WO2001019355A2 - Dicarbonsäurederivate mit neuartigen pharmazeutischen eigenschaften - Google Patents

Dicarbonsäurederivate mit neuartigen pharmazeutischen eigenschaften Download PDF

Info

Publication number
WO2001019355A2
WO2001019355A2 PCT/EP2000/008467 EP0008467W WO0119355A2 WO 2001019355 A2 WO2001019355 A2 WO 2001019355A2 EP 0008467 W EP0008467 W EP 0008467W WO 0119355 A2 WO0119355 A2 WO 0119355A2
Authority
WO
WIPO (PCT)
Prior art keywords
chain
straight
carbon atoms
compounds
branched
Prior art date
Application number
PCT/EP2000/008467
Other languages
English (en)
French (fr)
Inventor
Cristina Alonso-Alija
Markus Heil
Dietmar Flubacher
Paul Naab
Johannes-Peter Stasch
Frank Wunder
Klaus Dembowsky
Elisabeth Perzborn
Elke Stahl
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU74150/00A priority Critical patent/AU7415000A/en
Publication of WO2001019355A2 publication Critical patent/WO2001019355A2/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/235Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group

Definitions

  • the present invention relates to new chemical compounds which also stimulate soluble guanylate cyclase via a novel mode of action which does not involve the heme group of the enzyme, their production and their
  • Cyclic guanosine monophosphate is one of the most important cellular transmission systems in mammalian cells. Together with nitrogen monoxide (NO), which is released from the endothelium and transmits hormonal and mechanical signals, it forms the NO / cGMP system.
  • the guanylate cyclases catalyze the biosynthesis of cGMP from guanosine triposphate (GTP).
  • GTP guanosine triposphate
  • the previously known representatives of this family can be divided into two groups according to both structural features and the type of ligand: the particulate guanylate cyclases that can be stimulated by natriuretic peptides and the soluble guanylate cyclases that can be stimulated by NO.
  • the soluble guanylate cyclases consist of two subunits and most likely contain one heme per heterodimer, which is part of the regulatory center. This is of central importance for the activation mechanism. NO can bind to the iron atom of the heme and so the
  • guanylate cyclase plays a decisive role in various physiological processes, in particular in the relaxation and proliferation of smooth muscle cells, platelet aggregation and adhesion and neuronal signal transmission as well as
  • the NO / cGMP system can be suppressed, which can lead to, for example, high blood pressure, platelet activation, increased cell proliferation, endothelial dysfunction, atherosclerosis, angina pectoris, heart failure, thrombosis, stroke and myocardial infarction.
  • a NO-independent treatment option for such diseases aimed at influencing the cGMP signal path in organisms is a promising approach due to the expected high efficiency and few side effects.
  • the previously known stimulators of soluble guanylate cyclase stimulate the enzyme either directly via the heme group (carbon monoxide, nitrogen monoxide or diphenyliodonium hexafluorophosphate) by interaction with the iron center of the heme group and a resulting one to increase the enzyme activity-leading conformational change (Gerzer et al., FEBS Lett. 132 (1981), 71), or via a heme-dependent mechanism that is independent of NO but leads to a potentiation of the stimulating effect of NO or CO (e.g. YC- 1, Hoenicka et al., J. Mol. Med. (1999) 14; or the pyrazole derivatives described in WO 98/16223, WO 98/16507 and WO 98/23619).
  • NO or CO e.g. YC- 1, Hoenicka et al., J. Mol. Med. (1999) 14; or the pyrazole derivatives described in WO
  • the enzyme still shows a detectable catalytic basal activity, i.e. cGMP is still formed.
  • the remaining catalytic basal activity of the heme-free enzyme cannot be stimulated by any of the known stimulators mentioned above.
  • protoporphyrin IX A stimulation of heme-free soluble guanylate cyclase by protoporphyrin IX has been described (Ignarro et al., Adv. Pharmacol. 26 (1994), 35). However, protoporphyrin IX can be regarded as facial expressions for the NO-heme adduct, which is why the addition of protoporphyrin IX to the soluble guanylate cyclase
  • the above object is achieved by the use of compounds for the production of medicaments which are able to stimulate the soluble guanylate cyclase independently of NO and of the heme group present in the enzyme.
  • guanylate cyclase can also stimulate guanylate cyclase regardless of the heme group in the enzyme.
  • the biological activity of these stimulators is based on a completely new mechanism for stimulating soluble guanylate cyclase.
  • the compounds according to the invention are able to stimulate both the heme-containing and the heme-free form of the soluble guanylate cyclase.
  • guanylate cyclase alkane or alkenoic acid derivatives used, which are known from EP-A-0 341 551.
  • EP-A-0 341 551 describes alkane and alkenoic acid derivatives such as (1), which are potent leukotriene antagonists and are therefore, for example, as
  • Medications are suitable for the treatment of asthma or circulatory disorders (p. 18, lines 56-58). However, a stimulating effect of these compounds on the soluble guanylate cyclase and the resulting use of these compounds for the production of medicaments which can influence the cGMP signal path is not described.
  • EP-A-0 410 241 describes further alkane and alkenoic acid derivatives such as, for example, (2) with LTD 4 , LTC 4 or LTE 4 antagonistic action.
  • EP-A-0 494 621 describes sulfur-containing alkenoic acid derivatives such as (3), which can be used for allergic diseases, inflammation and cardiovascular diseases.
  • EP-A-0 791 576 describes benzoic acid derivatives such as (4), which can be used for the treatment of respiratory diseases.
  • the present invention relates to the use of compounds of the formula (I)
  • V is missing or O means
  • n is an integer from 1 to 10
  • T missing or O means
  • R is hydrogen, straight-chain or branched alkyl or straight-chain or branched alkoxy each having up to 12 carbon atoms,
  • n is an integer from 0 to 7
  • R is hydrogen, straight-chain or branched alkyl or straight-chain or branched alkoxy each having up to 12 carbon atoms, halogen, CF 3 , OCF 3 , CN or NO 2 ,
  • X is missing, straight-chain or branched alkylene with up to 6
  • p means 0, 1 or 2 is an integer from 1 to 5
  • R 4 and R 5 independently of one another represent straight-chain or branched alkyl having up to 6 carbon atoms
  • R 6 and R 7 independently of one another are hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms, straight-chain or branched alkylsulfonyl having up to 12 carbon atoms, arylsulfonyl having 6 to 12 carbon atoms, or
  • Y is absent, means straight-chain or branched alkylene with up to 6 carbon atoms, O, SCH 2 or S (O) q ,
  • B denotes tetrazolyl, tetrazolylmethylene, COOH, CH 2 COOH, COOR 8 , CH 2 COOR 9 , CONR 10 R '' or CN, embedded image in which
  • R 8 and R 9 independently of one another represent straight-chain or branched alkyl having up to 6 carbon atoms
  • R 10 and R ⁇ independently of one another are hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms, straight-chain or branched alkylsulfonyl having up to 12 carbon atoms, arylsulfonyl having 6 to 12 carbon atoms, or
  • R »3 is hydrogen, straight-chain or branched alkyl or straight-chain or branched alkoxy each having up to 12 carbon atoms, halogen, CF 3 , OCF 3 , CN or NO 2 , and their salts and stereoisomers, for the preparation of medicaments for the treatment of cardiac disease.
  • compounds of the formula (I) are used to stimulate the soluble guanylate cyclase, in which
  • V is missing or O means
  • n is an integer from 1 to 6
  • R 1 is hydrogen, straight-chain or branched alkyl or straight-chain or branched alkoxy each having up to 4 carbon atoms, F, Cl, Br, I or CF 3 ,
  • n 0 or 1
  • R 2 is hydrogen, straight-chain or branched alkyl or straight-chain or branched alkoxy each having up to 4 carbon atoms, F, Cl, Br, I or CF 3 ,
  • X is absent, O or S (O) p means
  • p 0, 1 or 2
  • o is an integer from 1 to 5
  • A means COOH or COOR 4 ,
  • R 4 straight-chain or branched alkyl with up to 4
  • Y is absent, means straight-chain or branched alkylene with up to 4 carbon atoms, O, SCH 2 or S (O) q ,
  • B means COOH or COOR 8 ,
  • R straight-chain or branched alkyl with up to 4
  • R, 3 is hydrogen, straight-chain or branched alkyl or straight-chain or branched alkoxy each having up to 4 carbon atoms, F, Cl, Br, I or CF 3 .
  • V is missing or O means
  • n is an integer from 1 to 6
  • T is missing or O means.
  • R 1 is hydrogen, straight-chain or branched alkyl or straight-chain or branched alkoxy each having up to 4 carbon atoms, F, Cl, Br, I or CF 3 ,
  • n 0 or 1
  • R is hydrogen, straight-chain or branched alkyl or straight-chain or branched alkoxy each having up to 4 carbon atoms, F,
  • X is absent, O or S (O) p means
  • p 0, 1 or 2
  • o is an integer from 1 to 5
  • Y is absent, means straight-chain or branched alkylene with up to 4 carbon atoms, O, SCH 2 or S (O) q ,
  • R 3 is hydrogen, straight-chain or branched alkyl or straight-chain or branched alkoxy each having up to 4 carbon atoms, F, Cl, Br, I or CF 3 .
  • the compounds of the general formula (I) according to the invention can also be present in the form of their salts.
  • salts with organic or inorganic bases or acids may be mentioned here.
  • Physiologically acceptable salts are preferred in the context of the present invention.
  • Physiologically acceptable salts of the compounds according to the invention can be salts of the substances according to the invention with mineral acids, carboxylic acids or sulfonic acids.
  • Physiologically acceptable salts can also be metal or ammonium salts of the compounds according to the invention which have a free carboxyl group.
  • metal or ammonium salts of the compounds according to the invention which have a free carboxyl group.
  • Sodium, potassium, magnesium or calcium salts as well as ammonium salts derived from ammonia, or organic amines such as ethylamine, di- or triethylamine, di- or triethanolamine, dicyclohexylamine, dimethylaminoethanol, arginine, lysine or ethylenediamine.
  • the compounds according to the invention can exist in stereoisomeric forms which either behave like image and mirror image (enantiomers) or do not behave like image and mirror image (diastereomers).
  • the invention relates both to the enantiomers or diastereomers and to their respective mixtures.
  • the racemic forms can be separated into the stereoisomerically uniform constituents in a known manner, for example by chromatographic separation.
  • Double bonds present in the compounds according to the invention can be in the eis or trans configuration (Z or E form).
  • Alkyl generally represents a straight-chain or branched hydrocarbon radical having 1 to 20 carbon atoms. Examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, hexyl, isohexyl, heptyl, isoheptyl, octyl and isooctyl, nonyl, decyl, dodeyl, eicosyl.
  • Alkylene generally represents a straight-chain or branched hydrocarbon bridge with 1 to 20 carbon atoms.
  • Examples include methylene, ethylene, propylene, ⁇ -methylethylene, ß-methylethylene, ⁇ -ethylethylene, ß-ethylethylene, butylene, ⁇ -methylpropylene, ß-methylpropylene, ⁇ -methylpropylene, ⁇ -ethylpropylene, ß-ethylpropylene, Pentylene, hexylene, heptylene,
  • Alkenyl generally represents a straight-chain or branched hydrocarbon radical having 2 to 20 carbon atoms and one or more, preferably one or two, double bonds.
  • alkenyl generally represents a straight-chain or branched hydrocarbon radical having 2 to 20 carbon atoms and one or more, preferably one or two, double bonds.
  • Alkynyl generally represents a straight-chain or branched hydrocarbon radical with 2 to 20 carbon atoms and one or more, preferably with one or two triple bonds. Examples include ethynyl, 2-butynyl, 2-pentynyl and 2-hexynyl.
  • Acyl generally represents straight-chain or branched lower alkyl having 1 to 9 carbon atoms, which is bonded via a carbonyl group. Examples include: acetyl, ethylcarbonyl, propylcarbonyl, isopropylcarbonyl, butylcarbonyl and isobutylcarbonyl.
  • Alkoxy generally represents a straight-chain or branched hydrocarbon radical having 1 to 14 carbon atoms which is bonded via an oxygen atom.
  • Examples include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, pentoxy, isopentoxy, hexoxy, isohexoxy, heptoxy, isoheptoxy, octoxy or iso-octoxy.
  • alkoxy and alkyloxy are used synonymously.
  • Alkoxyalkyl generally represents an alkyl radical having up to 8 carbon atoms which is substituted by an alkoxy radical having up to 8 carbon atoms.
  • Alkoxycarbonyl can, for example, by the formula
  • Alkyl here generally represents a straight-chain or branched hydrocarbon radical having 1 to 13 carbon atoms. Examples include the following alkoxycarbonyl radicals: methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl or isobutoxycarbonyl.
  • Cycloalkyl generally represents a cyclic hydrocarbon radical having 3 to 8 carbon atoms. Cyclopropyl, cyclopentyl and cyclohexyl are preferred. Examples include cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
  • Cycloalkoxy in the context of the invention is an alkoxy radical whose hydrocarbon radical is a cycloalkyl radical.
  • the cycloalkyl radical generally has up to 8 carbon atoms. Examples include: cyclopropyloxy and cyclohexyloxy.
  • the terms "cycloalkoxy” and “cycloalkyloxy” are used synonymously.
  • Aryl generally represents an aromatic radical having 6 to 10 carbon atoms.
  • Preferred aryl radicals are phenyl and naphthyl.
  • Halogen in the context of the invention represents fluorine, chlorine, bromine and iodine.
  • heterocycle generally represents a saturated, unsaturated or aromatic 3- to 10-membered, for example 5- or 6-membered, heterocycle which can contain up to 3 heteroatoms from the S, N and / or O series and which in the case of a nitrogen atom can also be bound via this.
  • Examples include: oxadiazolyl, thiadiazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, thienyl, furyl, pyrrolyl, pyrrolidinyl, piperazinyl, Tetrahydropyranyl, tetrahydrofuranyl, 1,2,3 triazolyl, thiazolyl, oxazolyl, imidazolyl, morpholinyl or piperidyl.
  • heteroaryl stands for an aromatic heterocyclic radical.
  • the compounds of formula (I) can be prepared as described in EP-A-0 341 551.
  • the compounds of the formula (I) can be prepared as described in EP-A-0 341 551.
  • R, ⁇ ', R z , T, V, m and n have the meanings given above,
  • R 12 and R 13 independently of one another represent straight-chain or branched alkyl having up to 12 carbon atoms or phenyl
  • Z represents a halide anion or tosylate anion
  • Z preferably denotes a halide anion, particularly preferably chloride, bromide or iodide.
  • the partial or complete hydrolysis to be carried out to the corresponding free carboxylic acid groups is preferably carried out using strong acids such as e.g. HCl or with strong bases such as NaOH or LiOH, which in aqueous solution or solvent mixtures of water with alcohols such as e.g. Methanol or ethers are present.
  • strong acids such as e.g. HCl or with strong bases such as NaOH or LiOH, which in aqueous solution or solvent mixtures of water with alcohols such as e.g. Methanol or ethers are present.
  • Inert solvents preferred for the process according to the invention are conventional organic solvents which do not change under the reaction conditions.
  • ethers such as diethyl ether, butyl methyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether or diethylene glycol dimethyl ether, or hydrocarbons such as benzene, toluene,
  • Xylene or petroleum ether, or amides such as dimethylformamide or hexamethylphosphoric triamide, or 1,3-dimethylimidazolidin-2-one, 1,3-dimethyltetrahydropyrimidin-2-one or dimethyl sulfoxide can be used. It is of course also possible to use mixtures of the abovementioned solvents.
  • Bases preferred for the process according to the invention comprise basic compounds conventionally used for basic reactions.
  • alkali metal hydrides such as sodium hydride or potassium hydride
  • alkali metal alcoholates such as sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide or potassium t-butoxide
  • amides such as sodium amide or lithium diisopropyl amide or sodium hexamethyl disilazane
  • organo-lithium compounds such as phenithium or methyl lithium, butyllithyllium, butyll become.
  • a conventional crown ether such as 18-crown-6 can be added in the process according to the invention for optimizing the reaction.
  • solvent or base depends on the stability, sensitivity to hydrolysis or the CH activity of the corresponding phosphorus compound.
  • Ethers such as diethyl ether, tetrahydrofuran, dimethoxyethane or dioxane, together with a co-solvent such as dimethylformamide or 1,3-dimethyltetrahydropyridin-2-one or 1,3-dimethylimidazolidin-2-one, are particularly preferably used as solvents.
  • Alkali metal alcoholates such as potassium t-butoxide or organo lithium compounds such as phenyllithum or butyllithium or sodium hydride are particularly preferably used as bases.
  • the reaction can generally be carried out in a temperature range from -80 ° C. to + 70 ° C., preferably from -80 ° C. to + 20 ° C.
  • the reaction can be carried out at normal pressure, elevated or reduced pressure (for example in a range from 0.5 to 5 bar). In general, the reaction is carried out at normal pressure.
  • the phosphorus compounds are generally used in an amount of 1-2 moles, based on 1 mole of aldehyde.
  • the bases are generally used in an amount of 1-5 mol, preferably 1-2 mol, based on 1 mol of phosphorus compound.
  • the process according to the invention can be carried out, for example, by adding the base and then the aldehyde, if appropriate in a solvent the phosphorus compound dissolved or suspended in a solvent are added, and the mixture is then optionally heated.
  • Working up is carried out in a conventional manner, by extraction, chromatography and / or crystallization.
  • the phosphorus compounds of the general formula (III) can be prepared in the following different ways.
  • Presence of copper (I) halides such as copper iodide and bis- (triphenylphosphine) palladium (II) chloride in a temperature range from -40 ° C to + 80 ° C, preferably from 0 ° C to + 40 ° C implemented.
  • the formyl compound (VI) is in solvents such as alcohols, for example methanol, ethanol, propanol or isopropanol, or ethers such as diethyl ether, tetrahydrofuran or dioxane, or in basic solvents such as triethylamine, pyridine or dimethylformamide, or in water or in mixtures of the abovementioned solvents using complex hydrides such as, for example, borohydrides or aluminum hydrides, preferably sodium borohydride or lithium aluminum hydride, as reducing agents in a temperature range from -40 ° C. to + 60 ° C., preferably from 0 ° C. to + 40 ° C. , reduced to the hydroxyl compounds (VII).
  • solvents such as alcohols, for example methanol, ethanol, propanol or isopropanol, or ethers such as diethyl ether, tetrahydrofuran or dioxane, or in basic
  • the compounds (VII) in inert solvents such as alcohols, for example methanol, ethanol, propanol or isopropanol, or hydrocarbons such as benzene, toluene or xylene or in ethers such as diethyl ether or tetrahydrofuran, or in ethyl acetate, particularly preferably in Methanol, in the presence of noble metal catalysts such as palladium or platinum in a temperature range from -30 ° C to + 80 ° C, preferably from 0 ° C to + 40 ° C, under a pressure of 1 bar to 50 bar, preferably of 1 hydrogenated bar to 20 bar.
  • inert solvents such as alcohols, for example methanol, ethanol, propanol or isopropanol, or hydrocarbons such as benzene, toluene or xylene or in ethers such as diethyl ether or tetrahydrofuran, or in ethyl
  • Steps B and C can also be carried out in reverse order.
  • the hydrogenated compounds (VIII) are reacted with bromination agents such as, for example, phosphorus tribromide, sulfonyl bromide, Hydrogen bromide or tetrabromomethane / triphenylphosphine in inert solvents such as ethers, for example diethyl ether or tetrahydrofuran, or hydrocarbons such as benzene or toluene or particularly preferably chlorinated hydrocarbons such as methylene chloride or chloroform, in a temperature range from -20 ° C. to + 60 ° C., preferably from Brominated from 0 ° C to + 40 ° C.
  • bromination agents such as, for example, phosphorus tribromide, sulfonyl bromide, Hydrogen bromide or tetrabromomethane / triphenylphosphine in inert solvents such as ethers, for example diethyl ether or tetrahydr
  • Hydrocarbons such as benzene, toluene or xylene, or benzonitrile or dimethylformamide or dimethyl sulfoxide or in an alcohol such as methanol, ethanol, propanol, butanol or isopropanol or without solvent in a temperature range from 0 ° C to + 200 ° C, preferably from + 20 ° C up to + 180 ° C with representation of the phosphonium salts (X).
  • the acetylene compounds of the formula (IV) can be obtained, for example, by reacting corresponding phenol compounds with ⁇ -haloalkynes in the presence of bases.
  • ⁇ -Chloroalkynes such as 5-chloro-1-pentyne are particularly preferred.
  • metal hydrides such as sodium hydride can be used as bases.
  • the phenols to be used as starting compounds are commercially available or can be prepared by standard reactions known to the person skilled in the art (cf. for example J. March, Advanced Organic Chemistry, 3rd edition, Wiley, p. 1170 f.).
  • the conversion to the acetylene compounds of the formula (IV) can be carried out in organic solvents such as, for example, ethers, in particular tetrahydrofuran, at temperatures from + 20 ° C. to + 80 ° C. under an inert gas atmosphere, for example wise argon.
  • organic solvents such as, for example, ethers, in particular tetrahydrofuran
  • inert gas atmosphere for example wise argon.
  • complexing agents such as hexaphosphoric triamide.
  • the acetylene compounds (IV) can be obtained by reacting corresponding ⁇ -haloalkylphenyl compounds, preferably ⁇ -chloroalkylphenyl compounds, with acetylides such as, for example, sodium acetylide or lithium acetylide under conventional conditions known to the person skilled in the art (see, for example, J. March, Advanced Organic Chemistry, 3 Edition, Wiley, p. 429).
  • the alcohols used as starting compounds are brominated, it being possible, for example, to use the compounds which are listed in step D of the first variant of process A as the brominating agent.
  • the reactive ylide is generated as explained above and this is reacted with a bromobenzaldehyde with the desired substitution pattern.
  • the compound obtained in this way can be reacted with a base, preferably t-butyllithium in an inert solvent (tetrahydrofuran), at low temperatures
  • the corresponding primary alcohols (W is a direct bond) can be obtained.
  • the compounds thus obtained can optionally be reacted with an optionally protected hydroxyalkyne such as the tetrahydropyranyl ether of propargyl alcohol under the same conditions as in process step [A] of the 1st variant of process A (W means C ⁇ C) and then by a hydrogenation which can be carried out analogously to step C of the 1st variant of process A, can be converted to the primary alcohols.
  • the primary alcohols obtained in this way are converted into the corresponding phosphonium salts analogously to variant 1 of process A.
  • hydroxyalkyloxyphenyl compounds or hydroxyalkylphenyl compounds used as starting compounds in this process are either commercially available or can be prepared by conventional reactions known to those skilled in the art.
  • the bromine compounds (XI) with the phenols (XII) in preferred solvents such as water or alcohols such as methanol, ethanol, propanol or isopropanol, or ethers such as diethyl ether, tetrahydrofuran, dioxane or dimethyloxymethane, or dimethylformamide or dimethyl sulfoxide, or acetonitrile or ketones such as, for example
  • Acetone particularly preferably in isopropanol, in the presence of bases such as alkali metal hydroxides, carbonates or alcoholates such as sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, sodium ethanolate or potassium t-butoxide in a temperature range from 0 ° C. to 200 ° C. , preferably implemented from + 20 ° C to + 180 ° C.
  • bases such as alkali metal hydroxides, carbonates or alcoholates such as sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, sodium ethanolate or potassium t-butoxide in a temperature range from 0 ° C. to 200 ° C. , preferably implemented from + 20 ° C to + 180 ° C.
  • the phenyl ethers (XIII) with tosyl chloride in inert solvents such as ethers, for example diethyl ether, tetrahydrofuran or dioxane, or hydrocarbons such as benzene or toluene, or chlorinated hydrocarbons such as chloroform or methylene chloride, or in ethyl acetate, acetone or Acetonitrile, preferably in methylene chloride, in the presence of bases such as triethylamine, pyridine or dimethylaminopyridine, preferably in the presence of pyridine, in a temperature range from -30 ° C. to + 50 ° C., preferably from -10 ° C. to + 30 ° C.
  • inert solvents such as ethers, for example diethyl ether, tetrahydrofuran or dioxane, or hydrocarbons such as benzene or toluene, or chlorinated hydrocarbons
  • the tosyl compounds (XIV) with triphenylphosphine in preferred solvents such as hydrocarbons, for example benzene or toluene, benzonitrile, acetonitrile, dimethylformamide or dimethyl sulfoxide, or without solvent, particularly preferably in acetonitrile, in a temperature range of 0 ° C to + 200 ° C, preferably from + 20 ° C to + 180 ° C below
  • steps B and C the hydroxy compound XIII can also be converted first into the bromide and then into the phosphonium salt analogously to steps D and E of the first variant of process A.
  • the compounds of the formula (I) according to the invention in which V is O are accessible via this process.
  • the corresponding hydroxyalkylphenyl compounds are reacted with triphenylphosphonium hydrobromide in an organic solvent such as, for example, acetonitrile at a temperature from + 30 ° C. to + 100 ° C., preferably from + 50 ° C. to + 90 ° C.
  • organic solvent such as, for example, acetonitrile
  • T is absent and V is O
  • a corresponding haloalkylphenyl compound preferably a chloro or bromoalkylphenyl compound such as benzyl bromide
  • a corresponding phenol compound such as 2-hydroxybenzyl alcohol
  • a base such as potassium carbonate
  • the alcohol is first converted into a halide according to step D of method A, first variant, which can then be converted into the desired phosphonium salt analogously to step E of method A, first variant.
  • R, 1, n R2, T, V and n have the meanings given above.
  • aldehydes of the general formula (II) can be prepared, for example, by the following processes.
  • the ketone (XVI) (where o is 3, 4 or 5) is inert with 4-halomethylbenzoic acid esters or 4-halosulfenylbenzoic acid esters, the halogen radical preferably being chlorine or bromine, or the corresponding nitriles Solvents such as an ether, for example diethyl ether, tetrahydrofuran or dioxane, or dimethylformamide, or dimethyl sulfoxide, or in mixtures thereof, particularly preferably in dimethylformamide, in the presence of bases such as alkali metal hydrides, amides or alkolates such as sodium hydride, potassium hydride, lithium diisopropylamide, Potassium ethylate, sodium ethylate, potassium methylate or potassium t-butoxide, particularly preferably in the presence of sodium hydride, in a temperature range from -40 ° C to + 60 ° C, particularly preferably from -20
  • Dimethylformamide or alcohols for example methanol, ethanol, propanol or isopropanol, or in water or in mixtures thereof, particularly preferably in dimethylformamide or ethanol, in the presence of bases such as alkali metal hydroxides, alkali metal carbonates or alkali metal alcoholates such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium methoxide , Sodium ethanolate,
  • bases such as alkali metal hydroxides, alkali metal carbonates or alkali metal alcoholates such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium methoxide , Sodium ethanolate,
  • Potassium ethanolate or potassium t-butoxide particularly preferably in the presence of potassium t-butoxide, in a temperature range from 0 ° C. to + 150 ° C., particularly preferably from + 20 ° C. to + 100 ° C., to obtain the Compounds (XVIII) implemented.
  • the compounds (XVIII) in solvents such as alcohols, for example methanol, ethanol, propanol or isopropanol, or in ethers, for example methyl ether, tetrahydrofuran or dioxane, or in chlorinated hydrocarbons such as methylene chloride or chloroform, or carboxylic acids such as acetic acid or trifluoroacetic acid, or in mixtures thereof, particularly preferably in trifluoroacetic acid, in the presence of acids such as mineral acids, for example hydrochloric acid, hydrobromic acid or sulfuric acid or carboxylic acids, for example acetic acid or trifluoroacetic acid, particularly preferably in the presence of acetic acid, particularly preferably in the presence of trifluoroacetic acid, both as Solvent as well as acid, in a temperature range from -20 ° C to + 60 ° C, particularly preferably from 0 ° C to + 30 ° C below
  • the carboxylic acids (XIX) are dissolved in solvents such as ethers, for example diethyl ether, tetrahydrofuran or dioxane, or in chlorinated hydrocarbons such as methylene chloride or chloroform, or in mixtures thereof, particularly preferably in tetrahydrofuran, using boron Bonds as reducing agents, for example borane or the borane-dimethyl sulfide complex, in a temperature range from -40 ° C to + 60 ° C, particularly preferably from -20 ° C to + 30 ° C, to give the hydroxyl compounds (XX) reduced.
  • solvents such as ethers, for example diethyl ether, tetrahydrofuran or dioxane, or in chlorinated hydrocarbons such as methylene chloride or chloroform, or in mixtures thereof, particularly preferably in tetrahydrofuran, using boron Bonds as reducing agents, for example borane or
  • the hydroxy compounds (XX) are used in solvents such as ethers, for example diethyl ether, dioxane or tetrahydrofuran, or in chlorinated hydrogens such as methylene chloride or chloroform, or in dimethyl sulfoxide or in mixtures thereof, particularly preferably in dichloromethane of oxidizing agents such as pyridinium chlorochromate,
  • Chromium (VI) salts dimethylsulfoxide / pyridine / SO 3 , catalytic amounts of tetraalkylammonium perruthenate in the presence of N-methylmorpholine and molecular sieve, dimethylsulfoxide / oxalylchlorinovetriethylamine, particularly preferably using pyridinium chlorochromate, catalytic amounts of tetraalkylammonium peruthenate Methylmorpholine oxide and molecular sieve or dimethyl sulfoxide / oxalyl chloride / triethylamine, optionally in the presence of bases such as triethylamine, diisopropylamine, pyridine or dimethylaminopyridine, particularly preferably in the presence of triethylamine, in a temperature range from -20 ° C. to + 60 ° C., particularly preferably from 0 ° C to + 30 ° C, oxidized to obtain the
  • cyclic ketones (XVI) are either commercially available or can be prepared in a conventional manner known to the person skilled in the art, for example by Dieckmann condensation of the corresponding diesters of carboxylic acid.
  • the 4-chloromethylbenzoic acid esters or 4-chlorosulfenylbenzoic acid esters to be reacted with the ketones (XVI) or the corresponding nitriles are either commercially available or can be prepared in a conventional manner known to those skilled in the art.
  • the radicals R 3 , R 4 , o and Y have the same meanings as defined in claim 3.
  • Process C can be used to prepare aldehydes (II) in which X is - CH 2 -, Y is -CH 2 - or -S-, o is 3, 4 or 5, A is COOR 4 and B is CN, CH 2 OOR 9 , CONR 10 R n or COOR 8 .
  • the benzoic acid mixture (XXII) in solvents such as alcohols, for example methanol, ethanol, propanol or isopropanol, or in water or in mixtures thereof, particularly preferably in methanol, in the presence of acids, such as mineral acids , for example salt acid, hydrobromic acid or sulfuric acid, or in carboxylic acids, such as acetic acid or trifluoroacetic acid, or particularly preferably in the presence of thionyl chloride, in a temperature range from -40 ° C to + 60 ° C, particularly preferably from -20 ° C to + 40 ° C, converted into the esters (XXIII).
  • solvents such as alcohols, for example methanol, ethanol, propanol or isopropanol, or in water or in mixtures thereof, particularly preferably in methanol
  • acids such as mineral acids , for example salt acid, hydrobromic acid or sulfuric acid, or in carboxylic acids, such as acetic acid or trifluoroace
  • esters (XXIII) are dissolved in solvents such as an ether, for example diethyl ether, tetrahydrofuran or dioxane, or in dimethyl sulfoxide, or in chlorinated hydrocarbons such as methylene chloride or chloroform, or in mixtures thereof, particularly preferably in methylene chloride.
  • solvents such as an ether, for example diethyl ether, tetrahydrofuran or dioxane, or in dimethyl sulfoxide, or in chlorinated hydrocarbons such as methylene chloride or chloroform, or in mixtures thereof, particularly preferably in methylene chloride.
  • oxidizing agents such as bromine (VI) salts, pyridinium chlorochromate, dimethyl sulfoxide / oxalyl chloride or dimethyl sulfoxide / pyridine / SO, particularly preferably using dimethyl sulfoxide / oxalyl chloride, as an oxidizing agent in the presence of bases such as triethylamine, diisopropylamine, pyridine or dimethylaminopyridine, particularly preferably in the presence of triethylamine, in a temperature range from -80 ° C. to + 40 ° C., particularly preferably from -60 ° C. to + 20 ° C., oxidized to the aldehydes (XXIV) analogously to step E in process C.
  • bases such as triethylamine, diisopropylamine, pyridine or dimethylaminopyridine, particularly preferably in the presence of triethylamine, in a temperature range from -80 °
  • the aldehydes (XXIV) are dissolved in solvents such as hydrocarbons, for example benzene, toluene or xylene, or in dimethyl sulfoxide or in amides such as dimethylformamide or hexamethylphosphoric triamide, or in mixtures thereof, particularly preferably in dimethylformamide, in the presence of Bases such as triethylamine, diisopropylamine, pyridine or dimethylaminopyridine, particularly preferably in the presence of triethylamine, in a temperature range from 0 ° C. to + 200 ° C., particularly preferably from + 20 ° C. to
  • these silicon compounds (XXV) are treated with dimethyl 4,4'-dithiodibutyrate or dimethyl 3,3'-dithiodipropanoate in the presence of sulfuryl chloride or chlorine or bromine in an ether, with for example diethyl ether, tetrahydrofuran or dioxane, or in hydrocarbons such as benzene or toluene, or in chlorinated hydrocarbons such as methylene chloride or chloroform or in mixtures thereof, particularly preferably in ethylene chloride, optionally in the presence of bases such as triethylamine or diisopropylamine or pyridine, in a temperature range of -80 ° C to + 20 ° C, particularly preferably from -70 ° C to + 0 ° C converted into the aldehydes (XXVI).
  • compounds of the general formula (II) can be prepared in which X is S and preferably Y is CH 2 and o is 2 or 3.
  • radicals R, R and o have the same meanings as defined in claim 3.
  • the radical R represents any conventional alcoholic component of an ester.
  • the benzoic acid esters of the formula (XXII) can be prepared or purchased in conventional ways known to the person skilled in the art.
  • Ethers for example diethyl ether, tetrahydrofuran, dioxane, diethylene glycol monomethyl ether or diethylene glycol diethyl ether or in amides such as dimethylformamide or hexamethylphophoric acid triamide, in 1,3-dimethylimidazolidin-2-one or 1,3-dimethyltetrahydropyridin-2-one, particularly preferably or in mixtures thereof Tetrahydrofuran, in the presence of organometallic compounds as
  • Base for example organic lithium, sodium or potassium compounds, particularly preferably butyllithium, methyl lithium, phenyllithium, sodium naphthalide, potassium naphthalide, lithium diisopropylamide or lithium hexamethyldisilazane, particularly preferably in the presence of lithium diisopropylamide, in a temperature range from -80 ° C. to + 60 ° C., particularly preferably from -50 ° C to
  • the hydroxy compounds (XXIX) are in solvents such as an ether, for example diethyl ether, tetrahydrofuran or dioxane, or in chlorinated hydrocarbons such as methylene chloride or chloroform, or dimethyl sulfoxide, or in mixtures thereof, particularly preferably in dichloromethane using oxidizing agents such as chromium (VI) salts, pyridinium chlorochromate, dimethyl sulfoxide / oxalyl chloride or dimethyl sulfoxide / pyridine / SO 3 , particularly preferably pyridinium chlorochromate, optionally in the presence of bases such as triethylamine, diisopropylamine or pyridine, particularly preferably in the presence of triethylamine, in a temperature range from -80 ° C to + 60 ° C, preferably from -60 ° C to + 30 ° C, oxidized analogously to step
  • solvents such as an
  • This variant can be used to prepare compounds of the general formula (II) in which X is CH 2 and preferably Y is a direct bond and o is 3 or 4.
  • the acid (XXXI) is dissolved in solvents such as alcohols, water, acetone or acetonitrile with an oxidizing agent such as hydrogen peroxide, nitric acid, peracids, oxygen, ozone, organic peracids, potassium permanganate, potassium persulfate, sodium hypochlorite, hypochlorous acids, ruthenium tetroxide, nitrogen oxides , anodic oxidation or with a special mixture such as ozone in a normal temperature range from - 20 ° C to + 30 ° C, although even lower temperature ranges (-78 ° C) may be necessary for less reactive substances.
  • an oxidizing agent such as hydrogen peroxide, nitric acid, peracids, oxygen, ozone, organic peracids, potassium permanganate, potassium persulfate, sodium hypochlorite, hypochlorous acids, ruthenium tetroxide, nitrogen oxides , anodic oxidation or with a
  • compounds of the general formula (II) can be prepared in which X is CH or a direct bond and Y is SO or SO 2 or X is SO or SO and Y is CH 2 or a direct bond.
  • the acid (XXXI) is reacted as in variant F / G, but using smaller amounts of oxidizing agents and / or at a lower temperature or with oxidizing agents such as hydroperoxides, manganese dioxide, selenium dioxide,
  • X 'and Y' are radicals X and Y which may have been changed in process G (i.e. SO).
  • R represents the rest of the compounds of the general formula (I).
  • the acid (XXXIII) in solvents such as alcohols, water, benzene, toluene, ethers such as dimethyl ether, tetrahydrofuran, dioxane, esters such as ethyl acetate, or in hydrocarbons such as hexane, or in amines such as
  • a metal catalyst such as the oxides or soluble complexes of palladium, platinum, ruthenium or nickel, or with a metal such as lithium or sodium, or with hydrazine or arylaralkoxy-substituted hydrazines.
  • the product of this reaction is the acid (XXXIV), where W is the general Formula (I) -CH 2 CH - means.
  • the normal temperature range for this process is -20 ° C to + 30 ° C.
  • R represents the rest of the compounds of the general formula (I), where R may contain an aryl radical but no double bond.
  • [A] corresponds to step E of method C.
  • step B corresponds to step C of process D, where R is trimethylsilyl.
  • R can optionally be alkyl, for example methyl, and step B is carried out by adding the aldehyde to a solution of the alkoxymethyleneylide (in this case o is increased by 1).
  • the latter is produced from an alkoxymethylene triphenylphosphonium salt as described above.
  • [C] corresponds to step D of method D.
  • Step A is best performed by mixing the aldehyde and hydrazine in the absence of a solvent and heating to 60-70 ° C for an appropriate period (one day) under an inert atmosphere (e.g. under nitrogen or argon, preferably under argon).
  • an inert atmosphere e.g. under nitrogen or argon, preferably under argon.
  • Step B is carried out in inert solvents such as diethyl ether or tertrahydrofuran at reduced temperature, preferably at 0 ° C., with an organometallic base such as butyllithium or lithium diisopropylamide and subsequent addition of an appropriate electrophile (R 4 OOC (CH 2 ) 0 Hal, R 8 OOCC 6 H 4 CH 2 Hal or R 8 OOCC 6 H 4 SCl) carried out, whereby the alkylated product XLII or XLVI is obtained.
  • organometallic base such as butyllithium or lithium diisopropylamide
  • Step C consists in an oxidative cleavage of the hydrazones to the aldehydes XLIII or XLVII using, for example, ozone in a solvent (dichloromethane) at low temperatures (-78 ° C.) (in the event that the chiral hydrazones have been used).
  • the dimethylhydrazones can be cleaved with sodium periodate in aqueous solution or by methylation with methyl iodide and subsequent addition of an acid (for example a mineral acid such as hydrochloric acid).
  • This variant can be used to prepare compounds of the general formula (II) in which X is S, CH or, in the case of variant J, a direct bond and Y is a direct bond.
  • Claim 3 defines, but R and R must not be COOH.
  • the compound XL VIII is reacted with sulfonium ethylide (E. J. Corey et al., J. Am. Chem. Soc. 87, 1353 (1965)) in an inert solvent to give an epoxide XLIX.
  • the epoxy undergoes reaction with a phenol in a solvent such as
  • Methanol has a nucleophilic ring opening, whereby two regioisomers are obtained, from which the desired isomer L can be obtained in a simple manner by chromatography.
  • the yield and the ratio of the two isomers can be changed by varying the solvent and using catalysts.
  • Step C is a simple oxidation, as has already been described in detail in step C of method E.
  • Step B of this process involves the conversion of the free hydroxyl group into a conventional leaving group X ' such as, for example, a tosyl group or a halide radical, preferably a bromine or iodine radical, in the usual ways already described in the above processes.
  • a conventional leaving group X ' such as, for example, a tosyl group or a halide radical, preferably a bromine or iodine radical
  • step C the leaving group X 'is essentially replaced by a phenoxy group, as described in step A of process B.
  • step D the protective group P is selectively removed by a corresponding conventional method from the prior art.
  • Step E is a simple oxidation already described above.
  • a malonic diester (LVIII), where an AUyl radical or lower alkyl radicals such as methyl, ethyl, t-Bu or a benzyl radical can be used as the alcoholic component R ', by two successive reactions with corresponding electrophiles in a 2, 2-disubstituted malonic acid diester (LIX).
  • LIX 2, 2-disubstituted malonic acid diester
  • the malonic acid diester can first be in the presence of a base such as sodium hydride, triethylamine, potassium carbonate, sodium hydroxide, DABCO, potassium hydroxide, lithium diisopropylamide or sodium amide, preferably sodium hydride, with a corresponding electrophile such as a corresponding halide, tosylate, mesylate or triflate, for example a halide such as ⁇ -chlorine or ⁇ - Bromocarboxylic acid esters, for example methyl bromoacetate, are reacted in a solvent such as dioxane at temperatures from 0 to 50.degree.
  • a second step the monosubstituted malonic acid diester derivative thus obtained can be reacted with a corresponding electrophile such as a corresponding halide, tosylate, mesylate or triflate, for example a 2-
  • Halogenobyl derivative such as methyl 2- (bromomethyl) benzoate, in the presence of a base such as sodium hydride, triethylamine, potassium carbonate, sodium hydroxide, DABCO, potassium hydroxide, lithium diisopropylamide or sodium amide, preferably sodium hydride, in a solvent such as dimethylformamide at temperatures from 0 to 50 ° C. become.
  • a base such as sodium hydride, triethylamine, potassium carbonate, sodium hydroxide, DABCO, potassium hydroxide, lithium diisopropylamide or sodium amide, preferably sodium hydride
  • a solvent such as dimethylformamide
  • the 2,2-disubstituted malonic diester derivative (LIX) thus obtained can be reacted with an acid such as hydrochloric acid, sulfuric acid or
  • Trifluoroacetic acid or by reaction with a base such as potassium hydroxide, sodium hydroxide or lithium hydroxide, or by a palladium-catalyzed reaction such as, for example, with formic acid in the presence of a Pd catalyst, preferably a Pd (II) catalyst such as palladium (II) acetate, and a phosphine such as triphenylphosphine and a base such as an amine, preferably a Pd catalyst, preferably a Pd (II) catalyst such as palladium (II) acetate, and a phosphine such as triphenylphosphine and a base such as an amine, preferably
  • Triethylamine in a solvent such as dioxane at temperatures from 20 to 120 ° C by ester cleavage and subsequent decarboxylation at elevated temperatures in the carboxylic acid derivatives (LX).
  • the carboxylic acid derivatives (LX) can in turn be converted to the alcohols (LXI) by reduction with conventional reducing agents such as, for example, diisobutylaluminum hydride (DIBAL), lithium aluminum hydride or borohydrides such as borane in tetrahydrofuran.
  • DIBAL diisobutylaluminum hydride
  • borohydrides such as borane in tetrahydrofuran.
  • the alcohols (LXI) can finally with conventional mild oxidizing agents such as Cr (VI) compounds such as PDC or PCC, potassium permanganate, Dimethyl sulfoxide / oxalyl chloride triethalmin (Swern oxidation) or tetrapropylammonium perruthenate (TPAP) in the presence of a base such as N-methylmorpholine oxide and molecular sieve or by the Dess-Martin oxidation to the aldehydes (LXII).
  • conventional mild oxidizing agents such as Cr (VI) compounds such as PDC or PCC, potassium permanganate, Dimethyl sulfoxide / oxalyl chloride triethalmin (Swern oxidation) or tetrapropylammonium perruthenate (TPAP)
  • a base such as N-methylmorpholine oxide and molecular sieve
  • Dess-Martin oxidation to the aldehydes (LXII).
  • Amides or sulfonamides are preferably prepared from selectively saponifiable ester precursors.
  • the selectively released carboxylic acid group can then be reacted with an aryl, alkyl or sulfonamide in the presence of a diimide such as dicyclohexane carbodiimide in an inert solvent.
  • the selectively released carboxylic acid group can be activated, for example, by reaction with diphenyl-poshynyl chloride and then reacted with an appropriate amine to give the desired amide.
  • the compounds of the formula (I) can also be prepared by reacting corresponding aldehydes (II) with 2-hydroxybenzyltriphenylphosphonium compounds to give the alkenes (LXIII) and then building up the side chain.
  • the introductory Wittig reaction can, for example, in an inert gas atmosphere such as argon in a solvent such as tetrahydrofuran
  • the compounds of the formula (LXIII) thus obtainable can be reacted with compounds (LXTV) which contain a leaving group X ', for example a halogen atom, preferably a chlorine, bromine or iodine atom, or a tosylate, mesylate or triflate group
  • a base such as potassium carbonate or cesium carbonate in a solvent such as acetonitrile
  • the compounds of the formula (LXV) can be hydrogenated analogously to process H to give compounds of the formula (LXVI).
  • the double bond can preferably first be hydrogenated analogously to process H and then the reaction can take place on the free hydroxyl group.
  • the compounds according to the invention can also be prepared by a further process.
  • R ', R 2 , T, V and n have the meanings given above,
  • R 2 , TV, X, A, n and o have the meanings given above,
  • R 1 , R 2 , R 3 , TV, X, Y, A, B, n and o have the meanings given above,
  • the aldehydes of the formula (LXVII) can be obtained, for example, from the alcohols used as intermediates in processes A and B by conventional oxidation reactions known to the person skilled in the art (see, for example, J. March, Advanced organic Chemistry, 3, rad ed., S. 1057 ff, Wiley).
  • the phosphorus compounds of the formula (LXIII) can be prepared, for example, by reacting alkanedicarboxylic acid derivatives, for example the corresponding monoesters, with phosphonoacetic acid derivatives, for example the corresponding diesters. But it is also possible the synthesis of phosphites such as triethyl phosphite with corresponding ⁇ -Halogenketonderivaten (Arbuzov Rkt. See for example, J. March, Advanced Organic Chemistry, 3 rd ed., P 848 ff, Wiley).
  • the reaction of the compounds of the formula (LXVII) with compounds of the formula (LXVIII) takes place in the presence of bases such as alkali metal hydrides, for example sodium hydride, alkali metal alcoholates, for example potassium t-butoxide, or in Presence of salts such as MgCl 2 and bases such as amines, for example triethylamine, or the Hünig base.
  • bases such as alkali metal hydrides, for example sodium hydride, alkali metal alcoholates, for example potassium t-butoxide, or in Presence of salts such as MgCl 2 and bases such as amines, for example triethylamine, or the Hünig base.
  • the reaction is preferably carried out in organic solvents, particularly preferably in tetrahydrofuran, at room temperature or with gentle heating.
  • the reaction is preferably carried out in organic solvents such as alcohols such as methanol with cooling.
  • the olefinic double bond of the hydroxy compounds thus obtained can be hydrogenated by conventional processes known to the person skilled in the art (cf. e.g. J.
  • the introduction of the additional side chain can be done in several ways.
  • the hydroxy compound can be reacted with corresponding alcohols, phenols or thiols under Mitsunobu conditions (cf. O. Mitsunobu, Synthesis, 1981, 1-28).
  • the hydroxyl group can also first be converted into a leaving group, which is then replaced by appropriate alcohols, phenols or thiols in the presence of a base such as DABCO,
  • Triethylamine, NaH, NaOH, KOH, LDA, sodium amide or particularly preferably potassium carbonate can be substituted.
  • preferred leaving groups are halogen radicals such as Cl, Br or I, which can be introduced by reacting the hydroxy compound with, for example, SOCl 2 , SOBr, POCl 3 , PC1 3 , PC1 5 , PBr 3 etc., the tosylate radical which, for example, by reaction with
  • the compounds according to the invention lead to vascular relaxation, platelet aggregation inhibition and to a reduction in blood pressure and to an increase in the coronary
  • cardiovascular diseases such as, for example, for the treatment of high blood pressure and heart failure, stable and unstable angina pectoris, peripheral and cardiac vascular diseases, of arrhythmias, for the treatment of thromboembolic diseases and ischemia such as myocardial infarction, stroke, transistoristic and Ischemic attacks, peripheral circulatory disorders, prevention of restenoses such as after thrombolysis therapies, percutaneous transluminal angioplasties (PTA), percutaneous transluminal coronary angioplasties (PTCA), bypass and for the treatment of arteriosclerosis, fibrotic diseases such as liver fibrosis and diseases of the fibroids and pulmonary fibrosis, such as a progeny of the fibroids and pulmonary fibrosis, such as a desease of the fibroids or pulmonary fibrosis, such as a progeny of the fibroids or lung fibrosis, such as a disease of the fibroids or asthma , erectile dysfunction, female sexual dysfunction and incontinence as
  • the compounds described in the present invention are also active compounds for combating diseases in the central nervous system which are characterized by disorders of the NO / cGMP system.
  • diseases of the central nervous system such as anxiety, tension and depression, central nervous system-related sexual dysfunctions and sleep disorders, as well as for the regulation of pathological disorders in the intake of food, beverages and addictive substances.
  • the active ingredients are also suitable for regulating cerebral blood flow and are therefore effective means of combating migraines.
  • the compounds according to the invention in particular the compounds of the general formula (I), can likewise be used to combat painful conditions.
  • the compounds according to the invention have anti-inflammatory activity and can therefore be used as anti-inflammatory agents.
  • Rabbits are anesthetized or killed by intravenous injection of thiopental sodium (approx. 50 mg / kg) and exsanguinated.
  • the saphenous artery is removed and divided into 3 mm wide rings.
  • the rings are individually mounted on a triangular pair of hooks made of 0.3 mm special wire (Remanium®) that is open at the end.
  • Each ring is placed in 5 ml organ baths with 37 ° C warm, carbogen-gassed Krebs-Henseleit solution of the following composition (mM): NaCl: 119; KC1: 4.8; CaCl 2 x 2 H 2 O: 1; MgSO 4 x 7 H 2 O: 1.4; KH 2 PO 4 : 1.2; NaHCO3: 25; Glucose: 10; Bovine serum albumin: 0.001%.
  • the contraction force is recorded with Statham UC2 cells, amplified and digitized via A / D converter (DAS-1802 HC, Keithley Instruments Munich), and recorded in parallel on line recorders. Contractions are induced by adding phenylephrine.
  • the substance to be examined is added in increasing doses in each further run and the level of the contraction achieved under the influence of the test substance is compared with the level of the contraction calibrated in the last previous run. From this, the concentration is calculated which is required to reduce the contraction calibrated in the pre-control to 50% (IC 50 ).
  • the standard application volume is 5 ⁇ l.
  • the DMSO percentage in the bath solution corresponds to 0.1%.
  • Stasch Purified soluble guanylyl cyclase expressed in a baculovirus / Sf9 System: Stimulation by YC-1, nitric oxide, and carbon oxide. J. Mol. Med. 77: 14-23 (1999).
  • the heme-free guanylate cyclase was obtained by adding Tween 20 to the sample buffer (0.5% o in the final concentration).
  • the present invention includes pharmaceutical preparations which, in addition to non-toxic, inert pharmaceutically suitable excipients, include the inventive
  • the active ingredient can optionally also be present in microencapsulated form in one or more of the carriers mentioned above.
  • the therapeutically active compounds in particular the compounds of the general formula (I), should be used in the pharmaceutical preparations listed above. lines in a concentration of about 0.1 to 99.5, preferably from about 0.5 to 95 wt .-%, of the total mixture.
  • the pharmaceutical preparations listed above can also contain further active pharmaceutical ingredients.
  • the active ingredient (s) according to the invention in total amounts of about 0.5 to about 500, preferably 5 to 100 mg / kg body weight per 24
  • a single dose contains the active ingredient (s) according to the invention preferably in amounts of about 1 to about 80, in particular 3 to 30 mg / kg of body weight.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Verbindungen der Formel (I) sowie deren Salze und Stereoisomere, zur Herstellung von Arzneimitteln zur Behandlung von Herz-Kreislauf-Erkrankungen.

Description

Dicarbonsäurederivate mit neuartigen pharmazeutischen Eigenschaften
Die vorliegende Erfindung betrifft neue chemische Verbindungen, welche die lösliche Guanylatcyclase auch über einen neuartigen, ohne Beteiligung der Häm-Gruppe des Enzyms verlaufenden Wirkmechanismus stimulieren, ihre Herstellung und ihre
Verwendung als Arzneimittel, insbesondere als Arzneimittel zur Behandlung von Herz- Kreislauf-Erkrankungen.
Eines der wichtigsten zellulären Übertragungssysteme in Säugerzellen ist das cyclische Guanosinmonophosphat (cGMP). Zusammen mit Stickstoffmonoxid (NO), das aus dem Endothel freigesetzt wird und hormonelle und mechanische Signale überträgt, bildet es das NO/cGMP-System. Die Guanylatcyclasen katalysieren die Biosynthese von cGMP aus Guanosintriposphat (GTP). Die bisher bekannten Vertreter dieser Familie lassen sich sowohl nach strukturellen Merkmalen als auch nach der Art der Liganden in zwei Gruppen aufteilen: Die partikulären, durch natriure- tische Peptide stimulierbaren Guanylatcyclasen und die löslichen, durch NO stimulierbaren Guanylatcyclasen. Die löslichen Guanylatcyclasen bestehen aus zwei Untereinheiten und enthalten höchstwahrscheinlich ein Häm pro Heterodimer, das ein Teil des regulatorischen Zentrums ist. Dieses hat eine zentrale Bedeutung für den Aktivierungsmechanismus. NO kann an das Eisenatom des Häms binden und so die
Aktivität des Enzyms deutlich erhöhen. Hämfreie Präparationen lassen sich hingegen nicht durch NO stimulieren. Auch CO ist in der Lage, am Eisen-Zentralatom des Häms anzugreifen, wobei die Stimulierung durch CO deutlich geringer ist als die durch NO.
Durch die Bildung von cGMP und der daraus resultierenden Regulation von Phosphodiesterasen, Ionenkanälen und Proteinkinasen spielt die Guanylatcyclase eine entscheidende Rolle bei unterschiedlichen physiologischen Prozessen, insbesondere bei der Relaxation und Proliferation glatter Muskelzellen, der Plättchen- aggregation und -adhäsion und der neuronalen Signalübertragung sowie bei
Erkrankungen, welche auf einer Störung der vorstehend genannten Vorgänge beruhen. Unter pathophysiologischen Bedingungen kann das NO/cGMP-System supprimiert sein, was zum Beispiel zu Bluthochdruck, einer Plättchenaktivierung, einer vermehrten Zellproliferation, endothelialer Dysfunktion, Atherosklerose, Angina pectoris, Herzinsuffizienz, Thrombosen, Schlaganfall und Myokardinfarkt führen kann.
Eine auf die Beeinflussung des cGMP-Signalweges in Organismen abzielende NO- unabhängige Behandlungsmöglichkeit für derartige Erkrankungen ist aufgrund der zu erwartenden hohen Effizienz und geringen Nebenwirkungen ein vielversprechender Ansatz.
Zur therapeutischen Stimulation der löslichen Guanylatcyclase wurden bisher ausschließlich Verbindungen wie organische Nitrate verwendet, deren Wirkung auf NO beruht. Dieses wird durch Biokonversion gebildet und aktiviert die lösliche Guany- latcyclase durch Angriffe am Eisenzentralatom des Häms. Neben den Nebenwirkungen gehört die Toleranzentwicklung zu den entscheidenden Nachteilen dieser Behandlungsweise.
In den letzten Jahren wurden einige Substanzen beschrieben, die die lösliche Guanylatcyclase direkt, d.h. ohne vorherige Freisetzung von NO stimulieren, wie beispielsweise 3-(5'-Hydroxymethyl-2'-furyl)-l-benzylindazol (YC-1, Wu et al., Blood 84 (1994), 4226; Mülsch et al., Br.J.Pharmacol. 120 (1997), 681), Fettsäuren (Goldberg et al, J. Biol. Chem. 252 (1977), 1279), Diphenyliodonium-hexafluoro- phosphat (Pettibone et al., Eur. J. Pharmacol. 116 (1985), 307), Isoliquiritigenin (Yu et al., Brit. J. Pharmacol. 114 (1995), 1587), sowie verschiedene substituierte Pyra- zolderivate (WO 98/16223, WO 98/16507 und WO 98/23619).
Die bisher bekannten Stimulatoren der löslichen Guanylatcyclase stimulieren das Enzym entweder direkt über die Häm-Gruppe (Kohlenmonoxid, Stickstoffmonoxid oder Diphenyliodoniumhexafluorophosphat) durch Interaktion mit dem Eisenzentrum der Häm-Gruppe und eine sich daraus ergebende, zur Erhöhung der Enzym- aktivität führende Konformationsänderung (Gerzer et al., FEBS Lett. 132(1981), 71), oder über einen Häm-abhängigen Mechanismus, der unabhängig von NO ist, aber zu einer Potenzierung der stimulierenden Wirkung von NO oder CO führt (z.B. YC-1, Hoenicka et al., J. Mol. Med. (1999) 14; oder die in der WO 98/16223, WO 98/16507 und WO 98/23619 beschriebenen Pyrazolderivate).
Die in der Literatur behauptete stimulierende Wirkung von Isoliquiritigenin und von Fettsäuren, wie z. B. Arachidonsäure, Prostaglandinendoperoxide und Fettsäurehydroperoxide auf die lösliche Guanylatcyclase konnte nicht bestätigt werden (vgl. z.B. Hoenicka et al., J. Mol. Med. 77 (1999), 14).
Entfernt man von der löslichen Guanylatcyclase die Häm-Gruppe, zeigt das Enzym immer noch eine nachweisbare katalytische Basalaktivität, d.h. es wird nach wie vor cGMP gebildet. Die verbleibende katalytische Basalaktivität des Häm-freien Enzyms ist durch keinen der vorstehend genannten bekannten Stimulatoren stimulierbar.
Es wurde eine Stimulation von Häm-freier löslicher Guanylatcyclase durch Proto- porphyrin IX beschrieben (Ignarro et al., Adv. Pharmacol. 26 (1994), 35). Allerdings kann Protoporphyrin IX als Mimik für das NO-Häm-Addukt angesehen werden, weshalb die Zugabe von Protoporphyrin IX zur löslichen Guanylatcyclase zur
Bildung einer der durch NO stimulierten Häm-haltigen löslichen Guanylatcyclase entsprechenden Struktur des Enzyms führen dürfte. Dies wird auch durch die Tatsache belegt, daß die stimulierende Wirkung von Protoporphyrin IX durch den vorstehend beschriebenen NO-unabhängigen, aber Häm-abhängigen Stimulator YC-1 erhöht wird (Mülsch et al., Naunyn Schmiedebergs Arch. Pharmacol. 355, R47 ).
Bislang wurden somit keine Verbindungen beschrieben, welche die lösliche Guanylatcyclase unabhängig von der im Enzym befindlichen Häm-Gruppe stimulieren können. Es war die Aufgabe der vorliegenden Erfindung, Arzneimittel zur Behandlung von Herz-Kreislauferkrankungen oder anderen über eine Beeinflussung des cGMP- Signalweges in Organismen therapierbaren Erkrankungen zu entwickeln.
Die vorstehende Aufgabe wird durch die Verwendung von Verbindungen zur Herstellung von Arzneimitteln gelöst, welche in der Lage sind, die lösliche Guanylatcyclase auch unabhängig von NO und von der im Enzym befindlichen Häm- Gruppe zu stimulieren.
Überraschend wurde gefunden, daß es Verbindungen gibt, welche die lösliche
Guanylatcyclase auch unabhängig von der im Enzym befindlichen Häm-Gruppe stimulieren können. Die biologische Aktivität dieser Stimulatoren beruht auf einem völlig neuen Mechanismus der Stimulierung der löslichen Guanylatcyclase. Im Gegensatz zu den vorstehend beschriebenen, aus dem Stand der Technik als Stimulatoren der löslichen Guanylatcyclase bekannten Verbindungen sind die erfindungsgemäßen Verbindungen in der Lage, sowohl die Häm-haltige als auch die Häm-freie Form der löslichen Guanylatcyclase zu stimulieren. Die Stimulierung des Enzyms verläuft bei diesen neuen Stimulatoren also über einen Häm-unabhängigen Weg, was auch dadurch belegt wird, daß die neuen Stimulatoren am Häm-haltigen Enzym einerseits keine synergistische Wirkung mit NO zeigen und andererseits sich die Wirkung dieser neuartigen Stimulatoren nicht durch den Häm-abhängigen Inhibitor der löslichen Guanylatcyclase, lH-l,2,4-Oxadiazol-(4,3a)-chinoxalin-l-on (ODQ), blockieren läßt.
Dies stellt einen neuen Therapieansatz zur Behandlung von Ηerz-Kreislauferkran- kungen und anderen über eine Beeinflussung des cGMP-Signalweges in Organismen therapierbaren Erkrankungen dar.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung werden zur von der im Enzym befindlichen Ηäm-Gruppe unabhängigen Stimulation der lös- liehen Guanylatcyclase Alkan- oder Alkensäurederivate eingesetzt, welche aus der EP-A-0 341 551 bekannt sind.
In der EP-A-0 341 551 sind Alkan- und Alkensäurederivate wie beispielsweise (1) beschrieben, die potente Leukotrien-Antagonisten sind und daher beispielsweise als
Medikamente zur Behandlung von Asthma oder Durchblutungsstörungen geeignet sind (S. 18, Z. 56-58). Eine stimulierende Wirkung dieser Verbindungen auf die lösliche Guanylatcyclase und die sich daraus ergebende Verwendung dieser Verbindungen zur Herstellung von Arzneimitteln, welche den cGMP-Signalweg beein- flussen können, ist j edoch nicht beschrieben.
Figure imgf000006_0001
In der EP-A-0 410 241 sind weitere Alkan- und Alkensäurederivate wie bei- spielsweise (2) mit LTD4-, LTC4- oder LTE4-antagonistischer Wirkung beschrieben.
Figure imgf000006_0002
In der EP-A-0 494 621 sind schwefelhaltige Alkensäurederivate wie beispielsweise (3) beschrieben, welche bei allergischen Erkrankungen, Entzündungen und Herz- Kreislauf-Erkrankungen eingesetzt werden können.
Figure imgf000007_0001
In der EP-A-0 791 576 sind Benzoesäurederivate wie beispielsweise (4) beschrieben, welche zur Behandlung von Atemwegserkrankungen verwendet werden können.
Figure imgf000007_0002
Es ist jedoch nicht beschrieben, daß irgendeine der vorstehend genannten, aus dem Stand der Technik bekannten Verbindungen eine stimulierende Wirkung auf die lösliche Guanylatcyclase besitzt und somit zur Behandlung von Erkrankungen eingesetzt werden könnte, welche durch Beeinflussung des cGMP-Spiegels therapierbar sind.
Die vorliegende Erfindung betrifft die Verwendung von Verbindungen der Formel (I)
Figure imgf000008_0001
woπn
V fehlt oder O bedeutet,
n eine ganze Zahl von 1 bis 10 bedeutet,
T fehlt oder O bedeutet,
R Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 12 Kohlenstoffatomen,
Halogen, CF3, OCF3, CN oder NO2 bedeutet,
m eine ganze Zahl von 0 bis 7 bedeutet,
R Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 12 Kohlenstoffatomen, Halogen, CF3, OCF3, CN oder NO2 bedeutet,
W CH2CH2 oder CH=CH bedeutet,
X fehlt, geradkettiges oder verzweigtes Alkylen mit bis zu 6
Kohlenstoffatomen, O, SCH2 oder S(O)p bedeutet, worin
p 0, 1 oder 2 bedeutet eine ganze Zahl von 1 bis 5 bedeutet
A Tetrazolyl, Tetrazolylmethylen, COOH, CH2COOH, COOR\
CH^OOR ( 5 3, CONR 6°πR7' oder CN bedeutet,
woπn
R4 und R5 unabhängig voneinander geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,
R6 und R7 unabhängig voneinander Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylsulfonyl mit bis zu 12 Kohlenstoffatomen, Arylsulfonyl mit 6 bis 12 Kohlenstoffatomen bedeuten, oder
R6 und R7 zusammen mit dem Stickstoffatom, an welches sie gebunden sind, einen gesättigten Heterocyclus bilden
Y fehlt, geradkettiges oder verzweigtes Alkylen mit bis zu 6 Kohlenstoffatomen, O, SCH2 oder S(O)q bedeutet,
worin
q 0, 1 oder 2 bedeutet
B Tetrazolyl, Tetrazolylmethylen, COOH, CH2COOH, COOR8, CH2COOR9, CONR10R' ' oder CN bedeutet, woπn
R8 und R9 unabhängig voneinander geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,
R10 und Rπ unabhängig voneinander Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylsulfonyl mit bis zu 12 Kohlenstoffatomen, Arylsulfonyl mit 6 bis 12 Kohlenstoffatomen bedeuten, oder
R10 und Ru zusammen mit dem Stickstoffatom, an welches sie gebunden sind, einen gesättigten Heterocyclus bilden,
R » 3 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 12 Kohlenstoffatomen, Halogen, CF3, OCF3, CN oder NO2 bedeutet, sowie deren Salze und Stereoisomere, zur Herstellung von Arzneimitteln zur Behandlung von Herz-Kreislauf-Erkrankungen.
Gemäß einer besonders bevorzugten Ausführungsform werden zur Stimulierung der löslichen Guanylatcyclase Verbindungen der Formel (I) verwendet, bei denen
V fehlt oder O bedeutet,
n eine ganze Zahl von 1 bis 6 bedeutet,
T fehlt oder O bedeutet, R1 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F, Cl, Br, I, oder CF3 bedeutet,
m 0 oder 1 bedeutet,
R2 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F, Cl, Br, I oder CF3 bedeutet,
W CH2CH2 oder CH=CH bedeutet,
X fehlt, O oder S(O)p bedeutet,
worin
p 0, 1 oder 2 bedeutet
o eine ganze Zahl von 1 bis 5 bedeutet
A COOH oder COOR4 bedeutet,
worin
R4 geradkettiges oder verzweigtes Alkyl mit bis zu 4
Kohlenstoffatomen bedeuten,
Y fehlt, geradkettiges oder verzweigtes Alkylen mit bis zu 4 Kohlenstoffatomen, O, SCH2 oder S(O)q bedeutet,
worin 0, 1 oder 2 bedeutet
B COOH oder COOR8 bedeutet,
woπn
R geradkettiges oder verzweigtes Alkyl mit bis zu 4
Kohlenstoffatomen bedeuten,
R , 3 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F, Cl, Br, I oder CF3 bedeutet.
Insbesondere bevorzugt sind hierbei Verbindungen der Formel (I), worin
V fehlt oder O bedeutet,
n eine ganze Zahl von 1 bis 6 bedeutet,
T fehlt oder O bedeutet.
R1 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F, Cl, Br, I, oder CF3 bedeutet,
m 0 oder 1 bedeutet,
R Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F,
Cl, Br, I oder CF3 bedeutet, W CH2CH2 oder CH=CH bedeutet,
X fehlt, O oder S(O)p bedeutet,
worin
p 0, 1 oder 2 bedeutet
o eine ganze Zahl von 1 bis 5 bedeutet
A COOH bedeutet,
Y fehlt, geradkettiges oder verzweigtes Alkylen mit bis zu 4 Kohlenstoffatomen, O, SCH2 oder S(O)q bedeutet,
worin
q 0, 1 oder 2 bedeutet
B COOH bedeutet,
R3 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F, Cl, Br, I oder CF3 bedeutet.
Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) können auch in Form ihrer Salze vorliegen. Im allgemeinen seien hier Salze mit organischen oder anorganischen Basen oder Säuren genannt.
Im Rahmen der vorliegenden Erfindung werden physiologisch unbedenkliche Salze bevorzugt. Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z.B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethan- sulfonsäure, p-Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essig- säure, Propionsäure, Milchsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure oder Benzoesäure.
Physiologisch unbedenkliche Salze können ebenso Metall- oder Ammoniumsalze der erfindungsgemäßen Verbindungen sein, welche eine freie Carboxylgruppe besitzen. Besonders bevorzugt sind z.B. Natrium-, Kalium-, Magnesium- oder Calciumsalze, sowie Ammoniumsalze, die abgeleitet sind von Ammoniak, oder organischen Aminen wie beispielsweise Ethylamin, Di- bzw. Triethylamin, Di- bzw. Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Arginin, Lysin oder Ethylendiamin.
Die erfindungsgemäßen Verbindungen können in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere), oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren als auch deren jeweilige Mischungen. Die Racem- formen lassen sich ebenso wie die Diastereomeren in bekannter Weise, beispielsweise durch chromatographische Trennung, in die stereoisomer einheitlichen Bestandteile trennen. In den erfindungsgemäßen Verbindungen vorhandene Doppelbindungen können in der eis- oder trans- Konfiguration (Z- oder E-Form) vorliegen.
Im Rahmen der vorliegenden Erfindung haben die Substituenten soweit nicht anders angegeben im allgemeinen die folgende Bedeutung:
Alkyl steht im allgemeinen für einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen. Beispielsweise seien Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Hexyl, Isohexyl, Heptyl, Isoheptyl, Octyl und Isooctyl, Nonyl, Decyl, Dodeyl, Eicosyl genannt. Alkylen steht im allgemeinen für eine geradkettige oder verzweigte Kohlenwasserstoffbrücke mit 1 bis 20 Kohlenstoffatomen. Beispielsweise seien Methylen, Ethylen, Propylen, α-Methylethylen, ß-Methylethylen, α-Ethylethylen, ß- Ethylethylen, Butylen, α-Methylpropylen, ß-Methylpropylen, γ-Methylpropylen, α- Ethylpropylen, ß-Ethylpropylen, γ-Ethylpropylen, Pentylen, Hexylen, Heptylen,
Octylen, Nonylen, Decylen, Dodeylen und Eicosylen genannt.
Alkenyl steht im allgemeinen für einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit 2 bis 20 Kohlenstoffatomen und einer oder mehreren, bevorzugt mit einer oder zwei Doppelbindungen. Beispielsweise seien Allyl, Propenyl,
Isopropenyl, Butenyl, Isobutenyl, Pentenyl, Isopentenyl, Hexenyl, Isohexenyl, Heptenyl, Isoheptenyl, Octenyl, Isooctenyl genannt.
Alkinyl steht im allgemeinen für einen geradkettigen oder verzweigten Kohlen- wasserstoffrest mit 2 bis 20 Kohlenstoffatomen und einer oder mehreren, bevorzugt mit einer oder zwei Dreifachbindungen. Beispielsweise seien Ethinyl, 2-Butinyl, 2- Pentinyl und 2-Hexinyl benannt.
Acyl steht im allgemeinen für geradkettiges oder verzweigtes Niedrigalkyl mit 1 bis 9 Kohlenstoffatomen, das über eine Carbonylgruppe gebunden ist. Beispielsweise seien genannt: Acetyl, Ethylcarbonyl, Propylcarbonyl, Isopropylcarbonyl, Butyl- carbonyl und Isobutylcarbonyl.
Alkoxy steht im allgemeinen für einen über einen Sauerstoffatom gebundenen gerad- kettigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 14 Kohlenstoffatomen.
Beispielsweise seien Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, Pentoxy Isopentoxy, Hexoxy, Isohexoxy, Heptoxy, Isoheptoxy, Octoxy oder Iso- octoxy genannt. Die Begriffe "Alkoxy" und "Alkyloxy" werden synonym verwendet.
Alkoxyalkyl steht im allgemeinen für einen Alkylrest mit bis zu 8 Kohlenstoffatomen, der durch einen Alkoxyrest mit bis zu 8 Kohlenstoffatomen substituiert ist. Alkoxycarbonyl kann beispielsweise durch die Formel
-C— OAlkyl
II O dargestellt werden.
Alkyl steht hierbei im allgemeinen für einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit 1 bis 13 Kohlenstoffatomen. Beispielsweise seien die folgenden Alkoxycarbonylreste genannt: Methoxycarbonyl, Ethoxycarbonyl, Propoxy- carbonyl, Isopropoxycarbonyl, Butoxycarbonyl oder Isobutoxycarbonyl.
Cycloalkyl steht im allgemeinen für einen cyclischen Kohlenwasserstoffrest mit 3 bis 8 Kohlenstoffatomen. Bevorzugt sind Cyclopropyl, Cyclopentyl und Cyclohexyl. Beispielsweise seien Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl genannt.
Cycloalkoxy steht im Rahmen der Erfindung für einen Alkoxyrest, dessen Kohlenwasserstoffrest ein Cycloalkylrest ist. Der Cycloalkylrest hat im allgemeinen bis zu 8 Kohlenstoffatome. Als Beispiele seien genannt: Cyclopropyloxy und Cyclohexyloxy. Die Begriffe "Cycloalkoxy" und "Cycloalkyloxy" werden synonym verwendet.
Aryl steht im allgemeinen für einen aromatischen Rest mit 6 bis 10 Kohlenstoffatomen. Bevorzugte Arylreste sind Phenyl und Naphthyl.
Halogen steht im Rahmen der Erfindung für Fluor, Chlor, Brom und Iod.
Heterocyclus steht im Rahmen der Erfindung im allgemeinen für einen gesättigten, ungesättigten oder aromatischen 3- bis 10-gliedrigen, beispielsweise 5- oder 6-gliedri- gen Heterocyclus, der bis zu 3 Heteroatome aus der Reihe S, N und/oder O enthalten kann und der im Fall eines Stickstoffatoms auch über dieses gebunden sein kann. Beispielsweise seien genannt: Oxadiazolyl, Thiadiazolyl, Pyrazolyl, Pyridyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Thienyl, Furyl, Pyrrolyl, Pyrrolidinyl, Piperazinyl, Tetrahydropyranyl, Tetrahydrofuranyl, 1,2,3 Triazolyl, Thiazolyl, Oxazolyl, Imidazolyl, Morpholinyl oder Piperidyl. Bevorzugt sind Thiazolyl, Furyl, Oxazolyl, Pyrazolyl, Triazolyl, Pyridyl, Pyrimidinyl, Pyridazinyl und Tetrahydropyranyl. Der Begriff "Heteroaryl" (bzw. "Hetaryl") steht für einen aromatischen heterocyclischen Rest.
Die Verbindungen der Formel (I) können wie in der EP-A-0 341 551 beschrieben hergestellt werden. So werden die Verbindungen der Formel (I)
Figure imgf000017_0001
woπn
R1, R2, R3, A,B, T, V, W, X, Y, m, n und o die vorstehend angegebene
Bedeutung haben,
umfassend die Umsetzung von Aldehyden der allgemeinen Formel (II)
Figure imgf000017_0002
woπn R , A, B, X, Y und o die vorstehend angegebene Bedeutung haben, mit der Maßgabe, daß A und B nicht für freie Carbonsäuregruppen stehen dürfen,
sphorverbindungen der allgemeinen Formel (III)
Figure imgf000018_0001
(CH2)n
Figure imgf000018_0002
woπn
R , ι', Rz, T, V, m und n die vorstehend angegebenen Bedeutungen haben,
1 oder 2 bedeutet, und
U für einen Rest der Formel
Figure imgf000018_0003
steht, worin R12 und R13 unabhängig voneinander geradkettiges oder verzweigtes Alkyl mit bis zu 12 Kohlenstoffatomen oder Phenyl bedeuten, und
Z ein Halogenidanion oder Tosylatanion bedeutet,
in inerten Lösungsmitteln in Gegenwart einer Base,
und gegebenenfalls die anschließende teilweise oder vollständige Hydrolyse der Reste A und B zu freien Carbonsäuregruppen.
Gemäß der vorliegenden Erfindung bedeutet Z bevorzugt ein Halogenidanion, insbesondere bevorzugt Chlorid, Bromid oder Iodid.
Gemäß der vorliegenden Erfindung erfolgt die gegebenenfalls durchzuführende teilweise oder vollständige Hydrolyse zu den entsprechenden freien Carbonsäuregruppen vorzugsweise mit starken Säuren wie z.B. HCl oder mit starken Basen wie z.B. NaOH oder LiOH, die in wäßriger Lösung oder Lösungsmittelgemischen aus Wasser mit Alkoholen wie z.B. Methanol oder Ethern vorliegen.
Für das erfindungsgemäße Verfahren bevorzugte inerte Lösungsmittel sind herkömmliche organische Lösungsmittel, welche sich unter den Reaktionsbedingungen nicht verändern. Vorzugsweise können für das erfindungsgemäße Verfahren Ether wie Diethylether, Butylmethylether, Dioxan, Tetrahydrofüran, Glykoldimethylether oder Diethylenglykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol,
Xylol oder Petrolether, oder Amide wie Dimethylformamid oder Hexamethyl- phosphortriamid, oder l,3-Dimethyl-imidazolidin-2-on, 1,3-Dimethyl-tetrahydro- pyrimidin-2-on oder Dimethylsulfoxid verwendet werden. Es ist selbstverständlich auch möglich, Gemische der vorstehend genannten Lösungsmittel zu verwenden. Für das erfindungsgemäße Verfahren bevorzugte Basen umfassen herkömmlicherweise für basische Reaktionen eingesetzte basische Verbindungen. Vorzugsweise können Alkalimetallhydride wie beispielsweise Natriumhydrid oder Kaliumhydrid, oder Alkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kalium- methanolat, Kaliumethanolat oder Kalium-t.-butylat, oder Amide wie Natriumamid oder Lithiumdiisopropylamid oder Natriumhexamethyldisilazan, oder Organo- lithium-Verbindungen wie Phenyllithium, Butyllithium oder Methyllithium verwendet werden. Gegebenenfalls kann beim erfindungsgemäßen Verfahren zur Optimierung der Reaktion ein herkömmlicher Kronenether wie 18-Krone-6 zugegeben werden.
Die Wahl des Lösungsmittels oder Base hängt von der Stabilität, Empfindlichkeit gegenüber Hydrolyse oder der CH- Aktivität der entsprechenden Phosphorverbindung ab. Ether wie Diethylether, Tetrahydrofuran, Dimethoxyethan oder Dioxan, zusammen mit einem Co-Lösungsmittel wie Dimethylformamid oder 1,3-Dimethyltetrahy- dropyridin-2-on oder l,3-Dimethylimidazolidin-2-on, werden als Lösungsmittel be- sonders bevorzugt verwendet. Alkalimetallalkoholate wie Kalium-t.-butylat oder Or- ganolithiumverbindungen wie Phenyllithum oder Butyllithium oder Natriumhydrid werden als Basen besonders bevorzugt verwendet.
Die Reaktion kann im allgemeinen in einem Temperaturbereich von -80°C bis +70°C, vorzugsweise von -80°C bis +20°C ausgeführt werden.
Die Reaktion kann bei Normaldruck, erhöhtem oder verringertem Druck ausgeführt werden (beispielsweise in einem Bereich von 0,5 bis 5 bar). Im allgemeinen wird die Reaktion bei Normaldruck ausgeführt.
Bei der Durchführung der Reaktion werden die Phosphorverbindungen im allgemeinen in einer Menge von 1 - 2 mol, bezogen auf 1 mol Aldehyd eingesetzt. Die Basen werden im allgemeinen in einer Menge von 1 - 5 mol, vorzugsweise von 1 -2 mol, bezogen auf 1 mol Phosphorverbindung eingesetzt. Das erfindungsgemäße Verfahren kann beispielsweise durchgeführt werden, indem die Base und anschließend das Aldehyd, gegebenenfalls in einem Lösungsmittel, zu der in einem Lösungsmittel gelösten oder suspendierten Phosphorverbindung zugegeben werden, und anschließend gegebenenfalls das Gemisch erhitzt wird. Die Aufarbeitung erfolgt auf herkömmliche Weise, durch Extraktion, Chromatographie und/oder Kristallisation. Bei der Durchführung des erfindungsgemäßen Verfahrens ist es ebenfalls möglich, anstelle der vorstehend genannten Phosphoniumsalze die entsprechenden Phosphorane (U ist gleich -P(R )3=CHR) zu verwenden, die vorher in einer getrennten Reaktion aus den entsprechenden Phosphoniumsalzen im basischen Milieu dargestellt wurden. Es hat sich jedoch als vorteilhaft erwiesen, die Reaktion mit den Phosphorverbindungen in Gegenwart von Basen als Eintopf- Verfahren durchzuführen.
Die Phosphorverbindungen der allgemeinen Formel (III) können auf folgenden verschiedenen Wegen hergestellt werden.
Verfahren A - 1. Variante
Figure imgf000022_0001
IV V
Figure imgf000022_0002
VI
Figure imgf000022_0003
VII
Figure imgf000022_0004
VIII
Figure imgf000022_0005
IX
Hai
Figure imgf000022_0006
Hai = Cl, Br Beim ersten Reaktionsschritt [A] dieser Variante werden die Acetylenverbindungen (IV) mit den Brombenzaldehyden (V) in Lösungsmitteln wie Triethylamin, Acetonitril, Pyridin oder Gemischen davon, vorzugsweise in Triethylamin, in Gegenwart von Kupfer-(I)-Salzen und Palladium-(O)- Verbindungen, vorzugsweise in
Gegenwart von Kupfer-(I)-Halogeniden wie beispielsweise Kupferiodid, und bis- (Triphenylphosphan)-Palladium-(II)-chlorid in einem Temperaturbereich von -40°C bis +80°C, vorzugsweise von 0°C bis +40°C umgesetzt.
Im zweiten Reaktionsschritt [B] wird die Formylverbindung (VI) in Lösungsmitteln wie Alkoholen, beispielsweise Methanol, Ethanol, Propanol oder Isopropanol, oder Ethern wie Diethylether, Tetrahydrofuran oder Dioxan, oder in basischen Lösungsmitteln wie Triethylamin, Pyridin oder Dimethylformamid, oder in Wasser oder in Gemischen aus den vorstehend genannten Lösungsmitteln unter Verwendung kom- plexierter Hydride wie beispielsweise Borhydriden oder Aluminiumhydriden, vorzugsweise Natriumborhydrid oder Lithiumaluminiumhydrid, als Reduktionsmittel in einem Temperaturbereich von -40°C bis +60°C, vorzugsweise von 0°C bis +40°C, zu den Hydroxylverbindungen (VII) reduziert.
Im dritten Reaktionsschritt [C] werden die Verbindungen (VII) in inerten Lösungsmitteln wie Alkoholen, beispielsweise Methanol, Ethanol, Propanol oder Isopropanol, oder Kohlenwasserstoffen wie Benzol, Toluol oder Xylol oder in Ethern wie Diethylether oder Tetrahydrofuran, oder in Ethylacetat, insbesondere bevorzugt in Methanol, in Gegenwart von Edelmetall-Katalysatoren wie Palladium oder Platin in einem Temperaturbereich von -30°C bis +80°C, vorzugsweise von 0°C bis +40°C, unter einem Druck von 1 bar bis 50 bar, vorzugsweise von 1 bar bis 20 bar hydriert.
Die Schritte B und C können auch in umgekehrter Reihenfolge ausgeführt werden.
Im vierten Schritt [D] werden die hydrierten Verbindungen (VIII) durch Umsetzung mit Bromierungsmitteln wie beispielsweise Phosphortribromid, Sulfonylbromid, Bromwasserstoff oder Tetrabrommethan/Triphenylphosphan in inerten Lösungsmitteln wie Ether, beispielsweise Diethylether oder Tetrahydrofuran, oder Kohlenwasserstoffen wie Benzol oder Toluol oder besonders bevorzugt chlorierten Kohlenwasserstoffen wie Methylenchlorid oder Chloroform, in einem Temperatur- bereich von -20°C bis +60°C, vorzugsweise von 0°C bis +40°C bromiert. Es können aber auch die entsprechenden Chlorverbindungen verwendet werden, die beispielsweise durch Umsetzung der Verbindungen Villa mit SOCl2 erhältlich sind.
Im fünften Reaktionsschritt [E] werden die bromierten oder chlorierten Verbin- düngen (IX) mit Triphenylphosphan in inerten Lösungsmitteln wie Acetonitril oder
Kohlenwasserstoffen wie Benzol, Toluol oder Xylol, oder Benzonitril oder Dimethylformamid oder Dimethylsulfoxid oder in einem Alkohol wie Methanol, Ethanol, Propanol, Butanol oder Isopropanol oder ohne Lösungsmittel in einem Temperaturbereich von 0°C bis +200°C, vorzugsweise von +20°C bis +180°C unter Darstellung der Phosphoniumsalze (X) umgesetzt.
Über dieses Verfahren sind die erfindungsgemäßen Verbindungen der Formel (I) zugänglich, bei denen V fehlt und T fehlt oder O bedeutet. Bei den Verbindungen der Formeln (IV) bis (X) haben die Reste R1, R2 und T die gleichen Bedeutungen wie in Anspruch 3 definiert.
Die Acetylenverbindungen der Formel (IV) sind beispielsweise durch Umsetzung entsprechender Phenolverbindungen mit ω-Halogenalkinen in Gegenwart von Basen erhältlich. Besonders bevorzugt sind hierbei ω-Chloralkine wie beispielsweise 5- Chlor- 1-pentin. Als Basen können beispielsweise Metallhydride wie Natriumhydrid verwendet werden. Die als Ausgangsverbindungen einzusetzenden Phenole sind käuflich erhältlich oder durch dem Fachmann bekannte Standardreaktionen darstellbar (vgl. z.B. J. March, Advanced Organic Chemistry, 3. Auflage, Wiley, S. 1170 f.). Die Umsetzung zu den Acetylenverbindungen der Formel (IV) kann in organischen Lösungsmitteln wie beispielsweise Ethern, insbesondere Tetrahydrofuran, bei Temperaturen von +20°C bis +80°C unter Inertgasatmosphäre, beispiels- weise Argon durchgeführt werden. In einigen Fällen kann es vorteilhaft sein, Komplexierungsmittel wie Hexaphosphorsäuretriamid zuzugeben. Alternativ können die Acetylenverbindungen (IV) durch Umsetzung entsprechender ω-Halogen- alkylphenylverbindungen, vorzugsweise ω-Chloralkylphenylverbindungen, mit Acetyliden wie beispielsweise Natriumacetylid oder Lithiumacetylid unter dem Fachmann bekannten herkömmlichen Bedingungen erhalten werden (vgl. z.B. J. March, Advanced Organic Chemistry, 3. Auflage, Wiley, S. 429).
Verfahren A - 2. Variante
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0003
Figure imgf000026_0004
Figure imgf000026_0005
Im ersten Reaktionsschritt werden die als Ausgangsverbindungen verwendeten Alkohole bromiert, wobei als Bromierungsmittel beispielsweise die Verbindungen eingesetzt werden können, die im Schritt D der 1. Variante des Verfahrens A aufgeführt sind.
Die so erhaltenen Bromide werden wie im Schritt E der 1. Variante von Verfahren A mit Triphenylphosphan umgesetzt.
Im nächsten Reaktionsschritt wird wie vorstehend erläutert das reaktive Ylid erzeugt und dieses mit einem Brombenzaldehyd mit gewünschtem Substitutionsmuster umgesetzt.
Aus der so erhaltenen Verbindung können durch Umsetzung mit einer Base, vorzugs- weise t-Butyllithium in einem inerten Lösungsmittel (Tetrahydrofuran), bei tiefen
Temperaturen und anschließender Zugabe eines entsprechenden Elektrophils wie Paraformaldehyd oder Ethylenoxid die entsprechenden primären Alkohole (W ist eine Direktbindung) erhalten werden. Wahlweise können die so erhaltenen Verbindungen mit einem gegebenenfalls geschützten Hydroxyalkin wie dem Tetrahydro- pyranylether von Propargylalkohol unter den gleichen Bedingungen wie im Verfahrensschritt [A] der 1. Variante von Verfahren A umgesetzt (W bedeutet C≡C) und anschließend durch eine Hydrierung, die analog zu Schritt C der 1. Variante von Verfahren A durchgeführt werden kann, zu den primären Alkoholen umgewandelt werden. Die so erhaltenen primären Alkohole werden analog zur 1. Variante des Verfahrens A in die entsprechenden Phosphoniumsalze überführt.
Über dieses Verfahren sind die erfindungsgemäßen Verbindungen der Formel (I) zugänglich, bei denen V fehlt und T fehlt oder O bedeutet.
Die als Ausgangsverbindungen bei diesem Verfahren verwendeten Hydroxyalkyl- oxyphenylverbindungen beziehungsweise Hydroxyalkylphenylverbindungen sind entweder käuflich erhältlich oder durch dem Fachmann bekannte herkömmliche Reaktionen darstellbar.
Bei den im vorstehenden Diagramm aufgeführten Verbindungen haben die Reste R1, R2 und T die gleichen Bedeutungen wie in Anspruch 3 definiert.
Verfahren B — 1. Variante
Figure imgf000028_0001
XI XII
Figure imgf000028_0002
XIII
Figure imgf000028_0003
XIV
Figure imgf000028_0004
XV Im ersten Reaktionsschritt dieser Variante werden die Brom Verbindungen (XI) mit den Phenolen (XII) in bevorzugten Lösungsmitteln wie Wasser oder Alkoholen wie beispielsweise Methanol, Ethanol, Propanol oder Isopropanol, oder Ethern wie Diethylether, Tetrahydrofuran, Dioxan oder Dimethyloxymethan, oder Dimethyl- formamid oder Dimethylsulfoxid, oder Acetonitril oder Ketonen wie beispielsweise
Aceton, besonders bevorzugt in Isopropanol, in Gegenwart von Basen wie Alkalimetallhydroxiden, Carbonaten oder Alkoholaten wie beispielsweise Natrium- carbonat, Kaliumcarbonat, Cäsiumcarbonat, Natriumhydroxid, Kaliumhydroxid, Natriumethanolat oder Kalium-t.-butylat in einem Temperaturbereich von 0°C bis 200°C, vorzugsweise von +20°C bis +180°C umgesetzt.
Im zweiten Schritt [B] werden die Phenylether (XIII) mit Tosylchlorid in inerten Lösungsmitteln wie Ether, beispielsweise Diethylether, Tetrahydrofuran oder Dioxan, oder Kohlenwasserstoffen wie Benzol oder Toluol, oder chlorierten Kohlen- Wasserstoffen wie Chloroform oder Methylenchlorid, oder in Ethylacetat, Aceton oder Acetonitril, vorzugsweise in Methylenchlorid, in Gegenwart von Basen wie Triethylamin, Pyridin oder Dimethylaminopyridin, vorzugsweise in Gegenwart von Pyridin, in einem Temperaturbereich von -30°C bis +50°C, vorzugsweise von -10°C bis +30°C umgesetzt.
Im dritten Reaktionsschritt [C] werden die Tosylverbindungen (XIV) mit Triphe- nylphosphan in bevorzugten Lösungsmitteln wie Kohlenwasserstoffen, beispielsweise Benzol oder Toluol, Benzonitril, Acetonitril, Dimethylformamid oder Dimethylsulfoxid, oder ohne Lösungsmittel, besonders bevorzugt in Acetonitril, in einem Temperaturbereich von 0°C bis +200°C, vorzugsweise von +20°C bis +180°C unter
Erhalt der Phosphoniumsalze (XV) umgesetzt.
Bei den Schritten B und C kann die Hydroxyverbindung XIII auch analog zu den Schritten D und E der ersten Variante des Verfahrens A zunächst in das Bromid und anschließend in das Phosphoniumsalz überführt werden. Über dieses Verfahren sind die erfindungsgemäßen Verbindungen der Formel (I) zugänglich, bei denen V für O steht.
Verfahren B - 2. Variante
Figure imgf000030_0001
Bei dieser Variante werden die entsprechenden Hydroxyalkylphenylverbindungen mit Triphenylphosphoniumhydrobromid in einem organischen Lösungsmittel wie beispielsweise Acetonitril bei einer Temperatur von +30°C bis +100°C, vorzugsweise von +50C bis +90°C umgesetzt. Die Ausgangsverbindungen können auf herkömmliche Weise erhalten werden. Beispielsweise können für den Fall, daß T fehlt und V gleich O ist, durch Umsetzung einer entsprechenden Halogen- alkylphenylverbindung, vorzugsweise einer Chlor- oder Bromalkylphenylverbindung wie beispielsweise Benzylbromid mit einer entsprechenden Phenolverbindung wie beispielsweise 2-Hydroxybenzylalkohol in einem organischen Lösungsmittel wie einem Alkohol, vorzugsweise Isopropanol, in Gegenwart einer Base wie beispielsweise Kaliumcarbonat bei einer Temperatur von +30 bis 100°C, vorzugsweise +50 bis 90°C umgesetzt.
Bei den in den vorstehenden Diagrammen des Verfahrens B aufgeführten Verbindungen haben die Reste R1, R2 und T die gleichen Bedeutungen wie in Anspruch 3 definiert.
Verfahren B - 3. Variante
Figure imgf000031_0001
Bei dieser Variante wird der Alkohol zunächst gemäß dem Schritt D des Verfahrens A, 1. Variante, in ein Halogenid überführt, welches anschließend analog zum Schritt E des Verfahrens A, 1. Variante, zum gewünschten Phosphoniumsalz umgesetzt werden kann.
Bei dieser Variante haben R , 1 , n R2 , T, V und n die vorstehend angegebenen Bedeutungen.
Die Aldehyde der allgemeinen Formel (II) können in Abhängigkeit der Bedeutungen von X und Y beispielsweise über folgende Verfahren hergestellt werden.
Verfahren C
Figure imgf000032_0001
(XVI) (XVII)
Figure imgf000032_0002
XVIII XIX
Figure imgf000032_0003
XX XXI
Im ersten Reaktionsschritt [A] dieser Variante wird das Keton (XVI) (wobei o 3, 4 oder 5 bedeutet) mit 4-Halogenmethylbenzoesäureestern oder 4-Halogensulfenyl- benzoesäureestern, wobei der Halogenrest vorzugsweise Chlor oder Brom ist, beziehungsweise den entsprechenden Nitrilen in inerten Lösungsmitteln wie einem Ether, beispielsweise Diethylether, Tetrahydrofuran oder Dioxan, oder Dime- thylformamid, oder Dimethylsulfoxid, oder in Gemischen davon, besonders bevorzugt in Dimethylformamid, in Gegenwart von Basen wie Alkalimetallhydriden, Amiden oder Alkolaten wie Natriumhydrid, Kaliumhydrid, Lithiumdiisopropylamid, Kaliumethylat, Natriumethylat, Kaliummethylat oder Kalium-t.-butylat, besonders bevorzugt in Gegenwart von Natriumhydrid, in einem Temperaturbereich von -40°C bis +60°C, besonders bevorzugt von -20°C bis +30°C umgesetzt.
Im zweiten Reaktionsschritt [B] werden die Ketone (XVII) in Lösungsmitteln wie
Dimethylformamid oder Alkoholen, beispielsweise Methanol, Ethanol, Propanol oder Isopropanol, oder in Wasser oder in Gemischen davon, besonders bevorzugt in Dimethylformamid oder Ethanol, in Gegenwart von Basen wie Alkalimetall- hydroxiden, Alkalimetallcarbonaten oder Alkalimetallalkoholaten wie Natrium- hydroxid, Kaliumhydroxid, Natriumcarbonat, Natriummethanolat, Natriumethanolat,
Kaliumethanolat oder Kalium-t.-butanolat, besonders bevorzugt in Gegenwart von Kalium-t.-butanolat, in einem Temperaturbereich von 0°C bis +150°C, besonders bevorzugt von +20°C bis +100°C, unter Erhalt der Verbindungen (XVIII) umgesetzt.
Im dritten Reaktionsschritt [C] werden die Verbindungen (XVIII) in Lösungsmitteln wie Alkoholen, beispielsweise Methanol, Ethanol, Propanol oder Isopropanol, oder in Ethern, beispielsweise Methylether, Tetrahydrofuran oder Dioxan, oder in chlorierten Kohlenwasserstoffen wie Methylenchlorid oder Chloroform, oder Carbonsäuren wie Essigsäure oder Trifluoressigsäure, oder in Gemischen davon, besonders bevorzugt in Trifluoressigsäure, in Gegenwart von Säuren wie Mineralsäuren, beispielsweise Salzsäure, Bromwasserstoffsäure oder Schwefelsäure oder Carbonsäuren, beispielsweise Essigsäure oder Trifluoressigsäure, besonders bevorzugt in Gegenwart von Essigsäure, insbesondere bevorzugt in Gegenwart von Trifluoressigsäure, sowohl als Lösungsmittel als auch als Säure, in einem Tem- peraturbereich von -20°C bis +60°C, besonders bevorzugt von 0°C bis +30°C unter
Erhalt der Carbonsäuren (XIX) verseift.
Im vierten Schritt [D] werden die Carbonsäuren (XIX) in Lösungsmitteln wie Ether, beispielsweise Diethylether, Tetrahydrofuran oder Dioxan, oder in chlorierten Kohlenwasserstoffen wie Methylenchlorid oder Chloroform, oder in Gemischen davon, besonders bevorzugt in Tetrahydrofuran, unter Verwendung von Borver- bindungen als Reduktionsmittel, beispielsweise Boran oder der Boran-Dimethyl- sulfid-Komplex, in einem Temperaturbereich von -40 °C bis +60°C, besonders bevorzugt von -20°C bis +30°C, unter Erhalt der Hydroxylverbindungen (XX) reduziert.
Im fünften Reaktionsschritt [E] werden die Hydroxyverbindungen (XX) in Lösungsmitteln wie Ether, beispielsweise Diethylether, Dioxan oder Tetrahydrofuran, oder in chlorierten Wasserstoffen wie Methylenchlorid oder Chloroform, oder in Dimethylsulfoxid oder in Gemischen davon, besonders bevorzugt in Dichlor- methan, unter Verwendung von Oxidationsmitteln wie Pyridiniumchlorchromat,
Chrom-(VI)-Salzen, Dimethylsulfoxid/ Pyridin/SO3, katalytischen Mengen von Tetraalkylammoniumperruthenat in Gegenwart von N-Methylmorpholin und Molekularsieb, Dimethylsulfoxid/OxalylchloriάVTriethylamin, besonders bevorzugt unter Verwendung von Pyridiniumchlorchromat, katalytischen Mengen von Tetra- alkylammoniumperruthenat in Gegenwart von N-Methylmorpholinoxid und Molekularsieb oder Dimethylsulfoxid/Oxalylchlorid/ Triethylamin, gegebenenfalls in Anwesenheit von Basen wie Triethylamin, Diisopropylamin, Pyridin oder Dime- thylaminopyridin, besonders bevorzugt in Gegenwart von Triethylamin, in einem Temperaturbereich von -20°C bis +60°C, besonders bevorzugt von 0°C bis +30°C, unter Erhalt der Aldehyde (XXI) oxidiert.
Die cyclischen Ketone (XVI) sind entweder käuflich oder auf dem Fachmann bekannten herkömmlichen Wegen, beispielsweise durch Dieckmann-Kondensation der entsprechenden Carbonsäuredieester darstellbar.
Die mit den Ketonen (XVI) umzusetzenden 4-Chlormethylbenzoesäureester oder 4- Chlorsulfenylbenzoesäureester bzw. die entsprechenden Nitrile sind entweder käuflich oder auf dem Fachmann bekannten herkömmlichen Wegen darstellbar. Bei den in dem vorstehenden Diagramm des Verfahrens C aufgeführten Verbindungen haben die Reste R3, R4, o und Y die gleichen Bedeutungen wie in Anspruch 3 definiert.
Mit dem Verfahren C können Aldehyde (II) hergestellt werden, bei denen X für - CH2-, Y für -CH2- oder -S-, o für 3, 4 oder 5, A für COOR4 und B für CN, CH2OOR9, CONR10Rn oder COOR8 steht.
Verfahren D
Figure imgf000035_0001
XXII XXIII
Figure imgf000035_0002
XXVI
Im ersten Reaktionsschritt [A] dieser Variante wird das Benzoesäure-Gemisch (XXII) in Lösungsmitteln wie Alkoholen, beispielsweise Methanol, Ethanol, Propanol oder Isopropanol, oder in Wasser oder in Gemischen davon, besonders bevorzugt in Methanol, in Gegenwart von Säuren, wie Mineralsäuren, beispielsweise Salz- säure, Bromwasserstoffsäure oder Schwefelsäure, oder in Carbonsäuren, wie Essigsäure oder Trifluoressigsäure, oder besonders bevorzugt in Gegenwart von Thio- nylchlorid, in einem Temperaturbereich von -40°C bis +60°C, besonders bevorzugt von -20°C bis +40°C, in die Ester (XXIII) überführt.
Im zweiten Reaktionschritt [B] werden die Ester (XXIII) in Lösungsmitteln wie einem Ether, beispielsweise Diethylether, Tetrahydrofuran oder Dioxan, oder in Dimethylsulfoxid, oder in chlorierten Kohlenwasserstoffen wie Methylenchlorid oder Chloroform, oder in Gemischen davon, besonders bevorzugt in Methylenchlorid, un- ter Verwendung von Oxidationsmitteln wie Brom-(VI)-Salzen, Pyridiniumchlorchromat, Dimethylsulfoxid/Oxalylchlorid oder Dimethylsulfoxid/ Pyridin/SO , besonders bevorzugt unter Verwendung von Dimethylsulfoxid/ Oxalylchlorid, als Oxidationsmittel in Gegenwart von Basen wie Triethylamin, Diisopropylamin, Pyridin, oder Dimethylaminopyridin, besonders bevorzugt in Gegenwart von Triethylamin, in einem Temperaturbereich von -80°C bis +40°C, besonders bevorzugt von -60°C bis +20°C, analog dem Schritt E in Verfahren C zu den Aldehyden (XXIV) oxidiert.
Im dritten Reaktionsschritt [C] werden die Aldehyde (XXIV) in Lösungsmitteln wie Kohlenwasserstoffen, beispielsweise Benzol, Toluol oder Xylol, oder in Dimethylsulfoxid oder in Amiden wie Dimethylformamid oder Hexamethylphosporsäu- retriamid, oder in Gemischen davon, besonders bevorzugt in Dimethylformamid, in Gegenwart von Basen wie Triethylamin, Diisopropylamin, Pyridin oder Dimethylaminopyridin, besonders bevorzugt in Gegenwart von Triethylamin, in einem Temperaturbereich von 0°C bis +200°C, besonders bevorzugt von +20°C bis
+180°C, mit Trimethylsilylchlorid oder -triflat in die Siliciumverbindungen (XXV) überführt.
Im vierten Reaktionsschritt [D] werden diese Siliciumverbindungen (XXV) mit 4,4'- Dithiodibutyrsäuredimethylester oder 3,3'-Dithiodipropansäuredimethylester in Gegenwart von Sulfürylchlorid oder Chlor oder Brom in wie einem Ether, bei- spielsweise Diethylether, Tetrahydrofuran oder Dioxan, oder in Kohlenwasserstoffen wie Benzol oder Toluol, oder in chlorierten Kohlenwasserstoffen wie Methylenchlorid oder Chloroform oder in Gemischen davon, besonders bevorzugt in Ethylenchlorid, gegebenenfalls in der Gegenwart von Basen wie Triethylamin oder Diisopropylamin oder Pyridin, in einem Temperaturbereich von -80°C bis + 20°C, besonders bevorzugt von -70°C bis +0°C in die Aldehyde (XXVI) überführt.
Mit dieser Variante können Verbindungen der allgemeinen Formel (II) hergestellt werden, bei denen X für S und vorzugsweise Y für CH2 und o für 2 oder 3 steht.
Bei den in dem vorstehenden Diagramm des Verfahrens D aufgeführten Verbin- düngen haben die Reste R , R und o die gleichen Bedeutungen wie in Anspruch 3 definiert. Der Rest R bedeutet irgendeine herkömmliche alkoholische Komponente eines Esters.
Die Benzoesäureester der Formel (XXII) sind auf dem Fachmann bekannten herkömmlichen Wegen darstellbar oder käuflich.
Verfahren E
Figure imgf000038_0001
XXVII XXVIII
Figure imgf000038_0002
XXIX XXX
Bei dieser Variante wird das Benzoesäurederivat (XXVII) in Lösungsmitteln wie
Ethern, beispielsweise Diethylether, Tetrahydrofuran, Dioxan, Diethylenglykolmo- nomethylether oder Diethylenglykoldiethylether oder in Amiden wie Dimethylformamid oder Hexamethylphophorsäuretriamid, in l,3-Dimethylimidazolidin-2-on oder l,3-Dimethyltetrahydropyridin-2-on oder in Gemischen davon, besonders bevorzugt in Tetrahydrofuran, in Gegenwart von Organometallverbindungen als
Base, beispielsweise organischen Lithium-, Natrium- oder Kaliumverbindungen, besonders bevorzugt Butyllithium, Methyllithium, Phenyllithium, Natriumnaphtalid, Kaliumnaphtalid, Lithiumdiisopropylamid oder Lithiumhexamethyldisilazan, insbesondere bevorzugt in Gegenwart von Lithiumdiisopropylamid, in einem Temperaturbereich von -80°C bis +60°C, besonders bevorzugt von -50°C bis
+30°C, zu den Verbindungen (XXVIII) umgesetzt, welche anschließend in einem zweiten Reaktionsschritt [B] in Lösungsmitteln wie einem Ether, beispielsweise Dimethylether, Tetrahydrofuran oder Dioxan, oder in chlorierten Kohlen- wasserstoffen wie Methylenchlorid oder Chloroform, oder in Gemischen davon, besonders bevorzugt in Tetrahydrofuran, unter Verwendung von Boranen als Reduktionsmittel, vorzugsweise unter Verwendung von Boran oder dem Boran- Dimethylsulfid-Komplex, in einem Temperaturbereich von -40°C bis +60°C, vorzugsweise von -20°C bis +30°C, zu den Hydroxyverbindungen (XXIX) reduziert werden.
Im dritten Reaktionsschritt [C] werden die Hydroxyverbindungen (XXIX) in Lösungsmitteln wie einem Ether, beispielsweise Diethylether, Tetrahydrofuran oder Dioxan, oder in chlorierten Kohlenwasserstoffen wie Methylenchlorid oder Chloroform, oder Dimethylsulfoxid, oder in Gemischen davon, besonders bevorzugt in Dichlormethan unter Verwendung von Oxidationsmitteln wie Chrom-(VI)-Salzen, Pyridiniumchlorchromat, Dimethylsulfoxid/Oxalylchlorid oder Dimethylsulfo- xid/Pyridin/SO3, besonders bevorzugt Pyridiniumchlorchromat, gegebenenfalls in Anwesenheit von Basen wie Triethylamin, Diisopropylamin oder Pyridin, besonders bevorzugt in Gegenwart von Triethylamin, in einem Temperaturbereich von -80°C bis +60°C, vorzugsweise von -60°C bis +30°C, analog dem Schritt E in Verfahren C zu den Aldehyden (XXX) oxidiert. Die Benzoesäurederivate der Formel (XXVII) sind käuflich oder auf dem Fachmann bekannte herkömmliche Weise erhältlich.
Mit dieser Variante können Verbindungen der allgemeinen Formel (II) hergestellt werden, bei denen X für CH2 und vorzugsweise Y für eine Direktbindung und o für 3 oder 4 steht.
Bei den in dem vorstehenden Diagramm des Verfahrens E aufgeführten Verbin- düngen haben die Reste R , R und o die gleichen Bedeutungen wie in Anspruch 3 definiert, wobei jedoch R und R nicht COOH sein dürfen. Verfahren F und G
H2CH2-C02H
Figure imgf000040_0001
(XXXI) (XXXII)
Bei dieser Variante wird die Säure (XXXI) in Lösungsmitteln wie Alkoholen, Wasser, Aceton oder Acetonitril mit einem Oxidationsmittel wie Wasserstoffperoxid, Salpetersäure, Persäuren, Sauerstoff, Ozon, organischen Persäuren, Kaliumper- manganat, Kaliumpersulfat, Natriumhypochlorit, hypochlorigen Säuren, Rutheniumtetroxid, Stickoxiden, anodischer Oxidation oder mit einem speziellen Gemisch wie Ozon in einem normalen Temperaturbereich von — 20°C bis +30°C umgesetzt, obwohl für wenig reaktive Substanzen sogar tiefere Temperaturbereiche (-78°C) notwendig sein können. Das Produkt dieses Verfahrens ist das Sulfon (XXXII).
Mit dieser Variante können Verbindungen der allgemeinen Formel (II) hergestellt werden, bei denen X für CH oder eine Direktbindung und Y für SO oder SO2 oder X für SO oder SO und Y für CH2 oder eine Direktbindung steht.
Bei den in dem vorstehenden Diagramm des Verfahrens F aufgeführten Verbindungen haben die Reste R3, W, X und Y die gleichen Bedeutungen wie in Anspruch 3 definiert. X' und Y' stehen für beim dem Verfahren F gegebenenfalls veränderte
Reste X und Y (d.h. für SO2). R steht für den Rest der Verbindungen der allgemeinen Formel (I). Verfahren G
Bei dieser Variante wird die Säure (XXXI) wie in Variante F/G umgesetzt, jedoch unter Einsatz geringerer Mengen an Oxidationsmitteln und/oder bei tieferer Tem- peratur oder mit Oxidationsmitteln wie Hydroperoxiden, Mangandioxid, Selendioxid,
Persäuren, Chromsäure oder lodosobenzol. Das Produkt dieses Verfahrens ist das Sulfoxid (XXXII).
Bei den in dem vorstehenden Diagramm des Verfahrens F aufgeführten Verbin- düngen haben die Reste R , W, X und Y die gleichen Bedeutungen wie in Anspruch
3 definiert. X' und Y' stehen für beim dem Verfahren G gegebenenfalls veränderte Reste X und Y (d.h. für SO). R steht für den Rest der Verbindungen der allgemeinen Formel (I).
Verfahren H
Figure imgf000041_0001
(XXXIII) (XXXIV)
Bei diesem Verfahren wird die Säure (XXXIII) in Lösungsmitteln wie Alkoholen, Wasser, Benzol, Toluol, Ethern wie Dimethylether, Tetrahydrofuran, Dioxan, Estern wie Ethylacetat, oder in Kohlenwasserstoffen wie Hexan, oder in Aminen wie
Triethylamin oder in Ammoniak mit einem Reduktionsmittel wie Wasserstoff in Gegenwart eines Metallkatalysators wie den Oxiden oder löslichen Komplexen von Palladium, Platin, Ruthenium oder Nickel, oder mit einem Metall wie Lithium oder Natrium, oder mit Hydrazin oder Arylaralkoxy-substituierten Hydrazinen umgesetzt. Das Produkt dieser Reaktion ist die Säure (XXXIV), worin W der allgemeinen Formel (I) -CH2CH - bedeutet. Der normale Temperaturbereich für dieses Verfahrens beträgt -20°C bis +30°C.
Bei den in dem vorstehenden Diagramm des Verfahrens H aufgeführten Verbindungen haben die Reste R3, R4, R8, X und Y die gleichen Bedeutungen wie in Anspruch 3 definiert. R steht für den Rest der Verbindungen der allgemeinen Formel (I), wobei R einen Arylrest, aber keine Doppelbindung enthalten darf.
Verfahren I
XQ2R'
HO- \(CH2) +1 OHC(CH2)0+1C02R4 (XXXVI)
(XXXV)
Figure imgf000042_0001
Figure imgf000042_0002
(XXXVIII)
Figure imgf000042_0003
(XXXIX)
Diese Verfahrensvariante ist analog zu Verfahren D und stellt eine Alternative zum Verfahren C für den Fall dar, daß Y=S ist. Jedoch ist es im Gegensatz zum Verfahren C auch für Verbindungen anwendbar, bei denen o nicht 3 oder 4 ist, sondern für eine ganze Zahl von 1 bis 6 steht. Die drei Schritte sind wie folgt:
[A] entspricht Schritt E des Verfahrens C.
[B] entspricht Schritt C des Verfahrens D, wobei R Trimethylsilyl bedeutet. Wahlweise kann R für Alkyl, beispielsweise Methyl, stehen und wird Schritt B durch Zugabe des Aldehyds zu einer Lösung des Alkoxymethylenylids durchgeführt (hierbei wird o um 1 erhöht). Letzteres wird wie vorstehend beschrieben aus einem Alkoxymethylentriphenylphosphoniumsalz erzeugt.
[C] entspricht Schritt D des Verfahrens D.
Verfahren J und Verfahren K
Figure imgf000043_0001
(XL)
(XLI)
Figure imgf000043_0002
(XLII) (XLIII) x NR'R"
N B
OHCCH2(CH2)oC02R4
(CH2) CO?R4
H
(XLIV) (XLV)
Figure imgf000044_0001
(XLVI) (XLVII)
Diese zwei Varianten eines Verfahrens ermöglichen zwei Wege zu den Aldehyden XLIII oder XLVII.
Der Schritt A ist bei beiden Verfahren identisch und besteht in der Umsetzung eines Aldehyds XL oder XLIV mit einem Dialkylaminohydrazin wie Dimethylhydrazin (R'=R"= Alkyl) (E.J. Corey und D. Enders, Chem. Ber., 111, 1337, 1363 (1978)) oder (R)- oder (S)-l-Amino-2-methoxymethylpyπolidin (R' und R" stellen zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen (S)-2- Methoxypyrrolidinrest dar) (D. Enders et al., Org. Syn. 65, 183 (1987)). Die Verwendung dieser chiralen Hydrazine (RAMP oder SAMP), führt dazu, daß der nachfolgende Schritt praktisch vollständig diastereoselektiv durchgeführt werden kann, so daß das Produkt des Schrittes B ein einziges Diastereomer sein kann. Dadurch wird die Notwendigkeit umgangen, die Produkte wie XLIII oder XLVII auf andere Weise aufzutrennen. Schritt A wird am besten durchgeführt, indem der Aldehyd und das Hydrazin in Abwesenheit eines Lösungsmittels vermischt und auf 60-70°C für einen geeigneten Zeitraum (einen Tag) unter einer Inertatmosphäre (z.B. unter Stickstoff oder Argon, vorzugsweise unter Argon) erhitzt werden. Schritt B wird in inerten Lösungsmitteln wie Diethylether oder Tertrahydrofuran bei verminderter Temperatur, vorzugsweise bei 0°C, mit einer organometalhschen Base wie Butyllithium oder Lithiumdiisopropylamid und anschließender Zugabe eines entsprechenden Elektrophils (R4OOC(CH2)0Hal, R8OOCC6H4CH2Hal oder R8OOCC6H4SCl) durchgeführt, wodurch das alkylierte Produkt XLII oder XLVI erhalten wird.
Schritt C besteht in einer oxidativen Spaltung der Hydrazone zu den Aldehyden XLIII oder XLVII unter Verwendung von beispielsweise Ozon in einem Lösungs- mittel (Dichlormethan) bei tiefen Temperaturen (-78°C) (für den Fall, daß die chiralen Hydrazone verwendet wurden). Die Dimethylhydrazone können mit Natriumperiodat in wäßriger Lösung oder durch Methylierung mit Methyliodid und anschließender Zugabe einer Säure (beispielsweise einer Mineralsäure wie Salzsäure) gespalten werden.
Mit dieser Variante können Verbindungen der allgemeinen Formel (II) hergestellt werden, bei denen X für S, CH oder im Fall der Variante J eine Direktbindung und Y für eine Direktbindung steht.
Bei den in dem vorstehenden Diagramm der Verfahren J und K aufgeführten
Verbindungen haben die Reste R4, R8, o und X die gleichen Bedeutungen wie in
Anspruch 3 definiert, wobei jedoch R und R nicht COOH sein dürfen.
Verfahren L
Figure imgf000046_0001
Figure imgf000046_0002
(L)
Figure imgf000046_0003
(Ll)
Verfahren M
HOCH2CH(CH2)0R4 POCH2CH(CH2)0C02R4 OH
(LII) (Uli)
Figure imgf000047_0001
(LIV) (LV)
Figure imgf000047_0002
(LVI) (LVII)
Diese Verfahren veranschaulichen zwei Wege zur Herstellung eines Aldehyds LI oder LVII mit X=O und Y=Direktbindung.
Im ersten Schritt des Verfahrens L wird die Verbindung XL VIII mit Sulfo- niumethylid (E.J. Corey et al., J. Am. Chem. Soc. 87, 1353 (1965)) in einem inerten Lösungsmittel unter Erhalt eines Epoxids XLIX umgesetzt.
Das Epoxid erfährt durch Umsetzung mit einem Phenol in einem Lösungsmittel wie
Methanol eine nukleophile Ringöffhung, wodurch zwei Regioisomere erhalten werden, von denen das gewünschte Isomer L auf einfache Weise chromatographisch erhalten werden kann. Die Ausbeute und das Verhältnis der zwei Isomeren kann durch Variation des Lösungsmittels und durch Verwendung von Katalysatoren verändert werden.
Schritt C ist eine einfache Oxidation, wie sie bereits im Schritt C des Verfahrens E ausführlich beschrieben wurde. Wahlweise kann im Verfahren M ein Diol LII durch herkömmliche Schutzgruppentechnik an der primären Hydroxylgruppe geschützt und in einen Tetrahydro- pyranylether (P=2-Tetrahydropyranyl), t-Butyldimethylsilylether (P= SiMe t-Bu) oder t-Butyldiphenylsilylether (P=SiPh2t-Bu) LIII überführt werden, dessen sekundäre Hydroxylgruppe nicht geschützt ist.
Der Schritt B dieses Verfahrens beinhaltet die Umwandlung der freien Hydroxylgruppe in eine herkömmliche Abgangsgruppe X' wie beispielsweise eine Tosyl- gruppe oder einen Halogenidrest, vorzugsweise einen Brom- oder Iodrest, auf bereits in vorstehenden Verfahren beschriebenen üblichen Wegen.
Im Schritt C wird im wesentlichen wie in Schritt A des Verfahrens B beschrieben die Abgangsgruppe X' durch eine Phenoxygruppe ersetzt.
In Schritt D wird die Schutzgruppe P selektiv durch ein entsprechendes herkömmliches Verfahren aus dem Stand der Technik entfernt.
Schritt E ist eine einfache, bereits vorstehend beschriebene Oxidation.
Bei den in dem vorstehenden Diagramm der Verfahren L und M aufgeführten
Verbindungen haben die Reste R4, R8 und o die gleichen Bedeutungen wie in Anspruch 3 definiert, wobei jedoch R4 und R8 nicht COOH sein dürfen.
Verfahren N
Figure imgf000049_0001
(LVIII) (LIX)
Figure imgf000049_0002
(LX) (LXI)
Figure imgf000049_0003
(LXII) Bei diesem Verfahren wird ein Malonsäurediester (LVIII), wobei als alkholische Komponente R' ein AUylrest oder niedere Alkylreste wie Methyl, Ethyl, t-Bu oder ein Benzylrest eingesetzt werden können) durch zwei aufeinanderfolgende Umsetzungen mit entsprechenden Elektrophilen in einen 2,2-disubstituierten Malonsäurediester (LIX) überführt. Beispielsweise kann der Malonsäurediester (LVIII) zunächst in Gegenwart einer Base wie beispielsweise Natriumhydrid, Triethylamin, Kaliumcarbonat, Natriumhydroxid, DABCO, Kaliumhydroxid, Lithiumdiisopropylamid oder Natriumamid, bevorzugt Natriumhydrid, mit einem entsprechenden Elektrophil wie einem entsprechenden Halogenid, Tosylat, Mesylat oder Triflat, zum Beispiel einem Halogenid wie ω-Chlor- oder ω- Bromcarbonsäureester, beispielsweise Bromessigsäuremethylester, in einem Lösungsmittel wie Dioxan bei Temperaturen von 0 bis 50°C umgesetzt werden. In einem zweiten Schritt kann das so erhaltene monsubstituierte Malonsäure- diesterderivat durch Umsetzung mit einem entsprechenden Elektrophil wie einem entsprechenden Halogenid, Tosylat, Mesylat oder Triflat, zum Beispiel einem 2-
Halogenbenzylderivat wie 2-(Bromomethyl)benzoesäuremethylester, in Gegenwart einer Base wie beispielsweise Natriumhydrid, Triethylamin, Kaliumcarbonat, Natriumhydroxid, DABCO, Kaliumhydroxid, Lithiumdiisopropylamid oder Natriumamid, bevorzugt Natriumhydrid, in einem Lösungsmittel wie Dime- thylformamid bei Temperaturen von 0 bis 50°C umgesetzt werden. Die Umsetzungen mit den beiden Elektrophilen können jedoch auch in umgekehrter Reihenfolge durchgeführt werden.
Das so erhaltene 2,2-disubstituierte Malonsäurediesterderivat (LIX) kann durch Reaktion mit einer Säure wie beispielsweise Salzsäure, Schwefelsäure oder
Trifluoressigsäure, oder durch Reaktion mit einer Base wie Kaliumhydroxid, Natriumhydroxid oder Lithiumhydroxid, oder durch eine Palladium-katalysierte Reaktion wie beispielsweise mit Ameisensäure in Gegenwart eines Pd-Katalysators, vorzugsweise eines Pd(II)-Katalysators wie Palladium-(II)-acetat, und eines Phos- phans wie Triphenylphosphan und einer Base wie einem Amin, vorzugsweise
Triethylamin, in einem Lösungsmittel wie Dioxan bei Temperaturen von 20 bis 120°C durch Esterspaltung und anschließende Decarboxylierung bei erhöhten Temperaturen in die Carbonsäurederivate (LX ) überführt werden.
Die Carbonsäurederivate (LX) können ihrerseits durch eine Reduktion mit herkömmlichen Reduktionsmitteln wie beispielsweise Diisobutylaluminiumhydrid (DIBAL), Lithiumaluminiumhydrid oder Borhydriden wie Boran in Tetrahydrofuran zu den Alkoholen (LXI) umgesetzt werden.
Die Alkohole (LXI) können schließlich mit herkömmlichen milden Oxidationsmitteln wie Cr-(VI)-Verbindungen wie PDC oder PCC, Kaliumpermanganat, Dimethylsulfoxid/Oxalylchlorid Triethalmin (Swern-Oxidation) oder Tetrapropyl- ammoniumperruthenat (TPAP) in Gegenwart einer Base wie N-Methylmorpholin- oxid und Molsieb oder durch die Dess-Martin-Oxidation zu den Aldehyden (LXII) oxidiert werden.
Bei den in dem vorstehenden Diagramm des Verfahrens N aufgeführten Verbindungen haben die Reste R3, A, B, X, Y und o die gleichen Bedeutungen wie in Anspruch 3 definiert, wobei jedoch A und B keine freie Carboxylfünktion und X und Y nicht O sein dürfen.
Verfahren O
In den vorstehenden Verfahren wurde die Herstellung ß-disubstituierter Aldehyde mit einer p-Alkoxycarbonylgruppe als einem der Substituenten in ß-Position beschrieben. Es ist aber selbstverständlich auch möglich, Verbindungen der Formel
(II) herzustellen, bei denen der Rest B wie in Anspruch 3 definiert ist und in ortho-, meta- oder para-Position zum Rest Y sitzt. In diesen Fällen erfolgen die vorstehend beschriebenen Umsetzungen anstatt mit einer para-disubstituierten Arylverbindung mit einer entsprechend ortho- oder meta-disubstituierten Verbindung. Die Tetrazolylgruppe (wenn A oder B für Tetrazolyl steht) wird hierbei vorzugsweise durch Verwendung eines entsprechenden monosubstituierten Nitrils und anschließende Umsetzung mit Natriumazid in Gegenwart eines Salzes eines tertiären Amins wie Triethylamin oder Morpholin-Hydrochlorid) in einem inerten Lösungsmittel wie Dimethylformamid bei erhöhten Temperaturen eingeführt. Amide oder Sulfonamide werden vorzugsweise aus selektiv verseifbaren Estervorstufen dargestellt. Die selektiv freigesetzte Carbonsäuregruppe kann dann mit einem Aryl-, Alkyl- oder Sulfonamid in Gegenwart eines Diimids wie Dicyclohexancarbodiimid in einem inerten Lösungsmittel umgesetzt werden. Wahlweise kann die selektiv freigesetzte Carbonsäuregruppe beispielsweise durch Umsetzung mit Diphenyl- poshinsäurechlorid aktiviert und anschließend mit einem entsprechenden Amin zum gewünschten Amid umgesetzt werden. Verfahren P
Figure imgf000052_0001
(LXV) (LXVI)
Die Verbindungen der Formel (I) können alternativ auch durch Umsetzung entsprechender Aldehyde (II) mit 2-Hydroxybenzyltriphenylphosphoniumverbindungen zunächst zu den Alkenen (LXIII) und anschließenden Aufbau der Seitenkette dargestellt werden. Die einleitende Wittig-Reaktion kann beispielsweise in einer Inertgasatmosphäre wie Argon in einem Lösungsmittel wie Tetrahydrofuran in
Gegenwart einer Base wie n-Butyllithium erfolgen. Die so erhältlichen Verbindungen der Formel (LXIII) können durch Reaktion mit Verbindungen (LXTV), welche eine Abgangsgruppe X' wie beispielsweise ein Halogenatom, vorzugsweise ein Chlor-, Brom- oder Iodatom, oder eine Tosylat-, Mesylat- oder Triflatgruppe enthalten, in Gegenwart einer Base wie Kaliumcarbonat oder Cäsiumcarbonat in einem Lösungsmittel wie Acetonitril zu den Verbindungen der Formel (LXV) umgesetzt werden. Die Verbindungen der Formel (LXV) können analog Verfahren H zu Verbindungen der Formel (LXVI) hydriert werden. Insbesondere im Fall, daß an die Verbindung der Formel (LXIII) eine Benzylgruppe angeknüpft werden soll, kann vorzugsweise zunächst die Doppelbindung analog dem Verfahren H hydriert und anschließend die Umsetzung an der freien Hydroxygruppe erfolgen.
Durch dieses Verfahren sind Verbindungen der Formel (I) zugänglich, bei denen V für ein Sauerstoffatom steht.
Bei den in dem vorstehenden Diagramm des Verfahrens P aufgeführten Verbin- düngen haben die Reste R , R , R , A, B, T, X, Y, n und o die gleichen Bedeutungen wie in Anspruch 3 definiert, wobei jedoch A und B nicht für freie Carboxyl- funktionen stehen dürfen.
Alternativ können die erfindungsgemäßen Verbindungen auch nach einem weiteren Verfahren hergestellt werden. Hierbei werden Aldehyde der Formel (LXVII)
(LXVII)
Figure imgf000053_0001
woπn
R', R2, T, V und n die vorstehend angegebenen Bedeutungen haben,
mit Phosphorverbindungen der Formel (LXVIII)
Figure imgf000054_0001
woπn
X, A und o die vorstehend angegebenen Bedeutungen haben,
zu Verbindungen der Formel (LXIX)
Figure imgf000054_0002
wonn
Figure imgf000054_0003
R2, T V, X, A, n und o die vorstehend angegebenen Bedeutungen haben,
umgesetzt und anschließend durch aufeinanderfolgende Reduktion der Alkengruppe und der Carbonylgruppe und anschließende Substitution der durch Reduktion der Carbonylgruppe erzeugten Hydroxygruppe mit Alkoholen oder Thiolen sowie gegebenenfalls anschließende Oxidation zu den entsprechenden Sulfoxid- oder Sulfonverbindungen in Verbindungen der Formel (LXX) überführt,
Figure imgf000055_0001
woπn
R1, R2, R3, T V, X, Y, A, B, n und o die vorstehend angegebenen Bedeutungen haben,
Die Aldehyde der Formel (LXVII) sind beispielsweise aus den bei den Verfahren A und B als Zwischenprodukte eingesetzten Alkoholen durch dem Fachmann bekannte herkömmliche Oxidationsreaktionen zugänglich (vgl. z.B. J. March, Advanced organic Chemistry, 3 ,rrad ed., S. 1057 ff, Wiley).
Die Phosphorverbindungen der Formel (LXIII) können beispielsweise durch Umsetzung von Alkandicarbonsäurederivaten, beispielsweise den entsprechenden Monoestern, mit Phosphonoessigsäurederivaten, beispielsweise den entsprechenden Diestern, hergestellt werden. Möglich ist aber auch die Synthese aus Phosphiten wie beispielsweise Triethylphosphit mit entsprechenden α-Halogenketonderivaten (Arbuzov-Rkt, vgl. z.B. J. March, Advanced organic Chemistry, 3rd ed., S. 848 ff, Wiley).
Die Umsetzung der Verbindungen der Formel (LXVII) mit Verbindungen der Formel (LXVIII) erfolgt in Gegenwart von Basen wie Alkalimetallhydriden, beispielsweise Natriumhydrid, Alkalimetallalkoholaten, beispielsweise Kalium-t-butylat, oder in Gegenwart von Salzen wie beispielsweise MgCl2 und Basen wie Aminen, beispielsweise Triethylamin, oder der Hünig-Base. Die Reaktion wird vorzugsweise in organischen Lösungsmitteln, besonders bevorzugt in Tetrahydrofuran, bei Raumtemperatur oder unter leichtem Erhitzen durchgeführt.
Die so erhaltenen Carbonylverbindungen der Formel (LXIX) werden nach herkömmlichen, dem Fachmann bekannten Verfahren zu den entsprechenden Alkoholen reduziert (vgl. z.B. J. March, Advanced organic Chemistry, 3rd ed., S. 809 ff, Wiley). Besonders bevorzugt ist die Verwendung von komplexen Metallhydriden wie Diisobutylaluminiumhydrid (DIBAL), NaBFL, oder NaBH4/CeCl 7 H2O. Die
Reaktion wird vorzugsweise in organischen Lösungsmitteln wie beispielsweise Alkoholen wie Methanol unter Kühlung durchgeführt.
Die olefinische Doppelbindung der so erhaltenen Hydroxyverbindungen kann nach herkömmlichen, dem Fachmann bekannten Verfahren hydriert werden (vgl. z.B. J.
March, Advanced organic Chemistry, 3rd ed., S. 691 ff, Wiley). Bevorzugt ist die Hydrierung mit Wasserstoff in Gegenwart eines Metallkatalysators wie Pd/C oder Raney-Nickel in einem organischen Lösungsmittel wie beispielsweise Ethylacetat.
Die Einführung de weiteren Seitenkette kann auf mehreren Wegen erfolgen.
Beispielsweise kann die Hydroxyverbindung unter Mitsunobu-Bedingungen (vgl. O. Mitsunobu, Synthesis, 1981, 1-28) mit entsprechenden Alkoholen, Phenolen oder Thiolen umgesetzt werden. Die Hydroxygruppe kann aber auch erst in eine Abgangsgruppe überführt werden, welche anschließend durch entsprechende Alko- hole, Phenole oder Thiole in Gegenwart einer Base wie beispielsweise DABCO,
Triethylamin, NaH, NaOH, KOH, LDA, Natriumamid oder besonders bevorzugt Kaliumcarbonat substituiert werden kann. Als Abgangsgruppen sind erfindungsgemäß bevorzugt Halogenreste wie Cl, Br oder I, welche durch Umsetzung der Hydroxyverbindung mit beispielsweise SOCl2, SOBr , POCl3, PC13, PC15, PBr3 usw. einführbar sind, der Tosylatrest, welcher beispielsweise durch Umsetzung mit
Tosylchlorid einführbar ist, der Mesylatrest, welcher beispielsweise durch Umset- zung mit MsCl einführbar ist, oder der Triflatrest, welcher durch Umsetzung mit beispielsweise Tf2O oder TfCl einführbar ist.
Die erfindungsgemäßen Verbindungen, insbesondere die Verbindungen der allge- meinen Formel (I), zeigen ein nicht vorhersehbares, wertvolles pharmakologisches
Wirkspektrum.
Die erfindungsgemäßen Verbindungen, insbesondere die Verbindungen der allgemeinen Formel (I), führen zu einer Gefäßrelaxation, Thrombozytenaggregations- hemmung und zu einer Blutdrucksenkung sowie zu einer Steigerung des koronaren
Blutflusses. Diese Wirkungen sind über eine direkte Stimulation der löslichen Guanylatcyclase und einem intrazellulären cGMP-Anstieg vermittelt.
Sie können daher in Arzneimitteln zur Behandlung von kardiovaskulären Erkran- kungen wie beispielsweise zur Behandlung des Bluthochdrucks und der Herzinsuffizienz, stabiler und instabiler Angina pectoris, peripheren und kardialen Gefäßerkrankungen, von Arrhythmien, zur Behandlung von thromboembolischen Erkrankungen und Ischämien wie Myokardinfarkt, Hirnschlag, transistorisch und ischämische Attacken, periphere Durchblutungsstörungen, Verhinderung von Restenosen wie nach Thrombolysetherapien, percutan transluminalen Angioplastien (PTA), percutan transluminalen Koronarangioplastien (PTCA), Bypass sowie zur Behandlung von Arteriosklerose, fibrotischen Erkrankungen wie Leberfibrose oder Lungenfibrose, asthmatischen Erkrankungen und Krankheiten des Urogenitalsystems wie beispielsweise Prostatahypertrophie, erektile Dysfunktion, weibliche sexuelle Dysfunktion und Inkontinenz sowie zur Behandlung von Glaucoma eingesetzt werden.
Die in der vorliegenden Erfindung beschriebenen Verbindungen, insbesondere die Verbindungen der allgemeinen Formel (I), stellen auch Wirkstoffe zur Bekämpfung von Krankheiten im Zentralnervensystem dar, die durch Störungen des NO/cGMP- Systems gekennzeichnet sind. Insbesondere sind sie geeignet zur Beseitigung kognitiver Defizite, zur Verbesserung von Lern- und Gedächtnisleistungen und zur Behandlung der Alzheimer'schen Krankheit. Sie eignen sich auch zur Behandlung von Erkrankungen des Zentralnervensystems wie Angst-, Spannungs- und Depressions- zuständen, zentralnervös bedingten Sexualdysfunktionen und Schlafstörungen, sowie zur Regulierung krankhafter Störungen der Nahrungs-, Genuß- und Suchtmittel- aufnähme.
Weiterhin eignen sich die Wirkstoffe auch zur Regulation der cerebralen Durchblutung und stellen somit wirkungsvolle Mittel zur Bekämpfung von Migräne dar.
Auch eignen sie sich zur Prophylaxe und Bekämpfung der Folgen cerebraler Infarktgeschehen (Apoplexia cerebri) wie Schlaganfall, cerebraler Ischämien und des Schädel- Hirn-Traumas. Ebenso können die erfindungsgemäßen Verbindungen, insbesondere die Verbindungen der allgemeinen Formel (I), zur Bekämpfung von Schmerzzuständen eingesetzt werden.
Zudem besitzen die erfindungsgemäßen Verbindungen antiinflammatorische Wirkung und können daher als entzündungshemmende Mittel eingesetzt werden.
Gefäßrelaxierende Wirkung in vitro
Kaninchen werden durch intravenöse Injektion von Thiopental-Natrium narkotisiert bzw. getötet (ca. 50 mg/kg,) und entblutet. Die Arteria Saphena wird entnommen und in 3 mm breite Ringe geteilt. Die Ringe werden einzeln auf je einem triangelförmi- gen, am Ende offenen Häkchenpaar aus 0,3 mm starkem Spezialdraht (Remanium®) montiert. Jeder Ring wird unter Vorspannung in 5 ml Organbäder mit 37°C warmer, carbogenbegaster Krebs-Henseleit-Lösung folgender Zusammensetzung (mM) gebracht: NaCl: 119; KC1: 4,8; CaCl2 x 2 H2O: 1; MgSO4 x 7 H2O: 1,4; KH2PO4: 1,2; NaHCO3: 25; Glucose: 10; Rinderserumalbumin: 0,001%. Die Kontraktionskraft wird mit Statham UC2-Zellen erfaßt, verstärkt und über A/D-Wandler (DAS- 1802 HC, Keithley Instruments München) digitalisiert, sowie parallel auf Linienschreibern registriert. Kontraktionen werden durch Zugabe von Phenylephrin induziert. Nach mehreren (allgemein 4) KontroUzyklen wird die zu untersuchende Substanz in jedem weiteren Durchgang in steigender Dosierung zugesetzt und die Höhe der unter dem Einfluß der Testsubstanz erzielten Kontraktion mit der Höhe der im letzten Vordurchgang eπeichten Kontraktion verglichen. Daraus wird die Konzentration errechnet, die erforderlich ist, um die in der Vorkontrolle eπeichte Kontraktion auf 50% zu reduzieren (IC50). Das Standardapplikationsvolumen beträgt 5 μl. Der DMSO-Anteil in der Badlösung entspricht 0,1%.
Die Ergebnisse sind in Tabelle 1 gezeigt:
Tabelle 1 : Gefäßrelaxierende Wirkung in vitro
Figure imgf000059_0001
Stimulation der rekombinanten löslichen Guanylatcyclase (sGC) in vitro
Die Untersuchungen zur Stimulation der rekombinanten löslichen Guanylatcyclase (sGC) und die erfindungsgemäßen Verbindungen mit und ohne Natriumnitroprussid sowie mit und ohne den Häm-abhängigen sGC-Inhibitor lH-l,2,4-Oxadiazol-(4,3a)- chinoxalin-1-on (ODQ) wurden nach der in folgender Literaturstelle im Detail beschriebenen Methode durchgeführt: M. Hoenicka, E.M. Becker, H. Apeler, T. Sirichoke, H. Schroeder, R. Gerzer und J.-P. Stasch: Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 System: Stimulation by YC-1, nitric oxide, and carbon oxide. J. Mol. Med. 77: 14-23 (1999).
Die Häm-freie Guanylatcyclase wurde durch Zugabe von Tween 20 zum Probenpuffer (0,5%o in der Endkonzentration) erhalten.
Die Aktivierung der sGC durch eine Prüfsubstanz wird als n-fache Stimulation der
Basalaktivität angegeben.
Die Ergebnisse sind in Tabelle 2 gezeigt:
Tabelle 2: Stimulation der rekombinanten löslichen Guanylatcyclase (sGC) in vitro
Figure imgf000061_0001
Aus Tabelle 2 ist ersichtlich, daß eine Stimulation sowohl des Häm-haltigen als auch des Häm-freien Enzyms erreicht wird. Weiterhin zeigt eine Kombination aus sGC- Stimulator und Natriumnitroprussid (SNP), einem NO-Donor, keine synergistischen Effekt, d.h. die Wirkung von SNP wird nicht potenziert, wie dies bei über einem Häm-abhängigen Mechanismus wirkenden sGC-Stimulatoren zu erwarten wäre. Darüber hinaus wird die Wirkung des erfindungsgemäßen sGC-Stimulators durch den Häm-abhängigen Inhibitor der löslichen Guanylatcyclase ODQ nicht blockiert. Die Ergebnisse aus Tabelle 2 belegen somit den neuen Wirkmechanismus der erfindungsgemäßen Stimulatoren der löslichen Guanylatcyclase.
Zur vorliegenden Erfindung gehören pharmazeutische Zubereitungen, die neben nicht- toxischen, inerten pharmazeutisch geeigneten Trägerstoffen die erfindungsgemäßen
Verbindungen, insbesondere die Verbindungen der allgemeinen Formel (I), enthält sowie Verfahren zur Herstellung dieser Zubereitungen.
Die Wirkstoff können gegebenenfalls in einem oder mehreren der oben angegebenen Trägerstoffe auch in mikroverkapselter Form vorliegen.
Die therapeutisch wirksamen Verbindungen, insbesondere die Verbindungen der allgemeinen Formel (I), sollen in den oben aufgeführten pharmazeutischen Zuberei- tungen in einer Konzentration von etwa 0,1 bis 99,5, vorzugsweise von etwa 0,5 bis 95 Gew.-%>, der Gesamtmischung vorhanden sein.
Die oben aufgeführten pharmazeutischen Zubereitungen können außer den erfindungs- gemäßen Verbindungen, insbesondere den Verbindungen der allgemeinen Formel (I), auch weitere pharmazeutische Wirkstoffe enthalten.
Im allgemeinen hat es sich sowohl in der Human- als auch in der Veterinärmedizin als vorteilhaft erwiesen, den oder die erfindungsgemäßen Wirkstoffe in Gesamtmengen von etwa 0,5 bis etwa 500, vorzugsweise 5 bis 100 mg/kg Körpergewicht je 24
Stunden, gegebenenfalls in Form mehrerer Einzelgaben, zur Erzielung der gewünschten Ergebnisse zu verabreichen. Eine Einzelgabe enthält den oder die erfindungsgemäßen Wirkstoffe vorzugsweise in Mengen von etwa 1 bis etwa 80, insbesondere 3 bis 30mg/kg Körpergewicht.
Die vorliegende Erfindung wird nachstehend anhand von nicht einschränkenden bevorzugten Beispielen näher dargestellt. Soweit nicht anderweitig angegeben, beziehen sich alle Mengenangaben auf Gewichtsprozente.
Beispiele
Die vorliegende Erfindung wird nachstehend anhand von nicht einschränkenden bevorzugten Beispielen näher dargestellt. Soweit nicht anderweitig angegeben, beziehen sich alle Mengenangaben auf Gewichtsprozente.
Abkürzungen:
RT: Raumtemperatur EE: Essigsäureethylester
BAB A: n-Butylacetat/n-Butanol/Eisessig/Phosphatpuffer pH 6
(50:9:25.15; org. Phase)
Laufmittel für die Dünnschichtchromatographie:
Tl El : Toluol - Essigsäureethylester (1:1)
Tl EtOHl : Toluol - Methanol (1 : 1)
C 1 E 1 : Cyclohexan - Essigsäureethylester (1:1)
C 1 E2 : Cyclohexan - Essigsäureethylester (1:2)
Beispiele 1 bis 14
Die in der nachstehenden Tabelle gezeigten Verbindungen wurden wie in der EP-A-0 341 551 beschrieben hergestellt, können aber grundsätzlich auf einem der vorstehend beschriebenen Wege hergestellt werden. Die in der nachstehenden Tabelle angegebenen und durch Bezugnahme eingefügten Literaturstellen beziehen sich jeweils auf die Herstellung der letzten Stufe. Die Synthese der hierzu benötigten Ausgangsverbindungen kann wie vorstehend beschrieben erfolgen, ist aber auch in der EP-A- 0 341 551 ausführlich beschrieben. Die entsprechenden Abschnitte sind hier durch Bezugnahme eingefügt.
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001

Claims

Patentansprtiche
Verwendung von Verbindungen, welche auch in der Lage sind, die lösliche Guanylatcyclase unabhängig von der im Enzym befindlichen Häm-Gruppe zu stimulieren, zur Herstellung von Arzneimitteln zur Behandlung von Herz- Kreislauf-Erkrankungen wie Angina pectoris, Ischämien und Herzinsuffizienz.
Verwendung von Verbindungen, welche auch in der Lage sind, die lösliche Guanylatcyclase unabhängig von der im Enzym befindlichen Häm-Gruppe zu stimulieren, zur Herstellung von Arzneimitteln zur Behandlung von Arteriosklerose, Hypertonie, thromboembolischen Erkrankungen, venösen Erkrankungen und fibrotischen Erkrankungen wie insbesondere Leberfibrose.
Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Verbindungen der Formel (I)
Figure imgf000068_0001
woπn
V fehlt oder O bedeutet,
n eine ganze Zahl von 1 bis 10 bedeutet, T fehlt oder O bedeutet,
R Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 12 Kohlenstoffatomen,
Halogen, CF3, OCF3, CN oder NO2 bedeutet,
m eine ganze Zahl von 0 bis 7 bedeutet,
R Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 12 Kohlenstoffatomen, Halogen, CF3, OCF3, CN oder NO2 bedeutet,
W CH2CH2 oder CH=CH bedeutet,
X fehlt, geradkettiges oder verzweigtes Alkylen mit bis zu 6 Kohlen- Stoffatomen, O, SCH2 oder S(O)p bedeutet, worin
p 0, 1 oder 2 bedeutet
o eine ganze Zahl von 1 bis 5 bedeutet
A Tetrazolyl, Tetrazolylmethylen, COOH, CH2COOH, COOR4, CH2COOR5, CONR6R7 oder CN bedeutet,
worin
R4 und R5 unabhängig voneinander geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,
R6 und R7 unabhängig voneinander Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoff- atomen, geradkettiges oder verzweigtes Alkylsulfonyl mit bis zu 12 Kohlenstoffatomen, Arylsulfonyl mit 6 bis 12 Kohlenstoffatomen bedeuten, oder
R und R zusammen mit dem Stickstoffatom, an welches sie gebunden sind, einen gesättigten Heterocyclus bilden
Y fehlt, geradkettiges oder verzweigtes Alkylen mit bis zu 6 Kohlen- stoffatomen, O, SCH2 oder S(O)q bedeutet,
wonn
0, 1 oder 2 bedeutet
B Tetrazolyl, Tetrazolylmethylen, COOH, CH2COOH, COOR8
CH2COOR9, CONR10Rπ oder CN bedeutet,
woπn
R und R unabhängig voneinander geradkettiges oder verzweigtes
Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten,
R10 und Rn unabhängig voneinander Wasserstoff, geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen, geradkettiges oder verzweigtes Alkylsulfonyl mit bis zu 12 Kohlenstoffatomen, Arylsulfonyl mit 6 bis 12 Kohlenstoffatomen bedeuten, oder R und R zusammen mit dem Stickstoffatom, an welches sie gebunden sind, einen gesättigten Heterocyclus bilden,
R3 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 12 Kohlenstoffatomen,
Halogen, CF3, OCF3, CN oder NO2 bedeutet, sowie deren Salze und Stereoisomere, zur Herstellung von Arzneimitteln zur Behandlung von Herz-Kreislauf-Erkrankungen eingesetzt werden.
Verwendung nach Anspruch 3, dadurch gekennzeichnet daß
V fehlt oder O bedeutet,
n eine ganze Zahl von 1 bis 6 bedeutet,
T fehlt oder O bedeutet,
R1 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F, Cl, Br, I, oder CF3 bedeutet,
m 0 oder 1 bedeutet,
R2 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F,
Cl, Br, I oder CF3 bedeutet,
W CH2CH2 oder CH=CH bedeutet,
X fehlt, O oder S(O)p bedeutet, worin
p 0, 1 oder 2 bedeutet
o eine ganze Zahl von 1 bis 5 bedeutet
A COOH oder COOR4 bedeutet,
worin R4 geradkettiges oder verzweigtes Alkyl mit bis zu 4
Kohlenstoffatomen bedeuten,
Y fehlt, geradkettiges oder verzweigtes Alkylen mit bis zu 4 Kohlenstoffatomen, O, SCH2 oder S(O)q bedeutet,
worin
q 0, 1 oder 2 bedeutet
B COOH oder COOR8 bedeutet,
worin
R geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeuten,
R3 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F, Cl, Br, I oder CF3 bedeutet. Verwendung nach Anspruch 3, dadurch gekennzeichnet daß
V fehlt oder O bedeutet,
n eine ganze Zahl von 1 bis 6 bedeutet,
T fehlt oder O bedeutet,
R1 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F,
Cl, Br, I, oder CF3 bedeutet,
m 0 oder 1 bedeutet,
R2 Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F, Cl, Br, I oder CF3 bedeutet,
W CH2CH2 oder CH=CH bedeutet,
X fehlt, O oder S(O)„ bedeutet,
woπn
p 0, 1 oder 2 bedeutet
o eine ganze Zahl von 1 bis 5 bedeutet
A COOH bedeutet, Y fehlt, geradkettiges oder verzweigtes Alkylen mit bis zu 4 Kohlenstoffatomen, O, SCH2 oder S(O)q bedeutet,
woπn
0, 1 oder 2 bedeutet
B COOH bedeutet,
RJ Wasserstoff, geradkettiges oder verzweigtes Alkyl oder geradkettiges oder verzweigtes Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen, F,
Cl, Br, I oder CF3 bedeutet
6. Verwendung von Verbindungen der Formel (I) gemäß einem der vorher- gehenden Ansprüche zur Herstellung eines Arzneimittels zur Behandlung von
Herz-Kreislauf-Erkrankungen.
7. Verwendung von Verbindungen der allgemeinen Formel (I) gemäß einem der vorhergehenden Ansprüche zur Herstellung von Arzneimitteln zur Behandlung von Angina pectoris, Ischämien und Herzinsuffizienz.
8. Verwendung von Verbindungen der allgemeinen Formel (I) gemäß einem der vorhergehenden Ansprüche zur Herstellung von Arzneimitteln zur Behandlung von Hypertonie, thromboembolischen Erkrankungen, Arteriosklerose und venösen Erkrankungen.
9. Verwendung von Verbindungen der allgemeinen Formel (I) gemäß einem der vorhergehenden Ansprüche zur Herstellung von Arzneimitteln zur Behandlung von fibrotischen Erkrankungen.
0. Verwendung nach Anspruch 9, wobei die fibrotische Erkankung Leberfibrose ist.
PCT/EP2000/008467 1999-09-13 2000-08-31 Dicarbonsäurederivate mit neuartigen pharmazeutischen eigenschaften WO2001019355A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU74150/00A AU7415000A (en) 1999-09-13 2000-08-31 Novel dicarboxylic acid derivatives with pharmaceutical properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999143639 DE19943639A1 (de) 1999-09-13 1999-09-13 Dicarbonsäurederivate mit neuartigen pharmazeutischen Eigenschaften
DE19943639.8 1999-09-13

Publications (1)

Publication Number Publication Date
WO2001019355A2 true WO2001019355A2 (de) 2001-03-22

Family

ID=7921726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/008467 WO2001019355A2 (de) 1999-09-13 2000-08-31 Dicarbonsäurederivate mit neuartigen pharmazeutischen eigenschaften

Country Status (3)

Country Link
AU (1) AU7415000A (de)
DE (1) DE19943639A1 (de)
WO (1) WO2001019355A2 (de)

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070460A1 (de) * 2001-03-01 2002-09-12 Bayer Aktiengesellschaft Halogensubstituierte aminodicarbonsäurederivate als arzneimittel zur behandlung von herz-kreislauf-erkrankungen
WO2004006975A1 (de) * 2002-07-11 2004-01-22 Bayer Healthcare Ag Sgc-aktivatoren enhaltende stents
WO2007045370A1 (de) * 2005-10-21 2007-04-26 Bayer Healthcare Ag Tetrazol-dξrivate und ihre verwendung zur behandlung von herz-kreislauf-erkrankungen
WO2007045366A1 (de) 2005-10-21 2007-04-26 Bayer Healthcare Ag Heterocyclische verbindungen mit carboxyl-isosteren gruppen und ihre verwendung zur behandlung von herz-kreislauf-erkrankungen
WO2007134862A1 (de) 2006-05-23 2007-11-29 Bayer Healthcare Ag Substituierte arylimidaz0l0ne und -triaz0l0ne als inhibitoren der vasopressin-rezeptoren
DE102007009494A1 (de) 2007-02-27 2008-08-28 Bayer Healthcare Ag Substituierte 4-Aryl-1, 4-dihydro-1,6-naphthyridinamide und ihre Verwendung
DE102007015034A1 (de) 2007-03-29 2008-10-02 Bayer Healthcare Ag Lactam-substituierte Dicarbonsäuren und ihre Verwendung
DE102007015035A1 (de) 2007-03-29 2008-10-02 Bayer Healthcare Ag Substituierte Dibenzoesäure-Derivate und ihre Verwendung
DE102007019690A1 (de) 2007-04-26 2008-10-30 Bayer Healthcare Ag Verwendung von cyclisch substituierten Furopyrimidin-Derivaten zur Behandlung der pulmonalen arteriellen Hypertonie
DE102007019691A1 (de) 2007-04-26 2008-10-30 Bayer Healthcare Ag Verwendung von acyclisch substituierten Furopyrimidin-Derivaten zur Behandlung der pulmonalen arteriellen Hypertonie
DE102007026392A1 (de) 2007-06-06 2008-12-11 Bayer Healthcare Ag Lösungen für die Perfusion und Konservierung von Organen und Geweben
DE102007027800A1 (de) 2007-06-16 2008-12-18 Bayer Healthcare Ag Substituierte bicyclische Heteroaryl-Verbindungen und ihre Verwendung
DE102007027799A1 (de) 2007-06-16 2008-12-18 Bayer Healthcare Ag Substituierte Furopyrimidine und ihre Verwendung
DE102007028320A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007028406A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007028407A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007028319A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007042754A1 (de) 2007-09-07 2009-03-12 Bayer Healthcare Ag Substituierte 6-Phenylnikotinsäuren und ihre Verwendung
DE102007051762A1 (de) 2007-10-30 2009-05-07 Bayer Healthcare Ag Substituierte Pyrrolotriazine und ihre Verwendung
DE102007054786A1 (de) 2007-11-16 2009-05-20 Bayer Healthcare Ag Trisubstituierte Furopyrimidine und ihre Verwendung
DE102007061764A1 (de) 2007-12-20 2009-06-25 Bayer Healthcare Ag Anellierte Cyanopyridine und ihre Verwendung
DE102007061766A1 (de) 2007-12-20 2009-06-25 Bayer Healthcare Ag 4-(4-Cyano-2-thioaryl)-dihydropyrimidinone und ihre Verwendung
DE102007061756A1 (de) 2007-12-20 2009-06-25 Bayer Healthcare Ag Substituierte 4-Aminopyrimidin-5-carbonsäuren und ihre Verwendung
DE102007061757A1 (de) 2007-12-20 2009-06-25 Bayer Healthcare Ag Substituierte 2-Phenylpyrimidin-5-carbonsäuren und ihre Verwendung
DE102007061763A1 (de) 2007-12-20 2009-06-25 Bayer Healthcare Ag Substituierte azabicyclische Verbindungen und ihre Verwendung
DE102008007400A1 (de) 2008-02-04 2009-08-06 Bayer Healthcare Ag Substituierte Furane und ihre Verwendung
DE102008013587A1 (de) 2008-03-11 2009-09-17 Bayer Schering Pharma Aktiengesellschaft Heteroaryl-substituierte Dicyanopyridine und ihre Verwendung
DE102008022521A1 (de) 2008-05-07 2009-11-12 Bayer Schering Pharma Aktiengesellschaft 1,4-Diaryl-pyrimidopyridazin-2,5-dione und ihre Verwendung
EP2138178A1 (de) 2008-06-28 2009-12-30 Bayer Schering Pharma Aktiengesellschaft Oxazolidninone zur Behandlung der chronisch obstruktiven Lungenerkrankung (COPD) und/oder Asthma
DE102008030207A1 (de) 2008-06-25 2009-12-31 Bayer Schering Pharma Aktiengesellschaft Substituierte 7-Sulfanylmethyl-, 7-Sulfinylmethyl- und 7-Sulfonylmethyl-Indole und ihre Verwendung
DE102008030206A1 (de) 2008-06-25 2009-12-31 Bayer Schering Pharma Aktiengesellschaft 3-Cyanoalky- und 3-Hydroxyalkyl-Indole und ihre Verwendung
DE102008039083A1 (de) 2008-08-21 2010-02-25 Bayer Schering Pharma Aktiengesellschaft Substituierte 5-Aminopyrazole und ihre Verwendung
DE102008039082A1 (de) 2008-08-21 2010-02-25 Bayer Schering Pharma Aktiengesellschaft Azabicyclisch-substituierte 5-Aminopyrazole und ihre Verwendung
DE102008052013A1 (de) 2008-10-17 2010-04-22 Bayer Schering Pharma Aktiengesellschaft 4-(4-Cyano-2-thioaryl)-dihydropyrimidinone und ihre Verwendung
DE102008054205A1 (de) 2008-10-31 2010-05-06 Bayer Schering Pharma Aktiengesellschaft Verwendung von Helium-Sauerstoff-Gasgemischen zur Behandlung der pulmonalen arteriellen Hypertonie
DE102008060967A1 (de) 2008-12-06 2010-06-10 Bayer Schering Pharma Aktiengesellschaft Substituierte Phenylsulfonyltriazolone und ihre Verwendung
DE102008062567A1 (de) 2008-12-16 2010-06-17 Bayer Schering Pharma Aktiengesellschaft Dipeptoid-Prodrugs und ihre Verwendung
DE102008062566A1 (de) 2008-12-16 2010-06-17 Bayer Schering Pharma Aktiengesellschaft Aminosäureester-Prodrugs und ihre Verwendung
WO2010078953A1 (de) 2009-01-09 2010-07-15 Bayer Schering Pharma Aktiengesellschaft Triazolo- und tetrazolopyrimidin-derivate als hne-inhibitoren zur behandlung von copd
WO2010086101A1 (de) 2009-01-29 2010-08-05 Bayer Schering Pharma Aktiengesellschaft Alkylamino-substituierte dicyanopyridine und deren aminosäureester-prodrugs
WO2010105750A1 (de) 2009-03-18 2010-09-23 Bayer Schering Pharma Aktiengesellschaft Triazol-derivate als vasopressin-rezeptor inhibitoren zur behandlung von herzinsufizienz
WO2010105770A1 (de) 2009-03-18 2010-09-23 Bayer Schering Pharma Aktiengesellschaft Substituierte 2-acetamido-5-aryl-1,2,4-triazolone und deren verwendung
DE102009016553A1 (de) 2009-04-06 2010-10-07 Bayer Schering Pharma Aktiengesellschaft Sulfonamid- und Sulfoximin-substituierte Diaryldihydropyrimidinone und ihre Verwendung
WO2011023703A1 (de) 2009-08-27 2011-03-03 Bayer Schering Pharma Aktiengesellschaft Heterocyclische-substituierte 2-acetamido-5-aryl-1,2,4-triazolone und deren verwendung
WO2011104322A1 (de) 2010-02-27 2011-09-01 Bayer Pharma Aktiengesellschaft Bis-arylverknüpfte aryltriazolone und ihre verwendung
DE102010030187A1 (de) 2010-06-16 2011-12-22 Bayer Schering Pharma Aktiengesellschaft 4-Cyan-2-sulfonylphenyl)pyrazolyl-substituierte Pyridinone und Pyrazinone und ihre Verwendung
WO2011161099A1 (de) 2010-06-25 2011-12-29 Bayer Pharma Aktiengesellschaft Verwendung von stimulatoren und aktivatoren der löslichen guanylatzyklase zur behandlung von sichelzellanämie und konservierung von blutersatzstoffen
WO2012000945A1 (de) 2010-06-30 2012-01-05 Bayer Pharma Aktiengesellschaft Substituierte dicyanopyridine und ihre verwendung
WO2012007539A1 (en) 2010-07-14 2012-01-19 Novartis Ag Ip receptor agonist heterocyclic compounds
WO2012028644A1 (de) 2010-09-02 2012-03-08 Bayer Pharma Aktiengesellschaft Substituierte n-phenethyl-triazolonacetamide und ihre verwendung
WO2012035075A1 (de) 2010-09-16 2012-03-22 Bayer Pharma Aktiengesellschaft Substituierte phenylacet- und phenylpropanamide und ihre verwendung
US8168821B2 (en) 2005-10-21 2012-05-01 Bayer Pharma Aktiengesellschaft Cyclopropylacetic acid derivatives and use thereof
US8173704B2 (en) 2005-10-21 2012-05-08 Bayer Pharma Aktiengesellschaft Difluorophenol derivatives and their use
WO2013004607A1 (en) 2011-07-01 2013-01-10 Bayer Intellectual Property Gmbh Relaxin fusion polypeptides and uses thereof
WO2013007563A1 (en) 2011-07-08 2013-01-17 Bayer Intellectual Property Gmbh Fusion proteins releasing relaxin and uses thereof
WO2013030802A1 (en) 2011-09-01 2013-03-07 Novartis Ag Bicyclic heterocycle derivatives for the treatment of pulmonary arterial hypertension
US8404723B2 (en) 2006-09-22 2013-03-26 Bayer Intellectual Property Gmbh 3-cyano 5-thiazaheteroaryl-dihydropyridine and the use thereof for the treatment of cardiovascular diseases
WO2013105066A1 (en) 2012-01-13 2013-07-18 Novartis Ag Salts of an ip receptor agonist
WO2013105065A1 (en) 2012-01-13 2013-07-18 Novartis Ag Fused piperidines as ip receptor agonists for the treatment of pah and related disorders
WO2013105061A1 (en) 2012-01-13 2013-07-18 Novartis Ag Fused dihydropyrido [2,3 -b] pyrazines as ip receptor agonists for the treatment of pulmonary arterial hypertension (pah) and related disorders
WO2013105063A1 (en) 2012-01-13 2013-07-18 Novartis Ag Fused piperidines as ip receptor agonists for the treatment of pulmonary arterial hypertension (pah) and related disorders
WO2013105057A1 (en) 2012-01-13 2013-07-18 Novartis Ag Fused pyrroles as ip receptor agonists for the treatment of pulmonary arterial hypertension (pah) and related disorders
WO2013105058A1 (en) 2012-01-13 2013-07-18 Novartis Ag 7,8- dihydropyrido [3, 4 - b] pyrazines as ip receptor agonists for the treatment of pulmonary arterial hypertension (pah) and related disorders
WO2013144191A1 (de) 2012-03-29 2013-10-03 Bayer Intellectual Property Gmbh Substituierte 2 -amino - 3 - cyanopyridine als inhibitoren des natrium calcium austausches und ihre verwendung bei kardiovaskulären erkrankungen
WO2013167495A1 (de) 2012-05-09 2013-11-14 Bayer Pharma Aktiengesellschaft Bicyclisch-substituierte uracile und ihre verwendung
WO2013167669A1 (en) 2012-05-10 2013-11-14 Bayer Pharma Aktiengesellschaft Antibodies capable of binding to the coagulation factor xi and/or its activated form factor xia and uses thereof
US8609727B2 (en) 2005-10-21 2013-12-17 Bayer Intellectual Property Gmbh Dicarboxylic acid derivatives and their use
WO2014125413A1 (en) 2013-02-13 2014-08-21 Novartis Ag Ip receptor agonist heterocyclic compounds
WO2014132220A1 (en) 2013-03-01 2014-09-04 Novartis Ag Solid forms of bicyclic heterocyclic derivatives as pdgf receptor mediators
WO2015036563A1 (de) 2013-09-16 2015-03-19 Bayer Pharma Aktiengesellschaft Disubstituierte trifluormethylpyrimidinone und ihre verwendung als ccr2 antagonisten
WO2015052065A1 (de) 2013-10-07 2015-04-16 Bayer Pharma Aktiengesellschaft Cyclische thienouracil-carboxamide und ihre verwendung
WO2015091415A1 (de) 2013-12-19 2015-06-25 Bayer Pharma Aktiengesellschaft Substituierte bipiperidinyl-derivate als adrenorezeptor alpha 2c antagonisten
WO2015150362A2 (de) 2014-04-03 2015-10-08 Bayer Pharma Aktiengesellschaft Chirale 2,5-disubstituierte cyclopentancarbonsäure-derivate und ihre verwendung
WO2015150363A1 (de) 2014-04-03 2015-10-08 Bayer Pharma Aktiengesellschaft 2,5-disubstituierte cyclopentancarbonsäuren und ihre verwendung
WO2015150350A1 (de) 2014-04-03 2015-10-08 Bayer Pharma Aktiengesellschaft 2,5-disubstituierte cyclopentancarbonsäuren zur behandlung von atemwegserkrankungen
WO2015162459A1 (en) 2014-04-24 2015-10-29 Novartis Ag Amino pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors
WO2015162461A1 (en) 2014-04-24 2015-10-29 Novartis Ag Pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors
WO2015162456A1 (en) 2014-04-24 2015-10-29 Novartis Ag Amino pyridine derivatives as phosphatidylinositol 3-kinase inhibitors
WO2016037954A1 (de) 2014-09-09 2016-03-17 Bayer Pharma Aktiengesellschaft Substituierte n,2-diarylchinolin-4-carboxamide und ihre anti-inflammatorische verwendung
WO2016113205A1 (de) 2015-01-13 2016-07-21 Bayer Pharma Aktiengesellschaft Substituierte pentafluorethylpyrimidinone und ihre verwendung
WO2016150901A1 (de) 2015-03-26 2016-09-29 Bayer Pharma Aktiengesellschaft Heterocyclylmethyl-thienouracile als antagonisten des adenosin-a2b-rezeptors
WO2017032673A1 (de) 2015-08-21 2017-03-02 Bayer Pharma Aktiengesellschaft Verfahren zur herstellung von (4s)- 4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carboxamid und dessen aufreinigung für die verwendung als pharmazeutischer wirkstoff
US9624198B2 (en) 2013-12-19 2017-04-18 Bayer Pharma Aktiengesellschaft Substituted piperidinyltetrahydroquinolines
US9624199B2 (en) 2013-12-19 2017-04-18 Bayer Pharma Aktiengesellschaft Substituted bipiperidinyl derivatives
WO2017081044A1 (en) 2015-11-13 2017-05-18 Bayer Pharma Aktiengesellschaft 4-(4-cyano-2-thioaryl)dihydropyrimidinones for treating chronic wounds
WO2017097671A1 (de) 2015-12-10 2017-06-15 Bayer Pharma Aktiengesellschaft Substituierte perhydropyrrolo[3,4-c]pyrrol-derivate und ihre verwendung
US9695131B2 (en) 2013-11-08 2017-07-04 Bayer Pharma Aktiengesellschaft Substituted uracils as chymase inhibitors
US9751843B2 (en) 2013-11-08 2017-09-05 Bayer Pharma Aktiengesellschaft Substituted uracils and use thereof
WO2017153234A1 (de) 2016-03-09 2017-09-14 Bayer Pharma Aktiengesellschaft Substituierte n-cyclo-2-arylchinolin-4-carboxamide und ihre verwendung
WO2017153231A1 (de) 2016-03-09 2017-09-14 Bayer Pharma Aktiengesellschaft Substituierte n-cyclo-2-arylisochinolinon-4-carboxamide und ihre verwendung
WO2017153235A1 (de) 2016-03-09 2017-09-14 Bayer Pharma Aktiengesellschaft Substituierte n-cyclo-3-aryl-1-naphthamide und ihre verwendung
US9771352B2 (en) 2014-11-03 2017-09-26 Bayer Pharma Aktiengesellschaft Hydroxyalkyl-substituted phenyltriazole derivatives and uses thereof
WO2017191102A1 (en) 2016-05-03 2017-11-09 Bayer Pharma Aktiengesellschaft Amide-substituted pyridinyltriazole derivatives and uses thereof
WO2017191117A1 (en) 2016-05-03 2017-11-09 Bayer Pharma Aktiengesellschaft V1a receptor antagonists for use in the treatment of renal diseases
WO2017191107A1 (en) 2016-05-03 2017-11-09 Bayer Pharma Aktiengesellschaft Amide-substituted phenyltriazole derivatives and uses thereof
WO2017191115A1 (en) 2016-05-03 2017-11-09 Bayer Pharma Aktiengesellschaft Oxoalkyl-substituted phenyltriazole derivatives and uses thereof
WO2017191105A1 (en) 2016-05-03 2017-11-09 Bayer Pharma Aktiengesellschaft Amide-substituted aryltriazole derivatives and uses thereof
WO2017191114A1 (en) 2016-05-03 2017-11-09 Bayer Aktiengesellschaft Hydroxyalkyl-substituted heteroaryltriazole derivatives and uses thereof
WO2018011017A1 (de) 2016-07-11 2018-01-18 Bayer Pharma Aktiengesellschaft 7-substituierte 1-pyridyl-naphthyridin-3-carbonsäureamide und ihre verwendung
WO2018015196A1 (de) 2016-07-20 2018-01-25 Bayer Aktiengesellschaft Substituierte diazaheterobicyclische verbindungen und ihre verwendung
WO2018041771A1 (de) 2016-09-02 2018-03-08 Bayer Pharma Aktiengesellschaft (1-methylcyclopropyl)methyl-substituierte thienouracile und ihre verwendung
EP3296298A1 (de) 2016-09-14 2018-03-21 Bayer Pharma Aktiengesellschaft 7-substituierte 1-aryl-naphthyridin-3-carbonsäureamide und ihre verwendung
WO2018050510A1 (de) 2016-09-14 2018-03-22 Bayer Aktiengesellschaft 7-substituierte 1-aryl-naphthyridin-3-carbonsäureamide und ihre verwendung
WO2018054846A1 (de) 2016-09-23 2018-03-29 Bayer Aktiengesellschaft N3-cyclisch substituierte thienouracile und ihre verwendung
US9944621B2 (en) 2013-12-19 2018-04-17 Bayer Pharma Aktiengesellschaft Substituted piperidinyl tetrahydroquinolines
WO2018069222A1 (en) 2016-10-14 2018-04-19 Bayer Aktiengesellschaft Substituted 6-(1h-pyrazol-1-yl)pyrimidin-4-amine derivatives and uses thereof
WO2018073144A1 (en) 2016-10-20 2018-04-26 Bayer Pharma Aktiengesellschaft Hydroxyalkyl-substituted triazole derivatives and uses thereof
EP3338803A1 (de) 2016-12-21 2018-06-27 Bayer Pharma Aktiengesellschaft Pharmazeutische darreichungsformen enthaltend inhibitoren von task-1 und task-3 kanälen und deren verwendung für die therapie von atemstörungen
EP3338764A1 (de) 2016-12-21 2018-06-27 Bayer Pharma Aktiengesellschaft Pharmazeutische darreichungsformen enthaltend inhibitoren von task-1 und task-3 kanälen und deren verwendung für die therapie von atemstörungen
WO2018114501A1 (de) 2016-12-21 2018-06-28 Bayer Pharma Aktiengesellschaft Pharmazeutische darreichungsformen enthaltend inhibitoren von task-1 und task-3 kanälen und deren verwendung für die therapie von atemstörungen
WO2018114503A1 (de) 2016-12-21 2018-06-28 Bayer Pharma Aktiengesellschaft Pharmazeutische darreichungsformen enthaltend inhibitoren von task-1 und task-3 kanälen und deren verwendung für die therapie von atemstörungen
WO2018148419A1 (en) 2017-02-08 2018-08-16 Bristol-Myers Squibb Company Modified relaxin polypeptides comprising a pharmacokinetic enhancer and uses thereof
US10059707B2 (en) 2014-08-01 2018-08-28 Bayer Pharma AG Method for the preparation of (4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro- 1-6-naphthyridine-3-carbox-amide and the purification thereof for use as an active pharmaceutical ingredient
WO2018189011A1 (de) 2017-04-10 2018-10-18 Bayer Aktiengesellschaft Substituierte n-arylethyl-2-arylchinolin-4-carboxamide und ihre verwendung
WO2018189012A1 (de) 2017-04-10 2018-10-18 Bayer Aktiengesellschaft Substituierte n-arylethyl-2-aminochinolin-4-carboxamide und ihre verwendung
US10138236B2 (en) 2014-09-24 2018-11-27 Bayer Pharma Aktiengesellschaft Factor xia-inhibiting pyridobenzazepine and pyridobenzazocine derivatives
WO2018228909A1 (en) 2017-06-14 2018-12-20 Bayer Pharma Aktiengesellschaft Substituted bridged diazepane derivatives and use thereof as task-1 and task-3 inhibitors
WO2018228907A1 (de) 2017-06-14 2018-12-20 Bayer Aktiengesellschaft Diazabicyclisch substituierte imidazopyrimidine und ihre verwendung zur behandlung von atemstörungen
US10265314B2 (en) 2013-07-25 2019-04-23 Bayer Pharma Aktiengesellschaft SGC stimulators in combination with additional treatment for the therapy of cystic fibrosis
WO2019081353A1 (de) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft Substituierte imidazopyridinamide und ihre verwendung
WO2019081291A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft PRODRUGS OF SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081299A1 (en) 2017-10-24 2019-05-02 Bayer Pharma Aktiengesellschaft AMINE SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081292A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft PRODRUGS OF SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081302A1 (en) 2017-10-24 2019-05-02 Bayer Pharma Aktiengesellschaft SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081456A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft USE OF SGC ACTIVATORS AND STIMULATORS COMPRISING A BETA2 SUBUNIT
WO2019081307A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081303A1 (en) 2017-10-24 2019-05-02 Bayer Pharma Aktiengesellschaft SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081306A1 (en) 2017-10-24 2019-05-02 Bayer Pharma Aktiengesellschaft SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019091847A1 (de) 2017-11-07 2019-05-16 Bayer Aktiengesellschaft Substituierte 2,4-dihydro-3h-1,2,4-triazol-3-one und ihre verwendung
EP3553081A1 (de) 2018-04-12 2019-10-16 Bayer Aktiengesellschaft Natriuretische peptidgepfropfte antikörper im vorhof
EP3553079A1 (de) 2018-04-12 2019-10-16 Bayer Aktiengesellschaft Mit natriuretischem peptid vom c-typ gepfropfte antikörper
EP3553082A1 (de) 2018-04-12 2019-10-16 Bayer Aktiengesellschaft Natriuretische peptidgepfropfte antikörper im gehirn
WO2019219672A1 (en) 2018-05-15 2019-11-21 Bayer Aktiengesellschaft 1,3-thiazol-2-yl substituted benzamides for the treatment of diseases associated with nerve fiber sensitization
WO2019219517A1 (en) 2018-05-17 2019-11-21 Bayer Aktiengesellschaft Substituted dihydropyrazolo pyrazine carboxamide derivatives
WO2019223629A1 (zh) 2018-05-22 2019-11-28 广东东阳光药业有限公司 苯基取代的二氢萘啶类化合物及其用途
US10525041B2 (en) 2016-05-03 2020-01-07 Bayer Pharma Aktiengesellschaft Fluoroalkyl-substituted aryltriazole derivatives and uses thereof
WO2020109109A1 (de) 2018-11-27 2020-06-04 Bayer Aktiengesellschaft Verfahren zur herstellung von pharmazeutischen darreichungsformen enthaltend inhibitoren von task-1 und task-3 kanälen und deren verwendung für die therapie von atemstörungen
US10722501B2 (en) 2016-05-09 2020-07-28 Bayer Aktiengesellschaft Substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-A]pyridine-3(2H)-ones and 2,5,6,7-tetrahydro-3H-pyrrolo[2,1-C][1,2,4]triazol-3-ones, and use thereof
WO2020165010A1 (en) 2019-02-13 2020-08-20 Bayer Aktiengesellschaft Process for the preparation of porous microparticles
WO2020165031A1 (de) 2019-02-15 2020-08-20 Bayer Aktiengesellschaft Substituierte isochinolin-piperidinylmethanon-derivate
US10759794B2 (en) 2015-12-10 2020-09-01 Bayer Pharma Aktiengesellschaft 2-phenyl-3-(piperazinomethyl)imidazo[1,2-A]pyridine derivatives as blockers of task-1 and task-2 channels, for the treatment of sleep-related breathing disorders
WO2020216669A1 (de) 2019-04-23 2020-10-29 Bayer Aktiengesellschaft Phenylsubstituierte imidazopyridinamide und ihre verwendung
WO2021078135A1 (zh) 2019-10-25 2021-04-29 广东东阳光药业有限公司 吡咯酰胺类化合物及其用途
WO2021089683A1 (en) 2019-11-06 2021-05-14 Bayer Aktiengesellschaft Inhibitors of adrenoreceptor adrac2
EP3822268A1 (de) 2019-11-15 2021-05-19 Bayer Aktiengesellschaft Substituierte hydantoinamide als adamts7 antagonisten
EP3822265A1 (de) 2019-11-15 2021-05-19 Bayer AG Substituierte hydantoinamide als adamts7 antagonisten
WO2021094210A1 (en) 2019-11-12 2021-05-20 Bayer Aktiengesellschaft Substituted pyrazine carboxamide derivatives as prostaglandin ep3 receptor antagonists
WO2021094208A1 (en) 2019-11-12 2021-05-20 Bayer Aktiengesellschaft Substituted imidazo pyrimidine ep3 antagonists
WO2021094209A1 (en) 2019-11-12 2021-05-20 Bayer Aktiengesellschaft Substituted pyrrolo triazine carboxamide derivatives as prostaglandin ep3 receptor antagonists
WO2021167458A1 (en) 2020-02-21 2021-08-26 Universiteit Maastricht Use of a soluble guanylate cyclase (sgc) stimulator or of a combination of a sgc stimulator and an sgc activator for conditions wherein the heme group of sgc is oxidized or wherein sgc is deficient in heme
WO2021172982A1 (en) 2020-02-26 2021-09-02 Universiteit Maastricht Therapeutic combination for the treatment of brain ischemia and said therapeutic combination for use in the treatment of brain ischemia
WO2022112213A1 (en) 2020-11-30 2022-06-02 Bayer Aktiengesellschaft Crystalline forms of 3-[[3-(4-chlorophenyl)-5-oxo-4-((2s)-3,3,3-trifluoro- 2-hydroxypropyl)-4,5-dihydro-1h-1,2,4-triazol-1-yl]methyl]-1-[3- (trifluoromethyl)pyridin-2-yl]-1h-1,2,4-triazole-5-carboxamide
EP4011873A1 (de) 2020-12-10 2022-06-15 Bayer Aktiengesellschaft Substituierte pyrazolo-piperidin-carbonsäuren
EP4011874A1 (de) 2020-12-10 2022-06-15 Bayer Aktiengesellschaft Substituierte pyrazolo-piperidin-carbonsäuren
WO2022122916A1 (en) 2020-12-10 2022-06-16 Bayer Aktiengesellschaft Substituted pyrazolyl piperidine carboxylic acids
WO2022122917A1 (en) 2020-12-10 2022-06-16 Bayer Aktiengesellschaft The use of sgc activators for the treatment of ophthalmologic diseases
WO2022122914A1 (en) 2020-12-10 2022-06-16 Bayer Aktiengesellschaft Substituted pyrazolo piperidine carboxylic acids
WO2023237577A1 (en) 2022-06-09 2023-12-14 Bayer Aktiengesellschaft Soluble guanylate cyclase activators for use in the treatment of heart failure with preserved ejection fraction in women

Cited By (231)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700653B2 (en) 2001-03-01 2010-04-20 Bayer Schering Pharma Aktiengesellschaft Halogen-substituted aminodicarboxylic acid derivatives
US7067694B2 (en) 2001-03-01 2006-06-27 Bayer Aktiengesellschaft Halogen-substituted amino dicarboxylic acid derivatives as medicaments for treating cardiovascular diseases
WO2002070460A1 (de) * 2001-03-01 2002-09-12 Bayer Aktiengesellschaft Halogensubstituierte aminodicarbonsäurederivate als arzneimittel zur behandlung von herz-kreislauf-erkrankungen
WO2004006975A1 (de) * 2002-07-11 2004-01-22 Bayer Healthcare Ag Sgc-aktivatoren enhaltende stents
US7998988B2 (en) 2005-10-21 2011-08-16 Bayer Schering Pharma Aktiengellschaft Biphenyl compounds useful in the treatment or prevention of cardiovascular disorders
JP2009512648A (ja) * 2005-10-21 2009-03-26 バイエル・ヘルスケア・アクチェンゲゼルシャフト テトラゾール誘導体および心血管疾患の処置のためのそれらの使用
US8168821B2 (en) 2005-10-21 2012-05-01 Bayer Pharma Aktiengesellschaft Cyclopropylacetic acid derivatives and use thereof
WO2007045366A1 (de) 2005-10-21 2007-04-26 Bayer Healthcare Ag Heterocyclische verbindungen mit carboxyl-isosteren gruppen und ihre verwendung zur behandlung von herz-kreislauf-erkrankungen
US8173704B2 (en) 2005-10-21 2012-05-08 Bayer Pharma Aktiengesellschaft Difluorophenol derivatives and their use
US8183271B2 (en) 2005-10-21 2012-05-22 Bayer Intellectual Property Gmbh Tetrazole derivatives and their use for the treatment of cardiovascular diseases
US8609727B2 (en) 2005-10-21 2013-12-17 Bayer Intellectual Property Gmbh Dicarboxylic acid derivatives and their use
WO2007045370A1 (de) * 2005-10-21 2007-04-26 Bayer Healthcare Ag Tetrazol-dξrivate und ihre verwendung zur behandlung von herz-kreislauf-erkrankungen
WO2007134862A1 (de) 2006-05-23 2007-11-29 Bayer Healthcare Ag Substituierte arylimidaz0l0ne und -triaz0l0ne als inhibitoren der vasopressin-rezeptoren
US8404723B2 (en) 2006-09-22 2013-03-26 Bayer Intellectual Property Gmbh 3-cyano 5-thiazaheteroaryl-dihydropyridine and the use thereof for the treatment of cardiovascular diseases
DE102007009494A1 (de) 2007-02-27 2008-08-28 Bayer Healthcare Ag Substituierte 4-Aryl-1, 4-dihydro-1,6-naphthyridinamide und ihre Verwendung
WO2008119458A1 (de) * 2007-03-29 2008-10-09 Bayer Schering Pharma Aktiengesellschaft Substituierte dibenzoesäure-derivate und ihre verwendung
JP2010522703A (ja) * 2007-03-29 2010-07-08 バイエル・シェーリング・ファルマ・アクチェンゲゼルシャフト 置換二安息香酸誘導体およびそれらの使用
US8217063B2 (en) 2007-03-29 2012-07-10 Bayer Intellectual Property Gmbh Lactam-substituted dicarboxylic acids and use thereof
DE102007015035A1 (de) 2007-03-29 2008-10-02 Bayer Healthcare Ag Substituierte Dibenzoesäure-Derivate und ihre Verwendung
US7985876B2 (en) 2007-03-29 2011-07-26 Bayer Schering Pharma Aktiengesellschaft Substituted dibenzoic acid derivatives and use thereof
DE102007015034A1 (de) 2007-03-29 2008-10-02 Bayer Healthcare Ag Lactam-substituierte Dicarbonsäuren und ihre Verwendung
DE102007019690A1 (de) 2007-04-26 2008-10-30 Bayer Healthcare Ag Verwendung von cyclisch substituierten Furopyrimidin-Derivaten zur Behandlung der pulmonalen arteriellen Hypertonie
DE102007019691A1 (de) 2007-04-26 2008-10-30 Bayer Healthcare Ag Verwendung von acyclisch substituierten Furopyrimidin-Derivaten zur Behandlung der pulmonalen arteriellen Hypertonie
DE102007026392A1 (de) 2007-06-06 2008-12-11 Bayer Healthcare Ag Lösungen für die Perfusion und Konservierung von Organen und Geweben
DE102007027799A1 (de) 2007-06-16 2008-12-18 Bayer Healthcare Ag Substituierte Furopyrimidine und ihre Verwendung
DE102007027800A1 (de) 2007-06-16 2008-12-18 Bayer Healthcare Ag Substituierte bicyclische Heteroaryl-Verbindungen und ihre Verwendung
DE102007028319A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007028407A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007028406A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007028320A1 (de) 2007-06-20 2008-12-24 Bayer Healthcare Ag Substituierte Oxazolidinone und ihre Verwendung
DE102007042754A1 (de) 2007-09-07 2009-03-12 Bayer Healthcare Ag Substituierte 6-Phenylnikotinsäuren und ihre Verwendung
DE102007051762A1 (de) 2007-10-30 2009-05-07 Bayer Healthcare Ag Substituierte Pyrrolotriazine und ihre Verwendung
DE102007054786A1 (de) 2007-11-16 2009-05-20 Bayer Healthcare Ag Trisubstituierte Furopyrimidine und ihre Verwendung
DE102007061757A1 (de) 2007-12-20 2009-06-25 Bayer Healthcare Ag Substituierte 2-Phenylpyrimidin-5-carbonsäuren und ihre Verwendung
EP2556856A1 (de) 2007-12-20 2013-02-13 Bayer Intellectual Property GmbH 6-Cyano-substituierte Pyrido[2,3-d]pyrimidine als Adenosin Rezeptor Liganden zur Behandlung von Kardiovakulären Erkrankungen
EP2556831A1 (de) 2007-12-20 2013-02-13 Bayer Intellectual Property GmbH 3,4-Dihydro-4-oxo-5-aryl-pyrido[2,3-d]pyrimidin-6-carbonitrile als Adenosin Rezeptor Liganden zur Behandlung von cardiovasculären Erkrankungen
DE102007061763A1 (de) 2007-12-20 2009-06-25 Bayer Healthcare Ag Substituierte azabicyclische Verbindungen und ihre Verwendung
DE102007061756A1 (de) 2007-12-20 2009-06-25 Bayer Healthcare Ag Substituierte 4-Aminopyrimidin-5-carbonsäuren und ihre Verwendung
DE102007061766A1 (de) 2007-12-20 2009-06-25 Bayer Healthcare Ag 4-(4-Cyano-2-thioaryl)-dihydropyrimidinone und ihre Verwendung
DE102007061764A1 (de) 2007-12-20 2009-06-25 Bayer Healthcare Ag Anellierte Cyanopyridine und ihre Verwendung
DE102008007400A1 (de) 2008-02-04 2009-08-06 Bayer Healthcare Ag Substituierte Furane und ihre Verwendung
DE102008013587A1 (de) 2008-03-11 2009-09-17 Bayer Schering Pharma Aktiengesellschaft Heteroaryl-substituierte Dicyanopyridine und ihre Verwendung
DE102008022521A1 (de) 2008-05-07 2009-11-12 Bayer Schering Pharma Aktiengesellschaft 1,4-Diaryl-pyrimidopyridazin-2,5-dione und ihre Verwendung
US8063234B2 (en) 2008-06-25 2011-11-22 Bayer Schering Pharma Aktiengesellschaft Substituted 7-sulfanylmethyl-, 7-sulfinylmethyl- and 7-sulfonylmethylindoles and the use thereof
DE102008030207A1 (de) 2008-06-25 2009-12-31 Bayer Schering Pharma Aktiengesellschaft Substituierte 7-Sulfanylmethyl-, 7-Sulfinylmethyl- und 7-Sulfonylmethyl-Indole und ihre Verwendung
DE102008030206A1 (de) 2008-06-25 2009-12-31 Bayer Schering Pharma Aktiengesellschaft 3-Cyanoalky- und 3-Hydroxyalkyl-Indole und ihre Verwendung
EP2138178A1 (de) 2008-06-28 2009-12-30 Bayer Schering Pharma Aktiengesellschaft Oxazolidninone zur Behandlung der chronisch obstruktiven Lungenerkrankung (COPD) und/oder Asthma
DE102008039083A1 (de) 2008-08-21 2010-02-25 Bayer Schering Pharma Aktiengesellschaft Substituierte 5-Aminopyrazole und ihre Verwendung
DE102008039082A1 (de) 2008-08-21 2010-02-25 Bayer Schering Pharma Aktiengesellschaft Azabicyclisch-substituierte 5-Aminopyrazole und ihre Verwendung
DE102008052013A1 (de) 2008-10-17 2010-04-22 Bayer Schering Pharma Aktiengesellschaft 4-(4-Cyano-2-thioaryl)-dihydropyrimidinone und ihre Verwendung
DE102008054205A1 (de) 2008-10-31 2010-05-06 Bayer Schering Pharma Aktiengesellschaft Verwendung von Helium-Sauerstoff-Gasgemischen zur Behandlung der pulmonalen arteriellen Hypertonie
US8859601B2 (en) 2008-12-06 2014-10-14 Bayer Intellectual Property Gmbh Substituted benzyl and phenylsulfonyl triazolones, and use thereof
DE102008060967A1 (de) 2008-12-06 2010-06-10 Bayer Schering Pharma Aktiengesellschaft Substituierte Phenylsulfonyltriazolone und ihre Verwendung
DE102008062567A1 (de) 2008-12-16 2010-06-17 Bayer Schering Pharma Aktiengesellschaft Dipeptoid-Prodrugs und ihre Verwendung
DE102008062566A1 (de) 2008-12-16 2010-06-17 Bayer Schering Pharma Aktiengesellschaft Aminosäureester-Prodrugs und ihre Verwendung
DE102009004197A1 (de) 2009-01-09 2010-07-15 Bayer Schering Pharma Aktiengesellschaft Heterocyclisch anellierte Diaryldihydropyrimidin-Derivate und ihre Verwendung
WO2010078953A1 (de) 2009-01-09 2010-07-15 Bayer Schering Pharma Aktiengesellschaft Triazolo- und tetrazolopyrimidin-derivate als hne-inhibitoren zur behandlung von copd
DE102009006602A1 (de) 2009-01-29 2010-08-05 Bayer Schering Pharma Aktiengesellschaft Alkylamino-substituierte Dicyanopyridine und deren Aminosäureester-Prodrugs
EP2743270A1 (de) 2009-01-29 2014-06-18 Bayer Intellectual Property GmbH Alkylamino-substituierte Dicyanopyridine und deren Aminosäureester-Prodrugs
WO2010086101A1 (de) 2009-01-29 2010-08-05 Bayer Schering Pharma Aktiengesellschaft Alkylamino-substituierte dicyanopyridine und deren aminosäureester-prodrugs
WO2010105750A1 (de) 2009-03-18 2010-09-23 Bayer Schering Pharma Aktiengesellschaft Triazol-derivate als vasopressin-rezeptor inhibitoren zur behandlung von herzinsufizienz
US8796324B2 (en) 2009-03-18 2014-08-05 Bayer Intellectual Property Gmbh Substituted 2-acetamido-5-aryl-1,2,4-triazolones and use thereof
DE102010001064A1 (de) 2009-03-18 2010-09-23 Bayer Schering Pharma Aktiengesellschaft Substituierte 2-Acetamido-5-Aryl-1,2,4-triazolone und deren Verwendung
DE102009013642A1 (de) 2009-03-18 2010-09-23 Bayer Schering Pharma Aktiengesellschaft Substituierte Phenylalaninderivate und deren Verwendung
WO2010105770A1 (de) 2009-03-18 2010-09-23 Bayer Schering Pharma Aktiengesellschaft Substituierte 2-acetamido-5-aryl-1,2,4-triazolone und deren verwendung
WO2010115548A1 (de) 2009-04-06 2010-10-14 Bayer Schering Pharma Aktiengesellschaft Sulfonamid- und sulfoximin-substituierte diaryldihydropyrimidinone und ihre verwendung
DE102009016553A1 (de) 2009-04-06 2010-10-07 Bayer Schering Pharma Aktiengesellschaft Sulfonamid- und Sulfoximin-substituierte Diaryldihydropyrimidinone und ihre Verwendung
WO2011023703A1 (de) 2009-08-27 2011-03-03 Bayer Schering Pharma Aktiengesellschaft Heterocyclische-substituierte 2-acetamido-5-aryl-1,2,4-triazolone und deren verwendung
DE102009028929A1 (de) 2009-08-27 2011-07-07 Bayer Schering Pharma Aktiengesellschaft, 13353 Heterocyclisch-substituierte 2-Acetamido-5-Aryl-1,2,4-triazolone und deren Verwendung
US9187466B2 (en) 2010-02-27 2015-11-17 Bayer Intellectual Property Gmbh Bisaryl-bonded aryltriazolones and use thereof
US9687476B2 (en) 2010-02-27 2017-06-27 Bayer Intellectual Property Gmbh Bisaryl-bonded aryltriazolones and use thereof
WO2011104322A1 (de) 2010-02-27 2011-09-01 Bayer Pharma Aktiengesellschaft Bis-arylverknüpfte aryltriazolone und ihre verwendung
DE102010030187A1 (de) 2010-06-16 2011-12-22 Bayer Schering Pharma Aktiengesellschaft 4-Cyan-2-sulfonylphenyl)pyrazolyl-substituierte Pyridinone und Pyrazinone und ihre Verwendung
WO2011161099A1 (de) 2010-06-25 2011-12-29 Bayer Pharma Aktiengesellschaft Verwendung von stimulatoren und aktivatoren der löslichen guanylatzyklase zur behandlung von sichelzellanämie und konservierung von blutersatzstoffen
EP2687210A1 (de) 2010-06-25 2014-01-22 Bayer Intellectual Property GmbH Verwendung von Stimulatoren und Aktivatoren der löslichen Guanylatzyklase zur Behandlung von Sichelzellanämie und Konservierung von Blutersatzstoffen
DE102010030688A1 (de) 2010-06-30 2012-01-05 Bayer Schering Pharma Aktiengesellschaft Substituierte Dicyanopyridine und ihre Verwendung
WO2012000945A1 (de) 2010-06-30 2012-01-05 Bayer Pharma Aktiengesellschaft Substituierte dicyanopyridine und ihre verwendung
WO2012007539A1 (en) 2010-07-14 2012-01-19 Novartis Ag Ip receptor agonist heterocyclic compounds
US9180120B2 (en) 2010-09-02 2015-11-10 Bayer Intellectual Property Gmbh Substituted N-phenethyltriazoloneacetamides and use thereof
WO2012028644A1 (de) 2010-09-02 2012-03-08 Bayer Pharma Aktiengesellschaft Substituierte n-phenethyl-triazolonacetamide und ihre verwendung
DE102010040187A1 (de) 2010-09-02 2012-03-08 Bayer Schering Pharma Aktiengesellschaft Substituierte N-Phenethyl-triazolonacetamide und ihre Verwendung
WO2012035075A1 (de) 2010-09-16 2012-03-22 Bayer Pharma Aktiengesellschaft Substituierte phenylacet- und phenylpropanamide und ihre verwendung
US9034855B2 (en) 2010-09-16 2015-05-19 Bayer Intellectual Property Gmbh Substituted phenylacetate and phenylpropane amides and use thereof
DE102010040924A1 (de) 2010-09-16 2012-03-22 Bayer Schering Pharma Aktiengesellschaft Substituierte Phenylacet- und Phenylpropanamide und ihre Verwendung
WO2013004607A1 (en) 2011-07-01 2013-01-10 Bayer Intellectual Property Gmbh Relaxin fusion polypeptides and uses thereof
US9382305B2 (en) 2011-07-01 2016-07-05 Bayer Intellectual Property Gmbh Relaxin fusion polypeptides and uses thereof
WO2013007563A1 (en) 2011-07-08 2013-01-17 Bayer Intellectual Property Gmbh Fusion proteins releasing relaxin and uses thereof
WO2013030802A1 (en) 2011-09-01 2013-03-07 Novartis Ag Bicyclic heterocycle derivatives for the treatment of pulmonary arterial hypertension
WO2013105061A1 (en) 2012-01-13 2013-07-18 Novartis Ag Fused dihydropyrido [2,3 -b] pyrazines as ip receptor agonists for the treatment of pulmonary arterial hypertension (pah) and related disorders
WO2013105066A1 (en) 2012-01-13 2013-07-18 Novartis Ag Salts of an ip receptor agonist
WO2013105058A1 (en) 2012-01-13 2013-07-18 Novartis Ag 7,8- dihydropyrido [3, 4 - b] pyrazines as ip receptor agonists for the treatment of pulmonary arterial hypertension (pah) and related disorders
WO2013105065A1 (en) 2012-01-13 2013-07-18 Novartis Ag Fused piperidines as ip receptor agonists for the treatment of pah and related disorders
WO2013105057A1 (en) 2012-01-13 2013-07-18 Novartis Ag Fused pyrroles as ip receptor agonists for the treatment of pulmonary arterial hypertension (pah) and related disorders
WO2013105063A1 (en) 2012-01-13 2013-07-18 Novartis Ag Fused piperidines as ip receptor agonists for the treatment of pulmonary arterial hypertension (pah) and related disorders
WO2013144191A1 (de) 2012-03-29 2013-10-03 Bayer Intellectual Property Gmbh Substituierte 2 -amino - 3 - cyanopyridine als inhibitoren des natrium calcium austausches und ihre verwendung bei kardiovaskulären erkrankungen
WO2013167495A1 (de) 2012-05-09 2013-11-14 Bayer Pharma Aktiengesellschaft Bicyclisch-substituierte uracile und ihre verwendung
US9481672B2 (en) 2012-05-09 2016-11-01 Bayer Pharma Aktiengesellschaft Bicyclically substituted uracils and the use thereof
EP3045456A1 (de) 2012-05-09 2016-07-20 Bayer Pharma Aktiengesellschaft Bicyclisch-substituierte uracile und ihre verwendung
US9949977B2 (en) 2012-05-09 2018-04-24 Bayer Pharma Aktiengesellschaft Bicyclically substituted uracils and the use thereof
US10300062B2 (en) 2012-05-09 2019-05-28 Bayer Pharma Aktiengesellschaft Bicyclically substituted uracils and the use thereof
US9949978B2 (en) 2012-05-09 2018-04-24 Bayer Pharma Aktiengesellschaft Bicyclically substituted uracils and the use thereof
US9783614B2 (en) 2012-05-10 2017-10-10 Bayer Pharma Aktiengesellschaft Antibodies capable of binding to the coagulation Factor XI and/or its activated form factor Xia and uses thereof
US10040866B2 (en) 2012-05-10 2018-08-07 Bayer Pharma Aktiengesellschaft Nucleic acids and host cells expressing antibodies capable of binding to the coagulation factor XIa and uses thereof
US10221247B2 (en) 2012-05-10 2019-03-05 Bayer Pharma Aktiengesellschaft Antibodies capable of binding to the coagulation factor XIa and uses thereof
US11046783B2 (en) 2012-05-10 2021-06-29 Bayer Pharma Aktiengesellschaft Antibodies capable of binding to the coagulation factor XIa and uses thereof
WO2013167669A1 (en) 2012-05-10 2013-11-14 Bayer Pharma Aktiengesellschaft Antibodies capable of binding to the coagulation factor xi and/or its activated form factor xia and uses thereof
WO2014125413A1 (en) 2013-02-13 2014-08-21 Novartis Ag Ip receptor agonist heterocyclic compounds
WO2014132220A1 (en) 2013-03-01 2014-09-04 Novartis Ag Solid forms of bicyclic heterocyclic derivatives as pdgf receptor mediators
US10265314B2 (en) 2013-07-25 2019-04-23 Bayer Pharma Aktiengesellschaft SGC stimulators in combination with additional treatment for the therapy of cystic fibrosis
WO2015036563A1 (de) 2013-09-16 2015-03-19 Bayer Pharma Aktiengesellschaft Disubstituierte trifluormethylpyrimidinone und ihre verwendung als ccr2 antagonisten
WO2015052065A1 (de) 2013-10-07 2015-04-16 Bayer Pharma Aktiengesellschaft Cyclische thienouracil-carboxamide und ihre verwendung
US9751843B2 (en) 2013-11-08 2017-09-05 Bayer Pharma Aktiengesellschaft Substituted uracils and use thereof
US9695131B2 (en) 2013-11-08 2017-07-04 Bayer Pharma Aktiengesellschaft Substituted uracils as chymase inhibitors
US9624199B2 (en) 2013-12-19 2017-04-18 Bayer Pharma Aktiengesellschaft Substituted bipiperidinyl derivatives
WO2015091415A1 (de) 2013-12-19 2015-06-25 Bayer Pharma Aktiengesellschaft Substituierte bipiperidinyl-derivate als adrenorezeptor alpha 2c antagonisten
US9624198B2 (en) 2013-12-19 2017-04-18 Bayer Pharma Aktiengesellschaft Substituted piperidinyltetrahydroquinolines
US10323020B2 (en) 2013-12-19 2019-06-18 Bayer Pharma Aktiengesellschaft Substituted piperidinyl tetrahydroquinolines
US9944621B2 (en) 2013-12-19 2018-04-17 Bayer Pharma Aktiengesellschaft Substituted piperidinyl tetrahydroquinolines
EP3329920A2 (de) 2013-12-19 2018-06-06 Bayer Pharma Aktiengesellschaft Adrenorezeptor alpha2c rezeptor antagonisten
US10961221B2 (en) 2013-12-19 2021-03-30 Bayer Pharma Aktiengesellschaft Substituted piperidinyl tetrahydroquinolines
WO2015150362A2 (de) 2014-04-03 2015-10-08 Bayer Pharma Aktiengesellschaft Chirale 2,5-disubstituierte cyclopentancarbonsäure-derivate und ihre verwendung
WO2015150350A1 (de) 2014-04-03 2015-10-08 Bayer Pharma Aktiengesellschaft 2,5-disubstituierte cyclopentancarbonsäuren zur behandlung von atemwegserkrankungen
WO2015150363A1 (de) 2014-04-03 2015-10-08 Bayer Pharma Aktiengesellschaft 2,5-disubstituierte cyclopentancarbonsäuren und ihre verwendung
WO2015162459A1 (en) 2014-04-24 2015-10-29 Novartis Ag Amino pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors
WO2015162461A1 (en) 2014-04-24 2015-10-29 Novartis Ag Pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors
WO2015162456A1 (en) 2014-04-24 2015-10-29 Novartis Ag Amino pyridine derivatives as phosphatidylinositol 3-kinase inhibitors
US10399977B2 (en) 2014-08-01 2019-09-03 Bayer Pharma Aktiengesellschaft Process for preparing (4S)- 4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxamide and purification thereof for use as a pharmaceutical active ingredient
USRE49575E1 (en) 2014-08-01 2023-07-11 Bayer Pharma Aktiengesellschaft Method for the preparation of (4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-l,4-dihydro-1-6-naphthyridine-3-carbox-amide and the purification thereof for use as an active pharmaceutical ingredient
USRE49860E1 (en) 2014-08-01 2024-03-05 Bayer Pharma Aktiengesellschaft Process for preparing (4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxamide and purification thereof for use as pharmaceutical active ingredient
US10059707B2 (en) 2014-08-01 2018-08-28 Bayer Pharma AG Method for the preparation of (4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro- 1-6-naphthyridine-3-carbox-amide and the purification thereof for use as an active pharmaceutical ingredient
EP3660015A1 (de) 2014-08-01 2020-06-03 Bayer Pharma Aktiengesellschaft Verfahren zur herstellung von (4s)- 4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl- 1,4-dihydro-1,6-naphthyridin-3-carbox-amid und dessen aufreinigung für die verwendung als pharmazeutischer wirkstoff
US10479765B2 (en) 2014-09-09 2019-11-19 Bayer Pharma Aktiengesellschaft Substituted N,2-diarylquinoline-4-carboxamides and the use thereof as anti-inflammatory agents
US10189788B2 (en) 2014-09-09 2019-01-29 Bayer Pharma Aktiengesellschaft Substituted N,2-diarylquinoline-4-carboxamides and the use thereof as anti-inflammatory agents
WO2016037954A1 (de) 2014-09-09 2016-03-17 Bayer Pharma Aktiengesellschaft Substituierte n,2-diarylchinolin-4-carboxamide und ihre anti-inflammatorische verwendung
US10138236B2 (en) 2014-09-24 2018-11-27 Bayer Pharma Aktiengesellschaft Factor xia-inhibiting pyridobenzazepine and pyridobenzazocine derivatives
US9771352B2 (en) 2014-11-03 2017-09-26 Bayer Pharma Aktiengesellschaft Hydroxyalkyl-substituted phenyltriazole derivatives and uses thereof
WO2016113205A1 (de) 2015-01-13 2016-07-21 Bayer Pharma Aktiengesellschaft Substituierte pentafluorethylpyrimidinone und ihre verwendung
US10428083B2 (en) 2015-03-26 2019-10-01 Bayer Pharma Aktiengesellschaft Heterocyclylmethyl-thienouracile as antagonists of the adenosine-A2B-receptor
WO2016150901A1 (de) 2015-03-26 2016-09-29 Bayer Pharma Aktiengesellschaft Heterocyclylmethyl-thienouracile als antagonisten des adenosin-a2b-rezeptors
US10336749B2 (en) 2015-08-21 2019-07-02 Bayer Pharma Aktiengesellschaft Method for the preparation of (4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide and the purification thereof for use as an active pharmaceutical ingredient
USRE49826E1 (en) 2015-08-21 2024-02-06 Bayer Pharma Aktiengesellschaft Method for the preparation of (4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide and the purification thereof for use as an active pharmaceutical ingredient
WO2017032673A1 (de) 2015-08-21 2017-03-02 Bayer Pharma Aktiengesellschaft Verfahren zur herstellung von (4s)- 4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carboxamid und dessen aufreinigung für die verwendung als pharmazeutischer wirkstoff
WO2017081044A1 (en) 2015-11-13 2017-05-18 Bayer Pharma Aktiengesellschaft 4-(4-cyano-2-thioaryl)dihydropyrimidinones for treating chronic wounds
US10759794B2 (en) 2015-12-10 2020-09-01 Bayer Pharma Aktiengesellschaft 2-phenyl-3-(piperazinomethyl)imidazo[1,2-A]pyridine derivatives as blockers of task-1 and task-2 channels, for the treatment of sleep-related breathing disorders
US10414765B2 (en) 2015-12-10 2019-09-17 Bayer Pharma Aktiengesellschaft Substituted perhydropyrrolo[3,4-c]pyrrole derivatives and the use of same
WO2017097671A1 (de) 2015-12-10 2017-06-15 Bayer Pharma Aktiengesellschaft Substituierte perhydropyrrolo[3,4-c]pyrrol-derivate und ihre verwendung
WO2017153235A1 (de) 2016-03-09 2017-09-14 Bayer Pharma Aktiengesellschaft Substituierte n-cyclo-3-aryl-1-naphthamide und ihre verwendung
WO2017153231A1 (de) 2016-03-09 2017-09-14 Bayer Pharma Aktiengesellschaft Substituierte n-cyclo-2-arylisochinolinon-4-carboxamide und ihre verwendung
WO2017153234A1 (de) 2016-03-09 2017-09-14 Bayer Pharma Aktiengesellschaft Substituierte n-cyclo-2-arylchinolin-4-carboxamide und ihre verwendung
US9988367B2 (en) 2016-05-03 2018-06-05 Bayer Pharma Aktiengesellschaft Amide-substituted pyridinyltriazole derivatives and uses thereof
US11091463B2 (en) 2016-05-03 2021-08-17 Bayer Pharma Aktiengesellschaft Amide-substituted pyridinyltriazole derivatives and uses thereof
US10800746B2 (en) 2016-05-03 2020-10-13 Bayer Pharma Aktiengesellschaft Oxoalkyl-substituted phenyltriazole derivatives and uses thereof
US10525041B2 (en) 2016-05-03 2020-01-07 Bayer Pharma Aktiengesellschaft Fluoroalkyl-substituted aryltriazole derivatives and uses thereof
US10526314B2 (en) 2016-05-03 2020-01-07 Bayer Aktiengesellschaft Hydroxyalkyl-substituted heteroaryltriazole derivatives and uses thereof
WO2017191102A1 (en) 2016-05-03 2017-11-09 Bayer Pharma Aktiengesellschaft Amide-substituted pyridinyltriazole derivatives and uses thereof
WO2017191117A1 (en) 2016-05-03 2017-11-09 Bayer Pharma Aktiengesellschaft V1a receptor antagonists for use in the treatment of renal diseases
US10815205B2 (en) 2016-05-03 2020-10-27 Bayer Pharma Aktiengesellschaft Amide-substituted phenyltriazole derivatives and uses thereof
US10472348B2 (en) 2016-05-03 2019-11-12 Bayer Pharma Aktiengesellschaft Amide-substituted pyridinyltriazole derivatives and uses thereof
WO2017191105A1 (en) 2016-05-03 2017-11-09 Bayer Pharma Aktiengesellschaft Amide-substituted aryltriazole derivatives and uses thereof
WO2017191107A1 (en) 2016-05-03 2017-11-09 Bayer Pharma Aktiengesellschaft Amide-substituted phenyltriazole derivatives and uses thereof
WO2017191115A1 (en) 2016-05-03 2017-11-09 Bayer Pharma Aktiengesellschaft Oxoalkyl-substituted phenyltriazole derivatives and uses thereof
WO2017191114A1 (en) 2016-05-03 2017-11-09 Bayer Aktiengesellschaft Hydroxyalkyl-substituted heteroaryltriazole derivatives and uses thereof
US10722501B2 (en) 2016-05-09 2020-07-28 Bayer Aktiengesellschaft Substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-A]pyridine-3(2H)-ones and 2,5,6,7-tetrahydro-3H-pyrrolo[2,1-C][1,2,4]triazol-3-ones, and use thereof
WO2018011017A1 (de) 2016-07-11 2018-01-18 Bayer Pharma Aktiengesellschaft 7-substituierte 1-pyridyl-naphthyridin-3-carbonsäureamide und ihre verwendung
WO2018015196A1 (de) 2016-07-20 2018-01-25 Bayer Aktiengesellschaft Substituierte diazaheterobicyclische verbindungen und ihre verwendung
WO2018041771A1 (de) 2016-09-02 2018-03-08 Bayer Pharma Aktiengesellschaft (1-methylcyclopropyl)methyl-substituierte thienouracile und ihre verwendung
WO2018050510A1 (de) 2016-09-14 2018-03-22 Bayer Aktiengesellschaft 7-substituierte 1-aryl-naphthyridin-3-carbonsäureamide und ihre verwendung
EP3296298A1 (de) 2016-09-14 2018-03-21 Bayer Pharma Aktiengesellschaft 7-substituierte 1-aryl-naphthyridin-3-carbonsäureamide und ihre verwendung
WO2018054846A1 (de) 2016-09-23 2018-03-29 Bayer Aktiengesellschaft N3-cyclisch substituierte thienouracile und ihre verwendung
WO2018069222A1 (en) 2016-10-14 2018-04-19 Bayer Aktiengesellschaft Substituted 6-(1h-pyrazol-1-yl)pyrimidin-4-amine derivatives and uses thereof
US11208400B2 (en) 2016-10-14 2021-12-28 Bayer Aktiengesellschaft Substituted 6-(1H-pyrazol-1-yl)pyrimidin-4-amine derivatives and uses thereof
WO2018073144A1 (en) 2016-10-20 2018-04-26 Bayer Pharma Aktiengesellschaft Hydroxyalkyl-substituted triazole derivatives and uses thereof
US10927098B2 (en) 2016-10-20 2021-02-23 Bayer Pharma Aktiengesellschaft Hydroxyalkyl-substituted triazole derivatives and uses thereof
EP3338803A1 (de) 2016-12-21 2018-06-27 Bayer Pharma Aktiengesellschaft Pharmazeutische darreichungsformen enthaltend inhibitoren von task-1 und task-3 kanälen und deren verwendung für die therapie von atemstörungen
EP3338764A1 (de) 2016-12-21 2018-06-27 Bayer Pharma Aktiengesellschaft Pharmazeutische darreichungsformen enthaltend inhibitoren von task-1 und task-3 kanälen und deren verwendung für die therapie von atemstörungen
WO2018114501A1 (de) 2016-12-21 2018-06-28 Bayer Pharma Aktiengesellschaft Pharmazeutische darreichungsformen enthaltend inhibitoren von task-1 und task-3 kanälen und deren verwendung für die therapie von atemstörungen
WO2018114503A1 (de) 2016-12-21 2018-06-28 Bayer Pharma Aktiengesellschaft Pharmazeutische darreichungsformen enthaltend inhibitoren von task-1 und task-3 kanälen und deren verwendung für die therapie von atemstörungen
WO2018148419A1 (en) 2017-02-08 2018-08-16 Bristol-Myers Squibb Company Modified relaxin polypeptides comprising a pharmacokinetic enhancer and uses thereof
WO2018189012A1 (de) 2017-04-10 2018-10-18 Bayer Aktiengesellschaft Substituierte n-arylethyl-2-aminochinolin-4-carboxamide und ihre verwendung
WO2018189011A1 (de) 2017-04-10 2018-10-18 Bayer Aktiengesellschaft Substituierte n-arylethyl-2-arylchinolin-4-carboxamide und ihre verwendung
US11098063B2 (en) 2017-06-14 2021-08-24 Bayer Aktiengesellschaft Diazabicyclic substituted imidazopyrimidines and their use for the treatment of breathing disorders
WO2018228907A1 (de) 2017-06-14 2018-12-20 Bayer Aktiengesellschaft Diazabicyclisch substituierte imidazopyrimidine und ihre verwendung zur behandlung von atemstörungen
WO2018228909A1 (en) 2017-06-14 2018-12-20 Bayer Pharma Aktiengesellschaft Substituted bridged diazepane derivatives and use thereof as task-1 and task-3 inhibitors
US11173151B2 (en) 2017-10-24 2021-11-16 Bayer Aktiengesellschaft Substituted triazole derivatives and uses thereof
WO2019081353A1 (de) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft Substituierte imidazopyridinamide und ihre verwendung
US11331314B2 (en) 2017-10-24 2022-05-17 Bayer Pharma Aktiengesellschaft Amine substituted triazole derivatives and uses thereof
US11298367B2 (en) 2017-10-24 2022-04-12 Bayer Aktiengesellschaft Prodrugs of substituted triazole derivatives and uses thereof
US11230540B2 (en) 2017-10-24 2022-01-25 Bayer Pharma Aktiengesellschaft Substituted triazole derivatives and uses thereof
WO2019081291A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft PRODRUGS OF SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081307A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
US11149023B2 (en) 2017-10-24 2021-10-19 Bayer Pharma Aktiengesellschaft Substituted triazole derivatives and uses thereof
WO2019081299A1 (en) 2017-10-24 2019-05-02 Bayer Pharma Aktiengesellschaft AMINE SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081292A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft PRODRUGS OF SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081302A1 (en) 2017-10-24 2019-05-02 Bayer Pharma Aktiengesellschaft SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081306A1 (en) 2017-10-24 2019-05-02 Bayer Pharma Aktiengesellschaft SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081303A1 (en) 2017-10-24 2019-05-02 Bayer Pharma Aktiengesellschaft SUBSTITUTED TRIAZOLE DERIVATIVES AND USES THEREOF
WO2019081456A1 (en) 2017-10-24 2019-05-02 Bayer Aktiengesellschaft USE OF SGC ACTIVATORS AND STIMULATORS COMPRISING A BETA2 SUBUNIT
WO2019091847A1 (de) 2017-11-07 2019-05-16 Bayer Aktiengesellschaft Substituierte 2,4-dihydro-3h-1,2,4-triazol-3-one und ihre verwendung
EP3553082A1 (de) 2018-04-12 2019-10-16 Bayer Aktiengesellschaft Natriuretische peptidgepfropfte antikörper im gehirn
EP3553081A1 (de) 2018-04-12 2019-10-16 Bayer Aktiengesellschaft Natriuretische peptidgepfropfte antikörper im vorhof
EP3553079A1 (de) 2018-04-12 2019-10-16 Bayer Aktiengesellschaft Mit natriuretischem peptid vom c-typ gepfropfte antikörper
WO2019197470A1 (en) 2018-04-12 2019-10-17 Bayer Aktiengesellschaft Atrial natriuretic peptide engrafted antibodies
WO2019197477A1 (en) 2018-04-12 2019-10-17 Bayer Aktiengesellschaft C-type natriuretic peptide engrafted antibodies
WO2019197475A1 (en) 2018-04-12 2019-10-17 Bayer Aktiengesellschaft Brain natriuretic peptide engrafted antibodies
WO2019219672A1 (en) 2018-05-15 2019-11-21 Bayer Aktiengesellschaft 1,3-thiazol-2-yl substituted benzamides for the treatment of diseases associated with nerve fiber sensitization
WO2019219517A1 (en) 2018-05-17 2019-11-21 Bayer Aktiengesellschaft Substituted dihydropyrazolo pyrazine carboxamide derivatives
WO2019223629A1 (zh) 2018-05-22 2019-11-28 广东东阳光药业有限公司 苯基取代的二氢萘啶类化合物及其用途
WO2020109109A1 (de) 2018-11-27 2020-06-04 Bayer Aktiengesellschaft Verfahren zur herstellung von pharmazeutischen darreichungsformen enthaltend inhibitoren von task-1 und task-3 kanälen und deren verwendung für die therapie von atemstörungen
WO2020165010A1 (en) 2019-02-13 2020-08-20 Bayer Aktiengesellschaft Process for the preparation of porous microparticles
WO2020165031A1 (de) 2019-02-15 2020-08-20 Bayer Aktiengesellschaft Substituierte isochinolin-piperidinylmethanon-derivate
WO2020216669A1 (de) 2019-04-23 2020-10-29 Bayer Aktiengesellschaft Phenylsubstituierte imidazopyridinamide und ihre verwendung
WO2021078135A1 (zh) 2019-10-25 2021-04-29 广东东阳光药业有限公司 吡咯酰胺类化合物及其用途
WO2021089683A1 (en) 2019-11-06 2021-05-14 Bayer Aktiengesellschaft Inhibitors of adrenoreceptor adrac2
WO2021094209A1 (en) 2019-11-12 2021-05-20 Bayer Aktiengesellschaft Substituted pyrrolo triazine carboxamide derivatives as prostaglandin ep3 receptor antagonists
WO2021094208A1 (en) 2019-11-12 2021-05-20 Bayer Aktiengesellschaft Substituted imidazo pyrimidine ep3 antagonists
WO2021094210A1 (en) 2019-11-12 2021-05-20 Bayer Aktiengesellschaft Substituted pyrazine carboxamide derivatives as prostaglandin ep3 receptor antagonists
WO2021094434A1 (en) 2019-11-15 2021-05-20 Bayer Aktiengesellschaft Substituted hydantoinamides as adamts7 antagonists
WO2021094436A1 (en) 2019-11-15 2021-05-20 Bayer Aktiengesellschaft Substituted hydantoinamides as adamts7 antagonists
EP3822268A1 (de) 2019-11-15 2021-05-19 Bayer Aktiengesellschaft Substituierte hydantoinamide als adamts7 antagonisten
EP3822265A1 (de) 2019-11-15 2021-05-19 Bayer AG Substituierte hydantoinamide als adamts7 antagonisten
WO2021167458A1 (en) 2020-02-21 2021-08-26 Universiteit Maastricht Use of a soluble guanylate cyclase (sgc) stimulator or of a combination of a sgc stimulator and an sgc activator for conditions wherein the heme group of sgc is oxidized or wherein sgc is deficient in heme
WO2021172982A1 (en) 2020-02-26 2021-09-02 Universiteit Maastricht Therapeutic combination for the treatment of brain ischemia and said therapeutic combination for use in the treatment of brain ischemia
WO2022112213A1 (en) 2020-11-30 2022-06-02 Bayer Aktiengesellschaft Crystalline forms of 3-[[3-(4-chlorophenyl)-5-oxo-4-((2s)-3,3,3-trifluoro- 2-hydroxypropyl)-4,5-dihydro-1h-1,2,4-triazol-1-yl]methyl]-1-[3- (trifluoromethyl)pyridin-2-yl]-1h-1,2,4-triazole-5-carboxamide
WO2022122910A1 (en) 2020-12-10 2022-06-16 Bayer Aktiengesellschaft Substituted pyrazolo piperidine carboxylic acids
WO2022122917A1 (en) 2020-12-10 2022-06-16 Bayer Aktiengesellschaft The use of sgc activators for the treatment of ophthalmologic diseases
WO2022122914A1 (en) 2020-12-10 2022-06-16 Bayer Aktiengesellschaft Substituted pyrazolo piperidine carboxylic acids
WO2022122913A1 (en) 2020-12-10 2022-06-16 Bayer Aktiengesellschaft Substituted pyrazolo piperidine carboxylic acids
WO2022122916A1 (en) 2020-12-10 2022-06-16 Bayer Aktiengesellschaft Substituted pyrazolyl piperidine carboxylic acids
EP4011874A1 (de) 2020-12-10 2022-06-15 Bayer Aktiengesellschaft Substituierte pyrazolo-piperidin-carbonsäuren
EP4011873A1 (de) 2020-12-10 2022-06-15 Bayer Aktiengesellschaft Substituierte pyrazolo-piperidin-carbonsäuren
WO2023237577A1 (en) 2022-06-09 2023-12-14 Bayer Aktiengesellschaft Soluble guanylate cyclase activators for use in the treatment of heart failure with preserved ejection fraction in women

Also Published As

Publication number Publication date
DE19943639A1 (de) 2001-03-15
AU7415000A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
WO2001019355A2 (de) Dicarbonsäurederivate mit neuartigen pharmazeutischen eigenschaften
EP1216223B1 (de) Neuartige dicarbonsäurederivate mit pharmazeutischen eigenschaften
WO2001019776A2 (de) Neuartige dicarbonsäurederivate mit pharmazeutischen eigenschaften
EP1216225B1 (de) Neuartige aminodicarbonsäurederivate mit pharmazeutischen eigenschaften
DE10110750A1 (de) Neuartige Aminodicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE10110749A1 (de) Substituierte Aminodicarbonsäurederivate
EP1339717B1 (de) Neue carbamat-substituierte pyrazolopyridinderivate
EP2142495B1 (de) Substituierte dibenzoesäure-derivate und ihre verwendung
DE60112741T2 (de) Gamma-selektive retinoide
DE10109859A1 (de) Neuartige Aminodicarbonsäurederivate
DE10132416A1 (de) Neue Morpholin-überbrückte Pyrazolopyridinderivate
WO2003086407A1 (de) Verwendung von stimulatoren der löslichen guanylatcyclase zur behandlung von glaukom
DE60014928T2 (de) Retinoide zur behandlung von emphysem
DE60116642T2 (de) Verbindungen mit cytochrom p450ra1 hemmenden aktivität
DE102007015034A1 (de) Lactam-substituierte Dicarbonsäuren und ihre Verwendung
DE4327365A1 (de) Verwendung von Phenolen und Phenolderivaten als Arzneimittel mit fibrinogensenkender Wirkung
DE10109861A1 (de) Neuartige seitenkettenhalogenierte Aminodicarbonsäurederivate
DE10244810A1 (de) Neue Morpholin-überbrückte Indazolderivate
DE60121809T2 (de) Materialien und verfahren zur herstellung von stilbenen
CH505777A (de) Verfahren zur Herstellung neuer bicyclischer Verbindungen
PL96929B1 (pl) Sposob wytwarzania nowych zwiazkow polienowych
CH556315A (de) Verfahren zur herstellung neuer bicyclischer verbindungen.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642