WO2000040775A2 - Verfahren zur beschichtung von reaktoren für die hochdruckpolymerisation von 1-olefinen - Google Patents

Verfahren zur beschichtung von reaktoren für die hochdruckpolymerisation von 1-olefinen Download PDF

Info

Publication number
WO2000040775A2
WO2000040775A2 PCT/EP1999/010372 EP9910372W WO0040775A2 WO 2000040775 A2 WO2000040775 A2 WO 2000040775A2 EP 9910372 W EP9910372 W EP 9910372W WO 0040775 A2 WO0040775 A2 WO 0040775A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
reactor
nickel
thickness
Prior art date
Application number
PCT/EP1999/010372
Other languages
English (en)
French (fr)
Other versions
WO2000040775A3 (de
Inventor
Stephan Hüffer
Andreas Deckers
Wilhelm Weber
Roger Klimesch
Dieter Littmann
Jürgen STURM
Götz LERCH
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US09/869,147 priority Critical patent/US6509103B1/en
Priority to AT99965554T priority patent/ATE245210T1/de
Priority to KR1020017008309A priority patent/KR20010100009A/ko
Priority to EP99965554A priority patent/EP1144725B1/de
Priority to DE59906313T priority patent/DE59906313D1/de
Priority to CA002358099A priority patent/CA2358099A1/en
Priority to JP2000592467A priority patent/JP2002534606A/ja
Publication of WO2000040775A2 publication Critical patent/WO2000040775A2/de
Publication of WO2000040775A3 publication Critical patent/WO2000040775A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1614Process or apparatus coating on selected surface areas plating on one side
    • C23C18/1616Process or apparatus coating on selected surface areas plating on one side interior or inner surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a method for coating reactors for the high-pressure polymerization of 1-olefins. Furthermore, this invention relates to reactors and high-pressure reactor systems for the polymerization or copolymerization of 1-olefins, in particular ethylene, containing the reactors coated according to the invention, and to a process for producing ethylene homo- and copolymers in the reactors according to the invention.
  • High-pressure ethylene is a large-scale industrial process. In this process, pressures above 500 bar and temperatures of 150 ° C and higher are used. The process is generally carried out in high-pressure autoclaves or in tubular reactors. High-pressure autoclaves are known in so-called compact or elongated embodiments. The well-known tubular reactors (Ulimann's Encyclopedia of Technical Chemistry, Volume 19, p. 169 and p. 173 ff (1980), Verlag Chemie Weinheim, Deerfield Beach, Basel) are characterized by simple handling and low maintenance and are different from stirred autoclaves advantageous. The sales achievable in the above mentioned devices are limited.
  • the limitation is the polymerization temperature and the polymerization pressure, which have a specific upper limit depending on the product type. For low-density LDPE waxes and LDPE polymers, this upper limit is approx. 330 ° C; Above this, spontaneous decomposition of ethylene can occur. Below a temperature of 150 ° C there can be problems with heat dissipation. Furthermore, the pressure loss that occurs is limiting; this pressure loss increases with falling temperature.
  • a cooling medium generally water
  • the temperature of the cooling medium is very important. At cooling medium temperatures below 150 ° C, a laminar layer of polyethylene can form, which acts as an insulator and can drastically reduce heat dissipation. If the temperature of the cooling medium is too high selected, the temperature difference between the reaction medium and the cooling medium is too small, which also leads to unsatisfactory heat transfer numbers (see, for example, E. Fitzer, W. Fritz, Chemische Christstechnik, 2nd edition, page 152 ff., 5 Springer Verlag Heidelberg, 1982) .
  • 25 reactors are usually of high molecular weight, which can be seen macroscopically in the formation of so-called specks.
  • Material containing specks has less good mechanical properties, however, since it forms predetermined cracks in the material at which material failure occurs, and is also disadvantageous in terms of the visual impression.
  • PTFE polytetrafluoroethylene
  • a method for coating a reactor has now been found, characterized in that a metal layer or a metal-polymer dispersion layer is electrolessly deposited on the inside of the reactor of a reactor for the high-pressure polymerization of ethylene by the surfaces being coated with a metal -electro- lyt solution contacted, which in addition to the metal electrolyte contains a reducing agent and optionally a halogenated polymer to be separated in dispersed form.
  • reactors coated according to the invention for the high-pressure polymerization of ethylene were found.
  • the reactors according to the invention were used for the high-pressure polymerization of ethylene and a process for the high-pressure polymerization of ethylene was found.
  • reactors coated with an anti-adhesive metal coating or metal-polymer dispersion layer enable a significantly improved conversion compared to non-coated reactors.
  • This inventive solution to the problem is based on a method for electroless chemical deposition of metal layers or metal-polymer dispersion phases, which is known per se (W. Riedel: Functional Nickel Plating, Verlag Eugen Leize, Saulgau, 1989, pages 231 to 236, ISBN 3 -750480-044-x).
  • the deposition of the metal layer or the metal-polymer dispersion phases serves to coat the inner walls of the high-pressure reactor known per se.
  • the metal layer to be deposited by the method according to the invention comprises an alloy or alloy-like mixed phase composed of a metal and at least one further element.
  • the metal-polymer dispersion phases according to the invention additionally comprise a polymer, in the context of the invention a halogenated polymer, which is present in the metal layer is dispersed.
  • the metal alloy is preferably a metal-boron alloy or a metal-phosphorus alloy with a boron or phosphorus content of 0.5 to 15% by weight.
  • a particularly preferred embodiment of the coatings according to the invention is a so-called “chemical nickel system”, that is to say phosphorus-containing nickel alloys with a phosphorus content of 0.5 to 15% by weight; particularly preferred are high phosphorus-containing nickel alloys with 5 to 12% by weight.
  • chemical or autocatalytic deposition of metal phosphorus or metal boron does not provide the electrons required for this through an external power source, but rather through chemical conversion in the electrolyte itself (oxidation of a reducing agent).
  • the coating is carried out, for example, by immersing the workpiece in a metal electrolyte solution which has been mixed beforehand with a stabilized polymer dispersion.
  • metal electrolyte solutions are usually used as metal electrolyte solutions, to which the following components are added in addition to the electrolyte: a reducing agent such as a hypophosphite or boranate (for example NaBH 4 ), a buffer mixture for adjusting the pH Wert, an alkali metal fluoride such as NaF, KF or LiF, carboxylic acids and a deposition moderator such as Pb 2+ .
  • a reducing agent such as a hypophosphite or boranate (for example NaBH 4 )
  • a buffer mixture for adjusting the pH Wert for example NaBH 4
  • an alkali metal fluoride such as NaF, KF or LiF
  • carboxylic acids carboxylic acids
  • a deposition moderator such as Pb 2+
  • Ni 2+ , hypophosphite, carboxylic acids and fluoride and, if appropriate, deposition moderators such as Pb 2+ are particularly preferably used.
  • Such solutions are sold, for example, by Riedel, Galvano- und Filtertechnik GmbH, Halle, Westphalia and Atotech GmbH, Berlin.
  • Particularly preferred are solutions which have a pH around 5 and about 27 g / 1 NiS0-6 H 2 0 and about 21 g / 1 NaH 2 P ⁇ 2 -H 2 0 with a PTFE content of 1 to 25 g / 1 included.
  • the optionally used halogenated polymer of the process according to the invention is preferably fluorinated.
  • suitable fluorinated polymers are polytetrafluoroethylene, perfluoroalkoxy polymers (PFA, for example with C - to C 8 -alkoxy units),
  • PTFE dispersions polytetrafluorethylene dispersions
  • PTFE dispersions with a solids content of 35 to 60% by weight and an average particle diameter of 0.05 to 1.2 ⁇ m, in particular 0.1 to 0.3 ⁇ m, are preferably used.
  • Spherical particles are preferably used because the use of spherical particles leads to very homogeneous composite layers. The advantage of using spherical particles is faster layer growth and better, in particular longer, thermal stability of the baths, both of which offer economic advantages. This can be seen particularly clearly in comparison to systems using irregular polymer particles which are obtained by grinding the corresponding polymer.
  • the dispersions used can be a nonionic detergent (for example polyglycols, alkylphenol ethoxylate or, if appropriate, mixtures of the substances mentioned, 80 to 120 g of neutral detergent per liter) or an ionic detergent (for example alkyl and haloalkylsulfonates, alkylbenzenesulfonates, Alkylphenol ether sulfates, tetraalkylammonium salts or optionally mixtures of the substances mentioned, 15 to 60 g of ionic detergent per liter) to stabilize the dispersion.
  • a nonionic detergent for example polyglycols, alkylphenol ethoxylate or, if appropriate, mixtures of the substances mentioned, 80 to 120 g of neutral detergent per liter
  • an ionic detergent for example alkyl and haloalkylsulfonates, alkylbenzenesulfonates, Alkylphenol ether sulfates, tetraalkylam
  • Coating is carried out at a slightly elevated temperature which, however, must not be so high that the dispersion is destabilized. Temperatures of 40 to 95 ° C have proven to be suitable. Temperatures of 80 to 91 ° C. are preferred and 88 ° C. is particularly preferred.
  • Deposition rates of 1 to 15 ⁇ m / h have proven to be useful.
  • the deposition speed can be influenced as follows by the composition of the immersion baths:
  • the deposition rate is increased by higher temperatures, there being a maximum temperature which is limited, for example, by the stability of the optionally added polymer dispersion.
  • the separation speed is reduced by lower temperatures.
  • the deposition rate is increased by higher electrolyte concentrations and reduced by lower ones; where concentrations of 1 g / 1 to 20 g / 1 Ni 2+ are useful, concentrations of 4 g / 1 to 10 g / 1 are preferred; for Cu 2+ 1 g / 1 to 50 g / 1 are advisable.
  • the deposition rate can also be increased by higher concentrations of reducing agent;
  • the rate of separation can be increased by increasing the pH. It is preferred to set a pH between 3 and 6, particularly preferably between 4 and 5.5.
  • activators such as alkali fluorides, for example NaF or KF, increases the rate of separation.
  • the polymer content of the dispersion coating is mainly influenced by the amount of polymer dispersion added and the choice of detergents.
  • the concentration of the polymer plays the greater role here; high polymer concentrations of
  • Immersion baths lead to a disproportionately high proportion of polymer in the metal-phosphorus-polymer dispersion layer or metal-boron-polymer dispersion layer.
  • the surfaces treated according to the invention enable good heat transfer, although the coatings can have a not inconsiderable thickness of 1 to 100 ⁇ m. 3 to 20 ⁇ m, in particular 5 to 16 ⁇ m, are preferred.
  • the polymer content of the dispersion coating is 5 to 30% by volume, preferably 15 to 25% by volume, and 19 to 21% by volume is particularly preferred.
  • the surfaces treated according to the invention also have excellent durability.
  • the tempering period is generally 5 minutes to 3 hours, preferably 35 to 60 minutes.
  • Another object of the present invention is a method for producing a coated reactor which has a particularly adhesive, durable and heat-resistant coating and therefore achieves the object of the invention in a special way.
  • This method is characterized in that a 1 to 15 ⁇ m, preferably 1 to 5 ⁇ m thick, metal-phosphor layer is additionally applied by electroless chemical deposition before the metal-polymer dispersion layer is applied.
  • the electroless chemical application of a 1 to 15 ⁇ m thick metal-phosphor layer to improve the adhesion is again carried out using metal electrolyte baths, to which, however, no stabilized polymer dispersion is added in this case.
  • metal electrolyte baths to which, however, no stabilized polymer dispersion is added in this case.
  • For tempering is preferably dispensed with at this time, since this generally has a negative effect on the adhesiveness of the subsequent metal-polymer dispersion layer.
  • the workpiece is placed in a second immersion bath which, in addition to the metal electrolyte, also comprises a stabilized polymer dispersion. This forms the metal-polymer dispersion layer.
  • Annealing is then preferably carried out at 100 to 450 ° C., in particular at 315 to 400 ° C.
  • the annealing time is generally 5 minutes to 3 hours, preferably 35 to 45 minutes.
  • tubular reactors are used as reactors for the high-pressure polymerization of ethylene, tubular reactors being preferred.
  • Tubular reactors can be coated particularly well by a preferred variant of the process according to the invention, by pumping the metal-electrolyte solution or the metal-electrolyte-polymer dispersion mixture through the reactor to be coated.
  • the coated tubes according to the invention can be easily installed in polymerization plants for high-pressure polymerization and non-coated tubes can be replaced in the process.
  • the ethylene polymerization in the plants according to the invention which contain the tubes according to the invention, usually takes place at temperatures from 400 to 6000 bar, preferably from 500 to 5000 bar and particularly preferably 1000 to 3500 bar.
  • the reaction temperature is 150 to 450 ° C, preferably 160 to 250 ° C.
  • Ethylene is particularly suitable as a monomer in the polymerization process according to the invention. It is also possible to prepare copolymers with ethylene, in principle all olefins which can be copolymerized with ethylene by free radicals are suitable as comonomers. Are preferred
  • 1-olefins such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and 1-decene,
  • Acrylates such as acrylic acid, acrylic acid methyl ester, acrylic acid ethyl ester, acrylic acid n-butyl ester or acrylic acid tert. -butyl ester; Methacrylic acid, methacrylic acid methyl ester, methyl methacrylate, methacrylic acid n-butyl ester or methacrylic acid ester. -butyl ester;
  • Vinyl carboxylates vinyl acetate being particularly preferred
  • Unsaturated dicarboxylic acid derivatives maleic anhydride and maleic alkylimides such as maleic acid methylimide are particularly preferred.
  • Hydrogen, aliphatic aldehydes, ketones, CH-acidic compounds such as mercaptans or alcohols, olefins and alkanes are suitable as molecular weight regulators.
  • the polymerization can be started with oxygen-containing gases such as air, but also with organic peroxo compounds or with organic azo compounds such as AIBN (azobisisobutyronitrile).
  • organic peroxo compounds are preferred, with benzoyl peroxide and di-tert-butyl peroxide being particularly preferred.
  • the polymers of ethylene produced by the process according to the invention can have very different molar masses depending on the reaction conditions.
  • Preferred molar masses M w are between 500 and 600,000 g.
  • the low number of specks which is usually specified in the form of a speck grade, is particularly advantageous in the ethylene polymers prepared according to the invention, a low speck grade usually corresponding to a low number of specks.
  • the polymers produced according to the invention are particularly suitable for the production of moldings and flat structures, such as films or bags.
  • the removed reactor tube (length 150 m, diameter 15 mm) was contacted at a temperature of 88 ° C with an aqueous Nikkeisalzates, the solution the following Composition had: 27 g / 1 NiS0 4 -6 H 2 0, 21 g / 1 NaH 2 P0-2 H 2 0, lactic acid CH 3 CHOHC0 2 H 20 g / 1, propionic acid C 2 H 5 C0 2 H 3 g / 1, Na citrate 5 g / 1, NaF 1 g / 1 (Note: Electroless nickel electrolyte solutions of this and other concentrations are commercially available, for example from Riedel Galvano- und Filtertechnik GmbH, Halle, Westphalia; or from Atotech Kunststoff GmbH, Berlin) ) .
  • the pH was 4.8. To achieve uniform layer thicknesses, the solution was pumped through the pipe at a flow rate of 0.1 m / s. At a deposition speed of 12 ⁇ m / h, the process is finished after 75 min. The layer thickness achieved was 16 ⁇ m. The coated tube was then rinsed with water, dried and annealed at 400 ° C. for one hour.
  • the removed reactor tube (length 150 m, diameter 15 mm) was contacted at a temperature of 88 ° C. with an aqueous nickel salt solution, the solution having the following composition: 27 g / 1
  • the pH was 4.8.
  • the solution was pumped through the pipe at a flow rate of 0.1 m / s. At a deposition rate of 12 ⁇ m / h, 25 min. worked to get the achieved layer thickness of 5 microns.
  • the nickel salt solution was then additionally mixed with 1% by volume of a PTFE dispersion with a density of 1.5 g / ml.
  • This PTFE dispersion contained 50% by weight solids.
  • the process was finished in two hours (layer thickness 16 ⁇ m).
  • the coated tube was rinsed with water, dried and annealed at 350 ° C for one hour.
  • the polymerization was carried out in a reactor of 400 m in total. A detailed description of the reactor and the polymerization conditions can be found in DE-A 40 10 271. The reactor was divided into 3 zones; at the beginning of each zone was initiated with peroxide solution. The dimensions of the zones are shown in Table 1.
  • the speck mark was determined using an automatic in-line measuring device (Brabender, Duisburg, "Autographers"). For this purpose, a small part of the polymer melt was shaped into a film using an approx. 10 cm wide slot die at 200 ° C., the thickness of which was approx. 0.5 mm. The number of specks was determined using a video camera and an automatic counting device. The number was then classified in the speck grade.
  • zone number 1 was coated according to the invention and the corresponding experiments were carried out. The results are shown in Table 2. It is to be expected that coating the other zones will lead to a further increase in sales.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemically Coating (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Polymerisation Methods In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Paints Or Removers (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Laminated Bodies (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Verfahren zur Beschichtung eines Reaktors, dadurch gekennzeichnet, dass man eine Metallschicht oder eine Metall-Polymer-Dispersionsschicht auf der Reaktorinnenfläche stromlos abscheidet, indem man die Flächen mit einer Metall-Elektrolytlösung kontaktiert, die neben dem Metall-Elektrolyten ein Reduktionsmittel sowie optional ein abzuscheidendes halogeniertes Polymer in dispergierter Form enthält.

Description

Verfahren zur Beschichtung von Reaktoren für die Hochdruckpolymerisation von l-01efinen
Beschreibung
Die Erfindung betrifft ein Verfahren zur Beschichtung von Reaktoren für die Hochdruckpolymerisation von 1-Olefinen. Weiterhin betrifft diese Erfindung Reaktoren und Hochdruckreaktoranlagen zur Polymerisation oder Copolymerisation von 1-Olefinen insbesondere Ethylen, enthaltend die erfindungsgemäß beschichteten Reaktoren, sowie ein Verfahren zur Herstellung von Ethylen-Homo- und Copolymerisaten in den erfindungsgemäßen Reaktoren.
Die Herstellung von Homopolymerisäten und Copolymerisaten des
Ethylens im Hochdruckverfahren ist ein industriell in großem Maßstab durchgeführter Prozess. In diesen Verfahren werden Drücke oberhalb von 500 bar und Temperaturen von 150°C und höher verwendet. Das Verfahren wird generell in Hochdruckautoklaven oder in Rohrreaktoren durchgeführt. Hochdruckautoklaven sind in sogenannten gedrungenen oder langgestreckten Ausführungsformen bekannt. Die bekannten Rohrreaktoren (Ulimanns Encyclopädie der technischen Chemie, Band 19, S. 169 und S. 173 ff (1980), Verlag Chemie Weinheim, Deerfield Beach, Basel) zeichnen sich durch ein- fache Handhabung und geringe Wartung aus und sind gegenüber gerührten Autoklaven von Vorteil. Die in den oben genannten Apparaturen erreichbaren Umsätze sind begrenzt.
Um die Kapazität der vorhandenen Apparaturen zu erhöhen, ist man bestrebt, möglichst hohe Umsätze zu verwirklichen. Limitierend sind jedoch Polymerisationstemperatur und Polymerisationsdruck, die je nach Produkttyp eine spezifische Obergrenze haben. Für niederdichte LDPE-Wachse und LDPE-Polymere beträgt diese Ober- grenze ca. 330°C; oberhalb davon kann es zu spontanen Ethylen-Zer- Setzungen kommen. Unterhalb einer Temperatur von 150°C kann es zu Wärmeabfuhrproblemen kommen. Weiterhin ist der auftretende Druckverlust limitierend; dieser Druckverlust nimmt mit sinkender Temperatur zu .
Entscheidend für den Betrieb eines Rohrreaktors zur Ethylenpoly- merisation ist eine gute Wärmeabfuhr. Diese Wärmeabfuhr erfolgt vorzugsweise durch Mantelkühlung. Dabei wird ein Kühlmedium, im Allgemeinen Wasser, durch den sogenannten Kühlkreis geführt. Die Temperatur des Kühlmediums ist von großer Bedeutung. Bei Kühlme- diumstemperaturen unter 150°C kann sich eine laminare Schicht aus Polyethylen bilden, die als Isolator wirken und die Wärmeabfuhr drastisch senken kann. Ist die Temperatur des Kühlmediums zu hoch gewählt, so ist die Temperaturdifferenz zwischen Reaktionsmedium und Kühlmedium zu gering, was ebenfalls zu unbefriedigenden Wärmedurchgangszahlen führt (vgl. beispielsweise E. Fitzer, W. Fritz, Chemische Reaktionstechnik, 2. Auflage, Seite 152 ff., 5 Springer Verlag Heidelberg, 1982) .
In der Praxis wird jedoch auch bei Temperaturen über 150°C eine langsam strömende Schicht aus Polyethylen beobachtet, die zu einer Verminderung der Wärmeabfuhr führt. Eine Methode, das Ent-
10 stehen dieser Schicht zu behindern, besteht im sogenannten "Reizen". (EP-B 0 567 818, S. 3 , Zeile 6 ff.) Durch periodische Druckabsenkung wird die Strömungsgeschwindigkeit drastisch erhöht und die laminaren Schichten kurzzeitig beseitigt. Durch die periodische Druckabsenkung wird jedoch der mittlere Druck während
15 des Betriebs gesenkt, was die Dichte des Ethylens absenkt und somit Umsatz und Molekulargewicht der Produkts verringert. Außerdem verursacht die periodische Druckabsenkung eine erhebliche mechanische Belastung in der Apparatur, was zu erhöhten Reparaturkosten führt und somit wirtschaftliche Nachteile bringt.
20
Die Ausbildung von laminaren Grenzschichten in Rohrreaktoren oder auch gerührten Autoklaven zur Ethylenpolymerisation hat auch nachteilige Folgen für die Qualität der Ethylenpolymerisate . Dasjenige Material mit einer deutlich längeren Verweilzeit in den
25 Reaktoren ist meistens hochmolekular, was sich makroskopisch in der Bildung sogenannter Stippen bemerkbar macht. Stippenhaltiges Material hat aber weniger gute mechanische Eigenschaften, da es im Material Sollrissstellen bildet, an denen ein Materialversagen stattfindet, und ist auch vom optischen Eindruck nachteilig.
30
Versuche, die Rohre mit PTFE (Polytetrafluorethylen) zu beschichten, führten nicht zum Erfolg. Zwar bietet sich PTFE als hitzebeständiges, mit Polyethylen unverträgliches Material an, jedoch wirkt es auch in dünnen Schichten als Isolator und verschlechtert
35 den Wärmeübergang. Ähnliche Probleme werden auch bei Verfahren beobachtet, die die Aufbringung von Monolayer-Silanschichten auf die zu schützende Oberfläche umfassen (Polymer Mater. Sei. and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering (1990), Band 62, Seiten 259. bis
40 263) .
45 Es bestand also die Aufgabe,
ein Verfahren bereitzustellen, durch das der Umsatz in Reaktoren insbesondere zur Hochdruckpolymerisation von Ethylen verbessert werden konnte, wobei dieses Verfahren auf der Beschichtung der Reaktoren beruhen sollte;
entsprechend behandelte Reaktoren bereitzustellen,
- diese Reaktoren zum Bau von Hochdruckreaktoren zu nutzen sowie
in den erfindungsgemäßen Reaktoren Polymerisate von 1-Olefinen herzustellen.
Es wurde nun ein Verfahren zur Beschichtung eines Reaktors gefunden, dadurch gekennzeichnet, dass man eine Metallschicht oder eine Metall -Polymer -Dispersionsschicht auf der Reaktorinnenfläche eines Reaktors für die Hochdruckpolymerisation von Ethylen strom- los abscheidet, indem man die Flächen mit einer Metall -Elektro- lytlösung kontaktiert, die neben dem Metall -Elektrolyten ein Reduktionsmittel sowie optional ein abzuscheidendes halogeniertes Polymer in dispergierter Form enthält. Weiterhin wurden erfindungsgemäß beschichtete Reaktoren für die Hochdruckpoly- merisation von Ethylen gefunden. Schließlich wurden die erfindungsgemäßen Reaktoren für die Hochdruckpolymerisation von Ethylen verwendet und ein Verfahren zur Hochdruckpolymerisation von Ethylen gefunden.
Die mit einer antiadhasiven Metall-Beschichtung oder Metall-Polymer-Dispersionsschicht beschichteten Reaktoren ermöglichen einen deutlich verbesserten Umsatz im Vergleich zu nicht beschichteten Reaktoren.
Dieser erfindungsgemäßen Lösung der Aufgabe liegt ein Verfahren zur stromlosen chemischen Abscheidung von Metallschichten oder Metall-Polymer-Dispersionsphasen zugrunde, das an sich bekannt ist (W. Riedel: Funktionelle Vernickelung, Verlag Eugen Leize, Saulgau, 1989, Seite 231 bis 236, ISBN 3-750480-044-x) . Die Abscheidung der Metallschicht oder der Metall-Polymer-Dispersionsphasen dient zur Beschichtung der Innenwände des an sich bekannten Hochdruckreaktors. Die nach dem erfindungsgemäßen Verfahren abzuscheidende Metallschicht umfasst eine Legierung oder legierungsähnliche Mischphase aus einem Metall und mindestens einem weiteren Element. Die erfindungsgemäßen Metall-Polymer-Dispersionsphasen umfassen zusätzlich ein Polymer, im Rahmen der Erfindung ein halogeniertes Polymer, das in der Metall-Schicht dispergiert ist. Bei der Metall-Legierung handelt es sich bevorzugt um eine Metall-Bor-Legierung oder um eine Metall-Phosphor- Legierung mit einem Bor- bzw. Phosphor-Gehalt von 0,5 bis 15 Gew. -%.
Bei einer besonders bevorzugten Ausführungsform der erfindungs- gemäßen Beschichtungen handelt es sich um sogenannte "Chemisch Nickel-Systeme", das sind phosphorhaltige Nickellegierungen mit einem Phosphorgehalt von 0,5 bis 15 Gew.-%; ganz besonders bevor - zugt sind hoch phosphorhaltige Nickellegierungen mit 5 bis 12 Gew.-%.
Im Gegensatz zur galvanischen Abscheidung werden bei der chemischen oder autokatalytischen Abscheidung des Metall-Phosphors oder Metall-Bors die dazu nötigen Elektronen nicht durch eine äußere Stromquelle zur Verfügung gestellt, sondern durch chemische Umsetzung im Elektrolyten selbst erzeugt (Oxidation eines Reduktionsmittels) . Die Beschichtung erfolgt beispielsweise durch Eintauchen des Werkstückes in eine Metall-Ξlektrolytlösung, die mit einer stabilisierten Polymerdispersion zuvor gemischt wurde.
Als Metall-Elektrolytlösungen werden gewöhnlich handelsübliche oder frisch zubereitete Metall-Elektrolytlösungen verwendet, denen neben dem Elektrolyten noch die folgenden Komponenten zuge- setzt werden: ein Reduktionsmittel wie ein Hypophosphit oder Bo- ranat (beispielsweise NaBH4) , eine Puffermischung zur Einstellung des pH-Werts, ein Alkalimetallfluorid wie beispielsweise NaF, KF oder LiF, Carbonsäuren sowie einen Abscheidungsmoderator wie beispielsweise Pb2+. Dabei wird das Reduktionsmittel so gewählt, dass das entsprechende einzubauende Element im Reduktionsmittel bereits vorhanden ist.
Besonders bevorzugt werden handelsübliche Nickelelektrolytlösun- gen eingesetzt, die Ni2+, Hypophosphit, Carbonsäuren und Fluorid und ggf. Abscheidungsmoderatoren wie Pb2+ enthalten. Solche Lösungen werden zum Beispiel von der Riedel, Galvano- und Filtertechnik GmbH, Halle, Westfalen und der Atotech Deutschland GmbH, Berlin vertrieben. Besonders bevorzugt sind Lösungen, die einen pH- Wert um 5 aufweisen und etwa 27 g/1 NiS0-6 H20 und etwa 21 g/1 NaH22-H20 bei einem PTFE-Gehalt von 1 bis 25 g/1 enthalten.
Das optional zu verwendende halogenierte Polymer des erfindungs- gemäßen Verfahrens ist bevorzugt fluoriert. Beispiele für geeignete fluorierte Polymere sind Polytetrafluorethylen, Perfluor- Alkoxy-Polymere (PFA, z.B. mit C - bis C8 -Alkoxyeinheiten) ,
Copolymerisate von Tetrafluorethylen und Perfluoralkylvinylether z.B. Perfluorvinylpropylether . Besonders bevorzugt sind Poly- tetrafluorethylen (PTFE) und Perfluor-Alkoxy-Polymere (PFA, nach DIN 7728, Teil 1, Jan. 1988) .
Als Einsatzform können bevorzugt handelsübliche Polytetrafluore- thylen-Dispersionen (PTFE-Dispersionen) verwandt werden. Bevorzugt werden PTFE-Dispersionen mit einem Feststoffanteil von 35 bis 60 Gew.-% und einem mittleren Partikeldurchmesser von 0,05 bis 1,2 μm, insbesondere 0,1 bis 0,3 μm, eingesetzt. Bevorzugt werden sphärische Partikel eingesetzt, weil die Verwendung sphä- rischer Partikel zu sehr homogenen Komposit-Schichten führt. Vorteilhaft an der Verwendung sphärischer Partikel ist ein schnelleres Schichtwachstum und bessere, insbesondere längere Thermo - Stabilität der Bäder, was beides wirtschaftliche Vorteile bietet. Dies zeigt sich besonders deutlich im Vergleich zu Systemen unter Verwendung von irregulären Polymerpartikeln, welche durch Mahlung des entsprechenden Polymers erhalten werden. Außerdem können die verwendeten Dispersionen ein nichtionisches Detergenz (zum Beispiel Polyglykole, Alkylphenolethoxylat oder ggf. Gemische aus den genannten Stoffen, 80 bis 120 g neutrales Detergenz pro Li- ter) oder ein ionisches Detergenz (zum Beispiel Alkyl- und Halo- alkylsulfonate, Alkylbenzolsulfonate, Alkylphenolethersulfate, Tetraalkylammoniumsalze oder optional Gemische aus den genannten Stoffen, 15 bis 60 g ionisches Detergenz pro Liter) zur Stabilisierung der Dispersion enthalten.
Zur Beschichtung wird bei leicht erhöhter Temperatur gearbeitet, die aber nicht so hoch sein darf, dass es zur Destabilisierung der Dispersion kommt. Als Temperaturen haben sich 40 bis 95°C als geeignet erwiesen. Bevorzugt sind Temperaturen von 80 bis 91°C und besonders bevorzugt ist 88°C.
Als Abscheidegeschwindigkeiten haben sich 1 bis 15 μm/h als nützlich erwiesen. Dabei lässt sich die Abscheidegeschwindigkeit wie folgt durch die Zusammensetzung der Tauchbäder beeinflussen:
Durch höhere Temperaturen wird die Abscheidegeschwindigkeit erhöht, wobei es eine Maximaltemperatur gibt, die beispielsweise durch die Stabilität der optional zugegebenen Polymer- Dispersion begrenzt ist. Durch niedrigere Temperaturen wird die Abscheidegeschwindigkeit gesenkt.
Durch höhere Elektrolytkonzentrationen wird die Abscheidegeschwindigkeit erhöht, durch niedrigere gesenkt; wobei Konzentrationen von 1 g/1 bis 20 g/1 Ni2+ sinnvoll sind, bevorzugt sind Konzentrationen von 4 g/1 bis 10 g/1; für Cu2+ sind 1 g/1 bis 50 g/1 sinnvoll. Durch höhere Konzentrationen an Reduktionsmittel lässt sich die Abscheidegeschwindigkeit ebenfalls erhöhen;
Durch Erhöhung des pH-Wertes lässt sich die Abscheide- geschwindigkeit erhöhen. Bevorzugt stellt man einen pH-Wert zwischen 3 und 6, besonders bevorzugt zwischen 4 und 5,5 ein.
Zugabe von Aktivatoren wie beispielsweise Alkalifluoriden, beispielsweise NaF oder KF, erhöht die Abscheidegeschwindig- keit.
Der Polymeranteil der Dispersionsbeschichtung wird hauptsächlich durch die Menge der zugesetzten Polymerdispersion und die Wahl der Detergentien beeinflusst. Dabei spielt die Konzentration des Polymers die größere Rolle; hohe Polymerkonzentrationen der
Tauchbäder führen zu einem überproportional höheren Polymeranteil in der Metall-Phosphor-Polymer-Dispersionsschicht bzw. Metall- Bor-Polymer-Dispersionsschicht .
Es wurde gefunden, daß die erfindungsgemäß behandelten Oberflächen einen guten Wärmedurchgang ermöglichen, obwohl die Beschichtungen eine nicht unerhebliche Dicke von 1 bis 100 μm aufweisen können. Bevorzugt sind 3 bis 20 μm, insbesondere 5 bis 16 μm. Der Polymeranteil der Dispersionsbeschichtung beträgt 5 bis 30 Vol.-%, bevorzugt 15 bis 25 Vol.-%, besonders bevorzugt sind 19 bis 21 Vol.-%. Die erfindungsgemäß behandelten Oberflächen weisen ferner eine exzellente Haltbarkeit auf.
Vorzugsweise wird im Anschluß an den Tauchvorgang eine Temperung bei 200 bis 400°, vor allem bei 315 bis 380°C, durchgeführt. Die Temperierungsdauer beträgt im allgemeinen 5 Minuten bis 3 Stunden, bevorzugt 35 bis 60 Minuten.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines beschichteten Reaktors, der eine be- sonders haftfeste, haltbare und wärmebeständige Beschichtung aufweist und deshalb die erfindungsgemäße Aufgabe in besonderer Weise löst.
Dieses Verfahren ist dadurch gekennzeichnet, dass vor dem Auf - bringen der Metall-Polymer-Dispersionsschicht zusätzlich eine 1 bis 15 μm, bevorzugt 1 bis 5 μm dicke Metall-Phosphor-Schicht durch stromloses chemisches Abscheiden aufgebracht wird.
Das stromlose chemische Aufbringen einer 1 bis 15 μm dicken Me- tall-Phosphor-Schicht zur Haftverbesserung erfolgt wiederum durch Metall-Elektrolytbäder, denen jedoch in diesem Fall keine stabilisierte Polymer-Dispersion zugesetzt wird. Auf eine Temperung wird zu diesem Zeitpunkt vorzugsweise verzichtet, da diese die Haftfähigkeit der nachfolgenden Metall-Polymer-Dispersionsschicht im Allgemeinen negativ beeinflusst. Nach Abscheidung der Metall- Phosphor-Schicht wird das Werkstück in ein zweites Tauchbad ge- bracht, das neben dem Metall-Elektrolyt auch eine stabilisierte Polymer-Dispersion umfaßt. Hierbei bildet sich die Metall-Polymer-Dispersionsschicht .
Vorzugsweise wird anschließend eine Temperung bei 100 bis 450°C, insbesondere bei 315 bis 400°C, durchgeführt. Die Temperungsdauer beträgt im allgemeinen 5 Minuten bis 3 Stunden, bevorzugt 35 bis 45 Minuten.
Als Reaktoren für die Hochdruckpolymerisation von Ethylen werden, wie eingangs ausgeführt, Hochdruckautoklaven oder aber Rohr- reaktoren verwendet, wobei Rohrreaktoren bevorzugt sind. Rohrför- mige Reaktoren lassen sich besonders gut durch eine bevorzugte Variante des erfindungsgemäßen Verfahrens beschichten, indem man die Metall-Elektrolytlösung bzw. das Metall-Elektrolyt-Polymer- dispersionsgemisch durch den zu beschichtenden Reaktor pum t.
Im Falle einer Ausführungsform, die sich rohrförmiger Reaktoren bedient, lassen sich die erfindungsgemäßen beschichteten Rohre problemlos in Polymerisationsanlagen zur Hochdruckpolymerisation einbauen und dabei nicht beschichtete Rohre ersetzen.
Die Ethylenpolymerisation in den erfindungsgemäßen Anlagen, die die erfindungsgemäßen Rohre enthalten, erfolgt üblicherweise bei Temperaturen von 400 bis 6000 bar, bevorzugt von 500 bis 5000 bar und besonders bevorzugt 1000 bis 3500 bar.
Die Reaktionstemperatur beträgt 150 bis 450°C, bevorzugt sind 160 bis 250°C.
Als Monomer bei dem erfindungsgemäßen Polymerisationsverfahren ist Ethylen besonders geeignet. Es lassen sich auch Copolymeri- sate mit Ethylen herstellen, wobei prinzipiell alle radikalisch mit Ethylen copolymerisierbaren Olefine als Comonomere geeignet sind. Bevorzugt sind
1-Olefine wie Propylen, 1-Buten, 1-Penten, 1-Hexen, 1-Octen und 1-Decen,
Acrylate wie Acrylsäure, Acrylsäuremethylester , Acrylsäure- ethylester, Acrylsäure-n-butylester oder Acrylsäure-tert . -bu- tylester; Methacrylsäure, Methacrylsäuremethylester , Metnacryisaure- ethylester, Methacrylsäure-n-butylester oder Methacrylsäure- ter . -butylester;
- Vinylcarboxylate, wobei Vinylacetat besonders bevorzugt ist,
Ungesättigte Dicarbonsäuren, besonders bevorzugt ist Maleinsäure,
- ungesättigte Dicarbonsäurederivate, besonders bevorzugt sind Maleinsäureanhydrid und Maleinsäurealkylimide wie beispielsweise Maleinsäuremethylimid.
Als Molmassenregler sind Wasserstoff, aliphatische Aldehyde, Ketone, CH-acide Verbindungen wie Mercaptane oder Alkohole, Olefine und Alkane geeignet.
Die Polymerisation kann mit sauerstoffhaltigen Gasen wie beispielsweise Luft gestartet werden, aber auch mit organischen Peroxoverbindungen oder mit organischen Azoverbindungen wie beispielsweise AIBN (Azobisisobutyronitril) . Bevorzugt sind organische Peroxoverbindungen, wobei Benzoylperoxid und Di-tert.- butylperoxid besonders bevorzugt sind.
Die durch das erfindungsgemäße Verfahren hergestellten Polymerisate des Ethylens können abhängig von den Reaktionsbedingungen sehr unterschiedliche Molmassen haben. Bevorzugte Molmassen Mw liegen zwischen 500 und 600.000 g.
Besonders vorteilhaft an den nach dem erfindungsgemäß hergestellten Ethylenpolymerisaten ist ihre geringen Stippenzahl, die üblicherweise in der Form einer Stippennote spezifiziert wird, wobei eine niedrige Stippennote üblicherweise einer niedrigen Stippenzahl entspricht. Die erfindungsgemäß hergestellten Polyme- risate eignen sich in besonderem Maße zur Herstellung von Formkörpern und Flächengebilden, wie Folien oder Tüten.
Die Erfindung soll anhand eines Arbeitsbeispiels erläutert werden.
Arbeitsbeispiel :
1. Chemisch Nickel-System
Das ausgebaute Reaktorrohr (Länge 150 m, Durchmesser 15 mm) wurde bei einer Temperatur von 88°C mit einer wässrigen Nikkeisalzlösung kontaktiert, wobei die Lösung die folgende Zusammensetzung hatte: 27 g/1 NiS04-6 H20, 21 g/1 NaH2P0-2 H20, Milchsäure CH3CHOHC02H 20 g/1, Propionsäure C2H5C02H 3 g/1, Na-Citrat 5 g/1, NaF 1 g/1 (Anmerkung: Chemisch stromlose Nickelelektrolytlösungen dieser und anderer Konzen- tration sind kommerziell erhältlich, beispielsweise bei Riedel Galvano- und Filtertechnik GmbH, Halle, Westfalen; oder bei Atotech Deutschland GmbH, Berlin) ) . Der pH-Wert betrug 4,8. Zur Erzielung gleichmäßiger Schichtdicken wurde die Lösung mit einer Strömungsgeschwindigkeit von 0,1 m/s durch das Rohr gepumpt. Bei einer Abscheidegeschwindigkeit von 12 μm/h ist der Prozess nach 75 min beendet. Die erzielte Schichtdicke betrug 16 μm. Anschließend wurde das beschichtete Rohr mit Wasser gespült, getrocknet und bei 400°C eine Stunde lang getempert.
Nickel-PTFE-System
Die Herstellung erfolgte in 2 Stufen. Zunächst wurde das ausgebaute Reaktorrohr (Länge 150 m, Durchmesser 15 mm) bei einer Temperatur von 88°C mit einer wässrigen Nickelsalzlösung kontaktiert, wobei die Lösung die folgende Zusammensetzung hatte: 27 g/1
NiS04-6 H20, 21 g/1 NaH2P02-2H20, 20 g/1 Milchsäure CH3CH0HC02H, 3 g/1 Propionsäure C2H5C02H, 5 g/1 Na-Citrat, 1 g/1 NaF. Der pH-Wert betrug 4,8. Zur Erzielung gleichmäßiger Schichtdicken wurde die Lösung mit einer Strömungsgeschwindigkeit von 0,1 m/s durch das Rohr gepumpt. Bei einer Abscheidegeschwindigkeit von 12 μm/h wurde 25 min. gearbeitet, um die erzielte Schichtdicke von 5 μm zu erhalten.
Nach diesem Schritt wurde nicht gespült,
Anschließend wurde die Nickelsalzlösung zusätzlich mit 1 Vol.-% einer PTFE-Dispersion mit einer Dichte von 1,5 g/ml versetzt. Diese PTFE-Dispersion enthielt 50 Gew.-% Feststoff. Bei einer Abscheidegeschwindigkeit von 8 μm/h war der Prozess in zwei Stunden beendet (Schichtdicke 16 μm) . Das beschichtete Rohr wurde mit Wasser gespült, getrocknet und bei 350°C eine Stunde lang getempert.
Polymerisationsbeispiele 1 bis 3
Die Polymerisation erfolgte in einem Reaktor von insgesamt 400 m. Eine detaillierte Beschreibung des Reaktors und der Polymerisationsbedingungen sind in DE-A 40 10 271 zu finden. Der Reaktor wurde in 3 Zonen eingeteilt; zu Beginn jeder Zone wurde mit Peroxid-Lösung initiiert. Die Abmessungen der Zonen sind Tabelle 1 zu entnehmen.
Es wurde bei einem Druck von 3000 bar polymerisiert . Als Molekulargewichtsregler wurde Propionaldehyd verwendet. Die Temperatur des Kühlmediums Wasser betrug 200°C. Die maximalen Reaktionstemperaturen wurden - wie bei Hochdruckrohrreaktoren üblich - durch Dosierung der entsprechenden Menge Peroxid-Lösung eingestellt.
Die Stippennote wurde mittels einer automatischen in-line- Messeinrichtung ermittelt (Fa. Brabender, Duisburg, "Autogra- der" ) . Dazu wurde ein geringer Teil der Polymerschmelze mittels einer ca. 10 cm breiten Schlitzdüse bei 200 °C zu einer Folie geformt deren Dicke ca. 0,5 mm betrug. Mittels einer Videokamera und einer automatischen Zählvorrichtung wurde die Anzahl der Stippen ermittelt. Anhand der Anzahl erfolgte dann die Einstufung in der Stippennote.
Tabelle 1: Abmessungen der Reaktionszonen des Versuchsreaktors
Figure imgf000012_0001
Es wurde jeweils nur Zone Nummer 1 erfindungsgemäß beschichtet und die entsprechenden Experimente gefahren. Die Ergebnisse sind Tabelle 2 zu entnehmen. Es ist zu erwarten, dass eine Beschichtung der übrigen Zonen zu einer weiteren Erhöhung des Umsatzes führt.
Tabelle 2: Polymerisationen in unterschiedlich beschichteten Reaktorer.
Figure imgf000013_0001

Claims

Patentansprüche
1. Verfahren zur Beschichtung eines Reaktors für die Hochdruck- Polymerisation von l-01efinen, dadurch gekennzeichnet, dass man eine Metallschicht oder eine Metall -Polymer-Dispersionsschicht auf der Reaktorinnenfläche stromlos abscheidet, indem man die Flächen mit einer Metall -Elektrolytlösung kontaktiert, die neben dem Metall -Elektrolyten ein Reduktionsmittel sowie optional ein abzuscheidendes halogeniertes Polymer in dispergierter Form enthält.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man als Metall-Elektrolyten eine Nickel- oder Kupfer-Elektrolyt - lösung und als Reduktionsmittel ein Hypophosphit oder ein Bo- ranat verwendet.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man der Metall-Elektrolytlösung eine Dispersion eines halogenier- ten Polymers zusetzt.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man als Metall-Elektrolyt eine Nickelsalz-Lösung einsetzt, die man in situ mit einem Alkalihypophosph.it reduziert, und der man als halogeniertes Polymer eine Polytetrafluorethylen-Dis- persion zusetzt.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass man ein halogeniertes Polymer aus sphärischen Partikeln mit einem mittleren Durchmesser von 0,1 bis 1,0 μm verwendet.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass man ein halogeniertes Polymer aus sphärischen Partikeln mit einem mittleren Durchmesser von 0,1 bis 0,3 μm verwendet.
7. Verfahren gemäß den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass man eine Nickel-Phosphor-Polytetrafluorethylen- Schicht mit einer Dicke von 1 bis 100 μm abscheidet.
8. Verfahren gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass man eine Nickel-Phosphor-Polytetrafluorethylen- Schicht mit einer Dicke von 3 bis 20 μm abscheidet.
9. Verfahren gemäß den Ansprüchen 1 bis 8, dadurch gekennzeich- net, dass man eine Nickel-Phosphor-Polytetrafluorethylen- Schicht mit einer Dicke von 5 bis 16 um abscheidet.
10. Verfahren gemäß den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass man auf der Innenseite des Reaktors zunächst stromlos eine zusätzliche 1 bis 15 μm dicke Metall-Phosphor- Schicht und danach eine Metall-Phosphor-Polymer-Dispersions -
5 schicht abscheidet.
11. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass man als zusätzliche Metall-Phosphor-Schicht eine Nickel-Phosphor-Schicht, eine Kupfer-Phosphor-Schicht, eine Nickel-Bor-
10 Schicht oder eine Kupfer-Bor-Schicht mit einer Dicke von 1 bis 5 μm abscheidet.
12. Auf der Innenseite beschichteter Reaktor, erhältlich nach einem Verfahren der Ansprüche 1 bis 11.
15
13. Auf der Innenseite beschichteter Reaktor gemäß Anspruch 12, insbesondere Rohrreaktor, beschichtet mit einer Metall- Phosphor-Polymer-Dispersionsschicht einer Dicke von 3 bis 20 μm.
20
14. Reaktor gemäß den Ansprüchen 12 und 13, der unter der Nickel- Phosphor-Polytetrafluorethylen-Dispersionsschicht der Dicke von 3 bis 20 μm eine Nickel-Phosphor-Schicht der Dicke von 1 bis 15 μm trägt.
25
15. Verwendung von Reaktoren, insbesondere Rohrreaktoren, gemäß den Ansprüchen 12 bis 14 in Hochdruckverfahren zur Polymerisation oder Copolymerisation von Ethylen.
30 16. Verfahren zur kontinuierlichen Polymerisation oder Copolymerisation von Ethylen bei Drucken von 500 bis 6000 bar und Temperaturen von bis 150 bis 450°C, dadurch gekennzeichnet, dass man die Polymerisation in einem Hochdruckreaktor gemäß den Ansprüchen 12 bis 15 durchführt.
35
40
5
PCT/EP1999/010372 1998-12-30 1999-12-24 Verfahren zur beschichtung von reaktoren für die hochdruckpolymerisation von 1-olefinen WO2000040775A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/869,147 US6509103B1 (en) 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerization of 1-olefins
AT99965554T ATE245210T1 (de) 1998-12-30 1999-12-24 Verfahren zur beschichtung von reaktoren für die hochdruckpolymerisation von 1-olefinen
KR1020017008309A KR20010100009A (ko) 1998-12-30 1999-12-24 1-올레핀의 고압 중합용 반응기를 코팅하는 방법
EP99965554A EP1144725B1 (de) 1998-12-30 1999-12-24 Verfahren zur beschichtung von reaktoren für die hochdruckpolymerisation von 1-olefinen
DE59906313T DE59906313D1 (de) 1998-12-30 1999-12-24 Verfahren zur beschichtung von reaktoren für die hochdruckpolymerisation von 1-olefinen
CA002358099A CA2358099A1 (en) 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerisation of 1-olefins
JP2000592467A JP2002534606A (ja) 1998-12-30 1999-12-24 1−オレフィンの高圧重合用反応器の被覆方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19860526A DE19860526A1 (de) 1998-12-30 1998-12-30 Wärmeüberträger mit verringerter Neigung, Ablagerungen zu bilden und Verfahren zu deren Herstellung
DE19860526.9 1998-12-30

Publications (2)

Publication Number Publication Date
WO2000040775A2 true WO2000040775A2 (de) 2000-07-13
WO2000040775A3 WO2000040775A3 (de) 2000-11-09

Family

ID=7892984

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP1999/010368 WO2000040773A2 (de) 1998-12-30 1999-12-24 Wärmeüberträger mit verringerter neigung, ablagerungen zu bilden und verfahren zu deren herstellung
PCT/EP1999/010371 WO2000040774A2 (de) 1998-12-30 1999-12-24 Verfahren zur beschichtung von apparaten und apparateteilen für den chemischen anlagenbau
PCT/EP1999/010372 WO2000040775A2 (de) 1998-12-30 1999-12-24 Verfahren zur beschichtung von reaktoren für die hochdruckpolymerisation von 1-olefinen

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/EP1999/010368 WO2000040773A2 (de) 1998-12-30 1999-12-24 Wärmeüberträger mit verringerter neigung, ablagerungen zu bilden und verfahren zu deren herstellung
PCT/EP1999/010371 WO2000040774A2 (de) 1998-12-30 1999-12-24 Verfahren zur beschichtung von apparaten und apparateteilen für den chemischen anlagenbau

Country Status (10)

Country Link
US (3) US6509103B1 (de)
EP (3) EP1144723B1 (de)
JP (3) JP2002534605A (de)
KR (3) KR20010103724A (de)
CN (3) CN1332810A (de)
AT (3) ATE227360T1 (de)
CA (2) CA2358097A1 (de)
DE (4) DE19860526A1 (de)
ES (2) ES2197710T3 (de)
WO (3) WO2000040773A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241947A1 (de) * 2001-09-14 2003-04-03 Magna Steyr Powertrain Ag & Co Verfahren zur Oberflächenbehandlung eines Maschinenelementes und Maschinenelement

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049338A1 (de) * 2000-10-05 2002-04-11 Basf Ag Mikrostrukturierte, selbstreinigende katalytisch aktive Oberfläche
US20040047997A1 (en) * 2001-01-12 2004-03-11 Harald Keller Method for rendering surfaces resistant to soiling
ATE289323T1 (de) 2001-08-20 2005-03-15 Basell Polyolefine Gmbh Verfahren zur hochdruckpolymerisation von ethylen
DE10146027B4 (de) * 2001-09-18 2006-07-13 Huppmann Ag Bauteil für eine Brauereianlage und Verfahren zur Herstellung derartiger Bauteile
US20030066632A1 (en) 2001-10-09 2003-04-10 Charles J. Bishop Corrosion-resistant heat exchanger
DE10205442A1 (de) * 2002-02-08 2003-08-21 Basf Ag Hydrophiles Compositmaterial
US6887348B2 (en) * 2002-11-27 2005-05-03 Kimberly-Clark Worldwide, Inc. Rolled single ply tissue product having high bulk, softness, and firmness
US6837923B2 (en) * 2003-05-07 2005-01-04 David Crotty Polytetrafluoroethylene dispersion for electroless nickel plating applications
DE10344845A1 (de) * 2003-09-26 2005-04-14 Basf Ag Vorrichtung zum Mischen, Trocknen und Beschichten von pulvrigem, körnigem oder geformtem Schüttgut in einem Fließbett und Verfahren zur Herstellung von Trägerkatalysatoren unter Verwendung einer solchen Vorrichtung
DE502004004444D1 (de) * 2004-09-17 2007-09-06 Bernd Terstegen Verfahren zur Beschichtung von Apparaten und Apparateteilen für den chemischen Anlagenbau
KR100753476B1 (ko) * 2004-12-10 2007-08-31 주식회사 엘지화학 에틸렌 디클로라이드 열분해 반응기의 코크스 생성 억제코팅막 및 그 코팅막 형성 방법
DE102005017327B4 (de) * 2005-04-14 2007-08-30 EKATO Rühr- und Mischtechnik GmbH Bearbeitungsanlage
US20080271712A1 (en) * 2005-05-18 2008-11-06 Caterpillar Inc. Carbon deposit resistant component
US20070031639A1 (en) * 2005-08-03 2007-02-08 General Electric Company Articles having low wettability and methods for making
US20070028588A1 (en) * 2005-08-03 2007-02-08 General Electric Company Heat transfer apparatus and systems including the apparatus
JP4495054B2 (ja) * 2005-09-02 2010-06-30 三菱重工業株式会社 回転機械の部品及び回転機械
JP4644814B2 (ja) * 2006-03-30 2011-03-09 山形県 温調機能を具備する金属製品への機能性金属被膜形成方法
JP5176337B2 (ja) * 2006-05-12 2013-04-03 株式会社デンソー 皮膜構造及びその形成方法
JP5225978B2 (ja) * 2007-03-23 2013-07-03 イーグル工業株式会社 ソレノイドバルブとその製造方法
DE102008014272A1 (de) * 2008-03-04 2009-09-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Beschichtung für ein Wärmeübertragungselement, Wärmeübertragungselement, Wärmeübertragungsvorrichtung und Verfahren zur Herstellung einer Beschichtung
WO2010036670A2 (en) * 2008-09-24 2010-04-01 Earth To Air Systems, Llc Heat transfer refrigerant transport tubing coatings and insulation for a direct exchange geothermal heating/cooling system and tubing spool core size
JP5616764B2 (ja) * 2010-11-26 2014-10-29 本田技研工業株式会社 内部熱交換型蒸留装置
EP2458030A1 (de) 2010-11-30 2012-05-30 Alfa Laval Corporate AB Verfahren zum Beschichten eines Teils eines Wärmetauschers und Wärmetauscher
AT511572B1 (de) * 2011-06-01 2013-02-15 Ke Kelit Kunststoffwerk Gmbh Beschichtung umfassend ni-p-ptfe in kombination mit einem polykationischen polymer
FR3011308B1 (fr) * 2013-10-02 2017-01-13 Vallourec Oil & Gas France Element de connexion d'un composant tubulaire recouvert d'un depot metallique composite
GB2551107A (en) * 2016-04-27 2017-12-13 Edwards Ltd Vacuum pump component
US11054199B2 (en) 2019-04-12 2021-07-06 Rheem Manufacturing Company Applying coatings to the interior surfaces of heat exchangers
CN113846318A (zh) * 2021-09-16 2021-12-28 一汽解放汽车有限公司 一种文丘里管表面处理方法
DE102022108533B4 (de) 2022-04-08 2024-06-20 CSB Chemische Spezialbeschichtungen GmbH Verfahren zur Herstellung einer chemisch NiP-Elektrolytdispersion mit einzulagernden Feststoffpartikeln

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0737759A1 (de) * 1995-04-12 1996-10-16 Seiko Seiki Kabushiki Kaisha Korrosion verhindernde Struktur
WO1997049771A1 (en) * 1996-06-24 1997-12-31 Borealis Polymers Oy Antifouling coating

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753757A (en) * 1970-05-15 1973-08-21 Union Carbide Corp Two step porous boiling surface formation
US4064914A (en) * 1974-05-08 1977-12-27 Union Carbide Corporation Porous metallic layer and formation
CH623851A5 (de) * 1975-10-04 1981-06-30 Akzo Nv
JPS52133321U (de) * 1976-04-06 1977-10-11
CH633586A5 (en) 1979-09-25 1982-12-15 Fonte Electr Sa Chemical metallising or metal recovery - by contacting hot surface with soln. of metal salt and reducing agent
US4344993A (en) * 1980-09-02 1982-08-17 The Dow Chemical Company Perfluorocarbon-polymeric coatings having low critical surface tensions
DE3114875A1 (de) 1981-04-13 1982-11-04 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von schlagfesten thermoplastischen formmassen
IT1152230B (it) * 1982-05-31 1986-12-31 Montedison Spa Procedimento per la preparazione di grassi lubrificanti a base di politetrafluoroetilene e perfluoropolieteri
US4483711A (en) * 1983-06-17 1984-11-20 Omi International Corporation Aqueous electroless nickel plating bath and process
JPS60174454A (ja) * 1984-02-21 1985-09-07 Matsushita Electric Ind Co Ltd 湯沸用熱交換器
JPS63280775A (ja) * 1987-05-14 1988-11-17 Nippon Paint Co Ltd 塗料組成物およびそれを被覆した熱交換器
JPS63293169A (ja) 1987-05-25 1988-11-30 Kurose:Kk 熱交換器の管板表面処理方法
SU1671740A1 (ru) 1989-10-23 1991-08-23 Казахский Химико-Технологический Институт Электролит дл осаждени композиционных никель-фторполимерных покрытий
DE4010271A1 (de) 1990-03-30 1991-10-02 Basf Ag Verfahren zur herstellung von ethylenpolymerisaten bei druecken oberhalb von 500 bar in einem rohrreaktor mit einspritzfinger
JPH04328146A (ja) * 1991-04-30 1992-11-17 Kunio Mori 導電異方性pvc材料
JPH0517649A (ja) * 1991-07-11 1993-01-26 Kunio Mori 導電異方性pvc材料
DE4214173A1 (de) 1992-04-30 1993-11-04 Basf Ag Verfahren zum entfernen von niedermolekularen, zaehen produkten bei der hochdruckpolymerisation des ethylens
DE4220225A1 (de) 1992-06-20 1993-12-23 Basf Ag Verfahren zur Herstellung von perlförmigen expandierbaren Styrolpolymerisaten
JPH0626786A (ja) 1992-07-09 1994-02-04 Nippon Hanetsuku:Kk 熱交換プレート
JPH06108287A (ja) 1992-09-30 1994-04-19 Nippon Zeon Co Ltd 熱交換器
GB2306510B (en) 1995-11-02 1999-06-23 Univ Surrey Modification of metal surfaces
US5930581A (en) * 1996-12-24 1999-07-27 The Dow Chemical Company Method of preparing complex-shaped ceramic-metal composite articles and the products produced thereby
DE19708472C2 (de) * 1997-02-20 1999-02-18 Atotech Deutschland Gmbh Herstellverfahren für chemische Mikroreaktoren
DE19728629A1 (de) 1997-07-04 1999-01-07 Basf Ag Thermoplastische Formmassen mit geringer Eigenfarbe
DE19835467A1 (de) * 1998-08-06 2000-02-17 Elenac Gmbh Feststoffreaktor mit antistatischer Beschichtung zur Durchführung von Reaktionen in der Gasphase
US6230498B1 (en) * 1998-10-22 2001-05-15 Inframetrics Inc. Integrated cryocooler assembly with improved compressor performance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0737759A1 (de) * 1995-04-12 1996-10-16 Seiko Seiki Kabushiki Kaisha Korrosion verhindernde Struktur
WO1997049771A1 (en) * 1996-06-24 1997-12-31 Borealis Polymers Oy Antifouling coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG R., E.A.: "A study on th tribological behaviour of ultra-high molecular weight polyethylene (UHMWPE) coated with Ni-P layer" JOURNAL OF MATERIALS SCIENCE, Bd. 31, Nr. 19, 1. Oktober 1996 (1996-10-01), Seiten 5191-5198, XP002142275 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241947A1 (de) * 2001-09-14 2003-04-03 Magna Steyr Powertrain Ag & Co Verfahren zur Oberflächenbehandlung eines Maschinenelementes und Maschinenelement

Also Published As

Publication number Publication date
CN1636305A (zh) 2005-07-06
EP1144723A2 (de) 2001-10-17
CA2358099A1 (en) 2000-07-13
DE19860526A1 (de) 2000-07-06
EP1144724B1 (de) 2002-11-06
WO2000040773A3 (de) 2000-11-09
DE59906313D1 (de) 2003-08-21
ES2197710T3 (es) 2004-01-01
WO2000040774A3 (de) 2002-09-26
ES2204184T3 (es) 2004-04-16
US6513581B1 (en) 2003-02-04
ATE227360T1 (de) 2002-11-15
CN1332810A (zh) 2002-01-23
KR20010103724A (ko) 2001-11-23
ATE245210T1 (de) 2003-08-15
CA2358097A1 (en) 2000-07-13
WO2000040774A2 (de) 2000-07-13
JP2003511551A (ja) 2003-03-25
KR20010100009A (ko) 2001-11-09
US6509103B1 (en) 2003-01-21
EP1144725B1 (de) 2003-07-16
JP2002534605A (ja) 2002-10-15
EP1144725A2 (de) 2001-10-17
WO2000040773A2 (de) 2000-07-13
KR20010100013A (ko) 2001-11-09
WO2000040775A3 (de) 2000-11-09
US6617047B1 (en) 2003-09-09
DE59903362D1 (de) 2002-12-12
JP2002534606A (ja) 2002-10-15
ATE237006T1 (de) 2003-04-15
EP1144723B1 (de) 2003-04-09
DE59905005D1 (de) 2003-05-15
EP1144723A3 (de) 2002-11-13
CN1338008A (zh) 2002-02-27
EP1144724A2 (de) 2001-10-17

Similar Documents

Publication Publication Date Title
EP1144725B1 (de) Verfahren zur beschichtung von reaktoren für die hochdruckpolymerisation von 1-olefinen
DE2908001C2 (de) Verfahren zur Herstellung konzentrierter Dispersionen von Fluorpolymeren
EP0657514B1 (de) Wässrige Dispersion von Fluorpolymerisaten, ihre Herstellung und Verwendung für Beschichtungen
DE102013109394A1 (de) Anodische Oxidschicht und Verfahren zur Herstellung derselben
DE2603362B2 (de) Heizflächen von Wärmeaustauschern für Flüssigkeiten und Verfahren zu ihrer Herstellung
AT394332B (de) Verbundwerkstoff aus polyvinglidenfluorid und aethylen-kohlenoxid-copolymer, verfahren zum ueberziehen eines substrates damit und verfahren zur herstellung eines verbundwerkstoffes daraus
DE1259174B (de) Verbessertes Verfahren und ein Oberflaechenbehandlungsmittel zur Herstellung tiefschwarzer Kupferoxydoberflaechen
WO2001073162A2 (de) Verfahren zur beschichtung von apparaten und apparateteilen für den chemischen anlagenbau
DE69511393T2 (de) Polymerzusammensetzung und verfahren zur behandlung von metalloberflächen
DE971364C (de) Verfahren zur Herstellung von kolloidalen Dispersionen durch Emulsionspolymerisation von Tetrafluoraethylen
DE1621372B2 (de) Verfahren zur herstellung von metallbeschichteten kunststoffen
CH510065A (de) Verfahren zur Herstellung von Vinylchloridpolymerisaten oder -copolymerisaten
DE69008617T2 (de) Verfahren zur Herstellung von hydrophobem Material.
DE2518260A1 (de) Verbesserte suspensionspolymerisation von vinylchloridmonomeren bzw. gemischen davon mit anderen vinylmonomeren
DE2836296C2 (de) Terpolymeres aus Tetrafluoräthylen, Äthylen und einem Perfluoralkyl-vinylmonomerem sowie ein Verfahren zu dessen Herstellung
DE3517171C2 (de)
DE2536119C2 (de) Wasserfreies Tiefziehmittel und dessen Verwendung
EP0612569B1 (de) Beschichtung poröser, hydrophober Substrate mit thermoplastischen Fluorpolymeren
DE2127005A1 (de) Beschichtetes Substrat und Verfahren zu seiner Herstellung
DE2409237A1 (de) Verbundplatte und verfahren zu ihrer herstellung
DE60225234T2 (de) Wärmeverarbeitbare Copolymere aus Tetrafluorethen, Dioxol und Vinylether
DE1645491A1 (de) Kontinuierlich ablaufendes Verfahren zur Loesungspolymerisation von Akrylnitril
DE1770199C2 (de) Verfahren zur Herstellung von Vinylidenfiuorid-Polymerisaten
DE1771162C (de) Verfahren zum elektrolytischen Abscheiden von dichten und festhaftenden Chromüberzügen auf Zirkon und Zirkonlegierungen
DE2832628A1 (de) Verfahren und vorrichtung zur polymerisation von vinylchlorid in suspension

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99815259.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999965554

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/006209

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09869147

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2000 592467

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2358099

Country of ref document: CA

Ref document number: 2358099

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017008309

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999965554

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017008309

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999965554

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017008309

Country of ref document: KR