WO2000057231A1 - Microscope confocal a balayage - Google Patents

Microscope confocal a balayage Download PDF

Info

Publication number
WO2000057231A1
WO2000057231A1 PCT/JP2000/001623 JP0001623W WO0057231A1 WO 2000057231 A1 WO2000057231 A1 WO 2000057231A1 JP 0001623 W JP0001623 W JP 0001623W WO 0057231 A1 WO0057231 A1 WO 0057231A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
dimensional scanning
sample
light
dimensional
Prior art date
Application number
PCT/JP2000/001623
Other languages
English (en)
French (fr)
Inventor
Hideo Watanabe
Original Assignee
Olympus Optical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11076720A external-priority patent/JP2000275528A/ja
Priority claimed from JP16243699A external-priority patent/JP4384290B2/ja
Application filed by Olympus Optical Co., Ltd. filed Critical Olympus Optical Co., Ltd.
Publication of WO2000057231A1 publication Critical patent/WO2000057231A1/ja
Priority to US09/696,774 priority Critical patent/US6317258B1/en
Priority to US10/035,419 priority patent/US6437910B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0048Scanning details, e.g. scanning stages scanning mirrors, e.g. rotating or galvanomirrors, MEMS mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors

Definitions

  • the present invention relates to a scanning confocal microscope in which scanning control of focused light on a sample and data processing are improved to speed up the processing.
  • a scanning confocal microscope illuminates the surface of an observation sample (hereinafter, referred to as a sample) in a point-like manner with a point-like light source, and again transmits the transmitted light or reflected light from the illuminated sample surface in a point-like manner.
  • a microscope that uses the confocal action when the image is focused on a detector having a pinhole aperture and the brightness information of the image is obtained by this detector.
  • the point light emitted from the point light source 1 passes through the half-mirror 2 and is formed into a point image on the surface of the sample 4 by the objective lens 3 whose aberration has been corrected.
  • the reflected light from the sample 4 of the point-like illumination passes through the objective lens 3 again, is reflected by the half mirror 2, and is collected.
  • a pinhole 5 is arranged at this light condensing position, and the reflected light passing through this pinhole 5 is detected by a photodetector 6.
  • a galvano scanner or a resonant scanner is used in the X direction
  • a galvano scanner is used in the Y direction.
  • the scanning speed of the surface of the sample 4 is about 1 sheet Z second, and a resonant scanner is used for the X scanner to slightly increase the scanning speed. In this case, it is about 5 seconds. It should be noted that the number of pixels is 102 4 X 768 pixels.
  • the image of the sample 4 finally obtained in a certain optical axis direction range covers the entire surface of the sample 4. It becomes a focused two-dimensional image.
  • the moving time of the objective lens 3 (or the sample 4) is determined by the entire moving range, and requires much time compared to the normal acquisition of only two-dimensional information.
  • the sample 4 when a large amount of image data (luminance information) is required for one measurement, such as in the case of extend scanning, to reduce the overall measurement time, the sample 4 must be scanned by two-dimensional scanning. It is necessary to reduce the time for acquiring luminance information (image update time).
  • the present invention provides a scanning confocal microscope capable of measuring a required area at a high speed without being influenced by a scanning means, a magnification (observation field of view) and a resolution when measuring a sample.
  • the purpose is.
  • the image is moved to the next focal position.
  • the object lens 3 (or sample 4) is moved in the Z-axis at a predetermined pitch so that the next image is captured by two-dimensional scanning.
  • next image acquisition must be devoted to the time of the idle shake (no data acquisition), and if a large amount of time is required to acquire the desired number of images, a problem occurs. I will.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a scanning confocal microscope capable of acquiring accurate image information in a short time.
  • the scanning range specifying means for specifying the two-dimensional scanning range of the focused light on the sample, and the two-dimensional scanning range H specified by the scanning range specifying means
  • a two-dimensional scanning means for two-dimensionally scanning the sample with the focused light
  • a focusing means which is two-dimensionally scanned by the two-dimensional scanning means.
  • a light receiving means for receiving any one of reflected light, fluorescent light, and transmitted light from the sample; and one of reflected light, fluorescent light, and transmitted light received by the light receiving means
  • Image acquisition means for obtaining an image of the sample based on one of the above.
  • the two-dimensional scanning means for two-dimensionally scanning the sample with the focused light within the two-dimensional scanning range
  • the two-dimensional scanning means A light receiving means for receiving any one of the reflected light, the fluorescent light, and the transmitted light from the sample of the focused light that has been scanned three-dimensionally; and the reflected light, the fluorescent light, and the transmitted light received by the light receiving means.
  • Data acquisition range designating means for designating a data acquisition range, among image data of a sample obtained based on any one of the above, and reflected light, fluorescence and transmitted light received by the light receiving means. An image of the sample is acquired based on the image data of the data acquisition range specified by the data acquisition range designating unit, out of the image data of the sample obtained based on any one of the above.
  • a scanning range specifying means for specifying a two-dimensional scanning range of the focused light on the sample, and a two-dimensional scanning range specified by the scanning range specifying means.
  • Two-dimensional scanning means for two-dimensionally scanning the sample with focused light; and reflected light, fluorescence, and transmitted light from the sample of the focused light two-dimensionally scanned by the two-dimensional scanning means.
  • Light receiving means for receiving any one of the light, reflected light received by the light receiving means, Of image data of a sample obtained based on one of fluorescence and transmitted light, data acquisition range designating means for designating a data acquisition range, and reflection received by the light receiving means Based on image data of a sample obtained based on any one of light, fluorescence and transmitted light, based on image data of a data acquisition range designated by the data acquisition range designating means, Image acquisition means for acquiring an image of the sample.
  • two-dimensional scanning means for two-dimensionally scanning the sample with focused light
  • focus position adjusting means for adjusting the focal position of the focused light with respect to the sample
  • focus And control means for prohibiting two-dimensional scanning by the two-dimensional scanning means during a focus position adjustment period by the position adjustment means.
  • the control means outputs the horizontal synchronizing signal output every one line scan of the two-dimensional scanning means and every frame scan.
  • a vertical synchronizing signal is controlled, the start of focus position adjustment by the focus position adjusting means is instructed by the vertical synchronizing signal, and the two-dimensional scanning by the two-dimensional scanning means is prohibited.
  • the two-dimensional scanning of the two-dimensional scanning means is started after the end of the adjustment of the focus position by the focus position adjusting means.
  • control means further manages a control signal output following the vertical synchronization signal of the two-dimensional scanning means, and adjusts the focus position.
  • the control signal When the end of the focus position adjustment by means is notified before the control signal Does not prohibit the two-dimensional scanning of the two-dimensional scanning means, and when the end of the focus position adjustment by the focus position adjustment means is notified after the control signal, the The two-dimensional scanning of the two-dimensional scanning means is temporarily inhibited, and the two-dimensional scanning of the two-dimensional scanning means is started after the end of the adjustment of the focal position.
  • the period between the vertical synchronizing signal of the two-dimensional scanning unit and the control signal output following the vertical synchronization signal can also be used for adjusting the focal position by the focal position adjusting unit.
  • Figure 1 shows the configuration of a conventional confocal microscope.
  • FIG. 2 is a diagram showing a scanning confocal microscope according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an image displayed on a monitor when solder balls are arranged in a grid on a substrate as a sample.
  • FIG. 4 is a diagram showing a region designation of image information when a two-dimensional scanning range of a laser beam is designated.
  • Figure 5 is a diagram showing the driving pattern of the Y-scan when the two-dimensional scanning range of the laser beam is specified.
  • FIG. 6 is a scanning confocal microscope according to the first embodiment of the present invention. A flow chart for explaining the operation of the microscope.
  • Fig. 7 is a schematic diagram when acquiring the image of the area specified in the X direction from the image of the sample.
  • FIG. 8 is a flowchart for explaining the operation of the scanning confocal microscope according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing a scanning confocal microscope according to a third embodiment of the present invention.
  • FIG. 10 is a view for explaining main parts of a scanning confocal microscope according to the third embodiment.
  • FIG. 11 is a diagram for explaining the operation of the scanning confocal microscope according to the third embodiment.
  • FIG. 12 is a time chart for explaining the operation of the scanning confocal microscope according to the third embodiment.
  • FIG. 13 is a view for explaining a scanning confocal microscope according to a fourth embodiment of the present invention.
  • Figure 2 is a block diagram of the scanning confocal microscope.
  • the microscope main body 100 is provided with a laser light source 10.
  • This laser light source 10 generates laser light as spot light (focused light) for scanning the surface of the sample 4.
  • a mirror 11 is arranged on the optical path of the laser light source 10.
  • the mirror 11 is a reflector for guiding the laser light from the laser light source 10 to the two-dimensional scanning mechanism 12.
  • the two-dimensional scanning mechanism 12 is a mechanism for two-dimensionally scanning the laser light from the laser light source 10 obtained via the mirror 11, and is controlled by the two-dimensional scanning drive control circuit 13. Originally, XY scanning of spot light was performed.
  • the two-dimensional scanning mechanism 12 has, for example, a resonant scanner for scanning in the X-axis direction and a galvano scanner for scanning in the Y-axis direction. By swinging in the axial direction, the optical path of the spot light to the object lens 14 is caused to swing in the XY direction.
  • the revolver 15 holds a plurality of objective lenses 14 having different magnifications.
  • the stage 16 holds the sample 4.
  • the objective lens 14 having a desired magnification among a plurality of objective lenses 14; the position of which is set in the observation optical path of the microscope by switching the revolver 15; The spot light from the two-dimensional scanning mechanism 12 via the objective lens 14 whose position has been set is irradiated so as to perform two-dimensional scanning on the sample 4 on the stage 16. What is it?
  • the reflected light from the sample 4 passes through the objective lens 14, returns to the two-dimensional scanning mechanism 12, and is returned from the two-dimensional scanning mechanism 12 to the half mirror 17. I have.
  • the half mirror 17 is provided on the emission optical path of the laser light source 10 with respect to the two-dimensional scanning mechanism 12, and the two-dimensional scanning mechanism 1 It is a translucent mirror for guiding the reflected light from sample 4 obtained through 2 to the detection system.
  • the lens 18 condenses the reflected light from the two-dimensional scanning mechanism 12 obtained through the half mirror 17, and the pinhole plate 19 has a required diameter. Since it has a pinhole, it is located at the focal point of the lens 18 in front of the light receiving surface of the photodetector 20.
  • the photodetector 20 is a photodetector that converts light obtained through the pinhole of the pinhole plate 19 into an electric signal corresponding to the light amount.
  • the signal photoelectrically converted by the photodetector 20 is sent to a computer 21 together with a timing signal from a two-dimensional scanning drive control circuit 13, and the image is formed by the computer 21.
  • a computer 21 By displaying on the monitor 22, the surface information of the sample 4 can be obtained.
  • the computer 21 has a function of a scanning range designating means 23 for designating a two-dimensional scanning range of the laser beam on the sample 4.
  • the scanning range designating means 23 limits the range of the Y-direction scanning of the sample 4 by the two-dimensional scanning mechanism 12, and the operator sets the scanning range on the monitor 22. This is to be performed from the input device 24 based on the displayed surface information of the sample 4, and the specified area thus set is sent to the two-dimensional scanning drive control circuit 13. Become.
  • the input device 24 is, for example, a mouse or a keyboard. Next, the operation of the microscope configured as described above will be described.
  • the laser light output from the laser light source 10 is guided by the mirror 11 to the two-dimensional scanning mechanism 12, and the two-dimensional scanning mechanism 12 is used for the X-axis scanning resonant scanner and the Y-axis scanning. Is scanned in the XY-axis direction by the swinging motion of the galvano scanner.
  • the scanned laser beam is irradiated onto the sample 4 through the objective lens 14 while being scanned as spot light.
  • the reflected light from the sample 4 returns to the two-dimensional scanning mechanism 12 through the objective lens 14, and from the two-dimensional scanning mechanism 12, the half mirror 17, the lens The light passes through the pinhole plate 19 and enters the photodetector 20.
  • the photodetector 20 photoelectrically converts the incident reflected light from the sample 4 and sends the signal to the computer 21.
  • the computer 21 takes in the signal from the photodetector 20, forms an image according to the timing signal from the two-dimensional scanning drive control circuit 13, and monitors the image. Displayed in data 22.
  • FIG. 3 shows an example of the sample 4 displayed as an image on the monitor 22.
  • This image is a non-confocal image captured to specify the scanning range, and has a plurality of solder balls 26 on a substrate 25 as a sample 4 to be inspected. They are arranged in a grid. The solder ball 26 is slightly crushed at the top.
  • a scanning confocal microscope is usually used.
  • the entire display area is laser-scanned, and the update speed is about four nanoseconds (for example, a 1: 1 rectangular area inscribed in a field of view of 18 ... 10 24 pixels XI 0 24 lines).
  • the objective lens 14 was moved in the optical axis direction by, for example, 200 steps. In this case, it takes about 90 seconds to acquire the entire data.
  • the operator of the scanning confocal microscope uses the surface information of the sample 4 displayed on the monitor 22 to scan the laser beam from the input device 24 in the Y-direction. (Fig. 6: S1).
  • the operator uses a mouse or keyboard to specify an area Q effective for height measurement in the Y scanning direction from the displayed image.
  • the designated area Q may be limited to the area including the part to be measured. In the case of the present embodiment, the height between the points A and B between the substrate 25 and the top of the sphere 26 is sufficient. Since it measures the height, you can specify the area in the Y scanning direction that includes these points A and B. As an example, suppose you chose just enough to fit the whole ball 26, It is only necessary that the area be smaller than the entire field of view in the Y direction.
  • the scanning range designating means 23 transmits the information of the designated designated area Q to the two-dimensional scanning drive control circuit 13, whereby the scanning range of the laser light in the Y direction is controlled. That is, two-dimensional scanning is performed in the designated scanning range (FIG. 6: S 2).
  • the driving pattern of a normal Y scanner has a waveform as shown by the solid line in Fig. 5 and has a period of about 4 Hz, within which the effective scanning area (12024 lines) and the ineffective area (laser). (Return period).
  • the invalid area is determined in consideration of the time required for the computer 21 to process an image operation such as an extend.
  • the computer 21 issues an instruction to the two-dimensional scanning drive control circuit 13 and The drive pattern of the Y scanner is switched to the one shown by the broken line in Fig. 5.
  • the designated area Q is designated as half of the entire scanning range in the Y direction, and the effective area is reduced to 512 lines.
  • data acquisition for measurement is performed only in a rectangular area corresponding to a half of the original, ie, 104 pixels X 512 lines.
  • the ratio of the retrace period is practically negligible up to the effective area of about 128 lines (1Z8).
  • the response speed and computation time of the scanner itself will be limited and the effect will be diminished. This is because the image is distorted near both ends in the Y direction, and the calculation cannot be made in time for the retrace.
  • the total data acquisition time is about 50 seconds in 200 steps (about 10 seconds for image acquisition and about 40 seconds for moving the objective lens). In the 00 step, it takes about 240 seconds (4 minutes).
  • the method of specifying the specified area Q is not limited to the method described above, and the width of the specified area Q in the Y-scanning direction may be different depending on the size of the portion to be inspected (valid data acquisition area).
  • the number can be set arbitrarily, for example, it can be specified as the specified area Q 'in the Y scanning direction which is equal to the diameter of the area containing the vertex data of the semicircular sphere 26 shown in FIG. .
  • the position in the Y direction is not limited to the center, but can be freely set in the vertical direction depending on the position of the inspection target portion on the sample, and another scanner may be used for the two-dimensional scanning means.
  • the scanning range designating means 23 is used to improve the image update speed by limiting the scanning area in the Y direction. Then, the two-dimensional scanning mechanism 12 is operated.
  • the scanning range designating means 23 for designating the Y-direction scanning range of the laser beam for the sample 4 is provided, the sub-scanning direction of the two-dimensional scanning ( By changing the information amount (scan amount) in the Y direction), for example, when measuring the height between the substrate 25 and the upper part of the solder ball 26 on the sample 4, the scanning means and the magnification ( The required area can be measured at high speed without being affected by the observation field of view) and the resolution.
  • the scanning range designating means 30 of the computer 21 has a function of designating a scanning range of the laser beam in the Y direction with respect to the sample 4 and, among other functions, image data obtained from an output signal of the photodetector 20.
  • the input device 24 also has the function of a data acquisition range designating means for designating only the designated area P shown in FIG. 7 as valid information.
  • the laser light emitted from the laser light source 10 is guided to the two-dimensional scanning mechanism 12 by the mirror 11, and the two-dimensional scanning mechanism 12 Scan in the XY axis direction Then, it is irradiated while being scanned as spot light on the sample 4 through the objective lens 14.
  • the reflected light from the sample 4 passes through the objective lens 14 and returns to the two-dimensional scanning mechanism 12, and from the two-dimensional scanning mechanism 12, the NOF mirror 17 and the lens 1 8. Then, the light passes through the pinhole plate 19 and enters the photodetector 20.
  • the photodetector 20 photoelectrically converts the incident light reflected from the sample 4 and sends the signal to the computer 21.
  • an operator uses a laser as shown in FIG. 7 from the input device 24 based on the surface information (non-confocal image) of the sample 4 displayed on the monitor 22.
  • the computer 21 captures the output signal of the photodetector 20 when the scanning of the laser beam in the Y direction is controlled in the designated area Q (FIG. 8: S13).
  • the two-dimensional scanning drive control circuit 1 ′ 3 The data valid signal for imaging given to the computer 21 is processed as shown in Fig. 7 (Fig. 8: S14).
  • the horizontal sync signal (* HD) starts at the beginning of one line.
  • the data valid signal (* DE) is a timing signal indicating a period during which a pixel is valid as an image.
  • the pixel portion corresponding to the period * DE that is, the data effective pixel portion P in the X direction is limited by the command P from the scanning range specifying means 30 specified by the input of the operator.
  • the number of data in the X direction decreases, and the amount of data that must be calculated during the flyback period decreases. In other words, the retrace period can be shortened, which leads to a reduction in measurement data acquisition time.
  • the second embodiment only the image information in the data acquisition range P of the image information obtained by designating the Y-direction scanning range Q of the laser beam for the sample 4 is valid data.
  • the data can be reduced in combination with the reduction in the number of lines in the Y direction in the first embodiment, whereby the area designation to the scanning range designation means 30 can be performed in the normal scanning. It is possible to make an arbitrary rectangular area in the display image.
  • the present invention is not limited to the first and second embodiments, but may be modified as follows.
  • the area specification Q is specified for the scanning range in the Y direction, and the area specification Q is specified for the data valid range, but the scanning range in the Y direction is not specified.
  • the designated area P may be used for the data acquisition range in the X direction.
  • the designated areas P and Q can be designated for the data acquisition range in the X and Y directions, thereby reducing the amount of calculation for image processing and measuring the required area. Can be performed at high speed.
  • a scanning confocal microscope capable of measuring a required region at a high speed without being influenced by a scanning means, a magnification and a resolution when measuring a sample.
  • FIG. 9 shows a schematic configuration of a scanning confocal microscope to which the present invention is applied.
  • reference numeral 300 denotes a microscope main body, and the microscope main body 300 is provided with a laser single light source 310.
  • the laser light source 310 generates laser light as spot light (focusing light) for scanning the surface of the sample 304.
  • a mirror 311 is arranged on the optical path of the laser light source 3110.
  • the mirror 311 is a reflecting mirror for guiding the laser light from the laser light source 310 to the two-dimensional scanning mechanism 312.
  • the two-dimensional scanning mechanism 312 receives the laser light from the laser light source 310 obtained via the mirror 311 under the control of the two-dimensional scanning drive control circuit 313. , As spot light, 2 in XY direction This is for dimensional scanning.
  • the spot light that has been two-dimensionally scanned through the two-dimensional scanning mechanism 312 is applied to the sample 304 mounted on the stage 316 via the objective lens 3114. Let's do it.
  • the objective lens 314 is attached to the leproto 315. Since the revolver 315 holds a plurality of objective lenses 314 having different magnifications, one of these objective lenses 314 having a desired magnification is set in the observation optical path of the microscope. In addition to the above, the objective lens 3 14 can be moved in focus in the optical axis direction by an instruction of a focus moving mechanism 3 23 described later.
  • the reflected light of the sample 304 is transmitted back to the two-dimensional scanning mechanism 312 through the objective lens 3114, and the two-dimensional scanning mechanism 312 is output. It is to be returned to La 3 17.
  • the half mirror 317 is provided on the emission optical path of the laser light source 310 for the two-dimensional scanning mechanism 312, and the sample 3 obtained via the two-dimensional scanning mechanism 3112 is provided. This is a translucent mirror for guiding the reflected light from 04 to the detection system.
  • the photodetector 320 is designed to receive light.
  • the lens 318 collects the reflected light from the sample 304, the binhole plate 319 has a binhole of a required diameter, and the light detector 320 receives light. At the focal position of the lens 3 1 8 on the front of the surface Are located.
  • the photodetector 320 is formed of a photodetector that converts light obtained via the pinhole of the pinhole plate 319 into an electric signal corresponding to the light amount.
  • the signal photoelectrically converted by the photodetector 322 is sent to the computer 321 along with the timing signal of the two-dimensional scanning drive control circuit 313, and the image is formed by the computer 321. Then, it is displayed on the motor 3222 as the surface information of the sample 304.
  • the focal point moving mechanism 3 2 3 is connected to the computer 3 2 1.
  • the focal point moving mechanism 3 23 is connected to the revolver 3 15 and also to the two-dimensional scanning drive control circuit 3 13, and is driven by the computer 3 2 1.
  • the focus movement of 3 15 and the 2D scanning by the 2D scanning mechanism 3 1 2 can be controlled synchronously:
  • FIG. 10 is a diagram for further explaining in detail the main part of the scanning confocal microscope configured as described above.
  • the two-dimensional scanning mechanism 312 includes, for example, a galvano mirror or an X scanner 421 composed of a resonant scanner for scanning in the X-axis direction and a galvano mirror for scanning in the Y-axis direction.
  • the Y scanner 4 22 has a powerful Y scanner 4 2 2, and the X scanner 4 2 1 is driven by a driver 4 2 3 to perform main scanning of two-dimensional scanning. Driven to perform the sub-scanning of the two-dimensional scanning.
  • the focal point moving mechanism 3 2 3 has a Dora 5 3 1
  • the objective lens 3 14 is moved to the focal point by 3 15.
  • the two-dimensional scanning drive control circuit 3 13 has an X waveform generation circuit 4 31, a Y waveform generation circuit 4 32 and a synchronization signal generation circuit 4 33.
  • the X waveform generation circuit 431 has, for example, an address counter and waveform memory, and outputs a drive signal XDRIVE to the dry line 4 23 of the two-dimensional scanning mechanism 312 to generate an X signal.
  • the main control of the two-dimensional scanning of the scanner 421 is controlled, and the horizontal synchronizing signal HD is output for each scanning of one line.
  • the Y waveform generation circuit 432 has, for example, an address counter and waveform memory, and the timing of the X waveform generation circuit 431 via the synchronization signal generation circuit 433 is used. Operates with signal HD 'and outputs drive signal YDRIVE to the two-dimensional scanning mechanism 312 to control the subscanning of the two-dimensional scanning of the Y-scanner 422. At the same time, the vertical synchronization signal VD is output for each scan of one frame.
  • the synchronizing signal generation circuit 43 is composed of a horizontal synchronizing signal HD for each line scan of the X waveform generation circuit 4311 and a vertical synchronization signal VD for each frame scan of the Y waveform generation circuit 4332.
  • the synchronizing signal SYNC necessary to display the image of the sample 304 on the monitor 32 2 is output, and the revolver 3 is provided to the driver 5 3 1 of the focal point moving mechanism 3 2 3.
  • the movement start signal ZSTART of the focus movement by 15 is output, and the revolver 3 15 has moved by a predetermined distance, and the movement end signal ZEN is output from the drive 5 3 1. Try to receive D.
  • the laser light output from the laser light source 3110 is guided by the mirror 311 to the two-dimensional scanning mechanism 312, and the two-dimensional scanning mechanism 312 performs two-dimensional scanning in the XY axis direction.
  • the scanned laser light passes through the objective lens 314 and is irradiated onto the sample 304 while being scanned as spot light.
  • the reflected light from the sample 304 passes through the objective lens 314 and returns to the two-dimensional scanning mechanism 321, and the two-dimensional scanning mechanism 321 and the non-linear mirror 316. ⁇ 3 17, lens 3 18, and pinhole plate 3 19, enter the light detector 3 20, photoelectrically converted by the light detector 3 20 as an electric signal. Sent to computer 32 1.
  • the two-dimensional scanning by the two-dimensional scanning mechanism 3 12 is controlled by the two-dimensional scanning drive control circuit 3 13, but the X waveform generation circuit 4 3 1 shown in FIG.
  • the waveform pattern shown in Fig. 11 is prepared, and when two-dimensional scanning starts, the unillustrated address and counter are activated, and A ⁇ B ⁇ C ⁇ A
  • the periodic drive waveform XDRIVE shown in FIG. 12 (a) is output to the driver 4 23 of the two-dimensional scanning mechanism 3 12.
  • the driver 423 Upon receiving the drive waveform XDRIVE, the driver 423 drives the X scanner 421 to perform two-dimensional main scanning. At the same time, a signal notifying the start of the retrace period of the drive waveform XDRIVE, that is, the horizontal synchronization signal H for each one-line scan D (Fig. 12 (b)) is output.
  • pixel data for one line of the sample 304 is obtained between A and B of the drive waveform XDRIVE (for example, for 104 pixels).
  • the timing signal HD 'shown in FIG. 12 (c) passes through the synchronization signal generation circuit 433 and the Y waveform. It is provided to the generating circuit 432.
  • the Y waveform generation circuit 432 prepares the waveform pattern shown in FIG. 12 similar to the X waveform generation circuit 431 in the waveform memory, and the synchronization signal generation circuit 433 is provided.
  • the address is advanced line by line, and the periodic drive waveform YDRIVE shown in Fig. 12 (d) corresponding to A ⁇ B ⁇ C ⁇ A is two-dimensionally converted. Output to the scanning mechanism 4 1 2 4.
  • the dry drive 424 drives the Y scanner 422 to perform sub-scanning of two-dimensional scanning.
  • a signal indicating the beginning of the retrace period of the drive waveform YDRIVE that is, a vertical synchronization signal VD shown in FIG. 12 (e) is output every scan of one frame.
  • the pixel data force per frame of the sample 304 is obtained between A and B of the S drive waveform YDRIVE (for example, 768 lines), and these operations are repeated.
  • an image of the sample 304 is displayed on the monitor 322 via the computer 321.
  • the moving distance of re-pornography per frame is set in advance by the computer 3 2 1 to the focus moving mechanism 3 2 3 of the drive 5 3 1 by 1 frame. .
  • the computer 3 2 1 instructs the synchronous signal generation circuit 4 3 3 of the 2D scanning drive control circuit 3 13 to perform the extended scan, and the Y waveform generation circuit 4 3 3 2 receives the timing signal HD ′ given via the synchronization signal generation circuit 4 3 3, for example, as shown at point a in FIG. 12 (c), the point b in FIG. 12 (d) is obtained.
  • the driving waveform YDRIVE is output to the driver 4 2 4 of the two-dimensional scanning mechanism 3 12 as shown in FIG.
  • two-dimensional sub-scanning is performed by the Y scanner 422 from point A shown in Fig. 11 of the waveform memory, and one frame (point 7 6 8 At the same time, the vertical synchronization signal VD is output at point c in Fig. 12 (e).
  • the revolver movement signal ZSTART is output from the synchronization signal generation circuit 43 to the drive 53 of the focus movement mechanism 32 at point d in FIG.
  • the movement signal ZSTART starts the movement of the revolver 3 15 by a predetermined distance.
  • the Y waveform generation circuit 432 whose address counter is stopped is held at the position of the point B in FIG. 11, whereby the revolver 315 is moved while the revolver 315 is moved. ,
  • the sub-scanning of two-dimensional scanning is temporary It will be stopped.
  • the movement completion signal ZEND is output to the synchronization signal generation circuit 4 3 3 from the driver 5 3 1 at the point f in FIG. 12 (g). .
  • the synchronization signal generation circuit 433 When the synchronization signal generation circuit 433 receives this movement completion signal ZEND, the mask of the timing signal HD 'is released at the point g in FIG. 12 (c), and the timing of the next main scan is performed. As a result, the Y waveform generation circuit 432 returns to the normal operation and shifts to the next frame scan.
  • the Y-scanner 4 of the two-dimensional scanning mechanism 3 12 based on the movement of the focal position by the revolver 3 15 during the extended scanning. Since the sub-scanning period of the two-dimensional scanning by 2 2 can be controlled and the processing can be shifted to the next frame scanning in accordance with the moving distance of the revolver 3 15, the extent It becomes possible to absorb the asynchrony between two-dimensional scanning between two adjacent focal positions during scanning and focal position adjustment movement.
  • the useless two-dimensional scanning period (data cannot be acquired) is compared with the case where the next image acquisition is performed without data (no data acquisition).
  • the idle shake period can be removed, and the image capture time Can be greatly reduced.
  • the image acquired by moving the focal point while performing image acquisition by two-dimensional scanning is compared with an image obtained by obliquely scanning the sample. Accurate image information can always be obtained.
  • the image acquisition time is further reduced as compared with the conventional image acquisition by two-dimensional scanning. it can.
  • FIG. 9 and FIG. 10 described in the third embodiment are the same in the fourth embodiment, these FIG. 9 and FIG. 10 are referred to, and FIG.
  • the waveform pattern of the waveform memory of the waveform generation circuit 432 is such that the vertical synchronization signal VD is assigned to the address of the waveform memory and the control signal is assigned to the address C, as shown in FIG. ⁇ Output so that each is output.
  • the two-dimensional running stops even during the vertical retrace period (between addressless and C) of the waveform pattern shown in Fig. 13. If the distance (time) of the focus movement of the revolver 315 is small, the movement of the revolver 315 will be completed during the vertical retrace period B ⁇ C, and Even when the control signal EN is notified to the synchronization signal generation circuit 4333 later than the movement completion signal ZEND, the two-dimensional scanning is not stopped, and the continuous flow is not stopped. Data can be acquired in frames.
  • the distance (time) of the focal point movement of the revolver 315 is large, and the movement of the revolver 315 does not complete during the vertical retrace period B ⁇ C, and the completion point enters the next frame.
  • the movement completion signal ZEND is later notified to the synchronization signal generation circuit 4 33 than the control signal EN, the two-dimensional scanning is temporarily stopped when the control signal EN is generated, and the driver 5 3 Waits for the movement completion signal ZEND from 1 before restarting scanning of the next frame.
  • the vertical retrace period B ⁇ C can also be effectively used during the movement period of the revolver 3 15 for adjusting the focal position, so that a more efficient image can be obtained. You can expect to get information.
  • two-dimensional scanning by the two-dimensional scanning means and the focus by the focus position adjusting means accompanying the continuous movement of the focus position during the extended scanning. Since the asynchrony of position movement can be absorbed, useless two-dimensional scanning periods (idling periods during which data cannot be acquired) can be eliminated, and accurate data can be obtained in a short time. Efficient image information can be obtained efficiently.
  • a period between the vertical synchronizing signal of the two-dimensional scanning unit and a control signal output following the vertical synchronization signal can also be used for adjusting the focal position by the focal position adjusting unit.
  • more efficient acquisition of image information can be expected.
  • the present invention can be applied to a scanning confocal microscope in which the scanning control of focused light on a sample and the data processing are improved to speed up the processing.

Description

明 細 書
走査型共焦点顕微鏡
技術分野
本発明は、 試料に対する集束光の走査制御やデータ処理を 改善 して処理の高速化を図った走査型共焦点顕微鏡に関する。 背景技術
走査型共焦点顕微鏡は、点状光源によ って観察試料(以下、 試料と称する) の表面を点状に照明 し、 こ の照明 された試料 表面からの透過光または反射光を再び点状に集光 して ピンホ ール開 口 を有する検出器に結像させ、 こ の検出器によ り 結像 の輝度情報を得る と レ、 う 共焦点作用 を利用 した顕微鏡である。
図 1 に示す概略構成図を用いて、 一般的な走査型共焦点顕 微鏡について説明する。
点光源 1 から出射された点状光は、 ハーフ ミ ラ一 2 を通過 したのち収差が補正された対物 レ ン ズ 3 によ っ て試料 4 の表 面に点状結像される。
そ して、 この点状照明の試料 4 によ る反射光は、 再び対物 レ ンズ 3 を通過 したのちハーフ ミ ラー 2 で反射されて集光す る。 こ の集光位置には ピ ンホール 5 が配置されてお り 、 こ の ピンホール 5 を通過 した上記反射光は光検出器 6 によって検 出 される。
こ のよ う な点状照明をラ ス タ 走査する こ と に よ り 試料 4 の 表面の測定領域全体にわたっ て 2 次元走査を行い、 その反射 光の光検出器 6 に よ る検出信号を画像表示する こ と によ り 、 試料 4 の表面の 2 次元画像を得る こ と ができ る走査型共焦点 顕微鏡が構成される。
こ の 2 次元走査には例えば X方向にはガルバノ スキャナや レゾナン ト ス キ ャナ、 Y方向にはガルバノ スキャナが用レヽ ら れてレヽる。
これら X , Yス キャナにガルバノ スキャナを組み合わせた 場合は、 試料 4 の表面の走査速度は約 1 枚 Z秒程度にな り 、 走査速度を少 し向上させるために Xスキャナに レゾナン トス キヤナを用いた ものでは約 5 枚ノ秒程度と なっ ている。なお、 画素数は、 1 0 2 4 X 7 6 8 画素と なっている。
こ のよ う な走査型共焦点顕微鏡では、 上記共焦点作用によ り 段差のある試料 4 の表面全てに合焦 した画像を得られる走 査が可能である (以下、 ェク ステン ド走査) 。
これは合焦位置で得られる試料 4 の輝度が最大輝度と なる こ と を利用 した もので、 ある対物 レンズ 3 (又は試料 4 ) 位 置にて得られる試料 4 の輝度情報と対物 レンズ 3 (又は試料 4 ) を光軸方向に微少位置ず ら した と こ ろで得られる試料 4 の輝度情報と を比較する。
そ して、 これら 2 枚の画像の同一画素同士で輝度の高い方 の画素を残 して行く こ と で、 最終的にある光軸方向範囲で得 られる試料 4 の画像が試料 4 表面全体に合焦 した 2 次元画像 と なる。
また、 上記画素比較の際、 輝度が高い と判断された場合、 その時の光軸方向の位置を記憶させる こ と で最終的に試料 4 の高さ (凹凸) の情報が得られる。
しか しなが ら、 上記ェク ステ ン ド走査では、 試料 4 の 2 次 元走査と 対物 レ ンズ 3 (又は試料 4 ) の移動を光軸方向のあ る範囲分行って初めて試料 4 の高 さ等の情報が得られるので、 その取得時間は走査速度、 データ処理速度、 対物 レ ンズ 3 (又 は試料 4 ) の移動時間、 全移動範囲によ って決定され、 通常 の 2 次元情報のみの取得に比べ時間が大幅に必要なも のであ る。
特にェク ステン ド走査な どの よ う に 1 度の測定に大量に画 像データ (輝度情報) を必要と する場合、 全体の測定時間を 短縮する には、 2 次元走査によ る試料 4 の輝度情報の取得時 間 (画像更新時間) を短縮する こ と が必要である。
近年における例えばバ ンプ測定のよ う に規則正 し く 配列さ れた段差サンプルな どを大量に連続的に測定する よ う な場合 には、 試料 4 の測定時間の短縮が必須と なって く る。
と こ ろが、 走査速度を速く するために開示されている技術 と しては例えば音響光学素子を使用 した 2 次元走査があるが、 こ の技術だと 走査角が大き く とれないため全体の視野が制限 されて しま う 。
また、 C C D ライ ンセ ンサを使用 した 2 次元走査では通常 の共焦点光学系で得られる解像度には及ばないな どの問題も 付随 して しま う c
そ こ で本発明は、 試料の測定時に走査手段や倍率 (観察視 野) 、 解像度に左右される こ と な く 必要な領域の測定を高速 に行える走査型共焦点顕微鏡を提供する こ と を 目 的とする。
また、 ェ ク ス テ ン ド走査では、 ある焦点位置における 2 次 元走査によ る画像取込みが終了 した後に、 次の焦点位置に対 物 レン ズ 3 (又は試料 4 ) を所定ピッチで Z軸移動 して、 2 次元走査によ る次の画像取込みを行な う よ う に している。
と こ ろが、 一般的に、 焦点位置における 2 次元走査によ る 画像取込みの周期 と焦点位置移動の時間が同期 していないた め、 走査の帰線期間中に焦点位置の移動が終了 しない間に 2 次元走査によ る画像取込みが開始され、 無駄データ と なる。
こ のため、 次の画像取込みを空振 り (データ取得しない) の時間に充な く てはな らず、 所望する枚数の画像を取得する のに多大な時間を要する と レヽ ぅ 問題が生 じる。
そ こで、 画像の取込み時間を短縮するため、 2 次元走査に よ る画像取込みを行いなが ら対物 レンズ 3 (又は試料 4 ) の 焦点移動を行な う よ う に した も のも あるが、 こ のよ う に した ものでは、 画像取込みの走査中に焦点位置が移動 しているの で、 取得された画像は、 試料を斜めに走査 した もの と な り 、 ェク ステン ド走査によ り 高 さ の情報を得る過程を考える と 、 正確な情報と な り 得ないと い う 問題があった。
本発明は上記事情に鑑みてな されたもので、 短い時間で、 正確な画像情報を取得する こ と ができ る走査型共焦点顕微鏡 を提供する こ と を 目 的とする。
発明の開示
したがって、 本発明の第 1 の発明に よれば、 試料に対する 集束光の 2 次元走査範囲を指定する走査範囲指定手段と 、 前 記走査範囲指定手段によ って指定された 2 次元走査範 H内に おいて前記試料に対 して集束光を 2 次元走査する 2 次元走査 手段 と 、 前記 2 次元走査手段に よ って 2 次元走査された集束 光の前記試料からの反射光、 蛍光及び透過光の う ちのいずれ か 1 っを受光する受光手段 と 、 前記受光手段に よ って受光さ れた反射光、 蛍光及び透過光の う ちのいずれか 1 つに基づい て、 前記試料の画像を得る画像獲得手段と を備えたこ と を特 徴とする
また、 本発明の第 2 の発明によれば、 2 次元走査範囲内に おいて試料に対 して集束光を 2 次元走査する 2 次元走查手段 と 、 前記 2 次元走査手段によ って 2 次元走査された集束光の 前記試料からの反射光、 蛍光及び透過光の う ちのいずれか 1 っを受光する受光手段と 、 前記受光手段によ って受光 された 反射光、 蛍光及び透過光の う ちのいずれか 1 つに基づいて得 られる試料の画像データ の う ち、 データ取得範囲を指定する データ取得範囲指定手段と 、 前記受光手段によ って受光され た反射光、 蛍光及び透過光の う ちのいずれか 1 つに基づいて 得られる試料の画像データ の う ち、 前記データ取得範囲指定 手段によ っ て指定されたデータ取得範囲の画像データ に基づ いて、 前記試料の画像を獲得する画像獲得手段と を備えたこ と を特徴とする。
さ ら に、 第 3 の発明によれば、 試料に対する集束光の 2 次 元走査範囲を指定する走査範囲指定手段と 、 前記走査範囲指 定手段に よ って指定された 2 次元走査範囲内において前記試 料に対 して集束光を 2 次元走査する 2 次元走査手段と 、 前記 2 次元走査手段によ って 2 次元走査された集束光の前記試料 からの反射光、 蛍光及び透過光の う ちのいずれか 1 つを受光 する受光手段と 、 前記受光手段によ って受光された反射光、 蛍光及び透過光の う ちのいずれか 1 つに基づいて得られる試 料の画像データ の う ち、 データ取得範囲を指定するデータ取 得範囲指定手段と 、前記受光手段によ って受光 された反射光、 蛍光及び透過光の う ちのいずれか 1 つに基づいて得られる試 料の画像データ の う ち、 前記データ取得範囲指定手段によつ て指定されたデータ取得範囲の画像データ に基づいて、 前記 試料の画像を取得する画像獲得手段と を備えたこ と を特徴と する。
さ らに、 第 4 の発明によれば、 試料に対して集束光を 2 次 元走査する 2 次元走査手段と 、 前記試料に対する集束光の焦 点位置を調整する焦点位置調整手段と 、 前記焦点位置調整手 段によ る焦点位置の調整期間に前記 2 次元走査手段によ る 2 次元走査を禁止する制御手段と を具備 したこ と を特徴とする。
さ ら に、 第 5 の発明に よれば、 第 4 の発明において、 前記 制御手段は、 前記 2 次元走査手段の 1 ラ イ ン走査ごと に出力 される水平同期信号と フ レーム走査ごと に出力 される垂直同 期信号を管理し、 前記垂直同期信号によ り 焦点位置調整手段 に よ る焦点位置の調整開始を指示する と と もに前記 2 次元走 査手段によ る 2 次元走査を禁止 し、 前記焦点位置調整手段に よ る焦点位置の調整終了をま っ て前記 2 次元走査手段の 2 次 元走査を開始させる こ と を特徴とする。
さ らに、 第 6 の発明によれば、 第 5 の発明において、 前記 制御手段は、 さ ら に 2 次元走査手段の垂直同期信号に続けて 出力 される制御信号を管理 し、 前記焦点位置調整手段によ る 焦点位置の調整終了が前記制御信号よ り 前に通知 された場合 は、 前記 2 次元走査手段の 2 次元走査を禁止せず、 前記焦点 位置調整手段に よ る焦点位置の調整終了が前記制御信号よ り 後に通知 された場合は、 前記制御信号の発生時点で前記 2 次 元走査手段の 2 次元走査を一時禁止 し、 前記焦点位置の調整 終了をま って前記 2 次元走査手段の 2 次元走査を開始させる こ と を特徴とする。
こ の結果、 本発明によれば、 ェク ステン ド走査における 2 次元走査手段での 2 次元走査と 焦点位置調整手段によ る焦点 位置移動の同期を取る こ と で、 無駄な 2 次元走査期間 (デー タ を取得できない空振 り 期間) を取 り 除く こ と ができ る。
また、 本発明によれば、 2 次元走査手段の垂直同期信号に 続けて出力 される制御信号と の間の期間 も焦点位置調整手段 によ る焦点位置の調整に利用する こ と ができ る。 図面の簡単な説明
図 1 は、 従来の共焦点顕微鏡の構成図。
図 2 は、 本発明に係わる第 1 の実施の形態の走査型共焦点 顕微鏡を示す図。
図 3 は、 試料と して基板上に格子状に半田の球を配置 した と き のモニ タ表示された画像を示す模式図。
図 4 は、 レーザー光の 2 次元走査範囲を指定 した と き の画 像情報の領域指定を示す図。
図 5 は、 レーザー光の 2 次元走査範囲を指定 した と き の Y ス キ ヤ ン の駆動パター ンを示す図。
図 6 は、 本発明の第 1 の実施の形態に係る走査型共焦点顕 微鏡の動作を説明するためのフ ローチヤ一 ト。
図 7 は、 試料の画像から X方向に指定された領域の画像を 取得する と き の模式図。
図 8 は、 本発明の第 2 の実施の形態に係る走査型共焦点顕 微鏡の動作を説明するためのフ ローチャー ト。
図 9 は、 本発明の第 3 の実施の形態の走査型共焦点顕微鏡 を示す図。
図 1 0 は、 第 3 の実施の形態の走査型共焦点顕微鏡の要部 を説明するための図。
図 1 1 は、 第 3 の実施の形態に係る走査型共焦点顕微鏡の 動作を説明するための図。
図 1 2 は、 第 3 の実施の形態に係る走査型共焦点顕微鏡の 動作を説明するためのタイ ムチヤ一 ト。
図 1 3 は、 本発明の第 4 の実施の形態に係る走査型共焦点 顕微鏡を説明するための図。 発明を実施するための最良の形態
<第 1 の実施の形態〉
以下、 本発明の第 1 の実施の形態について図面を参照 して 説明する。
図 2 は走査型共焦点顕微鏡のプロ ッ ク構成図である。
顕微鏡本体 1 0 0 には レ—ザ—光源 1 0 が設け られている。 こ の レーザー光源 1 0 は試料 4 の表面を走査するス ポ ッ ト光 (集束光) と しての レーザー光を発生させる ものである。
こ の レーザー光源 1 0 の光路上に は ミ ラ ー 1 1 が配置され、 こ の ミ ラー 1 1 は、 こ の レーザ一光源 1 0 力ゝらの レーザ一光 を 2 次元走査機構 1 2 に導く ための反射鏡である。
こ の 2 次元走査機構 1 2 は、 ミ ラー 1 1 を介 して得た レー ザ一光源 1 0 からの レーザー光を 2 次元走査するための機構 で、 2 次元走査駆動制御回路 1 3 の制御の も と にスポッ ト光 を X Y走査する もの と なっている。
こ の 2 次元走査機構 1 2 は、 例えば、 X軸方向走査用の レ ゾナン ト スキャナ と Y軸方向走査用のガルバノ ス キ ャナ と を 有 し、 これらス キ ャ ナを X軸方向、 Y軸方向に振る こ と で対 物 レ ンズ 1 4 に対する ス ポ ッ ト光の光路を X Y方向に振 らせ る ものと なってレ、る。
レボルバ 1 5 は、 倍率の異なる複数の対物 レ ンズ 1 4 を保 持 したものである。 又、 ステージ 1 6 は、 試料 4 を保持する ものである。
しかる に、 複数の対物 レ ン ズ 1 4 の う ちの所望の倍率を持 つ対物 レ ン ズ 1 4 力; レポルバ 1 5 の切 り 替えに よ り 顕微鏡の 観察光路中に位置設定され、 こ の位置設定された対物 レ ンズ 1 4 を介 して 2 次元走査機構 1 2 からのス ポ ッ ト光はス テー ジ 1 6 上の試料 4 上を 2 次元走査 しなが ら照射する よ う にな つ てレ、る。
一方、 試料 4 からの反射光は対物レンズ 1 4 を通 り 2 次元 走査機構 1 2 に戻 り 、 こ の 2 次元走査機構 1 2 からハ一 フ ミ ラー 1 7 へと戻される構成と なっている。
こ のハー フ ミ ラ一 1 7 は、 2 次元走査機構 1 2 に対する レ —ザ一光源 1 0 の出射光路上に設け られ、 2 次元走査機構 1 2 を介 して得られる試料 4 からの反射光を検出系に導く ため の半透明鏡である。
レ ンズ 1 8 は、 こ のハーフ ミ ラー 1 7 を介 して得た 2 次元 走査機構 1 2 からの反射光を集光する ものであ り 、 又 ピンホ ール板 1 9 は所要の径の ピンホールを開けた も ので、 光検出 器 2 0 の受光面の前面における レ ンズ 1 8 の焦点位置に配置 されている。
こ の光検出器 2 0 は、 ピンホール板 1 9 の ピ ンホールを介 して得られる光をその光量対応の電気信号に変換する光検出 素子である。
こ の光検出器 2 0 で光電変換された信号を 2 次元走査駆動 制御回路 1 3 からのタ イ ミ ング信号と共にコ ン ピ ュータ 2 1 に送られ、 こ の コ ンピュータ 2 1 において画像化されモニタ 2 2 に表示する こ と で試料 4 の表面情報が得られる もの と な つてレヽる。
又、 こ の コ ン ピュータ 2 1 は、 試料 4 に対する レーザー光 の 2 次元走査範囲を指定する走査範囲指定手段 2 3 の機能を 有 してレヽる。
こ の走査範囲指定手段 2 3 は、 2 次元走査機構 1 2 によ る 試料 4 への Y方向走査の範囲を制限する も ので、 こ の走査範 囲の設定は、 オペ レータ がモニタ 2 2 に表示されている試料 4 の表面情報を基に して入力装置 2 4 から行な う もの と なつ てお り 、 こ の設定された指定領域は 2 次元走査駆動制御回路 1 3 に送られる よ う になってレ、る。 なお、 入力装置 2 4 と し ては、 例えばマ ウスやキーボー ドである。 次に上記の如 く 構成された顕微鏡に よ る作用について説明 する。
レーザー光源 1 0 から出力 された レーザー光は、 ミ ラー 1 1 で 2 次元走査機構 1 2 に導かれ、 こ の 2 次元走査機構 1 2 における X軸方向走査用の レゾナン ト スキャナ及び Y軸方向 走査用 のガルバ ノ ス キ ャ ナの振 り 動作によ って X Y軸方向に 走査される。
こ の走査 された レーザー光は、 対物 レ ンズ 1 4 を通 して試 料 4 上にス ポ ッ ト光と して走査されなが ら照射される。
一方、 こ の試料 4 からの反射光は、 対物 レ ンズ 1 4 を通つ て 2 次元走査機構 1 2 に戻 り 、 こ の 2 次元走査機構 1 2 から ハー フ ミ ラ ー 1 7 、 レ ンズ 1 8 、 そ して ピンホール板 1 9 を 通って光検出器 2 0 に入射する。
こ の光検出器 2 0 は、 入射 した試料 4 か ら の反射光を光電 変換し、 その信号をコ ンピュータ 2 1 に送出する。
こ の コ ン ピ ュ ータ 2 1 は、 光検出器 2 0 か ら の信号を取 り 込み、 2 次元走査駆動制御回路 1 3 からのタイ ミ ング信号に 従って画像化 し、 その画像をモニ タ 2 2 に表示する。
図 3 はモニタ 2 2 に画像 と して表示 された試料 4 の一例を 示す。 なお、 こ の画像は、 走査範囲を指定する ために取 り 込 まれた非共焦点画像であ り 、 検査対象と なる試料 4 と して基 板 2 5 上に複数の半田の球 2 6 が格子状に配置されたもので ある。 なお、 半田の球 2 6 は、 頂上が少 しつぶれている。
こ こ で、 こ の基板 2 5 と球 2 6 の上部 と の間の高さ を測定 する場合について説明する と 、 通常、 走査型共焦点顕微鏡に て試料 4 の表面情報を取得する と 、 図 3 のよ う に表示領域全 体を レーザー走査し、 更新速度は 4 枚ノ秒程度 (例えば視野 数 1 8 に内接する 1 : 1 の長方形領域… 1 0 2 4 画素 X I 0 2 4 ライ ン とする) と なる。
ェ ク ス テ ン ド走査を して基板 2 5 と球 2 6 の上部と の段差 を測定する と 、 例えば 2 0 0 ス テ ッ プ分だけ対物 レンズ 1 4 を光軸方向に移動を させた場合、 全体のデータ取得には約 9 0秒を要する。
こ の う ちほぼ半分は画像取得の時間 (約 5 0 秒) で、 残 り の半分が対物 レンズ 1 4 を機械的に移動させる にかかる時間 (約 4 0秒) である。
仮に精度向上のために 1 0 0 0 ステ ップ分を取ろ う とすれ ば約 4 5 0秒 (約 7 分 3 0秒) も要する こ と になる。
これに対 して本発明装置では、 走査型共焦点顕微鏡のオペ レ一タ がモニタ 2 2 に表示される試料 4 の表面情報を基に入 力装置 2 4 から レーザ一光の Y方向走査範囲を指定する(図 6 : S 1 )。
例えばオペ レータ は図 4 に示すよ う にマ ウスやキーボ一 ド にて表示画像中から Y走査方向に対 して高 さ測定に有効な領 域 Qを指定する。
こ の指定領域 Qは測定の対象 と なる部位が含まれる領域に 限定すれば良 く 、 本実施の形態の場合は、 基板 2 5 と球 2 6 の頂上と である A , B点間の高 さ を測定する ものであるので、 これら A , B点を含む Y走査方向の領域を指定すればよレ、。 一例 と して球 2 6 全体がち ょ う ど入る程度に選んだと し、 その領域が Y方向全視野よ り 小 さ ければよ く 、 こ こ では Y方 向の全視野の半分である と する。 走査範囲指定手段 2 3 は、 設定された指定領域 Q の情報を 2 次元走査駆動制御回路 1 3 に伝え、これによ り レーザ光の Y方向走査範囲が制御される。 すなわち、 指定された走査範囲において、 2 次元走査が行わ れる (図 6 : S 2 )。
通常の Yスキャナの駆動パターンは図 5 の実線のよ う な波 形であ り 、 周期は約 4 H z でその中で走査の有効領域 ( 1 0 2 4 ライ ン分) と 無効領域 ( レーザーの帰線期間) が存在 し ている。
この う ち無効領域はェク ステン ドな どの画像演算をコ ンビ ュ一タ 2 1 が処理する のに必要な時間を考慮 して決定されて いる。
表示画像中で指定領域 Qが図 4 の よ う に指定され、 ェ ク ス テ ン ド走査が開始される と 、 コ ン ピュータ 2 1 は 2 次元走査 駆動制御回路 1 3 に指示を発 し、 Y ス キ ャ ナの駆動パターン が図 5 の破線にて示される ものへ切 り 換える。 こ の と き上記 指定領域 Qは Y方向全走査範囲の半分が指定された こ と にな り 、 有効領域が 5 1 2 ライ ン分に減少 している。
すなわち、 測定用のデータ取得は当初の半分の 1 0 2 4 画 素 X 5 1 2 ライ ン分の長方形の領域のみで行われる こ と にな る。
これによ り 、 指定された範囲におけ る試料の画像情報が取 得される (図 6 : S 3 )。 Y方向走査の周期はほぼ半分程度(約 8 H z ) に短縮され、 こ の設定では全体のデータ取得時間は 2 0 0 ステ ッ プで約 7 0秒 (画像取得約 3 0秒、 対物 レンズ の移動約 4 0 秒) と な り 、 1 0 0 0 ステ ップでは約 3 3 0秒
( 5 分 3 0 秒) と なる。 画像の取得枚数が多いほ どその効果 は顕著に現れて く る こ と になる。
ちなみに帰線期間の割合が現実的に無視でき るのは有効領 域 1 2 8 ライ ン程度 ( 1 Z 8 ) までであ り 画像の更新速度が
3 0 H z 程度になる。
これ以上高速にする こ と も可能だがス キャナその ものの応 答速度や演算時間の面で制約 と な り 効果が薄れてき て しま う 。 これは Y方向の両端付近で画像に歪みが出る、 演算が帰線中 に間に合わな く なる な どである。 1 2 8 ライ ンの設定の場合、 全体のデータ 取得時間は 2 0 0 ステ ップで約 5 0秒 (画像取 得約 1 0 秒、 対物 レンズの移動約 4 0秒) と な り 、 1 0 0 0 ステ ップでは約 2 4 0秒 ( 4分) と なる。
なお、 指定領域 Qの指定方法は上記に限った方法ではなく と も良い し、 Y走査方向の指定領域 Qの幅は、 検査対象部分 (有効データ 取得領域) の大き さ に応 じてライ ン数を任意に 設定する こ と ができ 、 例えば図 4 中で示す半円球 2 6 の頂点 データ が含まれる領域の直径に等 しい Y走査方向の指定領域 Q ' に指定する こ と ができ る。
又、 Y方向の位置も 中央に限らず試料上の検査対象部位の 位置によ っ ては上下方向で自 由 に設定でき、 2 次元走査の手 段も他のスキャナを使用 しても良い。
以上のよ う に測定対象領域が限定されている な ど して通常 の走査領域全てのデータ が有効利用 されない場合、 特定の一 部のみのデータ が必要な場合、 また測定用の画像取得枚数が 多い場合な どは Y方向走査領域を限定する こ と で画像更新速 度を向上させるため、 走査範囲指定手段 2 3 からの指令にて 2 次元走査機構 1 2 が動作する よ う にする。
こ のよ う に上記第 1 の実施の形態においては、 試料 4 に対 する レーザー光の Y方向走査範囲を指定する走査範囲指定手 段 2 3 を備えたので、 2 次元走査の副走査方向 ( Y方向) の 情報量 (走査量) を変化させる こ と によ って、 例えば試料 4 での基板 2 5 と 半田の球 2 6 の上部 と の間の高 さ測定時に、 走査手段や倍率 (観察視野)、 解像度に左右される こ と な く 必 要な領域の測定を高速に行な う こ と ができ る。
<第 2 の実施の形態 >
次に、本発明の第 2 の実施の形態について説明する。なお、 図 2 の構成 と ほぼ同 じなので、 図 2 を用いてその詳 しい説明 は省略する。
コ ン ピュータ 2 1 の走査範囲指定手段 3 0 は、 試料 4 に対 する レーザー光の Y方向走査範囲を指定する機能の他に、 光 検出器 2 0 の出力信号から得られる画像データ の う ち入力装 置 2 4 に よ って図 7 に示す指定領域 P のみを有効情報と して 指定するデータ取得範囲指定手段の機能を兼ね備えている。
次に、 上記の如 く 構成 された顕微鏡の作用について、 図 8 を参照 して説明する。
上記第 1 の実施の形態 と 同様に、 レーザ一光源 1 0 から出 力 された レーザ一光は、 ミ ラ一 1 1 で 2 次元走査機構 1 2 に 導かれ、 こ の 2 次元走査機構 1 2 によ って X Y軸方向に走査 され、 対物 レ ンズ 1 4 を通 して試料 4 上にス ポ ッ ト光 と して 走査されなが ら照射される。
一方、 こ の試料 4 からの反射光は、 対物 レ ンズ 1 4 を通つ て 2 次元走査機構 1 2 に戻 り 、 こ の 2 次元走査機構 1 2 から ノヽ一フ ミ ラー 1 7 、 レンズ 1 8 、 そ して ピンホール板 1 9 を 通って光検出器 2 0 に入射する。
こ の光検出器 2 0 は、 入射 した試料 4 か ら の反射光を光電 変換し、 その信号をコ ンピュータ 2 1 に送出される。
この第 2 の実施の形態では、 オペレータ がモニタ 2 2 に表 示 されている試料 4 の表面情報 (非共焦点画像) を基に入力 装置 2 4 から図 7 に示すよ う に レ一ザ一光の Y方向走査範囲 を指定する指定領域 Q と 、 こ の.指定領域 Qの範囲内で取 り 込 まれる画像情報の う ち有効データ と なる指定領域 P を指定す る (図 8 : S 1 1 、 S 1 2 ) と 、 コ ンピュータ 2 1 の走査範 囲指定手段 3 0 は こ の指定された指定領域 Qの情報を 2 次元 走査駆動制御回路 1 3 に送出する。 これによ り 、 レーザ一光 の Y方向走査が制御される。
そ して、 コ ン ピュータ 2 1 は、 レーザ一光の Y方向走査が 指定領域 Qに制御 された と き の光検出器 2 0 の出力信号を取 り 込む (図 8 : S 1 3 )。 こ の と き コ ン ピュ ー タ 2 1 の走査範 固指定手段 3 0 によ り 指定 された指定領域 P に基づいて試料 4 の画像を取得する際、 2 次元走査駆動制御回路 1 '3 から コ ン ピュータ 2 1 へ与え られる画像化のためのデータ有効信号 を図 7 に示すよ う に処理する (図 8 : S 1 4 )。
すなわち、 水平同期信号 ( * H D ) は 1 ラ イ ンの始ま り を 意味する タ イ ミ ン グ信号であ り 、 データ 有効信号 ( * D E ) は画像 と して有効な画素である期間を意味する タイ ミ ング信 号である。
この う ち、 オペ レータ の入力によ って指定された走査範囲 指定手段 3 0 からの指令 P によ り * D E の期間に対応する画 素部分すなわち X方向のデータ有効画素部分 P が限定される。
これによ つて コ ンピュータ 2 1 は、 1 ライ ンの 1 0 2 4画 素内の画素部分 P のみが測定用データ と して演算に使用 され る こ と になる。
しかるに、 X方向のデータ数が減少 し、 帰線期間中に演算 しな く てはな ら ないデータ量が減少する こ と になる。 すなわ ち、 帰線期間の短縮も可能と な り 、 測定データ取得時間の短 縮につながる こ と になる。
こ のよ う に上記第 2 の実施の形態においては、 試料 4 に対 する レーザー光の Y方向走査範囲 Q を指定して得た画像情報 の う ちデータ取得範囲 P の画像情報のみを有効データ と して 取得するので、 上記第 1 の実施の形態の Y方向ライ ン数削減 と組み合わせてデータ の削減ができ 、 これによ り 走査範囲指 定手段 3 0 への領域指定は通常走査での表示画像中で任意の 矩形領域とする こ と が可能になる。
また、 演算量が減少する こ と で走査速度 と の兼ね合いから 必要以上に高速な演算装置、 例えば C P Uを用意する必要も な く なる。 なお、 上記第 1 の実施の形態 と 同様に、 試料 4 の 測定時に走査手段や倍率、 解像度に左右される こ と な く 必要 な領域の測定を高速に行 う こ と は言 う までもない。 なお、 本発明は、 上記第 1 及び第 2 の実施の形態に限定さ れる ものではな く 次の通 り 変形 して も よい。
例えば、 上記第 2 の実施の形態では、 Y方向の走査範囲に 对 し領域指定 Q を指定 し、 データ有効範囲に対 して領域指定 Q を指定 したが、 Y方向の走査範囲を指定せずに X方向のデ ータ取得範囲に対し指定領域 P のみに しても よい。
また、 X, Y方向のデータ取得範囲に対して指定領域 P, Q を指定する こ と もでき 、 これによ り 画像処理の演算量を少 な く する こ と ができ、 必要な領域の測定を高速ででき る。
以上詳記 した よ う に本発明によれば、 試料の測定時に走査 手段や倍率、 解像度に左右 される こ と な く 必要な領域の測定 を高速に行える走査型共焦点顕微鏡を提供でき る。
<第 3 の実施の形態〉
図 9 は、 本発明が適用 される走査型共焦点顕微鏡の概略構 成を示 してレ、る。
図において、 3 0 0 は顕微鏡本体で、 こ の顕微鏡本体 3 0 0 には レーザ一光源 3 1 0 が設け られている。 こ の レーザ一 光源 3 1 0 は試料 3 0 4 の表面を走査するス ポ ッ ト光 (集束 光) と しての レーザ一光を発生させる ものである。 こ の レー ザ一光源 3 1 0 の光路上には ミ ラー 3 1 1 が配置されている。 こ の ミ ラー 3 1 1 は、 こ の レーザ一光源 3 1 0 力 らの レーザ 一光を 2 次元走査機構 3 1 2 に導く ための反射鏡である。
2 次元走査機構 3 1 2 は、 ミ ラー 3 1 1 を介 して得た レ一 ザ一光源 3 1 0 か ら の レーザー光を 2 次元走査駆動制御回路 3 1 3 での制御のも と で、 スポ ッ ト光 と して、 X Y方向に 2 次元走査するためのものである。
2 次元走査機構 3 1 2 を介 して 2 次元走査されたスポッ ト 光は、 対物 レ ンズ 3 1 4 を介 してステー ジ 3 1 6 上に載置さ れた試料 3 0 4 に照射される よ う に してレ、る。
この場合、 対物 レ ンズ 3 1 4 は、 レポルノく 3 1 5 に取付け られて い る。 こ の レボルバ 3 1 5 は、 倍率の異なる複数の対 物 レ ンズ 3 1 4 を保持 したも ので、 これら対物 レンズ 3 1 4 の う ちの所望の倍率を持つものを顕微鏡の観察光路中に位置 設定可能に している と と も に、 後述する焦点移動機構 3 2 3 の指示によ り 対物 レ ンズ 3 1 4 を光軸方向に焦点移動でき る よ う に してレヽる。
一方、 試料 3 0 4 力ゝらの反射光は、 対物 レンズ 3 1 4 を通 り 2 次元走査機構 3 1 2 に戻 り 、 こ の 2 次元走査機構 3 1 2 力、ら ノ、一 フ ミ ラ一 3 1 7 へと 戻される よ う になつている。
こ のハー フ ミ ラ ー 3 1 7 は、 2 次元走査機構 3 1 2 に対す る レーザー光源 3 1 0 の出射光路上に設け られ、 2 次元走査 機構 3 1 2 を介 して得られる試料 3 0 4 からの反射光を検出 系に導く ための半透明鏡である。
そ して、 ノヽ一フ ミ ラ一 3 1 7 介 して得た試料 3 0 4 からの 反射光は、 レ ンズ 3 1 8 を透過され、 ピンホール板 3 1 9 の ピ ンホールを介 して光検出器 3 2 0 で受光される よ う に して い る
レ ン ズ 3 1 8 は、 試料 3 0 4 か ら の反射光を集光する も の であ り 、ビンホール板 3 1 9 は所要の径の ビンホールを有 し、 光検出器 3 2 0 の受光面の前面の レンズ 3 1 8 の焦点位置に 配置されている。
また、 光検出器 3 2 0 は、 ピンホール板 3 1 9 の ピンホー ルを介 して得られる光をその光量対応の電気信号に変換する 光検出素子からなっている。
光検出器 3 2 0 で光電変換された信号は、 2 次元走査駆動 制御回路 3 1 3 力ゝらのタイ ミ ング信号と共にコ ンピュータ 3 2 1 に送られ、 コ ン ピュータ 3 2 1 において画像化されモ - タ 3 2 2 に、 試料 3 0 4 の表面情報と して表示 される よ う に なってレヽる。
コ ン ピュータ 3 2 1 には、 焦点移動機構 3 2 3 が接続され ている。 こ の焦点移動機構 3 2 3 は、 レボルバ 3 1 5 に接続 される と と もに、 2 次元走査駆動制御回路 3 1 3 に接続され ていて、 コ ンピュータ 3 2 1 の指示によ り レボノレ ノ 3 1 5 の 焦点移動 と 2 次元走査機構 3 1 2 によ る 2 次元走査を同期 し て制御でき る よ う に してレ、る:
図 1 0 は、 こ の よ う に構成 された走査型共焦点顕微鏡の要 部を さ らに詳述するための図である。
こ の場合、 2 次元走査機構 3 1 2 は、 X軸方向走査用 と し て例えばガルバノ ミ ラーまたは レゾナン ト スキャナから なる X ス キャナ 4 2 1 と Y軸方向走査用 と して例えばガルバノ ミ ラー力 らなる Yスキャナ 4 2 2 を有 し、 Xスキャナ 4 2 1 は、 ドライ バ 4 2 3 によ り 駆動されて 2 次元走査の主走査を行な Y スキャナ 4 2 2 は、 ドラ 4 2 4 によ り 駆動されて 2 次元走査の副走査を行な う よ う に している。
焦点移動機構 3 2 3 は、 ドラ 5 3 1 を有 し、 レポノレ 3 1 5 によ る対物 レ ンズ 3 1 4 の焦点移動を行な う よ う に し ている。
2 次元走査駆動制御回路 3 1 3 は、 X波形生成回路 4 3 1 、 Y波形生成回路 4 3 2 および同期信号生成回路 4 3 3 を有し て レ、る。
X波形生成回路 4 3 1 は、 例えばァ ド レスカ ウ ンタや波形 メ モ リ を有 し、 2 次元走査機構 3 1 2 の ドライ ノく 4 2 3 に対 して駆動信号 X D R I V E を出力 して X ス キ ャ ナ 4 2 1 の 2 次元走査の主走査を制御する と と もに、 1 ライ ンの走査ごと に水平同期信号 H D を出力する。
また、 Y波形生成回路 4 3 2 は、 例えばア ド レスカ ウ ンタ や波形メ モ リ を有 し、 同期信号生成回路 4 3 3 を経由 した X 波形生成回路 4 3 1 力ゝらのタイ ミ ング信号 H D ' で動作し、 2 次元走査機構 3 1 2 の ドライ ノく 4 2 4 に対 して駆動信号 Y D R I V E を出力 して Y ス キ ャ ナ 4 2 2 の 2 次元走査の副走 査を制御する と と も に、 1 フ レーム の走査ごと に垂直同期信 号 V Dを出力する。
同期信号生成回路 4 3 3 は、 X波形生成回路 4 3 1 の 1 ラ イ ン走査ごと の水平同期信号 H D と Y波形生成回路 4 3 2 の 1 フ レ一ム走查ごと の垂直同期信号 V D によ り 、 モニ タ 3 2 2 に試料 3 0 4 の画像を表示 させるの に必要な同期信号 S Y N C を出力 し、 また、 焦点移動機構 3 2 3 の ドライ ノく 5 3 1 に対 し レボルバ 3 1 5 によ る焦点移動の移動開始信号 Z S T A R T を出力する と と も に、 レボルバ 3 1 5 が所定距離だけ 移動 した と こ ろで、 ドライ ノく 5 3 1 よ り 移動終了信号 Z E N D を受取る よ う に してレ、る。
次に、 以上の よ う に構成 した実施の形態の作用について説 明する。
いま、 レーザ一光源 3 1 0 から出力 された レーザー光は、 ミ ラー 3 1 1 で 2 次元走査機構 3 1 2 に導かれ、 こ の 2 次元 走査機構 3 1 2 で X Y軸方向に 2 次元走査され、 走査された レーザー光は、 対物 レ ンズ 3 1 4 を通 して試料 3 0 4 上にス ポッ ト光と して走査されなが ら照射される。
一方、 こ の試料 3 0 4 からの反射光は、 対物 レ ンズ 3 1 4 を通って 2 次元走査機構 3 1 2 に戻 り 、 こ の 2 次元走査機構 3 1 2 力 ら ノヽ 一 フ ミ ラ ー 3 1 7 、 レ ンズ 3 1 8 、 そ して ピン ホール板 3 1 9 を通って光検出器 3 2 0 に入射され、 こ の光 検出器 3 2 0 で光電変換され電気信号と して コ ン ピュ ー タ 3 2 1 に送出 される。
こ の場合、 2 次元走査機構 3 1 2 での 2 次元走査は、 2 次 元走査駆動制御回路 3 1 3 に よ り 制御 されるが、 図 1 0 に示 す X波形生成回路 4 3 1 は、 波形メ モ リ に図 1 1 に示す波形 パター ンを用意 していて、 2 次元走査が開始される と 図示 し なレ、ァ ド レスカ ウ ンタが動作 し、 A→ B→ C→ A と ァ ド レス が進むこ と で、 図 1 2 ( a ) に示す周期的な駆動波形 X D R I V E を 2 次元走査機構 3 1 2 の ドライ ノく 4 2 3 に出力する。
ド ラ イ バ 4 2 3 は、 駆動波形 X D R I V E を受取る と 、 X ス キ ャ ナ 4 2 1 を駆動 して 2 次元走査の主走査を行な う 。 同 時に、 駆動波形 X D R I V E の う ち の帰線期間の始ま り を知 らせる信号、 つま り 、 1 ラ イ ンの走査ごと の水平同期信号 H D (図 1 2 ( b )) を出力する。
これによ り 、 試料 3 0 4 の 1 ライ ン分の画素データが駆動 波形 X D R I V E の A— B 間 (例えば 1 0 2 4 画素分) で得 られる こ と になる。
—方、 X波形生成回路 4 3 1 よ り 水平同期信号 H Dが出力 される と 、 同期信号生成回路 4 3 3 を経由 して図 1 2 ( c ) に示すタイ ミ ング信号 H D ' が Y波形生成回路 4 3 2 に与え られる。
こ の場合、 Y波形生成回路 4 3 2 は、 X波形生成回路 4 3 1 と 同様な図 1 2 に示す波形パター ンを波形メ モ リ に用意し ていて、 同期信号生成回路 4 3 3 を経由 したタイ ミ ング信号 H D ' を受けて 1 ライ ンごと にア ド レスを進め、 A→ B→ C → Aに応 じた図 1 2 ( d ) に示す周期的な駆動波形 Y D R I V E を 2 次元走査機構 3 1 2 の ドライ ノく 4 2 4 に出力する。
ドライ ノく 4 2 4 は、 駆動波形 Y D R I V E を受取る と 、 Y ス キャナ 4 2 2 を駆動 して 2 次元走査の副走査を行な う 。 同 時に、 駆動波形 Y D R I V E の う ちの帰線期間の始ま り を知 らせる信号、 つま り 、 1 フ レーム の走査ごと に図 1 2 ( e ) に示す垂直同期信号 V Dを出力する。
これによ り 、 試料 3 0 4 の 1 フ レーム ごと の画素データ力 S 駆動波形 Y D R I V E の A— B 間 (例えば 7 6 8 ラ イ ン分) で得られ、 これらの動作を繰 り 返すこ と によ り 、 試料 3 0 4 の画像が コ ンピュータ 3 2 1 を介 してモニタ 3 2 2 に表示さ れる。
次に、 ェク ステン ド走査を説明する。 この場合、 予め、 コ ンピュータ 3 2 1 よ り 焦点移動機構 3 2 3 の ド ラ イ ノく 5 3 1 に対 して 1 フ レーム ご と の レポルノく 3 1 5 の移動距離が設定されている。
こ の状態から、 コ ン ピュ ー タ 3 2 1 よ り 2 次元走査駆動制 御回路 3 1 3 の同期信号生成回路 4 3 3 にェ ク ス テ ン ド走査 が指示 され、 Y波形生成回路 4 3 2 が同期信号生成回路 4 3 3 を経由 して与え られる タイ ミ ング信号 H D ' を、 例えば図 1 2 ( c ) の a 点のよ う に受取る と 、 図 1 2 ( d ) の b 点の よ う に駆動波形 Y D R I V E を 2 次元走査機構 3 1 2 の ドラ イ ノく 4 2 4 に出力する。
この場合、 波形メ モ リ の図 1 1 に示す A点から Yス キ ャナ 4 2 2 によ り 2 次元走査の副走査を行ない、 同図 B点までで 1 フ レーム分 ( 7 6 8 ラ イ ン分) の画像データ を取込み、 同 時に、 図 1 2 ( e ) の c 点で垂直同期信号 V Dを出力する。
する と 、 同期信号生成回路 4 3 3 よ り 図 1 2 ( f ) の d 点 で焦点移動機構 3 2 3 の ドラ イ ノく 5 3 1 に対 し レボルバ移動 信号 Z S T A R Tが出力 され、 こ の レボルバ移動信号 Z S T A R T によ り レポルバ 3 1 5 の予め定め られた距離の移動が 開始される。
同時に、 図 1 2 ( e ) の c 点の垂直同期信号 V D によ り 図 1 2 ( c ) の e 点から Y波形生成回路 4 3 2 のア ド レスカ ウ ンタ を駆動するタイ ミ ング信号 H D ' をマス クする。
こ の場合、 ア ド レスカ ウ ンタ を止め られた Y波形生成回路 4 3 2 は、 図 1 1 の B 点の位置で保持され、 これによ り 、 レ ボルバ 3 1 5 が移動される間は、 2 次元走査の副走查は一時 停止 される こ と になる。
その後、 レボルバ 3 1 5 の所定距離の移動が完了する と 、 図 1 2 ( g ) の f 点で ドライ ノく 5 3 1 よ り 同期信号生成回路 4 3 3 に移動完了信号 Z E N Dが出力 される。
こ の移動完了信号 Z E N D を同期信号生成回路 4 3 3 が受 取る と 、 図 1 2 ( c ) の g 点でタイ ミ ング信号 H D ' のマス ク が解除され、次の主走査のタイ ミ ングで有効 と する こ と で、 Y波形生成回路 4 3 2 は、 通常動作に戻 り 、 次のフ レーム走 査に移行される。
以下、 同様に して、 焦点位置における 2 次元走査によ る 1 フ レームの画像取込みを終了する ごと に、 所定の移動量で焦 点移動を行ない、 次の焦点位置に移動 して、 次の 2 次元走査 によ る 1 フ レームの画像取込みを行な う ェ ク ス テ ン ド走査が 行なわれる こ と になる。
従って、 こ のよ う な構成によれば、 ェク ステ ン ド走査の際 の レボルバ 3 1 5 に よ る焦点位置の移動に基づいて 2 次元走 査機構 3 1 2 の Y ス キ ャ ナ 4 2 2 によ る 2 次元走査の副走査 期間を制御 し、 レボルバ 3 1 5 の移動距離に対応させて次フ レーム走査への処理に移行させる よ う にでき る ので、 ェ ク ス テ ン ド走査中の隣 り 合 う 2 つの焦点位置間の 2 次元走査と焦 点位置調整移動の非同期性を吸収でき る よ う になる。
したがって、 従来の走査の帰線期間中に焦点位置の移動が 終了 しない と 、 次の画像取込みを空振 り (データ取得 しない) する もの と比べ、 無駄な 2 次元走査期間 (データ を取得でき ない空振 り 期間) を取 り 除く こ と ができ 、 画像の取込み時間 を大幅に短縮でき る。
また、 従来の画像の取込み時間を短縮するため、 2 次元走 査によ る画像取込みを行いなが ら焦点移動を行な う ため取得 された画像が試料を斜めに走査する もの と比べて、 常に正確 な画像情報を取得する こ と ができ る。
また、 第 1 、 第 2 の実施の形態に本実施の形態を組み合わ せる こ と に よ り 、 従来の 2 次元走査によ る画像取込みに比べ て、 さ らに画像の取 り 込み時間を短縮でき る。
<第 4 の実施の形態 >
次に、 本発明の第 4 の実施の形態について説明する。
こ の場合、 第 3 の実施の形態で述べた図 9 および図 1 0 に ついては、 第 4 の実施の形態でも同様なので、 これら図 9 お よび図 1 0 を援用 し、 また、 図 1 1 に示す X波形生成回路 4 3 1 の波形メ モ リ の波形パターンも、 同図を援用する もの と する。
また、 Υ波形生成回路 4 3 2 の波形メ モ リ の波形パターン は、 図 1 3 に示すよ う に波形メ モ リ のア ド レス Β に垂直同期 信号 V D を、 ァ ド レス Cに制御信号 Ε Νをそれぞれ出力する よ う に してレヽる。
こ のよ う に して も、 ある 1 フ レーム の画像デ タ の取得が 行なわれる と 、 予め設定された距離だけ レボル 3 1 5 が焦 点移動 される よ う になるが、 こ こ ま での動作は 第 3 の実施 の形態と 同様である。
こ の場合、 図 1 3 に示す波形パター ンの垂直帰線期間 (ァ ド レス Β→ C 間) 中 も 2 次元走查は止ま らなレ、よ う になって お り 、 仮に、 レボルバ 3 1 5 の焦点移動の距離 (時間) が小 さ く 、 垂直帰線期間 B→ C間で レボルバ 3 1 5 の移動が完了 して しまい、 ドライ ノく 5 3 1 からの移動完了信号 Z E N D よ り も制御信号 E N の方が後から 同期信号生成回路 4 3 3 に通 知 される よ う な場合であって も、 2 次元走査を止める こ と な く 、 連続したフ レームでデータ取得を行える。
ま た、 レボルバ 3 1 5 の焦点移動の距離 (時間) が大き く 、 垂直帰線期間 B→ C 間で レボルバ 3 1 5 の移動が完了せずに、 次フ レーム内に完了時点が食い込んで しまい制御信号 E Nよ り も移動完了信号 Z E N Dが後で同期信号生成回路 4 3 3 に 通知 される よ う な場合は、 制御信号 E Nの発生時点で 2 次元 走査を一時停止 し、 ドライ バ 5 3 1 からの移動完了信号 Z E N D を待ってから次のフ レームの走査を再開する よ う になる。
従って、 こ のよ う にすれば、 垂直帰線期間 B→ C も有効に 焦点位置調整のための レボルバ 3 1 5 の移動期間に利用する こ と ができ る ので、 さ らに効率のよい画像情報の取得を期待 する こ と ができ る。
なお、 上記実施例においては、 試料からの反射光を使用す る場合について説明 したが、 蛍光又は透過光を使用 して も よ レヽ c
以上述べた よ う に本発明に よれば、 ェ ク ステ ン ド走査中の 連続する焦点位置の移動に と も な う 2 次元走査手段での 2 次 元走査 と 焦点位置調整手段によ る焦点位置移動の非同期性を 吸収でき るので、 無駄な 2 次元走査期間 (データ を取得でき ない空振 り 期間) を取 り 除く こ と ができ 、 短い時間で、 正確 な画像情報を効率よ く 取得する こ と ができ る。
また、 本発明によれば、 2 次元走査手段の垂直同期信号に 続けて出力 される制御信号と の間の期間も焦点位置調整手段 によ る焦点位置の調整に利用する こ と ができ る ので、 さ らに 効率のよい画像情報の取得を期待する こ と ができ る。 産業上の利用可能性
本発明は、 試料に対する集束光の走査制御やデータ処理を 改善 して処理の高速化を図っ た走査型共焦点顕微鏡に適用す る こ と ができ る。

Claims

請求の範囲
1 . 試料に対する集束光の 2 次元走査範囲を指定す る走査範囲指定手段と 、
前記走査範囲指定手段に よ っ て指定 さ れた 2 次元走 査範囲内において前記試料に対して集束光を 2 次元走査する 2 次元走査手段と 、
前記 2 次元走査手段に よ っ て 2 次元走査 された集束 光の前記試料からの反射光、 蛍光及び透過光の う ちのいずれ か 1 っを受光する受光手段と 、
前記受光手段によ って受光された反射光、蛍光及び透 過光の う ちのいずれか 1 つに基づいて、 前記試料の画像を得 る画像獲得手段と
を備えたこ と を特徴とする走査型共焦点顕微鏡。 2 . 2 次元走査範囲内において試料に対して集束光 を 2 次元走査する 2 次元走査手段と 、
前記 2 次元走査手段に よ っ て 2 次元走査 された集束 光の前記試料からの反射光、 蛍光及び透過光の う ちのいずれ か 1 っを受光する受光手段と 、
前記受光手段によ っ て受光された反射光、蛍光及び透 過光の う ちのいずれカゝ 1 つに基づいて得られる試料の画像デ 一 夕 の う ち、 デー タ取得範囲を指定するデータ取得範囲指定 手段と 、
前記受光手段によ って受光 された反射光、蛍光及び透 過光の う ちのいずれカゝ 1 つに基づいて得られる試料の画像デ — タ の う ち、 前記データ取得範囲指定手段によ って指定され たデータ 取得範囲の画像データ に基づいて、 前記試料の画像 を獲得する画像獲得手段と
を備えたこ と を特徴とする走査型共焦点顕微鏡。
3 . 試料に対する集束光の 2 次元走査範囲を指定す る走査範囲指定手段と 、
前記走査範囲指定手段に よ っ て指定された 2 次元走 查範囲内において前記試料に対 して集束光を 2 次元走査する 2 次元走査手段と 、
前記 2 次元走査手段に よ っ て 2 次元走査 された集束 光の前記試料からの反射光、 蛍光及び透過光の う ちのいずれ か 1 っを受光する受光手段と 、
前記受光手段によ って受光された反射光、蛍光及び透 過光の う ちのいずれか 1 つに基づいて得られる試料の画像デ ータ の う ち、 データ取得範囲を指定するデータ取得範囲指定 手段と 、
前記受光手段によ って受光された反射光、蛍光及び透 過光の う ちのいずれか 1 つに基づいて得られる試料の画像デ ータ の う ち、 前記データ取得範囲指定手段によ って指定され たデータ取得範囲の画像データ に基づいて、 前記試料の画像 を取得する画像獲得手段と
を備えたこ と を特徴とする走査型共焦点顕微鏡。 4 . 試料に対 して集束光を 2 次元走査する 2 次元走 查手段と 、
前記試料に対する集束光の焦点位置を調整する焦 点位置調整手段と 、
前記焦点位置調整手段に よ る焦点位置の調整期間に 前記 2 次元走査手段によ る 2 次元走査を禁止する制御手段と を具備 したこ と を特徴とする走査型共焦点顕微鏡。
5 . 前記制御手段は、 前記 2 次元走査手段の 1 ライ ン走査ごと に出力 される水平同期信号と フ レー ム走査ごと に 出力 される垂直同期信号を管理 し、 前記垂直同期信号によ り 焦点位置調整手段によ る焦点位置の調整開始を指示する と と も に前記 2 次元走査手段によ る 2 次元走査を禁止 し、 前記焦 点位置調整手段によ る焦点位置の調整終了をま って前記 2 次 元走査手段の 2 次元走査を開始させる こ と を特徴とする請求 項 4記載の走査型共焦点顕微鏡。
6 . 前記制御手段は、 さ らに 2 次元走査手段の垂直 同期信号に続けて出力 される制御信号を管理し、 前記焦点位 置調整手段によ る焦点位置の調整終了が前記制御信号よ り 前 に通知 された場合は、 前記 2 次元走査手段の 2 次元走査を禁 止せず、 前記焦点位置調整手段に よ る焦点位置の調整終了が 前記制御信号よ り 後に通知 された場合は、 前記制御信号の発 生時点で前記 2 次元走査手段の 2 次元走査を一時禁止 し、 前 記焦点位置の調整終了をま っ て前記 2 次元走査手段の 2 次元 走査を開始させる こ と を特徴と する請求項 5 記載の走査型共 焦点顕微鏡-
補正書の請求の範囲
[ 2 0 0 0年 7月 1 9日 (1 9 . 0 7 . 0 0 ) 国際事務局受理:出願 当初の請求の範囲 1は補正された;出願当初の請求の範囲 2— 6は取 り下げられた;新しい請求の範囲 7— 1 4が加えられた。 (7頁) ]
請 求 の 範 囲
1 . (補正後) 試料の 2 次元走査 と 、 前記試料 と 対 物 レ ンズの焦点位置 と を前記対物 レ ン ズを通過する光の光軸 方向で相対的に移動 さ せる処理 と を繰 り 返すこ と に よ り 試料 の 3 次元情報を得る走査型共焦点顕微鏡において、
前記試料に対 して集束光を一軸方向 に走査する た めの第 1 の走査手段 と 、 前記試料に対 して集束光を前記第 1 の走査手 段に よ っ て走査 さ れる 方向 に直交する 軸方向 に走查する ため の第 2 の走査手段 と を具備する 2 次元走査手段 と 、
前記試料に対する集束光の 2 次元走査範囲を指定する 走査 範囲指定手段と 、
前記第 1 の走査手段を駆動する ための第 1 の駆動信号及び 前記第 2 の走査手段を駆動する た めの第 2 の駆動信号を 出力 する と と も に、 前記走査範囲指定手段に よ っ て 2 次元走查範 囲が指定 された場合に、 指定 さ れた前記試料の 2 次元走査範 囲内において集束光を走査 させる よ う に前記第 2 の駆動信号 を制御する制御手段 と 、
前記 2 次元走査手段に よ っ て 2 次元走査 さ れた集束光 の前記試料か ら の反射光、 蛍光及び透過光の う ちのいずれか
1 っを受光する受光手段 と 、
前記受光手段に よ っ て受光 さ れた反射光、 蛍光及び透 過光の う ちのいずれか 1 つに基づいて、 前記試料の画像を得 る画像獲得手段 と
を備えた こ と を特徴 と する 走査型共焦点顕微鏡。
2 . (削除)
補正された用紙 (条約第 19条)
3 . (削除)
4 . (削除)
補正された用紙 (条約第 19条)
5 . (削除)
6 . (削除)
補正された用紙 (条約第 19条)
7 . (追加) 前記制御手段に よ る 前記第 2 の駆動 信号の制御は、 前記第 2 の駆動信号の波形の情報を制御する こ と を特徴とする請求項 1 記載の走査型共焦点顕微鏡。
8 . (追加) 前記走査範囲指定手段は、 前記受光手段に よ っ て受光 さ れた反射光、 蛍光及び透 過光の う ちのいずれか 1 つに基づいて得られる試料の画像デ —タ の う ち、 データ取得範囲を指定する機能を備えてお り 、 前記制御手段は、 前記走査範囲指定手段に よ っ て 2 次元走査範囲が指定 された場合に、 前記受光手段に よ って受光 された反射光、 蛍 光及び透過光の う ちのいずれか 1 つに基づいて得 られる試料 の画像デー タ の う ち、 前記走査範囲指定手段に よ って指定さ れたデータ取得範囲の画像データ に基づいて、 前記試料の画 像を獲得する機能を備えている こ と を特徴と する請求項 1 記 載の走査型共焦点顕微鏡。
9 . (追加) 前記試料と前記対物 レンズの焦点位 置と を前記光軸方向に相対的に移動させる移動手段と 、
前記移動手段によ る前記試料と 前記対物 レンズの焦点位置 と の相対的な移動期間中に前記 2 次元走査手段によ る 2 次元 走査を禁止する禁止手段と を さ らに具備する こ と を特徴とする請求項 1 記載の走査型共 焦点顕微鏡。
補正された用紙 (条約第 19条)
1 0 . (追加) 前記禁止手段は、 前記 2 次元走査 手段の 1 ラ イ ン走査ごと に出力 さ れる水平同期信号と フ レー ム走査ごと に出力 さ れる垂直同期信号を管理 し、 前記垂直同 期信号に よ り 移動手段に よ る焦点位置の調整開始を指示する と と も に前記 2 次元走査手段に よ る 2 次元走査を禁止 し、 前 記移動手段に よ る焦点位置の調整終了 をま って前記 2 次元走 查手段の 2 次元走査を開始させる こ -と を特徴 と する請求項 9 記載の走査型共焦点顕微鏡。
1 1 . (追加) 前記禁止手段は、 2 次元走査手段 の垂直同期信号に続けて出力 される制御信号を管理 し、 前記 移動手段によ る焦点位置の調整終了が前記制御信号よ り 前に 通知された場合は、 前記 2 次元走查手段の 2 次元走査を禁止 せず、 前記移動手段によ る焦点位置の調整終了が前記制御信 号よ り 後に通知された場合は、 前記制御信号の発生時点で前 記 2 次元走査手段の 2 次元走査を一時禁止 し、 前記焦点位置 の調整終了をま って前記 2 次元走査手段の 2 次元走査を開始 させる こ と を特徴と する請求項 9 記載の走査型共焦点顕微鏡 c
1 2 . (追加) 試料の 2 次元走査と 、 前記試料と 対物 レ ンズの焦点位置 と を前記対物 レ ンズを通過する光の光 軸方向に相対的に移動させる処理と を繰 り 返すこ と によ り 試 料の 3 次元情報を得る走査型共焦点顕微鏡において、
前記試料と 前記対物 レンズの焦点位置と を前記光軸方向に 相対的に移動させる移動手段と 、
捕正された用紙 (条約第 19条) 前記試料に対 して集束光を一軸方向に走査する ための第 1 の走査手段 と 、 前記試料に対 して集束光を前記第 1 の走查手 段に よ って走査 される方向に直交する軸方向に走査する ため の第 2 の走査手段と を具備する 2 次元走査手段と 、
前記移動手段によ る前記試料と前記対物 レ ンズの焦点位置 と の相対的な移動期間中に前記 2 次元走査手段によ る 2 次元 走査を禁止する禁止手段と
を具備する こ と を特徴とする走査型共焦点顕微鏡。
1 3 . (追加) 前記禁止手段は、 前記 2 次元走査 手段の 1 ラ イ ン走査ごと に出力 される水平同期信号と フ レー ム走查ごと に出力 される垂直同期信号を管理 し、 前記垂直同 期信号に よ り 前記移動手段に よ る焦点位置の調整開始を指示 する と と も に前記 2 次元走査手段に よ る 2 次元走査を禁止 し 前記移動手段に よ る焦点位置の調整終了 をま って前記 2 次元 走査手段の 2 次元走査を開始させる こ と を特徴と する請求項 1 2記載の走査型共焦点顕微鏡。
1 4 . (追加) 前記禁止手段は、 前記 2 次元走査 手段の垂直同期信号に続けて出力 される制御信号を管理し、 前記移動手段によ る焦点位置の調整終了が前記制御信号よ り 前に通知 された場合は、 前記 2 次元走査手段の 2 次元走査を 禁止せず、 前記移動手段によ る焦点位置の調整終了が前記制 御信号よ り 後に通知 された場合は、 前記制御信号の発生時点 で前記 2次元走査手段の 2 次元走査を一時禁止 し、 前記焦点 補正された用紙 (条約第 19条) 位置の調整終了をま って前記 2 次元走査手段の 2 次元走査を 開始させる こ と を特徴とする請求項 1 2記載の走査型共焦点 顕微鏡。
楠止された用紙 (条約第 19条)
PCT/JP2000/001623 1999-03-19 2000-03-17 Microscope confocal a balayage WO2000057231A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/696,774 US6317258B1 (en) 1999-03-19 2000-10-26 Scanning confocal microscope
US10/035,419 US6437910B1 (en) 1999-03-19 2001-10-25 Scanning confocal microscope

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11076720A JP2000275528A (ja) 1999-03-19 1999-03-19 走査型共焦点顕微鏡
JP11/76720 1999-03-19
JP16243699A JP4384290B2 (ja) 1999-06-09 1999-06-09 走査型共焦点顕微鏡
JP11/162436 1999-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/696,774 Continuation US6317258B1 (en) 1999-03-19 2000-10-26 Scanning confocal microscope

Publications (1)

Publication Number Publication Date
WO2000057231A1 true WO2000057231A1 (fr) 2000-09-28

Family

ID=26417858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001623 WO2000057231A1 (fr) 1999-03-19 2000-03-17 Microscope confocal a balayage

Country Status (3)

Country Link
US (2) US6317258B1 (ja)
KR (1) KR100689319B1 (ja)
WO (1) WO2000057231A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257438A (zh) * 2013-05-29 2013-08-21 哈尔滨工业大学 一种基于自动控制电动平移台的平面二维矩形扫描装置及其扫描方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954933A1 (de) * 1999-11-10 2001-05-17 Zeiss Carl Jena Gmbh Anordnung zur Einkopplung einer optischen Pinzette und/oder eines Bearbeitungsstrahles in ein Mikroskop
US6785634B2 (en) * 2000-01-18 2004-08-31 Intelligent Automation, Inc. Computerized system and methods of ballistic analysis for gun identifiability and bullet-to-gun classifications
US6505140B1 (en) * 2000-01-18 2003-01-07 Intelligent Automation, Inc. Computerized system and method for bullet ballistic analysis
JP2004354469A (ja) * 2003-05-27 2004-12-16 Yokogawa Electric Corp 共焦点顕微鏡表示装置
JP3867143B2 (ja) * 2003-06-25 2007-01-10 独立行政法人産業技術総合研究所 三次元顕微鏡システムおよび画像表示方法
US7212949B2 (en) * 2004-08-31 2007-05-01 Intelligent Automation, Inc. Automated system and method for tool mark analysis
DE102004042913A1 (de) * 2004-09-02 2006-03-30 Westfälische-Wilhelms Universität Münster Scanneranordnung und Verfahren zum optischen Abtasten eines Objektes
KR100612219B1 (ko) * 2004-10-16 2006-08-14 학교법인연세대학교 음향광학편향기와 선주사 카메라를 이용한 공초점 레이저선주사 현미경
US7612350B2 (en) * 2005-01-18 2009-11-03 Olympus Corporation Scanning microscope and specimen image obtaining method in which adjacent data obtaining points are not consecutively obtained
JP4761882B2 (ja) * 2005-08-10 2011-08-31 オプティスキャン ピーティーワイ リミテッド 走査型共焦点内視鏡システムおよび該システムの画像表示範囲調整方法
KR100743591B1 (ko) * 2005-09-23 2007-07-27 한국과학기술원 사이드 로브가 제거된 공초점 자가 간섭 현미경
DE102007052551B4 (de) * 2007-10-30 2019-06-19 Carl Zeiss Microscopy Gmbh Verfahren zur Durchführung einer Rasterbildkorrelationsspektroskopiemessung sowie Steuereinheit, Laser-Scanning-Mikroskop und Computerprogramm
KR100927865B1 (ko) * 2008-01-03 2009-11-23 서강대학교산학협력단 I/q 간섭계와 스캐닝 방법을 이용한 복합 기능 현미경
EP2589214B1 (en) 2010-06-30 2019-08-14 GE Healthcare Bio-Sciences Corp. A system for synchronization in a line scanning imaging microscope
EP2874700B1 (en) * 2012-07-18 2020-04-08 The Trustees of Princeton University Multiscale spectral nanoscopy
CN104536122B (zh) * 2014-12-17 2017-02-22 严俊文 一种用于共焦显微系统的控制装置
WO2016123479A1 (en) * 2015-01-31 2016-08-04 Board Of Regents, The University Of Texas System High-speed laser scanning microscopy platform for high-throughput automated 3d imaging and functional volumetric imaging
CN109521557A (zh) * 2018-11-30 2019-03-26 南京智博医疗器械有限公司 共焦扫面显微成像系统的信号控制与处理装置及其方法
CN109645936B (zh) * 2018-12-24 2023-12-12 中国科学院苏州生物医学工程技术研究所 一种共聚焦内窥成像错位校正系统及方法
US11778107B2 (en) 2019-07-30 2023-10-03 Kodak Alaris Inc. Retail photo kiosk access system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830439A (ja) * 1971-08-19 1973-04-21
JPS5056277A (ja) * 1973-09-14 1975-05-16
JPS6156615U (ja) * 1975-08-25 1986-04-16
JPH0843017A (ja) * 1994-08-02 1996-02-16 Olympus Optical Co Ltd 走査型光学顕微鏡
JPH1031159A (ja) * 1996-07-16 1998-02-03 Olympus Optical Co Ltd 走査型共焦点顕微鏡
JPH1152252A (ja) * 1997-08-06 1999-02-26 Nikon Corp 蛍光顕微鏡

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3419365C1 (de) 1984-05-24 1985-09-05 Melitta-Werke Bentz & Sohn, 4950 Minden Durchlauferhitzer fuer eine Kaffee- oder Teemaschine
JPH06273118A (ja) 1993-03-19 1994-09-30 Nikon Corp 寸法測定方法および画像調整方法
US5923430A (en) * 1993-06-17 1999-07-13 Ultrapointe Corporation Method for characterizing defects on semiconductor wafers
US5594235A (en) * 1993-06-17 1997-01-14 Ultrapointe Corporation Automated surface acquisition for a confocal microscope
JPH08334698A (ja) 1995-06-08 1996-12-17 Nikon Corp 光走査型顕微鏡
US5932871A (en) * 1995-11-08 1999-08-03 Olympus Optical Co., Ltd. Microscope having a confocal point and a non-confocal point, and a confocal point detect method applied thereto
JP3816632B2 (ja) * 1997-05-14 2006-08-30 オリンパス株式会社 走査型顕微鏡

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830439A (ja) * 1971-08-19 1973-04-21
JPS5056277A (ja) * 1973-09-14 1975-05-16
JPS6156615U (ja) * 1975-08-25 1986-04-16
JPH0843017A (ja) * 1994-08-02 1996-02-16 Olympus Optical Co Ltd 走査型光学顕微鏡
JPH1031159A (ja) * 1996-07-16 1998-02-03 Olympus Optical Co Ltd 走査型共焦点顕微鏡
JPH1152252A (ja) * 1997-08-06 1999-02-26 Nikon Corp 蛍光顕微鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257438A (zh) * 2013-05-29 2013-08-21 哈尔滨工业大学 一种基于自动控制电动平移台的平面二维矩形扫描装置及其扫描方法

Also Published As

Publication number Publication date
US6317258B1 (en) 2001-11-13
KR20010043657A (ko) 2001-05-25
US6437910B1 (en) 2002-08-20
US20020057492A1 (en) 2002-05-16
KR100689319B1 (ko) 2007-03-09

Similar Documents

Publication Publication Date Title
WO2000057231A1 (fr) Microscope confocal a balayage
US20060077540A1 (en) Compound microscope
JP3783813B2 (ja) 共焦点顕微鏡装置
JP3896196B2 (ja) 走査型顕微鏡
JPH11231223A (ja) 走査型光学顕微鏡
JP4477170B2 (ja) 走査型顕微鏡装置
JP4169647B2 (ja) 共焦点顕微鏡
JP3708277B2 (ja) 走査型光学測定装置
JP4384290B2 (ja) 走査型共焦点顕微鏡
JPH11326778A (ja) 顕微鏡画像観察装置
JP4914567B2 (ja) 走査型共焦点顕微鏡
KR20110121497A (ko) Pzt 스테이지를 이용한 공초점 현미경 시스템 및 그 스캔방법
JP4398183B2 (ja) 共焦点顕微鏡
JP2000275528A (ja) 走査型共焦点顕微鏡
JPH09297269A (ja) 走査型画像入力装置及び走査型プローブ顕微鏡
JPH11237554A (ja) 走査型光学顕微鏡
JP4792239B2 (ja) 走査型共焦点レーザ顕微鏡
US7342218B2 (en) Methods and systems for optical inspection of surfaces based on laser screening
JP4963543B2 (ja) 走査型レーザ顕微鏡及びその制御方法
JP4564244B2 (ja) レーザ走査型顕微鏡、レーザ走査型顕微鏡の制御方法、及びプログラム
JP2000035543A (ja) 顕微鏡観察装置
JPH09197288A (ja) 光学顕微鏡
JPH11249022A (ja) 走査型レーザ顕微鏡
JP4694137B2 (ja) 走査型レーザ顕微鏡、該制御方法、及び該制御プログラム
JPH1031159A (ja) 走査型共焦点顕微鏡

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

WWE Wipo information: entry into national phase

Ref document number: 09696774

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007012850

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020007012850

Country of ref document: KR

ENP Entry into the national phase

Ref country code: US

Ref document number: 2001 35419

Date of ref document: 20011025

Kind code of ref document: A

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1020007012850

Country of ref document: KR