JP2004191846A - レーザ走査型顕微鏡 - Google Patents

レーザ走査型顕微鏡 Download PDF

Info

Publication number
JP2004191846A
JP2004191846A JP2002362466A JP2002362466A JP2004191846A JP 2004191846 A JP2004191846 A JP 2004191846A JP 2002362466 A JP2002362466 A JP 2002362466A JP 2002362466 A JP2002362466 A JP 2002362466A JP 2004191846 A JP2004191846 A JP 2004191846A
Authority
JP
Japan
Prior art keywords
image data
observation
sample
observation point
dimensional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002362466A
Other languages
English (en)
Other versions
JP4350365B2 (ja
Inventor
Hiroshi Hirayama
広 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002362466A priority Critical patent/JP4350365B2/ja
Publication of JP2004191846A publication Critical patent/JP2004191846A/ja
Application granted granted Critical
Publication of JP4350365B2 publication Critical patent/JP4350365B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】標本の観察中の調整作業を不要とすると共に、長時間に及ぶ観察でも確実に期待できる3次元画像データを取得すること。
【解決手段】予め設定されたインターバル時間間隔で、変化量検出部35により複数の観察ポイントにおける例えば第1回目と第2回目の各観察で取得さたれ各3次元画像データの各エクステンド画像データを作成し、これらエクステンド画像データを比較して時間経過に伴う標本6のXY軸方向の位置ずれとZ軸方向のフォーカスずれとを検出し、補正部36により位置ずれとフォーカスずれとに基づいて電動ステージ5のXY軸方向の位置又はZ軸方向の高さを補正する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、ステージ上に載せられた標本上の複数ポイントにおける時間経過に伴って変化する3次元的な様子を観察するために、各観察ポイントにおける3次元画像データを所定時間毎に繰り返し取得するレーザ走査型顕微鏡に関する。
【0002】
【従来の技術】
レーザ走査型顕微鏡は、共焦点光学系を有する。この共焦点光学系は、対物レンズによる標本の焦点と共役な位置にピンホールを配置し、標本の非焦点位置からのボケ像を除外し、焦点位置の像のみをピンホールに通過させる。これにより、共焦点光学系は、高い共焦点効果(光学的セクショニング効果)を得る。この共焦点光学系を用いれば、所定の厚さを有する標本の断層面のスライス像が容易に取得できる。
【0003】
レーザ走査型顕微鏡としては、例えば特許文献1に記載されている。この特許文献1は、標本として生きている細胞に対して様々な刺激を与え、この刺激に対する標本の経時的な反応を観察することによって、標本の3次元的な時間変化を観察することを記載する。
【0004】
又、レーザ走査型顕微鏡は、電動ステージを有する。この共焦点光学顕微鏡は、複数の観察ポイントを指定することにより、電動ステージの駆動により各観察ポイントに自動的に移動し、これら観察ポイント毎の3次元的な時間変化を観察する。
【0005】
【特許文献1】
特開平6−27383号公報
【0006】
【発明が解決しようとする課題】
標本を長時間観察する場合、時間経過によって共焦点光学顕微鏡の状態が変化する。例えばレーザ走査型顕微鏡は、温度変化により顕微鏡本体に歪みが生じる。これにより、レーザ走査型顕微鏡は、標本に対するフォーカスすなわち対物レンズと標本との間隔が変化する。
【0007】
標本は、時間経過に伴って位置を移動したり又は形状を変化する。これにより、標本は、常に同一位置(XY平面上の位置)に存在しなくなる。このため、レーザ走査型顕微鏡において観察開始時に決定した条件、例えばステージ位置、フォーカス位置などの条件を変えずに観察を続けると、観察の途中から標本の位置がずれてしまう。この結果、標本の観察像から期待するデータが取得できなくなる。
【0008】
このような事から標本の3次元画像の観察の合間に、標本の観察ポイントやフォーカス位置の調整作業が必要になる。このため、観察者は、標本の観察中に観察ポイントやフォーカス位置の調整作業を強いられる。そのうえ電動ステージを有するレーザ走査型顕微鏡では、複数の観察ポイントの各ステージ位置や各フォーカス位置をそれぞれ標本の観察中に調整作業しなければならず、非常に煩雑な調整作業になる。
【0009】
そこで本発明は、標本の観察中の調整作業を不要とすると共に、長時間に及ぶ観察でも確実に期待できる3次元画像データを取得できるレーザ走査型顕微鏡を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、標本上の観察ポイントにおける3次元画像データを所定時間毎に繰り返し取得するレーザ走査型顕微鏡において、所定時間毎に繰り返し取得された3次元画像データを保存する画像保存手段と、この画像保存手段に保存された3次元画像データのうち互いに画像取得に時間差のある各3次元画像データ同士を比較し、これら3次元画像データから時間経過に伴う標本に関する変化量を検出する変化量検出手段と、標本に関する変化量を検出した後に観察ポイントの3次元画像データを取得するとき、変化量検出手段により検出された変化量に基づいて標本の位置を補正する補正手段とを具備したことを特徴とするレーザ走査型顕微鏡である。
【0011】
本発明におけるレーザ走査型顕微鏡の変化量検出手段は、標本のXY平面上の位置ずれ又はZ方向のフォーカスずれのいずれか一方又は両方を検出し、補正手段は、標本のXY平面上の位置ずれ又はZ方向のフォーカスずれのいずれか一方又は両方に基づいてステージをXY方向又はZ方向のいずれか一方又は両方に補正することが好ましい。
【0012】
本発明のレーザ走査型顕微鏡は、変化量検出手段により検出された変化量に基づいて標本の形状が変化して画像データの領域外に出たと判断すると、観察ポイントに隣接して新たな観察ポイントを追加する観察ポイント追加手段を具備することが好ましい。
【0013】
本発明におけるレーザ走査型顕微鏡の観察ポイント追加手段は、新たな観察ポイントを複数追加することが好ましい。
【0014】
本発明のレーザ走査型顕微鏡は、標本上の複数の観察ポイントに対するステージの各ステージ位置を記憶する記憶手段を有し、補正手段は、ステージを移動して任意の観察ポイントの3次元画像データを取得するときに、標本のXY平面上の位置ずれ又はZ方向のフォーカスずれのいずれか一方又は両方に基づいて記憶手段に記憶されている観察ポイントのステージ位置を補正することが好ましい。
【0015】
【発明の実施の形態】
以下、本発明の第1の実施の形態について図面を参照して説明する。
【0016】
図1はレーザ走査型顕微鏡の構成図である。このレーザ走査型顕微鏡は、レーザ走査型顕微鏡本体1とコンピュータシステム2とを有する。レーザ走査型顕微鏡本体1は、共焦点光学系を有する。このレーザ走査型顕微鏡本体1のコ字形状の顕微鏡筐体3に対物レンズ4と電動ステージ5とが対向して設けられている。標本6は、電動ステージ5上に載置される。
【0017】
又、レーザ走査型顕微鏡本体1は、3つレーザ光源7〜9、例えばArレーザ7、HeNe−Gレーザ8及びHeNe−Rレーザ9を有する。このうち各レーザ光源7、8から出射される各レーザ光の光路上にそれぞれ各合成用ダイクロイックミラー10、11が設けられている。又、レーザ光源9から出射されるレーザ光の光路上にミラー12が設けられている。これら合成用ダイクロイックミラー10、11は、ミラー12の反射光路上に設けられている。
【0018】
従って、レーザ光源7から出射されたレーザ光は、合成用ダイクロイックミラー10を透過する。レーザ光源8から出射されたレーザ光は、合成用ダイクロイックミラー11で反射して合成用ダイクロイックミラー10に入射して反射する。レーザ光源9から出射されたレーザ光は、ミラー12で反射し、合成用ダイクロイックミラー11を透過し、合成用ダイクロイックミラー10に入射して反射する。これにより、各レーザ光源7〜9から出射された各レーザ光は、合成される。
【0019】
合成用ダイクロイックミラー10から出射される合成レーザ光の光路上にミラー13が設けられている。なお、選択されるレーザ光源7〜9が1つであれば、合成用ダイクロイックミラー10から出射されるレーザ光は、複数のレーザ光を合成したものでない。しかし、ここでは便宜上、合成用ダイクロイックミラー10から出射されるレーザ光の全ては、合成レーザ光と称する。
【0020】
反射ミラー13の反射光路上に分光フィルタ14が設けられている。この分光フィルタ14は、標本6で発生した蛍光成分を反射する。
【0021】
走査ユニット15は、X走査ガルバノミラーとY走査ガルバノミラーとを有する。この走査ユニット15は、分光フィルタ14を透過した合成レーザ光をX走査ガルバノミラーとY走査ガルバノミラーとの動作により2次元平面上(XY軸方向)に走査する。この走査ユニット15は、XY軸方向に走査した合成レーザを対物レンズ4に送り、かつ標本6で発生した蛍光又は反射光を分光フィルタ14に戻す。
【0022】
この分光フィルタ14の反射光路上に分光フィルタ16が設けられている。この分光フィルタ16は、予め設定された波長を境に短波長の光と長波長の光とに波長選択する。この分光フィルタ16は、例えば短波長の光を透過し、長波長の光を反射する。
【0023】
この分光フィルタ16の透過光路上にバリアフィルタ17が設けられている。このバリアフィルタ17は、分光フィルタ16を透過した短波長の光を予め設定された波長帯域で透過する。
【0024】
光検出器18は、バリアフィルタ17を透過した短波長の光を入射し、標本6の画像信号を出力する。
【0025】
又、分光フィルタ16の反射光路上にミラー19を介してバリアフィルタ20が設けられている。このバリアフィルタ20は、分光フィルタ16で反射した長波長の光を予め設定された波長帯域で透過する。
【0026】
光検出器21は、バリアフィルタ20を透過した長波長の光を入射し、標本6の画像信号を出力する。
【0027】
コントロールユニット22は、コンピュータシステム2から発せられる走査指示指令を受けると、この走査指示指令に従った走査制御信号を走査ユニット15に送出する。
【0028】
又、コントロールユニット22は、各レーザ光源7〜9のうち1乃至3つのレーザ光源7〜9を組み合わせて動作制御し、標本6上にXY走査するレーザ光を選択する。
【0029】
又、コントロールユニット22は、各光検出器18、21から出力された各画像信号を入力し、これら画像信号からそれぞれ標本6の各画像データを作成してコンピュータシステム2に転送する。
【0030】
このコンピュータシステム2は、接続インターフェース23を介してレーザ走査型顕微鏡本体1に接続されている。このコンピュータシステム2は、CPU30、記憶媒体31、キーボード32、マウス33及びモニタ装置34を有する。
【0031】
記憶媒体31は、レーザ走査型顕微鏡本体1の制御、レーザ走査型顕微鏡本体1から転送される画像データの記憶、画像処理などを行うための制御プログラムを記憶する。
【0032】
又、記憶媒体31は、標本6上にレーザ光をXY軸方向に走査するに必要な条件データを記憶する。この条件データは、標本6上の複数の観察ポイントの位置と、これら観察ポイントにおける各フォーカス位置と、標本6上にレーザ光を走査するときのレーザ光のZ軸上の範囲と、レーザ走査型顕微鏡本体1の共焦点光学系のセクショニング効果を利用して取得する標本6のZ軸上のスライス画像の枚数と、各光検出器18、21の各感度と、各レーザ光源7〜9から出射される各レーザ光の強度等を有する。
【0033】
又、記憶媒体31は、コントロールユニット22から転送された標本6の画像データなどを記憶する。なお、これら制御プログラムや条件データ、画像データなどは、それぞれ別々の記憶領域(メモリ部とも称する)に記憶される。
【0034】
CPU30は、記憶媒体31に記憶されている制御プログラムを実行し、レーザ走査型顕微鏡本体1の制御、レーザ走査型顕微鏡本体1から転送される画像データの記憶、画像処理などを行う。
【0035】
又、CPU30は、記憶媒体31に記憶されている制御プログラムを実行し、コントロールユニット22から転送された標本6の画像データを基に3次元画像データを作成して記憶媒体31に記憶する。
【0036】
又、CPU30は、記憶媒体31に記憶されている制御プログラムを実行し、記憶媒体31に記憶された3次元画像データのうち互いに画像取得に時間差のある各3次元画像データ同士を比較し、これら3次元画像データから時間経過に伴う標本6のXY軸方向の変化量(以下、位置ずれと称する)、又はZ軸方向の変化量(以下、フォーカスずれと称する)のいずれか一方又は両方を検出する。以下、このCPU30の動作は、変化量検出部35として説明する。
【0037】
又、CPU30は、標本6のXY軸方向への位置ずれを検出した後に観察ポイントの3次元画像データを取得するとき、変化量検出部35により検出された位置ずれ又はフォーカスずれに基づいて電動ステージ5のXY軸方向の位置又はZ軸方向の高さのいずれか一方又は両方を補正する。以下、このCPU30の動作は、補正部36として説明する。
【0038】
次に、上記の如く構成された装置の動作について説明する。
【0039】
観察者は、例えばレーザ走査型顕微鏡本体1の接眼レンズを通して標本6の拡大像を観察する。そして、観察者は、標本6の拡大像を観察しながら電動ステージ5を操作し、標本6上に複数の観察ポイントを決定する。図2は標本6上に決定された複数の観察ポイントNo.1〜No.3の例を示す。
【0040】
次に、観察者は、例えば複数の観察ポイントNo.1〜No.3における位置と、これら観察ポイントNo.1〜No.3における各フォーカス位置と、各観察ポイントNo.1〜No.3にレーザ光を走査するときのレーザ光のZ軸上の範囲と、スライス画像の枚数などの条件を設定する。これと共に観察者は、各光検出器18、21の各感度や各レーザ光源7〜9から出射される各レーザ光の強度等を調整する。
【0041】
これら観察ポイントNo.1〜No.3における位置や各フォーカス位置、レーザ光のZ軸上の範囲、スライス画像の枚数、各光検出器18、21の各感度、各レーザ光源7〜9から出射される各レーザ光の強度等は、例えば観察者のキーボード32やマウス33の操作により条件データとして記憶媒体31に記憶される。
【0042】
次に、観察者は、キーボード32やマウス33を操作してコンピュータシステム2にレーザ光の走査開始を指示する。コンピュータシステム2は、記憶媒体31に記憶されている観察ポイントNo.1の条件データを読み出し、この条件データを接続インターフェース23を介してレーザ走査型顕微鏡本体1のコントロールユニット22に設定する。
【0043】
これにより、コントロールユニット22に観察ポイントNo.1の位置と、観察ポイントNo.1のフォーカス位置と、観察ポイントNo.1にレーザ光を走査するときのレーザ光のZ軸上の範囲と、スライス画像の枚数と、各光検出器18、21の各感度と、各レーザ光源7〜9から出射される各レーザ光の強度等が設定される。
【0044】
次に、コンピュータシステム2は、コントロールユニット22に走査開始指示を送出する。このコントロールユニット22は、走査ユニット15に対して走査制御信号を送出する。又、コントロールユニット22は、各レーザ光源7〜9から標本6上に走査するレーザ光を出力する1つ乃至3のレーザ光源7、8又は9を選択する。
【0045】
レーザ光源7から出射されたレーザ光は、合成用ダイクロイックミラー10を透過する。レーザ光源8から出射されたレーザ光は、合成用ダイクロイックミラー11で反射し、次の合成用ダイクロイックミラー10でも反射する。レーザ光源9から出射されたレーザ光は、ミラー12で反射し、合成用ダイクロイックミラー11を透過し、次の合成用ダイクロイックミラー10で反射する。これにより、各レーザ光源7〜9から出射された各レーザ光は、合成用ダイクロイックミラー10で合成される。
【0046】
この合成用ダイクロイックミラー10から出射された合成レーザ光は、ミラー13で反射し、分光フィルタ14を透過して走査ユニット15に入射する。
【0047】
この走査ユニット15は、分光フィルタ14を透過した合成レーザ光をX走査ガルバノミラーとY走査ガルバノミラーとの動作により2次元平面上(XY軸方向)に走査する。
【0048】
これにより合成レーザ光は、対物レンズ4を通して標本6上にスポット光としてXY軸方向に走査される。
【0049】
標本6で発生した蛍光又は反射光は、合成レーザ光の標本6への入射光路と逆光路を戻る。すなわち、蛍光又は反射光は、対物レンズ4から走査ユニット15を通り分光フィルタ14に入射する。
【0050】
この分光フィルタ14は、標本6で発生した蛍光成分を反射する。この蛍光成分は、分光フィルタ16により予め設定された波長を境に短波長の光と長波長の光とに波長選択する。例えば蛍光成分の短波長の光は、分光フィルタ16を透過する。蛍光成分の長波長の光は、分光フィルタ16で反射する。
【0051】
このうち蛍光成分の短波長の光は、バリアフィルタ17に入射し、このバリアフィルタ17で予め設定された波長帯域内の波長成分のみが透過する。この透過した蛍光成分の短波長の光は、光検出器18に入射する。
【0052】
この光検出器18は、バリアフィルタ17を透過した蛍光成分の短波長の光を入射し、標本6の画像信号を出力する。
【0053】
これと共に蛍光成分の長波長の光は、ミラー19で反射してバリアフィルタ20に入射する。この蛍光成分の長波長の光は、バリアフィルタ20で予め設定された波長帯域内の波長成分のみが透過する。この透過した蛍光成分の長波長の光は、光検出器21に入射する。
【0054】
この光検出器21は、バリアフィルタ20を透過した蛍光成分の長波長の光を入射し、観察ポイントNo.1における標本6の画像信号を出力する。
【0055】
コントロールユニット22は、各光検出器18、21から出力された各画像信号を入力し、これら画像信号からそれぞれ標本6の各画像データを作成してコンピュータシステム2に転送する。
【0056】
このコンピュータシステム2は、標本6の各画像データを記憶媒体31に記憶すると共に、モニタ装置34に表示する。
【0057】
この場合、レーザ走査型顕微鏡本体1は、条件データにおける観察ポイントNo.1のフォーカス位置と、レーザ光を走査するときのレーザ光のZ軸上の範囲と、スライス画像の枚数などに基づいて電動ステージ5をZ軸方向に上下移動させ、共焦点光学系によって標本6のスライス像を複数枚取得する。
【0058】
従って、コンピュータシステム2は、観察ポイントNo.1における複数枚のスライス画像データを3次元画像データとして記憶媒体31に記憶する。
【0059】
次に、コンピュータシステム2は、記憶媒体31に記憶されている観察ポイントNo.2の条件データを読み出し、この条件データを接続インターフェース23を介してレーザ走査型顕微鏡本体1のコントロールユニット22に設定する。
【0060】
これにより、上記観察ポイントNo.1の場合と同様に、観察ポイントNo.2における複数枚のスライス像が取得される。従って、コンピュータシステム2は、観察ポイントNo.2における複数枚のスライス画像データを3次元画像データとして記憶媒体31に記憶する。
【0061】
以上のようにして指定された全ての観察ポイントNo.1〜No.3ごとの複数枚の3次元画像データがそれぞれ記憶媒体31に記憶される。これにより、これら3次元画像データをモニタ装置34に表示することにより、各観察ポイントNo.1〜No.3の観察が行なわれる。なお、この観察を第1回目の観察と称する。
【0062】
この後、予め設定されたインターバル時間が経過すると、再度、コンピュータシステム2は、上記同様に各観察ポイントNo.1〜No.3ごとに条件データを読み出し、この条件データを接続インターフェース23を介してレーザ走査型顕微鏡本体1のコントロールユニット22に設定する。これにより、コンピュータシステム2は、上記同様に各観察ポイントNo.1〜No.3におけるインターバル時間を経過した複数枚のスライス画像データを取得し、これらスライス画像データを3次元画像データとして記憶媒体31に記憶する。これにより、予め設定されたインターバル時間経過後における各観察ポイントNo.1〜No.3の観察が行なわれる。なお、この観察を第2回目の観察と称する。
【0063】
さらに、予め設定されたインターバル時間が経過すると、第3回目の観察が行なわれる。この第3回目の観察において、コンピュータシステム2の変化量検出部35は、記憶媒体31に記憶された各観察ポイントNo.1〜No.3の第1回目と第2回目との各観察における各3次元画像データを読み出す。
【0064】
次に、変化量検出部35は、各観察ポイントNo.1〜No.3ごとに第1回目と第2回目との各観察で取得された各3次元画像データ同士を比較し、この比較結果からインターバル時間の経過に伴う標本6のXY軸方向の位置ずれを検出する。
【0065】
ここで、標本6のXY軸方向の位置ずれ検出方法について具体的に説明する。
【0066】
各観察ポイントNo.1〜No.3ごとの第1回目と第2回目との各3次元画像データの取得が終了すると、変化量検出部35は、各観察ポイントNo.1〜No.3ごとに、それぞれ3次元画像データの各スライス画像データ毎に当該スライス画像データ中で最も輝度の高いピクセルを抽出する。例えば図3に示すように観察ポイントNo.1におけるZ軸方向の例えばZ位置、Z位置、Z位置における各スライス画像データD、D、D中の最も輝度の高い各ピクセル部分P、P、P、Pを抽出する。これらピクセル部分P、P、P、Pは、最も高い輝度であることから各Z位置、Z位置、Z位置においてそれぞれジャストフォーカスになっている。
【0067】
次に、変化量検出部35は、各ピクセル部分P、P、P、Pを合わせてXY軸方向のエクステンド画像データEを作成して記憶媒体31に記憶する。これにより、エクステンド画像データEからは、Z軸方向の全てのZ位置に対してフォーカスの合った画像データを取得できる。
【0068】
次に、変化量検出部35は、各観察ポイントNo.1〜No.3ごとに、第1回目と第2回目とで取得された各3次元画像データからそれぞれ第1回目と第2回目との各エクステンド画像データEを取得する。
【0069】
次に、変化量検出部35は、各観察ポイントNo.1〜No.3ごとに、第1回目と第2回目との各エクステンド画像データE同士を比較し、この比較結果から検出される例えば各ピクセル部分P、P、P、Pの画素単位のずれから標本6のXY軸方向の位置ずれを検出する。
【0070】
なお、標本6のXY軸方向の位置ずれの検出方法は、別の方法を用いてもよい。その一方法は、例えば、上記同様に観察ポイントにおける第1回目と第2回目との各観察の各エクステンド画像データEを取得する。
【0071】
次に、これらエクステンド画像データEをそれぞれ2値化する。
【0072】
次に、これら2値化した各エクステンド画像データEにおいてそれぞれ標本6中の観察対象の各重心位置を求める。
【0073】
次に、第1回目と第2回目との各観察の観察対象の各重心位置の位置変化を求め、これを標本6のXY軸方向の位置ずれとして検出する。
【0074】
さらに一方法は、例えば、上記同様に観察ポイントにおける第1回目と第2回目との各観察の各エクステンド画像データEを取得する。
【0075】
次に、これらエクステンド画像データEにおいてそれぞれ観察対象物のエッジを検出する。
【0076】
次に、これらエッジに対してパターン認識を行うことで、第1回目と第2回目との各観察の観察対象の位置変化を求め、これを標本6のXY軸方向の位置ずれとして検出する。
【0077】
次に、補正部36は、第3回目の観察において、各観察ポイントNo.1〜No.3の3次元画像データを取得するとき、変化量検出部35により検出された標本6のXY軸方向の位置ずれに基づいて電動ステージ5のXY軸方向の位置を補正する。
【0078】
ここで、電動ステージ5の位置補正について具体的に説明する。
【0079】
例えば観察ポイントNo.1における第1回目の観察時の電動ステージ5の位置は、例えば図4に示すように(XP1,YP1)である。なお、このステージ位置(XP1,YP1)は、第2回目の観察位置と同じである。
【0080】
第1回目と第2回目との各観察による標本6のXY軸方向の位置ずれが例えばΔX,ΔYの場合、観察ポイントNo.1に対する第3回目の観察の移動先は、例えば図5に示すように(XP1+ΔX,YP1+ΔY)にする。
【0081】
なお、XY軸方向の位置ずれΔX,ΔYは、第1回目と第2回目の各観察で取得された各エクステンド画像データE間における観察対象の移動量と、第1回目と第2回目の各観察での電動ステージ5の位置の差を含む。
【0082】
これにより、第n回目の観察での電動ステージ5の移動先は、図4に示すように(XP1+ΔX,YP1+ΔY)になる。なお、nは自然数である。ここで、ΔX,ΔYは、第1回目と第n−1回目の各観察で取得された各エクステンド画像データE及び電動ステージ5の位置によって求まる標本6中の観察対象の移動量になる。
【0083】
従って、補正部36は、第n回目の観察ポイントNo.1の観察において、電動ステージ5の移動先を(XP1+ΔX,YP1+ΔY)にする補正指令をコントロールユニット22に送出する。これにより、電動ステージ5は、
(XP1+ΔX,YP1+ΔY)の位置に移動する。
【0084】
標本を長時間観察する場合、時間経過によってレーザ走査型顕微鏡において例えば温度変化により顕微鏡本体に歪みを生じる。又、標本6は、時間経過に伴って位置を移動する。これにより、レーザ走査型顕微鏡は、電動ステーシ5のステージ位置を調整しなければ、同一位置の観察ポイントNo.1で標本6を観察できなくなる。
【0085】
これに対して補正部36は、電動ステージ5のステージ位置を補正するので、レーザ走査型顕微鏡は、第n回目、例えば第3回目の観察において、観察ポイントNo.1の観察対象の3次元画像データを確実に取得できる。
【0086】
なお、レーザ走査型顕微鏡は、電動ステージ5を移動させて各観察ポイントNo.1〜No.3の観察対象の3次元画像データを所定のインターバル時間毎に繰り返し取得する。このとき、補正部36は、各観察ポイントNo.1〜No.3への移動毎に電動ステージ5のステージ位置を補正する。この結果、レーザ走査型顕微鏡は、各観察ポイントNo.1〜No.3において観察対象の3次元画像データを確実に取得できる。
【0087】
なお、標本6のXY軸方向の位置ずれの補正方法は、別の方法を用いてもよい。その一方法は、標本6中の観察対象の位置ずれの変化量を考慮したものである。
【0088】
先ず、観察ポイントNo.1において、上記同様に第3回目の観察により標本6中の観察対象の位置ずれを求める。この位置ずれは、
例えば(ΔX,ΔY)である。
【0089】
次に、位置ずれ(ΔX,ΔY)と上記位置ずれ(ΔX,ΔY)との差分(ΔX−ΔX,ΔY−ΔY)を求める。
【0090】
次に、上記電動ステージ5の移動先(XP1+ΔX,YP1+ΔY)に
差分(ΔX−ΔX,ΔY−ΔY)を付加する。ここで、ΔX=ΔX
ΔY=ΔYとすれば、次の電動ステージ5の移動先は、
(XP1+2・ΔX−ΔX,YP1+2・ΔY−ΔY)になる。
【0091】
従って、第n回目の観察時の電動ステージ5の移動先は、
(XP1+2・ΔX−ΔXn−1,YP1+2・ΔY−ΔYn−1)になる。
【0092】
ここで、ΔX、ΔYは、第1回目と第n−1回目の各観察で取得された3次元画像データ及びこれら観察での電動ステージ5のステージ位置による観察対象の位置ずれを示す。又、ΔXn−1、ΔYn−1は、第1回目と第n−2回目の各観察で取得された3次元画像データ及びこれら観察での電動ステージ5のステージ位置による観察対象の位置ずれを示す。
【0093】
次に、標本6のZ軸方向の高さずれ、すわわちフォーカスずれの検出方法について具体的に説明する。
【0094】
先ず、変化量検出部35は、各観察ポイントNo.1〜No.3ごとに、それぞれの三次元画像データから任意のY軸位置からXZ切片画像を抽出する。これにより、変化量検出部35は、図7に示すようなZ切片画像データQを作成する。
【0095】
なお、このZ切片画像データQは、第1回目と第2回目の各観察ごとに作成される。これらZ切片画像データQは、記憶媒体31に記憶される。
【0096】
次に、変化量検出部35は、各観察ポイントNo.1〜No.3ごとに、第1回目と第2回目の各Z切片画像データQ同士を比較し、この比較結果から検出される例えば各ピクセル部分P、Pの画素単位のずれから標本6のZ軸方向のフォーカスずれを検出する。
【0097】
次に、補正部36は、第3回目の観察において、各観察ポイントNo.1〜No.3の3次元画像データを取得するとき、変化量検出部35により検出された標本6のZ軸方向のフォーカスずれに基づいて電動ステージ5のZ軸方向の位置を補正する。
【0098】
標本を長時間観察する場合、時間経過によって例えばレーザ走査型顕微鏡における温度変化により顕微鏡本体が歪む。これにより、レーザ走査型顕微鏡は、標本6に対するフォーカス位置が変化する。このため、レーザ走査型顕微鏡において観察開始時に決定したフォーカス位置を変えずに観察を続けると、観察の途中から標本6に対するフォーカス位置がずれてしまう。
【0099】
これに対して補正部36は、電動ステージ5のZ軸方向を補正するので、レーザ走査型顕微鏡は、第n回目、例えば第3回目の観察において、観察ポイントNo.1の観察対象に対するフォーカスの合った3次元画像データを確実に取得できる。
【0100】
なお、標本6のフォーカスずれの補正方法は、別の方法を用いてもよい。その一方法は、図6に示すようなエクステンド画像データEを作成するとき、最も高い輝度を有するピクセルのZ位置データを輝度に割り付けてエクステンド画像データを作成する。このとき、Z位置の低いピクセルの輝度を小さくすると共に、Z位置の高いピクセルの輝度を大きく割付ける。このZ位置データのエクステンド画像データは、第1回目と第2回目の各観察ごとに作成され、記憶媒体31に記憶される。
【0101】
これにより、第1回目と第2回目の各観察で取得された各エクステンド画像データにおける各観察対象の位置を比較することにより、標本6のXY軸方向の位置ずれが求められる。又、これらエクステンド画像データにおける輝度値すなわちZ位置データを比較することにより、標本6に対するフォーカスずれが求められる。
【0102】
この結果、電動ステージ5のZ軸方向を補正することにより、例えば第3回目の観察において、観察ポイントNo.1の観察対象に対するフォーカスの合った3次元画像データを確実に取得できる。
【0103】
このように上記第1の実施の形態においては、予め設定されたインターバル時間間隔で複数の観察ポイントNo.1〜No.3における例えば第1回目と第2回目の各観察で取得さたれ各3次元画像データの各エクステンド画像データEを作成し、これらエクステンド画像データEを比較して時間経過に伴う標本6のXY軸方向の位置ずれとZ軸方向のフォーカスずれとを検出し、これら位置ずれとフォーカスずれとに基づいて電動ステージ5のXY軸方向の位置又はZ軸方向の高さを補正する。
【0104】
従って、標本を長時間観察する場合、時間経過によってレーザ走査型顕微鏡において例えば温度変化により顕微鏡本体に歪みを生じたり、標本6が時間経過に伴って位置を移動したとしても、複数の観察ポイントNo.1〜No.3において標本6中の観察対象をレーザ走査型顕微鏡の視野内に確実に捉え続けることができる。又、時間経過によってレーザ走査型顕微鏡に例えば温度変化による顕微鏡本体の歪みが発生しても、複数の観察ポイントNo.1〜No.3において標本6に対するフォーカスを合わせ続けることができる。
【0105】
これにより、標本6の位置が時間経過に伴ってずれても、又標本6に対するフォーカスがずれたとしても、自動的に電動ステージ5をXY軸方向又はZ軸方向に補正できる。観察者は、標本6の長時間の観察中に非常に煩雑なステージ位置の調整作業をしなくてよい。
【0106】
この結果、例えば標本6として生きている細胞に対して様々な刺激を与え、この刺激に対する標本6の経時的な反応を観察することによって、標本6の3次元的な時間変化が観察できる。
【0107】
次に、本発明の第2の実施の形態について図面を参照して説明する。なお、図1と同一部分には同一符号を付してその詳しい説明は省略する。
【0108】
図8はレーザ走査型顕微鏡の構成図である。このレーザ走査型顕微鏡は、コンピュータシステム2に観察ポイント追加部37を有する。この観察ポイント追加部37は、変化量検出部35により検出された時間経過に伴う標本6のXY軸方向の位置ずれとZ軸方向のフォーカスずれとに基づいて標本6の形状が変化して3次元画像データの領域外に出たか否かを判断する。
【0109】
この判断の結果、標本6が3次元画像データの領域外に出たと判断すると、観察ポイント追加部37は、例えば図9に示すように複数の観察ポイントNo.1〜No.3、例えば観察ポイントNo.2に隣接して新たな観察ポイントNo.2−1を追加する。
【0110】
この観察ポイント追加部37は、例えば観察ポイントNo.2に隣接して新たな観察ポイントNo.2−1を1つ追加するに限らず、例えば観察ポイントNo.2に隣接して新たな複数の観察ポイントNo.2−1を追加したり、これら新たな各観察ポイントNo.2−1に隣接してそれぞれ新たな複数の観察ポイントNo.2−1を追加してもよい。
【0111】
次に、上記の如く構成された装置の動作について説明する。
【0112】
標本6は、例えば神経細胞6aである。この神経細胞6aは、時間経過に伴って形状が変化する。例えば図10に示すように観察ポイントNo.2において、神経細胞6aは、時間経過(時刻T1、T2、T3)に伴って形状を変化させる。これにより、神経細胞6aは、3次元画像データの領域から出てしまう。いわゆる観察対象である神経細胞6aの画像の欠けが生じる。
【0113】
このため、神経細胞6aを長時間観察する場合、複数の観察ポイントNo.1〜No.3におけるXY軸方向の位置ずれとZ軸方向のフォーカスずれとの調整では不十分になる。
【0114】
従って、先ず、変化量検出部36は、上記第1の実施の形態と同様に、予め設定されたインターバル時間間隔で複数の観察ポイントNo.1〜No.3における例えば第1回目と第2回目の各観察で取得さたれ各3次元画像データの各エクステンド画像データEを作成する。
【0115】
次に、観察ポイント追加部37は、変化量検出部35により作成した複数の観察ポイントNo.1〜No.3における第1回目と第2回目の各観察での各エクステンド画像データE上で神経細胞6aの画像に欠けが生じたか否かを判断する。
【0116】
この判断の結果、神経細胞6aの画像が例えば図10に示すように観察ポイントNo.2において時刻T3に欠けたと判断すると、観察ポイント追加部37は、神経細胞6aの画像の欠けた位置を判断する。
【0117】
次に、観察ポイント追加部37は、図9に示すように観察ポイントNo.2における神経細胞6aの画像の欠けた位置に隣接して新たな観察ポイントNo.2−1を追加する。
【0118】
この後、変化量検出部36は、上記第1の実施の形態と同様に、予め設定されたインターバル時間間隔で複数の観察ポイントNo.2−1における例えば第1回目と第2回目の各観察で取得さたれ各3次元画像データの各エクステンド画像データEを作成する。
【0119】
次に、変化量検出部36は、観察ポイントNo.2−1における例えば第1回目と第2回目での各エクステンド画像データEを比較して時間経過に伴う標本6のXY軸方向の位置ずれとZ軸方向のフォーカスずれとを検出する。
【0120】
次に、補正部37は、標本6のXY軸方向の位置ずれとZ軸方向のフォーカスずれとに基づいて電動ステージ5のXY軸方向の位置又はZ軸方向の高さを補正する。
【0121】
この結果、神経細胞6aの形状が時間経過に伴って変化しても、神経細胞6aの画像に欠けが生じることはない。これにより、時間経過に伴って形状が変化する神経細胞6aの画像データを取りこぼすことなく、神経細胞6aの全体の3次元画像データが確実に取得できる。従って、時間経過に伴って形状の変化する神経細胞6aを長時間観察しても、神経細胞6aの3次元的な時間変化が確実に観察できる。
【0122】
そのうえ観察ポイント追加部37は、例えば観察ポイントNo.2に隣接して新たな観察ポイントNo.2−1を1つ追加するに限らず、例えば観察ポイントNo.2に隣接して新たな複数の観察ポイントNo.2−1を追加したり、これら新たな各観察ポイントNo.2−1に隣接してそれぞれ新たな複数の観察ポイントNo.2−1を追加する。
【0123】
これにより、観察ポイント追加部37は、神経細胞6aの形状がXY平面内のあらゆる方向に変化しても、神経細胞6aの形状変化に追従して新たな観察ポイントNo.2−1を追加できる。
【0124】
なお、これら新たに追加した各観察ポイントNo.2−1に対しても、標本6のXY軸方向の位置ずれ及び標本6のZ軸方向のフォーカスずれを補正できることは言うまでもない。
【0125】
ここで、本発明のレーザ走査型顕微鏡における特徴とするところについて説明する。
【0126】
本発明は、標本6上の観察ポイントにおける3次元画像データを所定のインターバル時間毎に繰り返し取得するレーザ走査型顕微鏡を動作制御するのに、所定のインターバル時間毎に繰り返し取得された3次元画像データを保存する第1の工程と、この第1の工程により保存された3次元画像データのうち互いに画像取得に時間差のある各3次元画像データ同士を比較し、これら3次元画像データから時間経過に伴う標本6に関する変化量、例えば標本6のXY軸方向の位置ずれ又は標本6のZ軸方向のフォーカスずれのいずれか一方又は両方を検出する第2の工程と、標本6に関する上記変化量を検出した後に観察ポイントの3次元画像データを取得するとき、第2の工程により検出された変化量に基づいて標本6の位置を補正する第3の工程とを有することを特徴とするレーザ走査型顕微鏡の制御方法である。
【0127】
又、本発明のレーザ走査型顕微鏡の記憶媒体31に記憶されている制御プログラムは、所定のインターバル時間毎に繰り返し取得された3次元画像データを保存する第1のステップと、この第1のステップにより保存された3次元画像データのうち互いに画像取得に時間差のある各3次元画像データ同士を比較し、これら3次元画像データから時間経過に伴う標本6に関する変化量、例えば標本6のXY軸方向の位置ずれ又は標本6のZ軸方向のフォーカスずれのいずれか一方又は両方を検出する第2のステップと、標本6に関する上記変化量を検出した後に観察ポイントの3次元画像データを取得するとき、第2のステップにより検出された変化量に基づいて標本6の位置を補正する第3のステップとを有する。
【0128】
なお、本発明は、上記第1及び第2の実施の形態に限定されるものでなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。
【0129】
さらに、上記実施形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
【0130】
例えば、フォーカスずれの補正は、電動ステージ5をZ軸方向に調整するのに限らず、対物レンズ4をZ軸方向に上下移動させてもよい。
【0131】
又、標本6のXY軸方向の位置ずれ検出方法や標本6のZ軸方向のフォーカスずれの検出方法は、上記第1及び第2の実施の形態に記載した各方法に限らず、各種方法を用いてもよい。
【0132】
【発明の効果】
以上詳記したように本発明によれば、標本の観察中の調整作業を不要とすると共に、長時間に及ぶ観察でも確実に期待できる3次元画像データを取得できるレーザ走査型顕微鏡を提供できる。
【図面の簡単な説明】
【図1】本発明に係わるレーザ走査型顕微鏡の第1の実施の形態を示す構成図。
【図2】標本上に決定された複数の観察ポイントの例を示す図。
【図3】本発明に係わるレーザ走査型顕微鏡の第1の実施の形態における変化量検出部により抽出された各スライス画像データ中の最も輝度の高いピクセル部分を示す模式図。
【図4】本発明に係わるレーザ走査型顕微鏡の第1の実施の形態における電動ステージ5の位置補正方法を説明するための図。
【図5】観察ポイントの移動先の一例をしめす図。
【図6】本発明に係わるレーザ走査型顕微鏡の第1の実施の形態におけるエクステンド画像データからのZ切片画像の抽出位置を示す模式図。
【図7】Z切片画像データの模式図。
【図8】本発明に係わるレーザ走査型顕微鏡の第2の実施の形態を示す構成図。
【図9】本発明に係わるレーザ走査型顕微鏡の第2の実施の形態における新たな観察ポイントの追加を示す図。
【図10】神経細胞の時間経過に伴う形状変化による神経細胞の画像の欠けを示す模式図。
【図11】本発明に係わるレーザ走査型顕微鏡の第2の実施の形態における新たな観察ポイントでの3次元画像データを示す模式図。
【符号の説明】
1:レーザ走査型顕微鏡本体
2:コンピュータシステム
3:顕微鏡筐体
4:対物レンズ
5:電動ステージ
6:標本
6a:神経細胞
7〜9:レーザ光源
10,11:合成用ダイクロイックミラー
12,13,19:ミラー
14,16:分光フィルタ
15:走査ユニット
17:バリアフィルタ
18:光検出器
20:バリアフィルタ
21:光検出器
22:コントロールユニット
23:接続インターフェース
30:CPU
31:記憶媒体
32:キーボード
33:マウス
34:モニタ装置
35:変化量検出部
36:補正部
37:観察ポイント追加部

Claims (5)

  1. 標本上の観察ポイントにおける3次元画像データを所定時間毎に繰り返し取得するレーザ走査型顕微鏡において、
    前記所定時間毎に繰り返し取得された前記3次元画像データを保存する画像保存手段と、
    この画像保存手段に保存された前記3次元画像データのうち互いに画像取得に時間差のある前記各3次元画像データ同士を比較し、これら3次元画像データから時間経過に伴う前記標本に関する変化量を検出する変化量検出手段と、
    前記標本に関する前記変化量を検出した後に前記観察ポイントの3次元画像データを取得するとき、前記変化量検出手段により検出された前記変化量に基づいて前記標本の位置を補正する補正手段と、
    を具備したことを特徴とするレーザ走査型顕微鏡。
  2. 前記変化量検出手段は、前記標本のXY平面上の位置ずれ又はZ方向のフォーカスずれのいずれか一方又は両方を検出し、
    前記補正手段は、前記標本のXY平面上の位置ずれ又はZ方向のフォーカスずれのいずれか一方又は両方に基づいて前記ステージを前記XY方向又はZ方向のいずれか一方又は両方に補正することを特徴とする請求項1記載のレーザ走査型顕微鏡。
  3. 前記変化量検出手段により検出された前記変化量に基づいて前記標本の形状が変化して前記画像データの領域外に出たと判断すると、前記観察ポイントに隣接して新たな観察ポイントを追加する観察ポイント追加手段を具備したことを特徴とする請求項1記載のレーザ走査型顕微鏡。
  4. 前記観察ポイント追加手段は、前記新たな観察ポイントを複数追加することを特徴とする請求項3記載のレーザ走査型顕微鏡。
  5. 前記標本上の複数の前記観察ポイントに対する前記ステージの各ステージ位置を記憶する記憶手段を有し、
    前記補正手段は、前記ステージを移動して任意の前記観察ポイントの3次元画像データを取得するときに、前記標本のXY平面上の位置ずれ又はZ方向のフォーカスずれのいずれか一方又は両方に基づいて前記記憶手段に記憶されている前記観察ポイントの前記ステージ位置を補正することを特徴とする請求項1記載のレーザ走査型顕微鏡。
JP2002362466A 2002-12-13 2002-12-13 レーザ走査型顕微鏡 Expired - Fee Related JP4350365B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362466A JP4350365B2 (ja) 2002-12-13 2002-12-13 レーザ走査型顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362466A JP4350365B2 (ja) 2002-12-13 2002-12-13 レーザ走査型顕微鏡

Publications (2)

Publication Number Publication Date
JP2004191846A true JP2004191846A (ja) 2004-07-08
JP4350365B2 JP4350365B2 (ja) 2009-10-21

Family

ID=32760904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362466A Expired - Fee Related JP4350365B2 (ja) 2002-12-13 2002-12-13 レーザ走査型顕微鏡

Country Status (1)

Country Link
JP (1) JP4350365B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350005A (ja) * 2005-06-16 2006-12-28 Yokogawa Electric Corp 共焦点顕微鏡システム
JP2006350004A (ja) * 2005-06-16 2006-12-28 Yokogawa Electric Corp 共焦点顕微鏡システム
KR100998716B1 (ko) 2009-04-01 2010-12-07 한국기초과학지원연구원 현미경 영상정보 자동화 시스템 처리방법
JP2013061433A (ja) * 2011-09-12 2013-04-04 Olympus Corp タイムラプス観察方法、及び、それに用いられるタイムラプス観察装置
CN103728304A (zh) * 2013-12-18 2014-04-16 宁波江丰生物信息技术有限公司 一种用于病理切片扫描仪的对焦方法
JP2018033410A (ja) * 2016-09-01 2018-03-08 憲治 杉本 細胞観察装置
JP2020134227A (ja) * 2019-02-15 2020-08-31 日本分光株式会社 位置補正機能を有する顕微分光装置
JP2020134228A (ja) * 2019-02-15 2020-08-31 日本分光株式会社 自動サンプル検出機能を有する顕微分光装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350005A (ja) * 2005-06-16 2006-12-28 Yokogawa Electric Corp 共焦点顕微鏡システム
JP2006350004A (ja) * 2005-06-16 2006-12-28 Yokogawa Electric Corp 共焦点顕微鏡システム
KR100998716B1 (ko) 2009-04-01 2010-12-07 한국기초과학지원연구원 현미경 영상정보 자동화 시스템 처리방법
JP2013061433A (ja) * 2011-09-12 2013-04-04 Olympus Corp タイムラプス観察方法、及び、それに用いられるタイムラプス観察装置
CN103728304A (zh) * 2013-12-18 2014-04-16 宁波江丰生物信息技术有限公司 一种用于病理切片扫描仪的对焦方法
JP2018033410A (ja) * 2016-09-01 2018-03-08 憲治 杉本 細胞観察装置
JP2020134227A (ja) * 2019-02-15 2020-08-31 日本分光株式会社 位置補正機能を有する顕微分光装置
JP2020134228A (ja) * 2019-02-15 2020-08-31 日本分光株式会社 自動サンプル検出機能を有する顕微分光装置
JP7246073B2 (ja) 2019-02-15 2023-03-27 日本分光株式会社 位置補正機能を有する顕微分光装置
US11635605B2 (en) 2019-02-15 2023-04-25 Jasco Corporation Microspectroscope having position correction function
JP7265248B2 (ja) 2019-02-15 2023-04-26 日本分光株式会社 自動サンプル検出機能を有する顕微分光装置

Also Published As

Publication number Publication date
JP4350365B2 (ja) 2009-10-21

Similar Documents

Publication Publication Date Title
US7253420B2 (en) Scanning microscope system
US7355702B2 (en) Confocal observation system
EP1681589B1 (en) Scanning microscope and specimen image obtaining method
EP2322969A1 (en) Microscope device
JP4700299B2 (ja) 共焦点走査型顕微鏡
JP3634343B2 (ja) デジタル制御走査方法および装置
JP2006504140A (ja) ランダムアクセス高速度共焦点顕微鏡
JP2010286566A (ja) レーザ走査型蛍光顕微鏡および蛍光観察方法
EP1882967B1 (en) Scanning examination apparatus
JP4350365B2 (ja) レーザ走査型顕微鏡
JP6832093B2 (ja) 顕微鏡システム
JP2010286565A (ja) 蛍光観察装置
US6680796B2 (en) Microscope assemblage
JPH1152252A (ja) 蛍光顕微鏡
JP2000305021A (ja) 共焦点顕微鏡
JPH11326778A (ja) 顕微鏡画像観察装置
JP4885439B2 (ja) カラー画像取得方法及び共焦点レーザ顕微鏡
JP4398183B2 (ja) 共焦点顕微鏡
JP2006003805A (ja) 共焦点観察システム、光照射方法、及び光照射プログラム
JPH1138324A (ja) レーザ走査顕微鏡
JP2006106346A (ja) 顕微鏡システム
JP2005345764A (ja) 走査型光学装置
JP6128862B2 (ja) 顕微鏡装置および顕微鏡システム
JP2004177732A (ja) 光学測定装置
JP2005351703A (ja) 走査型レーザ顕微鏡および検出波長範囲設定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees