WO2007063986A1 - カルバゾリル基を有するジアミノアリーレン化合物及びその用途 - Google Patents

カルバゾリル基を有するジアミノアリーレン化合物及びその用途 Download PDF

Info

Publication number
WO2007063986A1
WO2007063986A1 PCT/JP2006/324094 JP2006324094W WO2007063986A1 WO 2007063986 A1 WO2007063986 A1 WO 2007063986A1 JP 2006324094 W JP2006324094 W JP 2006324094W WO 2007063986 A1 WO2007063986 A1 WO 2007063986A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
compound
represented
carbon atoms
Prior art date
Application number
PCT/JP2006/324094
Other languages
English (en)
French (fr)
Inventor
Tadao Yagi
Yasumasa Suda
Yoshitake Oryu
Hiroaki Tanaka
Yasumasa Toba
Original Assignee
Toyo Ink Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Manufacturing Co., Ltd. filed Critical Toyo Ink Manufacturing Co., Ltd.
Priority to JP2007528500A priority Critical patent/JP4211869B2/ja
Publication of WO2007063986A1 publication Critical patent/WO2007063986A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a novel diaminoarylene compound having a powerful rubazolyl group. More specifically, when used in an organic electoluminescence device (hereinafter abbreviated as an organic EL device), the molecular crystallinity is low, and The present invention relates to a diaminoarylene compound having a strong rubazolyl group that exhibits excellent performance (low voltage drive, long life, high stability) due to its high glass transition temperature (Tg).
  • organic EL device organic electroluminescence device
  • Non-Patent Document 1 the glass transition temperature (Tg) of the material constituting the device has a significant effect on the lifetime of the device. It is thought to be affected. In other words, it has been pointed out that when the temperature of the element exceeds the Tg of the constituent material due to the usage environment of the element and the heat generated during driving, the material crystallizes and a non-light emitting region called a dark spot is generated. Yes. Therefore, development of materials with higher Tg is being actively studied.
  • a material constituting an organic EL element a material containing a triphenylamine skeleton in a partial structure is well known, but it is generally known from experience in the chemical industry that its thermal stability is high. It is disclosed that an amine compound having a phenanthrene structure can be used as an organic EL device material (see Patent Document 1).
  • these materials have not so high heat resistance (Tg) and high crystallinity of the materials, so that the film stability is insufficient, and the characteristics when an organic EL element is produced have a sufficient light emission lifetime.
  • the voltage required for driving the device was high.
  • the strong rubazole skeleton has a hole transporting property and a structure having high heat resistance, it can be applied to, for example, a charge transport material for an electrophotographic photosensitive member and a material for an organic EL device. It is being considered.
  • a typical example is polybululcarbazole (P VK) and N, N, -dicarbazol-4,4, -biphenyl (CBP) are widely studied as materials for organic EL devices (see Non-Patent Documents 2 and 3).
  • carbazoles such as PVK and CBP have relatively high Tg and heat resistance, they have a highly symmetrical structure, so when thin films are formed by vacuum evaporation or spin coating, Crystallization easily occurs due to low stability, and the lifetime of the element is extremely short.
  • a diamine compound having a 3-position substituted rubazolyl group has been disclosed as a material that effectively utilizes the heat resistance of force rubazole and has low molecular symmetry (see Patent Document 2). ). However, even with this compound, an EL device with high crystallinity and sufficient lifetime characteristics can be obtained!
  • the hole injection layer and the hole transport layer had an ionic potential that was suitable for hole injection with an anode (such as ITO) force.
  • anode such as ITO
  • Non-Patent Literature 1 Shizushi Tokito, Chiba Yasada, Hideyuki Murata, Organic EL Display, Ohmsha, 2004, p. 139
  • Non-Patent Document 2 Applied Physics Letters, 2001, 78 ,, 278
  • Non-Patent Document 3 Journal of the American Chemicaal Society 2001
  • Patent Document 1 Japanese Patent No. 3067469
  • Patent Document 2 JP 2004-536134 A
  • Ar 5 is a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms that may have a substituent, or a monovalent aromatic group having 2 to 18 carbon atoms that may have a substituent.
  • I ⁇ to R 7 each independently represents a hydrogen atom, a halogen atom, or a monovalent organic residue.
  • Q 9 to Q 16 each independently represents a hydrogen atom, a halogen atom, or a monovalent organic residue.
  • a phenanthrene-diyl group which may have a substituent represented by the following general formula [4]
  • R 8 to R U each independently represent a hydrogen atom, a halogen atom, or a monovalent organic residue, or R 8 and R 9 , R 9 and R 10 , Alternatively, R 10 and R 11 force substituents may be bonded to each other to form a ring with adjacent carbon atoms.
  • R 12 to R 15 are each independently a hydrogen atom, a halogen atom, or a monovalent organic group. It may represent a residue, or R 13 and R 14 , or R 14 and R 15 may be bonded to each other by a substituent to form a ring with adjacent carbon atoms.
  • the o-phenylene group represented by the general formula [4] is represented by the following general formula [6].
  • R lb to R 19 each independently represents a hydrogen atom, a halogen atom, or a monovalent organic residue, or R 16 and R 17 , R 17 and R 18 , Alternatively, R 18 and R 19 may be bonded together to form a ring with adjacent carbon atoms, provided that when the newly formed ring is an aromatic ring, out of the above-mentioned three positions.
  • the m-furylene group represented by the general formula [5] is represented by the following general formula [7].
  • R U to R each independently represents a hydrogen atom, a halogen atom, or a monovalent organic residue, or R 21 and R 22 , or R 22 and R 23 are Substituents may be bonded to each other to form a ring with adjacent carbon atoms, provided that the newly formed ring is an aromatic ring only at one of the two positions described above. is there.
  • the o-phenylene group represented by the general formula [4] is represented by the following general formula [8].
  • R 4 to R ′′ each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, or 1 having 6 to 12 carbon atoms which may have a substituent).
  • the o-phenylene group represented by the general formula [4] is represented by the following general formula [9].
  • R 1 to R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, or a monovalent monovalent group having 6 to 12 carbon atoms that may have a substituent).
  • the present invention relates to a diaminoarylene compound having a carbazolyl group.
  • the m-furylene group represented by the general formula [5] is represented by the following general formula [10]
  • a rogen atom an alkyl group having 1 to 3 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms which may have a substituent, or a carbon group having 2 to 2 carbon atoms which may have a substituent 5 represents a monovalent heterocyclic group.
  • 8 to 8 !: 4 are each independently a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may have a substituent, or a carbon number which may have a substituent.
  • One of them is a carbazolyl group represented by the general formula [2]
  • Q 9 to Q 16 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic residue.
  • the present invention relates to a phenanthrene compound having a force rubazolyl group represented by formula (11), and the present invention relates to a phenanthrene compound having a force rubazolyl group represented by the general formula [11].
  • the phenanthrene compound having a force rubazolyl group represented by the general formula [11] is also included in the diaminoarylene compound having a force rubazolyl group represented by the general formula [1].
  • diaminoarylene compounds having a force rubazolyl group including phenanthrene compounds having a force rubazolyl group represented by the general formula [11] will be described.
  • Ar 1 and Ar 2 in the general formula [1] are each independently represented by the following general formula [12]
  • Ar 3 and Ar 4 in the above general formula [1] are each independently a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may have a substituent.
  • the present invention relates to a diaminoarylene compound having a force rubazolyl group represented by the general formula [1].
  • Ar 1 of the above general formula [1] is represented by the above general formula [2] or [12]
  • Ar 2 , Ar of the above general formula [1] 3 and Ar 4 are each independently a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may have a substituent, represented by the general formula [1]
  • the present invention relates to a diaminoarylene compound having a strong rubazolyl group.
  • the present invention also relates to a diaminoarylene compound having a carbazolyl group represented by the above general formula [1] having a glass transition temperature (Tg) of 170 ° C or higher.
  • the present invention also relates to a diaminoarylene compound having a force rubazolyl group represented by the general formula [1] having an ionic potential of 5.0 to 5.5 eV.
  • the present invention also relates to a material for an organic electoluminescence device comprising a diaminoarylene compound having a force rubazolyl group represented by the general formula [1].
  • the present invention provides an organic electoluminescence device in which a light emitting layer or a plurality of organic layers including a light emitting layer is formed between a pair of electrodes, at least one layer of the organic layer.
  • the present invention relates to an organic electoluminescence device comprising a material for a chemiluminescence device.
  • the present invention further includes a hole injection layer and a Z or hole transport layer between the anode and the light emitting layer, and the hole injection layer and the Z or hole transport layer are the above-described present invention.
  • the present invention relates to the organic electoluminescence device comprising the material for an organic electroluminescence device.
  • X in the general formula [1] may have a substituent represented by the general formula [4] !, and a force rubazolyl according to the above (1), which is an o-phenylene group A diaminoarylene compound having a group.
  • the o-phenylene base represented by the general formula [4] is the o-phenylene diene group represented by the general formula [6] according to the above (1) or (3) A diamino arylene compound having a strong rubazolyl group.
  • the diaminoarylene compound having a force rubazolyl group represented by the general formula [1] is a phenanthrene compound having a force rubazolyl group represented by the general formula [11].
  • the carbazolyl group represented by the general formula [2] has the rubazolyl group described in any one of the above (1) to (10), which is the carbazolyl group represented by the general formula [12].
  • (12) —Arl and Ar2 in the general formula [1] are each independently represented by the general formula [12], and Ar3 and Ar4 forces in the general formula [1] are each independently a substituent.
  • a material for an organic electoluminescence device comprising the diaminoarylene compound having a strong rubazolyl group according to any one of (1) to (16).
  • Organic electroluminescent element comprising a material for an electroluminescent element.
  • a hole injection layer and a Z or hole transport layer are provided between the anode and the light emitting layer, and the hole injection layer and the Z or hole transport layer are the organic materials according to the above (17).
  • the organic EL device using the diaminoarylene compound having a strong rubazolyl group of the present invention as a material for an organic EL device emits light at a low driving voltage with a very high stability of the thin film,
  • it since it has a long life, it can be suitably used as a flat panel display such as a wall-mounted television or a flat light emitter. It can be applied to lights and the like.
  • the diaminoarylene compound having a force rubazolyl group represented by the general formula [1] of the present invention is a diamine arylene having an o-fullerene structure, an m-fullerene structure, or an o-phenanthrene diyl structure. It is characterized in that at least one 3-force rubazolyl group is substituted on the nitrogen atom of the compound.
  • the phenanthrene diyl group in the present invention is a phenene group in which two benzene rings are condensed to a phenylene group in a phenylene structure. In a broad sense, it can also be expressed as a derivative of a phenylene structure.
  • the phenylenediamine structure of the present invention is characterized by being an ortho-phenylene amine structure and a meta-phenylene amine structure, and has a structural feature different from that of para-phenylenediamine. .
  • the 3-force rubazolyl group has a force diamine force arranged so that the nitrogen atom of the force rubazole ring and the nitrogen atom of the diamine are in the nora position. In some cases, it has a para nitrogen atom, which is not preferable. In particular, the point power of maintaining the amorphous property is not preferable. Therefore, in this respect, the diamine compound having the p-phenylene structure and the diamine compound of the present invention are structurally different.
  • Ai in the general formula [1]: 1 to Ar 4 are each independently a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may have a substituent, or a carbon which may have a substituent. It represents a monovalent heterocyclic group of formula 2 to 18 or a force rubazolyl group represented by the general formula [2]. However, at least one of 8 to 8!: 4 is a carbazolyl group represented by the general formula [2].
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms include monovalent monocyclic, condensed cyclic, or ring assembly (polycyclic) hydrocarbon groups having 6 to 18 carbon atoms. It is done.
  • the monovalent monocyclic aromatic hydrocarbon group having 6 to 18 carbon atoms for example, a phenyl group, o ⁇ ryl group, m- ⁇ ryl group, p ⁇ ryl group, 2, 4 xylyl group
  • Examples thereof include monovalent monocyclic aromatic hydrocarbon groups having 6 to 18 carbon atoms such as p-tame groups and mesityl groups.
  • Examples of the monovalent condensed ring hydrocarbon group include 1-naphthyl group, 2-naphthyl group, 1 anthryl group, 2 anthryl group, 9 anthryl group, 1-phenanthryl group, 9-phenanthryl group, 1-acenaphthyl group.
  • monovalent condensed ring hydrocarbon groups having 10 to 18 carbon atoms such as a group, 2-azrenyl group, 1-pyrenyl group and 2-triphenyl group.
  • Examples of the monovalent ring assembly hydrocarbon group include, for example, a monovalent ring having 12 to 18 carbon atoms such as o biphenyl group, m-biphenyl group, p biphenyl group, and terphenyl group. Examples include aggregated hydrocarbon groups.
  • heterocyclic group of the monovalent heterocyclic group having 2 to 18 carbon atoms examples include a monovalent aliphatic heterocyclic group and a monovalent aromatic heterocyclic group. , Having at least one, preferably 1 to 3 heteroatoms selected from nitrogen, oxygen and sulfur atoms in the ring, 3 to 8 members, preferably 5 to 7 members monocyclic, polycyclic Examples thereof include cyclic or condensed heterocyclic rings.
  • Examples of the monovalent aliphatic heterocyclic group include monovalent aliphatic heterocyclic groups having 3 to 18 carbon atoms such as 2-pyrazolino group, piperidino group, morpholino group, and 2-morpholinyl group.
  • Examples of the aromatic heterocyclic group include a triazolyl group, a 3-oxadiazolyl group, a 2 furyl group, a 3 furyl group, a 2 chael group, a 3 chael group, a 1 pyrrolyl group, and a 2 pyrrolyl group.
  • aromatic hydrocarbon group and heterocyclic group may have a substituent.
  • the substituent may be a halogen atom or a monovalent organic residue.
  • a halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the monovalent organic residue is not particularly limited, and may have a monovalent aliphatic hydrocarbon group which may have a substituent, a monovalent aromatic hydrocarbon group which may have a substituent, or a substituent
  • Monovalent aliphatic heterocyclic group which may have a group, monovalent aromatic heterocyclic group which may have a substituent, cyano group, alkoxy group, aryloxy group, alkylthio group, arylthio group, substituted Examples thereof include an amino group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylsulfonyl group, and an arylsulfonyl group.
  • aryl in an aryloxy group or an aryloxy group represents an aromatic hydrocarbon and an aromatic heterocyclic ring.
  • the monovalent aliphatic hydrocarbon group refers to a monovalent aliphatic hydrocarbon group having 1 to 18 carbon atoms, and examples thereof include an alkyl group, an alkenyl group, and an alkyl group. And a cycloalkyl group.
  • alkyl group methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec butyl group, tert butyl group, pentyl group, isopentyl group, hexyl group, heptyl group, octyl group
  • alkyl groups having 1 to 18 carbon atoms such as decyl group, dodecyl group, pentadecyl group and octadecyl group.
  • alkell groups include bur group, 1-probe group, 2-probe group, iso-probe group, 1-butur group, 2 butur group, 3 butur group, and 1 otatur group.
  • Alkyl groups include ethur, 1 propyl, 2-propyl, 1-butynyl, 2 butyl, 3 propyl, 1 octyl, 1 decyl. And alkyl groups having 2 to 18 carbon atoms such as 1-octadecyl group.
  • cycloalkyl group examples include cycloalkyl groups having 3 to 18 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, and cyclooctadecyl group.
  • examples of the monovalent aromatic hydrocarbon group, monovalent aliphatic heterocyclic group, and monovalent aromatic heterocyclic group examples include those described above.
  • alkoxy group examples include C1-C8 alkoxyl groups such as methoxy group, ethoxy group, propoxy group, butoxy group, tert-butoxy group, octyloxy group, and tert-octyloxy group.
  • aryloxy group examples include aryloxy groups having 6 to 14 carbon atoms such as phenoxy group, 4 tert butyl phenoxy group, 1 naphthyloxy group, 2 naphthyloxy group, and 9 anthryloxy group.
  • alkylthio group examples include alkylthio groups having 1 to 8 carbon atoms such as methylthio group, ethylthio group, tert-butylthio group, hexylthio group, and octylthio group.
  • arylthio group examples include a phenylthio group, a 2-methylphenolthio group, a 4 tert-butylphenolthio group, and an arylthio group having 6 to 14 carbon atoms.
  • Substituted amino groups include N-methylamino group, N-ethylamino group, N, N-deethylamino group, N, N diisopropylamino group, N, N dibutylamino group, N benzylamino group, N, N dibenzylamino group, N phenol group.
  • N-Luamino group N-Fe-Lu N-Methylamino group, N, N Diphenylamino group, N, N Bis (m tolyl) amino group, N, N-Bis (P Tolyl) amino group, N, N Bis (p-biphenyl) amino group, bis [4- (4-methyl) biphenyl] amino group, N- ⁇ -naphthyl- ⁇ phenolamino group, N-j8-naphthyl-N phenylamino group, etc. Examples thereof include substituted amino groups having 2 to 16 carbon atoms.
  • an acyl group having 2 to 14 carbon atoms such as a acetyl group, a propiol group, a bivaloyl group, a cyclohexyl carboxyl group, a benzoyl group, a toluoyl group, an alkyl group, a cinnamoyl group, and the like. can give.
  • alkoxycarbo yl group examples include C2-C14 alkoxy carbo ol groups such as a methoxy carbo ol group, an ethoxy carbo ol group, and a benzyloxy carbo ol group.
  • Examples of the arylcarbonyl group include an arylcarbonyl group having 2 to 14 carbon atoms such as a phenoxycarbol group and a naphthyloxycarboxyl group.
  • Examples of the alkylsulfol group include C2-C14 alkylsulfol groups such as a mesyl group, an ethylsulfol group, and a propylsulfol group.
  • arylaryl groups include arylaryl groups having 2 to 14 carbon atoms such as benzenesulfol group and p-toluenesulfol group.
  • the monovalent aliphatic hydrocarbon group, monovalent aromatic hydrocarbon group, monovalent aliphatic heterocyclic group, and monovalent aromatic heterocyclic group described above are further substituted with other substituents. It may be. These substituents may be bonded to each other to form a ring with adjacent atoms.
  • Preferred monovalent organic residues in the present invention may have a substituent, an alkyl group having 1 to 18 carbon atoms, an optionally substituted alkenyl group having 2 to 18 carbon atoms, An optionally substituted alkyl group having 2 to 18 carbon atoms, an optionally substituted cycloalkyl group having 3 to 18 carbon atoms, and optionally having a substituent ⁇ 6 to 6 carbon atoms 18 monovalent monocyclic aromatic hydrocarbon group, 1 to 3 hetero atoms selected from nitrogen atom, oxygen atom or sulfur atom in the ring which may have a substituent 3 to 8 May have an aliphatic or aromatic heterocyclic group, a cyano group or a substituent, may have an alkoxyl group having 1 to 8 carbon atoms, or may have a substituent !, an aryloxy group having 6 to 14 carbon atoms Group, an optionally substituted alkylthio group having 1 to 8 carbon atoms, an optionally substituted substituent having 2 to 16 carbon
  • Q 9 to Q 16 in the general formula [3] or the general formula [11] each independently represent a hydrogen atom, a halogen atom, or a monovalent organic residue.
  • the ones mentioned above can be mentioned.
  • a particularly preferable example of Q 9 to Q 16 is a hydrogen atom.
  • Ar 5 in the general formula [2] may have a substituent, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituent.
  • Examples of the monovalent aromatic hydrocarbon group and monovalent aromatic heterocyclic group include those described above, and examples of the monovalent aliphatic hydrocarbon group include those having the corresponding number of carbon atoms. can give.
  • I ⁇ to R 7 each independently represents a hydrogen atom, a halogen atom, or a monovalent organic residue.
  • halogen atom and monovalent organic residue include those described above.
  • the 3-force rubazoyl group of the general formula [2] is more preferably a 3-force rubazoyl group represented by the general formula [12].
  • Power Rubazoiru group of the general formula [12] is a case I ⁇ to R 7 Cal Bazoiru group of the general formula [2] is a hydrogen atom. When such a structure is adopted, it is easy to form a thin film by sublimating a compound (material) by vapor deposition or the like having a relatively small molecular weight, and also has excellent stability. Power is also.
  • Ar 5 in the general formula [2] or [12] has the structure of the general formula [13]. The reason will be described below.
  • force rubazole compounds tend to have a stronger structure and higher thermal stability than diphenylamino compounds having no bond (see Chemical formula 14).
  • the aromatic group and the heteroaromatic group are further effective in increasing the stability. Among them, the effect of increasing the stability can be expected when Ar 5 is represented by the general formula [13]. .
  • R 38 in the general formula [13] is a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, or a monovalent fragrance having 6 to 12 carbon atoms which may have a substituent.
  • R 38 include a hydrogen atom, a phenyl group, a biphenyl group, a tolyl group, a xylyl group, a methyl group, an ethyl group, a cyano group, a fluorine atom, and the like.
  • the general formula [1] diaminoarylene I ⁇ having a force Rubazoriru group is eight to eight: Of the 4, at least one general formula [2] or the general formula It is a carbazolyl group bonded at the 3-position represented by [12].
  • the number of carbazolyl groups may be any of 1 to 4, but preferably, Ar 1 and Ar 2 are carbazolyl groups represented by the general formula [12], and Ar 3 and Ar 4 are An example is a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • the monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms in Ar 3 and Ar 4 has the same meaning as described above, and particularly preferably a phenol group, a tolyl group, a naphthyl group, And biphenyl and terfel groups.
  • the effect of the carbazolyl group bonded at the 3-position will be described.
  • the amino group acts as an electron donor, but the nitrogen atom of the force rubazole has almost no donor property for the ring group bonded on the nitrogen atom.
  • the force rubazole ring has planarity and is a very bulky substituent, and it is caused by difficulty in taking a planar structure with the substituent on the nitrogen atom. it is conceivable that.
  • a force rubazole ring has a ring planarity, and therefore can have an electron donor property to the benzene ring portion (see ⁇ 15).
  • the ring ring on the nitrogen atom and the force rubazol The benzene ring of the force rubazole ring does not form a plane, so a plane structure cannot be formed by electricity, so it becomes an electron donor.
  • both the amino group bonded to the force rubazole ring and the nitrogen atom of the force rubazole ring are effective. It is considered to be an electron donor to the benzene ring of the rubazole ring, and can exert an electron donor effect equivalent to or more than that of the phenyldiamine structure (see Chemical formula 16).
  • the diaminoarylene compound having a strong rubazolyl group of the present invention becomes a compound having a small ionization potential (a compound in which the ground state of the organic molecule is at a higher level), and an organic EL device is immediately formed. In this case, it is possible to obtain a compound having a high hole injection property or a high hole transport property.
  • the force rubazole ring bonded at the 3-position has a lower molecular symmetry than the force rubazole ring bonded on the nitrogen atom, so that the crystallinity of the molecule is lower and the amorphous property is higher. It is possible to greatly contribute to the improvement of stability when formed.
  • X in the general formula [1] will be described.
  • X may have a substituent represented by the general formula [3], a phenanthreneyl group, or a substituent represented by the general formula [4].
  • o It may have a substituent represented by general formula [5] or m-phenylene group.
  • the group X in the general formula [1] is a phenanthrene-diyl group which may have a substituent represented by the general formula [3], a force rubazolyl group represented by the general formula [11] described above
  • a phenanthrene compound having When the phenanthrene compound having a strong rubazolyl group represented by the general formula [11] of the present invention is used as a material for an organic EL device, the higher the Tg, the better.
  • Preferable examples of the phenanthrene compound having a strong rubazolyl group represented by the general formula [11] of the present invention include Tg of 170 ° C. or higher.
  • the molecular weight of the compound is preferably 1500 or less, preferably 1300 or less Is more preferably 1200 or less, more preferably 1100 or less. This is because, when the molecular weight is large, there is a concern that the vapor deposition property in the case of producing an element by vapor deposition is deteriorated.
  • the X force in the general formula [1] may have a substituent represented by the general formula [4], or a substitution represented by the general formula [5]. The case where it is a good m-phenylene group even if it has a group will be described.
  • o-fullerene groups and m-fullerene groups are less symmetric than p-fullerene groups. Therefore, it is possible to form a stable thin film.
  • R 8 to, or R 12 to R 15 represent a hydrogen atom, a halogen atom, or a monovalent organic residue.
  • halogen atoms and monovalent organic residues There are the following.
  • R 8 and R 9 , R 9 and R 1C> , or R 10 and R 11 may be bonded to each other by a substituent to form a ring with adjacent atoms.
  • R 13 and R 14 or R 14 and R 15 in the general formula [5] may be bonded to each other with a substituent to form a ring with adjacent atoms.
  • a more preferable form of the general formula [4] is o-phenylene of the general formula [6].
  • Formula in [6], R 16 to R 19 in general formula [4] to force substituents mutually binding the same meanings as R 8 to R U in, a new ring is aromatic is formed If it is a ring, it is limited to only one position.
  • a more preferred form of the general formula [5] is m-phenylene of the general formula [7].
  • R 2 to R 23 are synonymous with R 12 to R 15 in general formula [5].
  • a new ring formed by bonding substituents to each other is aromatic. If it is a ring, it is limited to only one position.
  • the most preferred form of the general formula [4] or the general formula [5] described above may have a substituent represented by the general formula [4], and an o-phenylene group is represented by the general formula [4].
  • Examples include o-phenylene in 8], naphthylene in general formula [9], or m-phenylene in general formula [10].
  • R 24 ⁇ R 27, R 28 ⁇ R 33 and,, R 34 to R 37 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, which may have a substituent !
  • R 24 ⁇ R 27, R 28 ⁇ R 33 and,, R 34 to R 37 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, which may have a substituent !
  • the hydrogen atom and the rogen atom are the same as those described above, and examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a normal propyl group, and an isopropyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms and the monovalent heterocyclic group having 2 to 5 carbon atoms include those having the corresponding carbon number among those described above.
  • R 24 to R 27 , R 28 to R 33 , and R 34 to R 37 are a hydrogen atom, a methyl group, and a full group.
  • the forces described above for the diaminoarylene-containing compound having a force rubazolyl group represented by the general formula [1] used in the present invention are as follows:
  • the diaminoarylene having these force rubazolyl groups When a compound is used as a material for an organic EL device, the molecular weight of the compound is 150
  • 0 or less is preferred 1300 or less is more preferred 1200 or less is more preferred 1100 or less is particularly preferred. This is because, when the molecular weight is large, there is a concern that the vapor deposition property in the case of producing an element by vapor deposition is deteriorated.
  • X in the general formula [1] of the present invention may have an o-phenylene group which may have a substituent represented by the general formula [4], or a general formula [5].
  • Table 2 shows typical examples of diaminoarylene compounds having a force rubazolyl group represented by the general formula [1] in the case of an m-phenolene group. However, the present invention is not limited to this representative example. [Table 2]
  • the phenanthrene compound having a strong rubazolyl group of the present invention can be used for various applications.
  • a material that exhibits functions such as sensitization effect, heat generation effect, color development effect, color fading effect, phosphorescence effect, phase change effect, photoelectric conversion effect, photomagnetic effect, photocatalytic effect, light modulation effect, optical recording effect, radical generation effect, etc. Or conversely, it can be used as a material having a light emitting function under these effects.
  • light emitting materials photoelectric conversion materials, optical recording materials, image forming materials, photochromic materials, organic EL materials, photoconductive materials, dichroic materials, radical generating materials, acid generating materials, base generating materials, phosphorescent materials Materials, nonlinear optics Material, 2nd harmonic generation material, 3rd harmonic generation material, photosensitive material, light absorption material, near infrared absorption material, photochemical hole burning material, optical sensing material, optical marking material, sensitizing material for photochemical treatment, Examples thereof include optical phase change recording materials, photosintered recording materials, magneto-optical recording materials, and dyes for photodynamic therapy.
  • organic EL material organic EL material, organic EL element material
  • the phenanthrene compound having a force rubazolyl group of the present invention is produced by a sublimation purification method or the like.
  • a recrystallization method, a reprecipitation method, a zone melting method, a column purification method, an adsorption method, or the like, or a combination of these methods can be used.
  • the recrystallization method is preferred.
  • sublimation purification it is preferable to employ a method in which the sublimation boat is maintained at a temperature lower than the temperature at which the target compound sublimes and the sublimation impurities are removed in advance. In addition, it is desirable to apply a temperature gradient to the part where the sublimate is collected so that the sublimate is dispersed in the impurities and the target product.
  • Sublimation purification as described above is purification that separates impurities, and can be applied to the present invention. In addition, sublimation purification helps to predict the difficulty of material deposition.
  • An organic EL element is composed of an element in which a single layer or a multilayer organic layer is formed between an anode and a cathode.
  • a single layer type organic EL element is a light emitting layer between an anode and a cathode.
  • the multilayer organic EL element facilitates the injection of holes and electrons into the light-emitting layer, and facilitates the recombination of holes and electrons in the light-emitting layer.
  • it refers to a layer in which a hole injection layer, a hole transport layer, a hole blocking layer, an electron injection layer, and the like are laminated.
  • typical device configurations of multilayer organic EL devices are (1) anode Z hole injection layer Z light emitting layer Z cathode, (2) anode Z hole injection layer Z hole transport layer Z light emitting layer Z cathode (3) Anode Z hole injection layer Z light emitting layer Z electron injection layer Z cathode, (4) Anode
  • Z hole injection layer Z hole transport layer Z light emitting layer Z electron injection layer Z cathode (5) anode z hole injection Layer Z light emitting layer Z hole blocking layer Z electron injection layer Z cathode, (6) anode Z hole injection layer Z hole transport layer Z light emitting layer Z hole blocking layer Z electron injection layer Z cathode, (7) anode Z light-emitting layer Z hole blocking layer Z electron injection layer Z cathode, (8) Anode Z light-emitting layer Z electron injection layer Z element structure laminated in multiple layers such as Z cathode is considered.
  • each of the organic layers described above may be formed of two or more layers, and several layers may be laminated repeatedly.
  • an element configuration called “multi-photon emission” has recently been proposed in which some layers of the above-mentioned multilayer organic EL element are multilayered for the purpose of improving light extraction efficiency.
  • glass substrate Z anode Z hole transport layer Z electron transport light emitting layer Z electron injection layer Z charge generation layer Z light emission unit Z cathode power One way is to stack multiple units.
  • the phenanthrene compound (organic EL device material) having a strong rubazolyl group of the present invention may be used in any of the above-described layers, but particularly in a hole injection layer, a hole transport layer, and a light emitting layer. It can be preferably used.
  • the organic EL device material of the present invention can be used not only in a single compound, but also in combination of two or more compounds, that is, mixed, co-evaporated, laminated, etc. It is.
  • hole injection layer, hole transport layer, and light emitting layer they may be used together with other materials.
  • the hole injection layer there is a hole injection material that exhibits an excellent hole injection effect with respect to the light emitting layer, and that can form a hole injection layer excellent in adhesion to the anode interface and thin film formation. Used.
  • the materials used for each are a hole injection material and a hole transport material.
  • the material for an organic EL device of the present invention can be suitably used for a hole injection material, a hole transport material, and misalignment.
  • These hole injection materials and hole transport materials must have high ion mobility and a low ion energy of 5.5 eV or less.
  • a material that transports holes to the light-emitting layer with a lower electric field strength is preferable.
  • the mobility force of holes is, for example, at least when an electric field of 10 4 to: LO 6 VZcm is applied. what is 10- 6 cm 2 ⁇ ⁇ sec is preferred.
  • Other hole injection materials and hole transport materials that can be used in combination with the organic EL device material of the present invention include: However, there is no particular limitation as long as it has the above-mentioned preferable properties. Conventionally, it is commonly used as a hole transporting material for photoconductive materials and used as a hole injection layer for organic EL devices. Any one of the known ones can be selected and used.
  • hole injection materials and hole transport materials include triazole derivatives (see US Pat. No. 3,112,197, etc.), oxadiazole derivatives (US Pat. No. 3,189,447). Imidazole derivatives (see Japanese Patent Publication No. 37-16096), polyarylalkane derivatives (US Pat. Nos. 3,615,402, 3,820,989, 3, 542, 544, JP-B 45-555, 51-10983, JP-A 51-93224, 55-17105, 56-4 148, 55 — See 108667, 55-156953, 56-36656, etc.), pyrazoline derivatives and pyrazolone derivatives (US Pat. Nos.
  • the ability to use the above-mentioned materials as the hole injection material or the hole transport material is a porphyrin compound (Japanese Patent Laid-Open No. 63-29556965), an aromatic tertiary amine compound, and a styrylamine salt.
  • Compound US Pat. No. 4,127,412, JP-A-53-27033, 54-58445, 54-149634, 54-64299, 55-79450 No. 55-144250, No. 56-119132, No. 61-295558, No. 61-98353, No. 63-295695, etc.
  • hole injection materials include phthalocyanine derivatives such as copper phthalocyanine and hydrogen phthalocyanine, and other aromatic dimethylidene compounds, p-type Si, Inorganic compounds such as p-type SiC can also be used as hole injection materials and hole transport materials.
  • aromatic tertiary amine derivative examples include, for example, N, N'-diphenyl-N, N,
  • R all to R a each independently represents a hydrogen atom, an alkoxyl group, or a cyan group, but not all of them simultaneously become a hydrogen atom.
  • the alkoxyl group includes a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert butoxy group, an octyloxy group, a tert-octyloxy group, a 2-boroxy group, a 2-isoboroxy group, and a 1-adamanman Examples thereof include an alkoxyl group having 1 to 18 carbon atoms, such as a thioloxy group.
  • R all to R a14 represented by the general formula [5] are preferably combined, and it is preferable that R all to R a ′′ are all a methoxy group, an ethoxy group, or a cyan group.
  • Z 1 is a linking group and represents any of a single bond, a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, an oxygen atom, and a sulfur atom.
  • R a21 to R a26 each independently represents a monovalent aromatic hydrocarbon group.
  • the linking group for Z 21 includes a single bond, vinylene group, o-phenylene group, m-phenylene group, p-phenylene group, 1, 4 naphthylene group, 2, 6 A naphthylene group, a 9, 10 phenanthrylene group, and a 9,10 anthrylene group are preferred, and a single bond, a beylene group, a p-phenylene group, and a 1,4 naphthylene group are more preferred.
  • R a21 to R a26 are monovalent aromatics selected from a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an o-biphenylyl group, an m-biphenylyl group, and a p-biphenylyl group.
  • a group hydrocarbon group is preferred.
  • Z dl is a linking group, and represents a single bond, a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, an oxygen atom, or a sulfur atom.
  • R a31 to R a36 represent Each independently represents a monovalent aromatic hydrocarbon group.
  • Z 31 linking groups include single bond, beylene group, o-phenylene group, m-phenylene group, p-phenylene group, 1, 4 naphthylene group, 2, 6 naphthylene group, 9, 10 Phenanthrylene Group, 9, 10-anthrylene group is preferred single bond, beylene group, p-phenylene group, 1, 4
  • Ra ⁇ ! ⁇ ⁇ is a monovalent fragrance selected from a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an o-biphenyl group, an m-biphenyl group, and a p-biphenyl group.
  • a group hydrocarbon group is preferred.
  • R a41 to R a48 each independently represents a monovalent aromatic hydrocarbon group.
  • R a41 to R a48 are monovalent groups selected from a phenyl group, 1-naphthyl group, 2-naphthyl group, o-biphenyl group, m-biphenyl group, and p-biphenyl group.
  • the aromatic hydrocarbon group is preferable.
  • R a & 1 to R a & b each independently represents a monovalent aromatic hydrocarbon group.
  • R a51 to R a56 are monovalent groups selected from a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an o-biphenyl group, an m-biphenyl group, and a p-biphenyl group.
  • the aromatic hydrocarbon group is preferable.
  • R a ′′ to R ab4 each independently represents a monovalent aromatic hydrocarbon group, and p represents an integer of 1 to 4.
  • R a61 to R a64 are monovalent groups selected from a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an o-biphenyl group, an m-biphenyl group, and a p-biphenyl group.
  • the aromatic hydrocarbon group is preferable.
  • examples of the hole transport material that can be used together with the compound of the present invention (material for organic EL device) include known compounds shown in Table 4 below.
  • the above-described compound is formed into a thin film by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the layer is not particularly limited, but is usually 5 ⁇ to 5 / ⁇ ⁇ .
  • an electron injection material that exhibits an excellent electron injection effect with respect to the light emitting layer and that can form an electron injection layer excellent in adhesion to the cathode interface and thin film formability is used.
  • electron injection materials include metal complex compounds, nitrogen-containing five-membered ring derivatives, fluorenone derivatives, anthraquinodimethane derivatives, difluoroquinone derivatives, thiopyran dioxide derivatives, perylenetetracarboxylic acid derivatives, fluorenylidene.
  • Examples include methane derivatives, anthrone derivatives, silole derivatives, triarylphosphine oxide derivatives, strength luciferous acetate, sodium acetate and the like.
  • inorganic-organic composites doped with metal such as cesium in bathofannant mouth phosphorus (Proceedings of the Society of Polymer Science, Vol. 50, No. 4, 660, published in 2001) and the 50th Applied Physics Related Lecture BCP, TPP, T5MPyTZ, etc., published in Proceedings of the Conference, No. 3, page 1402, published in 2003, are examples of electron injection materials, but a thin film necessary for device fabrication is formed and electrons from the cathode are used. The material is not particularly limited as long as it can be injected and can transport electrons.
  • Preferred examples of the electron injecting material include metal complex compounds, nitrogen-containing five-membered ring derivatives, silole derivatives, and triarylphosphine oxide derivatives.
  • a preferred metal complex compound usable in the present invention is a metal complex of 8-hydroxyquinoline or a derivative thereof.
  • Specific examples of metal complexes of 8-hydroxyquinoline or its derivatives include tris (8-hydroxyquinolinate) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (4-methyl 8-hydroxy).
  • Quinolinate) aluminum tris (5-methyl 8-hydroxyquinolinate) aluminum, tris (5-ferro-8-hydroxyquinolinate) aluminum, bis (8-hydroxyquinolinate) (1— Naphthato) aluminum, bis (8-hydroxyquinolinate) (2 naphtholate) Aluminum, bis (8-hydroxyquinolinato) (phenolate) aluminum, bis (8-hydroxyquinolinate) (4ciano 1-naphtholate) aluminum Bis (4-methyl 8-hydroxyquinolinate) (1-naphth Acrylate) aluminum, bis (5-methyl-8 hydro Xyquinolinate) (2 naphtholate) aluminum, bis (5-phenol 8-hydroxy quinolinate) (phenolate) aluminum, bis (5-ciano 8-hydroxy quinolinate) (4 cyano 1-naphtholate) anolemium, bis ( 8 Hydroxyquinolinate) Chloroanol Minium, Bis (8-hydroxyquinolinate) (o Cresolate) Aluminum complex compounds such as aluminum, Tris (8 Hydroxyquinolinate) Gallium, Tris
  • preferred nitrogen-containing five-membered ring derivatives include oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, and triazole derivatives.
  • oxaziazole derivatives include oxaziazole derivatives represented by the following general formula [20].
  • Ar 11 and Ar 12 each independently represent a monovalent aromatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group which may have a substituent.
  • the monovalent nitrogen-containing aromatic heterocyclic group includes: 2 pyridyl group, 3 pyridyl group, 4 pyridyl group, 3 pyridazyl group, 4 pyridazyl group, 2 pyrimidyl group, 4 pyrimidyl group, 5 pyrimidyl group, 2-birazyl group Group, 1 monovalent nitrogen-containing monocyclic aromatic heterocyclic group such as imidazolyl group, 2 quinolyl group, 3 quinolyl group, 4 quinolyl group, 5 quinolyl group, 6 quinolyl group, 7 quinolyl group, 8 quinolyl group, 2 quinazolyl group Group, 4 quinazolyl group, 5 quinazolyl group, 2 quinoxalyl group, 5 quinoxalyl group, 6 quinoxalyl group, 1 indolyl group, 9 monovalent nitrogen-containing condensed ring aromatic heterocyclic group, 2, 2 'bibilidilu 3—yl
  • Table 5 shows specific examples of oxaziazole derivatives that can be used in the present invention.
  • triazole derivatives represented by the following general formula [21].
  • ⁇ ⁇ ⁇ 3 are each independently, may have a substituent, a monovalent aromatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group.
  • preferable monovalent aromatic hydrocarbon groups may be substituted with a monovalent aliphatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group! ⁇ , phenyl group, 1-naphthyl group, 2-naphthyl group, o-biphenyl group, m-biphenyl group, and p-biphenyl group, and preferable monovalent nitrogen-containing aromatic heterocycle
  • the group may be substituted with a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group, 2 pyridinole group, 3 pyridinole group, 4 pyridinole group, 2, 2, 1 bibilidinole 1 — I group, and 2, 2'Bibirijiru one 4-I le group.
  • Ar t3 as the good preferable monovalent aromatic hydrocarbon group, a monovalent aliphatic hydrocarbon group or A phenyl group optionally substituted with a monovalent nitrogen-containing aromatic heterocyclic group, 1 naphthi Group, 2-naphthyl group, o-bifluoro-allyl group, m-bifluoro-allyl group, and p-bifluoro-allyl group, and preferable monovalent nitrogen-containing aromatic heterocyclic group is monovalent. Examples thereof include a 2-pyridyl group, a 3-pyridyl group, and a 4-pyridyl group, which may be substituted with an aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group.
  • Table 6 shows specific examples of triazole derivatives that can be used in the present invention.
  • silole derivatives represented by the following general formula [22]. [0144] General formula [22]
  • Ar Pl to Ar p4 each independently represents a monovalent aromatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group which may have a substituent. Adjacent groups of 1 , 2 and Ar Pl to Ar p4 may be linked to each other to form a ring.
  • a preferable monovalent aliphatic hydrocarbon group may be substituted with a monovalent aromatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group.
  • a monovalent aromatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Preferred monovalent aromatic hydrocarbon groups are substituted with a monovalent aliphatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group.
  • monovalent nitrogen-containing aromatic heterocyclic groups include monovalent aliphatic hydrocarbons such as a phenyl group, an m-biphenyl group, and a p-biphenyl group.
  • 2-pyridyl group, 3-pyridyl group and 4-pyridyl group which may be substituted with a group or a monovalent aromatic hydrocarbon group.
  • preferred monovalent aromatic hydrocarbon group may be substituted with a monovalent aliphatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group, Examples thereof include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an o-biphenylyl group, an m-biphenylyl group, and a p-biphenylyl group, and preferred monovalent nitrogen-containing aromatic heterocycles.
  • the group may be substituted with a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group, 2 pyridyl group, 3 pyridyl group, 4-pyridyl group, 2, 2, -bibilidyl- 3-yl group and 2, 2, -bibilidyl-4-yl group force S.
  • Table 7 shows specific examples of silole derivatives that can be used in the present invention. 7]
  • triarylphosphine oxide derivatives include those disclosed in JP-A-2002-63989 and JP-A-2004-95221. Examples thereof include triarylphosphine oxide derivatives and triarylphosphine oxide derivatives represented by the following general formula [23] described in JP-A-2004-203828 and JP-A-2004-204140.
  • Ar ql to Ar q3 each independently represent a monovalent aromatic hydrocarbon group which may have a substituent.
  • a preferable monovalent aromatic hydrocarbon group may be substituted with a monovalent aliphatic hydrocarbon group or a monovalent nitrogen-containing aromatic heterocyclic group, Examples thereof include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an o-biphenylyl group, an m-biphenylyl group, and a p-biphenylyl group.
  • Table 8 shows specific examples of triarylphosphine oxide derivatives that can be used in the present invention.
  • a hole blocking material that prevents a hole that has passed through the light emitting layer from reaching the electron injection layer and can form a layer that has excellent thin film formability is used for the hole blocking layer.
  • hole blocking materials include aluminum complex compounds such as bis (8-hydroxyquinolinate) (4-phenolphenolate) aluminum, and bis (2-methyl-8 hydroxyquinolina).
  • Gallium complex compounds such as gallium (4 phenolphenolate) gallium, and nitrogen-containing condensed aromatic compounds such as 2,9 dimethyl-4,7 diphenyl 1,10 phenanthrene (BCP).
  • the light emitting layer of the organic EL device of the present invention preferably has the following functions.
  • Injection function Function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the negative electrode or electron injection layer:
  • Transport function function to move injected charges (electrons and holes) by the force of electric field
  • Light emission function function to provide a field for recombination of electrons and holes and connect this to light emission
  • holes are easily injected
  • the transport ability expressed by the mobility of holes and electrons may be large or small, but it is possible to move one of the charges. I like it.
  • the light-emitting materials of organic EL devices are mainly organic compounds. Specifically, the following compounds are used depending on the desired color tone.
  • a compound represented by the following general formula [24] is preferably used.
  • the phenyl group, 1 naphthyl group, 2 naphthyl group, and phenylene group represented by XI and X2 in the general formula [24] are one or more alkyl groups having 1 to 4 carbon atoms and 1 to 4 carbon atoms. 4 may be substituted with a substituent such as an alkoxyl group, a hydroxyl group, a sulfonyl group, a carbonyl group, an amino group, a dimethylamino group, or a diphenylamino group. In addition, when there are a plurality of these substituents, they may be bonded to each other to form a ring.
  • the phenylene group represented by XI is preferably bonded at the position because it has good bonding properties and a smooth deposited film can be easily formed.
  • Specific examples of the compound represented by the general formula [24] are as follows (where Ph represents a phenyl group).
  • p-quarterphenyl derivatives and p-quinkphenyl derivatives are particularly preferred.
  • fluorescent brighteners such as benzothiazole, benzimidazole, and benzoxazole
  • metal chelate oxinoid compounds styrylbenzene compounds
  • styrylbenzene compounds can be used. Specific examples of these compounds include the compounds disclosed in JP-A-59-194393. Still other useful compounds are listed in Chemistry of Synthetic Dies (1971) 628-637 pages 640 pages.
  • the metal chelate oxinoid compound for example, compounds disclosed in JP-A-63-295695 can be used. Typical examples thereof include 8-hydroxyquinoline metal complexes such as tris (8-quinolinol) aluminum, dilithium pin tridione, and the like as suitable compounds.
  • styrylbenzene compound for example, those disclosed in European Patent No. 0319881 and European Patent No. 0373582 can be used.
  • a distyrylvirazine derivative disclosed in JP-A-2-252793 can also be used as a material for the light emitting layer.
  • polyphenyl compounds disclosed in EP 0387715 can also be used as a material for the light emitting layer.
  • metal chelate hyoxinoid compounds and styrylbenzene compounds for example, 12-lid perinone (J. Appl. Phys., No.
  • R X1 and R X2 each independently represent a monovalent aliphatic hydrocarbon group, nl represents 3 to
  • R Xd and R X4 each independently represent a monovalent aliphatic hydrocarbon group, n2 and n
  • IT 5 and R Xb each independently represent a monovalent aliphatic hydrocarbon group
  • n4 and n 5 each independently represents an integer of 3 to 100
  • Ph represents a phenyl group.
  • 9,10-bis (N— (4- (2-phenol- 1-yl) phenol) -N-phenylamino) anthracene can also be used as a material for the light emitting layer.
  • a phenylanthracene derivative represented by the following general formula [20] as disclosed in JP-A-8-12600 can also be used as a light emitting material.
  • A1 and A2 each independently represent a monophenylanthryl group or a diphenylanthryl group, which may be the same or different.
  • L represents a single bond or a divalent linking group.
  • the divalent linking group represented by L is preferably a divalent monocyclic or condensed ring aromatic hydrocarbon group which may have a substituent.
  • the phenylanthracene derivatives represented by the following general formulas [30] to [31] are suitable.
  • R Z1 to R Z4 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, a monovalent aromatic hydrocarbon group, an alkoxyl group, an aryloxy group, or a diallylamino group.
  • rl to r4 are each independently an integer of 2 or more, R Z1 to each other, R z2 to each other, R z3 to each other Judges, R Z4 each other Yogu R Z1 each other even be different in each identical, R Z2 each other, R Zd each other, R Z4 to each other may form a ring.
  • L1 represents a divalent monocyclic or condensed ring aromatic hydrocarbon group which may have a single bond or a substituent, and a divalent monocyclic or condensed ring aromatic hydrocarbon group which may have a substituent May be an intervening alkylene group, O—, —S or —NR— (wherein R represents an alkyl group or an aryl group). ) [0176] General formula [31]
  • R z & and R Zb each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, a monovalent aromatic hydrocarbon group, an alkoxyl group, an aryloxy group, or a diaryl.
  • a divalent monocyclic or condensed ring aromatic hydrocarbon group is an alkylene group, —O, 1 S or NR— (where R is an It represents Kill group or Ariru group) or may be intervening.)
  • R zll to R ZdU each independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, a monovalent aromatic hydrocarbon group, an alkoxyl group, an aryloxy group, or a diallylamino group.
  • R Zdl to R z & u each independently represents a hydrogen atom, an alkyl group, an alkenyl group, It represents a mouth alkyl group, a monovalent aromatic hydrocarbon group, an alkoxyl group, an aryloxy group, a diallylamino group, a monovalent aliphatic heterocyclic group, or a monovalent aromatic heterocyclic group, which may be the same or different. There may be.
  • R Z31 to R Z5G may be formed by connecting adjacent groups to form a ring.
  • k2 represents an integer of 0 to 3.
  • R z & 1 to R ZbU each independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, a monovalent aromatic hydrocarbon group, an alkoxyl group, an aryloxy group, or a diallylamino group.
  • R Z51 ⁇ R Z6G is between adjacent groups are connected, A ring may be formed, and k3 represents an integer of 0 to 3.
  • amine compounds represented by the following general formula [35] are also useful as the luminescent material.
  • E1 is an n-valent aromatic hydrocarbon group
  • E2 is a dialkylamino group, a diarylamino group, an alkylarylamino group strength
  • the base structure of the n-valent aromatic hydrocarbon group represented by E1 includes naphthalene, anthracene, 9-phenylanthracene, 9, 10-diphenylanthracene, naphthacene, pyrene, perylene, biphenyl.
  • -Amino group represented by E1 is preferably a diarylamino group.
  • n is most preferably 1 to 4, particularly preferably 2.
  • amine compounds represented by the following general formula [36] to general formula [45] are particularly preferable.
  • R yl to R y8 are each independently a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, a monovalent group, At least one of the forces R yl to R y8 representing an aromatic heterocyclic group or a dialkylamino group, a diarylamino group, or an alkylaryl amino group selected from R yl to R y8 is a dialkylamino group or a diarylamino group.
  • an alkyl group selected from an alkylaryl amino group, R yl to R y8 may be the same or different, and adjacent groups may be linked to form a ring.
  • R yll to R y2 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, a monovalent aliphatic group, Aromatic heterocyclic group or an amino group selected from a dialkylamino group, a diarylamino group, and an alkylaryl amino group, but at least one of R yll to R y2 is a dialkylamino group or a diarylamino group.
  • R yll to R y2 may be the same or different, and adjacent groups may be linked to form a ring.
  • R y21 to 34 each independently represent a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, a monovalent group, Aromatic heterocyclic group or dialkylamino group, diarylamino group, alkylaryl Amino group force At least one of the forces R y21 to R y34 representing the selected amino group represents an amino group selected from a dialkylamino group, a diarylamino group, and an alkylarylamino group.
  • R y21 to R y34 may be the same or different, and adjacent groups may be connected to form a ring.
  • R y35 to R y52 each independently represent a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 valent Kaoru aromatic heterocyclic group or a dialkylamino group
  • Jiariruamino group, of the force R y35 to R y52 represents an alkyl ⁇ arylamino group forces amino group selected, at least one, dialkyl Ruamino group, Jiariruamino group
  • R y35 to R y52 may be the same or different, and adjacent groups may be connected to form a ring.
  • R y53 to R y64 each independently represents a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 valent Kaoru aromatic heterocyclic group or a dialkylamino group
  • Jiariruamino group represents an alkyl ⁇ arylamino group mosquito amino group which may be chosen among the R y53 to R Y64, at least one, dialkyl Ruamino group
  • An amino group selected from a diarylamino group and an alkylarylamino group, and Ry53 to Ry64 may be the same or different, and adjacent groups may be linked to form a ring.
  • R y65 to R y74 each independently represents a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 A valent aromatic heterocyclic group, or a dialkylamino group, a diarylamino group, an alkylaryl amino group, and an amino group that is also selected, but at least one of R y65 to R y74 is a dialkylamino group, An amino group selected from a diarylamino group and an alkylarylamino group, 65 to 74 may be the same or different, and adjacent groups may be linked to form a ring.
  • R y75 to R y86 each independently represents a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 valent Kaoru aromatic heterocyclic group or a dialkylamino group
  • Jiariruamino group represents an alkyl ⁇ arylamino group mosquito amino group which may be chosen among the R Y75 to R Y86, at least one, dialkyl Ruamino group, Diarylamino group, alkylarylamino group power Represents the amino group selected R y75 to R y86 may be the same or different, and adjacent groups may be linked to form a ring.
  • R y87 to R yae are each independently a hydrogen atom, an alkyl group, an alkyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, or a monovalent aromatic group.
  • An aromatic heterocyclic group, or a dialkylamino group, a diarylamino group, an alkylaryl amino group is also selected, but at least one of R y87 to R y96 is a dialkyl group. It represents an amino group selected from a ruamino group, a diarylamino group, and an alkylarylamino group.
  • R y87 to R y96 may be the same or different, and adjacent groups may be connected to form a ring.
  • R y97 to R yllG each independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, 1 valent aromatic heterocyclic group or a dialkylamino group
  • Jiariruamino group represent a Arukiruari Ruamino group forces amino group which may be chosen among the R Y97 to R yll, at least one di ⁇ alkylamino group, Jiariruamino group, And represents an amino group selected from an alkylaryl amino group, and 97 to 11G may be the same or different, and adjacent groups may be linked to form a ring.
  • R ylll to R y128 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an alkoxyl group, an aryloxy group, a monovalent aliphatic heterocyclic group, a monovalent aliphatic group, aromatic heterocyclic group or a dialkylamino group
  • Jiariruamino group represent a Arukiruari Ruamino group forces amino group which may be chosen among the R ylll ⁇ R y128, at least one di ⁇ alkylamino group, Jiariruamino group, Arukirua Rylyl to Ry128 may be the same or different, and adjacent groups may be linked to form a ring.
  • the amine compounds of the general formulas [40] and [42] described above can be suitably used when yellow to red light emission is obtained.
  • Specific examples of the amine compounds represented by the general formulas [35] to [45] described above include compounds having the following structures (wherein Ph represents a phenyl group).
  • R yl to R y each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, or a monovalent aromatic hydrocarbon group.
  • adjacent groups are connected to each other. And may form a ring.
  • R yl32 to R y138 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, or a monovalent aromatic hydrocarbon group.
  • R yl34 to 138 each independently represents a hydrogen atom) Atom, alkyl group, cycloalkyl group, monovalent aromatic hydrocarbon group, or dialkylamino group, diarylamino group, alkylarylamino group force At least one of the forces R yl 34 to 138 representing the selected amino group
  • One is an amino group from which a dialkylamino group, a diarylamino group, and an alkylarylamino group are also selected, and Ryl32 to Ry138 may be linked together to form a ring.
  • L3 is a hydrocarbon of 6 to 24 carbon atoms comprising a phenyl moiety, 0—L3 is a phenolate ligand, Q is a substituted 8-quinolinolato ligand.
  • Rs represents an 8-quinolinolate ring substituent selected so as to sterically hinder the binding of two substituted 8-quinolinolato ligands to the aluminum atom. Specifically, bis (2-methyl-8 quinolinolato) (para-phenol phenolate) aluminum ( ⁇ ), bis (2-methyl-8 quinolinolato) (1-naphtholato) aluminum ( ⁇ ), etc. Is given.
  • examples of the host include the above-mentioned light-emitting materials
  • examples of the dopant include fluorescent dyes having strong blue power up to green, for example, coumarins or fluorescent dyes similar to those used as the above-mentioned host.
  • a light emitting material having a distyrylarylene skeleton as a host particularly preferably 4, 4, 1 bis.
  • diphenylamino vinylarylene particularly preferably, for example, N, N diphenylaminovinylbenzene can be mentioned.
  • the light emitting layer for obtaining white light emission is not particularly limited, and the following can be used.
  • each layer of the organic EL laminated structure is specified and light is emitted using tunnel injection (European Patent No. 0390551).
  • a white light emitting element is described as an example of an element using tunnel injection (Japanese Patent Laid-Open No. 3-230584).
  • a light-emitting layer having a two-layer structure is described (JP-A-2-220390 and JP-A-2-216790).
  • a structure in which a light emitting layer is divided into a plurality of materials each having a different emission wavelength Japanese Patent Laid-Open No. 4 51491).
  • a structure in which a blue phosphor (fluorescence peak 380 to 480 nm) and a green phosphor (480 to 580 nm) are laminated and a red phosphor is further contained Japanese Patent Laid-Open No. 6-207170.
  • the following known compounds are suitably used as the light emitting material (where Ph represents a phenyl group).
  • a phosphorescent material can be used.
  • phosphorescent materials or doping materials that can be used in the organic EL device of the present invention include organic metal complexes, where the metal atom is usually a transition metal, and preferably has a fifth period or a second period. In 6 cycles, in group 6 and 11 power, more preferably 8 and 10 power Elementary is the target. Specific examples include iridium and platinum.
  • ligands include 2-phenol pyridine and 2- (2'-benzochel) pyridine, and the carbon atom on these ligands is directly bonded to the metal. It is. Another example is a porphyrin or tetraazaborphyrin ring complex, and the central metal is platinum.
  • the following known compounds are suitably used as the phosphorescent material (where Ph represents a phenyl group).
  • the material used for the anode of the organic EL device of the present invention is preferably a material having a large work function (4 eV or more) metal, alloy, electrically conductive compound or a mixture thereof as an electrode material. It is done. Specific examples of such an electrode substance include metals such as Au, and conductive materials such as Cul, IT0, Sn02, and ZnO.
  • a thin film can be formed from these electrode materials by a method such as vapor deposition or sputtering.
  • This anode desirably has such a characteristic that, when light emitted from the light emitting layer is extracted with an anodic force, the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ or less. Further, although the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • the material used for the cathode of the organic EL device of the present invention is a material having a low work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof as an electrode material.
  • electrode materials include sodium, sodium monopotassium alloy, magnesium, lithium, magnesium 'silver alloy, aluminum / acid aluminum, aluminum' lithium alloy, indium, and rare earth metals.
  • This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is preferably larger than 10%.
  • the sheet resistance as a cathode is preferably several hundred ⁇ or less, and the film thickness is usually 10 nm to: m, preferably 50-200 nm.
  • an anode, a light emitting layer, a hole injection layer as necessary, and an electron injection layer as necessary are formed by the above materials and methods.
  • a cathode may be formed.
  • the organic EL element can be produced in the reverse order from the cathode to the anode.
  • This organic EL element is manufactured on a light-transmitting substrate.
  • This translucent substrate is a substrate that supports the organic EL element, and it is desirable that the translucency is such that the transmittance of light in the visible region of 400 to 700 nm is 50% or more, preferably 90% or more. It is preferable to use a smoother substrate.
  • These substrates are not particularly limited as long as they have mechanical and thermal strength and are transparent.
  • glass plates, synthetic resin plates, and the like are preferably used.
  • the glass plate include plates made of soda lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, quartz, and the like.
  • the synthetic resin plate include polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyether sulfide resin, and polysulfone resin.
  • each layer of the organic EL device of the present invention a dry film forming method such as vacuum deposition, electron beam irradiation, sputtering, plasma, ion plating, or wet methods such as spin coating, dating, flow coating, etc. Any of the film formation methods can be applied.
  • the organic layer is particularly preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state. Can be distinguished from the thin film (accumulated film) formed by the LB method by the difference in aggregated structure, higher order structure, and functional difference resulting therefrom.
  • a binder such as resin and a material compound are dissolved in a solvent to obtain a solution, which is then applied by a spin coating method.
  • the organic layer can also be formed by forming a thin film by, for example.
  • the film thickness of each layer is not particularly limited, but if the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the thickness is too thin, pinholes and the like are generated, and it becomes difficult to obtain sufficient emission luminance even when an electric field is applied. Accordingly, the thickness of each layer is suitably in the range of lnm to: m, but more preferably in the range of lOnm to 0.2 / zm.
  • a protective layer may be provided on the surface of the device, or the entire device may be covered or sealed with grease or the like. Good.
  • a photocurable resin that is cured by light is preferably used.
  • the current applied to the organic EL device of the present invention is usually a direct current, but a pulse current or an alternating current may be used.
  • the current value and voltage value are not particularly limited as long as the element is not damaged, but considering the power consumption and life of the element, it is desirable to emit light efficiently with as little electrical energy as possible.
  • the driving method of the organic EL device of the present invention can be driven not only by the noisy matrix method but also by the active matrix method.
  • the method for extracting light from the organic EL element of the present invention is applicable not only to the bottom emission method for extracting light from the anode side, but also to the top emission method for extracting light from the negative electrode side. is there.
  • the organic EL element of the present invention may adopt a microcavity structure. This is because the organic EL element has a structure in which the light emitting layer is sandwiched between the anode and the cathode, and the emitted light causes multiple interference between the anode and the cathode, but the reflectance of the anode and the cathode is low.
  • the technique of actively utilizing the multiple interference effect and controlling the emission wavelength extracted from the device It is a technique. Thereby, it is also possible to improve the emission chromaticity.
  • the mechanism of the multiple interference effect is described in J. Yamada et al. AM—LCD Digest of Technical Papers, OD—2, p. 77-80 (2002).
  • the organic EL device using the phenanthrene compound having a strong rubazolyl group of the present invention can emit light for a long time with a low driving voltage. Therefore, this organic EL element can be used as a flat panel display such as a wall-mounted TV and various flat light emitters. Furthermore, it can be applied to light sources such as copiers and printers, light sources such as liquid crystal displays and instruments, display boards, and indicator lights.
  • FIG. 1 is a mass spectrum of the compound (2). Calculated value: 842. 34 (M +
  • FIG. 2 is 1 HNMR of compound (2). (In THF-d)
  • FIG. 3 is a 13 C NMR of compound (2). (In THF-d)
  • FIG. 4 is a mass spectrum of the compound (61). Calculated value: 742. 309 (
  • the resulting crude product was purified by silica gel column chromatography, and further sublimation purified.
  • the glass transition temperature of this compound (2) was 171 ° C. (differential scanning calorimeter, manufactured by Seiko Instruments Inc.).
  • the mass spectrum of the compound (Brukerdalt-Tass, Autoflexll), ' ⁇ - ⁇ R, 13 C-NMR (JEOL, GSX-270W) is shown in Figs.
  • 3-bromo-9 phenolcarbazole (ii) used for the synthesis of compound (2) is the 3rd position of power rubazole in reference to the Journal of Occupational Chemistry, 1967, page 70, page 63. And then synthesized by reacting odobenzene with the Ullman method using a copper catalyst.
  • Ar a is an aryl group necessary for synthesizing the compound of the present invention.
  • R is a substituent necessary for synthesizing the compound of the present invention, and includes a hydrogen atom, a full group, a methyl group, a tert-butyl group, a cyclohexyl group, a thiophenyl group, a phenoxy group, Represents a fluorine atom, diphenylamino group, etc.
  • the synthesis method the method disclosed in JP-A-5-39248 was used.
  • Ar a and R are as defined above, and Ar b is an aryl group necessary for synthesizing the compound of the present invention, including a phenol group, a p-tolyl group, and a 4-biphenyl group. , ⁇ -Naphtyl group, 13-Naphthyl group, 3 Pyridyl group, 2-Chel group, 4-Chanophenol group, 4-Methoxyphenol group, 4 Fluorophenol group, (4-Diphenylamino) phenol group And so on.
  • R ′ is a substituent necessary for the synthesis of the compound of the present invention, and represents a hydrogen atom, a fluorine atom, a phenol group, a cyano group, a diphenylamino group, or the like.
  • a mono-substituted target compound can be easily obtained by the same procedure as in Example 1 except that 1.1 equivalent of the corresponding rubazole derivative instead of (i) in Example 1 is reacted. It was.
  • Ar a , Ar b , R, and R ′ have the same meanings as described above.
  • the target compound was obtained in the same manner by the same operation as in Example 1.
  • Ar b and R ' have the same meanings as described above.
  • the target compound was obtained by the same synthesis method as 3-bromo-9-phenolcarbazole (ii).
  • Ar a , Ar b , R, and R ' have the same meanings as described above.
  • Ar e is a Ariru group necessary for synthesizing the compounds of the present invention, Hue - Le group, p-tolyl group, 4 Bifue - le radical, a naphthyl Le group, J8- naphthyl, 3-pyridyl group, 2 Choi -Role group, 4-cyanophenol group, 4-methoxyphenol group, 4-fluorophenol group, (4-diphenylamino) phenol group, and the like.
  • the target compound was obtained in the same manner as in Example 1 except that the starting material of Reaction 6 was used instead of (i) and Arc-Br was used instead of (ii). It was.
  • X in the general formula [1] of the present invention may have a substituent represented by the general formula [4] o-phenylene group, or the general formula [5]
  • the Ullmann method is a coupling reaction between aryl iodide and allylamin, in which copper powder and a base such as anhydrous potassium carbonate are reacted in a high-boiling solvent such as nitrobenzene at a temperature of about 100 to 180 ° C.
  • a base such as anhydrous potassium carbonate
  • nitrobenzene a high-boiling solvent
  • the conversion reaction of the -tro group into the amino group in Reaction 13 is a well-known nitro group reduction reaction, which can be reduced by zinc or tin chloride ( ⁇ ) under acidic conditions.
  • Raj Reduction with hydrogen in the presence of a catalyst such as nickel black Raney, or reduction using a reducing agent such as lithium aluminum hydride yielded an amine compound corresponding to the nitro compound power in good yield.
  • This reduction reaction was performed in collaboration with Calvin A. Buehler and Donald E. Pearson, SURVEY OF ORGANIC SYNTHESES pp. 413-417, Wiley-Interscience (1970), The Chemical Society of Japan, New Experimental Chemistry Course 14, 1333-1335.
  • 1, 2 diaminobenzene 1.lg (10.2 mmol) and bromobenzene 5.0 g (32 mmol), palladium acetate 0.12 g, tri-tert-butylphosphine 0.40 g, potassium carbonate 11.2 g under nitrogen atmosphere was placed in a 50 ml four-necked flask, 20 ml of dehydrated xylene was added, and the mixture was heated to reflux for 3 hours. The reaction solution was neutralized by adding an aqueous salt ammonium solution, and the organic layer was extracted with toluene. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure.
  • N, N, ⁇ '-triphenyl-1,2 phenol-diamine will be 0.8 g (yield 23%). Obtained.
  • the obtained ⁇ , N, N, 1-triphenyl-1, 2-phenoldiamine, 0.8 g (2.4 mmol), 3-bromo-9-phenolcarbazole 1, 0 g (3.1 mmol), acetic acid 0.05 g of palladium, 0.20 g of tri-tert-butylphosphine, and 0.60 g of sodium tert-butoxide were placed in a 50 ml four-necked flask, and 20 ml of dehydrated xylene was added thereto and heated to reflux for 2 hours.
  • reaction solution was poured into 200 ml of methanol, and the precipitated solid was collected by filtration and dried in a hot vacuum.
  • a crude product 1.2 g of compound (60) was obtained.
  • the obtained crude product was purified by silica gel column chromatography and further purified by sublimation.
  • the ion potential of this compound (60) was 5.3 eV (Riken Keiki AC-1).
  • the compound was identified by mass spectrum (manufactured by Bruker Dart-Tus, Autoflex II), 1 H-NMR, and 13 C-NMR.
  • Phenolenamine 1.5 g (56% yield) was obtained.
  • 4 g were placed in a 50 ml four-necked flask, and 40 ml of dehydrated xylene was added and heated to reflux for 2 hours.
  • the reaction solution was poured into 200 ml of methanol, and the precipitated solid was collected by filtration and dried in a hot vacuum.
  • Phenolenamine 1.9 g (yield 71%) was obtained.
  • lg (19 mmol) palladium acetate 0.32 g
  • Tri-tert-butylphosphine (1.2 g) and sodium tert-butoxide (1.8 g) were placed in a 100 ml four-necked flask, and 50 ml of dehydrated xylene was added and heated to reflux for 2 hours.
  • the reaction solution was poured into 200 ml of methanol, and the precipitated solid was collected by filtration and dried in a hot vacuum.
  • the compounds of the present invention described in Table 10 could be synthesized in the same manner by combining the reactions 7 to 13 described above.
  • the structure of the obtained compound was confirmed by mass spectrum (manufactured by Bruker Dart-Tus, Autoflexll).
  • the results are shown in Table 10.
  • the compound numbers are the same as those in Table 2.
  • FIG. 4 shows a mass spectrum of the compound (61) (manufactured by Bruker Dartox, Autoflexll).
  • the compound (1) of the present invention was vacuum-deposited to obtain a hole injection layer having a thickness of 60 ⁇ m.
  • N, N, one (1 naphthinore) N, N, ji-Fu-Lu 1, 1'-Bi-Fer-4,4'-Diamin (NPD) was vacuum-deposited to obtain a 20 nm hole transport layer.
  • a tris (8-hydroxyquinoline) aluminum complex was vacuum-deposited to form an electron-injection-type light-emitting layer having a thickness of 60 ⁇ m, on which lithium fluoride was first deposited to 1 nm, and then aluminum was deposited to 200 nm to form an electrode.
  • Example 111 An element similar to that in Example 111 was prepared, except that a hole injection layer was formed using the compound shown in Table 11. The half life was measured when this device was driven at a constant current at room temperature with an emission luminance of 500 (cd / m 2 ). In addition, luminance was measured by continuously emitting light for 100 hours at a current density of lOmAZcm 2 in an environment of 100 ° C. The results are shown in Table 11.
  • the compound (44) in Table 1 of the present invention was vacuum-deposited to obtain a hole injection layer having a thickness of 60 nm.
  • HTM9 in Table 4 was vacuum deposited to obtain a 20 nm hole transport layer.
  • Sarakuko, tris (8-hydroxyquinoline) aluminum complex (Alq3) was vacuum-deposited to form an electron-injection-type light-emitting layer with a film thickness of 60 nm, on which 1 nm of lithium fluoride and 200 nm of aluminum were formed.
  • An electrode was formed by vapor deposition to obtain an organic EL device. This element is halved when driven at a constant current at room temperature with an emission brightness of 500 (cd / m 2 ). Lifespan was measured.
  • the luminance was measured by continuously emitting light for 100 hours at a current density of lOmAZcm 2 in an environment of 100 ° C. The results are shown in Table 11.
  • Example 121 An element similar to that in Example 121 was prepared except that a hole injection layer was prepared using the compounds shown in Table 11.
  • the half-life of this device was measured when it was driven at a constant current at room temperature with an emission luminance of 500 (cd / m2).
  • the luminance was measured by continuously emitting light for 100 hours at a current density of 10 mAZcm2 in an environment of 100 ° C. The results are shown in Table 11.
  • a device was prepared in the same manner as in Example 111 except that the hole injection layer was formed using the following compound (W) or compound (X). The half life was measured when this device was driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ). In addition, luminance was measured by emitting light continuously for 100 hours at a current density of 10 mAZcm 2 in an environment of 100 ° C. The results are also shown in Table 11.
  • the compound (60) of the present invention is vacuum-deposited on a cleaned glass plate with an ITO electrode to obtain a film thickness of 6 An Onm hole injection layer was obtained.
  • N, N, one (1 naphthyl) one N, N, di-phenyl — 1, 1, bi-phenyl — 4, 4, di-amine (NPD) were vacuum-deposited to obtain a 20 nm hole transport layer. It was. Further, tris (8-hydroxyquinolinate) aluminum complex (Alq3) was vacuum-deposited to form an electron-injection-type light-emitting layer having a thickness of 60 nm.
  • lithium fluoride (LiF) was first lnm, then Aluminum (A1) was deposited to 200 nm to form an electrode to obtain an organic EL element.
  • the half-life of this device was measured when it was driven at a constant current at room temperature with an emission luminance of 500 (cd / m 2 ).
  • luminance was measured by continuously emitting light for 100 hours at a current density of lOmAZcm 2 in an environment of 100 ° C. The results are shown in Table 12.
  • Example 126 An element similar to Example 126 was prepared, except that a hole injection layer was prepared using the compounds shown in Table 12. The half-life of this device was measured when it was driven at a constant current at room temperature with an emission luminance of 500 (cd / m2). In addition, the luminance was measured by continuously emitting light for 100 hours at a current density of lOmAZcm 2 in an environment of 100 ° C. The results are shown in Table 12.
  • a device was prepared in the same manner as in Example 126 except that the hole injection layer was formed using the following compound (Y) or compound (Z). The half-life was measured when this device was driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ). In addition, luminance was measured by emitting light continuously for 100 hours at a current density of 10 mA Zcm 2 in an environment of 100 ° C. The results are shown in Table 12.
  • the device prepared using the compound of the present invention was able to be driven at a lower voltage than that of the comparative example, and had a long lifetime and high luminance.
  • Copper phthalocyanine was deposited on a glass plate with an ITO electrode to form a 25 nm-thick hole injection layer.
  • compound (2) and compound (A) in Table 1 were co-evaporated at a composition ratio of 100: 8 to form a light emitting layer having a thickness of 45 nm.
  • the compound (B) is vapor-deposited to give an electron injection with a thickness of 20 nm.
  • An inlay was formed. On top of that, lithium oxide (Li 2 O) lnm, and aluminum (A1) 1
  • a cathode was formed by OOnm vapor deposition to obtain an organic EL device. This device showed an external quantum efficiency of 7.5% at a DC voltage of 10V. The half-life when driven at a constant current with an emission luminance of 200 (cdZm 2 ) was over 5000 hours.
  • Copper phthalocyanine was deposited on a glass plate with an ITO electrode to form a 25 nm-thick hole injection layer.
  • the compound (61) in Table 2 and the compound (A) described above were combined at a composition ratio of 100: 8. Co-evaporated to form a 45 nm thick light emitting layer.
  • the above-described compound (B) was deposited to form an electron injection layer having a film thickness of 20 nm. On top of that, add lithium oxide (Li 2 O) to lnm,
  • An organic EL device was obtained by forming a cathode of lumi-um (A1) by lOOnm evaporation. This element showed an external quantum efficiency of 7.5% at a DC voltage of 10V. In addition, the half-life when driven at a constant current at an emission luminance of 200 (cd Zm 2 ) was 5000 hours or more.
  • Example 152 instead of compound (61), compound (62), (74), (76), (88), (90), (99), (1 01), (102), (106), ( A device was fabricated in the same manner as in Example 152 except that 110) and (118) were used. These devices have an external quantum efficiency of 7% or more at a DC voltage of 10V, and have a half-life of 5000 hours or more when driven at a constant current with an emission luminance of 200 (cd / m 2 ).
  • the compound HIM 16 in Table 3 was deposited to form a hole injection layer with a thickness of 60 nm, and then the compound (32) in Table 1 was deposited to transport a hole with a thickness of 20 nm. A layer was formed.
  • Alq3 was deposited to form an electron-injecting light-emitting layer having a thickness of 60 nm, and an electrode was formed thereon by vacuum deposition of 1 nm of lithium fluoride and 200 nm of aluminum, thereby obtaining an organic EL device.
  • the luminous efficiency of this device at a DC voltage of 5V was 1.9 (lmZW).
  • the half-life was 5 000 hours or more when driven at a constant current at room temperature with an emission luminance of 500 (cd / m 2 ).
  • a device was prepared in the same manner as in Example 164 except that HIM2, HIM4, HIM7, HIM9, and HIM15 in Table 3 were used. When these devices were driven at a constant current at room temperature with an emission luminance of 500 (cd / m 2 ), the half-lives were all over 5000 hours.
  • Example 180 Instead of compound (32) in Table 1, compound (4), (5), (8), (30), (34), (36), (48), (53), (55) in Table 1 ) And (57) were used in the same manner as in Example 164, except that each was used. When these devices were driven at a constant current at room temperature with an emission luminance of 500 (cd / m 2 ), the half lives were all over 5000 hours. [0310] Example 180
  • the compound HIM 16 in Table 3 was deposited to form a 60-nm-thick hole injection layer, and then the compound (64) in Table 2 was deposited to transport a 20-nm-thick hole. A layer was formed.
  • Alq3 was deposited to form an electron-injecting light-emitting layer having a thickness of 60 nm, and an electrode was formed thereon by vacuum deposition of 1 nm of lithium fluoride and 200 nm of aluminum, thereby obtaining an organic EL device.
  • the luminous efficiency of this device at a DC voltage of 5V was 1.9 (lmZW).
  • the half-life was 5 000 hours or more when driven at a constant current at room temperature with an emission luminance of 500 (cd / m 2 ).
  • a device was prepared in the same manner as in Example 180 except that HIM2, HIM4, HIM7, HIM9, and HIM15 in Table 3 were used. When these devices were driven at a constant current at room temperature with an emission luminance of 500 (cd / m 2 ), the half-lives were all over 5000 hours.
  • NPD was vacuum-deposited on a glass plate with an ITO electrode to obtain a 40 nm-thick hole injection layer.
  • the compound (17) in Table 1 and the following compound (C) are co-evaporated at a ratio of 98: 3 to form a light-emitting layer with a film thickness of 40 nm.
  • Alq3 is vacuum-deposited with Thus, an electron injection layer having a thickness of 30 nm was formed.
  • an electrode was formed by vacuum deposition of 0.7 nm of lithium fluoride and then 200 nm of aluminum, to obtain an organic EL device.
  • This device emitted light with a luminance of 460 (cdZm 2 ) and a maximum luminance of 92600 (cdZm 2 ) at a DC voltage of 5V.
  • the half-life was 4800 hours when driven at a constant current at an emission luminance of 500 (cd / m 2 ).
  • NPD was vacuum-deposited on a glass plate with an ITO electrode to obtain a 40 nm-thick hole injection layer.
  • the compound (77) in Table 2 and the compound (C) described above were co-evaporated at a ratio of 98: 3 to produce a light-emitting layer with a thickness of 40 nm, and then Alq3 was vacuum-deposited with A 30 nm electron injection layer was created.
  • an electrode was formed by vacuum deposition of 0.7 nm of lithium fluoride and then 200 nm of aluminum, to obtain an organic EL device.
  • This device emitted light with a luminance of 460 (cdZm 2 ) and a maximum luminance of 92600 (cdZm 2 ) at a DC voltage of 5V.
  • the half-life was 4800 hours when driven at a constant current at an emission luminance of 500 (cd / m 2 ).
  • HIM9 in Table 3 is vapor-deposited to form a hole injection layer with a thickness of 50 nm.
  • the compound (2) in Table 1 was deposited by 20 nm to form a hole transport layer.
  • Sarakoko Alq3 was deposited to form a 20 nm thick light-emitting layer.
  • the compound EX3 in Table 5 was deposited to form an electron injection layer having a thickness of 30 nm.
  • an organic EL device was obtained by forming a cathode by depositing lnm of lithium oxide and lOOnm of aluminum. This device showed an emission luminance of 780 (cdZm 2 ) at a DC voltage of 5.5V.
  • the device after storage for 1 hour in an oven at 100 ° C immediately after the device was fabricated had a half life of 5000 hours or more when driven at a constant current at room temperature with an emission brightness of 500 (cdZm 2). .
  • Example 21 instead of Compound EX3 in Table 5 used in Example 218, Compound EX4, Compound EX5, Compound EX7, Compound EX9, Compound EX10, Compound EX10, Compound EX1 2 to Compound EX15, Compound EX17 to Compound in Table 5 as an electron injection layer
  • a device was produced using EX20 under the same conditions as in Example 218. The characteristics of the device were measured immediately after device fabrication and after storage for 1 hour in an oven at 100 ° C.
  • the device characteristics when driving at a current density of 10 are as follows: voltage is 4.0 (V) or less, luminance is 400 (cdZm 2) or more, and emission luminance is 500 (cd / m2), the half-life when driven at constant current at room temperature was over 5000 hours.
  • HIM9 in Table 3 was vapor-deposited to form a 50 nm-thick hole injection layer, and then compound (92) in Table 2 was vapor-deposited to 20 nm to form a hole transport layer. . Furthermore, Alq3 was deposited to form a 20 nm thick light emitting layer. Furthermore, the compound EX3 in Table 5 is deposited. Thus, an electron injection layer having a thickness of 30 nm was formed.
  • an organic EL device was obtained by forming a cathode by depositing lnm of lithium oxide and lOOnm of aluminum. This device showed an emission luminance of 780 (cdZm 2 ) at a DC voltage of 5.5V. In addition, the device after storage for 1 hour in an oven at 100 ° C immediately after the device was fabricated had a half life of 5000 hours or more when driven at a constant current at room temperature with an emission brightness of 500 (cdZm 2). .
  • Example 243 instead of Compound EX3 in Table 5 used in Example 243, Compound EX4, Compound EX5, Compound EX7, Compound EX9, Compound EX10, Compound EX10, Compound EX1 2 to Compound EX15, Compound EX17 to Compound in Table 5 as an electron injection layer A device was produced under the same conditions as in Example 243 using EX20. The characteristics of the device were measured immediately after device fabrication and after storage for 1 hour in an oven at 100 ° C.
  • the device characteristics when driving at a current density of 10 are as follows: voltage is 4.0 (V) or less, luminance is 400 (cdZm 2) or more, and emission luminance is 500 (cd / m 2 ), the half-life when driven at constant current at room temperature was over 5000 hours.
  • the characteristics of the element were measured immediately after the element was created and after being stored for 1 hour in an oven at 100 ° C.
  • the device characteristics when driving at a current density of 10 (mAZcm 2 ) for all the elements are voltage 4.0 (V) or less, brightness 400 (cd / m 2 ) or more, and light emission brightness
  • the half-life when driven at a constant current at 500 (cd / m 2 ) at room temperature was over 5000 hours.
  • the compound HIM 10 in Table 3 was deposited to form a hole injection layer having a thickness of 55 nm, and then the compound (6) in Table 1 was deposited to 20 nm to form a hole transport layer. Formed. Furthermore, Alq3 was deposited to form a 20 nm thick light emitting layer. Further, the compound ET3 in Table 6 was deposited to form an electron injection layer with a thickness of 30 nm. On top of this, a cathode was formed by vapor deposition of lnm of lithium oxide and lOOnm of aluminum to obtain an organic EL device. This element The element showed an emission luminance of 750 (cdZm 2 ) at a DC voltage of 5V.
  • the half-life when driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ) is 5000 hours for all devices. That was all.
  • Example 268 instead of Compound ET3 in Table 6 used in Example 268, Compound ET4, Compound ET5, Compound ET7, Compound ET9, Compound ET10, Compound ET12 to Compound ET14, Compound ET16 to Compound ET20 in Table 6 were used as the electron injection layer.
  • a device was fabricated using the same conditions as in Example 268. The characteristics of the element were measured for the element immediately after element preparation and after storage for 1 hour in an oven at 100 ° C.
  • the device characteristics when driving at a current density of 10 (mAZcm 2 ) for all devices are voltage 4.0 (V) or less, luminance is 400 (cd / m 2 ) or more, and light emission luminance
  • V voltage 4.0
  • luminance 400 (cd / m 2 ) or more
  • light emission luminance The half-life when driven at a constant current at 500 (cd / m 2 ) at room temperature was over 5000 hours.
  • the compound HIM 11 in Table 3 was deposited to form a 60 nm-thick hole injection layer, and then the compound (2) in Table 1 was deposited to 15 nm to form a hole transport layer. Formed. Furthermore, Alq3 was deposited to form a 20 nm thick light emitting layer. Further, Compound ES 5 in Table 7 was deposited to form an electron injection layer with a thickness of 30 nm. On top of this, a cathode was formed by vapor deposition of lnm of lithium oxide and lOOnm of aluminum to obtain an organic EL device. This device showed a luminous efficiency of 2.5 (lmZW) at a DC voltage of 5.0 V.
  • the half-life when driven at a constant current at room temperature with an emission brightness of 500 (cdZm 2 ) is 5000 hours for all devices. That was all.
  • the compound HIM 10 in Table 3 was vapor-deposited to form a 55 nm-thick hole injection layer, and then the compound (65) in Table 2 was vapor-deposited to 20 nm to form a hole transport layer. Formed. Furthermore, Alq3 was deposited to form a 20 nm thick light emitting layer. Further, the compound ET3 in Table 6 was deposited to form an electron injection layer with a thickness of 30 nm. On top of that, lithium oxide is lnm, Further, a cathode was formed by lOOnm vapor deposition of aluminum to obtain an organic EL device. This device showed an emission luminance of 750 (cdZm 2 ) at a DC voltage of 5V.
  • the half-life when driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ) is 5000 hours for all devices. That was all.
  • Example 283 instead of Compound ET3 in Table 6 used in Example 283, Compound ET4, Compound ET5, Compound ET7, Compound ET9, Compound ET10, Compound ET12 to Compound ET14, Compound ET16 to Compound ET20 in Table 6 were used as the electron injection layer.
  • a device was fabricated using the same conditions as in Example 283. The characteristics of the element were measured for the element immediately after element preparation and after storage for 1 hour in an oven at 100 ° C.
  • the device characteristics when driving at a current density of 10 (mAZcm 2 ) for all devices are voltage 4.0 (V) or less, luminance is 400 (cd / m 2 ) or more, and light emission luminance
  • V voltage 4.0
  • luminance 400 (cd / m 2 ) or more
  • light emission luminance The half-life when driven at a constant current at 500 (cd / m 2 ) at room temperature was over 5000 hours.
  • the compound HIM 11 in Table 3 was vapor-deposited to form a 60 nm-thick hole injection layer, and then the compound (112) in Table 2 was vapor-deposited to 15 nm to form a hole transport layer. Formed. Furthermore, Alq3 was deposited to form a 20 nm thick light emitting layer. Further, Compound ES 5 in Table 7 was deposited to form an electron injection layer having a thickness of 30 nm. On top of this, a cathode was formed by vapor deposition of lnm of lithium oxide and lOOnm of aluminum to obtain an organic EL device. This device showed a luminous efficiency of 2.5 (lmZW) at a DC voltage of 5.0 V.
  • the compound (52) in Table 1 of the present invention was dissolved in 1,2-dichloromouth ethane, and a hole injection layer having a thickness of 50 nm was formed by spin coating.
  • Alq3 is deposited to form a 30 nm-thick electron-injecting light-emitting layer.
  • An electrode with a film thickness of lOOnm was formed from an alloy of silver and silver mixed at a ratio of 10: 1 to obtain an organic electoluminescence device.
  • the luminous efficiency of this device at a DC voltage of 8.4 V was 2.
  • l (lmZW) the half-life when driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • the compound (111) in Table 2 of the present invention was dissolved in 1,2-dichloroethane and a hole injection layer having a thickness of 50 nm was formed by spin coating.
  • Alq3 is vapor-deposited to form an electron-injecting light-emitting layer with a thickness of 30 nm.
  • an electrode with a thickness of lOOnm is formed from an alloy mixed with magnesium and silver at a ratio of 10: 1.
  • a mouth luminescence element was obtained.
  • the luminous efficiency of this device at a DC voltage of 8.4 V was 2.
  • l (lmZW) Further, the half life when driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • the compound (48) in Table 1 of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a 35 nm-thick hole injection layer.
  • the following compound (D) and Alq3 were co-evaporated at a composition ratio of 1:20 to form a 35 nm thick light emitting layer.
  • Alq3 was deposited to form an electron injection layer with a thickness of 30 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electoluminescence device.
  • This device showed a luminous efficiency of 0.61 (lmZW) at a DC voltage of 5.0 V.
  • the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 5000 hours or more.
  • a compound (94) in Table 2 of the present invention was deposited on a glass plate with an ITO electrode to form a hole injection layer having a thickness of 35 nm.
  • the compound (D) and Alq3 shown above were co-evaporated at a composition ratio of 1:20 to form a light emitting layer having a thickness of 35 nm.
  • Alq3 was deposited to form an electron injection layer with a thickness of 30 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electroluminescence device.
  • This device showed a luminous efficiency of 0.61 (lmZW) at a DC voltage of 5.0 V.
  • the half-life when driven at a constant current with an emission luminance of 500 (cd / m 2 ) is over 5000 hours.
  • the compounds (1) and (2) in Table 1 of the present invention were co-evaporated at a composition ratio of 1: 1 to form a hole injection layer having a thickness of 80 nm.
  • a compound (E) shown below was vapor-deposited to form a 20 nm thick light emitting layer.
  • Alq3 was deposited to form an electron injection layer with a thickness of 20 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electoluminescence device. This device showed a luminous efficiency of 2. l (lmZW) at a DC voltage of 5.3 V.
  • the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was over 5000 hours.
  • the compounds (60) and (61) in Table 2 of the present invention were co-evaporated at a composition ratio of 1: 1 to form a hole injection layer having a thickness of 80 nm.
  • the above compound (E) was deposited to form a light emitting layer having a thickness of 20 nm.
  • Alq3 was deposited to form an electron injection layer with a thickness of 20 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electroluminescence device. This device showed a luminous efficiency of 2. l (lmZW) at a DC voltage of 5.3 V.
  • the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 5000 hours or more.
  • a compound (19) in Table 1 of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a hole injection layer having a thickness of 60 nm.
  • a compound (F) shown below and a compound (G) shown below were co-evaporated at a composition ratio of 20: 1 to form a light emitting layer having a thickness of 30 nm.
  • Alq3 was deposited to form an electron injection layer with a thickness of 20 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electoluminescence element.
  • This device showed a luminous efficiency of 5.7 (lm / W) at a DC voltage of 6.2 V.
  • the half-life when driven at a constant current with an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • a compound (66) in Table 2 of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a hole injection layer having a thickness of 60 nm.
  • the compound (F) shown above and the compound (G) shown below were co-evaporated at a composition ratio of 20: 1 to form a light emitting layer having a thickness of 30 nm.
  • Alq3 was deposited to form an electron injection layer with a thickness of 20 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electoluminescence device. This device showed a luminous efficiency of 5.7 (lm / W) at a DC voltage of 6.2 V. Further, the half-life when driven at a constant current at an emission luminance of 500 (cdZm 2 ) was 500,000 hours or more.
  • a compound (20) in Table 1 of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a 35 nm-thick hole injection layer.
  • the compound (H) shown below and the compound (I) shown below were co-evaporated at a composition ratio of 20: 1 to form a light emitting layer having a thickness of 35 nm.
  • Alq3 was deposited to form an electron injection layer with a thickness of 30 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electroluminescence device. This device showed a luminous efficiency of 3. l (lmZW) at a DC voltage of 3.5V.
  • the half-life when driven at a constant current with an emission luminance of 500 (cd / m 2 ) was over 5000 hours.
  • a compound (95) in Table 2 of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a 35 nm-thick hole injection layer.
  • the compound (H) shown above and the compound (I) shown below were co-evaporated at a composition ratio of 20: 1 to form a light emitting layer having a thickness of 35 nm.
  • Alq3 was evaporated to form an electron injection layer with a thickness of 30 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electoluminescence device. This device showed a luminous efficiency of 3. l (lmZW) at a DC voltage of 3.5V.
  • the half-life when driven at a constant current at an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • a compound (44) in Table 1 of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a hole injection layer having a thickness of 50 nm.
  • the following compound C and Alq3 are mixed at a composition ratio of 1: 1.
  • an electrode having a thickness of 200 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 1: 3 to obtain an organic electroluminescence device.
  • the luminous efficiency of this device at a DC voltage of 8V was 1. O (lmZW).
  • the half-life when driven at a constant current at room temperature with an emission luminance of 350 (cd / m 2 ) was 5000 hours or more.
  • the compound (123) in Table 2 of the present invention was vapor-deposited to form a hole injection layer having a thickness of 50 ⁇ m.
  • the following compound C and Alq3 were co-evaporated at a composition ratio of 1: 1 to form an electron-transporting light-emitting layer having a thickness of 50 nm.
  • an electrode with a film thickness of 200 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 1: 3 to obtain an organic electrification luminescence element.
  • the luminous efficiency of this device at a DC voltage of 8V was 1. O (lmZW).
  • the half-life when driven at a constant current at room temperature with an emission luminance of 350 (cdZm 2 ) was 5 000 hours or more.
  • a compound (29) in Table 1 of the present invention was deposited on a glass plate with an ITO electrode to form a hole injection layer having a thickness of 50 nm.
  • the aforementioned compound (H) and the following compound (K) were co-evaporated at a composition ratio of 100: 1 to form a light emitting layer having a thickness of 25 nm.
  • BCP was deposited to form an electron injection layer with a thickness of 25 nm.
  • 0.5 nm of lithium (Li) and 150 nm of silver were further deposited to obtain an organic electoluminescence device. This device showed a luminous efficiency of 0.87 (lmZW) at a DC voltage of 10V.
  • the half-life when driven at a constant current at an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • the compound (136) in Table 2 of the present invention was vapor-deposited to form a hole injection layer having a thickness of 50 ⁇ m.
  • the compound (H) and the compound (K) shown above were co-evaporated at a composition ratio of 100: 1 to form a light emitting layer having a thickness of 25 nm.
  • BCP was deposited to form an electron injection layer with a thickness of 25 nm.
  • 0.5 nm of lithium (Li) and 150 nm of silver were vapor-deposited to obtain an organic electoluminescence device. This device showed a luminous efficiency of 0.87 (lmZW) at a DC voltage of 10V. Also emission brightness
  • a compound (51) in Table 1 of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a 40 nm-thick hole injection layer.
  • the compound (L) shown below was deposited to a thickness of 10 nm to form a hole transport layer.
  • the compound (M) shown below and the compound (N) shown below were co-evaporated at a composition ratio of 1: 9 to form a light emitting layer having a thickness of 25 nm.
  • BCP was deposited to form a 15 nm hole blocking layer.
  • Alq3 was deposited to form an electron injection layer with a thickness of 25 nm.
  • a cathode was formed by vapor deposition of lithium fluoride (LiF) of lnm and aluminum (A1) of lOOnm to obtain an organic electoluminescence device.
  • This device showed an external quantum efficiency of 7.1% at a DC voltage of 10V. Also, constant current at emission brightness of 100 (cdZm 2 )
  • a compound (113) in Table 2 of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a 40 nm thick hole injection layer.
  • the compound (L) shown above is vapor deposited to a thickness of 10 nm.
  • a transport layer was formed.
  • the compound (M) shown above and the compound (N) shown above were co-evaporated at a composition ratio of 1: 9 to form a light emitting layer having a thickness of 25 nm.
  • Sarakuko BCP was deposited to form a 15 nm hole blocking layer.
  • Alq3 was deposited to form an electron injection layer with a thickness of 25 nm.
  • a cathode was formed by vapor deposition of lithium fluoride (LiF) of lnm and aluminum (A1) of lOOnm to obtain an organic electoluminescence device.
  • LiF lithium fluoride
  • Al aluminum
  • This device showed an external quantum efficiency of 7.1% at a DC voltage of 10V.
  • the half-life when driven at a constant current at an emission luminance of 100 (cdZm 2 ) was 5000 hours or more.
  • the compound (43) in Table 1 of the present invention was deposited by 60 nm to form a hole injection layer. Furthermore, Alq3 was deposited to form a 20 nm thick light emitting layer. The compound (O) shown below was deposited to form an electron injection layer with a thickness of 30 nm. On top of that, a cathode is formed by vapor deposition of lithium oxide (Li 2 O) with lnm and aluminum (A1) with lOOnm.
  • an organic electoluminescence device was obtained.
  • This device showed a luminous efficiency of 2.1 (lmZW) at a DC voltage of 4.5 V.
  • the half-life when driven at a constant current with an emission luminance of 500 (cdZm 2 ) was over 5000 hours.
  • the compound (114) in Table 2 of the present invention was deposited by 60 nm to form a hole injection layer. Furthermore, Alq3 was deposited to form a 20 nm thick light emitting layer. The compound (O) shown above was deposited to form an electron injection layer having a thickness of 30 nm. On top of this, a cathode is formed by vapor deposition of lithium oxide (Li 2 O) with lnm and aluminum (A1) with lOOnm. Thus, an organic electoluminescence device was obtained. This element is a DC voltage
  • the luminous efficiency at 5V was 2. l (lmZW).
  • the half-life when driven at a constant current at an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • Example 314 An experiment was conducted under the same conditions as in Example 314 except that ES11 in Table 7 and EP2 to EP4, EP10 and EP22 in Table 8 were used instead of the compound (O) as the electron injection layer.
  • the characteristics of the device were measured in the same manner as in Example 314 for the device immediately after device formation and after storage for 1 hour in an oven at 100 ° C.
  • the device characteristics when driven at a current density of 10 are as follows: the voltage is 4.0 (V) or less, the luminance is 400 (cdZm 2 ) or more, and the emission luminance is 500 ( The half life when driven at constant current at cd / m 2 ) at room temperature was over 5000 hours.
  • Example 315 An experiment was performed under the same conditions as in Example 315 except that ES11 in Table 7 and EP2 to EP4, EP10 and EP22 in Table 8 were used instead of the compound (O) as the electron injection layer.
  • the characteristics of the device were measured in the same manner as in Example 315 for the device immediately after device formation and after storage for 1 hour in an oven at 100 ° C.
  • the device characteristics when driven at a current density of 10 are as follows: the voltage is 4.0 (V) or less, the luminance is 400 (cdZm 2 ) or more, and the emission luminance is 500 ( The half life when driven at constant current at cd / m 2 ) at room temperature was over 5000 hours.
  • the compound (1) in Table 1 of the present invention was vapor-deposited to form a hole injection layer having a thickness of 35 nm. Further, NPD was deposited to form a 20 nm-thick hole transport layer. Next, the compound (P) shown below and the compound (Q) shown below were co-deposited at a composition ratio of 50: 1 to form a light emitting layer having a thickness of 35 nm. Furthermore, the following compound (R) was deposited to form an electron injection layer having a film thickness of 30 nm. On top of this, an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electroluminescent device. This device showed a luminous efficiency of 4. l (lmZW) at a DC voltage of 3.5V. Further, the half-life of 5000 hours or more at the time of constant current drive at light emission luminance 500 (cdZm 2)
  • Example 328 Were used under the same conditions as in Example 328 except that each was used. As a result, the device characteristics when all devices were driven at a current density of 10 (mAZcm 2 ) were 4.
  • the luminance was 400 (cd / m 2 ) or higher at 0 (V) or lower, and the half-life when driven at a constant current at room temperature with an emission luminance of 500 (cd / m 2 ) was 5000 hours or longer.
  • a compound (60) in Table 2 of the present invention was deposited on a glass plate with an ITO electrode to form a hole injection layer having a thickness of 35 nm. Furthermore, NPD was deposited to form a 20 nm-thick hole transport layer. Next, the compound (P) shown above and the compound (Q) shown above are mixed at a composition ratio of 50: 1. Co-evaporation was performed to form a light emitting layer having a thickness of 35 nm. Further, the compound (R) shown above was deposited to form an electron injection layer having a thickness of 30 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electoluminescence element.
  • This device showed a luminous efficiency of 4.1 (lm / W) at a DC voltage of 3.5V.
  • the half-life when driven at a constant current with an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • Example 336 except that compound (61), (65), (83), (87), (89), (94), and (109) in Table 2 were used instead of compound (60), respectively.
  • a device was created under the same conditions as in.
  • the characteristics of all elements when driven at a current density of 10 are as follows: voltage is 4.0 (V) or less, and luminance is 400 (cd / m 2 ) or more.
  • 500 half life when driven with a constant current similar at room temperature (cd / m 2) was not less than 5000 hours.
  • the compound (2) in Table 1 was vapor-deposited to form a 60 nm-thick hole injection layer, and then the compound (1) in Table 1 was vapor-deposited to form a positive 20-nm thick film. A hole transport layer was formed. Next, Alq3 was vapor-deposited to form an electron-injecting light-emitting layer having a thickness of 60 nm, and an electrode was formed thereon by vacuum vapor deposition of 1 nm of lithium fluoride and 200 nm of aluminum. . The luminous efficiency of this device at a DC voltage of 5V was 1.9 (lmZW). Further, the half-life when driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • Example 344 except that compound (5), (44), (48), (49), (50), (52), (58) in Table 1 was used instead of compound (1).
  • a device was created under the same conditions as in.
  • the device characteristics of all devices when driven at a current density of 10 are as follows: voltage is 4.0 (V) or less, luminance is 400 (cd / m 2 ) or more, and light emission luminance is 500
  • the half life when driven at constant current at room temperature at (cd / m 2 ) was 5000 hours or more.
  • the compound (61) in Table 2 was deposited to form a 60 nm-thick hole injection layer, and then the compound (60) in Table 2 was deposited to form a 20 nm-thick film. A hole transport layer was formed.
  • Alq3 was deposited to form an electron-injecting light-emitting layer having a thickness of 60 nm, and an electrode was formed thereon by vacuum deposition of 1 nm of lithium fluoride and 200 nm of aluminum, thereby obtaining an organic EL device.
  • the luminous efficiency of this device at a DC voltage of 5V was 1.9 (lmZW).
  • the half-life was 5 000 hours or more when driven at a constant current at room temperature with an emission luminance of 500 (cd / m 2 ).
  • Example 1 except that compound (85), (96), (97), (114), (130), (133), (134) in Table 2 was used instead of compound (60), respectively.
  • An element was created under the same conditions as in 359.
  • the characteristics of all elements when driven at a current density of 10 (mAZcm 2 ) are as follows: voltage is 4.0 (V) or less, and luminance is 400 (cd / m 2 ) or more.
  • the half-life was over 5000 hours when driven at a constant current at room temperature at a luminance of 500 (cd / m 2 ).
  • the device characteristics when driven at a current density of 10 are as follows: the voltage is 4.0 (V) or less, the luminance is 400 (cd / m 2 ) or more, and the emission luminance is 500 The half-life when driven at a constant current at room temperature at (cd / m 2 ) was 5000 hours or more.
  • the compound (61) of the present invention was dissolved in 1,2-dichloroethane, and a 50 nm-thick hole injection layer was formed by spin coating.
  • Alq3 is deposited to create a 30 nm-thick electron-injecting light-emitting layer.
  • An electrode having a thickness of lOOnm was formed from an alloy mixed at 0: 1 to obtain an organic electoluminescence element.
  • the light emission efficiency of this device at a DC voltage of 8.4 V was 2.
  • l (lmZW) the half-life when driven at a constant current at room temperature with an emission luminance of 500 (cd / m 2 ) was 5000 hours or more.
  • a compound (62) of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a hole injection layer having a thickness of 35 nm.
  • the compound (D) and Alq3 shown above were co-evaporated at a composition ratio of 1:20 to form a light emitting layer having a thickness of 35 nm.
  • Alq3 was deposited to form an electron injection layer with a thickness of 30 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 2 OOnm of aluminum (A1) to obtain an organic electoluminescence device. This device showed a luminous efficiency of 0.61 (lmZW) at a DC voltage of 5.0V.
  • the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 5000 hours or more.
  • the compound (61) of the present invention and the compound (93) of the present invention were co-evaporated at a composition ratio of 1: 1 to form a hole injection layer having a thickness of 80 nm.
  • the compound (E) shown above was vapor-deposited to form a light-emitting layer having a thickness of 20 nm.
  • Alq3 was deposited to form an electron injection layer having a thickness of 2 Onm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electoluminescence device. This device showed a luminous efficiency of 2. l (lmZW) at a DC voltage of 5.3 V. Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 5000 hours or more.
  • a compound (78) of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a 60 nm-thick hole injection layer.
  • the compound (F) shown above and the compound (G) shown above were co-evaporated at a composition ratio of 20: 1 to form a light emitting layer having a thickness of 30 nm.
  • Alq3 was deposited to form an electron injection layer with a thickness of 20 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electoluminescence device.
  • This device has a luminous efficiency of 5.7 (lmZW) at a DC voltage of 6.2V. did.
  • the half-life when driven at a constant current at an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • a compound (79) of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a hole injection layer having a thickness of 35 nm.
  • the compound (H) shown above and the compound (I) shown above were co-evaporated at a composition ratio of 20: 1 to form a light emitting layer having a thickness of 35 nm.
  • Alq3 was deposited to form an electron injection layer with a film thickness of 30 nm.
  • an electrode was formed by vacuum deposition of 1 nm of lithium fluoride (LiF) and 200 nm of aluminum (A1) to obtain an organic electroluminescent device. This device showed a luminous efficiency of 3. l (lmZW) at a DC voltage of 3.5V.
  • the half-life when driven at a constant current with an emission luminance of 500 (cdZm 2 ) was over 5000 hours.
  • a compound (80) of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a 50 nm-thick hole injection layer.
  • the compound C and Alq3 shown above were co-evaporated at a composition ratio of 1: 1 to form an electron transporting light emitting layer having a thickness of 50 nm.
  • an electrode having a thickness of 200 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 1: 3 to obtain an organic electoluminescence device.
  • the light emission efficiency of this device at a DC voltage of 8 V was 1. O (lmZW).
  • the half life when driven at a constant current at room temperature with an emission luminance of 350 (cd / m 2 ) was 5000 hours or more.
  • a compound (88) of the present invention was vapor-deposited on a glass plate with an ITO electrode to form a 50 nm-thick hole injection layer.
  • the compound (H) and the compound (K) shown above were co-evaporated at a composition ratio of 100: 1 to form a light emitting layer having a thickness of 25 nm.
  • BCP was deposited to form an electron injection layer with a thickness of 25 nm.
  • 0.5 nm of lithium (Li) and 150 nm of silver were vapor-deposited to obtain an organic electoluminescence device. This device showed a luminous efficiency of 0.87 (lmZW) at a DC voltage of 10V.
  • the half-life when driven at a constant current with an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.
  • Example 381 On a glass plate with an ITO electrode, the compound (110) of the present invention was vapor-deposited to form a hole injection layer having a thickness of 40 nm. Next, the compound (L) shown above was deposited to a thickness of 10 nm to form a hole transport layer. Further, the compound (M) shown above and the compound (N) shown above were co-evaporated at a composition ratio of 1: 9 to form a light emitting layer having a thickness of 25 nm. Further, BCP was deposited to form a 15 nm hole blocking layer. Furthermore, Alq3 was deposited to form an electron injection layer with a thickness of 25 nm.
  • a cathode was formed by vapor deposition of lithium fluoride (LiF) of lnm and aluminum (A1) of lOOnm to obtain an organic electoluminescence device.
  • This device showed an external quantum efficiency of 7.1% at a DC voltage of 10V.
  • the half-life when driven at a constant current with an emission luminance of 100 (cdZm 2 ) was over 5000 hours.
  • the compound (102) of the present invention was deposited by 60 nm to form a hole injection layer. Furthermore, Alq3 was deposited to form a 20 nm thick light emitting layer. The compound (O) shown above was deposited to form an electron injection layer having a thickness of 30 nm.
  • a cathode was formed by vapor deposition of lithium oxide (Li20) to lnm and aluminum (A1) to lOOnm to obtain an organic electoluminescence device. This device showed a luminous efficiency of 2.1 (lm / W) at a DC voltage of 4.5 V.
  • the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 5000 hours or more.
  • Example 382 The experiment was performed under the same conditions as in Example 382 except that ES 11, EP2 to 4, EP10, and P22 were used instead of the compound (O) as the electron injection layer.
  • the characteristics of the device were measured in the same manner as in Example 382 for the device immediately after the device was created and after storage for 1 hour in a 100 ° C oven.
  • the device characteristics when driven at a current density of 10 are as follows: the voltage is 4.0 (V) or less, the luminance is 400 (cdZm 2 ) or more, and the emission luminance is 500 (cd / half life when the constant current driving at room temperature m 2) was not less than 5000 hours.
  • NPD was vacuum-deposited on a glass plate with an ITO electrode to obtain a 40 nm-thick hole injection layer.
  • the compound (93) of the present invention and the compound (C) shown above were co-evaporated at a ratio of 98: 3 to form a light-emitting layer having a thickness of 40 nm, and then Alq3 was vacuum-deposited. 30nm thick electron An injection layer was created. An electrode was formed thereon by vacuum-depositing lithium fluoride at 0.7 nm and then aluminum at 200 ⁇ m to obtain an organic phosphorescent device.
  • This device emitted light with an emission luminance of 360 (cd / m 2 ) at a direct current voltage of 5 V and a maximum emission luminance of 87600 (cd / m 2 ).
  • the half-life when driven at a constant current at an emission luminance of 500 (cdZm 2 ) was 4500 hours.
  • the compound HIM 16 in Table 3 was deposited to form a hole injection layer with a thickness of 60 nm, and then the compound (92) of the present invention was deposited to transport a hole with a thickness of 20 nm. A layer was formed.
  • Alq3 was deposited to form an electron-injecting light-emitting layer with a thickness of 60 nm, and an electrode was formed thereon by vacuum deposition of 1 nm of lithium fluoride and 200 nm of aluminum to obtain an organic EL device. .
  • the luminous efficiency of this device at a DC voltage of 5V was 1.8 (lm / W).
  • the half life when driven at a constant current at room temperature with an emission luminance of 500 (cdZm 2 ) was 5000 hours or more.

Description

明 細 書
力ルバゾリル基を有するジアミノアリーレンィヒ合物及びその用途 技術分野
[0001] 本発明は新規な力ルバゾリル基を有するジアミノアリーレン化合物に関し、さらに詳 しくは、有機エレクト口ルミネッセンス素子(以下有機 EL素子と略記)に用いた場合、 分子の結晶性が低ぐかつ、ガラス転移温度 (Tg)が高いため、優れた性能 (低電圧 駆動、長寿命、高安定性)を発揮する力ルバゾリル基を有するジアミノアリーレン化合 物に関する。
背景技術
[0002] 近年、有機 EL素子においては、素子の長寿命化が求められている。素子の寿命に 影響を及ぼす原因は様々な因子が考えられるが (非特許文献 1参照)、その一つとし て、素子を構成する材料のガラス転移温度 (Tg)が素子の寿命に大きな影響を及ぼ すものと考えられている。すなわち、素子の使用環境や駆動時の発熱によって、素子 の温度が、構成する材料の Tgを上回ると、材料の結晶化が起こりダークスポットと呼 ばれる非発光領域が発生するという現象が指摘されている。そのため、より高い Tgを 示す材料の開発が活発に検討されている。
[0003] 有機 EL素子を構成する材料として、トリフエニルァミン骨格を部分構造に含む材料 は良く知られているが、化学業界の分野で経験的に一般に熱安定性が高いことが知 られているフエナントレン構造を有するアミンィ匕合物が、有機 EL素子材料として使用 できることが開示されている (特許文献 1参照)。
し力しながら、これらの材料は、耐熱性 (Tg)がそれほど高くなぐまた、材料の結晶 性も高いため、膜安定性に欠け、有機 EL素子を作成した場合の特性は、発光寿命 が十分でなぐまた、素子の駆動時に必要な電圧 (駆動電圧)も高力つた。
[0004] 一方で、力ルバゾール誘導体は各種機能材料、電子材料への応用が検討されてき た。力ルバゾール骨格が、正孔輸送性の性質を有すること、耐熱性の高い構造であ ることを利用して、例えば、電子写真感光体の電荷輸送材料や有機 EL素子用材料 等への応用が検討されている。代表的なものとしては、ポリビュルカルバーゾール (P VK)や、 N, N, -ジカルバゾィル—4, 4,—ビフエ-ル(CBP)は有機 EL素子用材料 として広く検討されている(非特許文献 2, 3参照)。 PVKや CBPのようなカルバゾー ル類は Tgが比較的高ぐ耐熱性を有しているものの、対称性の高い構造故、真空蒸 着や、スピンコーティングなどで薄膜を形成した際に、膜の安定性が低ぐ容易に結 晶化してしま 、、素子の寿命が極端に短 、と 、う問題点を有して 、た。
[0005] 力ルバゾールの耐熱性を有効利用し、かつ、分子の対称性を低くした材料として、 3位置換の力ルバゾリル基を有するジァミンィ匕合物が開示されて 、る(特許文献 2参 照)。し力しながら、この化合物においても、依然として結晶性は高ぐ十分な寿命特 性のある EL素子は得られて!/ヽな!、。
また、 EL素子の低消費電力化のために、正孔注入層ゃ正孔輸送層には、陽極 (I TO等)力 の正孔注入ゃ正孔輸送に適した、イオンィ匕ポテンシャルを有した材料が 求められて!/、るが、適正なイオンィ匕ポテンシャルと上記で述べた耐熱性や低結晶性 のすベてを有した材料は存在して!/、な!/、。
[0006] 非特許文献 1:時任静士、安達千波矢、村田英幸共著,有機 ELディスプレイ,オーム 社, 2004年発行, 139頁
非特許文献 2 : Applied Physics Letters, 2001年発行, 78卷, 278頁 非特許文献 3 Journal of the American Chemicaal Society 2001年発行
, 123卷, 4304頁
特許文献 1:特許第 3067469号公報
特許文献 2 :特開 2004-536134号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明の課題は、高い Tgを有し高い耐熱性を有し、分子が結晶化しにくぐ有機 E L素子用材料として用いた場合に、低電圧駆動、長寿命、高安定性などの優れた特 性を有する力ルバゾリル基を有するジアミノアリーレンィ匕合物を提供することである。 また、 EL素子を構成する材料のうち、特に、正孔注入輸送層として用いた場合に、 素子の長寿命化、低電圧駆動化が達成される上記化合物を提供することである。 課題を解決するための手段 [0008] 本発明者らは、前記諸問題を解決するために、鋭意研究を重ねた結果、本発明に 至った。
すなわち本発明は、下記一般式 [1]
[0009] [化 1] ]
Figure imgf000005_0001
[0010] (式中、八 〜八!:4は、それぞれ独立に、置換基を有してもよい炭素数 6〜18の 1価の 芳香族炭化水素基、置換基を有してもよい炭素数 2〜18の 1価の複素環基、又は下 記一般式 [2]
[0011] 一般式 [2]
[化 2]
Figure imgf000005_0002
[0012] (式中、 Ar5は置換基を有してもよい炭素数 6〜18の 1価の芳香族炭化水素基、又は 置換基を有してもよい炭素数 2〜18の 1価の芳香族複素環基を表し、 I^〜R7は、そ れぞれ独立に、水素原子、ハロゲン原子、又は 1価の有機残基を表す。 ) で表される力ルバゾリル基を表し、ただし、 Ai^ Ar4のうち少なくとも 1つは一般式 [2 ]で表されるカルバゾリル基であり、 Xは下記一般式 [3]
[0013] [化 3]
Figure imgf000006_0001
[0014] (式中、 Q9〜Q16は、それぞれ独立して、水素原子、ハロゲン原子、又は 1価の有機 残基を表す。 )
で表される置換基を有してもよいフエナントレン—ジィル基、下記一般式 [4]
[0015] 一般式 [4]
[化 4]
Figure imgf000006_0002
[0016] (式中、 R8〜RUは、それぞれ独立して、水素原子、ハロゲン原子、又は一価の有機 残基を表すか、又は、 R8と R9、 R9と R10、若しくは R10と R11力 置換基同士で互いに 結合して隣接する炭素原子と共に環を形成してよい。 )
で表される置換基を有してもよい o—フエ-レン基、又は下記一般式 [5]
[0017] 一般式 [5]
[化 5]
Figure imgf000006_0003
[0018] (式中、 R12〜R15は、それぞれ独立して、水素原子、ハロゲン原子、又は一価の有機 残基を表すか、又は、 R13と R14、若しくは R14と R15が置換基同士で互いに結合して隣 接する炭素原子と共に環を形成してもよい。 )
で表される置換基を有してもよい m—フヱ-レン基を表す。 )
で表される力ルバゾリル基を有するジアミノアリーレンィ匕合物に関する。
[0019] また、本発明は、一般式 [4]で表される o—フ 二レン基が、下記一般式 [6]
[0020] [化 6]
Figure imgf000007_0001
[0021] (式中、 Rlb〜R19は、それぞれ独立して、水素原子、ハロゲン原子、又は一価の有機 残基を表すか、又は、 R16と R17、 R17と R18、若しくは R18と R19が置換基同士で互いに 結合して隣接する炭素原子と共に環を形成してもよい。ただし、新たに形成される環 が芳香環である場合は、前記した 3箇所のうちの 1箇所の位置のみである。 ) で表される o—フエ-レン基であることを特徴とする、前記一般式 [ 1 ]で表されるカル バゾリル基を有するジアミノアリーレンィ匕合物に関する。
[0022] また、本発明は、一般式 [5]で表される m—フ 二レン基が、下記一般式 [7]
[0023] [化 7]
Figure imgf000007_0002
[0024] (式中、 R U〜R は、それぞれ独立して、水素原子、ハロゲン原子、又は一価の有機 残基を表すか、又は、 R21と R22、若しくは R22と R23が置換基同士で互いに結合して隣 接する炭素原子と共に環を形成してもよい。ただし、新たに形成される環が芳香環で ある場合は、前記した 2箇所のうちの 1箇所の位置のみである。 ) で表される m フエ-レン基であることを特徴とする、前記一般式 [1]で表されるカル バゾリル基を有するジアミノアリーレンィ匕合物に関する。
また、本発明は、一般式 [4]で表される o フ 二レン基が、下記一般式 [8]
[化 8]
Figure imgf000008_0001
[0026] (式中、 R 4〜R "は、それぞれ独立して、水素原子、ハロゲン原子、炭素数 1〜3のァ ルキル基、置換基を有してもよい炭素数 6〜 12の 1価の芳香族炭化水素基、又は置 換基を有してもよい炭素数 2〜5の 1価の複素環基を表す。 )
で表される o フエ-レン基であることを特徴とする、前記一般式 [ 1 ]で表されるカル バゾリル基を有するジアミノアリーレンィ匕合物に関する。
[0027] また、本発明は、一般式 [4]で表される o フ 二レン基が、下記一般式 [9]
[0028] [化 9]
Figure imgf000008_0002
[0029] (式中、 R 〜R は、それぞれ独立して、水素原子、ハロゲン原子、炭素数 1〜3のァ ルキル基、置換基を有してもよい炭素数 6〜 12の 1価の芳香族炭化水素基、又は置 換基を有してもよい炭素数 2〜5の 1価の複素環基を表す。 )
で表される o ナフタレン ジィル基であることを特徴とする、前記一般式 [ 1 ]で表さ れるカルバゾリル基を有するジアミノアリーレン化合物に関する。
また、本発明は、一般式 [5]で表される m—フ 二レン基が、下記一般式 [10] [化 10]
[0031] (式中、
Figure imgf000009_0001
ロゲン原子、炭素数 1〜3のァ ルキル基、置換基を有してもよい炭素数 6〜 12の 1価の芳香族炭化水素基、又は置 換基を有してもよい炭素数 2〜5の 1価の複素環基を表す。 )
で表される m フエ-レン基であることを特徴とする、前記一般式 [1]で表されるカル バゾリル基を有するジアミノアリーレンィ匕合物に関する。
[0032] また、前記した一般式 [1]の基 Xが、一般式 [3]で表される置換基を有してもよいフ ェナントレン ジィル基の場合には、次の一般式 [11]
[0033] [化 11]
Figure imgf000009_0002
(式中、八 〜八!:4は、それぞれ独立して、置換基を有してもよい炭素数 6〜18の 1価 の芳香族炭化水素基、置換基を有してもよい炭素数 2〜18の 1価の複素環基、又は 前記した一般式 [2]で表される力ルバゾリル基を表し、ただし、八 〜八!:4のうち少なく ともひとつは前記した一般式 [2]で表されるカルバゾリル基であり、 Q9〜Q16は、それ ぞれ独立して、水素原子、ハロゲン原子、又は 1価の有機残基を表す。 ) で表される力ルバゾリル基を有するフエナントレンィ匕合物となり、本発明は当該一般 式 [ 11 ]で表される力ルバゾリル基を有するフ ナントレンィ匕合物に関する。当該一般 式 [ 11 ]で表される力ルバゾリル基を有するフエナントレンィ匕合物も、前記一般式 [ 1 ] で表される力ルバゾリル基を有するジアミノアリーレンィ匕合物に包含されるものであり 、以下では、当該一般式 [11]で表される力ルバゾリル基を有するフエナントレンィ匕合 物を含めて、力ルバゾリル基を有するジアミノアリーレン化合物と 、う。
[0035] また、本発明は、前記した一般式 [1]の Ar1と Ar2が、それぞれ独立して、下記一般 式 [12]
[0036] [化 12]
Figure imgf000010_0001
[0037] (式中、 Ar5は、前記した一般式 [2]における Ar5と同義である。 )
で表され、かつ、前記した一般式 [1]の Ar3と Ar4が、それぞれ独立して、置換基を有 してもよい炭素数 6〜18の 1価の芳香族炭化水素基であることを特徴とする、前記一 般式 [ 1 ]で表される力ルバゾリル基を有するジアミノアリーレンィ匕合物に関する。
[0038] また、本発明は、前記した一般式 [1]の Ar1が、前記した一般式 [2]又は [12]で表 され、かつ、前記した一般式 [1]の Ar2、 Ar3、及び Ar4が、それぞれ独立に、置換基 を有してもよい炭素数 6〜18の 1価の芳香族炭化水素基であることを特徴とする前記 一般式 [ 1 ]で表される力ルバゾリル基を有するジアミノアリーレンィ匕合物に関する。
[0039] また、本発明は、前記した一般式 [2]又は [12]における Ar5が、下記一般式 [13]
[0040] [化 13]
Figure imgf000011_0001
[0041] (式中、 は、それぞれ独立して、水素原子、ハロゲン原子、炭素数 1〜3のアルキ ル基、置換基を有してもよい炭素数 6〜 12の 1価の芳香族炭化水素基、又は置換基 を有してもよい炭素数 2〜5の 1価の複素環基を表す。 )
で表されることを特徴とする前記一般式 [1]で表される力ルバゾリル基を有するジアミ ノアリーレンィ匕合物に関する。
[0042] また、本発明は、ガラス転移温度 (Tg)が、 170°C以上である前記一般式 [1]で表さ れるカルバゾリル基を有するジアミノアリーレン化合物に関する。
[0043] また、本発明は、イオンィ匕ポテンシャルが 5. 0〜5. 5eVである前記一般式 [1]で表 される力ルバゾリル基を有するジアミノアリーレンィ匕合物に関する。
また、本発明は、前記一般式 [1]で表される力ルバゾリル基を有するジアミノアリー レンィ匕合物を含んでなる有機エレクト口ルミネッセンス素子用材料に関する。
また、本発明は、一対の電極間に発光層または発光層を含む複数層の有機層を形 成してなる有機エレクト口ルミネッセンス素子において、前記有機層の少なくとも一層 力 上記した本発明の有機エレクト口ルミネッセンス素子用材料を含んでなる有機ェ レクト口ルミネッセンス素子に関する。
また、本発明は、さらに、陽極と発光層との間に正孔注入層および Zまたは正孔輸 送層を有し、前記正孔注入層および Zまたは正孔輸送層が、上記した本発明の有 機エレクト口ルミネッセンス素子用材料を含んでなる上記有機エレクト口ルミネッセンス 素子に関する。
[0044] さらに本発明を詳細に説明すれば、本発明は次のとおりである。
(1)前記の一般式 [1]で表される力ルバゾリル基を有するジアミノアリーレンィ匕合物。
(2)—般式 [1]における Xが、前記の一般式 [3]で表される置換基を有してもよいフ ナントレン ジィル基である前記(1)に記載の力ルバゾリル基を有するジアミノアリー レン化合物。
(3)一般式 [ 1 ]における Xが、前記の一般式 [4]で表される置換基を有してもよ!、o - フエ-レン基である前記(1)に記載の力ルバゾリル基を有するジアミノアリーレンィ匕合 物。
(4)一般式 [4]で表される o フ 二レン基力 前記の一般式 [6]で表される o—フエ 二レン基であることを前記(1)又は(3)に記載の力ルバゾリル基を有するジアミノアリ 一レン化合物。
(5)—般式 [4]で表される o フ 二レン基力 前記の一般式 [8]で表される o フエ 二レン基である前記(1)、 (3)、又は (4)のいずれかに記載の力ルバゾリル基を有す るジアミノアリーレンィ匕合物。
(6) 一般式 [4]で表される o フ 二レン基力 前記の一般式 [9]で表される o ナ フタレン ジィル基である前記(1)、 (3)、又は(4)のいずれかに記載のカルバゾリル 基を有するジアミノアリーレンィ匕合物。
(7)—般式 [1]における Xが、前記の一般式 [5]で表される置換基を有してもよい m フエ-レン基である前記(1)に記載の力ルバゾリル基を有するジアミノアリーレンィ匕 合物。
(8)—般式 [5]で表される m フ 二レン基力 前記の一般式 [7]で表される m—フ ェ-レン基である前記(1)又は(7)に記載の力ルバゾリル基を有するジアミノアリーレ ン化合物。
(9)一般式 [5]で表される m フ 二レン基力 前記の一般式 [10]で表される m—フ ェ-レン基である前記(1)、 (7)、又は(8)のいずれかに記載の力ルバゾリル基を有 するジアミノアリーレンィ匕合物。
(10)一般式 [1]で表される力ルバゾリル基を有するジアミノアリーレン化合物が、前 記の一般式 [ 11 ]で表される力ルバゾリル基を有するフエナントレン化合物である前 記(1)又は(2)に記載の力ルバゾリル基を有するジアミノアリーレンィ匕合物。
(11)一般式 [2]で表されるカルバゾリル基が、前記の一般式 [12]で表されカルバゾ リル基である前記(1)〜(10)のいずれかに記載の力ルバゾリル基を有するジアミノア リーレンィ匕合物。 (12)—般式 [1]における Arlと Ar2が、それぞれ独立して、前記の一般式 [12]で表 され、かつ、一般式 [1]の Ar3と Ar4力 それぞれ独立して、置換基を有してもよい炭 素数 6〜 18の 1価の芳香族炭化水素基である前記(11)に記載の力ルバゾリル基を 有するジアミノアリーレンィ匕合物。
(13)—般式 [1]における Arlが、前記した一般式 [2]又は [12]で表され、かつ、一 般式 [1]の Ar2、 Ar3、及び Ar4が、それぞれ独立に、置換基を有してもよい炭素数 6〜 18の 1価の芳香族炭化水素基である前記(11)に記載の力ルバゾリル基を有す るジアミノアリーレンィ匕合物。
(14)一般式 [2]における Ar5が、前記の一般式 [13]で表されるフ ニル基である前 記(1)〜(13)のいずれかに記載の力ルバゾリル基を有するジアミノアリーレンィ匕合物
(15)ガラス転移温度 (Tg)力 170°C以上である前記(1)〜(14)のいずれかに記載 の力ルバゾリル基を有するジアミノアリーレン化合物。
(16)イオン化ポテンシャルが 5. 0〜5. 5eVである前記(1)〜(15)のいずれかに記 載の力ルバゾリル基を有するジアミノアリーレンィ匕合物。
(17)前記(1)〜(16)のいずれかに記載の力ルバゾリル基を有するジアミノアリーレ ン化合物を含んでなる有機エレクト口ルミネッセンス素子用材料。
(18)—対の電極間に発光層または発光層を含む複数層の有機層を形成してなる有 機エレクト口ルミネッセンス素子において、前記有機層の少なくとも一層が、前記(17 )に記載の有機エレクト口ルミネッセンス素子用材料を含んでなる有機エレクト口ルミ ネッセンス素子。
(19)さらに、陽極と発光層との間に正孔注入層および Zまたは正孔輸送層を有し、 前記正孔注入層および Zまたは正孔輸送層が、前記(17)に記載の有機エレクト口 ルミネッセンス素子用材料を含んでなる前記(18)に記載の有機エレクト口ルミネッセ ンス素子。
発明の効果
本発明の力ルバゾリル基を有するジアミノアリーレンィ匕合物を有機 EL素子用材料と して用いた有機 EL素子は、薄膜の安定性が非常に高ぐ低い駆動電圧で発光し、 かつ、長寿命であるため、壁掛けテレビ等のフラットパネルディスプレイや平面発光 体として好適に使用することができ、複写機やプリンタ一等の光源、液晶ディスプレイ や計器類等の光源、表示板、標識灯等への応用が可能である。
発明を実施するための最良の形態
[0046] 以下、詳細にわたって本発明を説明する。まず、一般式 [1]で表される力ルバゾリ ル基を有するジアミノアリーレンィ匕合物について説明する。
本発明の一般式 [1]で表される力ルバゾリル基を有するジアミノアリーレンィ匕合物は 、 o フヱ-レン構造、 m—フヱ-レン構造、又は o—フエナントレン ジィル構造を有 するジァミンィ匕合物の窒素原子に少なくとも 1個の 3—力ルバゾリル基が置換して 、る ことを特徴とするものである。本発明におけるフエナントレン一ジィル基は、 o フエ- レン構造におけるフエ-レン基に 2個のベンセン環が縮合したものであり、広い意味 では o フエ-レン構造の誘導体と 、うこともできるが、後述するように比較的高!ヽガ ラス転移点 (Tg)を有する物質となり、有機 EL材料として好ま U、性質を有して!/、るこ とから特に取り上げられている。また、本発明のフエ-レンジァミン構造は、オルト—フ ェ-レンジァミン構造とメタ フエ-レンジァミン構造であることを特徴とするものであり 、パラーフエ-レンジァミンとは異なる構造的な特徴を有している。これは、後述する ように、 3—力ルバゾリル基は力ルバゾールの環の窒素原子とジァミンの窒素原子が ノ ラ位になるように配置されている力 ジァミン力 ¾—フエ-レン構造になった場合に は、さらにパラ位の窒素原子を有することになり、好ましくない。特にアモルファス性を 維持するという点力もも好ましくない。したがって、この点において、 p フエ二レン構 造有するジァミンィ匕合物と、本発明のジァミンィ匕合物とは構造的にも異なるものであ る。
一般式 [1]における Ai:1〜 Ar4は、それぞれ独立に、置換基を有してもよい炭素数 6 〜18の 1価の芳香族炭化水素基、置換基を有してもよい炭素数 2〜18の 1価の複素 環基、又は、一般式 [2]で表される力ルバゾリル基を表す。ただし、八 〜八!:4のうち 少なくとも 1つは一般式 [2]で表されるカルバゾリル基である。
[0047] 炭素数 6〜18の 1価の芳香族炭化水素基としては、炭素数 6〜18の 1価の単環式 、縮合環式、又は環集合 (多環式)炭化水素基があげられる。 ここで、炭素数 6〜18の 1価の単環芳香族炭化水素基としては、例えば、フ ニル 基、 o 卜リル基、 m—卜リル基、 p 卜リル基、 2, 4 キシリル基、 p—タメ-ル基、メシ チル基等の炭素数 6〜18の 1価の単環芳香族炭化水素基があげられる。
また、 1価の縮合環炭化水素基としては、例えば、 1—ナフチル基、 2—ナフチル基 、 1 アンスリル基、 2 アンスリル基、 9 アンスリル基、 1—フエナンスリル基、 9ーフ ェナンスリル基、 1ーァセナフチル基、 2—ァズレニル基、 1ーピレニル基、 2—トリフエ -レル基等の炭素数 10〜18の 1価の縮合環炭化水素基があげられる。
また、 1価の環集合炭化水素基としては、例えば、 o ビフエ-リル基、 m—ビフエ- リル基、 p ビフエ-リル基、ターフェ-ル基等の炭素数 12〜18の 1価の環集合炭化 水素基があげられる。
[0048] また、炭素数 2〜18の 1価の複素環基の複素環基としては、 1価の脂肪族複素環 基、 1価の芳香族複素環基があげられ、これらの複素環は、環中に窒素原子、酸素 原子、及び硫黄原子から選ばれる少なくとも 1個、好ましくは 1〜3個の異種原子を有 する、 3〜8員、好ましくは 5〜7員の単環式、多環式、又は縮合環式の複素環が挙げ られる。
1価の脂肪族複素環基としては、例えば、 2—ピラゾリノ基、ピペリジノ基、モルホリノ 基、 2 モルホリニル基といった炭素数 3〜18の 1価の脂肪族複素環基があげられる また、 1価の芳香族複素環基としては、例えば、トリァゾリル基、 3—ォキサジァゾリ ル基、 2 フリル基、 3 フリル基、 2 チェ-ル基、 3 チェ-ル基、 1 ピロ一リル 基、 2 ピロ一リル基、 3 ピロ一リル基、 2 ピリジル基、 3 ピリジル基、 4 ピリジル 基、 2—ビラジル基、 2—ォキサゾリル基、 3 イソォキサゾリル基、 2 チアゾリル基、 3 イソチアゾリル基、 2 イミダゾリル基、 3 ピラゾリル基、 2 キノリル基、 3 キノリ ル基、 4 キノリル基、 5—キノリル基、 6—キノリル基、 7—キノリル基、 8—キノリル基、 1 イソキノリル基、 2—キノキサリニル基、 2—べンゾフリル基、 2—べンゾチェ-ル基 、 N—インドリル基、 N—カルバゾリル基、 N—アタリジ-ル基、(2, 2,—ビチェ-ル) 4ーィル基といった炭素数 2〜18の 1価の芳香族複素環基があげられる。
[0049] 以上説明した Ai:1〜 Ar4が芳香族炭化水素基および複素環基である場合、これら の芳香族炭化水素基および複素環基は置換基を有していてもよい。これらに結合し て!、てもよ 、置換基としては、ハロゲン原子や 1価の有機残基があげられる。
ここでいう、ハロゲン原子とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子があ げられる。
1価の有機残基としては特に制限はないが、置換基を有してもよい 1価の脂肪族炭 化水素基、置換基を有してもよい 1価の芳香族炭化水素基、置換基を有してもよい 1 価の脂肪族複素環基、置換基を有してもよい 1価の芳香族複素環基、シァノ基、アル コキシ基、ァリールォキシ基、アルキルチオ基、ァリールチオ基、置換アミノ基、ァシ ル基、アルコキシカルボ-ル基、ァリールォキシカルボ-ル基、アルキルスルホニル 基、ァリールスルホニル基などがあげられる。ここで、ァリールォキシ基ゃァリールチ ォ基などにおけるァリールは、芳香族炭化水素および芳香族複素環を表す。
ここで、 1価の脂肪族炭化水素基としては、炭素数 1〜18の 1価の脂肪族炭化水素 基を指し、そのようなものとしては、アルキル基、ァルケ-ル基、アルキ-ル基、シクロ アルキル基があげられる。
したがって、アルキル基としては、メチル基、ェチル基、プロピル基、イソプロピル基 、ブチル基、イソブチル基、 sec ブチル基、 tert ブチル基、ペンチル基、イソペン チル基、へキシル基、ヘプチル基、ォクチル基、デシル基、ドデシル基、ペンタデシ ル基、ォクタデシル基といった炭素数 1〜18のアルキル基があげられる。
また、ァルケ-ル基としては、ビュル基、 1—プロべ-ル基、 2—プロべ-ル基、イソ プロべ-ル基、 1ーブテュル基、 2 ブテュル基、 3 ブテュル基、 1 オタテュル基 、 1—デセ-ル基、 1—ォクタデセ-ル基といった炭素数 2〜18のァルケ-ル基があ げられる。
また、アルキ-ル基としては、ェチュル基、 1 プロピ-ル基、 2—プロピ-ル基、 1 ーブチニル基、 2 プチ-ル基、 3 プチ-ル基、 1ーォクチ-ル基、 1 デシ-ル基 、 1—ォクタデシ-ル基といった炭素数 2〜18のアルキ-ル基があげられる。
また、シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチ ル基、シクロへキシル基、シクロへプチル基、シクロォクチル基、シクロォクタデシル 基といった炭素数 3〜18のシクロアルキル基があげられる。 さらに、 1価の芳香族炭化水素基、 1価の脂肪族複素環基、 1価の芳香族複素環基 としては、前述のものがあげられる。
また、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、 ter t ブトキシ基、ォクチルォキシ基、 tert—ォクチルォキシ基といった炭素数 1〜8の アルコキシル基があげられる。
また、ァリールォキシ基としては、フエノキシ基、 4 tert ブチルフエノキシ基、 1 ナフチルォキシ基、 2 ナフチルォキシ基、 9 アンスリルォキシ基といった炭素数 6 〜 14のァリールォキシ基があげられる。
また、アルキルチオ基としては、メチルチオ基、ェチルチオ基、 tert—ブチルチオ基 、へキシルチオ基、ォクチルチオ基といった炭素数 1〜8のアルキルチオ基があげら れる。
また、ァリールチオ基としては、フエ-ルチオ基、 2—メチルフヱ-ルチオ基、 4 ter t -ブチルフエ-ルチオ基と 、つた炭素数 6〜 14のァリ一ルチオ基があげられる。 また、置換アミノ基としては、 N—メチルァミノ基、 N ェチルァミノ基、 N, N ジェ チルァミノ基、 N, N ジイソプロピルアミノ基、 N, N ジブチルァミノ基、 N ベンジ ルァミノ基、 N, N ジベンジルァミノ基、 N フエ-ルァミノ基、 N—フエ-ルー N—メ チルァミノ基、 N, N ジフエ-ルァミノ基、 N, N ビス(m トリル)アミノ基、 N, N— ビス (P トリル)アミノ基、 N, N ビス (p ビフエ-リル)アミノ基、ビス [4— (4—メチ ル)ビフエ-リル]アミノ基、 N— α—ナフチル— Ν フエ-ルァミノ基、 N— j8—ナフ チル— N フエニルァミノ基等の炭素数 2〜16の置換アミノ基があげられる。
また、ァシル基としては、ァセチル基、プロピオ-ル基、ビバロイル基、シクロへキシ ルカルボ-ル基、ベンゾィル基、トルオイル基、ァ-ソィル基、シンナモイル基等の炭 素数 2〜 14のァシル基があげられる。
また、アルコキシカルボ-ル基としては、メトキシカルボ-ル基、エトキシカルボ-ル 基、ベンジルォキシカルボ-ル基等の炭素数 2〜 14のアルコキシカルボ-ル基があ げられる。
また、ァリールォキシカルボ-ル基としては、フエノキシカルボ-ル基、ナフチルォ キシカルボ-ル基等の炭素数 2〜14のァリールォキシカルボ-ル基があげられる。 [0051] また、アルキルスルホ-ル基としては、メシル基、ェチルスルホ -ル基、プロピルス ルホ -ル基等の炭素数 2〜14のアルキルスルホ-ル基があげられる。
また、ァリールスルホ-ル基としては、ベンゼンスルホ-ル基、 p—トルエンスルホ- ル基等の炭素数 2〜14のァリールスルホ-ル基があげられる。
前記で述べた、 1価の脂肪族炭化水素基、 1価の芳香族炭化水素基、 1価の脂肪 族複素環基、 1価の芳香族複素環基は、さらに他の置換基によって置換されていて もよい。また、これら置換基同士が互いに結合し、隣接する原子と共に環を形成して いてもよい。
本発明における好ましい 1価の有機残基としては、置換基を有してもょ 、炭素数 1 〜18のアルキル基、置換基を有してもよい炭素数 2〜 18のァルケ-ル基、置換基を 有してもよい炭素数 2〜18のアルキ-ル基、置換基を有してもよい炭素数 3〜18の シクロアルキル基、置換基を有してもよ ヽ炭素数 6〜 18の 1価の単環芳香族炭化水 素基、置換基を有してもよい環中に窒素原子、酸素原子、又は硫黄原子から選ばれ る 1〜3個の異種原子を有する 3〜8員の脂肪族又は芳香族複素環式基、シァノ基、 置換基を有してもょ 、炭素数 1〜8のアルコキシル基、置換基を有してもよ!、炭素数 6〜14のァリールォキシ基、置換基を有してもよい炭素数 1〜8のアルキルチオ基、 置換基を有してもよい炭素数 2〜16の置換アミノ基、置換基を有してもよい炭素数 2 〜 14のァシル基、置換基を有してもょ 、炭素数 2〜 14のアルコキシカルボ-ル基、 置換基を有してもょ 、炭素数 2〜 14のァリールォキシカルボ-ル基、及び置換基を 有してもよい炭素数 2〜 14のアルキルスルホ-ル基からなる群力 選ばれる置換基、 又はこれらの置換基同士が互いに結合し、隣接する原子と共に環を形成していても よい基が挙げられる。
[0052] 一般式 [3]又は一般式 [11]における Q9〜Q16は、それぞれ独立して、水素原子、 ハロゲン原子、又は、 1価の有機残基を表すが、これらの具体例は、前述しているも のがあげられる。また、 Q9〜Q16のうち特に好ましい例としては、水素原子があげられ る。
[0053] 次に、一般式 [2]の中の、 Ar5は、置換基を有してもよい炭素数 6〜18の 1価の芳 香族炭化水素基、置換基を有してもよい炭素数 2〜18の 1価の芳香族複素環基、も しくは、置換基を有してもよい炭素数 1〜6の 1価の脂肪族炭化水素基を表す。
1価の芳香族炭化水素基、 1価の芳香族複素環基は前述しているものがあげられ、 1価の脂肪族炭化水素基としては、前述したもののうち、該当する炭素数のものがあ げられる。
また、一般式 [2]の中の、 I^〜R7は、それぞれ独立して、水素原子、ハロゲン原子 、又は、 1価の有機残基を表す。ハロゲン原子、 1価の有機残基としては、前述してい るものがあげられる。
[0054] ここで、一般式 [2]の 3-力ルバゾィル基は、一般式 [12]で表される 3-力ルバゾィル 基であることが、より好ましい。一般式 [12]の力ルバゾィル基は、一般式 [2]のカル バゾィル基の I^〜R7が水素原子である場合である。このような構造をとつた場合には 、分子量も比較的小さぐ蒸着等で化合物 (材料)を昇華して薄膜を形成する際に、 容易であり、また、安定性の面力もも優れている力もである。
さらに、一般式 [2]又は [12]の中の Ar5は一般式 [13]の構造をとることがより好ま しい。以下にその理由を説明する。
一般的に、力ルバゾール化合物は、結合を有さないジフエ-ルァミノ化合物と比較 してその構造が強固であり、熱安定性が高い傾向にある (化 14参照)。
[0055] [化 14]
Figure imgf000019_0001
[0056] 芳香族基ゃ複素芳香族基は、さらに、安定性を高める効果が大きぐその中でも、 安定性を高める効果が期待できるのが、 Ar5が一般式 [13]である場合である。
ここでいう、一般式 [13]の中の R38は、水素原子、ハロゲン原子、炭素数 1〜3のァ ルキル基、置換基を有してもよい炭素数 6〜 12の 1価の芳香族炭化水素基、又は、 置換基を有してもよい炭素数 2〜5の 1価の複素環基を表す。
炭素数 6〜12の 1価の芳香族炭化水素基、炭素数 2〜5の 1価の複素環基としては 、前述したもののうち、該当する炭素数のものがあげられる。また有してもよい置換基 としては、前述のハロゲン原子や、 1価の有機残基があげられる。 R38のうち特に好ま しい例としては、水素原子、フエ-ル基、ビフヱ-ル基、トリル基、キシリル基や、メチ ル基、ェチル基、シァノ基、フッ素原子等があげられる。
[0057] さて、以上説明した、一般式 [1]の力ルバゾリル基を有するジアミノアリーレンィ匕合 物は、八 〜八!:4の内、少なくとも 1つは、一般式 [2]または一般式 [12]で表される 3 位で結合したカルバゾリル基である。カルバゾリル基の数は、 1〜4個のいずれであつ てもよいが、好ましくは、 Ar1と Ar2が、一般式 [12]で表されるカルバゾリル基であって 、 Ar3と Ar4がそれぞれ独立に炭素数 6〜18の 1価の芳香族炭化水素基である場合 があげられる。カルバゾリル基の数が多くなればなるほど、化合物の耐熱性は向上す るが、分子量の増大によって、蒸着プロセスを用いた薄膜形成は困難になる。このよ うな理由から、耐熱性よりも蒸着性を重視するような場合には、特に、カルバゾリル基 の数は 1つ又は 2つであることが好ましい。
ここで、 Ar3と Ar4における炭素数 6〜18の 1価の芳香族炭化水素基とは、前述した ものと同義であるが、特に好ましくは、フエ-ル基、トリル基、ナフチル基、ビフヱニル 基、ターフェ-ル基があげられる。
[0058] ところで、 3位で結合したカルバゾリル基の効果にっ 、て触れておく。通常、アミノ基 は電子ドナーとして働くが、力ルバゾールの窒素原子は、窒素原子上に結合した置 環基に対してはドナー性をほとんど有さな 、。これは力ルバゾール環が平面性を有し ていて、かつ、非常に嵩高い置換基となってしまっているためであり、窒素原子上の 置換基と平面構造をとりにくい事に起因していると考えられる。逆に、力ルバゾール環 は環の平面性があるため、そのベンゼン環部分に対しては電子ドナー性となりうる( ィ匕 15参照)。
[0059] [化 15]
Figure imgf000021_0001
窒素原子上の置環基と力ルバゾー 力ルバゾール環のベンゼン環に対 ル環が平面を形成しないので、 電 しては平面構造をとることが出来 子ドナーとはならない るので電子ドナーとなる
[0060] このため、本発明の 3位で結合した力ルバゾリル基を有するジアミノアリーレンィ匕合 物にお 、ては、力ルバゾール環に結合したァミノ基と力ルバゾール環の窒素原子の 両方が力ルバゾール環のベンゼン環に対して電子ドナーとなっており、フエ二レンジ ァミン構造と同等力それ以上の電子ドナー効果を発揮しうると考えられる (化 16参照
) o
[0061] [化 16]
Figure imgf000021_0002
[0062] このような理由から、本発明の力ルバゾリル基を有するジアミノアリーレン化合物は、 イオン化ポテンシャルの小さな化合物(有機分子の基底状態がより高 、レベルにある 化合物)となりやすぐ有機 EL素子を作成する際には、正孔注入性あるいは正孔輸 送性の高 、ィ匕合物とすることが可能である。
さらに、 3位で結合した力ルバゾール環は、窒素原子上で結合した力ルバゾール環 に比較して、分子の対称性が低いので、分子の結晶性が低くなり、アモルファス性が 高くなるため、薄膜形成した際の安定性向上にも大きく寄与することが可能である。
[0063] 次に、一般式 [1]の中の Xについて説明する。 Xは一般式 [3]で表される置換基を 有してもょ 、フエナントレン ジィル基、一般式 [4]で表される置換基を有しても良!ヽ o フエ-レン基、又は一般式 [5]で表される置換基を有しても良!、m フエ-レン基 を表す。
一般式 [1]の基 Xが、一般式 [3]で表される置換基を有してもよいフエナントレン- ジィル基の場合には、前記した一般式 [11]で表される力ルバゾリル基を有するフエ ナントレンィ匕合物となる。本発明の一般式 [11]で表される力ルバゾリル基を有するフ ェナントレン化合物を、有機 EL素子用の材料として用いる場合、 Tgが高ければ高い ほど一般的にはよい。本発明の一般式 [11]で表される力ルバゾリル基を有するフエ ナントレンィ匕合物の好ましい例としては、 Tgは、 170°C以上であることがあげられる。 一般的に、材料の Tgを超える熱負荷力 Sかかった場合に、膜の結晶化による EL素 子の破壊が起こることは前述したが、車載用途やその他の高温環境化においても 17 0°Cと!、う非常に高 、Tgを有して 、ることで、安定で長寿命な EL素子の実現が可能 である。
まず、本発明の一般式 [1]の基 Xが、一般式 [3]で表される置換基を有してもよい フエナントレン ジィル基の場合の一般式 [11]で表される力ルバゾリル基を有するフ ェナントレンィ匕合物について説明した力、これらの力ルバゾリル基を有するフエナント レンィ匕合物を有機 EL素子用材料として用いる場合には、化合物の分子量としては、 1500以下が好ましぐ 1300以下がより好ましぐ 1200以下がさらに好ましぐ 1100 以下が特に好ましい。この理由として、分子量が大きいと、蒸着によって素子を作成 する場合の蒸着性が悪くなる懸念があるためである。
本発明の一般式 [11]で表される力ルバゾリル基を有するフエナントレンィ匕合物の 代表例を、以下の表 1に示す力 本発明は、この代表例に限定されるものではない。
[表 1] 【表 1】
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
拏】 [9900] 900Zdf/ェ:) d 986C90/.00Z OAV
Figure imgf000026_0001
τ峯】 900] 900Zdf/ェ:) d z 986C90/.00Z OAV
Figure imgf000027_0001
】 [8900]
93 986C90/.00Z OAV
Figure imgf000028_0002
Figure imgf000028_0001
/ O/-0SAV:71£ LZ 03ε& 舊 0
Figure imgf000029_0001
[0071] 【表丄】
Figure imgf000030_0001
[0072] 次に一般式 [1]の中の X力 一般式 [4]で表される置換基を有しても良い o—フ 二 レン基、又は一般式 [5]で表される置換基を有しても良 ヽ m—フエ-レン基である場 合について説明する。
これらの o—フヱ-レン基や m—フヱ-レン基は、 p—フヱ-レン基に比較して、対称 性の低い構造であるが故、分子の結晶性が低くなり、アモルファス性が高くなるため、 安定な薄膜を形成することが可能である。
一般式 [4]、又は一般式 [5]中、 R8〜 、又は R12〜R15は水素原子、ハロゲン原 子、または一価の有機残基を表す。ハロゲン原子や、一価の有機残基としては、前 述のものがあげられる。
一般式 [4]の中の、 R8と R9、 R9と R1C>、又は R10と R11が、置換基同士で互いに結合 して隣接する原子と共に環を形成しても良い。同様にして、一般式 [5]の中の、 R13と R14、もしくは、 R14と R15が、置換基同士で互いに結合して隣接する原子と共に環を 形成してちょい。
[0073] 一般式 [4]のより好ましい形態としては一般式 [6]の o—フエ-レンであることがあげ られる。一般式 [6]の中の、 R16〜R19は、一般式 [4]の中の R8〜RUと同義である力 置換基同士が結合して、形成される新たな環が芳香環である場合には、 1つの位置 のみに限られる。
また、一般式 [5]のより好ましい形態としては一般式 [7]の m—フエ-レンであること があげられる。一般式 [7]の中の、 R2〜R23は、一般式 [5]の中の R12〜R15と同義で ある力 置換基同士が互いに結合して形成される新たな環が芳香環である場合には 、 1つの位置のみに限られる。
以上説明した一般式 [4]又は一般式 [5]のうちもっとも好ましい形態としては、一般 式 [4]で表される置換基を有しても良 、o—フエ-レン基が一般式 [8]の o—フエ-レ ン、一般式 [9]のナフチレン、又は、一般式 [10]の m—フエ-レンである場合があげ られる。
[0074] 式中、 R24〜R27、 R28〜R33、及び、 R34〜R37は、水素原子、ハロゲン原子、炭素数 1〜3のアルキル基、置換基を有してもよ!、炭素数 6〜 12の 1価の芳香族炭化水素 基、又は、置換基を有してもよい炭素数 2〜5の 1価の複素環基を表す。
ノ、ロゲン原子は前述したものと同様であり、炭素数 1〜3のアルキル基としては、メ チル基、ェチル基、ノルマルプロピル基、イソプロピル基等が挙げられる。
炭素数 6〜12の 1価の芳香族炭化水素基、炭素数 2〜5の 1価の複素環基としては 、前述したもののうち、該当する炭素数のものがあげられる。
R24〜R27、 R28〜R33、及び、 R34〜R37のうち特に好ましいものとしては、水素原子、 メチル基、フ -ル基があげられる。
[0075] 以上、本発明に用いる一般式 [1]で表される力ルバゾリル基を有するジアミノアリー レンィ匕合物について説明した力 これらの力ルバゾリル基を有するジアミノアリーレン 化合物を有機 EL素子用材料として用いる場合には、化合物の分子量としては、 150
0以下が好ましぐ 1300以下がより好ましぐ 1200以下がさらに好ましぐ 1100以下 が特に好ましい。この理由として、分子量が大きいと、蒸着によって素子を作成する 場合の蒸着性が悪くなる懸念があるためである。
次に、本発明の一般式 [1]の中の Xが、一般式 [4]で表される置換基を有しても良 い o—フエ-レン基、又は一般式 [5]で表される置換基を有しても良 、m—フエ-レン 基である場合の一般式 [1]で表される力ルバゾリル基を有するジアミノアリーレンィ匕合 物の代表例を、以下の表 2示すが、本発明は、この代表例に限定されるものではない [表 2]
【表 2】
Figure imgf000033_0001
00
>
>
C00 c r >
00
C00 OCT >
00
Figure imgf000034_0001
化合物
3007
Figure imgf000035_0001
【 »】 [8Z00] 900Zdf/ェ:) d 88 986C90/.00Z OAV
Figure imgf000036_0001
§9
uosoo
Figure imgf000037_0001
Figure imgf000038_0001
z 】 [Ϊ800] 0 900Zdf/ェ:) d 9S 986C90/.00Z OAV //:/ O 603ε900ί1£ 986ε90/-00ίAV
c
Figure imgf000039_0001
//:/ O 603ε900ί1£ 986ε90/-00ίAV∞ε
Figure imgf000040_0001
Figure imgf000041_0001
【z拏】 [ 800]
V6QVZ ZA£ll A 6S 986C90/.00Z OAV
Figure imgf000042_0001
【表2
Figure imgf000043_0001
Figure imgf000044_0001
[ 800] 0 900Zdf/ェ:) d zv 986C90/.00Z OAV [画] 【表 2】
Figure imgf000045_0001
[0089] 本発明の力ルバゾリル基を有するフ ナントレン化合物は、種々の用途に用いる ことができる。増感効果、発熱効果、発色効果、退色効果、蓄光効果、相変化効果、 光電変換効果、光磁気効果、光触媒効果、光変調効果、光記録効果、ラジカル発生 効果等の機能を発現する材料として、あるいは逆にこれらの効果を受けて発光機能 を有する材料としても用いることができる。より具体的には、発光材料、光電変換材料 、光記録材料、画像形成材料、フォトクロミック材料、有機 EL材料、光導電材料、二 色性材料、ラジカル発生材料、酸発生材料、塩基発生材料、蓄光材料、非線形光学 材料、第 2高調波発生材料、第 3高調波発生材料、感光材料、光吸収材料、近赤外 吸収材料、フォトケミカルホールバーニング材料、光センシング材料、光マーキング 材料、光化学治療用増感材料、光相変化記録材料、光焼結記録材料、光磁気記録 材料、光線力学療法用色素等があげられる。
[0090] これらあげた種々の用途のうち、特に好ましくは、有機 EL材料 (有機 EL用材料、有 機 EL素子用材料)として用いられる。
[0091] 有機 EL素子用材料として用いる等の場合には、特に、高純度の材料が要求される 力 このような場合に、本発明の力ルバゾリル基を有するフエナントレン化合物は、昇 華精製法や再結晶法、再沈殿法、ゾーンメルティング法、カラム精製法、吸着法など 、あるいはこれら方法を組み合わせて行うことができる。これら精製法の中でも再結晶 法によるのが好ましい。昇華性を有する化合物においては、昇華精製法によることが 好ましい。昇華精製においては、目的化合物が昇華する温度より低温で昇華ボート を維持し、昇華する不純物を予め除去する方法を採用するのが好ましい。また昇華 物を採集する部分に温度勾配を施し、昇華物が不純物と目的物に分散するようにす るのが望ましい。以上のような昇華精製は不純物を分離するような精製であり、本発 明に適用しうるものである。また、昇華精製を行うことにより、材料の蒸着性の難易度 を予測するのに役立つ。
[0092] ここで、本発明の力ルバゾリル基を有するフエナントレン化合物を用いて作成するこ とができる有機 EL素子について詳細に説明する。
[0093] 有機 EL素子は、陽極と陰極間に一層または多層の有機層を形成した素子から構 成されるが、ここで、一層型有機 EL素子とは、陽極と陰極との間に発光層のみからな る素子を指す。一方、多層型有機 EL素子とは、発光層の他に、発光層への正孔ゃ 電子の注入を容易にしたり、発光層内での正孔と電子との再結合を円滑に行わせた りすることを目的として、正孔注入層、正孔輸送層、正孔阻止層、電子注入層などを 積層させたものを指す。したがって、多層型有機 EL素子の代表的な素子構成として は、(1)陽極 Z正孔注入層 Z発光層 Z陰極、(2)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z陰極、(3)陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極、(4)陽極
Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極、 (5)陽極 z正孔注入 層 Z発光層 Z正孔阻止層 Z電子注入層 Z陰極、 (6)陽極 Z正孔注入層 Z正孔輸 送層 Z発光層 Z正孔阻止層 Z電子注入層 Z陰極、 (7)陽極 Z発光層 Z正孔阻止 層 Z電子注入層 Z陰極、 (8)陽極 Z発光層 Z電子注入層 Z陰極等の多層構成で 積層した素子構成が考えられる。
[0094] また、上述した各有機層は、それぞれ二層以上の層構成により形成されても良ぐ いくつかの層が繰り返し積層されていても良い。そのような例として、近年、光取り出 し効率の向上を目的に、上述の多層型有機 EL素子の一部の層を多層化する「マル チ 'フオトン'ェミッション」と呼ばれる素子構成が提案されている。これは例えば、ガラ ス基板 Z陽極 Z正孔輸送層 Z電子輸送性発光層 Z電子注入層 Z電荷発生層 Z発 光ユニット Z陰極力 構成される有機 EL素子に於いて、電荷発生層と発光ユニット の部分を複数層積層すると ヽつた方法があげられる。
[0095] 本発明の力ルバゾリル基を有するフエナントレンィ匕合物(有機 EL素子用材料)は、 上述したいかなる層に用いても構わないが、特に正孔注入層、正孔輸送層、発光層 に好適に使用することができる。また、本発明の有機 EL素子用材料は、単一の化合 物での使用はもちろんのこと、 2種類以上の化合物を組み合わせて、すなわち混合、 共蒸着、積層するなどして使用することが可能である。さらに、上述した正孔注入層、 正孔輸送層、発光層において、他の材料と共に用いても構わない。
[0096] 正孔注入層には、発光層に対して優れた正孔注入効果を示し、かつ陽極界面との 密着性と薄膜形成性に優れた正孔注入層を形成できる正孔注入材料が用いられる 。また、このような材料を多層積層させ、正孔注入効果の高い材料と正孔輸送効果の 高い材料とを多層積層させた場合、それぞれに用いる材料を正孔注入材料、正孔輸 送材料と呼ぶことがある。本発明の有機 EL素子用材料は、正孔注入材料、正孔輸 送材料 、ずれにも好適に使用することができる。これら正孔注入材料ゃ正孔輸送材 料は、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さい必要が ある。このような正孔注入層としては、より低い電界強度で正孔を発光層に輸送する 材料が好ましぐさらに正孔の移動度力 例えば 104 〜: LO6 VZcmの電界印加時 に、少なくとも 10— 6cm2 Ζν·秒であるものが好ましい。本発明の有機 EL素子用材 料と混合して使用することができる、他の正孔注入材料および正孔輸送材料としては 、上記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料に ぉ 、て正孔の電荷輸送材料として慣用されて 、るものや、有機 EL素子の正孔注入 層に使用されて 、る公知のものの中から任意のものを選択して用いることができる。 このような正孔注入材料ゃ正孔輸送材料としては、具体的には、例えばトリァゾー ル誘導体 (米国特許 3, 112, 197号明細書等参照)、ォキサジァゾール誘導体 (米 国特許 3, 189, 447号明細書等参照)、イミダゾール誘導体 (特公昭 37— 16096号 公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544号明細書、特公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55— 17105号公報、同 56— 4 148号公報、同 55— 108667号公報、同 55— 156953号公報、同 56— 36656号 公報等参照)、ピラゾリン誘導体およびピラゾロン誘導体 (米国特許第 3, 180, 729 号明細書、同第 4, 278, 746号明細書、特開昭 55— 88064号公報、同 55— 8806 5号公報、同 49— 105537号公報、同 55— 51086号公報、同 56— 80051号公報、 同 56— 88141号公報、同 57— 45545号公報、同 54— 112637号公報、同 55— 7 4546号公報等参照)、フ 二レンジァミン誘導体 (米国特許第 3, 615, 404号明細 書、特公昭 51— 10105号公報、同 46— 3712号公報、同 47— 25336号公報、特 開昭 54— 53435号公報、同 54— 110536号公報、同 54— 119925号公報等参照 )、ァリールァミン誘導体 (米国特許第 3, 567, 450号明細書、同第 3, 180, 703号 明細書、同第 3, 240, 597号明細書、同第 3, 658, 520号明細書、同第 4, 232, 1 03号明細書、同第 4, 175, 961号明細書、同第 4, 012, 376号明細書、特公昭 49 — 35702号公報、同 39— 27577号公報、特開昭 55— 144250号公報、同 56— 11 9132号公報、同 56— 22437号公報、西独特許第 1, 110, 518号明細書等参照) 、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明細書等参照)、ォキサゾ ール誘導体 (米国特許第 3, 257, 203号明細書等に開示のもの)、スチリルアントラ セン誘導体 (特開昭 56— 46234号公報等参照)、フルォレノン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 717, 462号明細書、特 開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52064号公報、同 55— 4 6760号公報、同 55— 85495号公報、同 57— 11350号公報、同 57— 148749号 公報、特開平 2— 311591号公報等参照)、スチルベン誘導体 (特開昭 61— 21036 3号公報、同第 61— 228451号公報、同 61— 14642号公報、同 61— 72255号公 報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報、同 60— 174749号 公報、同 60— 175052号公報等参照)、シラザン誘導体 (米国特許第 4, 950, 950 号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリン系共重合体 (特開 平 2— 282263号公報)、特開平 1— 211399号公報に開示されて 、る導電性高分 子オリゴマー(特にチォフェンオリゴマー)等をあげることができる。
[0098] 正孔注入材料ゃ正孔輸送材料としては上記のものを使用することができる力 ポル フィリン化合物 (特開昭 63— 2956965号公報)、芳香族第三級ァミン化合物および スチリルアミンィ匕合物(米国特許第 4, 127, 412号明細書、特開昭 53— 27033号公 報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号公報、同 55 — 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 2955 58号公報、同 61— 98353号公報、同 63— 295695号公報等参照)を用いることも できる。例えば、米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環 を分子内に有する 4, 4,一ビス(N— (1 ナフチル)—N—フエ-ルァミノ)ビフエ-ル 等や、特開平 4— 308688号公報に記載されているトリフエ-ルァミンユニットが 3つ スターバースト型に連結された 4, 4,, 4"—トリス(N— (3—メチルフエ-ル)— N フ ェニルァミノ)トリフエニルァミン等をあげることができる。また、正孔注入材料として銅 フタロシアニンや水素フタロシアニン等のフタロシアニン誘導体もあげられる。さらに、 その他、芳香族ジメチリデン系化合物、 p型 Si、 p型 SiC等の無機化合物も正孔注入 材料ゃ正孔輸送材料として使用することができる。
[0099] 芳香族三級アミン誘導体の具体例としては、例えば、 N, N'—ジフエニル— N, N,
- (3—メチルフエ-ル)— 1, 1, ビフエ-ルー 4, 4,—ジァミン、 N, N, N,, N,—( 4—メチノレフエ-ノレ)一 1, 1,一フエ-ノレ 4, 4,ージァミン、 N, N, Ν' , Ν,一(4ーメ チルフエ-ル)— 1, 1, ビフエ-ルー 4, 4,—ジァミン、 Ν, Ν,—ジフエ-ルー Ν, Ν ,—ジナフチル— 1, 1 ' ビフエ-ルー 4, 4'—ジァミン、 Ν, Ν, - (メチルフエ-ル) — Ν, Ν, - (4— η—ブチルフエ-ル)一フエナントレン一 9, 10 ジァミン、 Ν, Ν ビ ス(4—ジ一 4—トリルァミノフエ-ル) 4—フエ-ル一シクロへキサン、 N, N,一ビス( 4'—ジフエ-ルァミノ一 4—ビフエ-リル) N, N'—ジフエニルベンジジン、 N, N, —ビス(4'—ジフエ-ルァミノ一 4—フエ-ル) N, N'—ジフエ-ルペンジジン、 N, N,—ビス(4'—ジフエ-ルァミノ 4 フエ-ル) N, N'—ジ(1—ナフチル)ベンジ ジン、 N, N,—ビス(4,—フエ-ル(1—ナフチル)ァミノ 4 フエ-ル) N, N,— ジフエ-ルペンジジン、 N, N,一ビス(4,一フエ-ル(1—ナフチル)ァミノ一 4 フエ -ル)—N, N,ージ(1 ナフチル)ベンジジン等があげられ、これらは正孔注入材料 、正孔輸送材料いずれにも使用することができる。
[0100] 本発明の化合物 (有機 EL素子用材料)とともに用いる正孔注入材料、正孔輸送材 料はさらに以下一般式 [14]〜[19]のようなものを用いることが出来る。
[0101] 一般式 [14]
[化 17]
Figure imgf000050_0001
[0102] (式中、 Rall〜Ra"は、それぞれ独立に、水素原子、アルコキシル基、もしくはシァノ 基を表すが、全てが同時に水素原子となることはない。 )
ここで、アルコキシル基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基 、 tert ブトキシ基、ォクチルォキシ基、 tert—ォクチルォキシ基、 2—ボル-ルォキ シ基、 2 イソボル-ルォキシ基、 1ーァダマンチルォキシ基等の炭素数 1〜18のァ ルコキシル基があげられる。特に一般式 [5]の Rall〜Ra14の好まし 、組み合わせとし ては、 Rall〜Ra"が全てメトキシ基、エトキシ基、もしくはシァノ基の場合であることが 好ましい。
[0103] 一般式 [15]
[化 18]
Figure imgf000051_0001
[0104] (式中、 Z 1は連結基であり、単結合、 2価の脂肪族炭化水素基、 2価の芳香族炭化 水素基、酸素原子、硫黄原子のいずれかを表す。 Ra21〜Ra26は、それぞれ独立に、 1 価の芳香族炭化水素基を表す。 )
一般式 [15]中、 Z21の連結基としては、単結合、ビニレン基、 o フヱ-レン基、 m —フエ-レン基、 p フエ-レン基、 1, 4 ナフチレン基、 2, 6 ナフチレン基、 9, 1 0 フエナントリレン基、 9, 10 アンスリレン基が好ましぐ単結合、ビ-レン基、 p— フエ-レン基、 1, 4 ナフチレン基がさらに好ましい。また、 Ra21〜Ra26としては、フエ -ル基、 1 ナフチル基、 2—ナフチル基、 o ビフエ-リル基、 m—ビフエ-リル基、 および p ビフエ-リル基より選ばれる 1価の芳香族炭化水素基が好ましい。
[0105] 一般式 [16]
[化 19]
Figure imgf000051_0002
(式中、 Zdlは連結基であり、単結合、 2価の脂肪族炭化水素基、 2価の芳香族炭化 水素基、酸素原子、硫黄原子のいずれかを表す。 Ra31〜Ra36は、それぞれ独立に、 1 価の芳香族炭化水素基を表す。 )
Z31の連結基としては、単結合、ビ-レン基、 o フエ-レン基、 m—フエ-レン基、 p —フエ-レン基、 1, 4 ナフチレン基、 2, 6 ナフチレン基、 9, 10 フエナントリレン 基、 9, 10—アンスリレン基が好ましぐ単結合、ビ-レン基、 p—フエ-レン基、 1, 4
—ナフチレン基がさらに好ましい。また、 Ra 〜! Τϋとしては、フエ-ル基、 1—ナフチ ル基、 2—ナフチル基、 ο—ビフエ-リル基、 m—ビフエ-リル基、および p—ビフエ-リ ル基より選ばれる 1価の芳香族炭化水素基が好ましい。
[0107] 一般式 [17]
[化 20]
Figure imgf000052_0001
[0108] (式中、 Ra41〜Ra48は、それぞれ独立に、 1価の芳香族炭化水素基を表す。 )
Ra41〜Ra48としては、フエ-ル基、 1—ナフチル基、 2—ナフチル基、 o—ビフエ-リ ル基、 m—ビフエ-リル基、および p—ビフヱ-リル基より選ばれる 1価の芳香族炭化 水素基が好ましい。
[0109] 一般式 [18]
[化 21]
Figure imgf000052_0002
[0110] (式中、 Ra&1〜Ra&bは、それぞれ独立に、 1価の芳香族炭化水素基を表す。 )
Ra51〜Ra56としては、フエ-ル基、 1—ナフチル基、 2—ナフチル基、 o—ビフエ-リ ル基、 m—ビフエ-リル基、および p—ビフヱ-リル基より選ばれる 1価の芳香族炭化 水素基が好ましい。
[0111] 一般式 [19] [化 22]
Figure imgf000053_0001
[0112] (式中、 Ra"〜Rab4は、それぞれ独立に、 1価の芳香族炭化水素基を表し、 pは 1〜4 の整数を表す。 )
Ra61〜Ra64としては、フエ-ル基、 1—ナフチル基、 2—ナフチル基、 o—ビフエ-リ ル基、 m—ビフエ-リル基、および p—ビフヱ-リル基より選ばれる 1価の芳香族炭化 水素基が好ましい。
以上述べた一般式 [14]〜[19]で示したィ匕合物は特に正孔注入材料として、好適 に用いられる。以下の表 3に特に好ま U、例を示す。
[0113] [表 3]
【表 3】
Figure imgf000054_0001
Figure imgf000055_0001
ε挲】 πο]
89 986C90/.00Z OAV
Figure imgf000056_0001
【ε峯】
[eno] 3d 986C90/.00i OAV
Figure imgf000057_0001
【 】 [9ΐΐ0]
t60 900Zdf/ェ:) d 99 986C90/.00Z OAV [0117] また、本発明の化合物 (有機 EL素子用材料)と共に用いることが出来る正孔輸送 材料としては、下記表 4に示す公知の化合物もあげられる。
[0118] [表 4]
Figure imgf000059_0001
【 挲】 ) d 19 986C90/.00Z OAV 8ΙΛΙ丄 H
ΖΙΛΙ丄 H
9ΙΛ [丄 H
丄 H
Figure imgf000060_0001
^
d 89 986C90/.00Z OAV r
【表 4】
Figure imgf000061_0001
【表 4
Figure imgf000062_0001
【表 4】
Figure imgf000063_0001
【表 4】
Figure imgf000064_0001
8 丄 H
Figure imgf000065_0001
L SIA [丄 H
9 丄 H
n g 丄 H
Figure imgf000065_0002
w. ^ ^
+j [漏] ェ:) d 89 986C90/.00Z OAV [0125] 上記説明した正孔注入層を形成するには、上述の化合物を、例えば真空蒸着法、 スピンコート法、キャスト法、 LB法等の公知の方法により薄膜ィ匕するが、正孔注入層 の膜厚は、特に制限はないが、通常は 5ηπι〜5 /ζ πιである。
一方、電子注入層には、発光層に対して優れた電子注入効果を示し、かつ陰極界 面との密着性と薄膜形成性に優れた電子注入層を形成できる電子注入材料が用い られる。そのような電子注入材料の例としては、金属錯体化合物、含窒素五員環誘 導体、フルォレノン誘導体、アントラキノジメタン誘導体、ジフヱノキノン誘導体、チォ ピランジオキシド誘導体、ペリレンテトラカルボン酸誘導体、フレオレニリデンメタン誘 導体、アントロン誘導体、シロール誘導体、トリアリールホスフィンォキシド誘導体、力 ルシゥムァセチルァセトナート、酢酸ナトリウムなどがあげられる。また、セシウム等の 金属をバソフヱナント口リンにドープした無機 Ζ有機複合材料 (高分子学会予稿集, 第 50卷, 4号, 660頁, 2001年発行)や、第 50回応用物理学関連連合講演会講演 予稿集、 No. 3、 1402頁、 2003年発行記載の BCP、 TPP、 T5MPyTZ等も電子注 入材料の例としてあげられるが、素子作成に必要な薄膜を形成し、陰極からの電子 を注入できて、電子を輸送できる材料であれば、特にこれらに限定されるものではな い。
[0126] 上記電子注入材料の中で好ましいものとしては、金属錯体化合物、含窒素五員環 誘導体、シロール誘導体、トリアリールホスフィンォキシド誘導体があげられる。本発 明に使用可能な好ましい金属錯体ィ匕合物としては、 8—ヒドロキシキノリンまたはその 誘導体の金属錯体が好適である。 8—ヒドロキシキノリンまたはその誘導体の金属錯 体の具体例としては、トリス(8 ヒドロキシキノリナート)アルミニウム、トリス(2—メチル — 8—ヒドロキシキノリナート)アルミニウム、トリス(4—メチル 8—ヒドロキシキノリナ ート)アルミニウム、トリス(5—メチル 8—ヒドロキシキノリナート)アルミニウム、トリス( 5—フエ-ルー 8—ヒドロキシキノリナート)アルミニウム、ビス(8—ヒドロキシキノリナ一 ト)(1—ナフトラート)アルミニウム、ビス(8 ヒドロキシキノリナート)(2 ナフトラート) アルミニウム、ビス(8—ヒドロキシキノリナート)(フエノラート)アルミニウム、ビス(8—ヒ ドロキシキノリナート)(4 シァノ 1—ナフトラート)アルミニウム、ビス(4—メチル 8 —ヒドロキシキノリナート)(1—ナフトラート)アルミニウム、ビス(5—メチル 8 ヒドロ キシキノリナート)(2 ナフトラート)アルミニウム、ビス(5—フエ-ルー 8 ヒドロキシキ ノリナート)(フエノラート)アルミニウム、ビス(5—シァノ 8—ヒドロキシキノリナート) ( 4 シァノ 1 ナフトラート)ァノレミ-ゥム、ビス(8 ヒドロキシキノリナート)クロロアノレ ミニゥム、ビス(8—ヒドロキシキノリナート)(o クレゾラート)アルミニウム等のアルミ- ゥム錯体ィ匕合物、トリス(8 ヒドロキシキノリナート)ガリウム、トリス(2—メチル 8 ヒ ドロキシキノリナート)ガリウム、トリス (4—メチル 8—ヒドロキシキノリナート)ガリウム、 トリス(5 メチル 8 -ヒドロキシキノリナート)ガリウム、トリス(2 メチル 5 -フエ- ルー 8 ヒドロキシキノリナート)ガリウム、ビス(2—メチル 8 ヒドロキシキノリナート) (1—ナフトラート)ガリウム、ビス(2—メチル 8 ヒドロキシキノリナート)(2 ナフトラ ート)ガリウム、ビス(2—メチル 8 ヒドロキシキノリナート)(フエノラート)ガリウム、ビ ス(2—メチルー 8 ヒドロキシキノリナート)(4ーシァノー 1 ナフトラート)ガリウム、ビ ス(2、 4 ジメチルー 8 ヒドロキシキノリナート)(1 ナフトラート)ガリウム、ビス(2、 5 ジメチルー 8 ヒドロキシキノリナート)(2 ナフトラート)ガリウム、ビス(2 メチル —5 フエ-ルー 8 ヒドロキシキノリナート)(フエノラート)ガリウム、ビス(2—メチルー 5 シァノー 8 ヒドロキシキノリナート)(4ーシァノー 1 ナフトラート)ガリウム、ビス( 2—メチルー 8 ヒドロキシキノリナート)クロ口ガリウム、ビス(2—メチルー 8 ヒドロキ シキノリナート)(o クレゾラート)ガリウム等のガリウム錯体ィ匕合物の他、 8—ヒドロキ シキノリナ一トリチウム、ビス(8—ヒドロキシキノリナート)銅、ビス(8—ヒドロキシキノリ ナート)マンガン、ビス(10 ヒドロキシベンゾ [h]キノリナート)ベリリウム、ビス(8 ヒド 口キシキノリナート)亜鉛、ビス(10—ヒドロキシベンゾ [h]キノリナート)亜鉛等の金属 錯体ィ匕合物があげられる。
また、本発明に使用可能な電子注入材料の内、好ましい含窒素五員環誘導体とし ては、ォキサゾール誘導体、チアゾール誘導体、ォキサジァゾール誘導体、チアジア ゾール誘導体、トリァゾール誘導体があげられ、具体的には、 2, 5 ビス(1 フエ- ル)— 1 , 3, 4—ォキサゾール、 2, 5 ビス(1—フエ-ル)— 1, 3, 4 チアゾール、 2 , 5 ビス(1 フエ-ル)ー1, 3, 4 ォキサジァゾール、 2—(4,—tert ブチルフエ -ル)—5— (4,,—ビフエ-ル) 1, 3, 4—ォキサジァゾール、 2, 5 ビス(1—ナフチル )ー1, 3, 4 ォキサジァゾール、 1, 4 ビス [2— (5 フエ-ルォキサジァゾリル)] ベンゼン、 1, 4 ビス [2—(5 フエ-ルォキサジァゾリル )ー4 tert ブチルベンゼ ン]、 2— (4, — tert—ブチルフエ-ル)— 5— (4,,—ビフエ-ル)— 1, 3, 4 チアジア ゾール、 2, 5 ビス(1 ナフチル) 1, 3, 4ーチアジアゾール、 1, 4 ビス [2—(5 一フエ-ルチアジァゾリル)]ベンゼン、 2—(4, 一 tert ブチルフエ-ル)ー5— (4"一 ビフエ-ル)一 1, 3, 4 トリァゾール、 2, 5 ビス(1—ナフチル) 1, 3, 4 トリァゾ ール、 1, 4 ビス [2— (5 フエ-ルトリァゾリル)]ベンゼン等があげられる。
また、本発明に使用可能な電子注入材料の内、特に好ましいォキサジァゾール誘 導体としては下記一般式 [20]で表されるォキサジァゾール誘導体を示すことができ る。
一般式 [20]
[0128] [化 23]
Figure imgf000068_0001
[0129] (式中、 Ar11および Ar12は、それぞれ独立に、置換基を有しても良い、 1価の芳香族 炭化水素基もしくは 1価の含窒素芳香族複素環基を表す。 )
1価の含窒素芳香族複素環基としては、 2 ピリジル基、 3 ピリジル基、 4 ピリジ ル基、 3 ピリダジル基、 4 ピリダジル基、 2 ピリミジル基、 4 ピリミジル基、 5 ピ リミジル基、 2—ビラジル基、 1 イミダゾリル基等の 1価の含窒素単環芳香族複素環 基、 2 キノリル基、 3 キノリル基、 4 キノリル基、 5 キノリル基、 6 キノリル基、 7 キノリル基、 8 キノリル基、 2 キナゾリル基、 4 キナゾリル基、 5 キナゾリル基 、 2 キノキサリル基、 5 キノキサリル基、 6 キノキサリル基、 1 インドリル基、 9 力リバゾリル基等の 1価の含窒素縮合環芳香族複素環基、 2, 2' ビビリジルー 3— ィル基、 2, 2,—ビビリジル— 4—ィル基、 3, 3,—ビビリジル— 2—ィル基、 3, 3 ,—ビ ピリジノレー 4ーィノレ 、 4, 4, 一ビビリジノレー 2—ィノレ 、 4, 4, 一ビビリジノレー 3—ィ ル基等の 1価の含窒素環集合芳香族複素環基があげられ、さらに、これら 1価の含窒 素芳香族複素環基上の水素原子は、 1価の脂肪族炭化水素基もしくは 1価の芳香族 炭化水素基で置換されて ヽても良 ヽ。
[0130] 一般式 [20]中、 Ar11および Ar12として、好ましい 1価の芳香族炭化水素基としては 、 1価の脂肪族炭化水素基もしくは 1価の含窒素芳香族複素環基で置換されていて も良い、 1 ナフチル基、 2—ナフチル基、 o ビフエ-リル基、 m—ビフエ-リル基、 および p ビフエ-リル基があげられ、また好まし!/、 1価の含窒素芳香族複素環基とし ては、 1価の脂肪族炭化水素基もしくは 1価の芳香族炭化水素基で置換されていて も良い、 2 ピリジル基、 3 ピリジル基、 4 ピリジル基、 2, 2,一ビビリジル一 3—ィ ル基、および 2, 2,—ビビリジル— 4—ィル基があげられる。
以下、表 5に本発明に使用可能なォキサジァゾール誘導体の具体例を示す。
[0131] [表 5]
【表 5】
Figure imgf000070_0001
表 5】
Figure imgf000071_0001
Figure imgf000072_0001
【s挲】
[εειο]
01 986C90/.00Z OAV [0134] 【表 5】
Figure imgf000073_0001
[0135] また、本発明に使用可能な電子注入材料の内、特に好ましいトリァゾール誘導体と しては、下記一般式 [21]で表されるトリァゾール誘導体があげられる。 一般式 [21]
[0136] [化 24]
Figure imgf000074_0001
[0137] (式中、 Αι^〜Α 3は、それぞれ独立に、置換基を有しても良い、 1価の芳香族炭化 水素基もしくは 1価の含窒素芳香族複素環基を表す。 )
ここで、 Ar"および Art2として、好ましい 1価の芳香族炭化水素基としては、 1価の 脂肪族炭化水素基もしくは 1価の含窒素芳香族複素環基で置換されて!ヽても良 ヽ、 フエ-ル基、 1 ナフチル基、 2—ナフチル基、 o ビフエ-リル基、 m—ビフエ-リル 基、および p ビフエ-リル基があげられ、また好ましい 1価の含窒素芳香族複素環 基としては、 1価の脂肪族炭化水素基もしくは 1価の芳香族炭化水素基で置換されて いても良い、 2 ピリジノレ基、 3 ピリジノレ基、 4 ピリジノレ基、 2, 2,一ビビリジノレ一 3 —ィル基、および 2, 2'—ビビリジル一 4—ィル基があげられる。また、 Art3として、好 ましい 1価の芳香族炭化水素基としては、 1価の脂肪族炭化水素基もしくは 1価の含 窒素芳香族複素環基で置換されていてもよい、フエニル基、 1 ナフチル基、 2—ナ フチル基、 o ビフヱ-リル基、 m—ビフヱ-リル基、および p ビフヱ-リル基があげ られ、また好ましい 1価の含窒素芳香族複素環基としては、 1価の脂肪族炭化水素基 もしくは 1価の芳香族炭化水素基で置換されていてもよい、 2 ピリジル基、 3 ピリジ ル基、および 4 ピリジル基があげられる。
以下、表 6に本発明に使用可能なトリァゾール誘導体の具体例を示す。
[0138] [表 6] 【表 6】
Figure imgf000075_0001
Figure imgf000076_0001
[9 [6ετο] I 986C90/.00Z OAV
S I 丄 3
Figure imgf000077_0001
ΐ ΐ 丄 3
Figure imgf000077_0002
ο τ丄 3
Figure imgf000077_0003
"、 6丄 3
^
9挲】 [OHO] :) d 91 986C90/ .00Z OAV
9 I丄 3
Figure imgf000078_0001
9 T丄 3
Figure imgf000078_0002
I丄 3
Figure imgf000078_0003
N-N N-N
ε I丄; 3
^
9挲】 [Ϊ Ο] df/i:)«I 9Z 986C90/.00Z OAV [0142] 【表 6】
Figure imgf000079_0001
[0143] また、本発明に使用可能な電子注入材料の内、特に好ま 、シロール誘導体とし ては、下記一般式 [22]で表されるシロール誘導体があげられる。 [0144] 一般式 [22]
[化 25]
Figure imgf000080_0001
[0145] (式中、 RP1および 2は、それぞれ独立に、置換基を有しても良い、 1価の脂肪族炭 化水素基、 1価の芳香族炭化水素基もしくは 1価の含窒素芳香族複素環基を表す。 ArPl〜Arp4は、それぞれ独立に、置換基を有しても良い、 1価の芳香族炭化水素基 もしくは 1価の含窒素芳香族複素環基を表す。 12、 ArPl〜Arp4の隣接した基同 士は互いに連結して環を形成しても良い。 )
ここで、 RP1および 2として、好ましい 1価の脂肪族炭化水素基としては、 1価の芳 香族炭化水素基もしくは 1価の含窒素芳香族複素環基で置換されて ヽても良い、メ チル基、ェチル基、プロピル基、およびブチル基があげられ、好ましい 1価の芳香族 炭化水素基としては、 1価の脂肪族炭化水素基もしくは 1価の含窒素芳香族複素環 基で置換されていても良い、フエ-ル基、 m—ビフエ-リル基、および p ビフエ-リル 基があげられ、好ましい 1価の含窒素芳香族複素環基としては、 1価の脂肪族炭化水 素基もしくは 1価の芳香族炭化水素基で置換されていても良い、 2 ピリジル基、 3— ピリジル基、 4 ピリジル基があげられる。また、 Arpl〜Arp4として、好ましい 1価の芳 香族炭化水素基としては、 1価の脂肪族炭化水素基もしくは 1価の含窒素芳香族複 素環基で置換されていても良い、フエ-ル基、 1 ナフチル基、 2—ナフチル基、 o— ビフエ-リル基、 m—ビフヱ-リル基、および p ビフヱ-リル基があげられ、また好ま しい 1価の含窒素芳香族複素環基としては、 1価の脂肪族炭化水素基もしくは 1価の 芳香族炭化水素基で置換されていても良い、 2 ピリジル基、 3 ピリジル基、 4ーピ リジル基、 2, 2,—ビビリジル— 3—ィル基、および 2, 2,—ビビリジル— 4—ィル基力 S あげられる。 以下、表 7に本発明に使用可能なシロール誘導体の具体例を示す。 7]
【表 7】
Figure imgf000081_0001
Figure imgf000082_0001
urn
[ ^ΐΟ]
08 986C90/.00Z OAV [ ] 【表 7】
Figure imgf000083_0001
Figure imgf000084_0001
[6刚
t60 900Zdf/ェ:) d 38 986C90/.00Z OAV 【表 7】
Figure imgf000085_0001
また、本発明に使用可能な電子注入材料の内、好ましいトリアリールホスフィンォキ シド誘導体としては、特開 2002— 63989号公報、特開 2004— 95221号公報、特 開 2004— 203828号公報、特開 2004— 204140号公報記載の卜リアリールホスフィ ンォキシド誘導体や下記一般式 [23]で表されるトリアリールホスフィンォキシド誘導 体を示すことができる。
一般式 [23]
[化 26]
[23]
Figure imgf000086_0001
[0153] (式中、 Arql〜Arq3は、それぞれ独立に、置換基を有しても良い 1価の芳香族炭化水 素基を表す。 )
ここで Arql〜Arq3として、好ましい 1価の芳香族炭化水素基としては、 1価の脂肪族 炭化水素基もしくは 1価の含窒素芳香族複素環基で置換されて 、ても良 、、フエ二 ル基、 1 ナフチル基、 2—ナフチル基、 o ビフエ-リル基、 m—ビフエ-リル基、お よび p ビフヱ-リル基があげられる。
以下、表 8に本発明に使用可能なトリアリールホスフィンォキシド誘導体の具体例を 示す。
[0154] [表 8]
^
t60 900Zdf/ェ:) d 98 986C90/.00Z OAV
Figure imgf000088_0001
【8挲】 [SSIO]
t60 900Zdf/ェ:) d 98 986C90/.00Z OAV
Figure imgf000089_0001
Z8 986C90/.00Z OAV 【表8
Figure imgf000090_0001
【表 8】 化合物 化 学 構 造
【表 8】
Figure imgf000092_0001
[0160] さらに、正孔阻止層には、発光層を経由した正孔が電子注入層に達するのを防ぎ 、薄膜形成性に優れた層を形成できる正孔阻止材料が用いられる。そのような正孔 阻止材料の例としては、ビス(8—ヒドロキシキノリナート)(4—フエ-ルフエノラート)ァ ルミ-ゥム等のアルミニウム錯体化合物や、ビス(2—メチルー 8 ヒドロキシキノリナ ート)(4 フエ-ルフエノラート)ガリウム等のガリウム錯体化合物、 2, 9 ジメチルー 4, 7 ジフエ-ルー 1, 10 フエナント口リン (BCP)等の含窒素縮合芳香族化合物 があげられる。
本発明の有機 EL素子の発光層としては、以下の機能を併せ持つものが好適であ る。
注入機能;電界印加時に陽極または正孔注入層より正孔を注入することができ、陰 極または電子注入層より電子を注入することができる機能:
輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能 発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 ただし、正孔の注入されやすさと電子の注入されやすさには、違いがあってもよぐま た正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の 電荷を移動することが好まし ヽ。
有機 EL素子の発光材料は主に有機化合物であり、具体的には所望の色調により、 次のような化合物が用いられる。
たとえば、紫外域力 紫色の発光を得る場合には、下記一般式 [24]で表される化 合物が好適に用いられる。
[0161] 一般式 [24]
[化 27]
Figure imgf000093_0001
[0162] (式中、 XIは下記一般式 [25]で表される基を示し、 X2は、フエ-ル基、 1 ナフチ ル基、 2—ナフチル基のいずれかを示す。〕
[0163] 一般式 [25]
[化 28]
Figure imgf000094_0001
[0164] (式中、 mは 2〜5の整数を示す)
この一般式 [24]の XI、 X2で表されるフエ-ル基、 1 ナフチル基、 2 ナフチル 基、フエ二レン基は、単数または複数の炭素数 1〜4のアルキル基、炭素数 1〜4のァ ルコキシル基、水酸基、スルホニル基、カルボニル基、アミノ基、ジメチルァミノ基また はジフエ-ルァミノ基等の置換基で置換されていてもよい。また、これら置換基が複 数ある場合には、それらが互いに結合し、環を形成していてもよい。さら〖こ、 XIで表さ れるフエ二レン基は、ノ 位で結合したものが、結合性が良ぐかつ平滑な蒸着膜が 形成し易いことから好ましい。上記一般式 [24]で表される化合物の具体例を示せば 、下記のとおりである(ただし、 Phはフエ二ル基を表す)。
[0165] [化 29]
Figure imgf000095_0001
Figure imgf000095_0002
Figure imgf000095_0003
Figure imgf000095_0004
86 986C90/.00Z: OAV
Figure imgf000096_0001
Figure imgf000096_0002
Figure imgf000096_0003
これら化合物の中では、特に p—クォーターフエ-ル誘導体、 p—クインクフエニル 誘導体が好ましい。
また、可視域、特に青色から緑色の発光を得るためには、例えばべンゾチアゾール 系、ベンゾイミダゾール系、ベンゾォキサゾール系等の蛍光増白剤、金属キレートイ匕 ォキシノイドィ匕合物、スチリルベンゼン系化合物を用いることができる。これら化合物 の具体例としては、例えば特開昭 59— 194393号公報に開示されている化合物をあ げることができる。さらに他の有用な化合物は、ケミストリー ·ォブ ·シンセテイツク 'ダイ ズ(1971) 628〜637頁ぉょび640頁【こ歹1』挙されて ヽる。 前記金属キレートィ匕ォキシノイド化合物としては、例えば、特開昭 63— 295695号 公報に開示されている化合物を用いることができる。その代表例としては、トリス(8— キノリノール)アルミニウム等の 8—ヒドロキシキノリン系金属錯体や、ジリチウムェピン トリジオン等が好適な化合物としてあげることができる。
また、前記スチリルベンゼン系化合物としては、例えば、欧州特許第 0319881号 明細書や欧州特許第 0373582号明細書に開示されているものを用いることができる 。そして、特開平 2— 252793号公報に開示されているジスチリルビラジン誘導体も、 発光層の材料として用いることができる。このほか、欧州特許第 0387715号明細書 に開示されているポリフエ-ル系化合物も発光層の材料として用いることができる。 さらに、上述した蛍光増白剤、金属キレートィヒォキシノイド化合物およびスチリルべ ンゼン系化合物等以外に、例えば 12—フタ口ペリノン (J. Appl. Phys. ,第 27卷 , L713 (1988年))、 1, 4—ジフエ-ル— 1, 3—ブタジエン、 1, 1, 4, 4—テトラフエ -ル— 1, 3—ブタジエン(以上 Appl. Phys. Lett. ,第 56卷,: L799 (1990年)) 、ナフタルイミド誘導体 (特開平 2— 305886号公報)、ペリレン誘導体 (特開平 2—1 89890号公報)、ォキサジァゾール誘導体 (特開平 2— 216791号公報、または第 3 8回応用物理学関係連合講演会で浜田らによって開示されたォキサジァゾール誘導 体)、アルダジン誘導体 (特開平 2— 220393号公報)、ピラジリン誘導体 (特開平 2— 220394号公報)、シクロペンタジェン誘導体(特開平 2— 289675号公報)、ピロロピ ロール誘導体 (特開平 2— 296891号公報)、スチリルァミン誘導体 (Appl. Phys.
Lett. , 第 56卷, L799 (1990年)、クマリン系ィ匕合物(特開平 2— 191694号公 報)、国際特許公報 WO90Z13148や Appl. Phys. Lett. , νο158, 18, P198 2 (1991)に記載されているような高分子化合物、 9, 9' , 10, 10'—テトラフエ-ルー 2, 2,一ビアントラセン、 PPV (ポリパラフエ-レンビ-レン)誘導体、ポリフルオレン誘 導体やそれら共重合体等、例えば、下記一般式 [26]〜一般式 [28]の構造をもつも のや、
一般式 [26]
[化 31]
Figure imgf000098_0001
[0169] (式中、 RX1および RX2は、それぞれ独立に、 1価の脂肪族炭化水素基を、 nlは、 3〜
100の整数を表す。 )
[0170] 一般式 [27]
[化 32]
Figure imgf000098_0002
[0171] (式中、 RXdおよび RX4は、それぞれ独立に、 1価の脂肪族炭化水素基を、 n2および n
3は、それぞれ独立に、 3〜: L00の整数を表す。 )
[0172] 一般式 [28]
[化 33]
Figure imgf000098_0003
(式中、 IT5および RXbは、それぞれ独立に、 1価の脂肪族炭化水素基を、 n4および n 5は、それぞれ独立に、 3〜; 100の整数を表す。 Phはフエ-ル基を表す。) 9, 10—ビス(N— (4— (2—フエ-ルビ-ル— 1—ィル)フエ-ル)—N—フエ-ルァ ミノ)アントラセン等も発光層の材料として用いることができる。さらには、特開平 8—1 2600号公報に開示されているような下記一般式 [20]で示されるフエ二ルアントラセ ン誘導体も発光材料として用いることができる。
一般式 [29]
A1 -L-A2 [29]
(式中、 A1及び A2は、それぞれ独立に、モノフエ-ルアントリル基またはジフエ-ル アントリル基を示し、これらは同一でも異なっていてもよい。 Lは、単結合または 2価の 連結基を表す。 )
ここで、 Lで示される 2価の連結基としては、置換基を有しても良い 2価の単環もしく は縮合環芳香族炭化水素基が好ましい。特に、以下の一般式 [30]ないし一般式 [3 1]で表されるフエ-ルアントラセン誘導体は好適である。
[0174] 一般式 [30]
[化 34]
Figure imgf000099_0001
[0175] (式中、 RZ1〜RZ4は、それぞれ独立に、水素原子、アルキル基、アルケニル基、シク 口アルキル基、 1価の芳香族炭化水素基、アルコキシル基、ァリールォキシ基、ジァリ ールァミノ基、 1価の脂肪族複素環基、 1価の芳香族複素環基を表し、これらは同一 でも異なるものであってもよい。 rl〜r4は、それぞれ独立に、 0又は 1〜5の整数を表 す。 rl〜r4が、それぞれ独立に、 2以上の整数であるとき、 RZ1同士、 Rz2同士、 Rz3同 士、 RZ4同士は各々同一でも異なるものであってもよぐ RZ1同士、 RZ2同士、 RZd同士 、 RZ4同士は結合して環を形成してもよい。 L1は単結合又は置換基を有しても良い 2 価の単環もしくは縮合環芳香族炭化水素基を表し、置換基を有しても良い 2価の単 環もしくは縮合環芳香族炭化水素基は、アルキレン基、 O—、— S 又は— NR— (ここで Rはアルキル基又はァリール基を表す)が介在するものであってもよい。 ) [0176] 一般式 [31]
[化 35]
Figure imgf000100_0001
[0177] (式中、 Rz&及び RZbは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シ クロアルキル基、 1価の芳香族炭化水素基、アルコキシル基、ァリールォキシ基、ジァ リールアミノ基、 1価の脂肪族複素環基、 1価の芳香族複素環基を表し、これらは同 一でも異なるものであってもよい。 r5及び r6は、それぞれ独立に、 0又は 1〜5の整数 を表す。 r5及び r6が、それぞれ独立に、 2以上の整数であるとき、 RZ5同士及び Rz6同 士は各々同一でも異なるものであってもよぐ RZ5同士及び RZ6同士は結合して環を形 成してもよい。 L2は単結合又は置換基を有しても良い 2価の単環もしくは縮合環芳 香族炭化水素基を表し、置換基を有しても良い 2価の単環もしくは縮合環芳香族炭 化水素基は、アルキレン基、—O 、 一 S 又は NR—(ここで Rはアルキル基又は ァリール基を表す)が介在するものであってもよい。 )
[0178] 前記一般式 [30]の内、下記一般式 [32]ないし一般式 [33]で表されるフ ニルァ ントラセン誘導体がさらに好適である。
[0179] 一般式 [32]
[化 36]
Figure imgf000101_0001
[0180] (式中、 Rzll〜RZdUは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シク 口アルキル基、 1価の芳香族炭化水素基、アルコキシル基、ァリールォキシ基、ジァリ ールァミノ基、 1価の脂肪族複素環基、 1価の芳香族複素環基を表し、これらは同一 でも異なるものであってもよい。また、 RZ11〜RZ3Gは、隣り合う基同士が連結し、環を 形成していても良い。 klは、 0〜3の整数を表す。 )
[0181] 一般式 [33]
[化 37]
Figure imgf000101_0002
[0182] (式中、 RZdl〜Rz&uは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シク 口アルキル基、 1価の芳香族炭化水素基、アルコキシル基、ァリールォキシ基、ジァリ ールァミノ基、 1価の脂肪族複素環基、 1価の芳香族複素環基を表し、これらは同一 でも異なるものであってもよい。また、 RZ31〜RZ5Gは、隣り合う基同士が連結し、環を 形成していても良い。 k2は、 0〜3の整数を表す。 )
[0183] また、前記一般式 [31]の内、下記一般式 [34]で表されるフ 二ルアントラセン誘 導体はさらに好適である。
[0184] 一般式 [34]
[化 38]
Figure imgf000102_0001
[0185] (式中、 Rz&1〜RZbUは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シク 口アルキル基、 1価の芳香族炭化水素基、アルコキシル基、ァリールォキシ基、ジァリ ールァミノ基、 1価の脂肪族複素環基、 1価の芳香族複素環基を表し、これらは同一 でも異なるものであってもよい。また、 RZ51〜RZ6Gは、隣り合う基同士が連結し、環を 形成していても良い。 k3は、 0〜3の整数を表す。 )
上記一般式 [32]〜一般式 [34]の具体例としては、下記化合物があげられる。
[0186] [化 39]
Figure imgf000103_0001
[0187] さらには、以下の化合物も具体例としてあげられる。
[0188] [化 40]
Figure imgf000103_0002
[0189] また、下記一般式 [35]で示されるアミンィ匕合物も発光材料として有用である。
一般式 [35]
[0190] [化 41] E1— (E2)h ]
[0191] (式中、 hは、価数であり 1〜6の整数を表す。 E1は、 n価の芳香族炭化水素基、 E2 は、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれる アミノ基を表す。 )
ここで、 E1で示される n価の芳香族炭化水素基の母体構造としては、ナフタレン、ァ ントラセン、 9—フエ-ルアントラセン、 9, 10—ジフエ-ルアントラセン、ナフタセン、ピ レン、ペリレン、ビフエ-ル、ビナフチル、ビアンスリルが好ましぐ E1で示されるァミノ 基としては、ジァリールァミノ基が好ましい。また、 nは、 1〜4が好ましぐ特に 2である ことが最も好ましい。一般式 [35]の内、特に以下の一般式 [36]〜一般式 [45]で表 されるアミンィ匕合物は好適である。
[0192] 一般式 [36]
[化 42]
Figure imgf000104_0001
[0193] (式中、 Ryl〜Ry8は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シクロ アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表す力 Ryl〜Ry8の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基カゝら選ばれるアミノ基を表 す。 Ryl〜Ry8は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成してい ても良い。)
[0194] 一般式 [37]
[化 43]
Figure imgf000105_0001
[0195] (式中、 Ryll〜Ry2は、それぞれ独立に、水素原子、アルキル基、アルケニル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表すが、 Ryll〜Ry2の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基カゝら選ばれるアミノ基を表 す。 Ryll〜Ry2は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。 )
[0196] 一般式 [38]
[化 44]
Figure imgf000105_0002
[0197] (式中、 Ry2134は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基力 選ばれるアミノ基を表す力 Ry21〜Ry34の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基カゝら選ばれるアミノ基を表 す。 Ry21〜Ry34は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
[0198] 一般式 [39]
[化 45]
Figure imgf000106_0001
[0199] (式中、 Ry35〜Ry52は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基力 選ばれるアミノ基を表す力 Ry35〜Ry52の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基カゝら選ばれるアミノ基を表 す。 Ry35〜Ry52は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
[0200] 一般式 [40]
[化 46]
Figure imgf000106_0002
[0201] (式中、 Ry53〜Ry64は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表すが、 Ry53〜Ry64の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基カゝら選ばれるアミノ基を表 す。 Ry53〜Ry64は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
[0202] 一般式 [41]
[化 47]
Figure imgf000107_0001
[0203] (式中、 Ry65〜Ry74は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表すが、 Ry65〜Ry74の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基カゝら選ばれるアミノ基を表 す。 6574は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
[0204] 一般式 [42]
[化 48]
Figure imgf000108_0001
[0205] (式中、 Ry75〜Ry86は、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表すが、 Ry75〜Ry86の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表 す。 Ry75〜Ry86は同一でも異なるもので良く、隣り合う基同士が連結し、環を形成して いても良い。 )
[0206] 一般式 [43]
[化 49]
Figure imgf000108_0002
(式中、 Ry87〜Ryaeは、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シク 口アルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の芳 香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリール アミノ基カも選ばれるアミノ基を表すが、 Ry87〜Ry96の内、少なくとも一つは、ジアルキ ルァミノ基、ジァリールアミノ基、アルキルァリールアミノ基カゝら選ばれるアミノ基を表 す。 Ry87〜Ry96は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成して いても良い。)
[0208] 一般式 [44]
[化 50]
Figure imgf000109_0001
[0209] (式中、 Ry97〜RyllGは、それぞれ独立に、水素原子、アルキル基、ァルケ-ル基、シ クロアルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の 芳香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリー ルァミノ基力も選ばれるアミノ基を表すが、 Ry97〜Ryllの内、少なくとも一つは、ジァ ルキルアミノ基、ジァリールアミノ基、アルキルァリールアミノ基カゝら選ばれるアミノ基を 表す。 9711Gは同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成 していても良い。 )
[0210] 一般式 [45]
[化 51]
Figure imgf000109_0002
[0211] (式中、 Rylll〜Ry128は、それぞれ独立に、水素原子、アルキル基、アルケニル基、シ クロアルキル基、アルコキシル基、ァリールォキシ基、 1価の脂肪族複素環基、 1価の 芳香族複素環基、もしくは、ジアルキルアミノ基、ジァリールアミノ基、アルキルァリー ルァミノ基力も選ばれるアミノ基を表すが、 Rylll〜Ry128の内、少なくとも一つは、ジァ ルキルアミノ基、ジァリールアミノ基、アルキルァリールアミノ基カゝら選ばれるアミノ基を 表す。 Rylll〜Ry128は同一でも異なるもので良ぐ隣り合う基同士が連結し、環を形成 していても良い。 )
上述した一般式 [40]および一般式 [42]のァミン化合物は、黄色〜赤色発光を得 る場合、好適に用いることができる。以上述べた一般式 [35]〜一般式 [45]で表され るアミンィ匕合物の具体例として下記構造の化合物をあげることができる(ただし、 Phは フエ二ル基を表す)。
[0212] [化 52]
Figure imgf000110_0001
[0213] [化 53]
Figure imgf000111_0001
t60 900Zdf/ェ:) d 601· 986C90/.00Z OAV
Figure imgf000112_0001
[0215] [化 55]
[99^>] [9 ISO]
Figure imgf000113_0001
P60Pl£/900Zdt/LDd 986C90/ .001 OAV
Figure imgf000114_0001
Figure imgf000114_0002
[0217] また、上記一般式 [35]〜一般式 [45]において、ァミノ基の代わりに、下記一般式 [ 46]ないし一般式 [47]で表されるスチリル基を少なくとも一つ含有する化合物(例え ば、欧州特許第 0388768号明細書、特開平 3— 231970号公報などに開示のもの を含む)も発光材料として好適に用いることができる。
[0218] 一般式 [46]
[化 57]
Figure imgf000114_0003
[0219] (式中、 Ryl 〜 Ry は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基 、 1価の芳香族炭化水素基を表す。 129131は、隣り合う基同士が連結し、環を 形成していても良い。 )
[0220] 一般式 [47]
[化 58]
Figure imgf000115_0001
[0221] (式中、 Ryl32〜Ry138は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基 、 1価の芳香族炭化水素基を表す。 Ryl34138は、それぞれ独立に、水素原子、ァ ルキル基、シクロアルキル基、 1価の芳香族炭化水素基、もしくは、ジアルキルアミノ 基、ジァリールアミノ基、アルキルァリールアミノ基力 選ばれるアミノ基を表す力 Ryl 34138の内、少なくとも一つは、ジアルキルアミノ基、ジァリールアミノ基、アルキル ァリールアミノ基カも選ばれるアミノ基である。 Ryl32〜Ry138は、隣り合う基同士が連結 し、環を形成していても良い。 )
以上述べた一般式 [46]な!/、し一般式 [47]で表されるスチリル基を少なくとも一つ 含有する化合物の具体例として下記構造の化合物をあげることができる (ただし、 Ph はフヱ-ル基を表す)。
[0222] [化 59]
Figure imgf000116_0001
[0223] [化 60] 2007/063986
115
PCT/JP2006/324094
Figure imgf000117_0001
]
[29^ ] [ ZZ0
Figure imgf000118_0001
t60 900Zdf/ェ:) d 9 986C90/.00Z OAV
[S9^ ] [9220]
Figure imgf000119_0001
900Zdf/ェ:) d L \ \ 986C90/.00Z OAV
[f9^ [LZZO
Figure imgf000120_0001
t60 900Zdf/ェ:) d 8 986C90/.00Z OAV
Figure imgf000121_0001
[0228] また、特開平 5— 258862号公報等に記載されている一般式 (Rs— Q) Al— O
2
-L3 (式中、 L3はフエ-ル部分を含んでなる炭素原子 6〜24個の炭化水素であり、 0—L3はフエノラート配位子であり、 Qは置換 8—キノリノラート配位子を示し、 Rsはァ ルミ-ゥム原子に置換 8 キノリノラート配位子が 2個を上回り結合するのを立体的に 妨害するように選ばれた 8—キノリノラート環置換基を示す〕で表される化合物もあげ られる。具体的には、ビス(2—メチル 8 キノリノラート)(パラ一フエ-ルフエノラー ト)アルミニウム (ΠΙ)、ビス(2—メチル 8 キノリノラート)(1—ナフトラート)アルミ- ゥム (ΠΙ)等があげられる。
[0229] このほか、特開平 6— 9953号公報等によるドーピングを用いた高効率の青色と緑 色の混合発光を得る方法があげられる。この場合、ホストとしては、上記の発光材料、 ドーパントとしては青色力も緑色までの強い蛍光色素、例えばクマリン系あるいは上 記のホストとして用いられているものと同様な蛍光色素をあげることができる。具体的 には、ホストとしてジスチリルァリーレン骨格の発光材料、特に好ましくは 4, 4,一ビス (2, 2—ジフエ-ルビ-ル)ビフエ-ル、ドーパントとしてはジフエ-ルアミノビ-ルァリ 一レン、特に好ましくは例えば N, N ジフエ-ルアミノビ-ルベンゼンをあげることが できる。
[0230] 白色の発光を得る発光層としては特に制限はないが、下記のものを用いることがで きる。
有機 EL積層構造体の各層のエネルギー準位を規定し、トンネル注入を利用して発 光させるもの(欧州特許第 0390551号公報)。同じくトンネル注入を利用する素子で 実施例として白色発光素子が記載されて ヽるもの(特開平 3— 230584号公報)。二 層構造の発光層が記載されているもの(特開平 2— 220390号公報および特開平 2 — 216790号公報)。発光層を複数に分割してそれぞれ発光波長の異なる材料で構 成されたもの(特開平 4 51491号公報)。青色発光体 (蛍光ピーク 380〜480nm) と緑色発光体 (480〜580nm)とを積層させ、さらに赤色蛍光体を含有させた構成の もの(特開平 6— 207170号公報)。青色発光層が青色蛍光色素を含有し、緑色発 光層が赤色蛍光色素を含有した領域を有し、さらに緑色蛍光体を含有する構成のも の(特開平 7— 142169号公報)。これらの中では、上記の構成のものが特に好まし い。
さらに、発光材料として、例えば、下記に示す公知の化合物が好適に用いられる( ただし、 Phはフエ二ル基を表す)。
[0231] [化 65]
Figure imgf000123_0001
[0232] [化 66]
[ 9^ ] [εεεο]
Figure imgf000124_0001
t60 900Zdf/ェ:) d ZZY 986C90/.00Z OAV
Figure imgf000125_0001
t60 900Zdf/ェ:) d 986C90/.00Z OAV
[69^ ] [SSSO]
Figure imgf000126_0001
t60 900Zdf/ェ:) d 1731- 986C90/.00Z OAV
[0Z^ ] [9S20]
Figure imgf000127_0001
931- 986C90/.00Z OAV
Figure imgf000128_0001
Figure imgf000128_0002
[0237] [ィ匕 71]
Figure imgf000129_0001
また、本発明の有機 EL素子では、リン光発光材料を用いることができる。本発明の 有機 EL素子に使用できるリン光発光材料またはドーピング材料としては、例えば有 機金属錯体があげられ、ここで金属原子は通常、遷移金属であり、好ましくは周期で は第 5周期または第 6周期、族では 6族力も 11族、さらに好ましくは 8族力も 10族の元 素が対象となる。具体的にはイリジウムや白金などである。また、配位子としては 2— フエ-ルビリジンや 2— (2'—べンゾチェ-ル)ピリジンなどがあり、これらの配位子上 の炭素原子が金属と直接結合して 、るのが特徴である。別の例としてはポルフィリン またはテトラァザボルフイリン環錯体などがあり、中心金属としては白金などがあげら れる。例えば、下記に示す公知の化合物がリン光発光材料として好適に用いられる( ただし、 Phはフエ二ル基を表す)。
[化 72]
Figure imgf000131_0001
[0240] [化 73]
Figure imgf000132_0001
[0241] さらに、本発明の有機 EL素子の陽極に使用される材料は、仕事関数の大きい (4e V以上)金属、合金、電気伝導性化合物またはこれらの混合物を電極物質とするもの が好ましく用いられる。このような電極物質の具体例としては、 Au等の金属、 Cul、 IT 0、 Sn02 、 ZnO等の導電性材料があげられる。この陽極を形成するには、これら の電極物質を、蒸着法やスパッタリング法等の方法で薄膜を形成 ることができる 。この陽極は、上記発光層からの発光を陽極力 取り出す場合、陽極の発光に対す る透過率が 10%より大きくなるような特性を有していることが望ましい。また、陽極の シート抵抗は、数百 ΩΖ口以下としてあるものが好ましい。さらに、陽極の膜厚は、材 料にもよるが通常 10nm〜l μ m、好ましくは 10〜200nmの範囲で選択される。
[0242] また、本発明の有機 EL素子の陰極に使用される材料は、仕事関数の小さい (4eV 以下)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするもの が用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一カリウム 合金、マグネシウム、リチウム、マグネシウム '銀合金、アルミニウム/酸ィ匕アルミ-ゥ ム、アルミニウム 'リチウム合金、インジウム、希土類金属などがあげられる。この陰極 はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることによ り、作製することができる。ここで、発光層力もの発光を陰極力も取り出す場合、陰極 の発光に対する透過率は 10%より大きくすることが好ましい。また、陰極としてのシー ト抵抗は数百 ΩΖ口以下が好ましぐさらに、膜厚は通常 10nm〜: m、好ましくは 50〜200nmである。
[0243] 本発明の有機 EL素子を作製する方法については、上記の材料および方法により 陽極、発光層、必要に応じて正孔注入層、および必要に応じて電子注入層を形成し 、最後に陰極を形成すればよい。また、陰極から陽極へ、前記と逆の順序で有機 EL 素子を作製することもできる。
[0244] この有機 EL素子は、透光性の基板上に作製する。この透光性基板は有機 EL素子 を支持する基板であり、その透光性については、 400〜700nmの可視領域の光の 透過率が 50%以上、好ましくは 90%以上であるものが望ましぐさらに平滑な基板を 用いるのが好ましい。
[0245] これら基板は、機械的、熱的強度を有し、透明であれば特に限定されるものではな いが、例えば、ガラス板、合成樹脂板などが好適に用いられる。ガラス板としては、特 にソーダ石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガ ラス、ホウケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英などで成形された板があげら れる。また、合成樹脂板としては、ポリカーボネート榭脂、アクリル榭脂、ポリエチレン テレフタレート樹脂、ポリエーテルサルファイド榭脂、ポリサルフォン榭脂などの板が あげられる。
[0246] 本発明の有機 EL素子の各層の形成方法としては、真空蒸着、電子線ビーム照射、 スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法、もしくはスピンコー ティング、デイツビング、フローコーティング等の湿式成膜法のいずれかの方法を適用 することができる。有機層は、特に分子堆積膜であることが好ましい。ここで分子堆積 膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態または液 相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積 膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高次構造の相違や 、それに起因する機能的な相違により区分することができる。また特開昭 57— 5178 1号公報に開示されているように、榭脂等の結着剤と材料ィ匕合物とを溶剤に溶カゝして 溶液とした後、これをスピンコート法等により薄膜ィ匕することによつても、有機層を形成 することができる。各層の膜厚は特に限定されるものではないが、膜厚が厚すぎると 一定の光出力を得るために大きな印加電圧が必要となり効率が悪くなり、逆に膜厚 が薄すぎるとピンホール等が発生し、電界を印加しても充分な発光輝度が得にくくな る。したがって、各層の膜厚は、 lnmから: mの範囲が適しているが、 lOnmから 0 . 2 /z mの範囲がより好ましい。
[0247] また、有機 EL素子の温度、湿度、雰囲気等に対する安定性向上のために、素子の 表面に保護層を設けたり、榭脂等により素子全体を被覆や封止を施したりしても良い 。特に素子全体を被覆や封止する際には、光によって硬化する光硬化性榭脂が好 適に使用される。
[0248] 本発明の有機 EL素子に印加する電流は通常、直流であるが、パルス電流や交流 を用いてもよい。電流値、電圧値は、素子破壊しない範囲内であれば特に制限はな いが、素子の消費電力や寿命を考慮すると、なるべく小さい電気エネルギーで効率 良く発光させることが望ま U、。
[0249] 本発明の有機 EL素子の駆動方法は、ノッシブマトリクス法のみならず、アクティブ マトリックス法での駆動も可能である。また、本発明の有機 EL素子力 光を取り出す 方法としては、陽極側力も光を取り出すボトム'ェミッションという方法のみならず、陰 極側から光を取り出すトップ 'ェミッションという方法にも適用可能である。これらの方 法や技術は、城戸淳ニ著、「有機 ELのすベて」、日本実業出版社 (2003年発行)に 記載されている。
[0250] さらに、本発明の有機 EL素子は、マイクロキヤビティ構造を採用しても構わない。こ れは、有機 EL素子は、発光層が陽極と陰極との間に挟持された構造であり、発光し た光は陽極と陰極との間で多重干渉を生じるが、陽極及び陰極の反射率、透過率な どの光学的な特性と、これらに挟持された有機層の膜厚とを適当に選ぶことにより、 多重干渉効果を積極的に利用し、素子より取り出される発光波長を制御するという技 術である。これにより、発光色度を改善することも可能となる。この多重干渉効果のメ 力-ズムについては、 J. Yamada等による AM— LCD Digest of Technical P apers, OD— 2, p. 77〜80 (2002)【こ記載されて!ヽる。
[0251] 以上述べたように、本発明の力ルバゾリル基を有するフエナントレンィ匕合物を用いた 有機 EL素子は、低い駆動電圧で長時間の発光を得ることが可能である。故に、本有 機 EL素子は、壁掛けテレビ等のフラットパネルディスプレイや各種の平面発光体とし て、さらには、複写機やプリンタ一等の光源、液晶ディスプレイや計器類等の光源、 表示板、標識灯等への応用が考えられる。
図面の簡単な説明
[0252] [図 1]図 1は、化合物(2)のマススペクトルである。 計算値: 842. 34 (M+
;)、実測値: 842. 361
[図 2]図 2は化合物(2)の1 HNMRである。(THF- d中)
8
[図 3]図 3は化合物(2)の13 CNMRである。 (THF-d中)
8
[図 4]図 4は、化合物(61)のマススペクトルである。 計算値: 742. 309 (
M+)、実測値: 742. 291
実施例
[0253] 以下、本発明を実施例で説明するが、本発明はこれら実施例になんら限定されるも のではない。
[0254] 実施例 1
まず、本発明の一般式 [11]で表される力ルバゾリル基を有するフエナントレンィ匕合 物の製造例について説明する。
化合物(2)の合成方法
合成スキームは反応 1のとおりである。
反応 1
[0255] [化 74]
Figure imgf000135_0001
[0256] 以下、反応 1を参照しながら説明する。窒素雰囲気下、(i)を 3. 0g (8. 3mmol)、 3 -プロモー 9 フエ-ルカルバゾール(ii) 7. 0g (21. 6mmol)、酢酸パラジウム 0. 37 g、トリ- tert-ブチルホスフィン 1. 4g、ナトリウム- tert-ブトキシド 2. Ogを 100mlの 4つ 口フラスコにいれ、脱水キシレン 20mlをカ卩えて、 1. 5時間加熱還流した。反応液をメ タノール 400ml中に注入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物と して (iii) ( =化合物(2) )が 8. 2g (収率 117%)で得られた。得られた粗成生物を、シ リカゲルカラムクロマトグラフィーにより精製し、さらに昇華精製を行った。この化合物 ( 2)のガラス転移温度は 171°C (示差走査熱量計、セイコーインスツルメンッ社製)で あった。化合物のマススペクトル(ブルカーダルト-タス社製、 Autoflexll) , 'Η-ΝΜ R、 13C-NMR (日本電子製、 GSX- 270W)を図 1〜3にそれぞれ示した。
尚、化合物(2)の合成に使用した (i)は、特開平 5— 39248に開示の方法を用いて 合成することが出来た。
また、化合物(2)の合成に使用した 3 -ブロモー 9 フエ-ルカルバゾール (ii)は、 工業化学雑誌, 1967年発行, 70卷, 63頁を参考にして、力ルバゾールの 3位を臭 素化し、ついで銅触媒を用いたウルマン法によりョードベンゼンを反応させて合成し たものを用いた。
[0257] 実施例 2〜49
表 9に記載した表 1中の化合物を合成した。以下詳細に説明する。合成方法は、以 下に示す反応 2〜6を組み合わせた。
反応 2
[0258] [化 75]
Figure imgf000136_0001
Araは本発明の化合物を合成するのに必要なァリール基であり、フエ-ル基、 p ト リル基、 4ービフエ-ル基、 a ナフチル基、 β ナフチル基、 9 アントリル基、 9 フエナントリル基、 3 ピリジル基、 2 チェ-ル基、 2 フリル基、 4 シァノフエ-ル 基、 4—メトキシフエ二ル基、 4—フルオロフェニル基等をあらわす。また、 Rは本発明 の化合物を合成するのに必要な置換基であり、水素原子、フ -ル基、メチル基、 te rt—ブチル基、シクロへキシル基、チォフエ-ル基、フエノキシ基、フッ素原子、ジフエ -ルァミノ基等をあらわす。合成方法としては、特開平 5— 39248に開示の方法を用 いた。
反応 3
[0260] [化 76]
Figure imgf000137_0001
[0261] Ara、 Rは前述のものと同義であり、 Arbは本発明の化合物を合成するのに必要なァ リール基であり、フエ-ル基、 p—トリル基、 4ービフヱ-ル基、 α—ナフチル基、 13— ナフチル基、 3 ピリジル基、 2-チェ-ル基、 4 シァノフエ-ル基、 4ーメトキシフエ -ル基、 4 フルオロフェ-ル基、(4ージフエ-ルァミノ) フエ-ル基等をあらわす。 また、 R'は本発明の化合物を合成するのに必要な置換基であり、水素原子、フッ素 原子、フエ-ル基、シァノ基、ジフエ-ルァミノ基等をあらわす。合成方法としては、実 施例 1で (i)のかわりに対応する力ルバゾール誘導体を 1. 1当量反応させる以外は 実施例 1と同様の操作をすることで 1置換の目的化合物が容易に得られた。
反応 4
[0262] [化 77]
Figure imgf000137_0002
[0263] Ara、 Arb、 R、 R'は前述のものと同義である。合成法としては、実施例 1と同様の操 作によって目的の化合物が同様に得られた。
反応 5
[0264] [化 78]
Figure imgf000138_0001
[0265] Arb、 R'は前述のものと同義である。合成の方法としては 3-ブロモ—9—フエ-ルカ ルバゾール (ii)と同様の方法で目的の化合物が得られた。
反応 6
[0266] [化 79]
Figure imgf000138_0002
[0267] Ara、 Arb、 R、 R'は前述のものと同義である。 Areは本発明の化合物を合成するの に必要なァリール基であり、フエ-ル基、 p トリル基、 4ービフエ-ル基、 a ナフチ ル基、 j8—ナフチル基、 3 ピリジル基、 2 チェ-ル基、 4 シァノフエ-ル基、 4 メトキシフエ-ル基、 4 フルオロフェ-ル基、 (4ージフエ-ルァミノ) フエ-ル基等 をあらわす。合成方法としては実施例 1で、(i)のかわりに反応 6の出発原料を用い、 (ii)のかわりに Arc— Brを用いた以外は実施例 1と同様の操作を行い目的化合物が 得られた。
以上の合成方法を組み合わせて得られたィ匕合物の構造にっ ヽては、マススぺタト ル(ブルカーダルト-タス社製、 Autoflexll)にて確認した。結果を表 9に示す。尚、 化合物番号は表 1のものと同様である。
[0268] [表 9] 【表 9】 質量分析
実施例 化合物 用いた反応 *i 理論値 実測値
1 (2) 1 842. 36 1 84 2. 34 1
2 (1) 3, 6 67 7. 289 6 7 7. 28 3
3 (4) 4 *2 1 1 72. 448 1 1 72. 45 7
4 (5) 2, 3, 6 905. 385 905. 37 7
5 (6) 2, 4 994. 399 994. 404
6 (8) 2, 4 942. 366 942. 3 7 2
7 (9) 2, 4 942. 36 5 942. 37 2
8 ( 1 0) 2, 4 1 042. 40 3 1 042. 404
9 ( 1 1 ) 2, 4 1 042. 40 5 1 042. 404
1 0 (1 2) 2, 4 8 7 1. 08 2 8 7 1. 07 7
1 1 (1 3) 2, 4 8 78. 330 8 78. 322
1 2 (1 4) 2, 4 902. 36 1 902. 36 2
1 3 (1 5) 2, 4 844. 339 844. 33 1
1 4 (1 6) 2, 4 8 54. 255 8 54. 254
1 5 (1 7) 4, 5 8 7 1. 07 9 8 7 1. 07 7
1 6 (1 8) 4, 5 8 78. 32 2 8 78. 322
1 7 (1 9) 4, 5 994. 405 994. 404
1 8 (20) 4, 5 844. 32 1 844. 33 1
1 9 (2 1) 4, 5 8 54. 259 8 54. 254
20 (22) 4, 5 1 006. 3 1 1 1 006. 3 1 6
2 1 (23) 4 994. 400 994. 404
22 (24) 4 996. 399 996. 394
23 (25) 4 8 78. 3 1 0 8 78. 32 2
24 (2 6) 4, 5 998. 38 1 998. 38 5
2 5 (2 7) 4, 5 8 92. 33 1 8 92. 33 1
26 (28) 4, 5 8 22. 295 8 2 2. 299
27 (2 9) 4, 5 974. 36 6 974. 36 2
28 (30) 4 1 1 76. 488 1 1 76. 488
29 (3 1) 4, 5 942. 366 942. 372
30 (32) 4, 5 942. 370 942. 372
3 1 (39) 4 1 1 76. 4 6 8 1 1 76. 488
3 2 (40) 4 1 1 76. 4 95 1 1 76. 488
3 3 (4 1) 4 8 70. 360 8 70. 372
34 (44) 3, 6 753. 3 1 0 753. 3 1 4
35 (4 5) 2, 4 8 92. 335 8 92. 33 1
36 (46) 3, 6 844. 35 1 844. 357
37 (4 7) 3, 6 702. 279 702. 278
38 (48) 3, 5, 6 8 29. 345 8 29. 346
39 (49) 3, 5, 6 753. 320 753. 3 1 4
40 (50) 3, 6 75 3. 3 1 1 75 3. 3 1 4 [0269] 【表 9】
Figure imgf000140_0002
注: * 1 番号は上記反応 1 6に対応する。
* 2 9, 10 ジァミノフエナントレンを原料とした。
[0270] 次に、本発明の一般式 [1]の中の Xが、一般式 [4]で表される置換基を有しても良 い o フエ-レン基、又は一般式 [5]で表される置換基を有しても良 、m フエ-レン 基である場合の一般式 [1]で表される力ルバゾリル基を有するジアミノアリーレンィ匕合 物の製造例について説明する。
それぞれの化合物は、以下に示す反応 7〜13を組み合わせることで得ることが出 こ ο
反応 7
[0271] [化 80]
Figure imgf000140_0001
[0272] 反応 8
[化 81] z
Figure imgf000141_0001
[0273] 反応 9
[化 82]
[0274]
Figure imgf000141_0002
[0275] 反応 11
[化 84]
Figure imgf000141_0003
[0276] 反応 12
[化 85]
Brヽ r3
Figure imgf000141_0004
[0277] 反応 13
[化 86]
Figure imgf000142_0001
[0278] 反応 7中の 3BrCzは、工業化学雑誌, 1967年発行, 70卷, 63頁を参考にして、力 ルバゾール誘導体の 3位を臭素化し、っ 、で銅触媒を用いたウルマン法によりョード ベンゼン誘導体を反応させて合成したものを用いた。
ウルマン法とは、ヨウ化ァリールとァリールァミンのカップリング反応であり、銅粉と無 水炭酸カリウム等の塩基をニトロベンゼンなどの高沸点溶媒中にて 100〜180°C程 度の温度で反応させるといった特開平 7—126226等に記載されている業界公知の 方法を参考にした。
ウルマン法によるァリールァミンの合成は反応式 13中の合成にも用いることが出来 た。
[0279] また、反応式 7〜13中の臭化ァリールとァリールァミンの反応には、ウルマン法で用 いられる銅粉と塩基の代わりに、塩基存在下、パラジウム化合物とリン化合物を触媒 に用いるという方法をもちいた。この方法については、特開平 10— 81667、特開平 1 0—139742、特開平 10— 310561、 John F. Hartwig著、 Angew. Chem. Int. Ed., 3 7卷、 2046〜2067頁(1998年)、 Bryant H. Yangゝ Stephen L Buchwald著、 J. Orga nomet. Chem., 576卷、 125〜146頁(1999年)、 John P. Wolfe, Stephen L Buchwa Id著、 J. Org. Chem., 65卷、 1144〜1157頁(2000年)、 John P. Wolfe, Step hen L Buchwald著、 J. Org. Chem., 62卷、 1264~1267M (1997^) , Janis Loui e, Michael S. Driver, Blake C. Hamann, John F. Hartwig著、 J. Org. Chem., 62卷、 1268〜1273頁(1997年)、特開昭 63— 35548、特開平 6— 100503、特表 2001 — 515879、再公表特許 WO2002Z076922号記載の方法を参考にした。
また、反応 13中の-トロ基カもァミノ基への変換反応は、古くから良く知られている ニトロ基の還元反応であり、酸性条件下での亜鉛や塩化スズ (Π)による還元、ノ ラジ ゥム黒ゃラネーニッケルなどの触媒存在下での水素による還元、水素化リチウムアル ミニゥムなどの還元剤を用いた還元によって、ニトロ化合物力 相当するァミン化合物 を収率良く得ることができた。この還元反応は、 Calvin A. Buehler、 Donald E. Pearso n共著、 SURVEY OF ORGANIC SYNTHESESゝ 413〜417頁、 Wiley- Interscience (l 970年)、 日本化学会編、新実験化学講座 14、 1333〜1335頁、丸善(1978年)な どに記載されている業界公知の方法を参考にした。
[0280] 実施例 50
表 2中の化合物(60)の合成方法
窒素雰囲気下、 1, 2 ジァミノベンゼン 1. lg (10. 2mmol)とブロモベンゼン 5. 0 g (32mmol)、酢酸パラジウム 0. 12g、トリ- tert-ブチルホスフィン 0. 40g、炭酸カリ ゥム 11. 2gを 50mlの 4つ口フラスコにいれ、脱水キシレン 20mlをカ卩えて、 3時間カロ 熱還流した。反応液に塩ィ匕アンモ-ゥム水溶液をカ卩えて中和し、有機層をトルエンで 抽出した。硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。残留物に少量のメ タノールを添加して放置すると結晶が析出するので、ろ取乾燥すると N, N, Ν'—トリ フエ二ルー 1, 2 フエ-レンジァミン 0. 8g (収率 23%)が得られた。次に得られた Ν , N, N,一トリフエ-ル一 1, 2 フエ-レンジァミン 0. 8g (2. 4mmol)と 3-ブロモ 9 フエ-ルカルバゾール 1、 0g (3. 1 mmol)、酢酸パラジウム 0. 05g、トリ- tert-ブチ ルホスフィン 0. 20g、ナトリウム tert ブトキシド 0. 60gを 50mlの 4つ口フラスコに いれ、脱水キシレン 20mlをカ卩えて、 2時間加熱還流した。反応液をメタノール 200ml 中に注入し、析出した固体をろ取し、熱真空乾燥させた。粗生成物として化合物(60 )が 1. 2g得られた。得られた粗成生物を、シリカゲルカラムクロマトグラフィーにより精 製し、さらに昇華精製を行った。この化合物(60)のイオンィ匕ポテンシャルは 5. 3eV( 理研計器製 AC— 1)であった。化合物はマススペクトル (ブルカーダルト-タス社製、 AutoflexII)、 1H-NMR、 13C-NMRにより同定した。
[0281] 実施例 51
表 2中の化合物(61)の合成方法
窒素雰囲気下、 1, 2 ジブロモベンゼン 2. 4g (10. 2mmol)とァ-リン 2. 0g (21 mmol)、酢酸パラジウム 0. 090g、トリ- tert-ブチルホスフィン 0. 25g、炭酸カリウム 8 . 6gを 50mlの 4つ口フラスコ〖こいれ、脱水キシレン 20mlをカ卩えて、 3時間加熱還流 した。反応液に塩ィ匕アンモ-ゥム水溶液を加えて中和し、有機層をトルエンで抽出し た。硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。残留物に少量のメタノー ルを添加して放置すると結晶が析出するので、ろ取乾燥すると N, Ν'—ジフエ-ル—
1. 2 フエ-レンジァミン 1. 5g (収率 56%)が得られた。次に得られた N, Ν'—ジフ ェ-ル 1, 2 フエ-レンジァミン 1. 5g (5. 8mmol)と 3-ブロモ 9 フエ-ルカル バゾール 4. 8g (15mmol)、酢酸パラジウム 0. 26g、トリ- tert-ブチルホスフィン 0. 9 3g、ナトリウム tert ブトキシド 1. 4gを 50mlの 4つ口フラスコにいれ、脱水キシレ ン 40mlをカ卩えて、 2時間加熱還流した。反応液をメタノール 200ml中に注入し、析 出した固体をろ取し、熱真空乾燥させた。粗生成物として化合物(61)が 4. 7g得られ た。得られた粗成生物を、シリカゲルカラムクロマトグラフィーにより精製し、さらに昇 華精製を行った。この化合物(61)のイオンィ匕ポテンシャルは 5. 3eV (理研計器製 A C— 1)であった。化合物はマススペクトル(ブルカーダルト-タス社製、 Autoflexll)
1H-NMR、 13C-NMRにより同定した。
実施例 52
表 2中の化合物(92)の合成方法
窒素雰囲気下、 1, 3 ジブロモベンゼン 2. 4g (10. 2mmol)とァ-リン 2. 0g (21 mmol)、酢酸パラジウム 0. 090g、トリ- tert-ブチルホスフィン 0. 25g、炭酸カリウム 8 . 6gを 50mlの 4つ口フラスコ〖こいれ、脱水キシレン 20mlをカ卩えて、 3時間加熱還流 した。反応液に塩ィ匕アンモ-ゥム水溶液を加えて中和し、有機層をトルエンで抽出し た。硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。残留物に少量のメタノー ルを添加して放置すると結晶が析出するので、ろ取乾燥すると N, Ν'—ジフエ-ル—
1. 3 フエ-レンジァミン 1. 9g (収率 71%)が得られた。次に得られた N, Ν'—ジフ ェ-ル 1, 3 フエ-レンジァミン 1. 9g (7. 3mmol)と 3-ブロモ 9 フエ-ルカル バゾール 6. lg (19mmol)、酢酸パラジウム 0. 32g、トリ- tert-ブチルホスフィン 1. 2 g、ナトリウム tert ブトキシド 1. 8gを 100mlの 4つ口フラスコにいれ、脱水キシレ ン 50mlをカ卩えて、 2時間加熱還流した。反応液をメタノール 200ml中に注入し、析 出した固体をろ取し、熱真空乾燥させた。粗生成物として化合物(92)が 5. 5g得られ た。得られた粗成生物を、シリカゲルカラムクロマトグラフィーにより精製し、さらに昇 華精製を行った。この化合物(92)のイオンィ匕ポテンシャルは 5. 4eV (理研計器製 A C— 1)であった。化合物はマススペクトル(ブルカーダルト-タス社製、 Autoflexll) 、 1H-NMR、 13C-NMRにより同定した。
[0283] 実施例 53〜: L 10
前記した反応 7〜 13を組み合わせて、同様にして、表 10に記載の本発明の化合 物を合成することができた。得られたィ匕合物の構造については、マススペクトル (ブル カーダルト-タス社製、 Autoflexll)にて確認した。結果を表 10に示す。尚、化合物 番号は表 2のものと同様である。また、化合物(61)のマススペクトル(ブルカーダルト -クス社製、 Autoflexll)を図 4に示す。
[0284] [表 10]
【表 10】 質量分析
実施例 化合物 用いた反応 1111 理論値 実測値
50 (60) 7, 10 577. 242 577. 251
51 (61) 7, 12 742. 291 742. 309
53 (62) 7, 13 742. 298 742. 309
54 (63) 7, 1 1 1072. 410 1072. 425
55 (64) 7, 10 805. 329 805. 346
56 (65) 7, 9 894. 382 894. 372
57 (66) 7, 13 894. 361 894. 372
58 (68) 7, 12 842. 351 842. 340
59 (69) 7, 12 942. 379 942. 372
60 (71) 7, 9 770. 965 770. 959
61 (72) 7, 9 778. 282 778. 291
62 (73) 7, 9 802. 345 802. 331
63 (74) 7, 9 744. 31 1 744. 300
64 (75) 7, 9 754. 211 754. 222
65 (76) 7, 12 802. 321 802. 331
66 (77) 7, 12 778. 279 778. 291
67 (78) 7, 12 894. 362 894. 372
68 (79) 7, 12 744. 290 744. 300
69 (80) 7, 12 754. 188 754. 222
70 (81) 7, 12 906. 284 906. 285
71 (82) 7, 12 646. 315 646. 309
72 (84) 7, 12 674. 330 674. 341
73 (85) 7, 12 702. 371 702. 372
74 (86) 7, 12 702. 366 702. 372
75 (88) 7, 12 874. 335 874. 330
76 (89) 7, 12 794. 349 794. 341
77 (91) 7, 12 842. 331 842. 340
52 (92) 7, 12 742. 291 742. 309
78 (93) 7, 12 792. 320 792. 325
79 (94) 7, 12 894. 382 894. 372 表 i o】
Figure imgf000147_0001
* 1 番号は上記反応 7-13に対応する。 [0286] 注: * 1 番号は上記反応 7〜 13に対応する。
[0287] 以下、本発明の化合物を用いた有機 EL素子の作成例を実施例により説明するが 、本発明は下記実施例に限定されるものではない。実施例においては、特に断りの ない限り、混合比は全て重量比を示す。蒸着 (真空蒸着)は 10_6TOTrの真空中で、 基板加熱、冷却等の温度制御なしの条件下で行った。また、素子の発光特性評価に おいては、電極面積 2mm X 2mmの有機 EL素子の特性を測定した。
[0288] 実施例 111
洗浄した ITO電極付きガラス板上に、本発明の化合物(1)を真空蒸着して膜厚 60η mの正孔注入層を得た。次いで、 N, N,一(1 ナフチノレ) N, N,ージフエ-ルー 1 , 1 'ービフエ-ル— 4, 4'ージァミン (NPD)を真空蒸着して 20nmの正孔輸送層を 得た。さらに、トリス (8 ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚 60η mの電子注入型発光層を作成し、その上に、まずフッ化リチウムを lnm、次いでアル ミニゥムを 200nm蒸着して電極を形成して、有機 EL素子を得た。この素子を発光輝 度 500 (cdZm2)で室温にて定電流駆動したときの半減寿命を測定した。また、 100 °Cの環境で、 lOmAZcm2の電流密度で 100時間連続して発光させ輝度を測定し た。結果を表 11に示す。
[0289] 実施例 112〜 120
表 11に示すィ匕合物を用いて正孔注入層を作成した以外は実施例 111と同様の素 子を作成した。この素子を発光輝度 500 (cd/m2)で室温にて定電流駆動したときの 半減寿命を測定した。また、 100°Cの環境で、 lOmAZcm2の電流密度で 100時間 連続して発光させ輝度を測定した。結果を表 11に示す。
[0290] 実施例 121
洗浄した ITO電極付きガラス板上に、本発明の表 1中の化合物 (44)を真空蒸着し て膜厚 60nmの正孔注入層を得た。次いで、表 4中の HTM9を真空蒸着して 20nm の正孔輸送層を得た。さら〖こ、トリス(8—ヒドロキシキノリン)アルミニウム錯体 (Alq3) を真空蒸着して膜厚 60nmの電子注入型発光層を作成し、その上に、まずフッ化リ チウムを lnm、次いでアルミニウムを 200nm蒸着して電極を形成して、有機 EL素子 を得た。この素子を発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減 寿命を測定した。また、 100°Cの環境で、 lOmAZcm2の電流密度で 100時間連続 して発光させ輝度を測定した。結果を表 11に示す。
[0291] 実施例 122〜125
表 11に示す化合物を用 ヽて正孔注入層を作成した以外は実施例 121と同様の素 子を作成した。この素子を発光輝度 500 (cd/m2)で室温にて定電流駆動したとき の半減寿命を測定した。また、 100°Cの環境で、 10mAZcm2の電流密度で 100時 間連続して発光させ輝度を測定した。結果を表 11に示す。
[0292] 比較例 1〜2
以下に示す化合物 (W)又は化合物 (X)を、それぞれ用いて正孔注入層を作成し た以外は実施例 111と同様の素子を作成した。この素子を発光輝度 500 (cdZm2) で室温にて定電流駆動したときの半減寿命を測定した。また、 100°Cの環境で、 10 mAZcm2の電流密度で 100時間連続して発光させ輝度を測定した。結果を併せて 表 11に示す。
[0293] [化 87]
Figure imgf000150_0001
[0294] [表 11]
a ]
Figure imgf000151_0001
[0295] 表 11から明らかなように、本発明の化合物はいずれも、比較例の化合物 (W)、ィ匕 合物 (X)の Tgより高ぐそれらを用いて作成した素子も、比較例よりも長寿命で高い 輝度が得られた。
[0296] 実施例 126
洗浄した ITO電極付きガラス板上に、本発明の化合物(60)を真空蒸着して膜厚 6 Onmの正孔注入層を得た。次いで、 N, N,一(1一ナフチル)一 N, N,ージフエ-ル — 1, 1,ービフエ-ル— 4, 4,ージァミン (NPD)を真空蒸着して 20nmの正孔輸送 層を得た。さらに、トリス(8—ヒドロキシキノリナート)アルミニウム錯体 (Alq3)を真空 蒸着して膜厚 60nmの電子注入型発光層を作成し、その上に、まずフッ化リチウム (L iF)を lnm、次いでアルミニウム (A1)を 200nm蒸着して電極を形成して、有機 EL素 子を得た。この素子を発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半 減寿命を測定した。また、 100°Cの環境で、 lOmAZcm2の電流密度で 100時間連 続して発光させ輝度を測定した。結果を表 12に示す。
[0297] 実施例 127〜139
表 12に示す化合物を用 ヽて正孔注入層を作成した以外は実施例 126と同様の素 子を作成した。この素子を発光輝度 500 (cd/m2)で室温にて定電流駆動したとき の半減寿命を測定した。また、 100°Cの環境で、 lOmAZcm2の電流密度で 100時 間連続して発光させ輝度を測定した。結果を表 12に示す。
[0298] 比較例 3〜4
以下に示す化合物 (Y)又は化合物 (Z)を、それぞれ用いて正孔注入層を作成した 以外は実施例 126と同様の素子を作成した。この素子を発光輝度 500 (cdZm2)で 室温にて定電流駆動したときの半減寿命を測定した。また、 100°Cの環境で、 10mA Zcm2の電流密度で 100時間連続して発光させ輝度を測定した。結果を表 12に示 す。
[0299] [化 88]
Figure imgf000153_0001
[0300] [表 12]
【表 1 2】
Figure imgf000154_0001
[0301] 表 12から明らかなように、本発明の化合物を用いて作成した素子は、比較例よりも 低電圧で駆動でき、また、長寿命で高い輝度が得られた。
[0302] 実施例 140
ITO電極付きガラス板上に、銅フタロシアニンを蒸着して膜厚 25nmの正孔注入層 を形成した。次に、表 1の化合物(2)と化合物 (A)とを 100 : 8の組成比で共蒸着して 膜厚 45nmの発光層を形成した。さらに化合物 (B)を蒸着して膜厚 20nmの電子注 入層を形成した。その上に、酸化リチウム (Li O)を lnm、さらにアルミニウム (A1)を 1
2
OOnm蒸着によって陰極を形成して有機 EL素子を得た。この素子は、直流電圧 10V での外部量子効率は 7. 5%を示した。また、発光輝度 200 (cdZm2)で定電流駆動 したときの半減寿命は 5000時間以上であった。
[0303] [化 89]
Figure imgf000155_0001
化合物 (B)
[0304] 実施例 141〜151
化合物(2)のかわりに表 1中の化合物(3)、 (26)、 (27)、(29)、(31)、(40)、 (42) 、(43)、(47)、(51)、(59)を用いた以外は、実施例 140と同様に素子を作成した。 これらの素子は、直流電圧 10Vでの外部量子効率は 7%以上を示し、また、発光輝 度 200 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であった。
[0305] 実施例 152
ITO電極付きガラス板上に、銅フタロシアニンを蒸着して膜厚 25nmの正孔注入層 を形成した。次に、表 2の化合物(61)と前記したィ匕合物 (A)とを 100 : 8の組成比で 共蒸着して膜厚 45nmの発光層を形成した。さらに前記したィ匕合物 (B)を蒸着して膜 厚 20nmの電子注入層を形成した。その上に、酸化リチウム(Li O)を lnm、さらにァ
2
ルミ-ゥム (A1)を lOOnm蒸着によって陰極を形成して有機 EL素子を得た。この素 子は、直流電圧 10Vでの外部量子効率は 7. 5%を示した。また、発光輝度 200 (cd Zm2)で定電流駆動したときの半減寿命は 5000時間以上であった。
[0306] 実施例 153〜163
化合物(61)のかわりに表 1中の化合物(62)、(74)、 (76)、 (88)、 (90)、 (99)、 (1 01)、(102)、 (106)、 (110)、(118)を用いた以外は、実施例 152と同様に素子を 作成した。これらの素子は、直流電圧 10Vでの外部量子効率は 7%以上を示し、また 、発光輝度 200 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であ つた o
[0307] 実施例 164
ITO電極付きガラス板上に、表 3中の化合物 HIM 16を蒸着して膜厚 60nmの正孔 注入層を形成した後、表 1の化合物(32)を蒸着して膜厚 20nmの正孔輸送層を形 成した。次に、 Alq3を蒸着して膜厚 60nmの電子注入性発光層を形成し、その上に 、フッ化リチウムを lnm、さらにアルミニウムを 200nm真空蒸着によって電極を形成し て有機 EL素子を得た。この素子の直流電圧 5Vでの発光効率は 1. 9 (lmZW)であ つた。また、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿命は 5 000時間以上であった。
[0308] 実施例 165〜169
表 3中の HIM2、 HIM4、 HIM7、 HIM9、 HIM15を用いた以外は、実施例 164と 同様に素子を作成した。これらの素子を発光輝度 500 (cd/m2)で室温にて定電流 駆動したときの半減寿命はすべて 5000時間以上であった。
[0309] 実施例 170〜179
表 1中の化合物(32)のかわりに表 1中の化合物 (4)、 (5)、 (8)、(30)、(34)、 (36 )、(48)、 (53)、 (55)、 (57)を、それぞれ用いた以外は、実施例 164と同様に素子 を作成した。これらの素子を発光輝度 500 (cd/m2)で室温にて定電流駆動したとき の半減寿命はすべて 5000時間以上であった。 [0310] 実施例 180
ITO電極付きガラス板上に、表 3中の化合物 HIM 16を蒸着して膜厚 60nmの正孔 注入層を形成した後、表 2の化合物(64)を蒸着して膜厚 20nmの正孔輸送層を形 成した。次に、 Alq3を蒸着して膜厚 60nmの電子注入性発光層を形成し、その上に 、フッ化リチウムを lnm、さらにアルミニウムを 200nm真空蒸着によって電極を形成し て有機 EL素子を得た。この素子の直流電圧 5Vでの発光効率は 1. 9 (lmZW)であ つた。また、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿命は 5 000時間以上であった。
[0311] 実施例 181〜185
表 3中の HIM2、 HIM4、 HIM7、 HIM9、 HIM15を用いた以外は、実施例 180と 同様に素子を作成した。これらの素子を発光輝度 500 (cd/m2)で室温にて定電流 駆動したときの半減寿命はすべて 5000時間以上であった。
[0312] 実施例 186〜195
表 2中の化合物(64)のかわりに表 1中の化合物(116)、 (117)、 (119)、 (125)、 (126)、(127)、(128)、(129)、(131)、(135)を、それぞれ用いた以外は、実施 例 180と同様に素子を作成した。これらの素子を発光輝度 500 (cd/m2)で室温に て定電流駆動したときの半減寿命はすべて 5000時間以上であった。
[0313] 実施例 196
ITO電極付きガラス板上に、 NPDを真空蒸着して膜厚 40nmの正孔注入層を得た 。次いで、表 1中の化合物(17)と次に示すィ匕合物(C)を 98 : 3の比率で共蒸着して、 膜厚 40nmの発光層を作成し、次 、で Alq3を真空蒸着して膜厚 30nmの電子注入 層を作成した。その上に、フッ化リチウムを 0. 7nm、次いでアルミニウムを 200nm真 空蒸着することで電極を形成して、有機 EL素子を得た。この素子は、直流電圧 5Vで の発光輝度 460 (cdZm2)、最大発光輝度 92600 (cdZm2)の発光が得られた。ま た、発光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 4800時間であった
[0314] [化 90]
Figure imgf000158_0001
化合物 (c)
[0315] 実施例 197— 206
表 1中の化合物(17)のかわりに表 1中の化合物(10)、(11)、(14)、 (15)、 (18) 、(21)、 (25)、 (41)、 (49)、 (56)を、それぞれ用いた以外は、実施例 196と同様に 素子を作成した。これらの素子を発光輝度 500 (cd/m2)で室温にて定電流駆動し たときの半減寿命はすべて 5000時間以上であった。
[0316] 実施例 207
ITO電極付きガラス板上に、 NPDを真空蒸着して膜厚 40nmの正孔注入層を得た 。次いで、表 2中の化合物(77)と前記した化合物(C)を 98 : 3の比率で共蒸着して、 膜厚 40nmの発光層を作成し、次 、で Alq3を真空蒸着して膜厚 30nmの電子注入 層を作成した。その上に、フッ化リチウムを 0. 7nm、次いでアルミニウムを 200nm真 空蒸着することで電極を形成して、有機 EL素子を得た。この素子は、直流電圧 5Vで の発光輝度 460 (cdZm2)、最大発光輝度 92600 (cdZm2)の発光が得られた。ま た、発光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 4800時間であった
[0317] 実施例 208〜217
表 2中の化合物(77)のかわりに表 1中の化合物(69)、 (70)、(73)、 (75)、 (79) 、(80)、(84)、(104)、(108)、(115)を、それぞれ用いた以外は、実施例 207と同 様に素子を作成した。これらの素子を発光輝度 500 (cd/m2)で室温にて定電流駆 動したときの半減寿命はすべて 5000時間以上であった。
[0318] 実施例 218
ITO電極付きガラス板上に、表 3中の HIM9を蒸着して膜厚 50nmの正孔注入層 を形成した後、表 1中の化合物(2)を 20nm蒸着して正孔輸送層を形成した。さら〖こ Alq3を蒸着して膜厚 20nmの発光層を形成した。さらに表 5中の化合物 EX3を蒸着 して膜厚 30nmの電子注入層を形成した。その上に、酸化リチウムを lnm、さらにァ ルミ-ゥムを lOOnm蒸着によって陰極を形成して有機 EL素子を得た。この素子は、 直流電圧 5. 5Vでの発光輝度は 780 (cdZm2)を示した。また、素子作成直後なら びに 100°Cのオーブン中にて 1時間保存後の素子について、発光輝度 500 (cdZm 2)で室温にて定電流駆動したときの半減寿命は、 5000時間以上であった。
[0319] 実施例 219〜231
実施例 218で用いた表 5中の化合物 EX3の代わりに、電子注入層として表 5中の 化合物 EX4、化合物 EX5、化合物 EX7、化合物 EX9、化合物 EX10、化合物 EX1 2〜化合物 EX15、化合物 EX17〜化合物 EX20を用いて、実施例 218と同じ条件 で素子を作成した。素子作成直後ならびに 100°Cのオーブン中にて 1時間保存後の 素子について、素子の特性を測定した。その結果、いずれの素子も、電流密度 10 ( mAZcm2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 400 (cdZm 2)以上であり、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿命 は 5000時間以上であった。
[0320] 実施例 232〜242
表 1中の化合物(2)のかわりに、表 1中の化合物(12)、(13)、 (16)、 (20)、 (22) 、(24)、(28)、 (35)、 (37)、 (50)、 (52)を、それぞれ用いた以外は、実施例 218と 同じ条件で素子を作成した。素子作成直後ならびに 100°Cのオーブン中にて 1時間 保存後の素子について、素子の特性を測定した。その結果、いずれの素子も、電流 密度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 40 0 (cd/m2)以上であり、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの 半減寿命は 5000時間以上であった。
[0321] 実施例 243
ITO電極付きガラス板上に、表 3中の HIM9を蒸着して膜厚 50nmの正孔注入層 を形成した後、表 2中の化合物(92)を 20nm蒸着して正孔輸送層を形成した。さらに Alq3を蒸着して膜厚 20nmの発光層を形成した。さらに表 5中の化合物 EX3を蒸着 して膜厚 30nmの電子注入層を形成した。その上に、酸化リチウムを lnm、さらにァ ルミ-ゥムを lOOnm蒸着によって陰極を形成して有機 EL素子を得た。この素子は、 直流電圧 5. 5Vでの発光輝度は 780 (cdZm2)を示した。また、素子作成直後なら びに 100°Cのオーブン中にて 1時間保存後の素子について、発光輝度 500 (cdZm 2)で室温にて定電流駆動したときの半減寿命は、 5000時間以上であった。
[0322] 実施例 244〜256
実施例 243で用いた表 5中の化合物 EX3の代わりに、電子注入層として表 5中の 化合物 EX4、化合物 EX5、化合物 EX7、化合物 EX9、化合物 EX10、化合物 EX1 2〜化合物 EX15、化合物 EX17〜化合物 EX20を用いて、実施例 243と同じ条件 で素子を作成した。素子作成直後ならびに 100°Cのオーブン中にて 1時間保存後の 素子について、素子の特性を測定した。その結果、いずれの素子も、電流密度 10 ( mAZcm2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 400 (cdZm 2)以上であり、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿命 は 5000時間以上であった。
[0323] 実施例 257〜267
表 2中の化合物(92)のかわりに、表 2中の化合物(63)、 (67)、 (71)、(72)、 (81 )、 (120)、(121)、(122)、(124)、(132)、 (135)を、それぞれ用いた以外は、実 施例 243と同じ条件で素子を作成した。素子作成直後ならびに 100°Cのオーブン中 にて 1時間保存後の素子について、素子の特性を測定した。その結果、いずれの素 子も、電流密度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、 輝度は 400 (cd/m2)以上であり、発光輝度 500 (cd/m2)で室温にて定電流駆動 したときの半減寿命は 5000時間以上であった。
[0324] 実施例 268
ITO電極付きガラス板上に、表 3中の化合物 HIM 10を蒸着して膜厚 55nmの正孔 注入層を形成した後、表 1中の化合物(6)を 20nm蒸着して正孔輸送層を形成した。 さらに Alq3を蒸着して膜厚 20nmの発光層を形成した。さらに表 6中の化合物 ET3 を蒸着して膜厚 30nmの電子注入層を形成した。その上に、酸化リチウムを lnm、さ らにアルミニウムを lOOnm蒸着によって陰極を形成して有機 EL素子を得た。この素 子は、この素子は、直流電圧 5Vでの発光輝度は 750 (cdZm2)を示した。また、素 子作成直後ならびに 100°Cのオーブン中にて 1時間保存後の素子について、発光 輝度 500 (cdZm2)で室温にて定電流駆動したときの半減寿命は、いずれの素子も 5000時間以上であった。
[0325] 実施例 269〜281
実施例 268で用いた表 6中の化合物 ET3の代わりに、電子注入層として表 6中の 化合物 ET4、化合物 ET5、化合物 ET7、化合物 ET9、化合物 ET10、化合物 ET12 〜化合物 ET14、化合物 ET16〜化合物 ET20をそれぞれ用いて、実施例 268と同 じ条件で素子を作成した。素子作成直後ならびに 100°Cのオーブン中にて 1時間保 存後の素子について、素子の特性を測定した。その結果、いずれの素子も、電流密 度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 400 ( cd/m2)以上であり、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半 減寿命は 5000時間以上であった。
[0326] 実施例 282
ITO電極付きガラス板上に、表 3中の化合物 HIM 11を蒸着して膜厚 60nmの正孔 注入層を形成した後、表 1中の化合物(2)を 15nm蒸着して正孔輸送層を形成した。 さらに Alq3を蒸着して膜厚 20nmの発光層を形成した。さらに表 7中の化合物 ES 5 を蒸着して膜厚 30nmの電子注入層を形成した。その上に、酸化リチウムを lnm、さ らにアルミニウムを lOOnm蒸着によって陰極を形成して有機 EL素子を得た。この素 子は、この素子は、直流電圧 5. 0Vでの発光効率は 2. 5 (lmZW)を示した。また、 素子作成直後ならびに 100°Cのオーブン中にて 1時間保存後の素子について、発 光輝度 500 (cdZm2)で室温にて定電流駆動したときの半減寿命は、いずれの素子 も 5000時間以上であった。
[0327] 実施例 283
ITO電極付きガラス板上に、表 3中の化合物 HIM 10を蒸着して膜厚 55nmの正孔 注入層を形成した後、表 2中の化合物(65)を 20nm蒸着して正孔輸送層を形成した 。さらに Alq3を蒸着して膜厚 20nmの発光層を形成した。さらに表 6中の化合物 ET3 を蒸着して膜厚 30nmの電子注入層を形成した。その上に、酸化リチウムを lnm、さ らにアルミニウムを lOOnm蒸着によって陰極を形成して有機 EL素子を得た。この素 子は、この素子は、直流電圧 5Vでの発光輝度は 750 (cdZm2)を示した。また、素 子作成直後ならびに 100°Cのオーブン中にて 1時間保存後の素子について、発光 輝度 500 (cdZm2)で室温にて定電流駆動したときの半減寿命は、いずれの素子も 5000時間以上であった。
[0328] 実施例 284〜296
実施例 283で用いた表 6中の化合物 ET3の代わりに、電子注入層として表 6中の 化合物 ET4、化合物 ET5、化合物 ET7、化合物 ET9、化合物 ET10、化合物 ET12 〜化合物 ET14、化合物 ET16〜化合物 ET20をそれぞれ用いて、実施例 283と同 じ条件で素子を作成した。素子作成直後ならびに 100°Cのオーブン中にて 1時間保 存後の素子について、素子の特性を測定した。その結果、いずれの素子も、電流密 度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 400 ( cd/m2)以上であり、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半 減寿命は 5000時間以上であった。
[0329] 実施例 297
ITO電極付きガラス板上に、表 3中の化合物 HIM 11を蒸着して膜厚 60nmの正孔 注入層を形成した後、表 2中の化合物(112)を 15nm蒸着して正孔輸送層を形成し た。さらに Alq3を蒸着して膜厚 20nmの発光層を形成した。さらに表 7中の化合物 E S 5を蒸着して膜厚 30nmの電子注入層を形成した。その上に、酸化リチウムを lnm 、さらにアルミニウムを lOOnm蒸着によって陰極を形成して有機 EL素子を得た。この 素子は、この素子は、直流電圧 5. 0Vでの発光効率は 2. 5 (lmZW)を示した。また 、素子作成直後ならびに 100°Cのオーブン中にて 1時間保存後の素子について、発 光輝度 500 (cdZm2)で室温にて定電流駆動したときの半減寿命は、いずれの素子 も 5000時間以上であった。
[0330] 実施例 298
ITO電極付きガラス板上に、本発明の表 1中の化合物(52)を 1, 2—ジクロ口エタン に溶解させ、スピンコーティング法により膜厚 50nmの正孔注入層を形成した。次に、 Alq3を蒸着して膜厚 30nmの電子注入性発光層を作成し、その上に、マグネシウム と銀を 10: 1で混合した合金で膜厚 lOOnmの電極を形成して有機エレクト口ルミネッ センス素子を得た。この素子の直流電圧 8. 4Vでの発光効率は 2. l (lmZW)であつ た。また、発光輝度 500 (cdZm2)で室温にて定電流駆動したときの半減寿命は 500 0時間以上であった。
[0331] 実施例 299
ITO電極付きガラス板上に、本発明の表 2中の化合物(111)を 1, 2—ジクロ口エタ ンに溶解させ、スピンコーティング法により膜厚 50nmの正孔注入層を形成した。次 に、 Alq3を蒸着して膜厚 30nmの電子注入性発光層を作成し、その上に、マグネシ ゥムと銀を 10: 1で混合した合金で膜厚 lOOnmの電極を形成して有機エレクト口ルミ ネッセンス素子を得た。この素子の直流電圧 8. 4Vでの発光効率は 2. l (lmZW)で あった。また、発光輝度 500 (cdZm2)で室温にて定電流駆動したときの半減寿命は 5000時間以上であった。
[0332] 実施例 300
ITO電極付きガラス板上に、本発明の表 1中の化合物 (48)を蒸着して膜厚 35nm の正孔注入層を形成した。次に、以下に示す化合物(D)と Alq3を 1 : 20の組成比で 共蒸着して膜厚 35nmの発光層を形成した。さらに、 Alq3を蒸着して膜厚 30nmの 電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さらにアルミニウム( A1)を 200nm真空蒸着によって電極を形成して有機エレクト口ルミネッセンス素子を 得た。この素子は、直流電圧 5. 0Vでの発光効率は 0. 61 (lmZW)を示した。また、 発光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であつ た。
[0333] [化 91]
Figure imgf000164_0001
化合物 (D)
[0334] 実施例 301
ITO電極付きガラス板上に、本発明の表 2中の化合物(94)を蒸着して膜厚 35nm の正孔注入層を形成した。次に、前記に示したィ匕合物(D)と Alq3を 1 : 20の組成比 で共蒸着して膜厚 35nmの発光層を形成した。さらに、 Alq3を蒸着して膜厚 30nm の電子注入層を形成した。その上に、フッ化リチウム (LiF)を lnm、さらにアルミ-ゥ ム (A1)を 200nm真空蒸着によって電極を形成して有機エレクト口ルミネッセンス素子 を得た。この素子は、直流電圧 5. 0Vでの発光効率は 0. 61 (lmZW)を示した。また 、発光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であ つた o
[0335] 実施例 302
ITO電極付きガラス板上に、本発明の表 1中の化合物(1)と(2)とを 1: 1の組成比 で共蒸着して膜厚 80nmの正孔注入層を形成した。次に、以下に示す化合物 (E)を 蒸着して膜厚 20nmの発光層を形成した。さらに、 Alq3を蒸着して膜厚 20nmの電 子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さらにアルミニウム (A1 )を 200nm真空蒸着によって電極を形成して有機エレクト口ルミネッセンス素子を得 た。この素子は、直流電圧 5. 3Vでの発光効率は 2. l (lmZW)を示した。また、発 光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であった
[0336] [化 92]
Figure imgf000165_0001
化合物 (E)
[0337] 実施例 303
ITO電極付きガラス板上に、本発明の表 2中の化合物(60)と(61)とを 1: 1の組成 比で共蒸着して膜厚 80nmの正孔注入層を形成した。次に、前記に示したィ匕合物( E)を蒸着して膜厚 20nmの発光層を形成した。さら〖こ、 Alq3を蒸着して膜厚 20nm の電子注入層を形成した。その上に、フッ化リチウム (LiF)を lnm、さらにアルミ-ゥ ム (A1)を 200nm真空蒸着によって電極を形成して有機エレクト口ルミネッセンス素子 を得た。この素子は、直流電圧 5. 3Vでの発光効率は 2. l (lmZW)を示した。また、 発光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であつ た。
[0338] 実施例 304
ITO電極付きガラス板上に、本発明の表 1中の化合物(19)を蒸着して膜厚 60nm の正孔注入層を形成した。次に、以下に示す化合物 (F)と以下に示す化合物 (G)と を 20 : 1の組成比で共蒸着して膜厚 30nmの発光層を形成した。さらに、 Alq3を蒸着 して膜厚 20nmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さ らにアルミニウム (A1)を 200nm真空蒸着によって電極を形成して有機エレクト口ルミ ネッセンス素子を得た。この素子は、直流電圧 6. 2Vでの発光効率は 5. 7 (lm/W) を示した。また、発光輝度 500 (cdZm2)で定電流駆動したときの半減寿命は 5000 時間以上であった。
[0339] [化 93]
Figure imgf000166_0001
[0340] 実施例 305
ITO電極付きガラス板上に、本発明の表 2中の化合物(66)を蒸着して膜厚 60nm の正孔注入層を形成した。次に、前記に示した化合物 (F)と以下に示す化合物(G) とを 20 : 1の組成比で共蒸着して膜厚 30nmの発光層を形成した。さらに、 Alq3を蒸 着して膜厚 20nmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm 、さらにアルミニウム (A1)を 200nm真空蒸着によって電極を形成して有機エレクト口 ルミネッセンス素子を得た。この素子は、直流電圧 6. 2Vでの発光効率は 5. 7 (lm/ W)を示した。また、発光輝度 500 (cdZm2)で定電流駆動したときの半減寿命は 50 00時間以上であった。
[0341] 実施例 306
ITO電極付きガラス板上に、本発明の表 1中の化合物(20)を蒸着して膜厚 35nm の正孔注入層を形成した。次に以下に示す化合物 (H)と以下に示す化合物 (I)とを 20 : 1の組成比で共蒸着して膜厚 35nmの発光層を形成した。さらに、 Alq3を蒸着し て膜厚 30nmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さら にアルミニウム (A1)を 200nm真空蒸着によって電極を形成して有機エレクトロルミネ ッセンス素子を得た。この素子は、直流電圧 3. 5Vでの発光効率は 3. l (lmZW)を 示した。また、発光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時 間以上であった。
[0342] [化 94]
)
Figure imgf000167_0001
化合物 (I)
[0343] 実施例 307
ITO電極付きガラス板上に、本発明の表 2中の化合物(95)を蒸着して膜厚 35nm の正孔注入層を形成した。前記に示した化合物 (H)と以下に示す化合物 (I)とを 20: 1の組成比で共蒸着して膜厚 35nmの発光層を形成した。さら〖こ、 Alq3を蒸着して 膜厚 30nmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さらに アルミニウム (A1)を 200nm真空蒸着によって電極を形成して有機エレクト口ルミネッ センス素子を得た。この素子は、直流電圧 3. 5Vでの発光効率は 3. l (lmZW)を示 した。また、発光輝度 500 (cdZm2)で定電流駆動したときの半減寿命は 5000時間 以上であった。
[0344] 実施例 308
ITO電極付きガラス板上に、本発明の表 1中の化合物 (44)を蒸着して膜厚 50nm の正孔注入層を形成した。次に、以下に示す化合物 C と Alq3とを 1 : 1の組成比で 共蒸着して膜厚 50nmの電子輸送性発光層を形成した。さらに、その上に、マグネシ ゥムと銀を 1: 3で混合した合金で膜厚 200nmの電極を形成して有機エレクトロルミネ ッセンス素子を得た。この素子の直流電圧 8Vでの発光効率は 1. O (lmZW)であつ た。また、発光輝度 350 (cd/m2)で室温にて定電流駆動したときの半減寿命は 500 0時間以上であった。
[0345] [化 95]
化合物 (J)
Figure imgf000168_0001
[0346] 実施例 309
ITO電極付きガラス板上に、本発明の表 2中の化合物(123)を蒸着して膜厚 50η mの正孔注入層を形成した。次に、以下に示す化合物 C と Alq3とを 1 : 1の組成比 で共蒸着して膜厚 50nmの電子輸送性発光層を形成した。さらに、その上に、マグネ シゥムと銀を 1: 3で混合した合金で膜厚 200nmの電極を形成して有機エレクト口ルミ ネッセンス素子を得た。この素子の直流電圧 8Vでの発光効率は 1. O (lmZW)であ つた。また、発光輝度 350 (cdZm2)で室温にて定電流駆動したときの半減寿命は 5 000時間以上であった。
[0347] 実施例 310
ITO電極付きガラス板上に、本発明の表 1中の化合物(29)を蒸着して膜厚 50nm の正孔注入層を形成した。次に、前記したィ匕合物 (H)と以下に示すィ匕合物 (K)とを 1 00 : 1の組成比で共蒸着して膜厚 25nmの発光層を形成した。さらに、 BCPを蒸着し て膜厚 25nmの電子注入層を形成した。その上に、リチウム (Li)を 0. 5nm、さらに銀 を 150nm蒸着して有機エレクト口ルミネッセンス素子を得た。この素子は、直流電圧 10Vでの発光効率は 0. 87 (lmZW)を示した。また、発光輝度 500 (cdZm2)で定 電流駆動したときの半減寿命は 5000時間以上であった。
Figure imgf000169_0001
[0349] 実施例 311
ITO電極付きガラス板上に、本発明の表 2中の化合物(136)を蒸着して膜厚 50η mの正孔注入層を形成した。次に、前記した化合物 (H)と前記に示下化合物 (K)と を 100 : 1の組成比で共蒸着して膜厚 25nmの発光層を形成した。さらに、 BCPを蒸 着して膜厚 25nmの電子注入層を形成した。その上に、リチウム (Li)を 0. 5nm、さら に銀を 150nm蒸着して有機エレクト口ルミネッセンス素子を得た。この素子は、直流 電圧 10Vでの発光効率は 0. 87 (lmZW)を示した。また、発光輝度
[0350] 実施例 312
ITO電極付きガラス板上に、本発明の表 1中の化合物(51)を蒸着して膜厚 40nm の正孔注入層を形成した。次に、以下に示す化合物 (L)を 10nm蒸着して正孔輸送 層を形成した。さらに以下に示す化合物(M)と以下に示す化合物 (N)とを 1: 9の組 成比で共蒸着して膜厚 25nmの発光層を形成した。さらに BCPを蒸着して 15nmの 正孔阻止層を形成した。さらに Alq3を蒸着して膜厚 25nmの電子注入層を形成した 。その上に、フッ化リチウム(LiF)を lnm、さらにアルミニウム(A1)を lOOnm蒸着によ つて陰極を形成して有機エレクト口ルミネッセンス素子を得た。この素子は、直流電圧 10Vでの外部量子効率は 7. 1%を示した。また、発光輝度 100 (cdZm2)で定電流
Figure imgf000170_0001
実施例 313
ITO電極付きガラス板上に、本発明の表 2中の化合物(113)を蒸着して膜厚 40n mの正孔注入層を形成した。次に、前記に示した化合物 (L)を 10nm蒸着して正孔 輸送層を形成した。さらに前記に示した化合物(M)と前記に示した化合物 (N)とを 1 : 9の組成比で共蒸着して膜厚 25nmの発光層を形成した。さら〖こ BCPを蒸着して 1 5nmの正孔阻止層を形成した。さらに Alq3を蒸着して膜厚 25nmの電子注入層を 形成した。その上に、フッ化リチウム(LiF)を lnm、さらにアルミニウム(A1)を lOOnm 蒸着によって陰極を形成して有機エレクト口ルミネッセンス素子を得た。この素子は、 直流電圧 10Vでの外部量子効率は 7. 1%を示した。また、発光輝度 100 (cdZm2) で定電流駆動したときの半減寿命は 5000時間以上であった。
[0353] 実施例 314
ITO電極付きガラス板上に、本発明の表 1中の化合物 (43)を 60nm蒸着して正孔 注入層を形成した。さらに Alq3を蒸着して膜厚 20nmの発光層を形成した。以下に 示す化合物 (O)を蒸着して膜厚 30nmの電子注入層を形成した。その上に、酸化リ チウム (Li O)を lnm、さらにアルミニウム (A1)を lOOnm蒸着によって陰極を形成し
2
て有機エレクト口ルミネッセンス素子を得た。この素子は、この素子は、直流電圧 4. 5 Vでの発光効率は 2. l (lmZW)を示した。また、発光輝度 500 (cdZm2)で定電流 駆動したときの半減寿命は 5000時間以上であった。
[0354] [化 98]
Figure imgf000171_0001
化合物 (o)
実施例 315
ITO電極付きガラス板上に、本発明の表 2中の化合物(114)を 60nm蒸着して正 孔注入層を形成した。さらに Alq3を蒸着して膜厚 20nmの発光層を形成した。前記 に示したィ匕合物 (O)を蒸着して膜厚 30nmの電子注入層を形成した。その上に、酸 化リチウム (Li O)を lnm、さらにアルミニウム (A1)を lOOnm蒸着によって陰極を形 成して有機エレクト口ルミネッセンス素子を得た。この素子は、この素子は、直流電圧
4. 5Vでの発光効率は 2. l (lmZW)を示した。また、発光輝度 500 (cdZm2)で定 電流駆動したときの半減寿命は 5000時間以上であった。
[0356] 実施例 316〜321
電子注入層として化合物(O)のかわりに表 7中の ES11、表 8中の EP2〜4、 EP10 、 EP22を、それぞれ用いた以外は実施例 314と同じ条件で実験を行った。素子作 成直後ならびに 100°Cのオーブン中にて 1時間保存後の素子について、実施例 314 と同様に素子の特性を測定した。その結果、いずれの素子も、電流密度 10(mAZc m2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 400 (cdZm2)以上 であり、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿命は 5000 時間以上であった。
[0357] 実施例 322〜327
電子注入層として化合物(O)のかわりに表 7中の ES11、表 8中の EP2〜4、 EP10 、 EP22を、それぞれ用いた以外は実施例 315と同じ条件で実験を行った。素子作 成直後ならびに 100°Cのオーブン中にて 1時間保存後の素子について、実施例 315 と同様に素子の特性を測定した。その結果、いずれの素子も、電流密度 10(mAZc m2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 400 (cdZm2)以上 であり、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿命は 5000 時間以上であった。
[0358] 実施例 328
ITO電極付きガラス板上に、本発明の表 1中の化合物(1)を蒸着して膜厚 35nmの 正孔注入層を形成した。さらに、 NPDを蒸着して膜厚 20nmの正孔輸送層を形成し た。次に以下に示す化合物 (P)と以下に示す化合物 (Q)とを 50: 1の組成比で共蒸 着して膜厚 35nmの発光層を形成した。さらに、以下に示す化合物 (R)を蒸着して膜 厚 30nmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さらにァ ルミ-ゥム (A1)を 200nm真空蒸着によって電極を形成して有機エレクト口ルミネッセ ンス素子を得た。この素子は、直流電圧 3. 5Vでの発光効率は 4. l (lmZW)を示し た。また、発光輝度 500 (cdZm2)で定電流駆動したときの半減寿命は 5000時間以
Figure imgf000173_0001
Figure imgf000173_0002
[0360] 実施例 329— 335
化合物(1)のかわりに、表 1中の化合物(2)、 (5)、 (44)、 (46)、 (47)、 (49)、 (58
)を、それぞれ用いた以外は、実施例 328と同じ条件で素子を作成した。その結果、 いずれの素子も、電流密度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4.
0 (V)以下、輝度は 400 (cd/m2)以上であり、発光輝度 500 (cd/m2)で室温にて 定電流駆動したときの半減寿命は 5000時間以上であった。
[0361] 実施例 336
ITO電極付きガラス板上に、本発明の表 2中の化合物(60)を蒸着して膜厚 35nm の正孔注入層を形成した。さらに、 NPDを蒸着して膜厚 20nmの正孔輸送層を形成 した。次に前記に示したィ匕合物(P)と前記に示した化合物(Q)とを 50: 1の組成比で 共蒸着して膜厚 35nmの発光層を形成した。さらに、前記に示した化合物 (R)を蒸着 して膜厚 30nmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さ らにアルミニウム (A1)を 200nm真空蒸着によって電極を形成して有機エレクト口ルミ ネッセンス素子を得た。この素子は、直流電圧 3. 5Vでの発光効率は 4. 1 (lm/W) を示した。また、発光輝度 500 (cdZm2)で定電流駆動したときの半減寿命は 5000 時間以上であった。
[0362] 実施例 337— 343
化合物(60)のかわりに表 2中の化合物(61)、 (65)、 (83)、(87)、 (89)、 (94)、 ( 109)を、それぞれ用いた以外は、実施例 336と同じ条件で素子を作成した。その結 果、いずれの素子も、電流密度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 400 (cd/m2)以上であり、発光輝度 500 (cd/m2)で室温に て定電流駆動したときの半減寿命は 5000時間以上であった。
[0363] 実施例 344
ITO電極付きガラス板上に、表 1中の化合物(2)を蒸着して膜厚 60nmの正孔注入 層を形成した後、表 1中の化合物(1)を蒸着して膜厚 20nmの正孔輸送層を形成し た。次に、 Alq3を蒸着して膜厚 60nmの電子注入性発光層を形成し、その上に、フ ッ化リチウムを lnm、さらにアルミニウムを 200nm真空蒸着によって電極を形成して 有機 EL素子を得た。この素子の直流電圧 5Vでの発光効率は 1. 9 (lmZW)であつ た。また、発光輝度 500 (cdZm2)で室温にて定電流駆動したときの半減寿命は 500 0時間以上であった。
[0364] 実施例 345— 351
化合物(1)のかわりに表 1中の化合物(5)、(44)、(48)、 (49)、 (50)、 (52)、 (58 )を、それぞれ用いた以外は、実施例 344と同じ条件で素子を作成した。その結果、 いずれの素子も、電流密度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 400 (cd/m2)以上であり、発光輝度 500 (cd/m2)で室温にて 定電流駆動したときの半減寿命は 5000時間以上であった。
[0365] 実施例 352— 358
化合物(2)のかわりに表 1中の化合物(6)、(12)、(18)、 (19)、 (27)、(33)、 (45 )を、それぞれ用いた以外は、実施例 344と同じ条件で素子を作成した。その結果、 いずれの素子も、電流密度 10 (mAZcm2)で駆動した際の素子特性は、電圧は 4. 0 (V)以下、輝度は 400 (cd/m2)以上であり、発光輝度 500 (cd/m2)で室温にて 定電流駆動したときの半減寿命は 5000時間以上であった。
[0366] 実施例 359
ITO電極付きガラス板上に、表 2中の化合物(61)を蒸着して膜厚 60nmの正孔注 入層を形成した後、表 2中の化合物(60)を蒸着して膜厚 20nmの正孔輸送層を形 成した。次に、 Alq3を蒸着して膜厚 60nmの電子注入性発光層を形成し、その上に 、フッ化リチウムを lnm、さらにアルミニウムを 200nm真空蒸着によって電極を形成し て有機 EL素子を得た。この素子の直流電圧 5Vでの発光効率は 1. 9 (lmZW)であ つた。また、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿命は 5 000時間以上であった。
[0367] 実施例 360— 366
化合物(60)のかわりに表 2中の化合物(85)、 (96)、 (97)、(114)、(130)、 (13 3)、(134)を、それぞれ用いた以外は、実施例 359と同じ条件で素子を作成した。そ の結果、いずれの素子も、電流密度 10 (mAZcm2)で駆動した際の素子特性は、電 圧は 4. 0 (V)以下、輝度は 400 (cd/m2)以上であり、発光輝度 500 (cd/m2)で室 温にて定電流駆動したときの半減寿命は 5000時間以上であった。
[0368] 実施例 367— 373
化合物(61)のかわりに表 2中の化合物、 (63)、 (65)、 (71)、(78)、 (86)、 (100 )、(98)を、それぞれ用いた以外は、実施例 359と同じ条件で素子を作成した。その 結果、いずれの素子も、電流密度 10 (mAZcm2)で駆動した際の素子特性は、電圧 は 4. 0 (V)以下、輝度は 400 (cd/m2)以上であり、発光輝度 500 (cd/m2)で室温 にて定電流駆動したときの半減寿命は 5000時間以上であった。
[0369] 実施例 374
ITO電極付きガラス板上に、本発明の化合物(61)を 1, 2—ジクロロェタンに溶解さ せ、スピンコーティング法により膜厚 50nmの正孔注入層を形成した。次に、 Alq3を 蒸着して膜厚 30nmの電子注入性発光層を作成し、その上に、マグネシウムと銀を 1 0: 1で混合した合金で膜厚 lOOnmの電極を形成して有機エレクト口ルミネッセンス素 子を得た。この素子の直流電圧 8. 4Vでの発光効率は 2. l (lmZW)であった。また 、発光輝度 500 (cd/m2)で室温にて定電流駆動したときの半減寿命は 5000時間 以上であった。
[0370] 実施例 375
ITO電極付きガラス板上に、本発明の化合物(62)を蒸着して膜厚 35nmの正孔注 入層を形成した。次に、前記に示したィ匕合物(D)と Alq3を 1 : 20の組成比で共蒸着 して膜厚 35nmの発光層を形成した。さらに、 Alq3を蒸着して膜厚 30nmの電子注 入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さらにアルミニウム (A1)を 2 OOnm真空蒸着によって電極を形成して有機エレクト口ルミネッセンス素子を得た。こ の素子は、直流電圧 5. 0Vでの発光効率は 0. 61 (lmZW)を示した。また、発光輝 度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上であった。
[0371] 実施例 376
ITO電極付きガラス板上に、本発明の化合物(61)と本発明の化合物(93)とを 1: 1 の組成比で共蒸着して膜厚 80nmの正孔注入層を形成した。次に、前記に示した化 合物 (E)を蒸着して膜厚 20nmの発光層を形成した。さらに、 Alq3を蒸着して膜厚 2 Onmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さらにアルミ -ゥム (A1)を 200nm真空蒸着によって電極を形成して有機エレクト口ルミネッセンス 素子を得た。この素子は、直流電圧 5. 3Vでの発光効率は 2. l (lmZW)を示した。 また、発光輝度 500 (cd/m2)で定電流駆動したときの半減寿命は 5000時間以上 であった。
[0372] 実施例 377
ITO電極付きガラス板上に、本発明の化合物(78)を蒸着して膜厚 60nmの正孔注 入層を形成した。次に、前記に示したィ匕合物 (F)と前記に示したィ匕合物(G)とを 20 : 1の組成比で共蒸着して膜厚 30nmの発光層を形成した。さら〖こ、 Alq3を蒸着して 膜厚 20nmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さらに アルミニウム (A1)を 200nm真空蒸着によって電極を形成して有機エレクト口ルミネッ センス素子を得た。この素子は、直流電圧 6. 2Vでの発光効率は 5. 7 (lmZW)を示 した。また、発光輝度 500 (cdZm2)で定電流駆動したときの半減寿命は 5000時間 以上であった。
[0373] 実施例 378
ITO電極付きガラス板上に、本発明の化合物(79)を蒸着して膜厚 35nmの正孔注 入層を形成した。次に前記に示した化合物 (H)と前記に示した化合物 (I)とを 20: 1 の組成比で共蒸着して膜厚 35nmの発光層を形成した。さら〖こ、 Alq3を蒸着して膜 厚 30nmの電子注入層を形成した。その上に、フッ化リチウム(LiF)を lnm、さらにァ ルミ-ゥム (A1)を 200nm真空蒸着によって電極を形成して有機エレクト口ルミネッセ ンス素子を得た。この素子は、直流電圧 3. 5Vでの発光効率は 3. l (lmZW)を示し た。また、発光輝度 500 (cdZm2)で定電流駆動したときの半減寿命は 5000時間以 上であった。
[0374] 実施例 379
ITO電極付きガラス板上に、本発明の化合物(80)を蒸着して膜厚 50nmの正孔注 入層を形成した。次に、前記に示した化合物 C と Alq3とを 1: 1の組成比で共蒸着し て膜厚 50nmの電子輸送性発光層を形成した。さらに、その上に、マグネシウムと銀 を 1: 3で混合した合金で膜厚 200nmの電極を形成して有機エレクト口ルミネッセンス 素子を得た。この素子の直流電圧 8Vでの発光効率は 1. O (lmZW)であった。また 、発光輝度 350 (cd/m2)で室温にて定電流駆動したときの半減寿命は 5000時間 以上であった。
[0375] 実施例 380
ITO電極付きガラス板上に、本発明の化合物(88)を蒸着して膜厚 50nmの正孔注 入層を形成した。次に、化合物 (H)と前記に示した化合物 (K)とを 100 : 1の組成比 で共蒸着して膜厚 25nmの発光層を形成した。さらに、 BCPを蒸着して膜厚 25nm の電子注入層を形成した。その上に、リチウム(Li)を 0. 5nm、さらに銀を 150nm蒸 着して有機エレクト口ルミネッセンス素子を得た。この素子は、直流電圧 10Vでの発 光効率は 0. 87 (lmZW)を示した。また、発光輝度 500 (cdZm2)で定電流駆動し たときの半減寿命は 5000時間以上であった。
[0376] 実施例 381 ITO電極付きガラス板上に、本発明の化合物(110)を蒸着して膜厚 40nmの正孔 注入層を形成した。次に、前記に示した化合物 (L)を 10nm蒸着して正孔輸送層を 形成した。さらに前記に示したィ匕合物(M)と前記に示した化合物 (N)とを 1: 9の組成 比で共蒸着して膜厚 25nmの発光層を形成した。さらに BCPを蒸着して 15nmの正 孔阻止層を形成した。さらに Alq3を蒸着して膜厚 25nmの電子注入層を形成した。 その上に、フッ化リチウム(LiF)を lnm、さらにアルミニウム(A1)を lOOnm蒸着によ つて陰極を形成して有機エレクト口ルミネッセンス素子を得た。この素子は、直流電圧 10Vでの外部量子効率は 7. 1%を示した。また、発光輝度 100 (cdZm2)で定電流 駆動したときの半減寿命は 5000時間以上であった。
[0377] 実施例 382
ITO電極付きガラス板上に、本発明の化合物(102)を 60nm蒸着して正孔注入層 を形成した。さらに Alq3を蒸着して膜厚 20nmの発光層を形成した。前記に示した 化合物 (O)を蒸着して膜厚 30nmの電子注入層を形成した。その上に、酸化リチウ ム(Li20)を lnm、さらにアルミニウム (A1)を lOOnm蒸着によって陰極を形成して有 機エレクト口ルミネッセンス素子を得た。この素子は、この素子は、直流電圧 4. 5Vで の発光効率は 2. 1 (lm/W)を示した。また、発光輝度 500 (cd/m2)で定電流駆動 したときの半減寿命は 5000時間以上であった。
[0378] 実施例 383〜388
電子注入層として化合物(O)のかわりに ES 11、 EP2〜4、 EP10、ェ P22を用いた 以外は実施例 382と同じ条件で実験を行った。素子作成直後ならびに 100°Cのォー ブン中にて 1時間保存後の素子について、実施例 382と同様に素子の特性を測定し た。その結果、いずれの素子も、電流密度 10 (mAZcm2)で駆動した際の素子特性 は、電圧は 4. 0 (V)以下、輝度は 400 (cdZm2)以上であり、発光輝度 500 (cd/m2 )で室温にて定電流駆動したときの半減寿命は 5000時間以上であった。
[0379] 実施例 389
ITO電極付きガラス板上に、 NPDを真空蒸着して膜厚 40nmの正孔注入層を得た 。次いで、本発明の化合物(93)と前記に示したィ匕合物 (C)を 98 : 3の比率で共蒸着 して、膜厚 40nmの発光層を作成し、次いで Alq3を真空蒸着して膜厚 30nmの電子 注入層を作成した。その上に、フッ化リチウムを 0. 7nm、次いでアルミニウムを 200η m真空蒸着することで電極を形成して、有機燐光発光素子を得た。この素子は、直 流電圧 5Vでの発光輝度 360 (cd/m2)、最大発光輝度 87600 (cd/m2)の発光が 得られた。また、発光輝度 500 (cdZm2)で定電流駆動したときの半減寿命は 4500 時間であった。
[0380] 実施例 390
ITO電極付きガラス板上に、表 3中の化合物 HIM 16を蒸着して膜厚 60nmの正孔 注入層を形成した後、本発明の化合物(92)を蒸着して膜厚 20nmの正孔輸送層を 形成した。次に、 Alq3を蒸着して膜厚 60nmの電子注入性発光層を形成し、その上 に、フッ化リチウムを lnm、さらにアルミニウムを 200nm真空蒸着によって電極を形 成して有機 EL素子を得た。この素子の直流電圧 5Vでの発光効率は 1. 8 (lm/W) であった。また、発光輝度 500 (cdZm2)で室温にて定電流駆動したときの半減寿命 は 5000時間以上であった。
[0381] 以上のように、本発明で示された力ルバゾリル基を有するフエナントレンィ匕合物を用 いることにより、高い性能の EL素子が作成できる。比較ィ匕合物に対して格段に高い 性能が発揮されることは明らかであり、有機 EL素子の低駆動電圧化、長寿命化が達 成できる。

Claims

請求の範囲
下記一般式 [1]
Figure imgf000180_0001
(式中、八 〜八!:4は、それぞれ独立に、置換基を有してもよい炭素数 6〜18の 1価の 芳香族炭化水素基、置換基を有してもよい炭素数 2〜18の 1価の複素環基、又は下 記一般式 [2]、
[化 2]
Figure imgf000180_0002
(式中、 Ar5は置換基を有してもよい炭素数 6〜18の 1価の芳香族炭化水素基、又は 置換基を有してもよい炭素数 2〜18の 1価の芳香族複素環基を表し、 I^〜R7は、そ れぞれ独立に、水素原子、ハロゲン原子、又は 1価の有機残基を表す。 ) で表される力ルバゾリル基を表し、ただし、 Ai^ Ar4のうち少なくとも 1つは一般式 [2
]で表されるカルバゾリル基であり、 Xは下記一般式 [3]
[化 3]
Figure imgf000181_0001
(式中、 Q9〜Q16は、それぞれ独立して、水素原子、ハロゲン原子、又は 1価の有機 残基を表す。 )
で表される置換基を有してもよ!ヽフヱナントレン ジィル基、下記一般式 [4]
[化 4]
Figure imgf000181_0002
(式中、!^〜尺11は、それぞれ独立して、水素原子、ハロゲン原子、又は一価の有機 残基を表すか、又は、 R8と R9、 R9と R1C>、若しくは R10と R11が、置換基同士で互いに 結合して隣接する炭素原子と共に環を形成してよい。 )
で表される置換基を有してもよい o フエ-レン基、又は下記一般式 [5]
[化 5]
Figure imgf000181_0003
(式中、 R"〜R15は、それぞれ独立して、水素原子、ハロゲン原子、又は一価の有機 残基を表すか、又は、 R13と R14、若しくは R14と R15が置換基同士で互いに結合して隣 接する炭素原子と共に環を形成してもよい。 ) で表される置換基を有してもよい m—フヱ-レン基を表す。 )
で表される力ルバゾリル基を有するジアミノアリーレンィ匕合物。
一般式 [1]における Xが、下記一般式 [3]
[化 6]
Figure imgf000182_0001
(式中、 Q9〜Q16は、それぞれ独立して、水素原子、ハロゲン原子、又は 1価の有機 残基を表す。 )
で表される置換基を有してもよいフエナントレン ジィル基である請求項 1に記載の力 ルバゾリル基を有するジアミノアリーレンィ匕合物。
一般式 [1]における Xが、下記一般式 [4]
[化 7]
Figure imgf000182_0002
(式中、 R8〜R"は、それぞれ独立して、水素原子、ハロゲン原子、又は一価の有機 残基を表すか、又は、 R8と R9、 R9と R10、若しくは R10と R11力 置換基同士で互いに 結合して隣接する炭素原子と共に環を形成してよい。 )
で表される置換基を有してもょ ヽ o フエ-レン基である請求項 1に記載の力ルバゾリ ル基を有するジアミノアリーレンィ匕合物。
一般式 [4]で表される o フ 二レン基が、下記一般式 [6]
[化 8]
Figure imgf000183_0001
(式中、 Rlb〜R19は、それぞれ独立して、水素原子、ハロゲン原子、又は一価の有機 残基を表すか、又は、 R16と R17、 R17と R18、若しくは R18と R19が置換基同士で互いに 結合して隣接する炭素原子と共に環を形成してもよい。ただし、新たに形成される環 が芳香環である場合は、前記した 3箇所のうちの 1箇所の位置のみである。 ) で表される o—フエ-レン基であることを請求項 1又は 3に記載の力ルバゾリル基を有 するジアミノアリーレンィ匕合物。
一般式 [4]で表される o—フ 二レン基が、下記一般式 [8]
[化 9]
Figure imgf000183_0002
(式中、 R 4〜R "は、それぞれ独立して、水素原子、ハロゲン原子、炭素数 1〜3のァ ルキル基、置換基を有してもよい炭素数 6〜 12の 1価の芳香族炭化水素基、又は置 換基を有してもよい炭素数 2〜5の 1価の複素環基を表す。 )
で表される o—フヱ-レン基である請求項 1、 3、又は 4のいずれかに記載のカルバゾ リル基を有するジアミノアリーレンィ匕合物。
一般式 [4]で表される o—フ 二レン基が、下記一般式 [9]
[化 10]
Figure imgf000184_0001
(式中、 R 〜R は、それぞれ独立して、水素原子、ハロゲン原子、炭素数 1〜3のァ ルキル基、置換基を有してもよい炭素数 6〜 12の 1価の芳香族炭化水素基、又は置 換基を有してもよい炭素数 2〜5の 1価の複素環基を表す。 )
で表される o ナフタレン ジィル基である請求項 1、 3、又は 4のいずれかに記載の 力ルバゾリル基を有するジアミノアリーレンィ匕合物。
一般式 [1]における Xが、下記一般式 [5]
[化 11]
Figure imgf000184_0002
(式中、 R"〜R1&は、それぞれ独立して、水素原子、ハロゲン原子、又は一価の有機 残基を表すか、又は、 R13と R"、若しくは R14と R15が置換基同士で互いに結合して隣 接する炭素原子と共に環を形成してもよい。 )
で表される置換基を有してもょ ヽ m フエ-レン基である請求項 1に記載のカルバゾ リル基を有するジアミノアリーレンィ匕合物。
一般式 [5]で表される m フ 二レン基が、下記一般式 [7]
[化 12]
Figure imgf000185_0001
(式中、 R2U〜R は、それぞれ独立して、水素原子、ハロゲン原子、又は一価の有機 残基を表すか、又は、 R21と R22、若しくは R22と R23が置換基同士で互いに結合して隣 接する炭素原子と共に環を形成してもよい。ただし、新たに形成される環が芳香環で ある場合は、前記した 2箇所のうちの 1箇所の位置のみである。 )
で表される m—フエ-レン基である請求項 1又は 7に記載の力ルバゾリル基を有する ジアミノアリーレンィ匕合物。
一般式 [5]で表される m—フ 二レン基が、下記一般式 [10]
[化 13]
Figure imgf000185_0002
(式中、 Rd4〜R"は、それぞれ独立して、水素原子、ハロゲン原子、炭素数 1〜3のァ ルキル基、置換基を有してもよい炭素数 6〜 12の 1価の芳香族炭化水素基、又は置 換基を有してもよい炭素数 2〜5の 1価の複素環基を表す。 )
で表される m—フヱ-レン基である請求項 1、 7、又は 8のいずれかに記載のカルバゾ リル基を有するジアミノアリーレンィ匕合物。
一般式 [1]で表される力ルバゾリル基を有するジアミノアリーレン化合物力 次の一 般式 [11]
[化 14]
Figure imgf000186_0001
(式中、八 〜八!:4は、それぞれ独立して、置換基を有してもよい炭素数 6〜18の 1価 の芳香族炭化水素基、置換基を有してもよい炭素数 2〜18の 1価の複素環基、又は 前記した一般式 [2]で表される力ルバゾリル基を表し、ただし、八 〜八!:4のうち少なく ともひとつは前記した一般式 [2]で表されるカルバゾリル基であり、 Q9〜Q16は、それ ぞれ独立して、水素原子、ハロゲン原子、又は 1価の有機残基を表す。 )
で表される力ルバゾリル基を有するフエナントレンィ匕合物である請求項 1又は 2に記載 の力ルバゾリル基を有するジアミノアリーレン化合物。
[11] 一般式 [2]で表されるカルバゾリル基が、下記一般式 [12]
[化 15]
Figure imgf000186_0002
(式中、 Ar5は、前記した一般式 [2]における Ar5と同義である。 )
で表されカルバゾリル基である請求項 1〜10のいずれかに記載の力ルバゾリル基を 有するジアミノアリーレンィ匕合物。
一般式 [1]における Ar1と Ar2が、それぞれ独立して、下記一般式 [12] [化 16]
Figure imgf000187_0001
(式中、 Ar5は、前記した一般式 [2]における Ar5と同義である。 )
で表され、かつ、一般式 [1]の Ar3と Ar4が、それぞれ独立して、置換基を有してもよ V、炭素数 6〜 18の 1価の芳香族炭化水素基である請求項 11に記載のカルバゾリル 基を有するジアミノアリーレンィ匕合物。
[13] 一般式 [1]における Ar1が、前記した一般式 [2]又は [12]で表され、かつ、一般式
[1]の Ar2、 Ar3、及び Ar4力 それぞれ独立に、置換基を有してもよい炭素数 6〜 18 の 1価の芳香族炭化水素基である請求項 11に記載の力ルバゾリル基を有するジアミ ノアリーレンィ匕合物。
[14] 一般式 [2]における Ar5が、下記一般式 [13]
[化 17]
Figure imgf000187_0002
(式中、 は、それぞれ独立して、水素原子、ハロゲン原子、炭素数 1〜3のアルキ ル基、置換基を有してもよい炭素数 6〜 12の 1価の芳香族炭化水素基、又は置換基 を有してもよい炭素数 2〜5の 1価の複素環基を表す。 )
で表されるフ -ル基である請求項 1〜13のいずれかに記載の力ルバゾリル基を有 するジアミノアリーレンィ匕合物。
[15] ガラス転移温度 (Tg)力 170°C以上である請求項 1〜14のいずれかに記載の力 ルバゾリル基を有するジアミノアリーレンィ匕合物。
[16] イオン化ポテンシャルが 5. 0〜5. 5eVである請求項 1〜15のいずれかに記載の力 ルバゾリル基を有するジアミノアリーレンィ匕合物。
[17] 請求項 1〜16のいずれかに記載の力ルバゾリル基を有するジアミノアリーレン化合 物を含んでなる有機エレクト口ルミネッセンス素子用材料。
[18] 一対の電極間に発光層または発光層を含む複数層の有機層を形成してなる有機 エレクト口ルミネッセンス素子において、前記有機層の少なくとも一層が、請求項 17 に記載の有機エレクト口ルミネッセンス素子用材料を含んでなる有機エレクトロルミネ ッセンス素子。
[19] さらに、陽極と発光層との間に正孔注入層および Zまたは正孔輸送層を有し、前記 正孔注入層および Zまたは正孔輸送層が、請求項 17に記載の有機エレクトロルミネ ッセンス素子用材料を含んでなる請求項 18記載の有機エレクト口ルミネッセンス素子
PCT/JP2006/324094 2005-12-02 2006-12-01 カルバゾリル基を有するジアミノアリーレン化合物及びその用途 WO2007063986A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528500A JP4211869B2 (ja) 2005-12-02 2006-12-01 カルバゾリル基を有するジアミノアリーレン化合物及びその用途

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-349151 2005-12-02
JP2005349151 2005-12-02
JP2006-065680 2006-03-10
JP2006065680 2006-03-10
JP2006-205844 2006-07-28
JP2006205844 2006-07-28
JP2006-212941 2006-08-04
JP2006212941 2006-08-04

Publications (1)

Publication Number Publication Date
WO2007063986A1 true WO2007063986A1 (ja) 2007-06-07

Family

ID=38092318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324094 WO2007063986A1 (ja) 2005-12-02 2006-12-01 カルバゾリル基を有するジアミノアリーレン化合物及びその用途

Country Status (4)

Country Link
JP (1) JP4211869B2 (ja)
KR (1) KR20080080513A (ja)
TW (1) TW200726749A (ja)
WO (1) WO2007063986A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010377A1 (fr) * 2006-07-21 2008-01-24 Toyo Ink Manufacturing Co., Ltd. Composé aminé contenant un carbazole et son utilisation
WO2010098458A1 (ja) * 2009-02-27 2010-09-02 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2010222331A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 発光層化合物および有機電界発光素子
WO2011136484A1 (en) * 2010-04-30 2011-11-03 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2012509346A (ja) * 2008-11-19 2012-04-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 青色または緑色ルミネセンス用途のクリセン化合物
JP2012111719A (ja) * 2010-11-25 2012-06-14 Idemitsu Kosan Co Ltd 重合性単量体、その重合体を含む有機デバイス用材料、正孔注入輸送材料及び有機エレクトロルミネッセンス素子用材料、並びに有機エレクトロルミネッセンス素子
JP2014111556A (ja) * 2012-12-05 2014-06-19 Samsung Display Co Ltd フッ素置換されたアリール基を有するアミン誘導体、それを含む有機el材料及びそれを用いた有機el素子
CN108299388A (zh) * 2017-12-26 2018-07-20 上海道亦化工科技有限公司 一种菲类衍生物及其用途和有机电致发光器件
WO2018180194A1 (ja) * 2017-03-31 2018-10-04 株式会社ダイセル 有機半導体及びその製造方法
WO2018180195A1 (ja) * 2017-03-31 2018-10-04 株式会社ダイセル 膜状成形体の製造方法
CN112851529A (zh) * 2019-11-27 2021-05-28 三星显示有限公司 有机电致发光装置和用于有机电致发光装置的二胺化合物
WO2021201287A1 (ja) * 2020-04-03 2021-10-07 国立大学法人京都大学 非対称1,2-ビス(ジアリールアミノ)ベンゼン類、その製造方法及び用途
US11437585B2 (en) 2019-02-13 2022-09-06 Samsung Display Co., Ltd. Organic light-emitting device
US11617290B2 (en) 2015-12-22 2023-03-28 Samsung Display Co., Ltd. Organic light-emitting device
WO2023075158A1 (ko) * 2021-10-28 2023-05-04 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US11696496B2 (en) 2015-12-22 2023-07-04 Samsung Display Co., Ltd. Organic light-emitting device
US11937500B2 (en) 2015-12-22 2024-03-19 Samsung Display Co., Ltd. Organic light-emitting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211471B1 (ko) 2010-06-29 2012-12-12 단국대학교 산학협력단 고효율 카바졸계 화합물 및 이를 포함하는 유기전계 발광소자
KR101429961B1 (ko) * 2012-05-29 2014-08-14 주식회사 이엘엠 유기 전기 발광 조성물 및 이를 포함하는 유기 전기 발광 소자
JP2017165722A (ja) * 2016-03-09 2017-09-21 国立大学法人京都大学 非対称ビス(1,2−ジアリールアミノ)ベンゼン類及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346049A (ja) * 1993-06-11 1994-12-20 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
JPH07157454A (ja) * 1993-10-14 1995-06-20 Mita Ind Co Ltd フェニレンジアミン誘導体およびそれを用いた電子写真感光体
US20020107405A1 (en) * 2000-11-22 2002-08-08 Lin Jiann T?Apos;Suen 3,6,9-Trisubstituted carbazoles for light emitting diodes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139321B2 (ja) * 1994-03-31 2001-02-26 東レ株式会社 発光素子
JP5401007B2 (ja) * 2005-10-18 2014-01-29 株式会社半導体エネルギー研究所 芳香族アミン化合物、発光素子、発光装置、電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346049A (ja) * 1993-06-11 1994-12-20 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
JPH07157454A (ja) * 1993-10-14 1995-06-20 Mita Ind Co Ltd フェニレンジアミン誘導体およびそれを用いた電子写真感光体
US20020107405A1 (en) * 2000-11-22 2002-08-08 Lin Jiann T?Apos;Suen 3,6,9-Trisubstituted carbazoles for light emitting diodes

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010377A1 (fr) * 2006-07-21 2008-01-24 Toyo Ink Manufacturing Co., Ltd. Composé aminé contenant un carbazole et son utilisation
JP2012509346A (ja) * 2008-11-19 2012-04-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 青色または緑色ルミネセンス用途のクリセン化合物
WO2010098458A1 (ja) * 2009-02-27 2010-09-02 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2010222331A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 発光層化合物および有機電界発光素子
WO2011136484A1 (en) * 2010-04-30 2011-11-03 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2013530513A (ja) * 2010-04-30 2013-07-25 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを使用する有機電界発光素子
JP2012111719A (ja) * 2010-11-25 2012-06-14 Idemitsu Kosan Co Ltd 重合性単量体、その重合体を含む有機デバイス用材料、正孔注入輸送材料及び有機エレクトロルミネッセンス素子用材料、並びに有機エレクトロルミネッセンス素子
JP2014111556A (ja) * 2012-12-05 2014-06-19 Samsung Display Co Ltd フッ素置換されたアリール基を有するアミン誘導体、それを含む有機el材料及びそれを用いた有機el素子
US9502661B2 (en) 2012-12-05 2016-11-22 Samsung Display Co., Ltd. Amine derivative, organic electroluminescence material having the same and organic electroluminescence device using the material
US11937500B2 (en) 2015-12-22 2024-03-19 Samsung Display Co., Ltd. Organic light-emitting device
US11696496B2 (en) 2015-12-22 2023-07-04 Samsung Display Co., Ltd. Organic light-emitting device
US11617290B2 (en) 2015-12-22 2023-03-28 Samsung Display Co., Ltd. Organic light-emitting device
JP2018174265A (ja) * 2017-03-31 2018-11-08 株式会社ダイセル 膜状成形体の製造方法
WO2018180195A1 (ja) * 2017-03-31 2018-10-04 株式会社ダイセル 膜状成形体の製造方法
WO2018180194A1 (ja) * 2017-03-31 2018-10-04 株式会社ダイセル 有機半導体及びその製造方法
CN108299388A (zh) * 2017-12-26 2018-07-20 上海道亦化工科技有限公司 一种菲类衍生物及其用途和有机电致发光器件
US11437585B2 (en) 2019-02-13 2022-09-06 Samsung Display Co., Ltd. Organic light-emitting device
CN112851529A (zh) * 2019-11-27 2021-05-28 三星显示有限公司 有机电致发光装置和用于有机电致发光装置的二胺化合物
EP3828161A3 (en) * 2019-11-27 2021-07-07 Samsung Display Co., Ltd. Organic electroluminescence device and diamine compound for organic electroluminescence device
US11968887B2 (en) 2019-11-27 2024-04-23 Samsung Display Co., Ltd. Organic electroluminescence device and diamine compound for organic electroluminescence device
CN115427391A (zh) * 2020-04-03 2022-12-02 国立大学法人京都大学 非对称1,2-双(二芳基氨基)苯类、其制造方法以及用途
KR20220163369A (ko) * 2020-04-03 2022-12-09 고쿠리츠 다이가쿠 호진 교토 다이가쿠 비대칭 1,2-비스(디아릴아미노)벤젠류, 그 제조 방법 및 용도
WO2021201287A1 (ja) * 2020-04-03 2021-10-07 国立大学法人京都大学 非対称1,2-ビス(ジアリールアミノ)ベンゼン類、その製造方法及び用途
JP7429349B2 (ja) 2020-04-03 2024-02-08 国立大学法人京都大学 非対称1,2-ビス(ジアリールアミノ)ベンゼン類、その製造方法及び用途
KR102652111B1 (ko) 2020-04-03 2024-03-28 고쿠리츠 다이가쿠 호진 교토 다이가쿠 비대칭 1,2-비스(디아릴아미노)벤젠류, 그 제조 방법 및 용도
WO2023075158A1 (ko) * 2021-10-28 2023-05-04 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Also Published As

Publication number Publication date
TW200726749A (en) 2007-07-16
KR20080080513A (ko) 2008-09-04
JP4211869B2 (ja) 2009-01-21
JPWO2007063986A1 (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
JP4211869B2 (ja) カルバゾリル基を有するジアミノアリーレン化合物及びその用途
JP4765589B2 (ja) カルバゾリル基を有するフルオレン化合物およびその用途
JP4169085B2 (ja) カルバゾール含有アミン化合物及びその用途
JP5255296B2 (ja) 有機エレクトロルミネッセンス素子用材料および化合物
WO2009099133A1 (ja) カルバゾリル基を有する化合物およびその用途
JP2009029726A (ja) カルバゾリル基を有する化合物およびその用途
JP5082356B2 (ja) カルバゾ−ル含有アミン化合物およびその用途
JP2010195708A (ja) カルバゾリル基を有する化合物およびその用途
JP2009120582A (ja) カルバゾリル基を有する化合物およびその用途
JP2008133225A (ja) インドール誘導体およびその用途
JP2010024149A (ja) 7員環構造を有する化合物およびその用途
JP2009203203A (ja) アントラセン誘導体及びその用途
JP2009057307A (ja) カルバゾリル基を有する化合物およびその用途
JP2009215333A (ja) 有機エレクトロルミネッセンス素子用材料ならびに有機エレクトロルミネッセンス素子
JP2009194042A (ja) カルバゾリル基を含有する有機エレクトロルミネッセンス素子用電荷輸送材料およびその用途
JP2009123976A (ja) 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子。
JP2007109988A (ja) 有機エレクトロルミネッセンス素子
JP2010126571A (ja) 有機エレクトロルミネッセンス素子材料および有機エレクトロルミネッセンス素子
JP5423171B2 (ja) 有機エレクトロルミネッセンス素子用材料およびその用途
JP2009221442A (ja) 有機エレクトロルミネッセンス素子用材料ならびに有機エレクトロルミネッセンス素子
JP2010147115A (ja) 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
JP2007126439A (ja) カルバゾール含有アミン化合物およびその用途
JP5186173B2 (ja) 有機エレクトロルミネッセンス素子用材料および化合物
WO2008010377A1 (fr) Composé aminé contenant un carbazole et son utilisation
JP5200490B2 (ja) カルバゾリル基を有する化合物およびその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680045215.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007528500

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087013038

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833864

Country of ref document: EP

Kind code of ref document: A1