール、 および p— 1, 1ージ メチルプロピルフエノ一ルが特に好ましく用いられる。
一方、 鎖状フエノールーアルデヒド縮合体の両末端に位置するフエノール類と しては、 一方のオルト位が非置換であればよい。 むしろラジカルの安定化機構か ら考えると、 一方のオルト位が立体障害性の置換基により置換されているほうが 好ましい。 かかる点を考慮すると、 上記のフエノール類のほかに、 より好ましい フエノール類として 2—メチルフエノール (o—クレゾ一ル)、 2, 4一ジメチ ルフエノール、 2— t e r t—ブチル— 4—メチルフエノール、 2, 4ージー t e r t—ブチルフエノール、 2 — ( 1 , 1—ジメチルプロピル) —4—メチルフ ェノール、 2, 4—ジ (1 , 1—ジメチルプロピル) フエノール等の o—位が置 換されたフエノールが挙げられる。 中でも、 2— t e r t—ブチル— 4—メチル フエノール、 2, 4—ジ— t e r t—ブチルフエノール、 2— ( 1 , 1—ジメチ ルプロピル) —4—メチルフエノールおよび 2, 4ー (1 , 1—ジメチルプロピ ル) フエノールが特に好適に用いられる。
本発明において用いられるもう一つのタイプのフエノール類として、 レゾルシ ン (レゾルシノール) 型二官能のフエノール類を挙げることができる。 レゾルシ ンのニ個の水酸基のそれぞれに対する異なる 2つのオルト位は、 親電子置換反応 に活性であり、 (メタ) アクリル化後の (メタ) アクリル化フエノールーアルデ ヒド縮合体において該 (メタ) アクリル基と水酸基とが橋かけ基を介して有利な 空間配置がとれるために好ましい。 かかる、 レゾルシン型二官能フエノール類と してレゾルシン、 5—メチルレゾルシン等が挙げられる。 この場合は 5 _位に立 体障害性の高い基を導入したものは、 縮合反応の妨げになるために好ましくない。 本発明において用いられるアルデヒド類としては、 炭素数 1〜1 1の脂肪族ァ ルデヒドが用いられる。 アルデヒド類は、 反応性、 入手性ならびに (メタ) ァク リル基と橋かけ基を介して存在する水酸基の空間配置を勘案して選択される。 具 体的には、 ホルムアルデヒド、 パラホルムアルデヒド、 ァセトアルデヒド、 プロ ピオンアルデヒド、 ブタナール、 イソブ夕ナ一ル、 ピバロアルデヒド、 ォク夕ナ ール等が好適に用いられる。 中でも、 ホルムアルデヒド、 パラホルムアルデヒド、 ァセトアルデヒド、 ブ夕ナ一ル、 ピバロアルデヒドが好適に用いられる。
本発明におけるフエノ一ルーアルデヒド縮合体一分子中の平均フエノール残基 数
は 2〜1 5、 好ましくは 2〜1 2、 さらに好ましくは 2〜1 0である。 これを (メタ) アクリル化した (メタ) アクリルィ匕フエノール一アルデヒド縮合体は、 フエノール残基とそれに隣接した (メタ) アクリル化フエノール残基が対として 存在するときに最も効果的に、 多官能性付加型安定剤としての機能を発揮する。 多官能付加型安定剤としては、 フエノールーアルデヒド縮合体一分子中の平均フ ェノール残基類は、 好ましくは 4〜1 5、 より好ましくは 4〜1 2、 特に好まし くは 4〜1 0である。 4未満ではその対の数が平均でも 2未満になり多官能性付 加型安定剤としての機能が低下するので好ましくない。 言い換えれば、 鎖伸長性 が低下するので好ましくない。 また 1 5を超えると、 一分子内に上記対を形成す る確率は高くならず、 力 ^っ分子量が高くなるために樹脂に対して最も効果を発揮 する添加量が多くなり好ましくない。
上記式 (1 ) において、 R 1としては、 t e r t _ブチル基、 1, 1一ジメチ ルプロピル基が特に好ましく用いられる。 また、 R 2としては、 メチル基、 t e r t一ブチル基、 1, 1—ジメチルプロピル基が特に好適に用いられる。 また、 R 3としては、 水素原子、 メチル基、 プロピル基および t e r t—ブチル基が特 に好適に用いられる。 Pの平均値は 0〜13、 好ましくは 0〜10、 より好まし くは 0〜 8である。 多官能性付加型安定剤の場合は、 pの平均値は好ましくは 2 〜13、 より好ましくは 2〜10、 さらに好ましくは 2〜8である。
上記式 (2) において、 特に好適な R4および R5は、 それぞれ前記式 (1) における R2、 R3と同じである。 また、 qは 4〜15、 好ましくは 4〜12、 さらに好ましくは 4〜10である。
また、 上記式 (3) において、 特に好適な R7は前記式 (1) における R3と 同じである。 式中 R 6は水素原子または炭素数 1〜10のアルキル基であるが、 特に好ましいのは水素原子とメチル基である。 rは 4〜15、 好ましくは 4〜1 2、 さらに好ましくは 4〜; L 0である。
本発明においてはフエノールーアルデヒド縮合体は、 その水酸基の 35〜65 モル%、 好ましくは 40〜60モル%、 さらに好ましくは 45〜55モル%の範 囲で (メタ) アクリル化される。 前述のごとく、 (メタ) アクリル化することに より付加型熱安定剤としての機能を発揮する。 また部分的にフエノール性水酸基 を残す理由は、 遊離基が (メタ) アクリル基と反応すると α—位に遊離ラジカル が新たに生成する。 そのラジカル基は活性が高く、 飽和環状化合物から水素ラジ カルを引き抜く能力がある。 しかしながら、 近傍にフエノール性水酸基が存在す ると、 その水酸基から水素原子を遊離ラジカルとして奪って安定化する。 その結 果生成した Ο—ラジカルは、 活性が低いためにそれ以上連鎖反応を誘発する能力 がない。 従って、 (メタ) アクリル基と水酸基はバランスがとれていることが好 ましい。 かかる観点から、 (メタ) アクリル化率が 35%未満では水酸基に対し て (メタ) アクリル基が不足し、 また 65%を超えると水酸基に対して (メタ) ァクリル基が過剰になり、 いずれも効果が下がる。
上記式 (1) において、 ρ = 0である場合の鎖状フエノール—アルデヒド縮合 体に基づく付加型安定剤 (Β) は、 好ましくは下記式 ( )
Figure imgf000018_0001
ここで、 R R 2および R 3の定義は上記式 (1) に同じでありそして R4は 水素原子またはメチル基である、
で表される。
上記式 (1') で表される付加型安定剤は、 分解物を生じることなく、 重合体 の開裂鎖末端に生じ C一ラジカルを安定化する。
上記式 ( ) において、 R1 !^ 3で示されるアルキル基の具体例としては、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 s e c —プチル基、 イソブチル基、 t e r t—ブチル基、 1, 1ージメチルプロピル基 が挙げられる。 R1としては、 イソプロピル基、 s e c—ブチル基、 t e r t— ブチル基、 1, 1—ジメチルプロピル基のような立体障害になる嵩高いアルキル 基が効果ならびに製造の容易さの上でも好ましい。 中でも、 t e r t—ブチル基、 1, 1ージメチルプロピル基が好ましい。 R2としては、 製造の容易さの観点か らはメチル基、 t e r t—ブチル基、 1, 1—ジメチルプロピル基が好適に用い られる力 メチル基は水素引き抜きを伴う副反応を起こしやすく、 その意味でさ らに好ましいのは t e r t—ブチル基、 1, 1—ジメチルプロピル基である。 R 3としては、 メチル基、 ェチル基、 プロピル基、 n—ブチル基のような立体障害 になりにくいアルキル基が、 製造の観点から好ましい。 R4は水素原子またはメ チル基である。
上記式 (Γ) で示される化合物は、 市販品、 例えば、 住友化学工業 (株) 製 の商品名 「スミライザ一 (Smi 1 i z e r) GM」、 「スミライザ一 (Smi 1 i z e r) GS」 として入手することができる。 これらの付加型安定剤は、 単独で用いてもよいし、 2種以上併用してもよい。 また、 必要に応じて、 商品名 「ィルガノックス (I r ganox) 1010」 「ィルガノックス (I r ganox) 1076」 (チバ ·スぺシャリティ 'ケ ミカルズ (株) 製) 等のヒンダードフエノール系安定剤、 商品名 「ィルガフォス (I r ga f o s) 168」 (チバ 'スぺシャリティ 'ケミカルズ (株)製) 等 の酸化防止剤を併用してもよい。
本発明における付加型安定剤のためのフエノールーアルデヒド縮合体は、 それ 自体公知の方法で合成することが出来る。
一般に、 鎖状フエノール—アルデヒド縮合体はフエノール類とアルデヒド類と を好ましくは溶媒中、 酸性あるいは塩基性条件で加熱反応することにより得られ る。 溶媒としては、 フエノール類およびアルデヒド類の種類にもよるが、 例えば 水、 へキサン、 ヘプタン、 シクロペンタン、 シクロへキサン、 メチルシクロへキ サン等の鎖状、 環状飽和炭化水素類;ベンゼン、 トルエン、 キシレン等の芳香族 炭化水素類;メタノール、 エタノール、 イソプロパノール等のアルコール類;ェ チルエーテル、 メチルー t e r t—ブチルエーテル、 エチレングリコールジメチ ルエーテル、 ジエチレングリコールジメチルエーテル、 テトラヒドロフラン、 1, 3—ジォキソラン、 ジォキサン等の鎖状、 環状エーテル類;酢酸ェチル、 酢酸ブ チル、 酢酸イソブチル等のエステル類;塩化メチレン、 クロ口ホルム等のハロゲ ン化炭化水素類;ァセトニトリル、 ニトロメタン等の含窒素溶媒等が好んで用い られる。 また、 反応を促進させるためには、 例えば塩化水素、 塩酸、 硫酸、 硝酸、 燐酸等の無機強酸;酢酸、 ジクロロ酢酸、 メタンスルホン酸、 P—トルエンスル ホン酸等の有機酸が好んで用いられる。 また、 水酸化ナトリウム、 水酸化力リウ ム、 アンモニア、 水酸化カルシウム、 水酸化バリウム等の塩基性ィヒ合物も好んで 用いられる。 反応温度は、 一般に 30〜200 :、 好ましくは 50〜150 の 範囲が用いられる。 また、 反応時間は 1〜50時間、 好ましくは 2〜25時間の 範囲が用いられる。
一方、 環状フエノール—アルデヒド縮合体は、 例えば J o u r n a 1 o f Or gan i c Chemi s t ry, Vo l. 54, p 1305 (1989)、 Or g an i c Syn t h e s i s, Vo l. 68, p 234 (1999) 等 に記載の方法で容易に合成することが出来る。 なお、 本発明において得られるフ エノールーアルデヒド縮合体は、 そのまま精製して使用してもよいが、 必要に応 じて分画して使用してもよい。 単一化合物が必要な場合は、 液体クロマトグラフ ィ一に基づく分画技術が好ましく用いられる。
本発明において、 得られたフエノール—アルデヒド縮合体を (メタ) アクリル 化し、 (メタ) アクリル化フエノール一アルデヒド縮合体を得るには、 フエノー ルーアルデヒド縮合体と (メタ) アクリル酸あるいはその活性誘導体との縮合反 応が用いられる。 一般には、 (メタ) アクリル酸エステル、 (メタ) アルリル酸ク 口リド、 (メ夕) アクリル酸無水物等の活性誘導体、 特に好ましくは (メタ) ァ クリル酸クロリドが用いられる。 反応は、 不活性溶媒中で冷却下、 常温あるいは 加熱下で行われる。 不活性溶媒としては、 へキサン、 ヘプタン、 シクロペンタン、 シクロへキサン、 メチルシクロへキサン等の鎖状、 環状飽和炭化水素類;ベンゼ ン、 トルエン、 キシレン等の芳香族炭化水素類;ェチルエーテル、 メチルー t e r t一ブチルエーテル、 エチレングリコールジェチルエーテル、 ジエチレングリ コールジェチルエーテル、 テトラヒドロフラン、 ジォキサン、 1, 3—ジォキソ ラン、 ァニソール等の鎖状、 環状、 芳香族エーテル類;酢酸メチル、 酢酸ェチル、 酢酸イソブチル等のエステル類;アセトン、 メチルエヂルケトン、 メチルイソブ チルケトン、 シクロへキサノン等の鎖状、 環状ケトン類;ジメチルホルムアミド、 ジメチルァセトアミド、 N—メチルピロリドン、 ジメチルスルホキシド等の高沸 点極性溶媒; ピリジン、 キノリン等のピリジン類;塩化メチレン、 クロ口ホルム 等のハロゲン化炭化水素類;ァセトニトリル、 ニトロメタン等の含窒素溶媒類等 が挙げられる。 また、 (メタ) アクリル酸クロリド、 (メタ) アクリル酸無水物を 用いる場合は、 トリメチルァミン、 トリェチルァミン、 トリ— n—プチルァミン、 ピリジン等の三級アミン等の酸受容剤を併用することが好ましい。 反応は、 使用 する活性誘導体の種類、 溶媒に大きく依存するが、 一般に、 0〜150 :、 好ま しくは 10〜 100 :の範囲で行われる。 反応時間は、 1時間〜 50時間、 好ま しくは 2時間〜 25時間の範囲が用いられる。 また、 本発明においては、 (メタ) アクリル化フエノール—アルデヒド縮合体 は、 フエノールと (メタ) アクリル化フエノールとをアルデヒド類と加熱反応す ることにより得ることもできる。 (メタ) アクリル化フエノールはフエノールを 先に説明した (メタ) アクリル化する方法にて合成でき、 (メタ) アクリル化フ エノールーアルデヒド縮合体は、 先に説明したフエノール—アルデヒド縮合体の 合成条件方法と同様の方法で合成することができる。
上記から明らかなとおり、 本発明において用いられる付加型安定剤は多官能性 であるときすなわち分子内に (メタ) ァクリロイル基を少なくとも 2個持つとき、 重合体の開裂末端を安定化する作用とともに、 重合体の複数の開裂末端同士を結 合して安定化する鎖伸長剤としての役割も有している。 それ故、 本発明において 用いられる付加型安定剤は、 もっぱら重合体の開裂末端を安定化する作用を持つ、 上記式 (1 ) において p = 0である場合の (メタ) アクリル化化合物と、 鎖伸長 剤としての作用も持つ上記式 (1 ) において pが 1〜1 5である場合の (メタ) ァクリル化化合物とを併用して、 それぞれの作用を効果的に発揮させることがで きる。
すなわち、 本発明では、 付加型安定剤 (B ) として上記式 (1 ) において pが 0である場合の化合物と上記式 (1 ) において pが 1〜 1 3である場合の化合物 との組合せが有利に用いられる。
本発明において付加型安定剤 (B) は、 熱可塑性重合体 (A) に対して、 0 . 0 1〜5重量%、 好ましくは 0 . 0 5〜3重量%、 さらに好ましくは 0 . 1〜2 重量%の範囲で用いられる。 添加 ·配合量がそれ未満では効果が不十分であり、 それを超えると、 効果が飽和に達するばかりでなく、 熱分解安定化に寄与しなか つた該付加型安定剤自体の熱分解物の凝集が起こり、 好ましくない。
本発明では、 鎖伸長剤として脂肪族もしくは脂環族ポリオールの多官能 (メ 夕) ァクリレート化合物および多官能 (メタ) ァリル化合物をさらに用いること ができる。 これらの鎖伸長剤は 1種または 2種以上一緒に用いられる。
かかる多官能 (メタ) ァクリレート化合物は、 好ましくは 1分子中に (メタ) ァクリロイルォキシ基を 2〜 1 0個含んでいる。 具体的には、 1, 2—エチレン グリコ一ルジ (メタ) ァクリレート、 1, 6—へキサンジオールジ (メタ) ァク リレート、 ネオペンチレングリコールジ (メタ) ァクリレート、 ジエチレングリ コールジ (メタ) ァクリレート、 ヒドロキシピバリン酸ネオペンチルグリコール エステルジ (メタ) ァクリレート、 ビスフエノールー Aエチレンォキシド付加体 のジ (メタ) ァクリレート、 トリシクロデカンジ (メタ) ァクリレート等の脂肪 族または脂環族の 2官能 (メタ) ァクリレート化合物;グリセリントリ (メタ) ァクリレート、 トリメチロールプロパントリ (メタ) ァクリレート、 ペン夕エリ スリトールテトラ (メタ) ァクリレート、 ジペン夕エリスリトール一ペン夕 ·へ キサ (メタ) ァクリレート等の 3官能以上の (メタ) ァクリレート化合物が挙げ られる。 一般的に官能基数が大きくなると開裂鎖との付加反応の機会が増え、 そ れと共に付加体の分子量は高くなる。 言い換えれば、 分子量低下抑制効果が増す。 しかし、 多官能 (メタ) ァクリレート化合物自体の分子量も高くなるために、 添 加量も増やさないと効果が薄れる。 また、 アルコール成分の炭素数の割合が増え ると疎水性が増す。 言い換えれば、 熱可塑性重合体 (A) との相溶性が高くなる ので好ましい。 これらの多官能 (メタ) ァクリレート化合物は分子量低下抑制効 果、 蒸気圧、 環状重合体との相溶性を勘案して適宜選択すればよい。 これらの多 官能 (メタ) ァクリレート化合物は単独で用いてもよいし、 2種以上併用しても よい。
また、 多官能 (メタ) ァリル化合 としては、 分子内に複数のァリルエステル 基、 ァリルエーテル基あるいはァリルカーボネート基を含む化合物が好適に用い られる。 具体的には、 ジァリルフタレート、 ジァリルイソフタレート、 ジァリル テレフ夕レート、 トリァリルトリメリテート、 テトラァリルピロメリテート、 ジ ァリルフタレート— i3—ポリマー、 ジェチレングリコ一ルジァリルカ一ボネート、 シァヌル酸トリアリルエステル等が挙げられる。
本発明において鎖伸長剤として用いられる上記多官能 (メタ) ァクリレート化 合物および Zまたは多官能 (メタ) ァリル化合物は、 熱可塑性重合体 (A) 1 0 0重量部に対して 0 . 0 5〜5重量部、 好ましくは 0 . 1〜3重量部、 さらに好 ましくは 0 . 2〜 2重量部の範囲で用いられる。 本発明の熱可塑性樹脂組成物は、 脂環式基を含む熱可塑性重合体 (A)、 付加 型安定剤 (B) および場合により多官能 (メタ) ァクリレート化合物および Zま たは多官能 (メタ) ァリル化合物を混合することにより製造される。
重合体 (A) に対する付加型安定剤 (B) 等の添加時期は特には限定はないが、 重合触媒あるいは水素化触媒除去後に得られた熱可塑性重合体 (B) 溶液中に加 えるのが作業性の上でも効果の上でも好ましい。 この過程で加えると、 重合体と の均一混合が容易であり、 かつその後の溶媒留去工程 (フラッシング工程)、 ぺ レツト作製工程、 成形工程等の高温工程における熱分解を抑制出来て好ましい。 本発明の熱可塑性樹脂組成物は、 クレ一ズの発生が少ない特長を有する。
本発明においては、 熱可塑性重合体中の異物の含有量が少ないことが好ましく、 粒径 0. 5ミクロン以上の異物の含有量が 20, 000個 以下、 より好まし くは 10, 000個 8以下、 さらに好ましくは 5, 000個 8以下でぁる。 ここで、 異物とは、 例えば原料に含まれる不純物、 製造工程で混入した不純物、 重合体のゲル化物、 重合触媒、 水添触媒の残留物などが挙げられる。 粒径 0. 5 ミクロン以上の異物の含有量が 20, 000個 gより多いと、 該重合体を用い て高密度記録対応の光ディスク基板を成形した場合、 ビットエラ一レートが大き くなりディスクの記録再生特性が低下してしまい好ましくない。
これらの異物は、 各製造工程におけるフィルターによる濾過、 チップ化工程を クリーンルーム内で行うなどの方法にて取り除くことができる。
本発明の熱可塑性樹脂組成物は、 例えば金型を用いて、 樹脂温度 330で、 金 型温度 120でで直径 12 cm、 厚さ 1. 2 mmの基板に射出圧縮成形し、 この 基板を温度 80で、 相対湿度 85%の雰囲気に 500時間暴露したとき、 該基板 の表面に 1 cm2当り 10個以下のクレーズ (c r a z e) しか観察されない。 かくして得られた熱可塑性樹脂組成物からなる成形材料は、 射出成形、 押出成 形等の溶融成形法、 あるいは、 溶液流延、 湿式製膜等の溶液成形法等、 公知の成 形法により種々の成形体例えば繊維、 板体等に成形できる。 特に射出成形は光デ イスク基板の製造に好適に用いることができる。 かかる光ディスク基板の成形で は、 樹脂温度 270〜 370° (:、 好ましくは 280〜 35 Ot:の範囲が用いられ る。 樹脂温度がそれを超えると過大の熱分解が起こり好ましくない。 またそれ未 満では、 溶融流動性が低くなり好ましくない。 また、 金型温度としては、 6 0〜 1 4 0 °C、 好ましくは 7 0〜 1 3 0 の範囲が用いられる。 金型温度がそれを超 えると、 成形物の変形が生じて好ましくない。 またそれ未満では、 転写性が悪く なり好ましくない。
かくして、 本発明によれば、 温度 8 0 :、 相対湿度 8 5 %の雰囲気に 5 0 0時 間暴露したとき、 基板の表面に 1 c m2当り 1 0個以下のクレーズしか観察され ずそして脂環式基を含む熱可塑性樹脂から主としてなる光ディスク基板、 例えば 本発明の熱可塑性樹脂組成物からなる光ディスク基板が提供される。
通常、 光ディスクは、 基板上に反射層、 記録層等をスパッ夕等の方法により順 次形成した後、 紫外線硬化樹脂を用いて保護層を形成して使用される。 さらに、
D VD等に使用される 0 , 6 mm厚の光ディスクは、 さらに紫外線硬化樹脂によ り 2枚を貼り合せて使用される。 硬化の際に紫外線の照射が行われるが、 基板に 使用した安定剤によっては、 この紫外線照射により着色して光ディスク基板とし ての特性を損なう恐れのあるものがある。 特に近年開発の進んでいる 4 0 0 n m 近傍の短波長レーザーを用いて情報の書き込み、 読み出しを行う場合には特に問 題になるものと考えられる。
本発明の樹脂組成物からなる光ディスク基板は、 こうした紫外線硬化樹脂の硬 化時に照射される紫外線に対しても着色が少ないため、 4 0 0 n m近傍の短波長 のレーザーを使用する光ディスク基板としても好ましく使用することができる。 本発明によれば、 上記のとおり、 溶融成形等の加熱時に分子量低下が抑制され た脂環式基を有する重合体の成形材料が得られる。 その結果、 透明性、 耐熱性に 優れ、 紫外線照射による着色が少なくかつ高温 ·高湿下での耐性 ·信頼性に優れ た成形物が得られる。
したがつて、 本発明の成形材料は高温で良好に溶融成形することが可能であり、 高温での成形が必須である C D、 C D - R OM, L D、 MO、 MD、 D VD等の 光ディスクで代表される光記録媒体の基板として有効に用いることができる。
実施例 以下に、 実施例および比較例により本発明を詳述する。 但し、 本発明はこれら によって何ら限定されるものではない。
実施例、 比較例および参考例における各種物性測定は以下の方法で行った。
1) ガラス転移温度 (Tg) : TA I n s t r ume n t社製 2920型 DS Cを使用し、 昇温速度 2 O^Zmi nで測定した。
2) 水素化率: 1 H— NMRにより定量した。 JEOL JNM— A— 400型 核磁気共鳴吸収装置を用いた。
3) 分子量:ゲルパーミエーシヨンクロマトグラフィー (昭和電工 (株) 製 GP C、 Shod e x Sy s t em- 11) により、 THFを溶媒として測定し、 ポリスチレン換算の分子量を求めた。
4) 質量分析 (FD— MASS): 日立製 M— 80B型質量分析器を用いた。
5) 還元粘度:濃度 0. 5 gZdLのトルエン溶液の、 30でにおける還元粘度 7? s p/c (dL/g) を測定した。
6) 熱分解 GC— MS :熱分解生成物の分析は、 熱分解 GC— MSにより行った。 熱分解は、 JHS— 100型スペースガスサンプラーを用いて 30 O x 10 分、 窒素雰囲気で行った。 分解ガスは— 40でに冷却して Te n axに吸収させ、 しかる後脱着させて、 横河電機タイプ GCD 1800 OA型ガスクロマトグラフ を用いて分離した。 カラムには DB— 1701を用いた。 得られたフラクション を G CD横河電機 180 OA型質量分析器を用いて帰属した。
7) 樹脂の熱安定性評価:高化式フローテス夕一を用いた。 340 に保温した 高化式フローテスターのノズルに、 樹脂を入れて 5分間保ち、 しかる後樹脂を押 出して得た溶融樹脂の還元粘度 7? S PZCを測定した。 そして、 元の樹脂の還元 粘度と比較した。
8) 安定剤の揮発性評価:理学電機、 R i g aku p l u s TG8120を 用いて、 昇温時間に対する重量減少曲線を求めた。 測定は昇温速度 8 Ot:/mi n、 窒素気流下で行った。 そして、 急激な重量減少が起こる前の曲線に対して引 いた接線と最大勾配領域の曲線に対して引いた接線の交点に対応する温度を蒸発 開始温度と定義した。 9) 重合体中の残留金属濃度: I CP発光分光法により定量した。
10) 全光線透過率: (株) 島津製作所紫外可視分光器 (UV_240) を使用 した。
1 1) ヘイズ値: 日本電色工業 (株) 製自動デジタルヘイズメーター UDH— 2 0Dを使用した。
12) 吸水率: ASTM D— 570に従い測定を行った。
13) 複屈折率:オーク製作所製 ADR 200 Bを用いてリタ一デーシヨンを測 定した。
14) 赤外吸収スぺクトル: B I O— RAD社製の FTS— 65 A型 FT— I R ZS PECTRA— TECH社製 I R— P LAN顕微装置を用いた。
15) 顕微ラマンスぺクトル: J〇B I N— YVON社製 T— 64000顕微 R AMAN装置を用い、 光源にはアルゴンイオンレーザー (514. 5 nm) を用 いた。
16) UV照射: FUS I ON SYSTEMS製 P 150型紫外線硬化コー 夕一を使用して 6 OmWZ cm2にて 5秒間照射を行った。 400 nmでの透過 率は日立 U— 3200 S PECTRO PHOTOMETERを使用して測定し た。
実施例 1
攪拌翼付き容量 10Lのステンレス製オートクレープの内部を十分に乾燥し、 かつ、 窒素置換した後、 ポリスチレン 750 g ( w=2. 8X 105)、 N i ノシリカ 'アルミナ触媒 118 g、 シクロへキサン 2, 200 gおよびメチルー t e r t—プチルェ一テル 1, 500 gを仕込んだ。 続いて、 該反応容器を十分 に水素置換した後、 l O O kg fZcm2 (約 9. 8 P a) の水素圧をかけて、 攪拌しながら 18 Ot:で 6時間水素化反応を行った。 反応終了後、 得られた懸濁 液 (スラリー) を孔径 0. 1 //mのメンブランフィルター (住友電工 (株) 製 「フルォロポア」) を用いて加圧濾過を行ったところ、 無色透明な溶液が得られ た。 この濾液に 「スミライザ一 GS」 (住友化学工業 (株) 製) [式 ( ) に ぉぃて1^ = 1 2=1, 1ージメチルプロピル基、 R 3 =メチル基、 R4 =水素原 子] 3. 1 (水素化スチレン重合体に対して 0. 4重量%) を添加し、 ひき続 き、 溶媒を留去して水素化スチレン重合体を得た。
この重合体の1 H— NMRにより定量した水素化率は、 99. 3%であった。 また、 濃度 0. 5 gZdLのトルエン溶液を用いて、 30でで求めた還元粘度 (rj s pZC) は 0. 47 dLZgであった。 さらに、 I CP発光分析により樹 脂中の残留金属は、 11が0. 18 ppm、 八 1が0. 28 ppm、 3 1が0.
23 p pmといずれも 1 p pm以下であることがわかった。 また、 DSCにより 測定したガラス転移温度 (Tg) は 149t:であった。
次に、 該水素化スチレン重合体を粉砕して成形用粒状物を作製した。 そして、 得られた粒状物を 5バッチ分集めて、 DVD用のスタンパーを用いて、 樹脂温度
330で、 金型温度 120 の条件で、 無色透明なディスク基板 (直径 12 cm、 厚さ 0. 6mm) を射出成形した。 このディスク基板の吸水率は 0. 01重量% 以下で吸水率は極めて低く、 全透過率は 91%、 ヘイズ値は 1. 2%であり、 極 めて高い透明性を示した。 そして、 得られたディスク基板内周部の複屈折率は 5 nmであり、 極めて低い複屈折率、 言い換えれば高い光学等方性を示した。
該ディスク基板の 400 nmでの透過率は、 90%であった。 このディスク基 板に対して、 6 OmWZ cm2にて 2秒間紫外線照射を行った後、 400 nmで の透過率を再度測定したところ、 85%であった。
紫外線照射前の該ディスク基板を温度 8 O :, 相対湿度 85%の雰囲気で 50 0時間促進劣化を実施した後、 顕微鏡観測によりクレーズ斑点数を数えた。 その 結果、 基板内のクレーズ斑点の数は 1 cm2内に 1個であった。
比較例 1
実施例 1で得られた濾過後の無色透明溶液に代表的なヒンダ一ドフエノールで ある 「ィルガノックス (I r ganox) 1010」 (チバ ·スぺシャリテ ィ ·ケミカルズ (株) 製) および代表的な酸化防止剤である 「ィルガフォス (I r ga f o s) 168」 (チバ 'スぺシャリティ ·ケミカルズ (株)製) をそれぞ れ、 3. l gおよび 3. 1 g (水素化スチレン重合体に対して 0. 4重量%) 添 加し、 ひき続き、 溶媒を留去して水素化スチレン重合体を得た。 — NMRに より定量した水素化率は、 99. 3%であった。 濃度 0. 5 gZdLのトルエン 溶液を用いて、 30°Cで求めた還元粘度 (7) s pZC) は 0. 47 dL/gであ つた。
該水素化スチレン重合体を粉砕して成形用粒状物を作製した。 そして、 得られ た粒状物を 3バッチ分集めて、 DVD用のスタンパーを用いて、 樹脂温度 33 0 、 金型温度 120 にて、 無色透明なディスク基板 (直径 12 cm、 厚さ 0. 6mm) を射出成形した。
該ディスク基板を温度 8 O , 相対湿度 85%の雰囲気で 500時間促進劣化 を実施した後、 顕微鏡観測によりクレーズ斑点数を数えた。 その結果、 クレーズ 斑点の数は 1 cm2内に 100個以上であった。
参考例 1
比較例 1で得た水素化スチレン樹脂をシクロへキサンに溶解して 20 %溶液を 調製した。 この溶液は僅かに白濁していた。 この溶液を孔径 0. 45 xmのメン ブランフィルターを用いて濾過し、 沈殿物 (P 1) と濾液 (F 1) とに分離した。 沈殿物 (P 1) を該フィル夕一上でクロ口ホルムにより抽出 '洗浄して、 濾液 (F 2) および未溶解物 (P2) に分離した。 そして、 濾液 (F 2) をプレパラ ート上に滴下して溶媒を蒸発乾固留去し、 得られた微量の固体を試料 # 1とした。 また、 未溶解物 (P 2) をメタノール洗浄して得られた微量の固体を試料 #2と した。 一方、 濾液 (F 1) から溶媒を留去して大量の試料 #3を得た。 得られた 試料 # 1、 #2および #3の赤外吸収スペクトルを測定した。 その結果を図 1に 示す。 図 1中の△印はポリスチレン由来のピークを、 〇印はカルボニル基に基づ くピークを示す。
図 1から明らかなように、 試料 # 3は水素化ポリスチレンの典型的スぺクトル を与えた。 それに対して、 試料 # 2には水素化ポリスチレンのピークに加えて、 ポリスチレン由来のピークが認められた。 すなわち、 #2には、 未水添のスチレ ン成分力含まれていることを示している。 一方、 試料 # 1には、 水素化ポリスチ レンおよび未水添のスチレン成分に基づくピークに加えてカルボニル基に基づく 強い吸収が 1, 734 cm— 1に認められた。 これは 「ィルガノックス 101 0」 分解物に由来すると考えられる。 「ィルガノックス 1010」 そのものでは なくその分解物であることは、 前者はシクロへキサンに溶解することからも明ら かである。
以上の結果から、 上記の白濁物質は未水添スチレン成分を含む重合体の分解物 と 「ィルガノックス 1010」 の分解物からなると帰結できる。
参考例 2
比較例 1で得た光ディスク基板を温度 8 Ο λ 相対湿度 85%の雰囲気で、 5 00時間促進劣化を実施した後、 顕微鏡観測を行った。 その結果、 1 /m大の核 を中心にサーベル状のクレーズが走っていることがわかった。 その大きさは、 数 mから数十 imにわたつた。 この試料について顕微ラマンスペクトル測定を行 つた。 測定は、 核を含む部分 (領域 C)、 核を避けたクレーズ部分 (領域 B) お よび核もクレーズも避けた部分 (領域 A) の三つの部分について行った。 得られ たスペクトルを図 2に示す。 図 2中の Cは核を含む直径数 mの領域 (領域 C) のスペクトル、 Bは核を避けたクレーズ部分 (領域 B) のスペクトル、 Aは核も クレーズも避けた部分 (領域 A) のスペクトルである。 また、 Dは Cと Aとの差 スぺクトルである。 図中の〇印は芳香族環に基づく吸収を示す。
図 2から明らかなように、 領域 Aは典型的な水素化スチレンのスぺクトルを示 した。 それ以外に 1, 600 cm— 1に非常に弱い芳香族由来のピークが認めら れた。 領域 Bは領域 Aとほぼ同じスペクトルを示した。 それに対して、 領域 Cに おいては 1, 600 cm— 1に領域 Bおよび領域 Aに認められた芳香族由来のか なり強いピークが認められた。 これは、 芳香族由来物質が領域 Cに濃縮されてい ることを示す。 このピークをさらに明確にするために、 領域 Cと領域 Aとの差ス ベクトル (D) を求めた。 このスペクトルと 「ィルガノックス 1010 (E)」、 「ィルガフォス 168 (F)」、 「ィルガフォス 168」 の加水分解物である 2, 4—ジ— t e r t—ブチルフエノール (G) およびポリスチレンの標準スぺクト ル (図 3) とを比較した。 図 3中の Eは 「ィルガノックス (I r ganox) 1 010」、 Fは 「ィルガフォス ( I r g a f o s) 168」、 Gは 2, 4—ジ一 t e r t一ブチルフエノール、 Hはポリスチレンのラマンスペクトルである。 △印 は図 2に示した差スペクトル (D) には認められない強い吸収を示す。 1, 60 0 cm— 1のピークは 「ィルガノックス 1010」、 「ィルガフォス 168」 および 2, 4—ジ— t e r t—ブチルフエノールのいずれにも認められたが、 「ィルガノックス 1010」 に認められる 600 cm— 1近傍の強いピーク、 「ィルガフォス 168」 に認められる 650 cm— 1近傍の強いピークおよび 2, 4—ジ— t e r t—ブチルフエノールに認められる 650 cm— 1近傍の強 いピークが認められない。 したがって、 差スペクトルは 「ィルガノックス 10 10」 そのものに基づくものでもないし、 また 「ィルガフォス 168」 および その分解物に基づくものでもないと帰結できる。 また、 ポリスチレンにも 1, 6 00 cm— 1近傍に二本のピークが認められるが、 そのピーク形状と差スぺクト ルの形状が異なる点、 および差スぺクトルにはポリスチレンスぺクトルに認めら れる 1, 000 cm一1より僅かに低波数の強いピークが認められない点から、 ポリスチレンそのものではないと判断される。
このような結果を勘案すると、 差スぺクトルは未水素化スチレン単位を含む水 素化ポリスチレンの分解物、 「ィルガノックス 1010」 および Zまたは 「ィル ガフォス 168」 由来の分解物に対応すると帰結できる。
比較例 2
実施例 1で得られた濾過後の無色透明溶液に安定剤を加えずに、 ひき続き溶媒 を留去して水素化スチレン重合体を得た。 — NMRにより定量した水素化率 は、 99. 3%以上であった。 濃度 0. 5 gZdLのトルエン溶液を用いて、 3 0 で求めた還元粘度 ( s pZC) は 0. 44dLZgであった。
該水素化スチレン重合体を粉砕して成形用粒状物を作製し、 得られた粒状物を 3バッチ分集めて、 CD用のスタンパ一を用いてディスク基板成形を行った。 樹 脂温度 330 、 金型温度 12 O :を用いて射出成形を行ったが、 ディスク基板 の歪みが大きく、 殆どにおいて割れが生じた。
比較例 3
実施例 1で得られた濾過後の無色透明溶液に 「アデカスタブ AO 330」 (旭 電化 (株)製) を 3. 1 g (水素化スチレン重合体に対して 0. 4重量%) 添加し、 ひき続き溶媒を留去して水素化スチレン重合体を得た。 — NMRにより定量 した水素化率は、 99. 3%であった。 濃度 0. 5 gZdLのトルエン溶液を用 いて、 30^で求めた還元粘度 (7? s pZC) は 0. A S dL gであった。 該水素化スチレン重合体を粉砕して成形用粒状物を作製し、 得られた粒状物を 3バッチ分集めて、 CD用のスタンパーを用いてディスク基板成形を行った。 榭 脂温度 330 :、 金型温度 12 Ot:を用いて、 無色透明なディスク基板を射出成 形した。 該ディスク基板を温度 80 、 相対湿度 85%の雰囲気で 500時間促 進劣化を実施した後、 顕微鏡観測によりクレーズ斑点数を数えた。 その結果、 ク レーズ斑点の数は 1 cm2内に 43個であった。
参考例 3
実施例 1で得られた濾過後の無色透明溶液を二つサンプリングした。 その一つ はそのまま 260 以下の温度を保ち、 4時間かけて減圧条件でフラッシングし た (試料 X)。 もう一つには、 「アデカスタブ AO 330」 (旭電化 (株)製) をポ リマーに対して 0. 4%加え試料 Xと同様の条件でフラッシングした (試料 Y)。. 得られた試料 Xと試料 Υの 20%シクロへキサン溶液を作製した。 試料 Xは僅か に白濁が認められた。 それに対して試料 Υは著しく白濁していた。 定量のために それらの UV— V I Sスペクトルを測定した。 その結果を図 4に示す。 図 4から 明らかなように、 試料 Υの可視域での透過率は試料 Xのそれより遥かに低い。 す なわち、 長時間、 高温でフラッシングを行うと白濁が生じ、 その白濁の程度は 「アデカスタブ AO 330」 (旭電化 (株)製) を加えた方が著しいことがわかつ た。
実施例 2
実施例 1で得られた濾過後の無色透明溶液に 「スミライザ一 GM」 (住友化学 工業 (株)製) [上記式 (1 ') において、 R1- t e r t—ブチル基、 R2 =メチ ル基、 R3 = R4=水素原子] 3. 1 g (水素化スチレン重合体に対して 0. 4 重量%) を添加し、 ひき続き溶媒を留去して水素化スチレン重合体を得た。 この 重合体の1 H— NMRにより定量した水素化率は 99. 3%であった。 また、 濃 度 0. 5 gZdLのトルエン溶液を用いて、 30 で求めた還元粘度 (7? s pZ C) は 0. 46 dLZgであった。
該水素化スチレン重合体を粉砕して成形用粒状物を作製し、 得られた粒状物を 5バッチ分集めて、 CD用のスタンパーを用いて、 樹脂温度 330 :、 金型温度 120 にて、 無色透明なディスク基板を射出成形した。 このディスク基板の吸 水率は 0. 01%以下で吸水率は極めて低く、 全透過率は 91%、 ヘイズ値は 1. 3%であり、 極めて高い透明性を示した。 また、 得られたディスク基板内周部の 複屈折率は 8 nmであり、 極めて低い複屈折率、 言い換えれば高い光学等方性を 示した。
該ディスク基板を、 温度 80 、 相対湿度 85%の雰囲気で 500時間促進劣 化を実施した後、 顕微鏡観測によりクレーズ斑点数を数えた。 その結果、 基板内 のクレーズ斑点の数は 1 cm2内に 4個であった。
実施例 3
攪拌翼付き容量 10 Lのステンレス製オートクレープの内部を十分に乾燥し、 窒素置換した後、 シクロへキサン 3, 360 g、 スチレン 288 gを仕込んだ。 続いて s e c—ブチルリチウム 4. Ommo 1に相当する量を濃度 1. 0Mのシ クロへキサン溶液の形で加えて重合を開始させた。 温度 45°Cで 2時間攪拌して スチレンを完全に反応させた後、 イソプレン 65 gを加えてさらに 50 で 2時 間反応させた。 次いで、 スチレン 280 gを添加し、 温度 50 で 2時間反応を 続けた。 この共重合体溶液 1, 950 gに、 N i シリカ 'アルミナ触媒 (N i 担持率 65重量%) 50 gおよびメチル— t e r t—ブチルエーテル 530 g、 シクロへキサン 1, 500 gを加え、 水素圧 100 kg/cm2、 温度 180で で 6時間水素化反応を行った。 常温に戻して窒素置換を十分行った後、 溶液をォ —トクレーブより取り出して孔径 0. 1 Atmのメンブランフィルター (住友電工 (株) 製 「フルォロポア」) を用いて加圧濾過を行ったところ、 無色透明な溶液 が得られた。
この溶液に安定剤として 「スミライザ一 GS」 (住友化学工業 (株)製) 1. 2 g (水素化スチレン一イソプレン共重合体に対して 0. 4重量%) を添加してか ら、 減圧濃縮、 フラッシングを行い溶媒を留去して塊状の無色透明な線状水素化 スチレン一イソプレン—スチレン三元共重合体を得た。 かかる三元共重合体の濃 度 0. 5 gZdLのトルエン溶液中、 30でで測定した還元粘度 (77 s p/C) は 0. 47 dLZgであった。 また、 — NMR測定で水素化率を調べたとこ ろ 99. 3%であった。 また、 I CP発光分析により樹脂中の残留金属は、 N i が 0. 25 ppm、 A 1が 0. 15 ppm、 5 1カ 0. 13 ppmといずれも 1 p pm以下であることがわかった。 DSCにより測定したガラス転移温度 (T g) は 147Tであった。
かくして得られた粒状物を 5バッチ分集め、 CD用のスタンパーを用いて、 樹 脂温度 300で、 金型温度 100での条件で、 無色透明なディスク基板を射出成 形した。 このディスク基板の吸水率は 0. 01 %以下で吸水率は極めて低く、 全 透過率は 91%、 ヘイズ値は 1. 3%であり極めて高い透明性を示した。 また、 得られたディスク基板内周部の複屈折率は 8 nmであり、 極めて低い複屈折率、 言い換えれば高い光学等方性を示した。
該ディスク基板を温度 80t:、 相対湿度 85%の雰囲気で 500時間促進劣化 を実施した後、 顕微鏡観測によりクレーズ斑点数を数えた。 その結果、 基板内の クレーズ斑点の数は 1 cm2内に 2個であった。
実施例 4
攪拌翼付き容量 10 Lのステンレス製ォ一トクレーブの内部を十分に乾燥し、 窒素置換した後、 シクロへキサン 2, 400 g、 メチルー t e r t—ブチルエー テル 1, 600 g、 スチレン 720 gを仕込んだ。 続いて n—ブチルリチウム 1 6. 2 mm o 1に相当する量を濃度 1. 57 Mのシクロへキサン溶液の形で加え て重合を開始させた。 温度 30^で 1. 5時間攪拌してスチレンを完全に反応さ せた後、 イソプレン 80 gを加えてさらに 30 で 1. 5時間反応させた。 次い で、 テトラメトキシシラン 0. 54 gに相当する量を濃度 3. 0重量%のシクロ へキサン溶液の形で添加し、 温度を 60でに昇温してカップリング反応を実施し た。 カップリング反応を開始してから 3時間後にエタノール 1 OmLを加えた。 この共重合体溶液に、 N iZシリカ ·アルミナ触媒 (N i担持率 65重量%) 1 40 gを加え、 水素圧 100 k gZcm2、 温度 180 で 6時間水素化反応を 行った。 常温に戻し窒素置換を十分行った後、 溶液をォ一トクレーブより取り出 して孔径 0. 1ミクロンのメンブランフィルター (住友電工 (株)製 「フルォロポ ァ」) を用いて加圧濾過を行ったところ、 無色透明な溶液が得られた。 この溶液 に安定剤として 「スミライザ一 GS」 (住友化学工業 (株)製) 3. 0 g (水素化 スチレン一イソプレン共重合体に対して 0. 4重量%) を添加してから、 減圧濃 縮、 フラッシングを行い溶媒を留去して塊状の無色透明な水素化スチレンーイソ プレン共重合体を得た。
かかる重合体の濃度 0. 5 gZdLのトルエン溶液中、 3 O :で測定した還元 粘度 (T? S PZC) は 0. 48dL/gであった。 また、 GPC測定を行ったと ころ、 4分岐鎖に相当する分が 83 %、 1本鎖即ちカップリングされていない分 岐鎖 1本に相当する数平均分子量 48, 000の成分が 17%の混合物であるこ とがわかった。 ェ1^一 NMR測定で水素化率を調べたところ 99. 3%であった。 さらに I CP発光分析により樹脂中の残留金属は、 ^ 1が0. 23 ppm、 A 1 が 0. 22 ppm、 5 1が0. 15 p pmといずれも 1 p pm以下であることが わかった。 温度 300でで測定した溶融粘度は、 シェア一レート 102s—1で 2 400ボイズ、 103 s— 1で 850ボイズであった。 DSCにより測定したガラ ス転移温度 (Tg) は 148でであった。
かくして得られた粒状物を 5バッチ分集めて、 CD用のスタンパーを用いて、 樹脂温度 300°C、 金型温度 100 の条件で、 無色透明なディスク基板を射出 成形した。 このディスク基板の吸水率は 0. 01重量%以下で吸水率は極めて低 く、 全透過率は 91%であり、 ヘイズ値は 1. 6%であり極めて高い透明性を示 した。 また、 得られたディスク基板内周部の複屈折率は 4 nmであり、 極めて低 ぃ複屈折率、 言い換えれば高い光学等方性を示した。
該ディスク基板を温度 80°C:、 相対湿度 85%の雰囲気で 500時間促進劣化 を実施した後、 顕微鏡観測によりクレーズ斑点数を数えた。 その結果、 基板内の クレーズ斑点の数は 1 cm2内に 0個であった。
比較例 4
実施例 1において、 「スミライザ一 GS」 3. l gの代わりに、 I RGANO X HP2225FF (HP 136 15%、 I RGANOX 1010 42. 5%、 I RGAFOS 168 42. 5%) 3. 1 gを使用した以外は、 実施例 1と同様にして DVDディスク基板の成形を行った。
このディスク基板の 400 nmでの透過率は 90%であった。 このディスク基 板に対して、 6 OmWZ cm2にて 2秒間紫外線照射を行った後、 400 nmで の透過率を再度測定したところ、 73%であり、 着色が顕著であった。
実施例 5
攪拌翼付き容量 10Lのステンレス製オートクレープの内部を十分に乾燥し、 かつ窒素置換した後、 ポリスチレン 750 g (Mw=2. 8X 105)、 N i / シリカ 'アルミナ触媒 118 g、 シクロへキサン 2, 200 gおよびメチル— t e r t一ブチルエーテル 1, 500 gを仕込んだ。 続いて、 該反応容器を十分に 水素置換した後、 l O Okg fZcm2 (9. 8 MP a) の水素圧をかけて、 攪 拌しながら 180t:、 6時間水素化反応を行った。 反応終了後、 得られた懸濁液 (スラリー) を孔径 0. 1 xmのメンブランフィルタ一 (住友電工 (株) 製 「フ ルォロポア」) を用いて加圧濾過を行ったところ、 無色透明な水素化スチレン重 合体溶液が得られた。
この濾液に安定剤として 「スミライザ一 GS」 を水素化スチレン重合体に対 して 0. 4重量%および鎖伸長剤としてトリメチロールプロパントリァクリレー トを水素化スチレン重合体に対して 0. 5重量%添加し、 ひき続き、 溶媒を 20 0 以下で減圧留去 (フラッシング) して水素化スチレン重合体組成物 (樹脂) を得た。
この重合体の1 H— NMRにより定量した水素化率は 99. 3%であった。 濃 度 0. 5 gZdLのトルエン溶液を用いて、 30 で求めた還元粘度 7? s pZC は 0. 48dL/gであった。 また、 I CP発光分析により、 樹脂中の残留金属 は、 N iが 0. 18 1)111、 八 1が0. 2813 111、 3 1が0. 23 p pmとい ずれも 1 ppm以下であることがわかった。 DSCにより測定したガラス転移温 度は 149 であった。
得られた水素化スチレン重合体組成物 (樹脂) につレて高化式フローテスター による熱安定性評価を行った。 340 で 5分間保った樹脂の溶融粘度は 430 ボイズであった。 また、 押出された樹脂の還元粘度は、 0. 39dLZgであり、 粘度低下は小さかった。
該水素化スチレン重合体組成物 (樹脂) を粉砕して成形用粒状物を作製した。 得られた粒状物を、 CD用のスタンパーを用い、 樹脂温度 330で、 金型温度 1 20°Cで、 無色透明なディスク基板を射出成形した。 得られたディスク基板の、 濃度 0. 5 gZdLのトルエン溶液を用いて 30 で求めた還元粘度 7? s p/C は 0. 43dLZgであり、 粘度低下は小さかった。 また、 ガラス転移温度は 1 49でであり、 分子量低下に伴うガラス転移温度の低下は認められなかった。 こ のディスク基板の吸水率は 0. 01%以下であり、 吸水率は極めて低く、 全透過 率は 91%、 ヘイズ値は 1. 1%であり、 極めて高い透明性を示した。 また、 得 られたディスク基板内周部の複屈折率は 5 nmであり、 極めて低い複屈折率、 言 い換えれば高い光学等方性を示した。
該ディスク基板を温度 8 O , 相対湿度 85%の雰囲気で 500時間促進劣化 を実施した後、 顕微鏡観測によりクレーズ斑点数を数えた。 その結果、 基板内の クレーズ斑点の数は 1 cm2内に 1個であった。
比較例 5
実施例 5で得られた濾過後の無色透明溶液に安定剤を加えずに、 ひき続き溶媒 を 200 以下で減圧留去して水素化スチレン重合体を得た。 濃度 0. SgZd Lのトルエン溶液を用いて 3 Ot:で求めた還元粘度 7? s pZCは 0. 46dLZ gであった。 実施例 5における対応する水素化スチレン重合体の還元粘度 0. 4 8 dL/gに比べ還元粘度が低い理由は、 フラッシング工程における分子量低下 に基づくものと考えられる。
該水素化スチレン重合体について高化式フローテスターによる熱安定性評価を 行った。 340 で 5分間保った榭脂の溶融粘度は 180ボイズであり極めて低 かった。 また、 押出された樹脂の還元粘度は、 0. 22 dLZgであり極めて低 かった。 すなわち、 熱安定性評価中に熱分解による大きな分子量低下が認められ た。 該水素^スチレン重合体を粉砕して成形用粒状物を作製した。 得られた粒状物 を、 CD用のスタンパーを用いてディスク基板に成形した。 実施例 5と同様の樹 脂温度 330で、 金型温度 120でで射出成形を行ったが、 ディスク基板の歪み が大きく、 ほとんどにおいて内周部に割れが生じた。 得られたディスク基板成形 物の 30°Cで求めた還元粘度 7? s pZCは 0. 29 dLZgであった。 すなわち、 ディスク基板の歪みおよび割れは、 成形過程で大きな分子量低下が起こったため と考えられる。
比較例 6
実施例 5で得られた濾過後の無色透明溶液に、 代表的なヒンダードフエノ一ル である 「ィルガノックス 1010」 を水素化スチレン重合体に対して 0. 4重 量%添加し、 ひき続き溶媒を 200 以下で減圧留去して水素化スチレン重合体 を得た。 濃度 0. 5 gノ dLのトルエン溶液を用いて、 30でで求めた還元粘度 TJ S PZC^ O. 46 dL/gであった。
該水素化スチレン重合体組成物 (樹脂) について高化式フ口一テス夕一による 熱安定性評価を行つた。 340 で 5分間保つた樹脂の溶融粘度は 200ボイズ であり、 極めて低かった。 また、 押出された樹脂の還元粘度は、 0. 25 dLZ gであり、 極めて低かった。 すなわち、 熱安定性評価中に熱分解による大きな分 子量低下が認められた。
該水素化スチレン重合体組成物 (樹脂) を粉砕して成形用粒状物を作製した。 得られた粒状物を CD用のスタンパーを用い樹脂温度 330 、 金型温度 12 0 で無色透明なディスク基板を射出成形したが、 ディスク基板の歪みが大きく、 殆どにおいて内周部に割れが生じた。 樹脂温度 330 、 金型温度 120でを用 いて、 無色透明なディスク基板を成形した。 得られたディスク基板成形物の 3 0でで求めた還元粘度 7? s pZCは 0. 30 dLZgであった。 すなわち、 ディ スク基板の歪みおよび割れは、 成形過程で大きな分子量低下が起こったためと考 えられる。
比較例 Ί
実施例 5で得られた濾過後の無色透明溶液に安定剤として 「スミライザ一 G S」 を水素化スチレン重合体に対して 0. 4重量%添加し、 ひき続き 200°C以 下で溶媒を減圧留去して水素化スチレン重合体組成物を得た。 濃度 0. 5gZd Lのトルエン溶液を用いて、 30°Cで求めた重合体の還元粘度 ?7 s p/Cは 0. 47 dLZgであった。
該水素化スチレン重合体組成物 (樹脂) について高化式フローテスタ一による 熱安定性評価を行つた。 340 で 5分間保つた樹脂の溶融粘度は 380ボイズ であった。 また、 押出された樹脂の還元粘度は、 0. 35dL/gであった。
比較例 8
実施例 5で得られた濾過後の無色透明溶液に 「ィルガノックス HP 2225 F F」 を水素化スチレン重合体に対して 0. 4重量%添加し、 ひき続き 200T:以 下で溶媒を減圧留去して水素化スチレン重合体を得た。 濃度 0. 5gZdLの卜 ルェン溶液を用いて、 30 で求めた還元粘度 77 s pZCは 0. 47dL/gで めった。
該水素化スチレン重合体組成物 (樹脂) について高化式フローテスタ一による 熱安定性評価を行つた。 340 で 5分間保つた樹脂の溶融粘度は 360ボイズ であった。 また、 押出された樹脂の還元粘度は、 0. 35 dLZgであった。
実施例 6
実施例 5で得られた濾過後の無色透明溶液に安定剤として 「スミライザ一 G S」 を水素化スチレン重合体に対して 0. 4重量%および鎖伸長剤としてトリメ チロールプロパントリァクリレートを水素化スチレン重合体に対して 3重量%添 加し、 ひき続き、 溶媒を 200で以下で減圧留去 (フラッシング) して水素化ス チレン重合体組成物 (樹脂) を得た。 濃度 0. 5 gZdLのトルエン溶液を用い て、 30 で求めた重合体の還元粘度 s pZCは 0. 48 dLZgであった。 DSCにより測定したガラス転移温度は 149 :であった。
得られた樹脂について高化式フローテス夕一による熱安定性評価を行った。 3 40でで 5分間保った樹脂の溶融粘度は 520ボイズであった。 また、 押出され た樹脂の還元粘度は、 0. 41 dLZgであり、 粘度低下は小さかった。
該水素化スチレン重合体組成物 (樹脂) を粉砕して成形用粒状物を作製した。 得られた粒状物を、 CD用のスタンパーを用いてディスク基板の射出成形を行つ た。 樹脂温度 330で、 金型温度 12 を用いて、 無色透明なディスク基板を 成形した。 得られたディスク基板の濃度 0. 5 g/dLのトルエン溶液を用いて、 30 で求めた還元粘度 7? s pZCは 0. 44dL/gであり、 粘度低下は小さ かった。 また、 ガラス転移温度は 149 であり、 分子量低下に伴うガラス転移 温度の低下は認められなかった。 このディスク基板の吸水率は 0. 01%以下で あり、 吸水率は極めて低く、 全透過率は 91%、 ヘイズ値は 1. 3%であり、 極 めて高い透明性を示した。 また、 得られたディスク基板内周部の複屈折率は 8 n mであり、 極めて低い複屈折率、 言い換えれば高い光学等方性を示した。
該ディスク基板を温度 8 O 、 相対湿度 85%の雰囲気で 500時間促進劣化 を実施した後、 顕微鏡観測によりクレーズ斑点数を数えた。 その結果、 基板内の クレーズ斑点の数は 1 cm2内に 2個であった。
実施例 7
実施例 5で得られた濾過後の無色透明溶液に安定剤として 「スミライザ一 G S」 を水素化スチレン重合体に対して 0. 4重量%および鎖伸長剤としてジペン 夕エリスリトールへキサァクリレートを水素化スチレン重合体に対して 0. 4重 量%添加し、 ひき続き、 溶媒を 200 以下で減圧留去 (フラッシング) して水 素化スチレン重合体組成物 (樹脂) を得た。 濃度 0. 5 gZdLのトルエン溶液 を用いて、 30 で求めた重合体の還元粘度 7; s pZCは 0. 48dL/gであ つた。
得られた樹脂を高化式フローテスターによる熱安定性評価を行った。 34 O で 5分間保った樹脂の溶融粘度は 520ボイズであった。 また、 押出された樹脂 の還元粘度は、 0. 40 dLZgであり、 粘度低下は小さかった。
実施例 8
攪拌翼付き容量 10Lのステンレススチール製ォ一トクレーブの内部を十分に 乾燥し、 窒素置換した後、 シクロへキサン 3, 360 g、 スチレン 288 gを仕 込んだ。 続いて s e c—ブチルリチウム 4. Ommo 1に相当する量を濃度 1. 0Mのシクロへキサン溶液の形で加えて重合を開始させた。 温度 45 で 2時間 攪拌してスチレンを完全に反応させた後、 イソプレン 65 gを加えてさらに 5 0°Cで 2時間反応させた。 次いでスチレン 280 gを添加し、 温度 501:で 2時 間反応を続けた。
この共重合体溶液 1, 950 gに、 N iZシリカ 'アルミナ触媒 (N i担持率 65重量%) 50 gおよびメチル— t e r t—ブチルエーテル 530 g加え、 水 素圧 l O O kgZcm2 (9. 8MP a) 温度 180でで 6時間水素化反応を 行った。 常温に戻して窒素置換を十分行った後、 溶液をオートクレープより取り 出して孔径 0. 1 のメンブランフィルター (住友電工 (株)製 「フルォロポ ァ」) を用いて加圧濾過を行ったところ、 無色透明な溶液が得られた。
この溶液に、 安定剤として 「スミライザ一 GS」 を水素化スチレン—イソプ レン共重合体に対して 0. 4重量%、 そして、 鎖伸長剤としてビスフエノール A およびエチレンォキシドの 1 : 2付加体のジメ夕ァクリレート (SR— 348) を水素化スチレン重合体に対して 1. 0重量%添加し、 減圧濃縮、 フラッシング を行い溶媒を留去して塊状の無色透明な線状水素化スチレンーイソプレンースチ レン三元共重合体組成物 (樹脂) を得た。
該共重合体の濃度 0. 5 gZdLのトルエン溶液中、 30 で測定した還元粘 度 7? s pZCは 0. 47 dLZgであった。 1H_NMR測定で水素化率を調べ たところ 99. 3%であった。 また、 I CP発光分析により、 樹脂中の残留金属 は、 N iが0. 25 ppm、 八 1が0. 15 p pm、 S i ^ 0. 13 ppmとい ずれも 1 p pm以下であることがわかった。 DSCにより測定したガラス転移温 度は 147 であった。
さらに、 得られた線状水素化スチレン一イソプレン—スチレン三元共重合体組 成物 (樹脂) について高化式フローテスターによる熱安定性評価を行った。 34 0 で 5分間保って押出した樹脂の還元粘度は 0. 44dLZgであり、 粘度低 下は極めて小さかった。
かくして得られた線状水素化スチレン—イソプレンースチレン三元共重合体組 成物 (樹脂) を粉砕して得た粒状物を用いて、 射出成形試験を行った。 成形は、 樹脂温度 300で、 金型温度 100でで行った。 得られた試験片は、 丈夫で透明 であった。 この試験片の濃度 0. 5 g/dLのトルエン溶液中、 30でで測定し た還元粘度 77 s pZCは 0. 47dL/gであった。 この成形物の吸水率は 0. 01 %以下で吸水率は極めて低く、 全透過率は 91 %、 ヘイズ値は 1. 1 %であ り極めて高い透明性を示した。
実施例 9
攪拌翼付き容量 10 Lのステンレススチール製ォ一トクレーブの内部を十分に 乾燥し、 窒素置換した後、 シクロへキサン 3, 380 gおよびスチレン 553 g を仕込んだ。 続いて s e c—ブチルリチウム 9. 8mmo 1をシクロへキサン溶 液の形で加えて重合を開始させた。 温度 45でで 2時間攪拌してスチレンを重合 させた後、 イソプレン 61 gを加えてさらに 45 °Cで 2時間反応させた。 次いで 1, 2—ビス (トリメトキシシリル) ェ夕ン 0. 65 gに相当する 16重量%シ クロへキサン溶液を添加し、 温度を 55でに昇温してカップリング反応を実施し た。 カップリング反応を開始してから 2時間後にエタノール 1 OmLを加えた。 得られた重合溶液から少量の溶液を抜き取り、 大量のエタノールに投入し、 析出 した白色フレーク状固体を乾燥したスチレン—イソプレンラジアル共重合体を得 た。
得られた共重合体のイソプレン含有率は 9. 0重量%であり、 濃度 0. 5gZ dLのトルエン溶液中、 30でで測定した還元粘度 7? s pZCは 0. 73dLZ gであった。
上記スチレン—イソプレンラジアル共重合体溶液 4, 000 gに N iZシリ 力 ·アルミナ触媒 (1^1担持率65重量%) 50gを加え、 実施例 5に準じて水 素圧 l OOkgZcm2 (9. 8MPa)、 温度 180"Cで 4時間水素化反応を 行った。 常温に戻し窒素置換を十分行った後、 溶液をオートクレープより取り出 して孔径 0. 1 zmのメンブランフィルター (住友電工 (株) 製フルォロポア) を用いて加圧濾過を行ったところ、 無色透明な溶液が得られた。
この溶液に安定剤として 「スミライザ一 GM」 を水素化スチレン重合体に対 して 0. 4重量%、 さらに鎖伸長剤としてビスフエノール Aおよびエチレンォキ シドの 1 : 2付加体のジメ夕ァクリレート (SR— 348) を水素化スチレン重 合体に対して 0. 4重量%添加してから、 200°C以下の温度で減圧濃縮 (フラ ッシング) を行い、 塊状の無色の水素化スチレン—イソプレンラジアル共重合体 組成物 (樹脂) を得た。 得られた共重合体の濃度 0. 5 gZdLのトルエン溶液 中、 3 で測定した還元粘度 7? s pZCは 0. 44dLZgであった。 また、 I C P発光分析によって、 樹脂中の残留金属は、 N iが 0. 25 p pm、 A 1が 0. 12 p pm, 51カ 0. 20 p pmといずれも 1 p pm以下であることがわ かった。 DSCにより測定したガラス転移温度は 147°Cであった。
かくして得られた樹脂について高化式フローテス夕一による熱安定性評価を行 つた。 340 で 5分間保った樹脂の溶融粘度は 750ボイズであった。 また、 押出された樹脂の還元粘度は 0. 42dLZgであり、 粘度低下は極めて小さか つた。
得られた樹脂を粉砕した粒状物を用いて、 射出成形試験を行った。 成形は、 樹 脂温度 30 O :、 金型温度 100でで行った。 得られた試験片は、 丈夫で透明で あった。 この試験片の濃度 0. 5 gZdLのトルエン溶液中、 30 で測定した 還元粘度 ? s pZCは 0. 42dL/gであった。 この成形物の吸水率は 0. 0 1 %以下で吸水率は極めて低く、 全透過率は 91 %、 ヘイズ値は 1. 4 %であり 極めて高い透明性を示した。
比較例 9
実施例 9で得られた濾過後の無色透明溶液に安定剤を加えずに、 ひき続き溶媒 を 200で以下で減圧留去して水素化スチレン重合体を得た。 濃度 0. 5gZd Lのトルエン溶液を用いて、 30でで求めた還元粘度 7? s pZCは 0. 40dL Zgであった。
該水素化スチレン一イソプレンラジアル共重合体について高化式フ口一テス夕 —による熱安定性評価を行った。 340 で 5分間保った樹脂の溶融粘度は 18 0ボイズであり極めて低かった。 また、 押出された樹脂の還元粘度は、 0. 22 dLZgであり極めて低かった。 すなわち、 熱安定テスト中に熱分解による大き な分子量低下が認められた。
実施例 10 3 Lのステンレススチール製反応容器ジシクロペン夕ジェン 343 g、 トルェ ン 1, 300 g、 およびトリイソブチルアルミニウム 35 gを加えた。 オートク レーブを 1. 5kg fZcm2 (0. 147MP a) のエチレンで加圧し、 イソ プロピリデン— (9—フルォレニル) (シクロペン夕ジェニル) ジルコニウムジ クロリ ド 124mgおよびトリイソブチルアルミニウム 3 gを含んだトルエン溶 液、 さらにトリチルーテトラキス (ペン夕フルオロフェニル) ボレート 250m gのトルエン溶液を加え、 30でで重合を行った。 重合中、 1. 5kg fZcm 2 (0. 147MP a) のエチレンを常時供給し、 エチレンが 2. 3 mo 1消費 されたところでエチレンの供給を止め、 重合体溶液を得た。 ここで得られたェチ レン—ジシクロペン夕ジェン共重合体の Tgは 154で、 還元粘度は 0. 78d LZgであり、 ジシクロペン夕ジェンの共重合体中のモル分率は 45%であった。 該共重合体溶液を 5 Lのオートクレーブに移し、 トリス (ァセチルァセトナー ト) コバルト 3. 0 gとトリイソブチルアルミニウム 4. 8 gを含んだトルエン 溶液を加えた。 オートクレーブを 40 k gZcm2 (3. 92MP a) の水素で 加圧し、 110でで 3時間水素化反応を行い、 水素化工チレン—ジシクロペン夕 ジェン共重合体を得た。 ここで得られた水素化共重合体の Tgは 153^、 還元 粘度は 0. 47 dLZg、 水素化率は 99. 9%以上であった。
該水素化共重合体溶液に乳酸 21 gおよび水 2. 7 gを添加し、 95 で 2時 間反応を行い、 重合触媒および水素化触媒を析出させた。 その溶液混合物をセラ イトを用いて濾過し、 触媒残査を実質的に含有しない水素化工チレン—ジシクロ ペン夕ジェン共重合体溶液を得た。
得られた共重合体溶液に安定剤として 「スミライザ一 GS」 を水素化工チレ ン—ジシクロペン夕ジェンに対して 0. 4重量%、 そして鎖伸長剤として 0. 4 ビスフエノール Aおよびエチレンォキシドの 1 : 2付加体のジメ夕ァクリレート (SR- 348) を水素化工チレンージシクロペンタジェン共重合体に対して 1. 0重量%添加してから、 減圧濃縮、 フラッシングを行い溶媒を留去して塊状の無 色の樹脂を得た。
得られた水素化工チレンージシクロペン夕ジェン共重合体組成物 (樹脂) につ いて高化式フローテスタ一による熱安定性評価を行ったところ、 340 で 5分 間保った樹脂の還元粘度は、 0. 46 dL/gであり粘度低下は殆ど見られなか つた。
次いで、 得られた樹脂を、 樹脂温度 300 、 金型温度 10 O :で射出成形し た。 得られた試験片は、 丈夫で透明であった。 この試験片の濃度 0. S gZdL のトルエン溶液中、 3 O :で測定した還元粘度 7? s p/Cは 0. 47 dL/gで あり、 分子量低下は認められなかった。 この成形物の吸水率は 0. 01%以下で 吸水率は極めて低く、 全透過率は 91%、 ヘイズ値は 1. 5%であり極めて高い 透明性を示した。
実施例 11
3 Lのステンレススチール製反応容器に 8—ェチリデンテトラシクロ [4. 4. 0. 12. 5. 17. 10] — 3—ドデセン 285 g、 トルエン 1, 100 g, 1— へキセン 4. 2 g トリェチルァミン 7. 5 g、 トリイソブチルアルミニウム 1 5 gを加え、 さらに四塩化チタン 2. 8 gを添加し、 — 10 で 2時間重合を行 い、 開環重合体を得た。 得られた溶液を少量分取して、 常法により精製して得た 重合体の 0. 5 gZdLのトルエン溶液中、 30でで測定した還元粘度 7? s p/ Cは 0. 65dLZgであり、 DS Cを用いて測定した Tgは 186 であった。 得られた反応溶液に 100でで乳酸 7. 8 gおよび水 1. 0 gを攪拌しながら 添加し、 同温度で 2時間反応させた。 反応液は黒褐色から黒色の濁ったスラリー に変色した。 該スラリーをひき続き濾過処理にかけた。 得られた濾液を塩基性ァ ルミナを用いて吸着処理をして無色の処理液を得た。 かくして得た溶液を大量の エタノールに添加して、 析出した沈殿を濾別乾燥して無色のフレーク状重合体を 得た。
得られたフレーク状重合体をオートクレープ中に導入した 1, 100 gのトル ェンに溶解した。 該溶液を入れたオートクレープ中の空気を十分に窒素ガスで置 換した。 該溶液にトリス (ァセチルァセトナート) コバルト 3. 0 gおよびトリ イソブチルアルミニウム 4. 8 gを添加し、 水素圧 45 kg/ cm2 (4. 41 MP a) で 120分間水素化反応を行い、 反応液を得た。 該反応液を少量分取し て常法により精製して得たポリマーの水素化率は1 H— NMRスぺクトルから 9 9. 9%以上であった。 また、 0. 5 gZdLトルエン溶液を用いて 30でで測 定した還元粘度 7? s p/Cは 0. 54dLZgであり、 DSCを用いて測定した Tgは 140 であった。
得られた反応液に 100でで乳酸 17. 6 gおよび水 1. 8gを含む乳酸水溶 液を攪拌しながら添加し、 同温度で 2時間反応させた。 反応液は黒褐色からピン ク色の濁ったスラリーに変化した。 該スラリーをひき続き濾過処理にかけた。 得 られた濾液を塩基性アルミナを用いて吸着処理をして無色の処理液を得た。 得ら れた溶液に安定剤として 「スミライザ一 GS」 を水素化開環重合体に対して 0. 4重量%、 さらに架橋剤としてトリァリルトリメリテートを水素化開環重合体に 対して 0. 4重量%添加してから、 減圧濃縮、 フラッシングを行い溶媒を留去し て塊状の無色透明な樹脂を得た。 この樹脂の、 濃度 0. 5gZdLのトルエン溶 液中、 301:で測定した還元粘度 7] s pZCは 0. 54dLZgであった。
該水素化開環重合体組成物 (樹脂) について高化式フローテスターによる熱安 定性評価を行った。 340 で 5分間保った樹脂の還元粘度は、 0. 54dL/ gであり粘度低下は認められなかった。
得られた樹脂を樹脂温度 340 、 金型温度 100 で射出成形した。 得られ た試験片は丈夫で透明であった。 この試験片の濃度 0. 5gZdLのトルエン溶 液中、 30 で測定した還元粘度 7? s p_/Cは 0. 54dLZgであり、 分子量 低下は認められなかった。 この成形物の吸水率は 0. 01%以下で吸水率は極め て低く、 全透過率は 90%、 ヘイズ値は 1. 5%であり極めて高い透明性を示し た。
実施例 12
(1) 攪拌翼付き 10Lのステンレススチール製オートクレープの内部を充分 に乾燥し、 かつ窒素置換した後、 ポリスチレン 750 g (数平均分子量 Mn = 2. 8X 105)、 N i /シリカ 'アルミナ触媒 118 g、 シクロへキサン 2, 20 0 gおよびメチルー t e r t—ブチルエーテル 1, 500 gを仕込んだ。 続いて、 該反応容器を充分に水素置換した後、 9. 8MP aの水素圧をかけて、 攪拌しな がら 180 、 6時間水素化反応を行った。 反応終了後、 得られた懸濁液 (スラ リー) を孔径 0. 1ミクロンのメンブランフィル夕一 (住友電工 (株) 製フルォ 口ポア) を用いて加圧濾過を行ったところ、 無色透明な溶液が得られた。 該溶液 を一部分取してイソプロパノール中に投入して析出した固体を濾別、 洗浄、 乾燥 して水素化ポリスチレンを得た。
iH— NMRより定量した水素化率は、 99. 5%であった。 濃度 0. 5 g/ dLのトルエン溶液を用いて、 30でで求めた還元粘度 ?7 s pZcは 0. 49 d LZgであった。 また、 I CP発光分析により、 樹脂中の残留金属は、 ^[ 1が0. 21 ppm、 A lが 0. 25 p pmおよび S iが 0. 25 ppmといずれも l p pm以下であることがわかった。 DS Cにより測定したガラス転移温度は 14 9 X:であった。
(2) レゾルシン 15g、 95%エタノール 7 OmL、 濃塩酸 34mLを三つ 口フラスコに入れた。 この溶液に、 15 以下でァセトアルデヒド 7. 6mLを 滴下した。 得られた溶液を 50でで 1時間加熱攪拌した。 その後、 該溶液を室温 まで冷却すると、 白色固体が沈殿した。 この沈殿を濾別水洗して、 さらにェタノ —ルー水から再結晶した。 得られた固体の重水素化アセトン中で測定した1 H— NMRスペクトルは、 δ 8. 7 p pmに水酸基プロトン、 8 Ί . 6 ppmおよび 6. 2 p pmに芳香族プロトン、 δ 4. 5 p pmに橋かけ基メチンプロトンおよ び δ 1. 7 pmに橋かけ基メチルプロトン由来のピークが認められ、 上記式 (3) において、 R 6が水素原子、 R 7がメチル基であり、 r = 4である環状フ ェノール—アルデヒド縮合体が確認された。 また、 芳香族プロトンおよび橋かけ 基由来のピーク強度比から平均フエノール残基数は 8であることがわかった。 上記の環状フエノール—アルデヒド縮合体を 3. 0g、 トリェチルァミン 2. 2 g、 ァセトニトリル 4 OmLを三つ口フラスコに入れ、 20分混合した。 該溶 液を Ot:に冷却して、 テトラヒドロフラン 2 OmLにアクリル酸クロリド 2. 0 gを溶かした溶液を 0. 5時間かけて滴下した。 滴下後反応溶液を一夜常温で攪 拌した。 得られた混合物からトリェチルァミン塩酸塩を濾別し、 濾液から溶媒を 留去して白色固体を得た。 この固体の重クロ口ホルム中での1 H— NMRスぺク トルには、 05. 30〜5. 60 ρ pmに水酸基のプロトン、 (56. 82〜7. 10 p pmに芳香族プロトン、 δ 4. 00〜4. 80 p pmに橋かけ基メチンプ 口トンおよび δ ΐ. 49 p pmに橋かけ基メチルプロトン、 δ 5. 75〜6. 8 0 p pmにアクリル基由来のプロトンのピークが観測され、 アクリル化フエノー ルーアルデヒド縮合体の生成が確認された。 そして、 アクリル基由来のピークと 芳香族プロトン由来のピーク強度比からアクリル化率が 50%であることがわか つた。 また、 FD— MSスペクトルからフエノール残基数 4およびアクリル化率 50 %に対応する mZz = 760のピークが観測された。 該アクリル化フエノー ルーアルデヒド縮合体の蒸発開始温度は 376でであり該縮合体は揮発しにくい ものであることがわかった。
(3) 上記 (1) で得られた水素化スチレンの無色透明溶液に上記 (2) で得 られた多官能付加型安定剤を水素化スチレン重合体 100重量部に対して 0. 4 重量部添加し、 ひき続き溶媒を留去して水素化スチレン重合体の多官能付加型安 定剤組成物を得た。 該組成物を粉砕して成形用粒状物を作製した。 得られた粒状 物について、 CD用のスタンパ一を用いてディスク基板成形 (射出 ·圧縮成形) を行った。 樹脂温度 33 OX, 金型温度 120でを用いて、 無色透明のディスク 基板を成形した。 得られたディスク基板の濃度 0. 5 gZdLのトルエン溶液を 用いて、 30^で求めた還元粘度 7? s pZcは、 0. 46 dLZgであり、 粘度 低下は小さかった。 また、 ガラス転移温度 (Tg) は 149でであり、 分子量低 下に伴うガラス転移温度の低下は認められなかった。 このディスク基板の吸水率 は 0. 0 1%以下であり、 吸水率は極めて低く、 全光線透過率は 91%、 ヘイズ 値は 1. 4%であり、 極めて高い透明性を示した。 得られたディスク基板内周部 の複屈折率は 6 nmであり、 極めて低い複屈折率、 言い換えれば極めて高い光学 等方性を示した。 該ディスク基板を温度 80で、 相対湿度 85%の雰囲気で 50 0時間促進劣化を実施した後、 .顕微鏡観測によりクレーズ斑点数を数えた。 その 結果、 基板内のクレーズ斑点の数は 1 cm2内に 3個であった。
また、 該組成物を、 高化式フローテスターによる安定性評価にかけた。 34 0°Cに保温されたノズルに該樹脂を入れて圧縮し、 5分間保温した後、 ノズルか ら押出して得た樹脂の還元粘度 (7? S PZC) を測定した。 その結果、 71 S pZ cは 0. 44dLZgであり、 粘度低下は小さかった。
比較例 10
実施例 12の (1) で得られた水素化スチレンの無色透明溶液に多官能付加型 安定剤を加えずに、 溶媒を留去して水素化スチレン重合体を得た。 該重合体を粉 砕して成形物用粒状物を作製した。 得られた粒状物を実施例 12と同様の条件で、 成形を行った。 その結果、 ディスク基板の歪みが大きく、 多くの場合割れが生じ ることがわかった。 得られたディスク基板の 7? s pZcは 0. 39 dLZgであ つた。 すなわち、 成形過程で大きな分子量低下が起こったと考えられる。 また、 実施例 12に示した高化式フローテスターによる安定性評価を行った。 その結果 rj s pZcは、 0. 27 dLZgであり非常に大きな粘度低下が認められた。 また、 該樹脂を熱分解 GC— MSにかけて分解物の構造を帰属した。 熱分解は 300 で 10分間、 窒素雰囲気下で行った。 その結果、 保持時間 3. 83分に / z = 84 , 14. 92分に111/2 = 136、 22. 15分に111 2 = 208、 23. 05分に111 2 = 222、 24. 33分に111 2 = 326、 25. 15分 に mZz S 34および 36. 60分に mZz = 332のピークが認められた。 これらは、 シクロへキサンおよびビニルシク口へキサンが 1〜 3単位結合した分 解物であることが明らかになつた。
比較例 1 1
実施例 12の (1) で得られた水素化スチレンの無色透明溶液に代表的なヒン ダードフエノール系安定剤である、 ィルガノックス 1010を該水素化スチレン 重合体 100重量部に対して 0. 4重量部加えて、 溶媒を留去して水素化スチレ ン重合体を得た。 該重合体の耐熱性を実施例 12に示した高化式フローテスター による安定性評価法により評価した。 その結果 7? s pZcは、 0. 30 dL/g であり非常に大きな粘度低下が認められた。
比較例 12
実施例 12の ( 1 ) で得られた水素化スチレンの無色透明溶液に代表的なヒン ダードフエノール系安定剤であるィルガノックス 10 10、 および代表的な含燐 系安定剤であるィルガフォス 168の 1 : 1混合物を該水素化スチレン重合体 1 00重量部に対して 0. 4重量部加えて、 溶媒を留去して水素化スチレン重合体 を得た。 該重合体の耐熱性を実施例 12に示した高化式フローテスターによる安 定性評価法により評価した。 その結果 7? s pZcは、 0. 37dL//gであり非 常に大きな粘度低下が認められた。
実施例 13
実施例 12の水素化スチレンに対する多官能付加型安定剤の添加量を 0. 2 % にして、 実施例 12と同様の高化式フローテスターによる安定性評価にかけた。 340でで 5分間保温後の樹脂の 77 s pZcは 0. 42dLZgであり、 粘度低 下は小さかった。
実施例 14
実施例 12の水素化スチレン重合体 100重量部に対する多官能付加型安定剤 の添加量を 1. 0重量部にして、 実施例 12と同様の高化式フローテス夕一によ る安定性評価にかけた。 340でで5分間保温後の樹脂の7] 3 じは0. 45 dLZgであり、 粘度低下は小さかった。
実施例 15
(1) 攪拌翼付き容量 10Lのステンレススチール製オートクレープの内部を 充分に乾燥し、 窒素置換した後、 シクロへキサン 3, 360 g、 スチレン 288 gを仕込んだ。 続いて s e c一ブチルリチウム 4. Ommo 1に相当する量を濃 度 1. 0Mのシクロへキサン溶液の形で加えて重合を開始させた。 温度 45でで 2時間攪拌してスチレンを完全に反応させた後、 イソプレン 65 gを加えてさら に 50°Cで 2時間反応させさらにスチレン 280 gを加えて 5 Ot:で 2時間反応 させた後、 イソプロパノールを添加して重合を停止させた。 この共重合体溶液 1, 950 gに、 N i/シリカ ·アルミナ触媒 (N i担持率 65重量%) 50 gおよ びメチルー t e r t _ブチルエーテル 530 gを加え、 水素圧 9. 8MPa、 温 度 180 で 6時間水素化反応を行った。 常温に戻して窒素置換を充分に行った 後、 溶液をオートクレーブより取り出して孔径 0. 1ミクロンのメンブランフィ ルター (住友 (株) 製フルォロポア) を用いて加圧濾過を行ったところ、 無色透 明なスチレン一イソプレンースチレン三元共重合体水素化物の溶液が得られた。 この溶液を一部分取して、 大量のイソプロパノール中に投入し、 析出固体を濾別、 洗浄、 乾燥して該水素化物のフレーク状固体を得た。
該固体の濃度 0. 5 gZdLのトルエン溶液を用いて、 30°Cで求めた還元粘 度 7? s p/cは 0. 47 dL//gであった。 — NMR測定で水素化率を求め たところ、 99. 5%であった。 また、 I CP発光分析により、 樹脂中の残留金 属は N iが 0. 28 01!1、 八 1が0. 15 p pmおよび S iが 0. 22 ppm といずれも 1 ppm以下であることがわかった。 DSCにより測定したガラス転 移温度 (Tg) は 147 であった。
(2) 上記 (1) で得られた水素化スチレン一イソプレン—スチレン三元共重 合体の無色溶液に実施例 12の (2) で得られた多官能付加型安定剤を該三元共 重合体 100重量部に対して 0. 4重量部添加し、 ひき続き溶媒を留去して水素 化スチレン重合体の多官能付加型安定剤組成物を得た。 該組成物を粉砕して成形 物用粒状物を作製した。 得られた粒状物について、 CD用のスタンパーを用いて ディスク基板成形を行った。 樹脂温度 33 O :、 金型温度 120でを用いて、 無 色透明のディスク基板を成形した。 得られたディスク基板の濃度 0. S gZdL のトルエン溶液を用いて、 30でで求めた還元粘度 s pZcは、 0. 45dL Zgであり、 粘度低下は小さかった。 また、 ガラス転移温度 (Tg) は 147で であり、 分子量低下に伴うガラス転移温度の低下は認められなかった。 このディ スク基板の吸水率は 0. 01%以下であり、 吸水率は極めて低く、 全光線透過率 は 91. 5 %> ヘイズ値は 1. 2%であり、 極めて高い透明性を示した。 得られ たディスク基板内周部の複屈折率は 8 nmであり、 極めて低い複屈折率、 言い換 えれば極めて高い光学等方性を示した。 該ディスク基板を温度 80で、 相対湿度 85 %の雰囲気で 500時間促進劣化を実施した後、 顕微鏡観測によりクレーズ 斑点数を数えた。 その結果、 基板内のクレーズ斑点の数は 1 cm2内に 2個であ つた。
また、 該組成物を、 実施例 12記載の高化式フローテスターによる安定性評価 にかけた。 340 °Cに 5分保温された樹脂の還元粘度 (7? s pZc) は 0. 44 dLZgであり、 粘度低下は小さかった。
実施例 16
(1) 攪拌翼付き容量 10 Lのステンレススチール製ォ一トクレーブの内部を 十分に乾燥し、 窒素置換した後、 シクロへキサン 2, 400 g、 メチルー t e r t—ブチルエーテル 1, 600 g、 スチレン 720 gを仕込んだ。 続いて、 n— ブチルリチウム 16. 2mmo 1に相当する量を 1. 57 Mの n—へキサンの溶 液の形で加えて重合を開始させた。 温度 30でで 1. 5時間攪拌してスチレンを 完全に反応させた後、 イソプレン 80 gを加えて、 さらに 30でで 1. 5時間反 応させた。 ついでテトラメトキシシラン 0. 54 gに相当する量を濃度 3. 0重 量%のシクロへキサン溶液の形で添加し、 温度を 6 O :に昇温してカップリング 反応を実施した。 カップリング反応を開始してから 3時間後にエタノール 10m Lを加えた。 この共重合体溶液に N iZシリカ ·アルミナ触媒 (N i担持率 65 重量%) 140 gを加え、 水素圧 9. 8 MP a、 温度 180 で 6時間水素添加 反応を行った。 常温に戻して窒素置換を充分に行った後、 溶液をオートクレープ より取り出して、 孔径 0. 1ミクロンのメンブランフィルタ一 (住友電工 (株) 製フルォロポア) を用いて加圧濾過を行ったところ、 水素化スチレン—イソプレ ンラジアル共重合体の無色透明溶液が得られた。 この溶液を一部分取して、 大量 のイソプロパノールに投入し、 析出した沈殿を濾別、 洗浄、 乾燥してラジアルポ リスチレン共重合体の水素化物の固体を得た。
該固体を、 濃度 0. 5 gZdLのトルエン溶液中、 30 で測定した還元粘度 T? S
Figure imgf000051_0001
49 dLZgであった。 また、 GP C測定を行ったところ、 4 分岐鎖に相当する分が 83%、 一本鎖すなわちカップリングされていない分岐鎖 1本に相当する数平均分子量 (Mn) 48, 000の成分が 17%の混合物であ ることがわかった。 — NMR測定で水素化率を調べたところ 99. 3%であ つた。 また、 I CP発光分析により、 樹脂中の残留金属は、 N iが0. 24pp 111、 八 1が0. 32 p pmおよび S iが 0. 26 p pmといずれも 1 p pm以下 であることがわかった。
(2) p— t e r t—ブチルフエノール 20 g、 濃塩酸 5. O g、 エタノール 15mLおよびホルムアルデヒド (37 %水溶液) 5. 0gを 500mLの三つ 口フラスコに入れて、 70〜80°Cで 3時間加熱還流した。 その後溶媒を留去し て、 十分水洗した。 得られた白色固体の重クロ口ホルム中での1 H— NMRスぺ クトルには、 (58. 58 111ぉょび(59. 49 p pmに水酸基プロトン、 06. 92 p pmに芳香族プロトン、 δ 3. 81〜3. 86 p pmに橋かけメチレンプ 口トンおよび 31. 09〜1. 17 p pmに t e r t—ブチルプロトンに基づく ピークが認められ、 上記式 (1) において、 R1 R3が水素原子、 R2が t e r t—プチル基であり、 p= 7である鎖状フエノール—アルデヒド縮合体の生成が 確認された。
得られた鎖状フエノールーアルデヒド縮合体 2. 0 gにトリエチルァミン 0. 80 gを加えて均一溶液を調製した。 この溶液を 0 に冷却して、 アクリル酸ク ロリド 0. 71 gを含むテトラヒドロフラン溶液 20mlを該溶液に 30分間か けて滴下した。 そして、 常温で一夜攪拌した。 得られた混合物から卜リエチルァ ミン塩酸塩を濾別して、 濾液を濃縮乾固して白色固体を得た。 この固体の重クロ 口ホルム中での1 H— NMRスペクトルには、 (51. 12〜1. 28 p pmに t e r t—ブチルプロトン、 δ 3. 75 p pmに橋かけメチレンプロトン、 (55. 81 pm, 6. 15 ppmおよび 6. 41 p pmにアクリルプロトン、 66. 80〜7. 22 p pmに芳香族プロトンが認められ、 アクリル化フエノール—ァ ルデヒド縮合体の生成が確認された。 そして、 アクリル基由来のピークと t e r t一ブチル基由来のピークとの強度比から、 アクリル化率が 40 %であることが 確認された。 また、 橋かけ基由来のピークと t e r t—ブチル基由来のピーク強 度比から平均フエノール残基数は 5であった。 得られたアクリル化フエノール— アルデヒド縮合体の蒸発開始温度は 410 であり極めて揮発しにくいことがわ かった。
(3) 上記 (1) で得られた水素化スチレン—イソプレンラジアル共重合体の 無色溶液に上記 (2) で得られた多官能付加型安定剤を該共重合体 100重量部 に対して 0. 4重量部添加し、 ひき続き溶媒を留去して水素化スチレン重合体の 多官能付加型安定剤組成物を得た。 該組成物を、 実施例 12記載の高化式フロー テスターによる安定性評価にかけた。 340でに 5分保温された樹脂の還元粘度 (τ? s p/c) は 0. 47 dLZgであり、 粘度低下は小さかった。
実施例 17
(1) 3 Lのステンレススチール製反応容器にジシクロペン夕ジェン 343 g (2. 6mo l)、 トルエン 1, 300 g、 およびトリイソブチルアルミニウム 35 gを加えた。 ォ一トクレーブを 0. 15 MP aのエチレンで加圧し、 イソプ 口ピリデン一 (9—フルォレニル) (シクロペン夕ジェニル) ジルコニウムジク ロリド 124mg (0. 29mmo 1 ) のトルエン溶液を加え、 30でで重合を 行った。 重合中、 0. 15MP aのエチレンを常時供給し、 エチレンが 2. 3m o 1消費されたところでエチレンの供給を止め、 重合体溶液を得た。 ここで得ら れたエチレンージシクロペン夕ジェン共重合体のガラス転移温度 (Tg) は 15 3 :、 還元粘度 7? s pZcは 0. 76dLZgであり、 ジシクロペンタジェン単 位の共重合体中のモル分率は 44 %であった。
該共重合体を 5 Lのオートクレーブに移し、 卜リス (ァセチルァセトナート) コバルト 3. 0 g (8. 4mmo 1 ) とトリイソブチルアルミニウム 4. 8 gを 含んだトルエン溶液を加えた。 オートクレープを 3. 9 MP aの水素ガスで加圧 して、 1 10でで 3時間水素添加反応を行い、 水素化工チレンージシクロペン夕 ジェン共重合体を得た。 ここで得られた水素化共重合体のガラス転移温度 (T g) は 152 、 還元粘度 7? s pZcは 0. 47 dL/g、 水素化率は 99. 9 %以上であった。
該水素化共重合体に乳酸 21 gおよび水 2. 7 gを添加し、 95でで 2時間反 応を行い、 重合触媒および水素化触媒を析出させた。 その溶液混合物をセライト を用いて濾過し、 触媒を実質的に含有しない水素化工チレン—ジシクロペン夕ジ ェン共重合体溶液を得た。
(2) p— t e r t—ブチルフエノール 20 g、 37 %ホルムアルデヒド水溶 液 15. 5 mLおよび水酸化ナトリウム 0. 35 gを 50 OmLの三つ口フラス コに入れた。 得られた溶液を 1 10〜120 で 2時間、 加熱 ·攪拌した。 反応 しながら水を留去した。 その過程で淡黄色の固体が析出した。 この混合物に 20 OmLのジフエニルエーテルを加えて該固体を溶解した。 この溶液に窒素ガスを バブルして水を留去し、 最終的には 250 で 2時間還流した。 反応溶液を室温 まで冷却して、 40 OmLの酢酸ェチルを加えると固体が析出した。 この固体を 濾別し、 酢酸ェチルおよびひき続き水で洗浄した後乾燥した。 得られた固体の重 クロ口ホルム中での1 H— NMRスペクトルには、 (510. 40ppmに水酸基 のプロトンピーク、 07. 08 p pmに芳香族プロトンピーク、 δ4. 30 ρ ρ mおよび 3. 55 p pmに橋かけ基メチレンプロトンピーク、 および 1. 26 ppmに t e r t _ブチルプロトンピークが認められ、 上記式 (2) において、 R4が t e r t—ブチル基、 R5が水素原子がであり、 Q = 4である環状フエノ —ルーアルデヒド縮合体の生成が確認された。 また、 t e r t—ブチル基由来の ピークと橋かけ基由来のピーク強度から平均フェノ一ル残基数が 4であることが 確認された。
得られたフエノール一アルデヒド縮合体 1. 56 g, テトラヒドロフランとジ メチルホルムアミドの重量比 4: 1の溶液 2 OmLおよびトリェチルァミン 0. 48 gを三つ口フラスコに入れて混合した。 反応溶液を 0でに冷却して、 ァクリ ル酸クロリド 0. 43gをテトラヒドロフラン 20mLに溶解した溶液を 30分 かけて滴下した。 滴下後、 反応混合物を 6時間攪拌した。 析出したトリェチルァ ミン塩酸塩を濾別し、 濾液を部分濃縮した。 得られた混合物を水に投入して、 析 出した白色固体を濾別、 水洗、 乾燥した。 得られた固体の重クロ口ホルム中で測 定した1 H— NMRスペクトルには、 δ . 02ppmおよび 06. 98 p pm に芳香族プロトンピーク、 (55. 90-6. 50 01ぉょび<53. 70 p pm にアクリルプロトンピーク、 δ 3. 60 p pmに橋かけメチレンプロトンピーク、 および δ ΐ. 25ppmおよび (51. 10 p pmに t e r t—ブチルプロトンピ ークが観測され、 ァクリル化フエノールーアルデヒド縮合体の生成が確認された。 そして、 δ ΐ. 25ppmおよび (51. 10 p pmのピーク強度比からアクリル 化率が 56%であることが確認された。 また、 FD— MSから、 フエノール残基 数が 2でありアクリル化率が 56%に対応する mZz = 756のピークが確認さ. れた。 得られたフエノール—アクリル化フエノール縮合体の蒸発開始温度は、 4 39°Cであり、 極めて揮発しにくいことがわかった。
(3) 上記 (1) で得た水素化工チレン—ジシクロペン夕ジェン共重合体溶液 に上記 (2) で得た多官能付加型安定剤を該共重合体 100重量部に対して 0. 4重量部添加してから、 減圧濃縮を行い溶媒を留去して塊状の無色透明な樹脂を 得た。 得られた樹脂を 30 O :, 金型温度 100 Gで射出成形した。 得られた試 験片は透明で丈夫であった。 この試験片の濃度 0. 5gZdLの透明溶液中、 3 0 で測定した還元粘度 77 s pZcは 0. 46dLZgであり、 成形による分子 量低下はほとんど認められなかった。 この成形物の吸水率は 0. 01%以下であ り、 吸水率は極めて低く、 全透過率は 91. 2 %、 ヘイズ値は 2. 1 %であり、 極めて高い透明性を示した。
実施例 18
(1) 3 Lのステンレススチール製反応容器に 8—ェチリデンテトラシクロ [4. 4. 0. I2' 5. I7' 10] — 3—ドデセン 285 g、 トルエン 1, 10 0 g, 1—へキセン 4. 2 g, トリェチルァミン 7. 5g、 トリイソブチルアル ミニゥム 15 gを加え、 さらに四塩化チタン 2. 8 gを添加し、 一 10でで 2時 間重合を行い、 開環重合体を得た。 得られた溶液を少量分取して、 常法により精 製した重合体について、 0. 5 gZdLのトルエン溶液中、 30でで測定した還 元粘度 ? s pZcは 0. 65dLZgであり、 DSCを用いて測定したガラス転 移温度 (Tg) は 188 であった。 得られた反応溶液に 100でで乳酸 7. 8 gおよび水 1. 0 gを攪拌しながら添加して、 同温で 2時間反応させた。 反応液 は黒褐色から黒色の濁ったスラリ一に変色した。 該スラリーをひき続き濾過処理 にかけた。 得られた濾液を塩基性アルミナを用いて吸着処理をして無色の処理液 を得た。 かくして得られた溶液を大量のエタノールに添加して、 析出した沈殿を 濾別、 乾燥して無色のフレークを得た。
得られたフレーク状固体をオートクレープ中に導入した 1, 100gのトルェ ンに溶解した。 該溶液を入れたオートクレープ中の空気を充分に窒素ガスで置換 した。 該溶液にトリス (ァセチルァセトナート) コバルト 3. 0gおよびトリィ ソブチルアルミニウム 4. 8gを添加し、 水素圧 4. 4MPaで 120分間水素 化反応を行い、 反応液を得た。 該反応溶液を少量分取して、 常法により精製した ポリマーの水素化率は、 — NMRスペクトルから 99. 9%以上であった。 また、 0. 5 gZdLのトルエン溶液を用いて 30°Cで測定した還元粘度 rj s p Zcは 0. 55dL/gであり、 DSCを用いて測定したガラス転移温度 (T g) は 142でであった。
得られた反応液に 100でで乳酸 17. 6 gおよび 1. 8 gを含む乳酸水溶液 を攪拌しながら添加し、 同温度で 2時間反応させた。 反応液は黒褐色からピンク 色の濁ったスラリーに変色した。 該スラリーをひき続き濾過にかけた。 得られた 濾液を塩基性アルミナを用いて吸着処理をして、 無色透明の水素化開環重合体の 溶液を得た。
(2) パラホルムアルデヒド 18 g、 P- t e r t—プチルフエノール 55. 6 g, 10 N-KOH0. 8mL、 キシレン 30 OmLを 50 OmLの三つ口フ ラスコに入れて、 窒素気流下、 140〜150でで 4時間加熱還流した。 冷却後、 析出固体を濾別し、 トルエン、 エーテル、 アセトンおよび水で順次洗浄した。 そ して、 この固体をクロ口ホルムから再結晶して、 精製物を得た。 重クロ口ホルム 中で測定したこの物質の1 H— NMRスペクトルには、 <59. 6 ppmに水酸基 プロトンピーク、 δ Ί . 08 p pmに芳香族プロトンピーク、 (54. 38 p pm および δ 3. 5 p pmに橋かけメチレンプロトンピークおよび δ 1. 25 p pm に t e r t—ブチルプロトンピークが観測され、 上記式 (2) において、 R4が t e r t—ブチル基、 R5が水素原子がであり、 q = 8である環状フエノールー アルデヒド縮合体の生成が確認された。 また、 t e r t—プチルプロトンピーク および橋かけメチレンプロトンピークの強度比から平均フエノール残基数が 8で あることがわかった。
得られたフエノ一ルーアルデヒド縮合体は、 実施例 3で示したフエノールーァ ルデヒド縮合体と同様な方法でアクリル化し、 白色固体として得られた。 この固 体の重クロ口ホルム中での1 H— NMRスペクトルには、 δ 6. 50-7. 20 p pmに芳香族プロトンピーク、 55. 41〜6. 43 p pmにアクリルプロト ンピーク、 03. 22〜3. 92 p pmに橋かけメチレンプロトンピーク、 およ び δ θ. 81〜1. 32 p pmに t e r t—ブチルプロトンピークが観測され、 アクリル化フエノール—アルデヒド縮合体の生成が確認された。 そして、 t e r t—プチルプロトンピークおよび橋かけメチレンプロトンピークの強度比からァ クリル化率が 42 %、 平均フエノール残基数が 5であることが確認された。
上記 (1) で得た水素化開環重合体の透明溶液に上記 (2) で得た多官能付加 型安定剤を該共重合体 100重量部に対して 0. 4重量部添加してから、 減圧濃 縮を行い溶媒を留去して塊状の無色透明な樹脂を得た。 得られた樹脂を 300 、 金型温度 10 ot:で射出成形した。 得られた試験片は透明で丈夫であった。 この 試験片の濃度 0. 5gZdLの透明溶液中、 3 で測定した還元粘度 7? s pZ cは 0. 54dLZgであり、 成形による分子量低下はほとんど認められなかつ た。 この成形物の吸水率は 0. 01%以下であり、 吸水率は極めて低く、 全透過 率は 91. 0%、 ヘイズ値は 2. 5%であり、 極めて高い透明性を示した。

Claims

請 求 の 範 囲
1. (A) 脂環式基を含む熱可塑性重合体および
(B) この熱可塑性重合体が開裂して生成するラジカルに付加反応することが可 能な付加型安定剤
上記熱可塑性重合体に対して 0. 01〜5重量%を含有してなる熱可塑性樹脂 組成物。
2. 熱可塑性重合体 (A) が水素化スチレン重合体である請求項 1に記載の熱可 塑性樹脂組成物。
3. 熱可塑性重合体 (A) が主鎖に環状ォレフィンに由来する重合単位を含む飽 和環状重合体である請求項 1に記載の熱可塑性樹脂組成物。
4. 付加型安定剤 (B) が (メタ) ァクリレート基を有するフエノ一ル化合物で ある請求項 1に記載の熱可塑性樹脂組成物。
5. 付加型安定剤 (B) が下記式 (1)
Figure imgf000058_0001
ここで、 R1, R 2および R 3はそれぞれ独立に水素原子または炭素数 1〜10 のアルキル基でありそして Pは 0〜13の数である、 但し複数の R1, 複数の R 2および複数の R 3のそれぞれは同一であっても異なっていてもよい、 で表される鎖状フエノールーアルデヒド縮合体の水酸基の 35〜65モル%が (メタ) ァクリロイルォキシ基に変換された化合物である請求項 1に記載の熱可 塑性樹脂組成物。
6. 付加型安定剤 (B) が下記式 (1 ')
Figure imgf000059_0001
ここで、 R R 2および R 3の定義は上記式 (1) に同じでありそして R4は 水素原子またはメチル基である、
で表される化合物である請求項 1に記載の熱可塑性樹脂組成物。
7. 付加型安定剤 (A) 力下記式 (2)
Figure imgf000059_0002
ここで、 R4および R5は同一もしくは異なり、 水素原子または炭素数 1〜1 0のアルキル基でありそして qは 4〜 15の数である、
で表される環状フエノールーアルデヒド縮合体の水酸基の 35〜65モル%が
(メタ) ァクリロイルォキシ基に変換された化合物である請求項 1に記載の熱可 塑性樹脂組成物。
8. 付加型安定剤 (A) が下記式 (3)
Figure imgf000060_0001
ここで、 R 6および R 7は同一もしくは異なり水素原子または炭素数 1〜10 のアルキル基でありそして rは 4〜15の数である、
で表される環状フエノール—アルデヒド縮合体の水酸基の 35〜65モル%が
(メタ) ァクリロイルォキシ基に変換された化合物である請求項 1に記載の熱可 塑性樹脂組成物。
9. 付加型安定剤 (B) が上記式 (1) において pが 0である場合の化合物と上 記式 (1) において pが 1〜13である場合の化合物との組合せである請求項 5 に記載の熱可塑性樹脂組成物。
10. 脂肪族もしくは脂環族ポリオールの多官能 (メタ) ァクリレート化合物お よび多官能 (メタ) ァリル化合物よりなる群から選ばれる少なくとも 1種の鎖伸 長剤を、 熱可塑性重合体 (A) に対し 0. 05〜 5重量%でさらに含有する請求 項 1に記載の熱可塑性樹脂組成物。
1 1. 金型を用いて、 樹脂温度 330 :、 金型温度 120でで直径 12 cm、 厚 さ 1. 2 mmの基板に射出圧縮成形し、 この基板を温度 80T:、 相対湿度 85% の雰囲気に 500時間暴露したとき、 該基板の表面に 1 cm2当り 10個以下の クレーズ (c r a z e) しか観察されない請求項 1または 6に記載の熱可塑性樹 脂組成物。
12. 請求項 1に記載の熱可塑性樹脂組成物からの溶融成形による成形物。
13. 光学用である請求項 12に記載の成形物。
14. 温度 80^、 相対湿度 85%の雰囲気に 500時間暴露したとき、 基板の 表面に 1 cm2当り 10個以下のクレーズしか観察されずそして
脂環式基を含む熱可塑性樹脂から主としてなる、 光ディスク基板。
15. 請求項 1に記載の熱可塑性樹脂組成物からなる請求項 14に記載の光ディ スク 2¾板。
16. 下記式 (1 '')
Figure imgf000061_0001
ここで、 R R 2および R 3はそれぞれ独立に水素原子または炭素数 1〜10 のアルキル基でありそして pは 2〜 13の数である、 但し複数の R 複数の R 2および複数の R 3のそれぞれは同一であっても異なっていてもよい、 で表される鎖状フエノール—アルデヒド縮合体の水酸基の 35〜65モル%が (メタ) ァクリロイルォキシ基に変換された化合物。
7. 下記式 (2)
Figure imgf000062_0001
ここで、 R4および R5は同一もしくは異なり、 水素原子または炭素数 1〜1 0のアルキル基でありそして qは 4〜 15の数である、
で表される環状フエノール—アルデヒド縮合体の水酸基の 35〜65モル%が (メタ) ァクリロイルォキシ基に変換された化合物。
8. 下記式 (3)
Figure imgf000062_0002
ここで、 R6および R7は同一もしくは異なり水素原子または炭素数 1〜10 のアルキル基でありそして rは 4〜 15の数である、
で表される環状フエノール—アルデヒド縮合体の水酸基の 35〜65モル%が (メタ) ァクリロイルォキシ基に変換された化合物。
PCT/JP2000/008087 1999-11-18 2000-11-16 Composition a base de resine thermoplastique contenant un polymere thermoplastique a groupes alicycliques; objet moule WO2001036539A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00976293A EP1266937A4 (en) 1999-11-18 2000-11-16 THERMOPLASTIC RESIN COMPOSITION CONTAINING A THERMOPLASTIC POLYMER CONTAINING AN ALICCLUS GROUP AND SHAPED OBJECT
AU14140/01A AU1414001A (en) 1999-11-18 2000-11-16 Thermoplastic resin composition containing thermoplastic polymer containing alicyclic group and molded object

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11/328578 1999-11-18
JP32857899 1999-11-18
JP11/339713 1999-11-30
JP33971399 1999-11-30
JP2000/138320 2000-05-11
JP2000138320 2000-05-11

Publications (2)

Publication Number Publication Date
WO2001036539A1 true WO2001036539A1 (fr) 2001-05-25
WO2001036539A8 WO2001036539A8 (fr) 2002-10-03

Family

ID=27340298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008087 WO2001036539A1 (fr) 1999-11-18 2000-11-16 Composition a base de resine thermoplastique contenant un polymere thermoplastique a groupes alicycliques; objet moule

Country Status (3)

Country Link
EP (1) EP1266937A4 (ja)
AU (1) AU1414001A (ja)
WO (1) WO2001036539A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189415A (ja) * 2012-03-15 2013-09-26 Mitsubishi Rayon Co Ltd ポリテトラメチレンエーテルグリコールジ(メタ)アクリレートの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046056A1 (en) * 2003-08-26 2005-03-03 Jiawen Dong Method of molding articles
US8426529B2 (en) 2006-07-14 2013-04-23 Exxonmobil Chemical Patents Inc. Ethylene/dicyclopentadiene copolymers and functionalized derivatives thereof
JP2010043175A (ja) * 2008-08-12 2010-02-25 Sumitomo Chemical Co Ltd フェノール組成物及び該組成物を含有する熱可塑性ポリマー組成物
JP2012097137A (ja) * 2010-10-29 2012-05-24 Sumitomo Chemical Co Ltd ポリマー安定剤の成形方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971341A (ja) * 1982-10-16 1984-04-23 Sumitomo Chem Co Ltd 合成樹脂の安定化法
JPS59138018A (ja) * 1983-01-28 1984-08-08 株式会社日立製作所 Sf↓6ガス絶縁変圧器用通電接触子
WO1990008173A1 (en) * 1989-01-12 1990-07-26 Mitsui Petrochemical Industries, Ltd. Cycloolefinic resin composition
EP0405843A2 (en) * 1989-06-24 1991-01-02 Nippon Zeon Co., Ltd. Molding material
JPH05242522A (ja) * 1992-03-02 1993-09-21 Mitsubishi Kasei Corp 光ディスク基板
JPH09143320A (ja) * 1995-11-21 1997-06-03 Asahi Chem Ind Co Ltd スチレン系樹脂組成物、及びその製造方法
JPH09263560A (ja) * 1996-01-26 1997-10-07 Shinnakamura Kagaku Kogyo Kk カリックスアレーン誘導体及びそれを含有する硬化性樹脂組成物
JPH1143524A (ja) * 1997-07-29 1999-02-16 Shinnakamura Kagaku Kogyo Kk カリックスアレーン誘導体及びそれを含有する硬化性樹脂組成物
JPH11217481A (ja) * 1998-02-01 1999-08-10 Nippon Zeon Co Ltd 樹脂組成物および成形体
JPH11286657A (ja) * 1998-04-03 1999-10-19 Three Bond Co Ltd 光ディスク用接着剤組成物
JP2000221328A (ja) * 1999-01-29 2000-08-11 Nippon Zeon Co Ltd 導光板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168387A (en) * 1974-05-06 1979-09-18 The Goodyear Tire & Rubber Company Esters of polyphenolic compounds as built-in antioxidants
JPH0678377B2 (ja) * 1990-07-31 1994-10-05 旭化成工業株式会社 ブロック重合体の回収方法
AU2310999A (en) * 1998-02-17 1999-08-30 Dow Chemical Company, The Hydrogenated aromatic polymer compositions containing stabilizers

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971341A (ja) * 1982-10-16 1984-04-23 Sumitomo Chem Co Ltd 合成樹脂の安定化法
JPS59138018A (ja) * 1983-01-28 1984-08-08 株式会社日立製作所 Sf↓6ガス絶縁変圧器用通電接触子
WO1990008173A1 (en) * 1989-01-12 1990-07-26 Mitsui Petrochemical Industries, Ltd. Cycloolefinic resin composition
EP0405843A2 (en) * 1989-06-24 1991-01-02 Nippon Zeon Co., Ltd. Molding material
JPH05242522A (ja) * 1992-03-02 1993-09-21 Mitsubishi Kasei Corp 光ディスク基板
JPH09143320A (ja) * 1995-11-21 1997-06-03 Asahi Chem Ind Co Ltd スチレン系樹脂組成物、及びその製造方法
JPH09263560A (ja) * 1996-01-26 1997-10-07 Shinnakamura Kagaku Kogyo Kk カリックスアレーン誘導体及びそれを含有する硬化性樹脂組成物
JPH1143524A (ja) * 1997-07-29 1999-02-16 Shinnakamura Kagaku Kogyo Kk カリックスアレーン誘導体及びそれを含有する硬化性樹脂組成物
JPH11217481A (ja) * 1998-02-01 1999-08-10 Nippon Zeon Co Ltd 樹脂組成物および成形体
JPH11286657A (ja) * 1998-04-03 1999-10-19 Three Bond Co Ltd 光ディスク用接着剤組成物
JP2000221328A (ja) * 1999-01-29 2000-08-11 Nippon Zeon Co Ltd 導光板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1266937A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189415A (ja) * 2012-03-15 2013-09-26 Mitsubishi Rayon Co Ltd ポリテトラメチレンエーテルグリコールジ(メタ)アクリレートの製造方法

Also Published As

Publication number Publication date
AU1414001A (en) 2001-05-30
WO2001036539A8 (fr) 2002-10-03
EP1266937A4 (en) 2005-02-09
EP1266937A1 (en) 2002-12-18

Similar Documents

Publication Publication Date Title
KR20010101769A (ko) 방향족폴리카보네이트, 그 제조법 및 성형품
JP4951192B2 (ja) 芳香族ポリカーボネートおよびその製造方法
WO2001023437A1 (fr) Materiau optique comprenant un copolymere bloc de polystyrene hydrogene en forme d&#39;etoile, procede de production de ce materiau, et substrat pour disque optique
JP2001163934A (ja) 星型分岐構造の水素化ポリスチレンブロック共重合体からなる光学材料、その製造法および光ディスク用基板
WO2001036539A1 (fr) Composition a base de resine thermoplastique contenant un polymere thermoplastique a groupes alicycliques; objet moule
TWI357418B (en) Optical disc
JP3964557B2 (ja) 芳香族ポリカーボネート樹脂組成物および光学用成形品
JP4928018B2 (ja) 芳香族ポリカーボネート、その製造法および成形品
JPH03115349A (ja) 水素化ビニル芳香族炭化水素重合体組成物及び光ディスク基板
JPH01294753A (ja) 光ディスク基板
KR100191178B1 (ko) 열가소성 포화 노르보넨기 중합체 조성물
US20040054094A1 (en) Hydrogenated styrene polymer, process for producing the same, and molded object obtained therefrom
JP3094445B2 (ja) 光ディスク
JP2002025108A (ja) 脂環族系ポリオレフィンからなる光ディスク基板
JP4505119B2 (ja) ポリカーボネートの製造方法
JP3173096B2 (ja) 光ディスク基板
JP3727230B2 (ja) 光ディスク基板および光ディスク
JP5069583B2 (ja) 光ディスク基板及びそれを含む光ディスク
JP2002212380A (ja) 水素化芳香族ビニル系共重合体組成物およびそれを用いた光ディスク用基板
WO2002020662A1 (fr) Composition de copolymere bloc styrene hydrogene
WO2000070607A1 (de) Substrate für optische speichermedien
JP2002245667A (ja) 水素化ポリスチレン系樹脂基板含有光記録媒体
JP2002114919A (ja) シクロアルカン構造を有する重合体シートおよびその製造方法
JP2001354762A (ja) ポリカーボネートの製造方法
JP2002060572A (ja) 樹脂組成物及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CN CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CN CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WR Later publication of a revised version of an international search report
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 539021

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10130311

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000976293

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000976293

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000976293

Country of ref document: EP