WO2001023344A1 - Compose d'amine et element electroluminescent organique utilisant ce compose - Google Patents

Compose d'amine et element electroluminescent organique utilisant ce compose Download PDF

Info

Publication number
WO2001023344A1
WO2001023344A1 PCT/JP2000/006656 JP0006656W WO0123344A1 WO 2001023344 A1 WO2001023344 A1 WO 2001023344A1 JP 0006656 W JP0006656 W JP 0006656W WO 0123344 A1 WO0123344 A1 WO 0123344A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
substituent
amine compound
general formula
Prior art date
Application number
PCT/JP2000/006656
Other languages
English (en)
French (fr)
Inventor
Hisayuki Kawamura
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2001526499A priority Critical patent/JP3895178B2/ja
Priority to AT00962880T priority patent/ATE428683T1/de
Priority to DE60042010T priority patent/DE60042010D1/de
Priority to US09/831,883 priority patent/US6632543B1/en
Priority to EP00962880A priority patent/EP1136469B1/en
Publication of WO2001023344A1 publication Critical patent/WO2001023344A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to a novel amine compound and an organic electroluminescence device using the same (hereinafter, electoluminescence is abbreviated as “EL”). More specifically, the present invention relates to an amine compound useful as a constituent material of an organic EL device, and an organic EL device having an excellent lifetime using the same.
  • EL organic electroluminescence
  • Organic EL devices are completely solid-state devices, and are being actively researched because they can produce lightweight, thin, low-voltage driven displays and flat light sources. As a problem when applying this organic EL device to a display or the like, there was a problem that the luminance was rapidly lowered. To improve this, improvements in hole transport materials have been made.
  • NPD phenyl_4,4'-benzidine
  • Japanese Patent Application Laid-Open No. 8-48656 discloses that an aromatic diamine derivative having at least a biphenyl group as a substituent is used as a hole transport material.
  • the biphenylene group is rigid, and the diamine derivative having the biphenylene group has a drawback that it is difficult to purify because of its low solubility in organic solvents. Therefore, when this compound is manufactured industrially, it becomes an aromatic diamine derivative containing many impurities.
  • the organic EL device using this also had a disadvantage that heat resistance was insufficient.
  • the organic EL device using the amine derivative was insufficient in performance other than heat resistance, for example, emission luminance or luminance life. Disclosure of the invention
  • the present invention has been made under such circumstances, and a novel amine compound having high solubility in an organic solvent and easy to produce, an organic EL device using the same, and having excellent heat resistance, and further comprising the amine compound It is an object of the present invention to provide an organic EL device having excellent light emission luminance and luminance life using the same.
  • the outline of the present invention is as follows.
  • a r 1, A r 2 , A r 3 and A r 4 are each an Ariru group optionally nuclear atoms 5-3 0 may have a substituent, at least one of these , M- is a terphenyl group.
  • Ar 5 and Ar 6 each represent an arylene group having 5 to 30 nuclear atoms which may have a substituent;
  • X represents ⁇ , S, an alkylene group having 1 to 6 carbon atoms, 5-30 Represents an arylene group or a diphenylmethylene group,
  • p and q each represent an integer of 0 to 3, and r represents 0 or 1. However, p + q ⁇ 1.
  • An organic electroluminescent element having at least an organic light emitting layer sandwiched between a pair of electrodes, comprising the amine compound according to any one of (1) to (3).
  • Organic electroluminescent element
  • Ar 7 is an aromatic group having 5 to 40 nucleus atoms which may have a substituent
  • Ar 8 , Ar 9 and Ar 1D each represent a hydrogen atom or a substituent
  • at least one of Ar 8 , Ar 9 and Ar 10 is an aryl group optionally having a substituent
  • n is an integer from 1 to 6.
  • Ar 11 is an aromatic group having 5 to 30 nuclear atoms which may have a substituent, and Ar 12 and Ar 13 each have a hydrogen atom or a substituent. and a Ariru group optionally ring atoms is 5 to 30 also, Ar '', least one well of Ar 12 and Ar 13 is substituted with even better styryl group having a substituent group, m It is an integer of 1 to 6. ]
  • Ar 14 and Ar 2 ° each represent an aryl group having 5 to 30 nuclear atoms which may have a substituent
  • Ar 15 to Ar 19 each represent a hydrogen atom or a substituent.
  • the organic compound of the present invention has the general formula (I) Is a compound having a structure represented by
  • aryl group having 5 to 30 nuclear atoms include phenyl, biphenyl, naphthyl, anthranyl, t-phenyl, phenanthryl, pyrenyl, chrysenyl, and pyrrole.
  • Ryl furanyl, thiophenyl, oxazolyl, oxaziazolyl, benzofuranyl, carbazolyl, isobenzo15nyl, quinolyl, pyrimidinyl, quinoxanyl and the like.
  • a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a phenanthryl group, and a diphenyl group are preferably used, and a phenyl group or a naphthyl group is particularly preferable.
  • Ar 1 , ⁇ ⁇ 2 , Ar 3 and Ar 4 may be the same or different from each other, but Ar 1 , Ar 2 , Ar 3 and Ar 4 At least one of m must be an m-phenyl group which may have a substituent.
  • the m-terfuunyl group present in the amine compound of the general formula (I) of the present invention is composed of three non-fused benzene rings, and the other two benzene rings are located at the position of m (meth) with respect to the central benzene ring.
  • This is a monovalent group obtained by removing one hydrogen atom from the m-nitrophenyl formed by bonding.
  • m-terphenyl is represented by the general formula ( ⁇ ′).
  • ⁇ ′ There are various positions of the bond between the m-evening plate and the N atom, but those having positions of 3, 4, 5, 2 'or 5' in the general formula (1) are easily available.
  • those having a bond position of 4, that is, the m-fuyunyl group represented by the general formula (II) are particularly preferable in that the amine compound of the present invention can be easily produced. It is.
  • Ar 5 and Ar 6 each represent an arylene group having 5 to 30 nuclear atoms, each of which may have a substituent.
  • the arylene group having 5 to 30 nuclear atoms include a phenylene group, a biphenylene group, a naphthylene group, an anthranylene group, a terphenylene group, a phenanthrylene group, a pyrenylene group, a chrysylene group, and a fluorenylene group.
  • Examples of the substituent which Ar 1 to Ar s may have include an alkyl group having 1 to 6 carbon atoms, an aryl group having 5 to 30 nuclear atoms, a styryl group having 8 to 30 carbon atoms, and a carbon atom.
  • examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, and n-pentyl group.
  • —Hexyl group, cyclopentyl group, cyclohexyl group, etc., and aryl groups having 5 to 30 nuclear atoms are the same as those exemplified in the description of Ar 1 to Ar 4 above. Is mentioned.
  • Examples of the styryl group having 8 to 30 carbon atoms include 1-vinylvinyl 1-yl, 2-phenylvinyl-1-yl, 2,2-divinylvinyl-2-yl, 2-yl Phenyl 2- (naphthyl-1-yl) vinyl-1-yl and 2,2-bis (diphenyl-1-yl) -bul-1-1-yl group.
  • a 2,2-diphenyl-2-yl-1-yl group is preferred.
  • alkoxy group having 1 to 6 carbon atoms examples include methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentyloxy, n- Examples include a hexyloxy group, a cyclopentyloxy group, and a cyclohexyloxy group.
  • aryloxy group having 5 to 18 carbon atoms examples include phenoxy group, biphenyloxy group, tolyloxy group, naphthyloxy group, anthraniloxy, phenanthriloxy, quinylphenyloxy, pyrenyloxy, chryseniloxy, pyrrolyloxy, thiranoxyloxy, and thiranoxyloxy.
  • oxazolyloxy, oxadiazyloxy benzofuranyloxy, rubazolyloxy, isobenzofuranyloxy, quinolyloxy, pyrimidinyloxy, quinoxalyloxy and the like.
  • Examples of the aralkyloxy group having 7 to 18 carbon atoms include benzyloxy group, phenethyloxy group, and naphthylmethoxy group.
  • Examples of the amino group in which the aryl group having 5 to 16 carbon atoms is substituted include diphenylamino group. , A dinaphthylamino group, a naphthylphenylamino group, a ditolylamino group, etc.
  • Examples of the ester group having 1 to 6 carbon atoms include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, and the like.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • substituents may be substituted by forming a ring, and when two or more substituents are adjacent to each other, these substituents may be bonded to form a cyclic structure.
  • X is 0, S, a methylene group, an ethylene group, an n-propylene group, or isof. It represents an alkylene group having 1 to 6 carbon atoms such as a pyrene group or a cyclopropylene group, an arylene group having 5 to 30 nuclear atoms, or a diphenylmethylene group. However, the diphenylmethylene group may be replaced by an alkyl or alkoxy group having 1 to 6 carbon atoms.
  • alkyl or alkoxy group are described above (substitutions which Ar ′ to Ar 6 may have). Groups). Note that r represents 0 or 1. Specific examples of the arylene group include the same as those described above for Ar 5 and Ar 6 .
  • Examples of the amine compound represented by the general formula (I) include:
  • the compound represented by T-16 can be mentioned.
  • the method for producing the amine compound represented by the general formula (I) of the present invention is not particularly limited, and various methods can be used. For example, if the Ullmann reaction and the Grignard reaction are combined, the desired amine can be obtained. Compounds can be prepared.
  • the organic EL device of the present invention is a device having at least an organic light-emitting layer sandwiched between a pair of electrodes. Is preferable.
  • the one having the configuration (8) is preferably used.
  • the amine compound represented by the general formula (I) a compound mainly contained in a hole transport zone among these constituent elements is suitably used.
  • the hole transport zone refers to a region where holes (holes) move, specifically, a hole injection layer, a hole transport layer, and the like.
  • the content ratio of the amine compound in the hole transport zone is preferably 30 to 100 mol% based on all molecules in the hole transport zone.
  • This organic EL element is usually manufactured on a light-transmitting substrate.
  • the translucent substrate referred to here is a substrate that supports the organic EL device, and is preferably a smooth substrate having a transmittance of light of 50% or more in a visible region of 400 to 700 nm of 50% or more.
  • a translucent substrate for example, a glass plate, a polymer plate or the like is used.
  • the glass plate include soda lime glass, barium-strontium-containing glass, lead glass, aluminogate glass, borate glass, norium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • anode a metal, an alloy, an electrically conductive compound or a mixture thereof having a large work function (4 eV or more) is preferably used as an electrode material.
  • an electrode material include metals such as Au, and conductive materials such as Culn, ITO.S ⁇ 2, and ZnO.
  • the anode can be manufactured by forming a thin film from these electrode substances by a method such as an evaporation method or a sputtering method.
  • a method such as an evaporation method or a sputtering method.
  • the transmittance of the anode with respect to the light emission be greater than 1 Oo / o.
  • the sheet resistance of the anode is preferably several hundreds ⁇ / port or less.
  • the thickness of the anode depends on the material, but is usually 10 ⁇ ! ⁇ 1, preferably in the range of 10 to 200 nm.
  • the light emitting layer of the organic EL device of the present invention preferably has the following functions.
  • Injection function A function to inject holes from the anode or hole injection layer when applying an electric field, and to inject electrons from the cathode or electron injection layer.
  • Light-emitting function a function of providing a field for recombination of electrons and holes and connecting it to light emission.
  • ease of hole injection there may be a difference between the ease of hole injection and the ease of electron injection.
  • transportability represented by the mobility of holes and electrons may be large or small, it is preferable to transfer one of the charges.
  • the light-emitting material of the organic EL device is mainly an organic compound.
  • the following compounds are used depending on a desired color tone.
  • a compound represented by the following general formula (VI) is suitably used.
  • the phenyl group, phenylene group and naphthyl group in the compound represented by the general formula (VI) include an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a hydroxyl group, a sulfonyl group, a carbonyl group, an amino group, a dimethylamino group or A diphenylamino group or the like may be single or plurally substituted. Further, these may be bonded to each other to form a saturated 5-membered ring or a 6-membered ring.
  • this compound which is bonded to a phenyl group, a phenylene group or a naphthyl group at the para position, has good binding properties and is preferable for forming a smooth vapor-deposited film.
  • Specific examples of the compound represented by the above general formula (VI) are as follows.
  • p-quarterphenyl derivatives and p-quinphenyl derivatives are particularly preferred.
  • p-quaterphenyl derivatives and p-quinkphenyl derivatives are particularly preferred.
  • benzothiazole-based, benzoimidazole-based, benzoxazole-based fluorescent whitening agents, metal-chelated oxinide compounds, styrylbenzene-based compounds Compounds can be used.
  • chelated oxoxide compound for example, those disclosed in JP-A-63-2956995 can be used.
  • Typical examples thereof include 8-hydroxyquinoline-based metal complexes such as tris (8-quinolinol) aluminum (hereinafter abbreviated as A1q) and dilithium epinetridione.
  • styrylbenzene-based compound for example, those disclosed in European Patent 0 319 881 and European Patent 0 373 582 can be used.
  • a distyryl virazine derivative disclosed in JP-A-2-252793 can also be used as a material for the light emitting layer.
  • a polyphenyl compound disclosed in European Patent No. 0 387715 can also be used as a material for the light emitting layer.
  • metal chelated oxoxide compounds and styrylbenzene compounds for example, 12-futaperinone (J. App 1. Phys., Vol. 27, L. 7 13 (11988)), 1,4-diphenyl-1,3-butadiene, 1,4,4-tetraphenyl-3_butadiene (APP 1. Phy s. Lett., Vol. 56, L799 (1990)), naphthalimide derivatives (JP-A-2-305886), perylene derivatives (JP-A-2-1990) No. 189,890), Oxadiazol derivatives (Japanese Unexamined Patent Application Publication No.
  • an aromatic dimethylidin-based compound (the one disclosed in European Patent No. 0 388 678 (disclosed in Japanese Patent Application Laid-Open No. 3-231970)) can be used.
  • Specific examples include 4,4'-bis (2,2-di-t-butylphenylvinyl) biphenyl (hereinafter abbreviated as "DTBPBBi”), 4,4'_bis (2,2- Divinyl vinyl) biphenyl (hereinafter abbreviated as "DPVB i”) and the like, and derivatives thereof.
  • L is a hydrocarbon having 6 to 24 carbon atoms containing a phenyl moiety
  • 0-L is a phenolate ligand
  • Q is a substituted 8-quinolinolate ligand
  • R s Represents an 8-quinolinolate ring substituent chosen to sterically prevent more than two substituted 8-quinolinolate ligands from binding to the aluminum atom. More specifically, bis (2-methyl-18-quinolinolate) (para-phenylphenolate) aluminum (III), bis (2-methyl-18-quinolinolate) (111-naphtholitol) aluminum (III) And the like.
  • high-efficiency blue using doping there is a method of obtaining mixed emission of color and green.
  • the above-mentioned light-emitting material can be used, and as the dopant, a strong fluorescent dye from blue to green, for example, a coumarin-based fluorescent dye or a fluorescent dye similar to that used as the above-mentioned host can be used.
  • a luminescent material having a distyrylarylene skeleton for example, a coumarin-based fluorescent dye or a fluorescent dye similar to that used as the above-mentioned host.
  • DPVB i is diphenylaminovinylarylene, particularly preferably N, N-diphenylaminovinylbenzene (DPAVB).
  • DPAVB diphenylaminovinylarylene, particularly preferably N, N-diphenylaminovinylbenzene
  • the light emitting layer that emits white light is not particularly limited, but the following can be used.
  • those having the configuration of (5) are particularly preferably used.
  • red phosphor those shown below are preferably used.
  • any luminescent material can be used.
  • the light emitting material is a blue to green light emitting material.
  • a compound having a styryl group in the molecule is used, a remarkable synergistic effect is recognized.
  • any of the aromatic compounds having a styryl group represented by (V) is included, the effect of achieving high luminance and long life is exhibited.
  • aromatic compounds having a styryl group are usually used in the light-emitting layer, and they are used in light-emitting bands other than the light-emitting layer, specifically, for the hole injection layer, the hole transport layer, the electron injection layer, and the like. In this case, the same effect can be obtained.
  • Ar 7 is an aromatic group having 5 to 40 nucleus atoms which may have a substituent
  • Ar 8 , Ar 9 and Ar 1D are each a hydrogen atom or a substituted
  • at least one of Ar 8 , Ar 9 and Ar 10 is an aryl group which may have a substituent
  • n is 1 It is an integer of ⁇ 6.
  • Ar 1 m during the general formula (IV), Ar '1 is good ring atoms which may have a substituent is Kaoru aromatic groups 5 to 30, Ar 12 and Ar 13 are each hydrogen An aryl group having 5 to 30 nuclear atoms which may have an atom or a substituent, and at least one of Ar 1 ′, Ar 12 and group 13 may have a substituent Substituted with a styryl group, and m is an integer of 1 to 6. Also,
  • Ar "and Ar 2 may ring atoms which may have a substituent, each 5 to 3 0 ⁇ Li - a Le group, Ar 15 to Ar 19 are each A hydrogen atom or an aromatic group having 5 to 30 nuclear atoms which may have a substituent; and at least one of Ar 15 to Ar 19 is substituted with a styryl group which may have a substituent.
  • the s, t, u and V are 0 or 1, respectively.
  • aryl group having 5 to 30 nuclear atoms in the general formulas (1 ⁇ ) to (V) are the same as those exemplified in the description of Ar 1 to Ar 4 in the general formula (I). Things can be mentioned.
  • the aromatic group having 5 to 30 nuclear atoms in the general formulas ( ⁇ ) to (IV) is an aromatic group having 1 to 6 valences corresponding to n and m.
  • the substituents which may be possessed are the same as the examples of the substituents which may be possessed by Ar 1 to Ar 6 in the general formula (I), and also in this case, two or more substituents are substituted. At this time, these substituents may be bonded to each other to form a ring.
  • Representative compounds represented by the above general formulas ( ⁇ ) to (V) include the following 4,4 "—bis (2,2-diphenyl-2-butyl) 1- ⁇ —yu-fuenylene (Hereinafter abbreviated as "DPVTP”), 4,4'-bis (2- (4- (N, N-dipheny Jreamino) phenyl) -vinyl-1--1-yl) biphenylene (hereinafter "DPAVB i)), 9,10-bis (N- (4- (2,2-diphenyl) -vinyl-1f-phenyl) phenyl) -1-N-phenyl) aminoanthracene (“DPDA A”) ), N, N'-bis (4- (2,2-diphenyl) -vinyl-1-yl) phenyl-N, N'-diphenyl-4,4,1-benzidine (hereinafter "DP TPD”) Abbreviated 3 ⁇ 4 ⁇ to).
  • DPVTP 4,4 "—bis (2,
  • the molecular deposition film is a thin film formed by depositing a material compound in a gaseous phase or a film formed by solidification from a material compound in a solution state or a liquid phase. Can be distinguished from the thin film (molecule accumulation film) formed by the LB method by the difference in the cohesive structure and the higher-order structure, and the functional difference resulting from it.
  • the solution is applied to a spin coating method or the like.
  • the light emitting layer can also be formed by making the film thinner.
  • the thickness of the light emitting layer thus formed is not particularly limited and can be appropriately selected according to the situation. The range of to is preferred.
  • the light emitting layer may be composed of one or more of the above-mentioned materials, or may be a laminate of light emitting layers made of a compound different from the light emitting layer.
  • the hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region.
  • the hole mobility is large, and the ionization energy is usually 5.5 eV or less. small.
  • a hole injecting / transporting layer a material that transports holes to the light emitting layer with lower electric field strength is preferable. Sometimes at least 10-4 cm 2 / V ⁇ sec is preferred.
  • the amine compound represented by the general formula (I) of the present invention is preferably used as a hole injection / transport material.
  • the compound of the present invention alone may form a hole injection / transport layer, or may be used as a mixture with another material.
  • the material for forming the hole injecting / transporting layer by mixing with the amine compound represented by the general formula (I) of the present invention is not particularly limited as long as it has the above preferable properties.
  • an arbitrary one can be selected from those commonly used as a hole charge transporting material or known materials used for a hole injection layer of an EL element.
  • Specific examples of such a material for forming the hole injection / transport layer include a triazole derivative (see US Pat. No. 3,112,197) and an oxaziazole derivative (US Pat. 3, 189, 447, etc.), imidazole derivatives (see Japanese Patent Publication No. 37-16096, etc.), polyarylalkane derivatives (US Pat. No.
  • JP-B-51-10105 JP-B46-3712
  • the above-mentioned materials can be used.
  • the porphyrin compound examples include porphyrin compound (those disclosed in JP-A-63-2956565) and aromatic tertiary compounds Amine compounds and styrylamine compounds (U.S. Pat. Nos. 4,127,412, JP-A-53-27033, JP-A-54-584345, 5 4— 1
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material of the hole injection layer.
  • the above-mentioned compound may be formed into a thin film by a known method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 5 nm to 5.
  • the hole injection / transport layer may be composed of one or more of the above-mentioned materials as long as the compound of the present invention is contained in the hole transport zone.
  • a hole injection / transport layer composed of a compound different from the transport layer may be stacked.
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 10 to 10 S / cm or more.
  • Examples of the material for such an organic semiconductor layer include conductive oligomers such as arylamine oligomers disclosed in Japanese Patent Application Laid-Open No. H08-193191, and aromatic oligomers.
  • a conductive dendrimer such as realamine dendrimer can be used.
  • the electron injection layer is a layer that assists the injection of electrons into the light emitting layer, has a high electron mobility
  • the adhesion improvement layer is made of a material that has particularly good adhesion to the cathode in the electron injection layer. Layer.
  • a metal complex of 8-hydroxyquinoline or a derivative thereof is preferable.
  • the metal complex of 8-hydroxyquinoline or a derivative thereof include a metal chelate oxoxide compound containing a chelate of oxine (generally, 8-quinolinol or 8-hydroxyquinoline).
  • a 1 q described in the material section can be used as the electron injection layer.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following general formula.
  • Ar 21 , Ar 22 , Ar 23 , Ar 24 , Ar 25 , and Ar 26 each represent an aryl group which may be substituted, and may be the same or different.
  • Ar 24 , Ar 27 , and Ar 28 each represent an arylene group which may have a substituent, and each may be the same or different.
  • Examples of the aryl group in these general formulas include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • Examples of the arylene group include phenylene, naphthylene, biphenylene, anthranylene, perylene, pyrenylene and the like.
  • Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyano group.
  • the electron transfer compound those having a good thin film forming property are preferably used. Specific examples of these electron transfer compounds include the following.
  • an electron injection layer made of an oxide such as an alkali metal or an alkaline earth metal, or a halide may be provided.
  • oxides and halides of these alkali metal and earth metal are, for example, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, and magnesium oxide. Calcium, calcium fluoride and the like.
  • alkali metal, alkaline earth metal and these compounds are added to the organic compound layer to form an electron injection region.
  • the addition amount of these is preferably 0.1 to 1 Omo 1%.
  • a metal, an alloy, an electrically conductive compound having a low work function (4 eV or less), and a mixture thereof as an electrode material are used as the cathode.
  • an electrode material include sodium, sodium monolithium alloy, magnesium, lithium, magnesium 'silver alloy, aluminum / aluminum oxide, aluminum' lithium alloy, indium, rare earth metal, and the like.
  • This cathode can be manufactured by forming a thin film from these electrode substances by a method such as vapor deposition or sputtering.
  • a method such as vapor deposition or sputtering.
  • the transmittance of the cathode with respect to the emitted light be greater than 10%.
  • the sheet resistance of the cathode is preferably several hundreds ⁇ / port or less, and the film thickness is usually from 1 O nm to lm, preferably from 50 to 200 nm.
  • the organic EL device since an electric field is applied to the ultra-thin film, a pixel defect due to a leak shot is likely to occur. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • Materials used for the insulating layer include, for example, aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and titanium oxide.
  • Examples include silicon, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide.
  • an anode, a light-emitting layer, a hole injection layer if necessary, and an electron injection layer if necessary are formed by the above materials and methods.
  • an organic EL device can be manufactured.
  • an organic EL device can be manufactured in the reverse order from the cathode to the anode.
  • an organic EL device having a configuration in which an anode hole injection layer / a light emitting layer, a Z electron injection layer, and a cathode are sequentially provided on a translucent substrate will be described.
  • a thin film made of an anode material is formed on an appropriate translucent substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm. Is prepared.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a uniform film is easily obtained and pinholes are generated. It is preferably formed by a vacuum evaporation method from the viewpoint of difficulty.
  • the deposition conditions vary depending on the compound used (the material of the hole injection layer), the crystal structure and the recombination structure of the target hole injection layer, etc. . 5 0 to 4 5 0 ° C, vacuum degree of 1 0- 7 ⁇ 1 0- 3 torr , vapor deposition rate 0 0 1 ⁇ 5 ⁇ nm / sec, substrate temperature - 5 0 ⁇ 3 0 0 ° C , film thickness 5 It is preferable to select an appropriate value in the range of nm to 5 m.
  • the formation of the light-emitting layer is also performed by thinning the organic light-emitting material using a desired organic light-emitting material by a method such as vacuum evaporation, sputtering, spin coating, or casting.
  • a vacuum deposition method it is preferable to form the film by a vacuum deposition method from the viewpoint that a uniform film is easily obtained and pinholes are not easily generated.
  • the deposition conditions vary depending on the compound used, but can be generally selected from the same condition range as the hole injection layer.
  • an electron injection layer is provided on the light emitting layer.
  • the film is formed by a vacuum evaporation method from the viewpoint of obtaining a uniform film.
  • the vapor deposition conditions can be selected from the same condition ranges as for the hole injection layer and the light emitting layer.
  • the compound of the present invention differs depending on which layer in the hole transport zone is contained, but when a vacuum deposition method is used, it can be co-deposited with another material. When the spin coating method is used, it can be contained by mixing with other materials.
  • the cathode is made of metal, and can be formed by vapor deposition or sputtering. However, in order to protect the underlying organic layer from damage during film formation, a vacuum evaporation method is preferable.
  • the above-mentioned organic EL device is manufactured from the anode to the cathode consistently by one vacuum bow.
  • m-Terphenyl 50 O g manufactured by Aldrich
  • hydroiodic acid 100 g of dihydrate, 150 g of iodine, 1.51 of acetic acid and 50 ml of concentrated sulfuric acid are placed in a three-necked flask. And reacted at 70 ° C for 3 hours. After the reaction, the mixture was poured into methanol 101, and then stirred for 1 hour. This was collected by filtration, and the resulting crystals were purified by column chromatography and recrystallized from acetonitrile to give 3'-phenyl-2-4-dobiphenyl 120 g (IMT), 3-phenyl-1-phenyl. —34 g (IMT ') of the dobiphenyl was obtained.
  • This compound was soluble in methylene chloride, toluene, THF and the like.
  • N, N'-Diacetyl 1, 4'1benzidine (manufactured by Tokyo Kasei) 10 g, IMT 50 g, lium carbonate 10 g, copper powder 1 g and nitrobenzene 100 ml 1 in 300 ml
  • the mixture was placed in a three-necked flask, and heated and stirred at 200 ° C. for 96 hours. After the reaction, the inorganic substances were separated by filtration, and the solvent of the mother liquor was distilled off. The residue was purified using a column supporting silica gel (C-200 manufactured by Hiroshima Wako Co., Ltd.) using toluene as a developing solvent to obtain 1.4 g of a white powder.
  • This compound was soluble in methylene chloride, toluene, THF and the like.
  • the inorganic substances were separated by filtration, and the solvent of the mother liquor was distilled off.
  • the residue was purified using a column supporting silica gel (C-200, manufactured by Hiroshima Wako Co., Ltd.) using toluene as a developing solvent to obtain 7.7 g of a white powder.
  • This compound was soluble in methylene chloride, toluene, THF and the like.
  • the inorganic substances were separated by filtration, and the solvent of the mother liquor was distilled off.
  • the residue was purified using a column supporting silica gel (C-200, manufactured by Hiroshima Wako Co., Ltd.) using toluene as a developing solvent to obtain 0.4 g of a white powder.
  • the inorganic substances were separated by filtration, and the solvent of the mother liquor was distilled off.
  • the residue was purified using a column supporting silica gel (C-200 manufactured by Hiroshima Wako Co., Ltd.) using toluene as a developing solvent to obtain 9.6 g of a pale yellow powder.
  • This compound was soluble in methylene chloride, toluene, THF and the like.
  • NB (produced by Hiroshima Wako) 10 g, IMT '25 g, lium carbonate 10 g, copper powder 1 g, and two-necked benzene 10 Om1 are placed in a 30 Om1 three-necked flask. The mixture was heated and stirred at 200 ° C. for 48 hours.
  • the inorganic substances were separated by filtration, and the solvent of the mother liquor was distilled off.
  • the residue was purified using a column supporting silica gel (C-200, manufactured by Hiroshima Wako Co., Ltd.) using toluene as a developing solvent to obtain 7.4 g of a pale yellow powder.
  • a transparent anode of indium tin oxide having a thickness of 75 ⁇ was provided on a glass substrate measuring 25mm x 75mm x 1.1mm.
  • the film was deposited to a thickness of 300 ⁇ .
  • a compound (MT-01) was deposited to a thickness of 200 angstroms to form a hole injection layer.
  • the deposition rate at this time was 2 angstroms / second.
  • tris (8-quinolyl) aluminum (A1q) was vapor-deposited at a deposition rate of 50 angstroms / sec to a thickness of 600 angstroms to form a light emitting layer.
  • a cathode was formed to a thickness of 2000 ⁇ by co-evaporation of aluminum and lithium. At this time, the deposition rate of aluminum was 10 angstroms / second, and the deposition rate of lithium was 0.1 angstroms / second.
  • An organic EL device was produced in the same manner as in Example 7, except that MT-02 was used instead of MT-01.
  • An organic EL device was fabricated in the same manner as in Example 7, except that MT-03 was used instead of MT-01.
  • An organic EL device was fabricated in the same manner as in Example 7, except that MT-04 was used instead of MT-01.
  • An organic EL device was fabricated in the same manner as in Example 7, except that MT-05 was used instead of MT-01.
  • An organic EL device was fabricated in the same manner as in Example 7, except that MT-06 was used instead of MT-01.
  • An organic EL device was fabricated in the same manner as in Example 7, except that NPD having the following structure was used instead of MT-001.
  • An organic EL device was fabricated in the same manner as in Example 7, except that TBA having the following structure was used instead of MT-01.
  • Table 1 summarizes the performance of the organic EL devices of Examples 1 to 12 and Comparative Examples 1 and 2.
  • the heat resistance was evaluated as a relative value (%) by evaluating the ratio of the luminous efficiency of each organic EL device to the initial luminous efficiency after storing the device in a thermostat at 100 ° C.
  • An organic EL device was prepared in the same manner as in Example 7, except that A1q was vapor-deposited at 400 ⁇ instead of A1q at 600 ⁇ , and DPVTP and DPAVBi were co-deposited at 400 ⁇ . Produced.
  • the deposition rates of DPVTP and DPAVBi were 10 angstroms / second and 0.2 angstroms / second, respectively.
  • An organic EL device was produced in the same manner as in Example 13 except that DPDAA was deposited instead of DP VTP.
  • An organic EL device was fabricated in the same manner as in Example 13 except that DPTPD was deposited instead of DP VTF.
  • An organic EL device was fabricated in the same manner as in Example 13, except that TBA having the following structure was used instead of MT-01.
  • An organic EL device was fabricated in the same manner as in Example 14 except that TBA was used instead of MT-01.
  • TBA was insoluble in solvents such as methylene chloride, toluene, and THF, so sublimation purification was performed, but impurities could not be removed. Therefore, the light emission luminance was slightly low.
  • the time required for the initial 500 nit luminance to be reduced by half was 440 hours.
  • An organic EL device was manufactured in the same manner as in Example 15 except that TBA was used instead of MT-01.
  • Table 2 summarizes the performance of the organic EL devices of Examples 13 to 15 and Comparative Examples 3 to 5.
  • the luminance half life was determined by performing quantitative driving of the initial luminance of 500 nit and measuring the time until the luminance attenuated to 250 nit.
  • Example 13 As can be seen by comparing Example 13 with Comparative Example 3, Example 14 with Comparative Example 4, and Example 15 with Comparative Example 5, a compound containing a styryl group was used in the light emitting layer.
  • Example 14 With Comparative Example 4, and Example 15 with Comparative Example 5
  • a compound containing a styryl group was used in the light emitting layer.
  • the amine compound of the present invention is used in the hole transport zone, more excellent emission luminance and luminance life are exhibited.
  • the amine compound represented by the general formula (1) of the present invention has high solubility in an organic solvent and is easily purified.
  • This amine compound is useful as a constituent material for organic EL devices, Particularly, when used in a hole transport layer, it exhibits excellent heat resistance.
  • the amine compound represented by the general formula (1) of the present invention is used as a constituent material of an organic EL device using a compound having a styryl group in a light emitting band, particularly, a light emitting layer, the light emitting luminance and the luminance lifetime Demonstrate the effect of improving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書 アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子 技術分野 ―
本発明は、 新規なアミン化合物及びそれを用いた有機エレクトロルミネッセン ス素子 (以下、 エレクト口ルミネッセンスを 「E L」 と略記する。 ) に関する。 さらに詳しくは、 本発明は、 有機 E L素子の構成材料として有用なァミン化合物 、 及びこのものを用いてなる優れた寿命を有する有機 E L素子に関するものであ る。 背景技術
有機 E L素子は完全固体素子であり、 軽量で薄型の低電圧駆動のディスプレイ や、 平面光源を作製することができるために、 現在盛んに研究が行われている。 この有機 E L素子をディスプレイなどに応用するときの課題として、 発光輝度 の低下が早いという問題点があった。 これを改良するために正孔輸送材料の改良 がなされてきている。
例えば U S P 5 , 0 6 1 , 5 6 9号公報に開示されているような縮合芳香族環 を有するァミン誘導体, Ν, Ν ' ージ (ナフチル— 1—ィル) _ N, N ' —ジフ ェニル _ 4, 4 ' —ベンジジン (以下 「N P D」 と略称する) を正孔輸送材料に 用いることにより、 発光の半減寿命が改善されることが知られている。
しかしこれらの材料はガラス転移温度 (T g ) が 1 0 0 °C前後と低く、 そのた めこれを用いた有機 E L素子を高温下で保存、 使用すると寿命が短く、 いわゆる 、 耐熱性が不充分であるという欠点があった。 また, 特開平 8— 4 8 6 5 6号公 報には置換基として少なくともビフエ二ル基を有する芳香族ジアミン誘導体を正 孔輸送材料として用いることが開示されている。 しかしながらビフエ二レン基は剛直であり、 これを有するジァミン誘導体は有 機溶媒に対する溶解度が低ため、 精製しづらいという欠点がある。 その為、 この 化合物を工業的に製造すると、 不純物を多く含んだ芳香族ジァミン誘導体となる
。 その結果、 これを用いた有機 E L素子も耐熱性が不充分であるという欠点があ つた。
また、 前記アミン誘導体を用いた有機 E L素子は、 耐熱性以外の性能、 例えば 発光輝度若しくは輝度寿命についても不充分であった。 発明の開示
本発明はこのような状況でなされたものであって、 有機溶媒に対する溶解性が 高く製造が容易な新規なァミン化合物、 及びこれを用いた耐熱性に優れた有機 E L素子、 さらにはこのァミン化合物を用いた発光輝度、 輝度寿命が優れた有機 E L素子を提供することを目的とするものである。
本発明者らは、 前記目的を達成するために鋭意研究を重ねた結果、 特定の構造 を有するアミン化合物によりその目的を達成しうることを見出し、 かかる知見に 基づいて本発明を完成したものである。 すなわち、 本発明の概要は以下の通りで ある。
〔 1〕 下記一般式 ( I ) で表されるァミン化合物。
Figure imgf000003_0001
(式中、 A r 1 、 A r 2 、 A r 3 及び A r 4 は、 それぞれ置換基を有してもよい 核原子数 5〜 3 0のァリール基を示し、 これらのうちの少なくとも 1つが、 m— ターフェニル基である。
A r 5 と A r 6 は、 それぞれ置換基を有してもよい核原子数 5 ~ 3 0のァリー レン基を示し、 Xは〇, S , 炭素数 1〜6のアルキレン基、 核原子数 5〜 3 0の ァリーレン基又はジフヱニルメチレン基を示し、 p, qはそれぞれ 0〜 3の整数 、 rは 0又は 1を示す。 但し、 p + q≥ 1である。 )
〔 2〕 ΑΓ ' 、 ΑΓ 2 、 ΑΓ 3 及び A r 4 のうちの少なく とも 1つが、 m —ターフェニル基であり、 それ以外はフヱニル基又はナフチル基である前記 〔 1
〕 に記載のアミン化合物。
〔 3〕 m—タ一フヱニル基が、 下記一般式 ( I I ) で表される基である前 記 〔 1〕 又は 〔 2〕 に記載のアミン化合物。
Figure imgf000004_0001
〔4〕 一対の電極間に挟持された有機発光層を少なくとも有する有機エレ クトロルミネッセンス素子であって、 前記 〔 1〕 〜 〔 3〕 のいずれかに記載のァ ミン化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
〔 5〕 前記 〔 1〕 〜 〔 3〕 のいずれかに記載のアミン化合物を正^ ^輸送帯 域に含有させてなることを特徴とする前記 〔4〕 に記載の有機エレクトロルミネ ッセンス素子。
〔 6〕 前記 〔 1〕 〜 〔 3〕 のいずれかに記載のァミン化合物を正孔輸送層 に含有させてなることを特徴とする前記 〔4〕 に記載の有機エレクトロルミネッ センス素子。
〔 7〕 有機発光帯域に、 下記一般式(111) 〜 (V) で表されるスチリル基 を有する芳香族化合物のいずれかを含有する前記 〔4〕 ~ 〔6〕 のいずれかに記 載の有機エレクトロルミネッセンス素子。
Figure imgf000004_0002
W
〔一般式(ill) 中、 Ar7 は、 置換基を有してもよい核原子数が 5〜40の芳香 族基であり、 Ar8 、 Ar 9 及び Ar 1Dは、 それぞれ水素原子又は置換基を有し てもよい核原子数が 5〜 30のァリ—ル基であり、 Ar 8 、 Ar 9 及び A r 10の 少なくとも一つは置換基を有してもよいァリ—ル基であり、 nは 1〜 6の整数で ある。 〕
Figure imgf000005_0001
〔一般式(IV)中、 Ar 11は、 置換基を有してもよい核原子数が 5〜 30の芳香族 基であり、 Ar 12および Ar 13は、 それぞれ水素原子又は置換基を有してもよい 核原子数が 5〜30のァリール基であり、 Ar ''、 Ar 12及び Ar 13の少なくと も一つは置換基を有してもよいスチリル基で置換されており、 mは 1〜6の整数 である。 〕
Ar"- Ar 20 (V)
Figure imgf000005_0002
〔一般式 (V) 中、 Ar 14及び Ar2°は、 それぞれ置換基を有してもよい核原子 数が 5〜30のァリール基であり、 Ar 15〜Ar 19は、 それぞれ水素原子又は置 換基を有してもよい核原子数が 5〜 30の芳香族基であり、 Ar 15〜Ar 19の少 なくとも一つは置換基を有してもよいスチリル基で置換されており、 s , t , u 及び Vはそれぞれ 0又は 1である。 〕 発明を実施するための最良の形態
本発明の有機化合物は、 一般式 ( I )
Figure imgf000005_0003
で表される構造を有する化合物である。
そして、 上記一般式 ( I ) において、 A r 1 、 A r 2 、 A r 3 及び A r 4 はそ れぞれ置換基を有してもよい核原子数 5〜3 0のァリール基を示し、 これらのう ちの少なくとも 1つが置換基を有してもよい m—ターフェニル基である。
この核原子数 5 ~ 3 0のァリール基の具体例としては、 フヱニル基、 ビフヱ二 ル基、 ナフチル基、 アントラニル基、 タ一フエニル基、 フエナンスリル基、 ピレ ニル基、 クリセ二ル基、 ピロ一リル基、 フラニル基、 チオフェニル基、 ォキサゾ リル基、 ォキサジァゾリル基、 ベンゾフラニル基、 カルバゾリル基、 イソべンゾ 1 5ニル基、 キノリル基、 ピリミジニル基、 キノキサニル基等が挙げられる。 な かでもフエニル基、 ナフチル基、 ビフエ二ル基、 アントラニル基、 フエナンスリ ル基、 夕ーフヱニル基が好適に用いられ、 中でも特に、 フヱニル基又はナフチル 基が好ましいる。
上記 A r 1 、 Α Γ 2 、 A r 3 及び A r 4 は、 互いに同一であってももよく、 異 なっていてもよいが、 A r 1 、 A r 2 、 A r 3 及び A r 4 の中の少なくとも 1つ が置換基を有してもよい m—夕一フヱニル基でなければならない。
本発明の一般式 ( I ) のァミン化合物に存在する m—ターフユニル基は、 3個 の非縮合ベンゼン環からなり、 中央のベンゼン環に対し他の 2つのベンゼン環が m (メタ) の位置に結合し形成された m—夕一フヱニルより水素原子を一個除き 得られた 1価の基である。
従って m—ターフェニルは、 一般式 (Π ' ) で表される。 この m—夕一フエ二 ルと N原子との結合手の位置はさまざまあるが、 一般式 (1 ) で 3、 4、 5、 2 ' 又は 5 ' の位置のものが入手し易い。 また、 これらのうちでも特に、 結合手 の位置が 4のもの, 即ち一般式 (I I) で表される m—夕一フユニル基が本発明の ァミン化合物を製造するのが容易である点で好適である。
なお、 この m—ターフェニル基が置換基を有していてもよいことは、 前述の通 りである。
Figure imgf000007_0001
次いで、 一般式 ( I ) において、 Ar5 と ΑΓ 6 は、 それぞれ置換基を有して もよい核原子数 5〜 30のァリ一レン基を示す。 この核原子数 5〜 30のァリー レン基の具体例としては、 フヱニレン基、 ビフヱ二レン基、 ナフチレン基、 アン トラニレン基、 ターフェ二レン基、 フヱナンスリレン基、 ピレニレン基、 クリセ 二レン基、 フルォレニレン基、 ピローリレン基、 フラニレン基、 チォフエ二レン 基、 ォキサゾリレン基、 ォキサジァゾリレン基、 ベンゾフラ二レン基、 カルバゾ リレン基、 イソべンゾフラニレン基等が挙げられる。
そして、 これら Ar 1 〜Ars が有していてもよい置換基としては、 炭素数 1 〜 6のアルキル基、 核原子数 5〜 3 0のァリール基、 炭素数 8〜 30のスチリル 基、 炭素数 1〜6のアルコキシ基、 炭素数 5〜 1 8のァリールォキシ基、 炭素数 7〜 1 8のァラルキルォキシ基, 炭素数 5〜 1 6のァリール基で置換されたアミ ノ基、 ニトロ基、 シァノ基、 炭素数 1〜 6のエステル基、 ハロゲン原子などであ る。
ここで、 炭素数 1〜6のアルキル基の例としては、 メチル基、 ェチル基、 プロ ピル基、 ィソプロピル基、 n—ブチル基、 s e c—ブチル基、 t e r t—ブチル 基、 n—ペンチル基、 n—へキシル基、 シクロペンチル基、 シクロへキシル基な どが挙げられ、 また、 核原子数 5〜3 0のァリール基としては、 前述の Ar 1 〜 A r 4 の説明で例示したものと同じものが挙げられる。 炭素数 8〜3 0のスチリル基としては、 1 一フエ二ルビニル一 1 —ィル、 2— フエ二ルビニル一 1—ィル、 2, 2—ジフヱ二ルビ二ルー 1—ィル、 2—フエ二 ルー 2 — (ナフチル一 1—ィル) ビニル一 1—ィル、 2 , 2 —ビス (ジフヱニル — 1 一ィル) ビュル一 1—ィル基などが挙げられる。 特に 2 , 2 _ジフヱ二ルビ 二ルー 1—ィル基が好適である。
炭素数 1〜 6のアルコキシ基の例としては、 メ トキシ基、 エトキシ基、 プロボ キシ基、 イソプロポキシ基、 n—ブトキシ基、 s e c—ブトキシ基、 t e r t— ブトキシ基、 n—ペンチルォキシ基、 n—へキシルォキシ基, シクロペンチルォ キシ基、 シクロへキシルォキシ基などが挙げられる。
炭素数 5〜 1 8のァリールォキシ基の例としては、 フヱノキシ基, ビフヱニル ォキシ基、 トリルォキシ基, ナフチルォキシ基、 アントラニルォキシ、 フエナン スリルォキシ、 夕一フエニルォキシ、 ピレニルォキシ、 クリセニルォキシ、 ピロ 一リルォキシ、 フラニルォキシ、 チォフ ニルォキシ、 ォキサゾリルォキシ、 ォ キサジァゾリルォキシ、 ベンゾフラニルォキシ、 力ルバゾリルォキシ、 イソベン ゾフラニルォキシ、 キノリルォキシ、 ピリミジニルォキシ、 キノキサリルォキシ 基等が挙げられる。
炭素数 7〜 1 8のァラルキルォキシ基の例としては、 ベンジルォキシ基, フエ ネチルォキシ基, ナフチルメ トキシ基などが、 炭素数 5〜 1 6のァリール基で置 換されたァミノ基の例としては、 ジフエニルァミノ基, ジナフチルァミノ基, ナ フチルフヱニルァミノ基、 ジトリルァミノ基などが、 炭素数 1〜 6のエステル基 の例としては、 メ トキシカルボニル基, エトキシカルボニル基, プロポキシカル ボニル基, イソプロポキシカルボニル基などが、 ハロゲン原子の例としては、 フ ッ素原子, 塩素原子, 臭素原子などが挙げられる。
なお、 これらの置換基は環を形成して置換してもよく、 また、 置換基が隣接し て 2以上含まれている場合、 これらの置換基は結合して環状構造をなしてもよい 上記、 一般式 ( I ) において Xは、 0, S, メチレン基、 エチレン基、 n—プ ロピレン基、 ィソフ。口ピレン基、 シクロプロピレン基など炭素数 1〜 6のアルキ レン基、 核原子数 5〜 30のァリーレン基、 又はジフヱニルメチレン基を示す。 但し、 ジフヱニルメチレン基は炭素数 1〜 6のアルキルまたはアルコキシ基で置 換されていても良く、 アルキルまたはアルコキシ基の具体例は、 上述 (Ar ' 〜 Ar 6 が有してもよい置換基) に例示したものと同じものが挙げられる。 なお、 rは 0又は 1を示す。 また、 ァリーレン基の具体例としては、 前記 Ar5 と Ar 6 で挙げたものと同様のものが挙げられる。
また、 上記、 一般式 ( I ) において、 p、 qは 0~3の整数であるが、 p + q ≥ 1である。
前記一般式 ( I ) で表されるァミン化合物としては、 例えば、
Figure imgf000009_0001
MT - 01 MT-02
Figure imgf000009_0002
MT-03 乙 0—丄 ΙΛΙ
Figure imgf000010_0001
90—丄 ΙΛΙ S 0—丄 W
Figure imgf000010_0002
170—丄 W
Figure imgf000010_0003
9S990/00df/I3d ΉΖΖΙ\9 O .
Figure imgf000011_0001
MT~08
Figure imgf000011_0002
MT- 1 1
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
MT— 1 5
Figure imgf000013_0001
T - 1 6 で表される化合物を挙げることができる。
なお、 本発明の一般式 ( I ) で表されるアミン化合物の製造方法としては特に 制限はなく様々な方法を用いることができ、 例えば、 ウルマン反応とグリニャ一 ル反応を組み合わせれば所望のァミン化合物を製造することができる。
次に、 本発明の有機 E L素子は、 一対の電極間に挟持された有機発光層を少な くとも有する素子であって、 その素子としては、 発光帯域、 特に正孔輸送層に前 記アミン化合物を含有させたものが好適である。
この有機 E L素子の代表的な素子構成としては、
( 1 ) 陽極/発光層/陰極
( 2 ) 陽極/正孔注入層/発光層/陰極
( 3 ) 陽極/発光層/電子注入層/陰極
( 4 ) 陽極/正孔注入層/発光層/電子注入層/陰極
( 5 ) 陽極/有機半導体層/発光層 Z陰極
( 6 ) 陽極/有機半導体層/電子障壁層/発光層/陰極
( 7 ) 陽極/有機半導体層/発光層/付着改善層/陰極
( 8 ) 陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
( 9 ) 陽極/絶縁層/発光層/絶縁層/陰極
( 1 0 ) 陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極 ( 1 1) 陽極/有機半導体層/絶縁層/発光層 z絶縁層/陰極
( 1 2) P募極/絶縁層/正孔注入層/正孔輸送層 Z発光層/絶縁層/陰極
( 1 3) 陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層 Z陰極 などを挙げることができるが、 もちろんこれらに限定されるものではない。
これらの素子構成の中では、 通常 (8) の構成のものが好ましく用いられる。 そして、 前記一般式 ( I ) で表されるァミン化合物は、 これらの構成要素の中の 主として正孔輸送帯域に含有させたものが好適に用いられる。
正孔輸送帯域とは、 正孔 (ホール) が移動する領域をいい、 具体的には、 正孔 注入層、 正孔輸送層などをいう。
この正孔輸送帯域での上記アミン化合物の含割合は、 正孔輸送帯域の全分子に 対し 30〜1 00モル%であるものが好適である。
この有機 EL素子は、 通常透光性の基板上に作製する。 ここでいう透光性基板 は有機 E L素子を支持する基板であり、 400〜 700 nmの可視領域の光の透 過率が 50%以上で、 平滑な基板が好ましい。
このような透光性基板としては、 例えば、 ガラス板、 ポリマー板等が用いられ る。 ガラス板としては、 特にソ一ダ石灰ガラス、 バリウム 'ストロンチウム含有 ガラス、 鉛ガラス、 アルミノゲイ酸ガラス、 ホウゲイ酸ガラス、 ノ リウムホウケ ィ酸ガラス、 石英等が挙げられる。 またポリマー板としては、 ポリカーボネート 、 アクリル、 ポリエチレンテレフタレ一ト、 ポリエーテルサルファイ ド、 ポリサ ルフォン等を挙げることができる。
次に、 陽極としては、 仕事関数の大きい (4 e V以上) 金属、 合金、 電気伝導 性化合物またはこれらの混合物を電極物質とするものが好ましく用いられる。 こ のような電極物質の具体例としては、 A u等の金属、 Cu l n、 I TO. S ηθ 2 、 ZnO等の導電性材料が挙げられる。
陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成さ せることにより作製することができる。 このように発光層からの発光を陽極から取り出す場合、 陽極の発光に対する透 過率が 1 Oo/oより大きくすることが好ましい。 また陽極のシート抵抗は、数百 Ω /口以下が好ましい。 陽極の膜厚は材料にもよるが、 通常 1 0 ηπ!〜 1 、 好 ましくは 1 0〜2 0 0 nmの範囲で選択される。
本発明の有機 E L素子の発光層としては以下の機能を併せ持つものでが好適で ある。
( 1 ) 注入機能;電界印加時に陽極または正孔注入層より正孔を注入することが でき、 陰極または電子注入層より電子を注入することができる機能
( 2) 輸送機能;注入した電荷 (電子と正孔) を電界の力で移動させる機能
( 3 ) 発光機能;電子と正孔の再結合の場を提供し、 これを発光につなげる機能 但し、 正孔の注入されやすさと電子の注入されやすさに違いがあってもよく、 また正孔と電子の移動度で表される輸送能に大小があってもよいが、 どちらか一 方の電荷を移動することが好ましい。
【 0 0 5 5】
有機 E L素子の発光材料は主に有機化合物であり、 具体的には所望の色調によ り次のような化合物が用いられる。 例えば、 紫外域から紫色の発光を得る場合に は、 下記の一般式 (V I ) で表される化合物が好適に用いられる。
<VI)
Figure imgf000015_0001
(式中、 Xは下記一般式
Figure imgf000015_0002
(aは 2 , 3 , 4 , または 5を示し、 Yは
Figure imgf000015_0003
を表す。 .
この一般式 (V I ) で表される化合物におけるフヱニル基、 フヱニレン基、 ナ フチル基には、 炭素数 1〜4のアルキル基、 アルコキシ基、 水酸基、 スルホニル 基、 カルボニル基、 アミノ基、 ジメチルァミノ基またはジフエ二ルァミノ基等が 単独または複数置換したものであってもよい。 また、 これらは互いに結合し、 飽 和 5員環、 6員環を形成してもよい。 さらに、 この化合物はフヱニル基、 フヱニ レン基、 ナフチル基にパラ位で結合したものが結合性が良く、 平滑な蒸着膜の形 成のために好ましい。 上記一般式 (V I ) で表される化合の具体例を示せば下記 の通りである。
これらの中では、 特に p —クォータ一フエニル誘導体、 p —クインクフヱニル 誘導体が好ましい。
Figure imgf000016_0001
Figure imgf000017_0001
これらの中では、 特に p—クオ一タ一フヱニル誘導体、 p—クインクフエニル 誘導体が好ましい。
次に, 青色から緑色の発光を得るためには、 例えばべンゾチアゾ一ル系、 ベン ゾイミダゾ一ル系、 ベンゾォキサゾ一ル系等の蛍光増白剤、 金属キレート化ォキ シノィ ド化合物、 スチリルベンゼン系化合物を用いることができる。
これらの化合物の具体的としては、 例えば特開昭 5 9 - 1 94 3 9 3号公報に 開示されているものを挙げることができる。 さらに他の有用な化合物はケミスト リ一 ·ォブ · シンセテイツク · ダイズ 1 97 1 , 6 28〜 6 3 7頁および 64 0 頁に列挙されている。
前記キレート化ォキシノィ ド化合物としては、 例えば特開昭 6 3 - 2 956 9 5号公報に開示されているものを用いることができる。 その代表例としては、 ト リス ( 8—キノリノール) アルミニウム (以下 A 1 qと略記する) 等の 8—ヒド 口キシキノリン系金属錯体ゃジリチウムェピントリジオン等を挙げることができ る。
また、 前記スチリルベンゼン系化合物としては、 例えば欧州特許第 0 3 1 9 8 8 1号明細書や欧州特許第 0 37 3 5 82号明細書に開示されているものを用い ることができる。 そして、 特開平 2 - 2 52 79 3号公報に開示されているジス チリルビラジン誘導体も発光層の材料として用いることができる。 このほか、 例 えば欧州特許第 0 3 877 1 5号明細書に開示されているポリフエニル系化合物 も発光層の材料として用いることもできる。
さらに、 上述した蛍光増白剤、 金属キレート化ォキシノィ ド化合物およびスチ リルべンゼン系化合物等以外に、 例えば 1 2—フタ口ペリノン ( J . A p p 1. Phy s.,第 2 7卷, L 7 1 3 ( 1 9 88年) ) 、 1, 4—ジフエニル— 1, 3 —ブタジエン、 1 , し 4 , 4—テトラフヱ二ルーし 3 _ブタジエン (以上 A P P 1. Phy s. L e t t.,第 5 6卷, L 79 9 ( 1 9 9 0年) ) 、 ナフタル ィミ ド誘導体 (特開平 2— 30 5 8 8 6号公報) 、 ペリレン誘導体 (特開平 2— 1 8 9 8 9 0号公報) 、 ォキサジァゾ一ル誘導体 (特開平 2— 2 1 6 7 9 1号公 報、 または第 3 8回応用物理学関係連合講演会で浜田らによって開示されたォキ サジァゾ一ル誘導体) 、 アルダジン誘導体 (特開平 2— 2 2 0 3 9 3号公報) 、 ビラジリン誘導体 (特開平 2 _ 2 2 0 3 9 4号公報) 、 シクロペンタジェン誘導 体 (特開平 2— 2 8 9 6 7 5号公報) 、 ピロ口ピロール誘導体 (特開平 2— 2 9 6 8 9 1号公報) 、 スチリルァミン誘導体 (Ap p 1. Phy s. L e t t.,第 5 6卷, L 7 9 9 ( 1 9 9 0年) 、 クマリン系化合物 (特開平 2— 1 9 1 6 9 4 号公報) 、 国際特許公報 W〇 9 0 / 1 3 1 4 8や Ap p 1. Ph y s. L e t t v o 1 5 8, 1 8, P 1 9 8 2 ( 1 9 9 1 ) に記載されているような高分子化 合物等も、 発光層の材料として用いることができる。
さらに、 発光層の材料として、 芳香族ジメチリディン系化合物 (欧州特許第 0 3 8 8 7 6 8号明細書ゃ特開平 3— 2 3 1 9 7 0号公報に開示のもの) を用いる こともできる。 具体例としては、 4, 4 ' —ビス ( 2 , 2—ジ一 t—ブチルフエ 二ルビニル) ビフエ二ル (以下、 「DTBPBB i」 と略記する) 、 4 , 4 ' _ ビス ( 2 , 2—ジフヱ二ルビニル) ビフヱニル (以下 「DPVB i」 と略記する ) 等、 およびそれらの誘導体を挙げることができる。
さらに、特開平 5— 2 5 8 86 2号公報等に記載されている一般式 (Rs— Q ) z — A 1— O— Lで表される化合物も挙げられる。 上記式中、 Lはフヱニル部 分を含んでなる炭素原子 6〜 2 4個の炭化水素であり、 0— Lはフヱノラート配 位子であり、 Qは置換 8—キノリノラート配位子を表し、 R sはアルミニウム原 子に置換 8—キノリノラート配位子が 2個を上回り結合するのを立体的に妨害す るように選ばれた 8—キノリノラート環置換基を表す。 具体的には、 ビス (2— メチル一 8 _キノリノラート) (パラ一フエニルフエノラート) アルミニウム ( I I I ) 、 ビス ( 2—メチル一 8—キノリノラート) ( 1一ナフトラ一ト) アル ミニゥム ( I I I ) 等が挙げられる。
そのほか、 特開平 6— 9 9 5 3号公報等によるドーピングを用いた高効率の青 色と緑色の混合発光を得る方法が挙げられる。 この場合、 ホストとしては上記の 発光材料、 ドーパントとしては青色から緑色までの強い蛍光色素、 例えばクマリ ン系あるいは上記のホストとして用いられているものと同様な蛍光色素を挙げる ことができる。 具体的にはホストとして、 ジスチリルァリーレン骨格の発光材料
、 特に好ましくは DPVB i、 ドーパントとしてはジフエニルアミノビニルァリ —レン、 特に好ましくは例えば N, N—ジフエ二ルアミノビニルベンゼン (DP AVB) を挙げることができる。
白色の発光を得る発光層としては特に制限はないが、 下記のものを用いること ができる。
( 1 ) 有機 E L積層構造体の各層のエネルギー準位を規定し、 トンネル注入を利 用して発光させるもの (欧州特許第 0 3 9 0 5 5 1号公報)
( 2 ) ( 1 ) と同じく トン ル注入を利用する素子で実施例として白色発光素子 が記載されているもの (特開平 3— 2 3 0 5 8 4号公報)
( 3) 二層構造の発光層が記載されているもの (特開平 2— 2 2 0 3 9 0号公報 および特開平 2— 2 1 6 7 9 0号公報)
(4 ) 発光層を複数に分割してそれぞれ発光波長の異なる材料で構成されたもの (特開平 4一 5 1 4 9 1号公報)
( 5 ) 青色発光体 (蛍光ピーク 3 8 0〜4 8 0 nm) と緑色発光体 ( 4 80〜 5 80 nm) とを積層させ、 さらに赤色蛍光体を含有させた構成のもの (特開平 6 - 2 0 7 1 7 0号公報)
(6 ) 青色発光層が青色蛍光色素を含有し、 緑色発光層が赤色蛍光色素を含有し た領域を有し、 さらに緑色蛍光体を含有する構成のもの (特開平 7— 1 4 2 1 6 9号公報)
これらの中では、 ( 5 ) の構成のものが特に好ましく用いられる。
さらに、 赤色蛍光体としては、 下記に示すものが好適に用いられる。
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0003
本発明の一般式 ( I ) のアミン化合物を正孔輸送層などの正孔輸送層帯域に使 用する場合においては、 発光材料はあらゆるものが使用できる。 しかしながら、 発光材料が青色から緑色の発光材料を用いる場合に特に好適であり、 特に、 分子 内にスチリル基を有する化合物を使用する場合に顕著な相乗有効が認められ、 中 でも下記の一般式 (ΙΠ)〜 (V) で表されるスチリル基を有する芳香族化合物の いずれかを含む場合に、 輝度が高く、 長寿命を実現する効果が発現される。 なお、 これらのスチリル基を有する芳香族化合物は通常発光層で使用するが、 これを発光層以外の発光帯域、 具体的には正孔注入層、 正孔輸送層、 電子注入層 などに使用した場合も同様の効果が得られる。
A
Figure imgf000022_0001
この一般式(Π I) 中、 Ar7 は、 置換基を有してもよい核原子数が 5〜40の 芳香族基であり、 Ar8 、 Ar9 及び Ar1Dは、 それぞれ水素原子又は置換基を 有してもよい核原子数が 5〜30のァリール基であり、 Ar 8 、 Ar 9 及び A r 10の少なくとも一つは置換基を有してもよいァリール基であり、 nは 1〜6の整 数である。 また、 ノ Ar 12
Ar N: (IV)
、Ar1: m この一般式(IV)中、 Ar '1は、 置換基を有してもよい核原子数が 5〜30の芳 香族基であり、 Ar 12および Ar 13は、 それぞれ水素原子又は置換基を有しても よい核原子数が 5〜 30のァリ—ル基であり、 Ar 1 '、 Ar 12及び入 13の少な くとも一つは置換基を有してもよいスチリル基で置換されており、 mは 1〜6の 整数である。 また、
Figure imgf000022_0002
この一般式 (V) 中、 Ar "及び Ar 2。は、 それぞれ置換基を有してもよい核 原子数が 5〜3 0のァリ—ル基であり、 Ar 15〜Ar 19は、 それぞれ水素原子又 は置換基を有してもよい核原子数が 5〜 30の芳香族基であり、 Ar 15〜Ar 19 の少なくとも一つは置換基を有してもよいスチリル基で置換されており s, t, u及び Vはそれぞれ 0又は 1である。
上記、 一般式 (1Π)〜 (V) 中の核原子数が 5〜3 0のァリール基の具体例は 、 前述の一般式 ( I ) の Ar 1 〜Ar4 の説明で例示したものと同じものを挙げ ることができる。 また、 一般式 (ΠΙ)〜 ( I V) 中の核原子数が 5〜3 0の芳香 族基は、 n, mに対応して 1〜 6価を有する芳香族基であり、 その具体例は、 1 価の芳香族基である前記核原子数が 5〜 30のァリール基の例示化合物及びこれ に対応する 2から 6価の化合物が挙げられる。
そして、 Ar 7 〜Ar 2。が有してもよい置換基についても一般式 ( I ) の Ar 1 〜Ar 6 が有してもよい置換基の例示と同じであり、 この場合も、 置換基が二 つ以上置換されている時、 これらの置換基が互いに結合し、 環を形成していても 良い。
上記一般式 (ΠΙ)〜 (V) で表される代表的化合物としては、 下記の 4, 4" —ビス ( 2, 2—ジフエ二ルービュル一 1 _ィル) 一ρ—夕一フエ二レン (以下 「DPVTP」 と略称する) 、 4 , 4 ' —ビス ( 2— ( 4 - (N, N—ジフエ二 Jレアミ ノ) フエニル) 一ビニル一 1—ィル) ビフエ二レン (以下 「DPAVB i 」 と略称する) 、 9, 1 0—ビス (N— (4 - ( 2, 2—ジフエ二ル) 一ビニル - 1 f ル) フエニル) 一N—フヱニル) アミノアントラセン (以下 「DPDA A」 と略称する) , N, N' —ビス ( 4— ( 2 , 2 _ジフヱニル) ービニル一 1 —ィル) フエニル一 N, N' —ジフエ二ルー 4 , 4, 一ベンジジン (以下 「DP TPD」 と略 ¾ ^する) が挙げられる。
Figure imgf000024_0001
DPVTP
Figure imgf000024_0002
DPAVBi
Figure imgf000024_0003
DPDAA
Figure imgf000024_0004
DPTPD
次に、 上記材料を用いて発光層を形成する方法としては、 例えば蒸着法、 スピ ンコート法、 L B法等の公知の方法を適用することができる。 発光層は、 特に分 子堆積膜であることが好ましい。 ここで分子堆積膜とは、 気相状態の材料化合物 から沈着され形成された薄膜や、 溶液状態または液相状態の材料化合物から固体 化され形成された膜のことであり、 通常この分子堆積膜は、 L B法により形成さ れた薄膜 (分子累積膜) とは凝集構造、 高次構造の相違や、 それに起因する機能 的な相違により区分することができる。
また、 特開昭 5 7 - 5 1 7 8 1号公報に開示されているように、 樹脂等の結着 剤と材料化合物とを溶剤に溶かして溶液とした後、 これをスピンコート法等によ り薄膜化することによつても、 発光層を形成することができる。
このようにして形成される発光層の膜厚については特に制限はなく、 状況に応 じて適宜選択することができるが、 通常 5 η π!〜 の範囲が好ましい。 この 発光層は、 上述した材料の一種または二種以上からなる一層で構成されてもよい し、 または前記発光層とは別種の化合物からなる発光層を積層したものであって もよい。
次に、 正孔注入、 輸送層は、 発光層への正孔注入を助け、 発光領域まで輸送す る層であって、 正孔移動度が大きく、 イオン化エネルギーが通常 5 . 5 e V以下 と小さい。 このような正孔注入、 輸送層としてはより低い電界強度で正孔を発光 層に輸送する材料が好ましく、 さらに正孔の移動度が、 例えば 1 0 4〜 1 0 6 V / c mの電界印加時に、 少なくとも 1 0— 4 c m2 / V ·秒であれば好ましい。 本発明の一般式 ( I ) で表されるアミン化合物は、 この正孔注入、 輸送材料と して用いることが好ましい。 本発明の化合物単独で正孔注入、 輸送層を形成して も良いし、 他の材料と混合して用いても良い。
本発明の一般式 ( I ) で表されるアミン化合物と混合して正孔注入、 輸送層を 形成する材料としては、 前記の好ましい性質を有するものであれば特に制限はな く、 従来、 光導伝材料において正孔の電荷輸送材料として慣用されているものや 、 E L素子の正孔注入層に使用される公知のものの中から任意のものを選択して 用いることができる。 このような正孔注入、 輸送層の形成材料としては、 具体的には、 例えば、 トリ ァゾール誘導体 (米国特許 3, 1 1 2, 1 97号明細書等参照) 、 ォキサジァゾ ール誘導体 (米国特許 3 , 1 89, 447号明細書等参照) 、 ィミダゾ一ル誘導 体 (特公昭 37— 1 6096号公報等参照) 、 ポリアリ一ルアルカン誘導体 (米 国特許 3, 6 1 5, 402号明細書、 同第 3 , 820, 989号明細書、 同第 3 , 542, 544号明細書、 特公昭 4 5— 555号公報、 同 5 1— 1 0983号 公報、 特開昭 5 1— 93224号公報、 同 55— i 7 1 05号公報、 同 56— 4 148号公報、 同 55— 1 08667号公報、 同 55— 1 56953号公報、 同 56 - 36656号公報等参照) 、 ビラゾリン誘導体およびピラゾロン誘導体 ( 米国特許第 3 , 1 80, 729号明細書、 同第 4 , 278, 746号明細書、 特 開昭 55— 88064号公報、 同 55— 88065号公報、 同 49— 10553 7号公報、 同 55— 5 1 086号公報、 同 56— 800 5 1号公報、 同 56— 8 81 4 1号公報、 同 57— 4554 5号公報、 同 54— 1 1 2637号公報、 同
55 - 74546号公報等参照) 、 フユ二レンジアミン誘導体 (米国特許第 3 ,
6 1 5 , 404号明細書、 特公昭 5 1— 10 105号公報、 同 46— 37 1 2号 公報、 同 47— 25336号公報、 特開昭 54— 534 35号公報、 同 54— 1
10536号公報、 同 54— 1 1 9925号公報等参照) 、 ァリールァミン誘導 体 (米国特許第 3, 567, 450号明細書、 同第 3, 1 80 , 703号明細書 、 同第 3, 240, 597号明細書、 同第 3 , 658, 520号明細書、 同第 4
, 232, 1 03号明細書、 同第 4 , 1 75, 96 1号明細書、 同第 4, 0 1 2 , 376号明細書、 特公昭 49— 35702号公報、 同 39— 27577号公報 、 特開昭 55— 1 44250号公報、 同 56— 1 1 9 1 32号公報、 同 56— 2
24 37号公報、 西独特許第 1, 1 1 0, 5 1 8号明細書等参照) 、 ァミノ置換 カルコン誘導体 (米国特許第 3, 526, 50 1号明細書等参照) 、 ォキサゾー ル誘導体 (米国特許第 3, 257, 203号明細書等に開示のもの) 、 スチリル アントラセン誘導体 (特開昭 56 - 46234号公報等参照) 、 フルォレノン誘 導体 (特開昭 5 4 - 1 1 0 8 3 7号公報等参照) 、 ヒドラゾン誘導体 (米国特許 第 3 , 7 1 7 , 4 6 2号明細書、 特開昭 5 4— 5 9 1 4 3号公報、 同 5 5— 5 2
0 6 3号公報、 同 5 5— 5 2 0 6 4号公報、 同 5 5 _ 4 6 7 6 0号公報、 同 5 5 - 8 5 4 9 5号公報、 同 5 7— 1 1 3 5 0号公報、 同 5 7— 1 4 8 7 4 9号公報 、 特開平 2— 3 1 1 5 9 1号公報等参照) 、 スチルベン誘導体 (特開昭 6 1 一 2
1 0 3 6 3号公報、 同第 6 1— 2 2 8 4 5 1号公報、 同 6 1— 1 4 6 4 2号公報 、 同 6 1— 7 2 2 5 5号公報、 同 6 2— 4 7 6 4 6号公報、 同 6 2— 3 6 6 7 4 号公報、 同 6 2— 1 0 6 5 2号公報、 同 6 2— 3 0 2 5 5号公報、 同 6 0— 9 3
4 5 5号公報、 同 6 0— 9 4 4 6 2号公報、 同 6 0— 1 7 4 7 4 9号公報、 同 6 0 - 1 7 5 0 5 2号公報等参照) 、 シラザン誘導体 (米国特許第 4, 9 5 0 , 9
5 0号明細書) 、 ポリシラン系 (特開平 2— 2 0 4 9 9 6号公報) 、 ァニリン系 共重合体 (特開平 2— 2 8 2 2 6 3号公報) 、 特開平 1 一 2 1 1 3 9 9号公報に 開示されている導電性高分子オリゴマー (特にチオフユンオリゴマー) 等を挙げ ることができる。
正孔注入層の材料としては上記のものを使用することができるが、 ポルフィリ ン化合物 (特開昭 6 3 - 2 9 5 6 9 6 5号公報等に開示のもの) 、 芳香族第三級 ァミン化合物およびスチリルアミン化合物 (米国特許第 4 , 1 2 7 , 4 1 2号明 細書、 特開昭 5 3— 2 7 0 3 3号公報、 同 5 4— 5 8 4 4 5号公報、 同 5 4— 1
4 9 6 3 4号公報、 同 5 4— 6 4 2 9 9号公報、 同 5 5 _ 7 9 4 5 0号公報、 同
5 5 - 1 4 4 2 5 0号公報、 同 5 6— 1 1 9 1 3 2号公報、 同 6 1— 2 9 5 5 5 8号公報、 同 6 1 _ 9 8 3 5 3号公報、 同 6 3— 2 9 5 6 9 5号公報等参照) 、 特に芳香族第三級ァミン化合物を用いることもできる。
また、 米国特許第 5, 0 6 1 , 5 6 9号に記載されている 2個の縮合芳香族環 を分子内に有する、 例えば 4, 4 ' —ビス (N— ( 1—ナフチル) — N—フヱニ ルァミノ) ビフヱニル (以下 「N P D」 と略記する) 、 また特開平 4 - 3 0 8 6 8 8号公報に記載されているトリフヱニルアミンュニッ 卜が 3つスターバースト 型に連結された 4, 4, , 4 " —トリス (N— ( 3—メチルフエニル) 一 N—フ ヱニルァミノ) トリフエニルァミン (以下 「M T D A T A」 と略記する) 等を挙 げることができる。
さらにまた、 発光層の材料として示した前述の芳香族ジメチリディン系化合物 の他、 p型 S i、 p型 S i C等の無機化合物も正孔注入層の材料として使用する ことができる。
正孔注入、 輸送層を形成するには、 上述した化合物を、 例えば真空蒸着法、 ス ピンコート法、 キャスト法、 L B法等の公知の方法により薄膜化すればよい。 こ の場合、 正孔注入、 輸送層としての膜厚は特に制限はないが、通常は 5 n m〜 5 である。 この正孔注入、 輸送層は正孔輸送帯域に本発明の化合物を含有して いれば、 上述した材料の 1種または 2種以上からなる一層で構成されてもよいし 、 または前記正孔注入、 輸送層とは別種の化合物からなる正孔注入、 輸送層を積 層したものであってもよい。
また, 有機半導体層は発光層への正孔注入または電子注入を助ける層であって 、 1 0— 1 0 S / c m以上の導電率を有するものが好適である。 このような有機 半導体層の材料としては、 含チオフヱンォリゴマ一ゃ特開平 8— 1 9 3 1 9 1号 公報に開示してある含ァリールアミンオリゴマー等の導電性オリゴマー、 含ァリ —ルアミンデンドリマー等の導電性デンドリマ一等を用いることができる。 次に、 電子注入層は発光層への電子の注入を助ける層であって、 電子移動度が 大きく、 また付着改善層は、 この電子注入層の中で特に陰極との付着が良い材料 からなる層である。 電子注入層に用いられる材料としては、 8—ヒドロキシキノ リンまたはその誘導体の金属錯体が好適である。 上記 8—ヒドロキシキノリンま たはその誘導体の金属錯体の具体例としては、 ォキシン (一般に 8—キノリノ一 ルまたは 8—ヒドロキシキノリン) のキレートを含む金属キレートォキシノィ ド 化合物が挙げられ、 例えば発光材料の項で記載した A 1 qを電子注入層として用 いることができる。 一方ォキサジァゾール誘導体としては、 以下の一般式で表される電子伝達化合 物が挙げられる。
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0003
(式中、 Ar21, Ar22, Ar23, Ar24, Ar25, A r 26はそれぞれ置換を有 してもよいァリール基を示し、 それぞれ互いに同一であっても異なっていてもよ い。 また Ar24, Ar27, Ar 28は置換を有してもよいァリ一レン基を示し、 そ れぞれ同一であっても異なっていてもよい)
これら一般式におけるァリール基としては、 フエニル基、 ビフヱニル基、 アン トラニル基、 ペリレニル基、 ピレニル基が挙げられる。 また、 ァリーレン基とし てはフエ二レン基、 ナフチレン基、 ビフエ二レン基、 アントラニレン基、 ペリレ 二レン基、 ピレニレン基などが挙げられる。 またこれらへの置換基としては炭素 数 1〜 1 0のアルキル基、 炭素数 1〜 1 0のアルコキシ基またはシァノ基等が挙 げられる。 この電子伝達化合物は薄膜形成性の良好なものが好ましく用いられる そしてこれら電子伝達性化合物の具体例としては、 下記のものを挙げることが できる。
Figure imgf000030_0001
また、 アルカリ金属やアルカリ土類金属等の酸化物、 ハロゲン化物からなる電 子注入層を設けても良い。 これらアル力リ金属やアル力リ土類金属等の酸化物、 ハロゲン化物の具体例としては、 例えば弗化リチウム、 酸化リチウム、 弗化セシ ゥム、 酸化セシウム、 酸化マグネシウム、 弗化マグネシウム、 酸化カルシウム、 弗化カルシウム等が挙げられる。
さらには有機化合物層にアル力リ金属やアル力リ土類金属及びこれらの化合物 を少量添加し、 電子注入域とすることも可能である。 これらの添加量としては 0 . 1〜 1 O m o 1 %が好適である。
次に、 陰極としては仕事関数の小さい (4 e V以下) 金属、 合金、 電気伝導性 化合物およびこれらの混合物を電極物質とするものが用いられる。 このような電 極物質の具体例としては、 ナトリウム、 ナトリゥム一力リウム合金、 マグネシゥ ム、 リチウム、 マグネシウム '銀合金、 アルミニウム/酸化アルミニウム、 アル ミニゥム ' リチウム合金、 インジウム、 希土類金属などが挙げられる。
この陰極はこれらの電極物質を蒸着やスパッ夕リング等の方法により薄膜を形 成させることにより、 作製することができる。 ここで、 発光層からの発光を陰極から取り出す場合、 陰極の発光に対する透過 率は 1 0 %より大きくすることが好ましい。 また陰極としてのシート抵抗は数百 Ω /口以下が好ましく、 膜厚は通常 1 O n m~ l m、 好ましくは 5 0〜 2 0 0 n mでめる。
さらにまた、 有機 E L素子は、 超薄膜に電界を印可するために、 リークゃショ ートによる画素欠陥が生じやすい。 これを防止するために、 一対の電極間に絶縁 性の薄膜層を挿入することが好ましい。
この絶縁層に用いられる材料としては、 例えば酸化アルミニウム、 弗化リチウ ム、 酸化リチウム、 弗化セシウム、 酸化セシウム、 酸化マグネシウム、 弗化マグ ネシゥム、 酸化カルシウム、 弗ィヒカルシウム、 窒化アルミニウム、 酸化チタン、 酸化珪素、 酸化ゲルマニウム、 窒化珪素、窒化ホウ素、 酸化モリブデン、 酸化ル テニゥム、 酸化バナジウム等が挙げられる。
これらは、 単独で用いてもよいし、混合物や積層物を用いても良い。
次に、 本発明の有機 E L素子を作成する方法にるいては、 上記の材料および方 法により陽極、 発光層、 必要に応じて正孔注入層、 および必要に応じて電子注入 層を形成し、 さらに陰極を形成することにより有機 E L素子を作製することがで きる。 また陰極から陽極へ、 前記と逆の順序で有機 E L素子を作製することもで きる。
以下、 透光性基板上に陽極 正孔注入層/発光層 Z電子注入層/陰極が順次設 けられた構成の有機 E L素子の作製例を記載する。
まず適当な透光性基板上に陽極材料からなる薄膜を 1 u m以下、 好ましくは 1 0〜 2 0 0 n mの範囲の膜厚になるように蒸着やスパッ夕リング等の方法により 形成して陽極を作製する。 次にこの陽極上に正孔注入層を設ける。 正孔注入層の 形成は、 前述したように真空蒸着法、 スピンコート法、 キャスト法、 L B法等の 方法により行うことができるが、 均質な膜が得られやすく、 かつピンホールが発 生しにくい等の点から真空蒸着法により形成することが好ましい。 真空蒸着法に より正孔注入層を形成する場合、 その蒸着条件は使用する化合物 (正孔注入層の 材料) 、 目的とする正孔注入層の結晶構造や再結合構造等により異なるが、 一般 に蒸着源温度 5 0〜4 5 0 °C、 真空度 1 0— 7〜 1 0— 3 t o r r、 蒸着速度 0 . 0 1〜 5 ◦ n m/秒、 基板温度— 5 0〜 3 0 0 °C、 膜厚 5 n m〜 5 mの範囲で適 宜選択することが好ましい。
次に正孔注入層上に発光層を設ける発光層の形成も、 所望の有機発光材料を用 いて真空蒸着法、 スパッタリング、 スピンコート法、 キャスト法等の方法により 有機発光材料を薄膜化することにより形成できるが、 均質な膜が得られやすく、 かつピンホ一ルが発生しにく 、等の点から真空蒸着法により形成することが好ま しい。 真空蒸着法により発光層を形成する場合、 その蒸着条件は使用する化合物 により異なるが、 一般的に正孔注入層と同じような条件範囲の中から選択するこ とができる。
次にこの発光層上に電子注入層を設ける。 正孔注入層、 発光層と同様、 均質な 膜を得る必要から真空蒸着法により形成することが好ましい。 蒸着条件は正孔注 入層、 発光層と同様の条件範囲から選択することができる。
本発明の化合物は、 正孔輸送帯域のいずれの層に含有させるかによつて異なる が、 真空蒸着法を用いる場合は他の材料との共蒸着をすることができる。 またス ピンコート法を用いる場合は、 他の材料と混合することによって含有させること ができる。
そして、 最後に陰極を積層して有機 E L素子を得ることができる。 陰極は金属 から構成されるもので、 蒸着法、 スパッタリングを用いることができる。 しかし 下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。
以上の有機 E L素子の作製は一回の真空弓 Iきで一貫して陽極から陰極まで作製 することが好ましい。
なお、 この有機 E L素子に直流電圧を印加する場合、 陽極を十、 陰極を一の極 性にして、 5 ~ 4 0 Vの電圧を印加すると発光が観測できる。 また逆の極性で電 圧を印加しても電流は流れず、 発光は全く生じない。 さらに交流電圧を印加した 場合には陽極が十、 陰極が—の極性になった時のみ均一な発光が観測される。 印 加する交流の波形は任意でよい。
次に、 本発明について、 実施例を用いて詳細に説明するが、 本発明は、 これら の例によってなんら限定されるものではない。
〔実施例 1〜 6 ;アミン化合物の製造〕
実施例 1
( 1 ) m—夕一フユ二レンのョード化物の製造
m—ターフェニル 50 O g (アルドリッチ社製) とよう化水素酸 .二水和物 1 00 gとよう素 1 5 0 gと酢酸 1. 5 1 と濃硫酸 50m 1を三つ口フラスコに入 れ、 70°Cで 3時間反応した。 反応後メタノール 1 0 1に注入し、 その後 1時間 攪拌した。 これを濾取し、 得られた結晶をカラムクロマトグラフィーを用いて精 製し、 ァセトニトリルで再結晶し、 3' —フエ二ルー 4—ョードビフエニル 1 2 8 g ( I MT) 、 3—フエニル一 5—ョ一ドビフエニル 3 4 g ( I MT' ) を得 た。
(2) N, Ν' - (ナフチルー 1—ィル) 一4 , 4 ' 一べンジジンの製造
1一ァセトアミ ドナフタレン 1 00 g (東京化成社製) と 4 , 4 ' 一ジョ一ド ビフエニル 1 00 gと炭酸力リウム 80 g、 銅粉末 1 0 gおよび二ト口ベンゼン 1 00 0 m 1を 2 1の三つ口フラスコ中に入れ、 10 0 °Cで 64時間加熱攪拌を 行なった。 反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣を 1 1の THFとともに 3 1の三つ口フラスコに入れ、 50 gの水酸化力リウムを 300 m 1のメタノ一ルに溶解した溶液を加え、 24時間加熱還流を行なった。 反応後 酢酸ェチル 1 0 1に注入し、 その後 1時間攪拌した。 これを濾取し、 得られた結 曰
曰曰をカラムクロマトグラフィーを用いて精製し、 38 gのN, N' -
— 1一ィル) 一 4 , 4 ' —ベンジジン (NB) を得た t
(3 ) 化合物 (MT— 0 1 ) の製造 N, N' 一ジフヱニル一 4, 4' —ベンジジン (広島和光社製) 1 0 g、 I M T 2 5 g、 炭酸力リウム 1 0 g、 銅粉末 1 gおよびニトロベンゼン 1 0 Om 1を 30 0 m lの三つ口フラスコ中に入れ、 200 °Cで 4 8時間加熱攪拌を行なった 。 反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカゲル (広 島和光 (株) 社製 C一 2 00 ) を担持したカラムを用い、 トルエンを展開溶媒 として精製し、 9. 8 gの白色粉末を得た。
このものの FD— MSは、 C6。H44N 2 = 7 9 2に対し、 m/z = 7 93の主 ピークが得られたので、 N, N, 一ビス (3, 一フヱ二ルビフエニル一 4—ィル ) 一 Ν, Ν' —ジフエ二ルー 4, 4, 一ベンジジンと同定した (ガラス転位温度 1 1 4 °C ) 。
この化合物は塩化メチレンやトルエン、 THFなどに可溶であった。
実施例 1
化合物 (MT - 0 2) の製造
N, N' —ジァセチル一 4 , 4 ' 一べンジジン (東京化成社製) 1 0 g、 I M T 5 0 g、 炭酸力リウム 1 0 g、 銅粉末 1 gおよびニトロベンゼン 1 00m 1を 30 0 m lの三つ口フラスコ中に入れ、 200 °Cで 9 6時間加熱攪拌を行なつた 。 反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカゲル (広 島和光 (株) 社製 C— 200 ) を担持したカラムを用い、 トルエンを展開溶媒 として精製し、 1. 4 gの白色粉末を得た。
このものの F D— MSは、 C84H6QN2 = 1 0 96に対し、 m/z= 1 0 9 7 の主ピークが得られたので、 N, N, N' , N' —テトラキス (3, 一フヱニル ビフエ二ルー 4—ィル) 一 4 , 4 ' 一べンジジンと同定した (ガラス転位温度 1 6 7 °C ) 。
この化合物は塩化メチレンやトルエン、 THFなどに可溶であった。
実施例 3
化合物 (MT - 0 3) の製造 N, N' —ジフヱニル— 4 , 4 ' 一べンジジン (広島和光社製) 1 0 g、 I M Τ' 2 5 g、 炭酸力リウム 1 ◦ g、 銅粉末 1 gおよびニトロベンゼン 1 0 0m l を 3 0 0 m 1の三つ口フラスコ中に入れ、 2 0 0 °Cで 4 8時間加熱攪拌を行なつ た。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカゲル (広 島和光 (株) 社製 C— 2 0 0 ) を担持したカラムを用い、 トルエンを展開溶媒 として精製し、 7. 7 gの白色粉末を得た。
このものの F D— MSをは、 C6。H44N2 = 7 9 2に対し、 m/z = 7 9 3の 主ピークが得られたので、 Ν, Ν' —ビス ( 3, 5—ジフエニル _ 1 f ル) 一 N, N' —ジフヱニル一 4 , 4 ' —ベンジジンと同定した (ガラス転位温度 1 0 8°C) 。
この化合物は塩化メチレンやトルエン、 THFなどに可溶であった。
実施例 4
化合物 (MT— 0 4 ) の製造
N, Ν' ージァセチルー 4 , 4 ' 一べンジジン (東京化成社製) 1 0 g、 I M Τ' 5 0 g、 炭酸力リウム 1 0 g、 銅粉末 1 gおよびニトロベンゼン 1 0 0m l を 3 0 0 m 1の三つ口フラスコ中に入れ、 2 0 0 °Cで 9 6時間加熱攪拌を行なつ た。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカゲル (広 島和光 (株) 社製 C— 2 0 0 ) を担持したカラムを用い、 トルエンを展開溶媒 として精製し、 0. 4 gの白色粉末を得た。
このものの F D— MSは、 C84HS。N 2 = 1 0 9 6に対し、 m/z = 1 0 9 7 の主ピークが得られたので、 N, N, Ν' , N' —テトラキス ( 3 , 5—ジフエ ニル一 1—ィル) 一 4 , 4 ' —ベンジジンと同定した (ガラス転位温度 1 4 8°C この化合物は塩化メチレンやトルエン、 THFなどに可溶であった。 実施例 5
化合物 (MT— 0 5) の製造
NB 1 0 g、 I MT 2 5 g. 炭酸力リウム 1 0 g、 銅粉末 1 gおよびニトロべ ンゼン 1 0 Om 1 を 3 0 Om 1の三つ口フラスコ中に入れ、 20 0 °Cで 4 8時間 加熱攪拌を行なった。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカゲル (広 島和光 (株) 社製 C一 200 ) を担持したカラムを用い、 トルエンを展開溶媒 として精製し、 9. 6 gの淡黄色粉末を得た。
このものの FD— MSは、 C68H48N2 = 89 2に対し、 m/ z = 8 9 3の主 ピークが得られたので、 N, Ν' 一ビス (3, 一フエ二ルビフエニル一 4—ィル ) -Ν, N' —ジ (ナフチルー 1一ィル) 一4 , 4, 一ベンジジンと同定した ( ガラス転位温度 1 4 6°C) 。
この化合物は塩化メチレンやトルエン、 T H Fなどに可溶であつた。
実施例 6
化合物 (MT— 0 6) の製造
NB (広島和光社製) 1 0 g、 I MT' 2 5 g、 炭酸力リウム 1 0 g、 銅粉末 1 gおよび二ト口ベンゼン 1 0 Om 1を 30 Om 1の三つ口フラスコ中に入れ、 20 0 °Cで 4 8時間加熱攪拌を行なった。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカゲル (広 島和光 (株) 社製 C一 20 0 ) を担持したカラムを用い、 トルエンを展開溶媒 として精製し、 7. 4 gの淡黄色粉末を得た。
このものの FD— MSは、 C68H48N2 = 89 2に対し、 m/z = 89 3の主 ピークが得られたので、 Ν, Ν' —ビス (3 , 5—ジフヱニル一 1一ィル) 一 Ν , N' —ジ (ナフチルー 1一ィル) 一4 , 4 ' 一べンジジンと同定した (ガラス 転位温度 1 3 9 °C ) 。
この化合物は塩化メチレンやトルエン、 T H Fなどに可溶であつた。 〔実施例 7〜 1 2及び比較例 1〜 2 ;有機 E L素子の作製 I〕 実施例 7
2 5 mm x 7 5 mm X 1 . 1 mmサイズのガラス基板上に、膜厚 7 5 0オング ストロームのインジウム ·スズ酸化物の透明性アノードを設けた。
このガラス基板を真空蒸着装置 (日本真空技術 (株) 社製) に入れ、 約 1 0一6 t o r Γに減圧した。 これに、 下記の構造を有する銅フタロシアニンを蒸着速度
2オングストローム/秒で、 3 0 0オングストロ一ムの厚さに蒸着した。
次に、 化合物 (M T— 0 1 ) を 2 0 0オングストロームの厚さで蒸着し、 正孔 注入層を形成した。 この際の蒸着速度は 2オングストローム/秒であった。 さら に、 卜リス ( 8—キノリル) アルミニウム (A 1 q ) を蒸着速度 5 0オングスト ローム/秒で、 6 0 0オングストロームの厚さに蒸着し、 発光層を形成した。 最後にアルミニウムとリチウムとを同時蒸着することにより、 陰極を 2 0 0 0 オングストロームの厚さで形成した。 この際のアルミニウムの蒸着速度は 1 0ォ ングストローム /秒であり、 リチウムの蒸着速度は 0 . 1オングストローム/秒 であった。
得られた有機 E L素子に 5 Vの電圧を印可したところ、 1 0 4 n i tの緑色発 光が得られた。
この素子を 1 0 0 °Cの恒温槽に保存したところ、 1 0 0時間後も同じ発光効率 を保っていた。
実施例 8
実施例 7において M T— 0 1の代わりに M T— 0 2を用いた以外は同様にして 有機 E L素子を作製した。
得られた素子に 5 Vの電圧を印可したところ、 1 0 8 n i tの緑色発光が得ら れた。
この素子を 1 0 0 °Cの恒温槽に保存したところ、 1 0 0時間後も同じ発光効率 を保っていた。 W 1 実施例 9
実施例 7において MT— 0 1の代わりに MT— 0 3を用いた以外は同様にして 有機 E L素子を作製した。
得られた素子に 5 Vの電圧を印可したところ、 1 1 l n i tの緑色発光が得ら れた。 よって耐熱性の相対寿命は 1 0 0%である。
この素子を 1 0 0°Cの恒温槽に保存したところ、 1 0 0時間後も同じ発光効率 を保っていた。
実施例 1 0
実施例 7において MT— 0 1の代わりに MT— 0 4を用いた以外は同様にして 有機 E L素子を作製した。
得られた素子に 5 Vの電圧を印可したところ、 1 0 7 n i tの緑色発光が得ら れた。
この素子を I 0 0°Cの恒温槽に保存したところ、 1 0 0時間後も同じ発光効率 を保っていた。
実施例 1 1
実施例 7において MT— 0 1の代わりに MT— 0 5を用いた以外は同様にして 有機 E L素子を作製した。
得られた素子に 5 Vの電圧を印可したところ、 9 7 n i tの緑色発光が得られ た。
この素子を 1 0 0°Cの恒温槽に保存したところ、 1 0 0時間後も同じ発光効率 を保っていた。
実施例 1 2
実施例 7において MT— 0 1の代わりに MT— 0 6を用いた以外は同様にして 有機 EL素子を作製した。
得られた素子に 5 Vの電圧を印可したところ、 9 8 n i tの緑色発光が得られ た。 この素子を 1 0 0°Cの恒温槽に保存したところ、 1 00時間後も同じ発光効率 を保っていた。
比較例 1
実施例 7において MT— 0 1の代わりに下記の構造の N P Dを用いた以外は同 様にして有機 EL素子を作製した。
得られた素子に 5 Vの電圧を印可したところ、 1 0 3 n i tの緑色発光が得ら れた。
この素子を 1 0 0°Cの恒温槽に保存したところ、 1 00時間後には発光効率が 初期の半分 ( 50%) になっていた。
Figure imgf000039_0001
比較例 2
実施例 7において MT— 0 1の代わりに下記の構造の TB Aを用いた以外は同 様にして有機 E L素子を作製した。
得られた素子に 5 Vの電圧を印可したところ、 72 n i tの緑色発光が得られ た。
T B Aは塩化メチレンやトルエン、 T H Fなどの溶媒に不溶なので昇華精製を 実施したが、 不純物を除ききれなかった。 そのためやや発光輝度が小さかった。 この素子を 1 0 0°Cの恒温槽に保存したところ、 1 00時間後も同じ発光効率 を保っていた。
Figure imgf000040_0001
実施例 1〜 1 2、 比較例 1及び 2の有機 E L素子の性能を纏めて第 1表に示す 第 1表
Figure imgf000040_0002
〔注〕
耐熱性は、 各有機 E L素子の初期発光効率に対し、 その素子を 1 0 0 °Cの恒温 槽に保存した後の発光効率の比率で評価し、 相対値 (%) として求めた。
第 1表において、 実施例 7〜 1 と比較例 1及び 2を比べて分かるように、 本 発明のアミン化合物を正孔輸送帯域に用いた場合は、 より優れた発光輝度と耐熱 寿命 ( 1 0 Οΐの環境下でも性能劣化のない性能) が得られる。
〔実施例 1 3〜 1 5及び比較例 3〜 5 ;有機 E L素子の作製 I I〕
実施例 1 3
実施例 7において A 1 qを 600オングストロ一ム蒸着する代わりに、 DPV TP及び DPAVB iを 400オングストロ一ム共蒸着し、 さらに A 1 qを 20 0オングストローム蒸着した以外は同様にして有機 E L素子を作製した。
DPVTPと DPAVB iの蒸着速度は、 それぞれ 1 0オングストロ—ム /秒 、 0. 2オングストローム/秒であった。
得られた素子に 5 Vの電圧を印可したところ、 1 1 2 n i tの青色発光が得ら れた。
この素子を室温で駆動したところ、 初期 500 n i tの輝度が半減するまでの 時間は 2600時間であった。
実施例 1 4
実施例 1 3において DP VTPを蒸着する代わりに、 DPDAAを蒸着した以 外は同様にして有機 EL素子を作製した。
得られた素子に 6 Vの電圧を印可したところ、 83 n i tの青色発光が得られ た。
この素子を室温で駆動したところ、 初期 500 n i tの輝度が半減するまでの 時間は 820時間であった。
実施例 1 5
実施例 1 3において DP VTFを蒸着する代わりに、 DPTPDを蒸着した以 外は同様にして有機 EL素子を作製した。
得られた素子に 6 Vの電圧を印可したところ、 1 0 1 n i tの青色発光が得ら れた。
この素子を室温で駆動したところ、 初期 500 n i tの輝度が半減するまでの 時間は 720時間であった。
比較例 3
実施例 13において MT— 0 1の代わりに下記の構造の TBAを用いた以外は 同様にして有機 E L素子を作製した。
得られた素子に 6 Vの電圧を印可したところ、 87 n i tの緑色発光が得られ た。
TBAは塩化メチレンやトルエン、 T H Fなどの溶媒に不溶なので昇華精製を 実施したが、 不純物を除ききれなかった。 そのためやや発光輝度が小さかった。 この素子を室温で駆動したところ、 初期 500 n i tの輝度が半減するまでの 時間は 1 100時間であった。
比較例 4
実施例 1 4において MT— 0 1の代わりに TB Aを用いた以外は同様にして有 機 EL素子を作製した。
得られた素子に 6 Vの電圧を印可したところ、 69 n i tの青色発光が得られ た。
TB Aは塩化メチレンやトルエン、 THFなどの溶媒に不溶なので昇華精製を 実施したが、 不純物を除ききれなかった。 そのためやや発光輝度が小さかった。 この素子を室温で駆動したところ、 初期 500 n i tの輝度が半減するまでの 時間は 440時間であった。
比較例 5
実施例 1 5において MT— 0 1の代わりに TBAを用いた以外は同様にして有 機 EL素子を作製した。
得られた素子に 6 Vの電圧を印可したところ、 85 n i tの青色発光が得られ た。
TBAは塩化メチレンやトルエン、 T H Fなどの溶媒に不溶なので昇華精製を 実施したが、 不純物を除ききれなかった。 そのためやや発光輝度が小さかった。 この素子を室温で駆動したところ、 初期 5 0 O n i tの輝度が半減するまでの 時間は 3 4 0時間であった。
実施例 1 3〜 1 5及び比較例 3〜 5の有機 E L素子の性能を纏めて第 2表に示 す。
第 2表
Figure imgf000043_0001
〔注〕
輝度半減寿命は、 初期輝度 5 0 0 n i tの定量駆動を行い、 輝度が 2 5 0 n i tへと減衰するまでの時間を測定することにより求めた。
第 2表において、 実施例 1 3と比較例 3、 実施例 1 4と比較例 4 , 実施例 1 5 と比較例 5をそれぞれ比べて分かるように、 発光層にスチリル基を含む化合物を 用い、 本発明のァミン化合物を正孔輸送帯域に用いた場合は、 より優れた発光輝 度と輝度寿命を発現する。 産業上の利用可能性
本発明の一般式 ( 1 ) で表されるァミン化合物は、 有機溶媒に対する溶解性が 高く、 精製が行ないやすい。
このアミン化合物は有機 E L素子の構成材料として有用であり、 正孔輸送帯域 、 特に正孔輸送層に用いた場合、 優れた耐熱性を発揮する。
また、 本発明の一般式 ( 1 ) で表されるアミン化合物は、 発光帯域、 中でも発 光層にスチリル基を有する化合物を用いた有機 E L素子の構成材料として用いた 場合、 発光輝度と輝度寿命を向上させる効果を発揮する。

Claims

請求の範囲
1. 下記一般式 ( I ) で表されるアミン化合物。
Figure imgf000045_0001
(式中、 Ar ' 、 A r 2 、 Ar 3 及び Ar 4 は、 それぞれ置換基を有してもよい 核原子数 5 ~ 30のァリール基を示し、 これらのうちの少なくとも 1つが、 m- ターフェニル基である。
Ar 5 と Ar6 は、 それぞれ置換基を有してもよい核原子数 5〜30のァリー レン基を示し、 Xは 0, S, 炭素数 1〜6のアルキレン基、 核原子数 5〜30の ァリ一レン基又はジフエ二ルメチレン基を示し、 p, qはそれぞれ 0〜 3の整数 、 rは 0又は 1を示す。 但し、 p + q≥ 1である。 )
2. A r 1 、 Ar 2 、 A r 3 及び A r 4 のうちの少なくとも 1つが、 m—夕一フ ェニル基であり、 それ以外はフヱニル基又はナフチル基である請求項 1に記載の アミン化合物。
3. m—ターフヱニル基が、 下記一般式 (I I ) で表される基である請求項 1又 は 2に記載のアミン化合物。
Figure imgf000045_0002
4. 一対の電極間に挟持された有機発光層を少なくとも有する有機エレク卜ロル ミネッセンス素子であって、 請求項 1〜3のいずれかに記載のァミン化合物を含 有することを特徴とする有機エレクトロルミネッセンス素子。
5. 請求項 1〜 3のいずれかに記載のァミン化合物を正孔輸送帯域に含有させて なることを特徴とする請求項 4に記載の有機ェレクト口ルミネッセンス素子。
6. 請求項 1〜 3のいずれかに記載のァミン化合物を正孔輸送層に含有させてな ることを特徴とする請求項 4に記載の有機エレクトロルミネッセンス素子。
7. 有機発光帯域に、 下記一般式(!11) 〜 (V) で表されるスチリル基を有する 芳香族化合物のいずれかを含有する請求項 4 ~ 6のいずれかに記載の有機エレク トロルミネッセンス素子。
Figure imgf000046_0001
〔一般式(111) 中、 Ar7 は、 置換基を有してもよい核原子数が 5〜40の芳香 族基であり、 Ar8 、 Ar9 及び A r 1(1は、 それぞれ水素原子又は置換基を有し てもよい核原子数が 5〜 30のァリール基であり、 Ar8 、 Ar 9 及び A r 10の 少なくとも一つは置換基を有してもよいァリ—ル基であり、 nは 1〜 6の整数で ある。 〕
Figure imgf000046_0002
〔一般式(IV)中、 A r 11は、 置換基を有してもよい核原子数が 5〜 30の芳香族 基であり、 A r 12および A r 13は、 それぞれ水素原子又は置換基を有してもよい 核原子数が 5〜 30のァリ一ル基であり、 A r 11、 A r 12及び A r 13の少なくと も一つは置換基を有してもよいスチリル基で置換されており、 mは 1〜6の整数 である。 〕
Figure imgf000046_0003
〔一般式 (V) 中、 Ar 14及び Ar2Qは、 それぞれ置換基を有してもよい核原子 数が 5〜 3 0のァリール基であり、 Ar l 5〜Ar 19は、 それぞれ水素原子又は置 換基を有してもよい核原子数が 5〜 3 0の芳香族基であり、 Α Γ 1 5〜Α Γ 13の少 なくとも一つは置換基を有してもよいスチリル基で置換されており、 s, t, u 及び vはそれぞれ 0又は 1である。 〕
PCT/JP2000/006656 1999-09-30 2000-09-27 Compose d'amine et element electroluminescent organique utilisant ce compose WO2001023344A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001526499A JP3895178B2 (ja) 1999-09-30 2000-09-27 アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
AT00962880T ATE428683T1 (de) 1999-09-30 2000-09-27 Organisches electrolumineszenz-element mit einer amin-verbindung
DE60042010T DE60042010D1 (de) 1999-09-30 2000-09-27 Organisches electrolumineszenz-element mit einer amin-verbindung
US09/831,883 US6632543B1 (en) 1999-09-30 2000-09-27 Amine compound and organic electroluminescence device using the compound
EP00962880A EP1136469B1 (en) 1999-09-30 2000-09-27 Organic electroluminescence element using an amine compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27795499 1999-09-30
JP11/277954 1999-09-30

Publications (1)

Publication Number Publication Date
WO2001023344A1 true WO2001023344A1 (fr) 2001-04-05

Family

ID=17590598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006656 WO2001023344A1 (fr) 1999-09-30 2000-09-27 Compose d'amine et element electroluminescent organique utilisant ce compose

Country Status (9)

Country Link
US (1) US6632543B1 (ja)
EP (1) EP1136469B1 (ja)
JP (1) JP3895178B2 (ja)
KR (1) KR100662949B1 (ja)
CN (1) CN1252034C (ja)
AT (1) ATE428683T1 (ja)
DE (1) DE60042010D1 (ja)
TW (1) TW500788B (ja)
WO (1) WO2001023344A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391495A1 (en) * 2001-05-24 2004-02-25 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
JP2005068068A (ja) * 2003-08-25 2005-03-17 Mitsubishi Chemicals Corp 有機化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
JP2006273785A (ja) * 2005-03-30 2006-10-12 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009004797A (ja) * 2001-02-20 2009-01-08 Isis Innovation Ltd アリール−アリールデンドリマー
US7537842B2 (en) 2001-02-20 2009-05-26 Isis Innovation Limited Asymmetric dendrimers
US7592074B2 (en) 2001-02-20 2009-09-22 Isis Innovation Limited Metal-containing dendrimers
JP5186365B2 (ja) * 2006-04-26 2013-04-17 出光興産株式会社 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP2013531658A (ja) * 2010-06-17 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電気活性材料
US8623522B2 (en) 2006-04-26 2014-01-07 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
JPWO2016006673A1 (ja) * 2014-07-11 2017-04-27 日産化学工業株式会社 電荷輸送性ワニス
KR20170071465A (ko) * 2017-06-14 2017-06-23 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
US9728727B2 (en) 2002-07-19 2017-08-08 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1029909A4 (en) * 1998-09-09 2007-01-10 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENT DEVICE AND PHENYLENE DERIVATIVES
EP1388903B1 (en) * 2002-08-09 2016-03-16 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
WO2004018539A1 (en) * 2002-08-26 2004-03-04 Sharp Kabushiki Kaisha Dendritic polymer and electronic device element employing the polymer
JP2004262761A (ja) * 2003-01-16 2004-09-24 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2005117500A1 (ja) * 2004-05-27 2005-12-08 Idemitsu Kosan Co., Ltd. 白色系有機エレクトロルミネッセンス素子
JPWO2006006505A1 (ja) * 2004-07-14 2008-04-24 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2006059668A (ja) * 2004-08-20 2006-03-02 Seiko Epson Corp 有機エレクトロルミネッセンス装置及び有機エレクトロルミネッセンス装置の製造方法ならびに電子機器
EP2371810A1 (en) * 2005-01-05 2011-10-05 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
US8629613B2 (en) * 2005-01-05 2014-01-14 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
KR100696505B1 (ko) * 2005-03-31 2007-03-19 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그 제조방법
JP4653061B2 (ja) * 2005-12-20 2011-03-16 キヤノン株式会社 アミン化合物および有機発光素子および青色有機発光素子
KR100741133B1 (ko) * 2006-07-04 2007-07-20 삼성에스디아이 주식회사 유기 발광 디스플레이 장치
CN109400485A (zh) * 2018-11-27 2019-03-01 长春海谱润斯科技有限公司 一种芳香胺化合物及其有机电致发光器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699654A1 (en) * 1994-08-04 1996-03-06 Toyo Ink Manufacturing Co., Ltd. Hole-transporting material
EP0891121A1 (en) * 1996-12-28 1999-01-13 TDK Corporation Organic electroluminescent elements

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3828595B2 (ja) * 1994-02-08 2006-10-04 Tdk株式会社 有機el素子
EP0666298A3 (en) * 1994-02-08 1995-11-15 Tdk Corp Organic electroluminescent element and compound used therein.
EP0805143B1 (en) * 1995-01-19 2001-12-05 Idemitsu Kosan Company Limited Organic electroluminescent element, organic thin film, and triamine compounds
EP0765106B1 (en) * 1995-09-25 2002-11-27 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
US5811834A (en) * 1996-01-29 1998-09-22 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organo-electroluminescence device and organo-electroluminescence device for which the light-emitting material is adapted
JP3739184B2 (ja) * 1996-07-25 2006-01-25 三井化学株式会社 有機電界発光素子
JP3606025B2 (ja) * 1996-12-16 2005-01-05 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子材料およびそれを用いた有機エレクトロルミネッセンス素子
JP3503403B2 (ja) * 1997-03-17 2004-03-08 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP4081869B2 (ja) * 1998-08-17 2008-04-30 コニカミノルタホールディングス株式会社 新規アミノ化合物を使用した有機エレクトロルミネッセンス素子
JP4480827B2 (ja) * 1998-12-25 2010-06-16 保土谷化学工業株式会社 トリアリールアミン誘導体の製造方法
JP4232259B2 (ja) * 1999-03-01 2009-03-04 コニカミノルタホールディングス株式会社 新規アミノ化合物とその製造方法、および用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699654A1 (en) * 1994-08-04 1996-03-06 Toyo Ink Manufacturing Co., Ltd. Hole-transporting material
EP0891121A1 (en) * 1996-12-28 1999-01-13 TDK Corporation Organic electroluminescent elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TERRELL DAVID: "Electroluminescent device and substances suited for use therein", RESEARCH DISCLOSURE, no. 339, 1992, pages 571 - 573, XP002935496 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632576B2 (en) 2001-02-20 2009-12-15 Isis Innovation Limited Aryl-aryl dendrimers
US8314549B2 (en) 2001-02-20 2012-11-20 Isis Innovation Limited Metal-containing dendrimers
US8319213B2 (en) 2001-02-20 2012-11-27 Isis Innovation Limited Aryl-aryl dendrimers
US7960557B2 (en) 2001-02-20 2011-06-14 Isis Innovation Limited Asymmetric dendrimers
US7592074B2 (en) 2001-02-20 2009-09-22 Isis Innovation Limited Metal-containing dendrimers
JP2009004797A (ja) * 2001-02-20 2009-01-08 Isis Innovation Ltd アリール−アリールデンドリマー
US7960725B2 (en) 2001-02-20 2011-06-14 Isis Innovation Limited Aryl-aryl dendrimers
US7906902B2 (en) 2001-02-20 2011-03-15 Isis Innovation Limited Metal-containing dendrimers
US7537842B2 (en) 2001-02-20 2009-05-26 Isis Innovation Limited Asymmetric dendrimers
EP1391495A4 (en) * 2001-05-24 2007-04-25 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENT ELEMENT
EP1391495A1 (en) * 2001-05-24 2004-02-25 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
US9728727B2 (en) 2002-07-19 2017-08-08 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US9960358B2 (en) 2002-07-19 2018-05-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US10243145B2 (en) 2002-07-19 2019-03-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
JP2005068068A (ja) * 2003-08-25 2005-03-17 Mitsubishi Chemicals Corp 有機化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
EP1864965A4 (en) * 2005-03-30 2009-11-11 Idemitsu Kosan Co AROMATIC AMINO DERIVATIVE AND ORGANIC ELECTROLUMINESCENT ELEMENT EMPLOYING THE SAME
US7976957B2 (en) 2005-03-30 2011-07-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element employing the same
JP2006273785A (ja) * 2005-03-30 2006-10-12 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR101269728B1 (ko) * 2005-03-30 2013-05-30 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 이를 이용한 유기 전기발광 소자
WO2006112166A1 (ja) * 2005-03-30 2006-10-26 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4667926B2 (ja) * 2005-03-30 2011-04-13 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US8623522B2 (en) 2006-04-26 2014-01-07 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
US9306173B2 (en) 2006-04-26 2016-04-05 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
US9444053B2 (en) 2006-04-26 2016-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
US9159931B2 (en) 2006-04-26 2015-10-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
US11751472B2 (en) 2006-04-26 2023-09-05 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and elecroluminescence device using the same
US10446761B2 (en) 2006-04-26 2019-10-15 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
US11538997B2 (en) 2006-04-26 2022-12-27 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
US10153435B2 (en) 2006-04-26 2018-12-11 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
US10158084B2 (en) 2006-04-26 2018-12-18 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
JP5186365B2 (ja) * 2006-04-26 2013-04-17 出光興産株式会社 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP2013531658A (ja) * 2010-06-17 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電気活性材料
JPWO2016006673A1 (ja) * 2014-07-11 2017-04-27 日産化学工業株式会社 電荷輸送性ワニス
KR101869842B1 (ko) 2017-06-14 2018-06-21 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20170071465A (ko) * 2017-06-14 2017-06-23 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Also Published As

Publication number Publication date
US6632543B1 (en) 2003-10-14
CN1252034C (zh) 2006-04-19
EP1136469A1 (en) 2001-09-26
CN1327442A (zh) 2001-12-19
EP1136469B1 (en) 2009-04-15
TW500788B (en) 2002-09-01
ATE428683T1 (de) 2009-05-15
EP1136469A4 (en) 2004-12-08
JP3895178B2 (ja) 2007-03-22
KR100662949B1 (ko) 2006-12-28
DE60042010D1 (de) 2009-05-28
KR20010093127A (ko) 2001-10-27

Similar Documents

Publication Publication Date Title
WO2001023344A1 (fr) Compose d&#39;amine et element electroluminescent organique utilisant ce compose
KR100843819B1 (ko) 안트라센 유도체 및 이를 사용한 유기 전기발광 소자
JP4542646B2 (ja) 有機エレクトロルミネッセンス素子およびフェニレンジアミン誘導体
EP1602648B1 (en) Nitrogen-containing heterocycle derivative and organic electroluminescent element using the same
JP3290432B2 (ja) 有機エレクトロルミネッセンス素子
KR101446401B1 (ko) 방향족 아민 유도체 및 유기 전기발광 소자
KR101447961B1 (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
JP4765589B2 (ja) カルバゾリル基を有するフルオレン化合物およびその用途
CN113015738A (zh) 新型硼化合物以及包括该新型硼化合物的有机发光元件
KR101401639B1 (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
WO2006046441A1 (ja) 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007004364A1 (ja) ピレン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2006114921A1 (ja) 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
EP2415752A1 (en) Aromatic amine derivative and organic electroluminescent element using same
WO2007018007A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009194042A (ja) カルバゾリル基を含有する有機エレクトロルミネッセンス素子用電荷輸送材料およびその用途
WO2007063986A1 (ja) カルバゾリル基を有するジアミノアリーレン化合物及びその用途
JP2009215333A (ja) 有機エレクトロルミネッセンス素子用材料ならびに有機エレクトロルミネッセンス素子
JP2006151866A (ja) フェナントロリン化合物及び発光素子
CN113227066A (zh) 有机发光元件用化合物及包含该化合物的长寿命的有机发光元件
KR101401633B1 (ko) 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
JP2003238501A (ja) 芳香族オリゴアミン誘導体およびそれを含有する有機エレクトロルミネッセンス素子
WO2006120859A1 (ja) 新規有機エレクトロルミネッセンス材料、それを用いた有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用薄膜形成溶液
JP2001097949A (ja) 有機化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2000273055A (ja) ジスチリルアリーレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00802126.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000962880

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2001 526499

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09831883

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/740/CHE

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017006767

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000962880

Country of ref document: EP