WO2000040546A1 - Processus de production d'acide amine acide n-(chaine acyle longue) - Google Patents

Processus de production d'acide amine acide n-(chaine acyle longue) Download PDF

Info

Publication number
WO2000040546A1
WO2000040546A1 PCT/JP1999/000730 JP9900730W WO0040546A1 WO 2000040546 A1 WO2000040546 A1 WO 2000040546A1 JP 9900730 W JP9900730 W JP 9900730W WO 0040546 A1 WO0040546 A1 WO 0040546A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
long
chain
amino acid
water
Prior art date
Application number
PCT/JP1999/000730
Other languages
English (en)
French (fr)
Inventor
Yukio Yamawaki
Shinichi Yamamoto
Yoshinaga Tamura
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to KR10-2001-7008188A priority Critical patent/KR100459279B1/ko
Priority to EP99905240A priority patent/EP1156033B1/en
Priority to CA002358118A priority patent/CA2358118A1/en
Priority to US09/868,700 priority patent/US6569829B1/en
Priority to AU25477/99A priority patent/AU753513C/en
Priority to BR9916591-0A priority patent/BR9916591A/pt
Priority to ES99905240T priority patent/ES2373528T3/es
Publication of WO2000040546A1 publication Critical patent/WO2000040546A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/442Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof substituted by amido group(s)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/22Separation; Purification; Stabilisation; Use of additives
    • C07C231/24Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/10Amino carboxylic acids; Imino carboxylic acids; Fatty acid condensates thereof

Definitions

  • the present invention relates to an N-long-chain acetyl acidic amino acid or a salt thereof, and a simple method for producing the same. Specifically, it has virtually no odor so that it can be used in the unscented field, reduces the amount of water-soluble impurities such as inorganic salts, and the amount of free fatty acids that are a by-product of the reaction.
  • the present invention relates to an N-long-chain acyl amino acid suitable for producing a detergent or a cosmetic composition which does not cause precipitation or turbidity.
  • N-long-chain acylamino acids Conventionally, amine salts or alkali metal salts of N-long-chain acylamino acids have been widely used as surfactants and antibacterial agents due to their surface active action, and are particularly useful for detergents and fragrances such as quasi-drugs and cosmetics. Since it is often used in the cosmetics field and often comes into direct contact with the human body, it must not cause discomfort to the user. In these areas, the final product is often required to be non-turbid, and the fragrance of the final product often provides significant commercial value. Therefore, when using N-long chain acyl amino acids or salts thereof in such fields, impurities that cause turbidity in the final product or that affect the aroma of the final product should be minimized. It is required to reduce it.
  • US-A-3,758,525 discloses a method for producing N-long-chain acylamino acid, which discloses that 15 to 80% by volume of a hydrophilic organic solvent and 85 to 2% of water are used as reaction solvents. Using a mixed solvent consisting of 0% by volume, an acidic amino acid and a long-chain fatty acid halide are subjected to a condensation reaction in the presence of an alkali. After the reaction is completed, the reaction solution is adjusted to pH 1 with a mineral acid to obtain N-length. There is disclosed a method for obtaining a N-long-chain acid amino acid by removing a hydrophilic organic solvent by precipitating a crude crystal of a chain acid amino acid by filtration and washing.
  • N-long-chain acylamino acids obtained by this method have not only insufficient removal of inorganic salts, but also the above-mentioned method for separating N-long-chain acylamino acids is industrially used in both equipment and operation. is not.
  • Japanese Patent Application Laid-Open No. 51-137177 discloses that an acidic amino acid is reacted with a long-chain fatty acid halide in a mixed solvent of water and a hydrophilic organic solvent in the presence of a solvent.
  • the resulting reaction solution is adjusted to pH 1 to 6 with a mineral acid at a temperature from 40 ° C. to the boiling point of the hydrophilic organic solvent, so that the aqueous layer and the organic layer containing the product are separated.
  • a method in which a layer is separated, and then the hydrophilic solvent is removed from the organic layer to separate and obtain an N-long-chain acetyl acidic amino acid.
  • this method reduces the inorganic salt content to only 1 to 2%, and the removal of odorous substances derived from the solvent is insufficient.
  • water was added to the residue, and air was blown to the liquid surface while stirring at 65 ° C to remove the remaining acetone. There is a statement that it will be removed.
  • Japanese Patent Application Laid-Open No. 50-5305 discloses that when an amino acid and a long-chain fatty acid halide are condensed in the presence of an alkali, a water-containing lower alcohol is used as a reaction solvent.
  • water-containing lower alcohols methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and sec-butanol are limitedly listed.
  • all of the above alcohols are primary or secondary alcohols, and in the process of making the pH of a solution acidic, A dehydration condensation reaction occurs between the resulting N-long-chain acylamino acid and this alcohol solvent, resulting in the formation of an ester.
  • Alcohol solvents also hydrolyze the raw material long-chain fatty acid halides and produce free esters of by-products with free fatty acids, thereby producing esters.
  • the ester thus formed is a compound that is difficult to separate and remove from N-long-chain succinic amino acids.
  • Japanese Patent Application Laid-Open No. 7-2747 proposes a membrane separation process, but has the same disadvantages as the method described in Japanese Patent Application Laid-Open No. 3-284649.
  • the comparative example of JP-A-7-24747 the direct concentration of the organic layer containing the obtained N-long-chain acylamino acid is described. It has been demonstrated that the amount of fatty acids is increased and that the hydrophilic organic solvents are difficult to remove.
  • a mixed solvent of water and a hydrophilic organic solvent consisting of acetone and isopropanol is used.
  • a reaction method that suppresses the generation of odor components such as alcohol mesityloxide.Also after the reaction solution is acidified, the crystals obtained by crystallization and separation are dissolved in a hydrophilic organic solvent, and a high-concentration aqueous sodium sulfate solution is added. After that, a method of separating into an organic layer and an aqueous layer is disclosed.
  • N-long-chain sacyl acidic amino acids having substantially no odor, reduced water-soluble impurities such as inorganic salts, and free fatty acids, and a simple production method thereof have been developed.
  • a simple production method thereof had been developed.
  • the N-long-chain acylamino acid or salt obtained by the conventional method cannot avoid odors due to by-products derived from the reaction solvent and contains impurities such as inorganic salts and free fatty acids. Therefore, there is a problem that it cannot be used for blending in an unscented system, and when blended in a product such as a cleaning agent, turbidity or precipitation occurs particularly during storage at a low temperature.
  • an object of the present invention is to provide an N-long-chain acylamino acid which does not affect the fragrance of the product and has excellent low-temperature stability. It is intended to provide a method for producing an amino acid.
  • a mixed solvent of a hydrophilic organic solvent and water is used as a reaction solvent, and an acidic amino acid and a long-chain fatty acid halide are condensed in the presence of alcohol to form an N-long-chain acylate amino acid.
  • the reaction solution obtained by the (acylation reaction) is separated into an organic layer and an aqueous layer by adjusting the pH to 1 to 6 with a mineral acid, and the organic layer containing N-long-chain acylamino acid is separated. It can be obtained (acid precipitation layer step), but the N-long chain sacyl acid amino acid obtained here is insufficient for removal of inorganic salts.
  • a mixed solution of N-long-chain amic acid amic acid and a medium containing at least Yun Sharyb and ethanol and water has three components. Separation into an aqueous layer and an organic layer containing N-long-chain amic acid amino acid depending on the composition, whereby inorganic salts remaining in the N-long-chain amic acid amino acid can be transferred to the aqueous layer and removed. (Hereinafter, this operation is called washing).
  • the present inventors have further obtained an advantage by using the solvent used in the above-mentioned washing step as a reaction solvent from the stage of the acylation reaction step for producing N-long-chain acylamino acid.
  • a reaction solvent from the stage of the acylation reaction step for producing N-long-chain acylamino acid.
  • the organic solvent and the impurities derived from the organic solvent used in the production of N-long-chain acetic acid amino acids can be removed as much as possible when the obtained N-long-chain carboxylic acid amino acid is used as a surfactant or the like. Desired, but practically traces remain.
  • diacetone alcohol mesityloxide which is considered to be derived from an acetate solvent, is also detected in N-long-chain acetyl acidic amino acids or salts thereof currently on the market. It is already mentioned that trace amounts of these diacetone alcohols and mesityloxide can cause offensive odors.
  • odors such as fatty acid odors remain in N-long-chain acetyl acidic amino acids or salts thereof, and therefore, it may be used in unscented cosmetics. It was difficult to mix.
  • Asahi Shallow Solvent as a reaction solvent does not involve an aldehyde condensate as in the case of the use of acetone. It is only necessary to consider itself.
  • the odor threshold of Yuichi Sharyb is much higher than that of diacetone alcohol and mesityloxide, which are condensates of acetone. You can say that it is much smaller.
  • N-long chain sacyl acidic amino acid or a salt thereof is blended in a liquid detergent, etc., a major cause of turbidity or precipitation that occurs when the blended solution is allowed to stand at a low temperature of about 5 ° C.
  • Free fatty acids and inorganic salts in N-long-chain acid amino acid salts which are brought in from raw materials or produced in the process of producing N-long-chain acid amino acid salts.
  • free fatty acids are generated by the decomposition of N-long-chain acetic acid amino acids, and once formed, it is difficult to separate them from N-long-chain acetic acid amino acids or salts thereof, and it is important to suppress the generation in the manufacturing process. It is.
  • the increase in free fatty acids in the production process of N-long-chain acidic amino acids is achieved by directly concentrating the organic layer containing N-long-chain acidic amino acids to remove the hydrophilic organic solvent. It is seen in the process of receiving a heat history to remove.
  • the hydrophilic organic solvent is distilled off from the mixed solution in which the N-long-chain acetyl acidic amino acid is contained in the mixed solvent of water and the hydrophilic organic solvent, the concentration of the solution increases and the viscosity increases, and the viscosity increases.
  • the temperature of the liquid must be increased.
  • a large number of dispersed bubbles are generated in the liquid, a so-called foaming state, and the system may become very unstable. In this case, the operation of controlling the foaming state by increasing or decreasing the pressure of the system in order to prevent bumping of the liquid is performed intermittently, or the amount of generated steam is extremely reduced.
  • N-long-chain acylamino acid undergoes a great deal of heat history and is decomposed in the process, producing free fatty acids as a decomposition product. Will be done.
  • the increase in free fatty acid in N-long-chain acetic acid amino acids can be attributed to the fact that when a salt of N-long-chain acetic acid amino acid is added to a liquid detergent, the cosmetic composition containing the salt becomes turbid at low temperatures, and It is a factor that significantly impairs the original properties.
  • the present inventors have conducted intensive studies to achieve the task of removing the hydrophilic organic solvent while suppressing the production of free fatty acids.
  • the water containing hydrophilic N-long chain amic acid amino acid and the hydrophilic When removing the hydrophilic organic solvent from the mixed solution with the organic solvent, by controlling the conditions such as the composition and temperature of the liquid, the flow state of the liquid during the solvent removal by distillation is greatly improved, and the temperature of the liquid is reduced. Good viscosity of liquid during distillation operation while keeping it low It has been found that distillation can be carried out to an extent that does not affect the odor of the product while maintaining a favorable range.
  • the N-long-chain acetic acid amino acid when removing the lipophilic organic solvent from the organic layer containing N-long-chain acetic acid amino acid, the N-long-chain acetic acid amino acid is converted into a salt form, and is distilled under a constant temperature condition and during distillation. Maintain the solid content concentration in the liquid under a certain condition, or, under a certain temperature condition, when the organic solvent in the mixture is less than 5 wt%, and the N-long chain acid amino acid and water in the mixture are mixed. It was found that the ratio was kept within a certain range.
  • the present invention is as follows.
  • N-long-chain acylamino acid containing an inorganic salt From a mixed state of N-long-chain acylamino acid containing an inorganic salt and a medium substantially consisting of water and Yu-n-Sharibu, at a temperature of 35 ° C; —A method for producing an N-long-chain amic acid amino acid, which comprises a step of separating the impurities into an organic layer containing a long-chain amic acid and removing the impurities (washing step).
  • the method for producing an N-long-chain acetic acid amino acid according to the above, wherein the N-long-chain acetic acid amino acid containing the inorganic salt is obtained by the following steps:
  • Layer step) c From the organic layer containing N-long-chain acylamino acid obtained in the water washing step, at least 1/20 of the amount of carboxyl groups of N-long-chain acylamino acid is converted into salt, The organic solvent is distilled off under conditions that the temperature of the mixed solution does not exceed 90 ° C, and water is added during distillation to maintain the solid content concentration in the mixed solution at 5 to 50% by weight. The described method.
  • the organic solvent is distilled off by adding water to maintain the ratio of N-long-chain acylamino acid and water in the mixture in a weight ratio of 35/65 to 65/35. The method described above.
  • the present invention relates to an N-long-chain acylamino acid having an inorganic salt content of 1% by weight or less, a sharpness of 0.1 to 75% by weight 111, and / or a free fatty acid.
  • the present invention relates to an N-long-chain acetic acid amino acid having a content of 3.0% by weight or less, and a detergent or a cosmetic composition containing the N-long-chain acetic acid amino acid.
  • FIG. 1 illustrates the principle of the purification of N-long-chain acylamino acid in the present invention, wherein N-cocoyl-L-glucamic acid / Eu-shari-ni-bu / nor water as the amino acid is used. Indicates the composition in which the stratification occurs (the area surrounded by the line) (the scale on each axis in the figure is the weight fraction).
  • FIG. 2 is a schematic diagram of a spray evaporator.
  • the method for producing an N-long-chain acetyl acidic amino acid of the present invention comprises the following steps.c
  • the acylation reaction step comprises the steps of: mixing an acidic amino acid with water in a mixed solvent of water and a hydrophilic organic solvent. This is a step of condensing a long-chain fatty acid halide (acylation reaction) to produce a crude N-long-chain acetic acid amino acid.
  • the present inventors have focused on lower alcohols as a non-ketone hydrophilic solvent in which aldol condensation cannot occur.
  • the use of methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and sec-butanol is described in Japanese Patent Publication No. 51-386861.
  • the alcohol is an acylation reaction product on the acidic side.
  • the present inventors have confirmed that it is easy to form an ester with an amino acid and a long-chain fatty acid halide.
  • the mixed solvent of water / evening was used as the reaction solvent by using the evening solvent, it was surprisingly found that the above-mentioned ester was not produced at all under the conditions of the present invention. No generation of any impurities was confirmed.
  • the amount of inorganic salts is large, for example, when a 30% by weight aqueous solution of a salt of triethanolamine is used, turbidity is high at low temperatures and sometimes precipitates are formed.
  • the content of the inorganic salts in the N-long-chain acetic acid amino acid or a salt thereof according to the present invention is 1% by weight or less, preferably 0.5% by weight or less, more preferably 0% by weight or less, based on the N-long-chain carboxylic acid amino acid. It is preferable that the content be 1% by weight or less.
  • Yuichi Sharyb Yunoru also has advantages. If rectification is performed to separate the aldol condensate to recover and reuse the acetone, it must be recovered as high-purity acetone with substantially lower water content, but acetone is flammable. ⁇ Because it is highly flammable and easily creates explosive air, it must be carefully stored and handled when it is collected and reused. On the other hand, in the case of Yuichi Sharybe, it azeotropes with water, so even when it is recovered and reused, it becomes even more than 85/15 (weight ratio). Evening oil is not concentrated, and it is necessary to handle it at a moisture content of at least 15% by weight, so it is easier to store and handle than acetone.
  • a water / evening solvent mixture as a reaction solvent has an even greater advantage. That is, when water / shallow charcoal is used as the reaction solvent, water and / or charcoal charcoal are added to the organic layer obtained after the acid sedimentation layer, and N-long-chain acyl acid amino acid / quinol is added. It is possible to separate the aqueous layer and the organic layer only by adjusting the composition of the solvent / water within a predetermined range, whereby the inorganic salts in the organic layer can be removed.
  • a salting-out effect of for two-phase separation into an organic layer and an aqueous layer with an acid ⁇ layer in water / acetone solvent system is an inorganic salt of N a C l and N a 2 S 0 4 is present in a large amount It is assumed that Therefore, as long as the mixed solvent system is water / acetone, the organic layer is separated and washed unless a method of adding a high-concentration aqueous solution of sodium sulfate disclosed in Japanese Patent Application Laid-Open No. 3-279354 is used. In that case, which inevitably involves residual salts.
  • N-long-chain acetic acid amino acid is obtained.
  • N-long-chain acylamino acid or a salt thereof is used as a surfactant or the like, it is desirable to remove as much as possible the residue by using a conventional method such as distillation, but substantially It is inevitable that a small amount will remain.
  • Diacetone alcohol and mesityloxide which are considered to be derived from the acetate solvent, are also detected in N-long-chain acetyl acidic amino acids or salts thereof currently on the market.
  • the odor threshold of Yuichi Sharybe itself is high.
  • a 30% by weight aqueous solution of monoamine solution of N-cocoyl mono-L-glumic acid, one of N-long-chain sialic acid amino acids is used.
  • the odor threshold is 150 ppm by weight in this aqueous solution, that is, the evening shale content is 750 ppm by weight based on N-cocoyl-L-glutamic acid.
  • the content of the N-acyl acidic amino acid of the present invention at which the effect of masking the fatty acid smell of the fatty acid odor can be obtained is 0.1 to 750% by weight, preferably 0.1 to 750% by weight, based on the N-acyl acidic amino acid.
  • weight 111 more preferably 0.1 to: I 50 weight ppm.
  • This value corresponds to 0.02 to: 50 ppm by weight of L, 0.02 to 60 ppm by weight, 0.02 to 30 ppm by weight, respectively, in a 30% by weight aqueous solution of monotriethanolamine salt.
  • Aqueous solutions are virtually odor-free and can be a major industrial advantage.
  • the acidic amino acid used as a raw material is a monoaminodicarboxylic acid having two and one carboxyl groups and amino groups, respectively, in the molecule.
  • Has a methyl group or N-ethyl group It doesn't matter. It does not matter whether it is an optical isomer, for example, D-isomer, L-integral, or racemic.
  • -Aminopimelic acid monoaminosuberic acid, monoaminosebacic acid, pantothenic acid and the like.
  • they may be in the form of their alkali metal salts or amine salts.
  • the long-chain fatty acid halide used as a raw material is preferably any one of an acid chloride, an acid bromide or an acid iodide of a saturated or unsaturated fatty acid having 8 to 20 carbon atoms. It does not matter whether it is linear, branched or cyclic. Examples include caprylic acid, pelargonic acid, capric acid, pendecanoic acid, lauric acid, tridecanoic acid, myristic acid, pennodecanoic acid, noririmitic acid, margaric acid, stearic acid, nonadecanoic acid, and arachinic acid.
  • Halides of various straight-chain fatty acids 2-butyl-5-methylpentanoic acid, 2-sodiumbutyl-5-methylpentanoic acid, dimethyloctanoic acid, dimethylnonanoic acid, 2-butyl-15-methylhexanoic acid, methyldidecanoic acid , Dimethyldecanoic acid, 2-ethyl-3-methylnonanoic acid, 2,2-dimethyl-4-ethyloctanoic acid, methyldocosanoic acid, 2-propyl-1-methylnonanoic acid, methyltridecanoic acid, dimethyldodecanoic acid, 2-butyl-3-methylnonane Acid, methyltetradecanoic acid, ethyltridecanoic acid, propyldodecanoic acid Ptyryldecanoic acid, pentyldecanoic acid, hexylnonanoic acid, 2- (3-methylbutyl) -1
  • halides of fatty acids derived from natural fats and oils may be used, and any halides of mixed fatty acids containing 80% or more of the above-mentioned saturated or unsaturated fatty acids having 8 to 20 carbon atoms may be used in the production method of the present invention.
  • the molar ratio of halide / acid amino acid of the long-chain fatty acid is 1.05 or less, preferably 1.0 or less, and more preferably 0.98 or less. Above 1.0, fatty acid halides hydrolyze to produce free fatty acids.
  • the butanol used as the reaction solvent in the acylation reaction step in the production method of the present invention does not need to be of high purity, and may be a water-containing product, and may be the one recovered from the reaction purification system. Even bush can be used without purification.
  • the mixing ratio of the water and the mixture of water and butanol in the reaction is preferably in the range of 85/15 to 20/80 (volume ratio).
  • the charge concentration of the acidic amino acid in the acylation reaction step in the production method of the present invention is not particularly limited, but the viscosity of the reaction solution increases with time during the reaction, so that stirring and mixing are performed at a point near the end of the reaction.
  • the charge concentration should be as high as possible.
  • Examples of the alkaline substance used in the acylation reaction step of the present invention include inorganic bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide.
  • the pH is preferably maintained at 9 to 13.5, preferably in the range of 10 to 13. If the pH is lower than 9, the long-chain fatty acid halide does not condense with the acidic amino acid, and the amount of free fatty acids generated by hydrolysis increases, and even if the pH exceeds 13.5, it is substantially disadvantageous. Although no spots are generated, it is not preferable from the viewpoint of waste of resources because the amount of alkali more than necessary and the amount of acid consumed in the subsequent acid precipitation step increase accordingly.
  • the reaction temperature of the acylation reaction step in the production method of the present invention is not particularly limited, it can be generally said that the lower the reaction temperature is, the lower the production ratio of free fatty acid is. If the temperature is too low, the reaction solution becomes highly viscous during the reaction and cannot be mixed, or the product precipitates out during the reaction, depending on the type of N-long-chain acylamino acid produced and the concentration in the reaction solution. Therefore, the reaction temperature should be set within a range that does not cause such a situation. The reaction temperature may be changed over time during the reaction. Usually, the acylation reaction temperature is in the range of ⁇ 10 to 70 ° C., preferably in the range of ⁇ 10 to 20 ° C., and more preferably in the range of 15 to 10 ° C.
  • the reaction mode of the acylation reaction step in the production method of the present invention is such that after a predetermined amount of an acidic amino acid, an alkali and a reaction solvent are charged in a stirring tank, while continuously supplying a long-chain fatty acid halide, the pH is simultaneously adjusted.
  • a semi-batch method in which alkali is supplied together may be used, or an alkali aqueous solution of an acidic amino acid and a long-chain fatty acid halide may be simultaneously supplied after charging the reaction solvent.
  • the liquid in the stirring tank is subjected to the next step of acid precipitation.
  • the reaction solvent, the aqueous solution of the acidic amino acid and the long-chain fatty acid halide are continuously supplied to the reactor using a stirring tank or a tubular reactor while continuously supplying the reaction solvent, and the next step is performed.
  • a continuous method in which the acid precipitation step is performed may be used.
  • the condensation reaction between the acidic amino acid and the long-chain fatty acid halide is carried out with stirring or under a condition where the liquids are sufficiently mixed.
  • the stirring state is poor, the selectivity of the condensation reaction between the acidic amino acid and the long-chain fatty acid halide decreases, and the production of free fatty acids increases due to the hydrolysis reaction of the long-chain fatty acid halide.
  • the reason for this is that the reaction system becomes two-phase, the reaction proceeds at the interface of the long-chain fatty acid halide dispersed in the liquid, and the renewal of the interface is essential for maintaining the reaction selectivity. Guessed.
  • the stirring power When the stirring power is used as an index as a stirring condition, it is necessary to be 0.2 kW / m 3 or more. Although it is possible to obtain an N-long-chain acid amino acid with a lower stirring power, it is necessary to obtain an N-long-chain acid amino acid having a free fatty acid content of 3% by weight or less which is one embodiment of the present invention. Not enough.
  • Agitation power is preferably 0. 3 k W / m 3 or more, still more preferably 0. 5 kW / m 3 or more.
  • the acylation reaction solution is separated into two layers of an organic layer and an aqueous layer by adjusting the pH to 1 to 6 with a mineral acid such as hydrochloric acid or sulfuric acid. This is the step of acquiring the layer.
  • the generated N-long-chain acylate amino acid is present in the form of an alkaline salt.
  • N-length The reaction solution is separated into an organic layer and an aqueous layer while part or all of the carboxyl groups in the chain-chain acidic amino acids are converted into free acids.
  • the pH in the acid precipitation layer changes the dissociation state of the carboxyl groups and changes the separation state, that is, the weight ratio between the organic layer and the aqueous layer and the removability of inorganic salts. It is preferably carried out at 1 to 3, and more preferably at ⁇ 1 to 2.5.
  • the temperature of the acid precipitation layer is from 35 ° C to the boiling point of the hydrophilic organic solvent, for example, 80 ° C if the hydrophilic organic solvent is a solvent. Preferably it is 40 to 70 ° C.
  • the time required to reach phase separation equilibrium is prolonged, a considerable amount of inorganic salts remains in the organic layer even after the equilibrium is reached, and N-long-chain isacyl acid amino acids In some cases, no separation occurs depending on the concentration in the liquid. Since the boiling point of the azeotropic composition of water / Yuichi Shutter at normal pressure is around 80 ° C, boiling above 80 ° C causes boiling, so a layer separation under pressure is required, and special equipment is required. This is disadvantageous because it requires an installation.
  • the water washing step in the production method of the present invention is a step of reducing water-soluble impurities in the organic layer obtained in the acid precipitation layer step by transferring the impurities into the aqueous layer by a liquid-liquid extraction method.
  • the composition of N-long chain acidic amino acid / shallow butanol / water is adjusted by adding water and / or Yushiri Shaburunoru to the organic layer after the acid precipitation layer,
  • the extraction transfers water-soluble impurities in the organic layer, mainly inorganic salts formed in the reaction and acid precipitation steps, into the aqueous layer.
  • the concentration of the above three components was adjusted so that the N-long-chain acylamino acid concentration was 0.001 to 55% by weight, the Yuichi Sharyb concentration was 5 to 45% by weight, and the water concentration was 2%.
  • the composition By adjusting the composition to 0 to 99% by weight, liquid separation occurs. By using the separated layer of this solution, it is possible to remove the inorganic salt remaining in the organic layer containing the N-long-chain acylamino acid.
  • this segregation behavior is represented in a triangular diagram, taking the composition (weight fraction) of N-cocoil-L-glumic acid / Euichi-sharbeinol / water as an example.
  • the area surrounded by the line 1 (split area).
  • the mixture contains N-cocoyl-L-glucamic acid
  • the organic layer is separated into two phases, an organic layer and an aqueous layer. If the composition of each component is determined so as to fall within this region, the organic layer can be purified any number of times, and the inorganic salt in the organic layer has the desired content and The purification can be repeated until it is. This will be described in more detail using the example of FIG.
  • the scale of each axis in FIG. 1 is a weight fraction.
  • the composition of the organic layer after the acid precipitation layer is point A
  • the composition is divided into two layers, an organic layer and an aqueous layer, and the composition of each layer becomes point C and point D respectively.
  • the composition of the aqueous layer of the organic layer becomes the points F and G, respectively.
  • the content of the inorganic salts is not more than 1% by weight, preferably not more than 0.5% by weight, more preferably not more than 0.1% by weight, based on the N-long-chain acetyl acidic amino acid. .
  • the amount of the inorganic salts in the N-long-chain acid amino acid salt is more than 1% by weight based on the N-long-chain acid amino acid, when the N-long-chain acid amino acid salt is added to the liquid detergent Precipitation and turbidity occur at low temperatures.
  • the time required to reach the layer separation equilibrium becomes shorter as the concentration of the shallow refraction in the separation layer becomes higher. Preferably, it is higher.
  • the water washing temperature is 35 to 80 ° C, preferably 40 to 70 ° C.
  • the time to reach phase separation becomes longer, a considerable amount of inorganic salts remain in the organic layer even after the equilibrium is reached, and N-long-chain acid amino acids This is because there may be no separation at all or depending on the concentration in the liquid.
  • the boiling point of the azeotropic composition of water / Yuichi Shallow is near 80 ° C, boiling above 80 ° C causes boiling, so a layer is required under pressure and special equipment is required. Is disadvantageous.
  • the application of the washing step of the present invention has
  • the inorganic salt impurities can be similarly reduced to a desired level.
  • the solvent removal step in the production method of the present invention when removing the hydrophilic organic solvent from the organic layer containing the N-long-chain acetyl-acid amino acid, a part of the carboxyl groups of the N-long-chain acetyl-acid-amino acid is neutralized. Evaporate the solvent by evaporation (neutralization solvent evaporation) or without neutralization (unneutralization solvent evaporation).
  • alkali salt is not particularly limited. Alkaline metal salts with sodium, potassium, lithium, etc., alkaline earth metal salts with calcium, magnesium, etc., aluminum salts, zinc salts, ammonium salts, monoethanol salts Organic amine salts with min, diethanolamine, triethanolamine, triisopropanolamine and the like; and basic amino acid salts with arginine, lysine and the like.
  • an alkali or an aqueous solution thereof may be added.
  • the alkali is added so that 1/20 or more of the carboxyl group content in the N-long acid acid amino acid becomes an alkaline salt. If the ratio of the alkali salt is less than 1/20 of the carboxyl group content, the effect of addition of the alcohol is small and the fluidity of the mixed solution is not improved.
  • the alkali salt ratio is at least 1/10 of the carboxyl group content.
  • mixture temperature during distillation is not exceeding the 9 0 ° C To do. If the temperature exceeds 90 ° C, the hydrolysis reaction of N-long-chain acylamino acid or a salt thereof due to heat is accelerated, which causes deterioration of product quality.
  • the temperature should not exceed 80 ° C. More preferably, the temperature should not exceed 70 ° C. Considering the point of controlling the liquid temperature under such conditions, it is preferable to carry out the distillation so as to maintain a constant pressure under reduced pressure.
  • the pressure boiling point curve matches the pressure-one boiling point curve of the hydrophilic organic solvent / water system. Since N-long chain acidic amino acids do not participate in the pressure-boiling curve at all, the operating pressure can be determined from the pressure-boiling curve of the hydrophilic organic solvent / water system by determining the temperature of the mixture. In the production method of the present invention, water is also lost together with the hydrophilic organic solvent during the removal by distillation, and in some cases, means for preventing excessive concentration of the N-long-chain acyl amino acid is required.
  • water here, water includes cold water, hot water, and steam
  • water may be intermittently or continuously replenished to the solution, for example, during distillation.
  • the means for blowing steam is effective in terms of heat supply because it utilizes latent heat.
  • One of the important factors in the neutralization solvent distillation step of the present invention is to maintain the solid concentration in the liquid at the time of distillation at 5 to 50% by weight, for example, by the above-mentioned method. If the solid content concentration is higher than 50% by weight, the viscosity of the liquid may be increased and the liquid may be solidified. If the solid content is reduced below 5% by weight, the concentration of the hydrophilic organic solvent is reduced and the distillation efficiency is reduced, and if the solid content required as the final product is higher than this, further concentration is required, which is disadvantageous. is there. The solids concentration is preferably maintained between 20 and 40% by weight. More preferably, it is maintained at 25 to 35% by weight. Next, the unneutralized solvent distillation step will be described. In removing the hydrophilic organic solvent from the organic layer containing the N-long-chain acylamino acid, in this method, the solvent is distilled off without neutralizing the N-long-chain acylamino acid.
  • the weight ratio of N-long-chain acylamino acid to water is adjusted to 35/65 to 65, when the content of the hydrophilic organic solvent is 5 wt% or less in the solution. It is important to maintain the temperature in the range of 35/35 and maintain the solution temperature between 75 and 100 ° C.
  • the temperature of the mixture during distillation should not exceed 90 ° C.
  • the temperature should not exceed 80 ° C. More preferably, the temperature should not exceed 70 ° C. Control the liquid temperature under these conditions Considering this point, it is preferable to maintain a constant distillation pressure under reduced pressure.
  • water is also lost together with the hydrophilic organic solvent during the removal by distillation.
  • Means are needed to keep in the range of 65/65 to 65/35.
  • water may be intermittently or continuously replenished to the solution.
  • the means for blowing the water vapor is effective in terms of heat supply because it utilizes latent heat.
  • distilling off the solvent into the neutralized liquid can suppress the heat history, so the neutralized solvent distilling step is more preferable.
  • the following method is effective as a means for more effectively carrying out the neutralization and unneutralized solvent distillation steps of the present invention, particularly on an industrial level.
  • a liquid is extracted from the lower part of the evaporator, circulated and sent to a heat exchanger by a pump to bring the liquid to a predetermined overheated state, and then sprayed into the evaporator through piping provided at the upper part of the evaporator.
  • a method for evaporating a solvent which has the following features. 1) The vapor phase of the evaporator has one or more substantially cylindrical pipe ends installed facing the liquid surface, which are connected to the piping provided at the top of the can.
  • the flow forms of gas-liquid multiphase flows are classified, for example, as shown in the flow diagram of vertical gas-liquid two-phase flow in Chemical Engineering Handbook Revised 5th Edition, pages 272-273.
  • the flow form of the gas-liquid multiphase flow at the end of the pipe is an intermittent flow or an annular flow. Adjustment of the actual flow pattern is achieved by controlling the linear velocity of the liquid at the pipe end and the temperature difference (superheat) between the liquid temperature at the outlet of the superheater and the boiling point of the liquid at the operating pressure of the evaporator.
  • a thin film type is used.
  • An evaporator can also be used.
  • the thin-film evaporator examples include a falling-film evaporator, in which a liquid flows down into a liquid film and heated to evaporate the solvent, and the vapor and the concentrated liquid are separated by an evaporator.
  • a centrifugal thin film evaporator that spreads a thin film to form a thin film
  • a stirred thin film evaporator that forms a thin film of liquid on the heat transfer surface by removing the heat transfer surface with a stirring blade.
  • the hydrophilic organic solvent may be removed to such an extent that the fragrance of the product is not affected.
  • the content of the alcohol was 0.1 to 75 ppm by weight, more preferably 0.1 to 300 ppm by weight, and even more preferably 0.1 to 70 ppm by weight, based on the N-acyl acidic amino acid. Is 0.1 to: 150 ppm by weight.
  • the present invention also relates to an N-long chain acyl amino acid or a salt thereof, which will be described.
  • the production of free fatty acids can be substantially eliminated or can be suppressed to an extremely small amount in the production process of the N-long-chain amic acid amino acid of the present invention.
  • the obtained N-long-chain acetyl acidic amino acid is practically free of odor and has very low content of inorganic salts and high purity, and is extremely useful in industry.
  • the content of inorganic salts is 1% by weight or less based on the N-long-chain acid amino acid, and the content of the evening-shallow solvent is N-long-chain acid amino acid. 0.1 to 750 ppm by weight.
  • the amount of the inorganic salt is more than 1% by weight based on the N-long-chain acetic acid amino acid, a cosmetic composition containing the N-long-chain carboxylic acid amino acid salt in an aqueous solution. In the case of materials, precipitation or turbidity occurs at low temperatures.
  • the content of the inorganic salts is more preferably 0.5% by weight or less, and further preferably 0.1% by weight or less.
  • Such an N-long chain acyl amino acid or a salt thereof can be obtained by performing at least a water washing step in the above-mentioned production step.
  • the content of inorganic salts is 1% by weight or less based on the N-long-chain acid amino acid
  • the content of free fatty acid is N-long-chain acid amino acid.
  • N-long-chain acylamino acids or salts thereof having a free fatty acid content of 3.0% by weight or less based on the long-chain acylamino acids are not known to our knowledge.
  • the free fatty acid is more than 3.0% by weight based on the N-long-chain acetic acid amino acid
  • the aqueous solution of the N-long-chain carboxylic acid amino acid salt is added to the liquid detergent. In the case of such a cosmetic composition, precipitation and turbidity occur at low temperatures.
  • Free fatty acids Is preferably not more than 2.5% by weight, more preferably not more than 2.0% by weight.
  • Such an N-long-chain acetyl acid amino acid or a salt thereof can be obtained by performing at least an acylation reaction step, a water washing step and a solvent distillation step in the above-mentioned production steps.
  • the content of inorganic salts is 1% by weight or less based on the N-long-chain acyl amino acid, and 0.1-750 ppm by weight with respect to N-long-chain acid amino acid, and free fatty acid content of 3.0% by weight or less with respect to N-long-chain acid amino acid.
  • Such an N-long-chain acetyl acid amino acid or a salt thereof can be obtained by performing at least the acylation reaction step, the washing step, and the solvent distillation step in the above-mentioned production step.
  • the N-long-chain carboxylic acid amino acid of the present invention having an impurity content of a certain amount or less, such as an odorant derived from a hydrophilic organic solvent, an inorganic salt, or a free fatty acid, is far superior to conventional ones. Demonstrate performance.
  • N-long-chain-acid amino acids include raw materials for industrial detergents and treatment agents, raw materials for household (clothing, kitchen, residence, etc.) detergents, and raw materials for cosmetics. be able to.
  • the use of raw materials for cosmetics is a useful application that makes use of the low irritation characteristic of N-long-chain acylamino acid or its salt.
  • quasi-drugs include mouth fresheners, axillary odor inhibitors, powdery flour, hair restorer, hair removal Agents, hair dyes, permanent wave agents, bath agents, cosmeceuticals, medicated toothpastes, etc.
  • the cosmetics include cosmetic stones, facial cleansers (cream-paste, liquid 'jewel, granules) 'Powder, aerosol, etc.), cleansing cosmetics such as shampoos and rinses, hair dyes, hair treatments (including cream, mist, oil, geil and other forms and split ends) Hair setting agents (Hair oil, Set lotion, Power lotion, Pomade, Chick, Bottle oil, Hair spray, Hair mist, Hair liquid, Hair foam , Hair cosmetics, hair creams, hair creams, general creams (such as cleansing cream, cold cream, burnishing cream, hand cream, etc.) Shaving cream (after shaving cream, shaving cream, etc.), lotion (hand lotion, general lotion, etc.), cologne, lotion for shaving (afu yuichi shaving lotion, shaving lotion, etc.), cosmetic oil , Basic cosmetics such as packs, white powder (cream powder, solid powder, powder powder, talcum powder, paste powder, baby powder, body powder, water powder, etc.), powder, foundation (cream, liquid, solid, etc.),
  • Bath cosmetics etc. can be listed.
  • the product of the present invention is often used in the above-mentioned cleansing cosmetics, hair cosmetics, basic cosmetics and the like, and is particularly suitable for use in cleansing cosmetics. Further, the product of the present invention can be used in combination with various base materials usually used in cosmetics.
  • Amphoteric surfactants such as anionic surfactants, alkyl acids, al
  • Volatile and non-volatile oils such as ester oils, metal stones, straight silicone oils, modified silicone oils and other silicones, polyols such as glycerin, 1,3-butanediol, propanediol, polyethylene glycol, and trimethyl Humectants such as glycine, sorbitol, pyrrolidone carboxylate, lactate, hyaluronate, hydroxyethyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose hydroxyp Building trimethylammonio Moniumukurori Tsuchie one ether, methylcellulose, E chill cellulose, hydroxypropyl cellulose, methyl hydroxypropyl cellulose port one scan, soluble starch, Carboxymethyl starch, methyl starch, propylene glycol alginate, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl methyl ether, carboxyvinyl polymer, polyacrylate, guar gum, locusting
  • Thickening and foaming components such as oil-soluble high molecular weight, polyethylene glycol fatty acid ester, polyoxyethylene fatty acid ester methylglycoside, tetradecene sulfonate, etc., ethylenediaminetetraacetic acid and its salts, hydroxyethylenediamine triacetic acid and its Salts, sequestering agents such as phosphoric acid, ascorbic acid, succinic acid, gluconic acid, polyphosphates, and maleic acid salts; paraoxybenzoic acid esters; benzoic acid and its salts; phenoxyethanol, etc.
  • PH regulators such as preservatives, cunic acid, malic acid, adivic acid, glutamic acid, and aspartic acid; other anti-dandruff agents such as trichlorocarballide, salicylic acid, zinc pyrithione, and isopropylmethylphenol; benzophenone derivatives; Para-aminobenzoic acid Conductors, para-methoxycinnamic acid derivatives, salicylic acid derivatives and other ultraviolet absorbers, whitening agents such as alptin, kojic acid, ascorbic acid and their derivatives, sempri extract, cepharanthin, vitamin E and its derivatives, and blood circulation such as gamma-oryzanol Accelerators, local tinctures such as pepper tincture, tincture tincture, cantaris tincture, nicotinic acid benzyl ester, nutrients such as various vitamins and amino acids, female hormones, hair root activators, glycyrrhetinic acid,
  • the combined use with fatty acid diethanolamide, polyoxyethylene dioleic acid methyl glucoside, polyethylene glycol distearate, tetradecene sulfonate, myristate, and myristyl dimethylamine increases viscosity and foaming power. It is useful, and is extremely useful in that the combined use with each zwitterionic surfactant can further reduce irritation.
  • the analysis means used in the embodiments of the present invention are as follows.
  • the content of the inorganic salt is indicated by a value based on the weight of N-long-chain acid amino acid.
  • C mouth
  • HPLC High performance liquid chromatography
  • the detector was a hydrogen flame ionization type detector
  • the column was a glass column with an inner diameter of 3 mm
  • the liquid phase PEG20M was 20% as a filler
  • the carrier was Chromo sor.
  • bW AW—DMCS 60 Using a ⁇ 80 mesh, the injection temperature is 200 ° C, the column temperature is 120 ° C for 0 to 10 minutes, and then the temperature is raised to 200 ° C at 30 ° C / min, The measurement was performed at 0 ° C for 15 minutes.
  • the amount of evening-shallow residue is shown based on the amount of N-long-chain acetic acid amino acid.
  • the odor of the aqueous solution of N-long-chain acylamino acid salt or the composition of shaumbu prepared using the aqueous solution of N-long-chain acylamino acid salt was evaluated using a glass screw tube (diameter 35 mm). x height: 78 mm) and the temperature of the solution was kept at room temperature and at 80 ° C with 4 healthy men and 1 female. Regarding the evaluation results in the examples, those with no odor such as fatty acid odor and evening odor were identified by ⁇ , and those with the odor by even one person are indicated by X.
  • the solid content of 30% by weight of the aqueous solution of triethanolamine salt is cooled at a temperature of ⁇ 18 ° C or less.
  • the temperature at which turbidity is observed in the solution or when a white precipitate appears was measured.
  • This test has a very high correlation with the low-temperature stability of a cosmetic composition mixed with a liquid detergent or the like.
  • the shampoo composition was blended with the composition shown in Table 2 and stored at 5 ° C, and after 1 day, 1 week, 1 month, 3 months and 6 months, the presence or absence of turbidity was examined.
  • the method of the present invention will be described in detail with reference to Examples.
  • Table 1 shows the separation data in the water washing step in an N-long-chain-acid-acid-amino-acid / shutter-butanol / water mixture system as an example.
  • N-Cocoil-L-Gluminic acid / Yuichi shaributanol Z The composition of each layer when separated into organic layer and aqueous layer in water system.
  • Table 2 shows the composition of the obtained organic layer.
  • N-cococo Prepare a mixture of 33/25/42 (each% by weight) with dilu-L-gluminic acid / Yuichi Sharybe / Noun / water, stir at a temperature of 65 ° C for 20 minutes. did. After the stirring was stopped, the mixture was allowed to stand at 65 ° C. for 20 minutes to separate into an organic layer and an aqueous layer.
  • Table 2 shows the composition of the organic layer separated therefrom and the remaining amount of inorganic salts.
  • Triethanolamine is added to the organic layer so that 50% of the carboxyl groups of N-cocoyl-L-glucamic acid in the separated organic layer are in the form of a salt, and the solid content is further reduced. Pure water was added so as to be 30% by weight, followed by stirring and mixing.
  • Example 2 The same operation as in Example 1 was carried out except that the temperature in the acid precipitation step was set at 50 ° C. for 25 minutes in Example 1, and the temperature was set at 50 ° C. in the water washing step and left for 30 minutes. Carried out. After layer separation, the organic layer was separated and obtained.
  • potassium hydroxide was added to the organic layer so that 75% of the carboxyl group of N-cocoyl-L-glucamic acid in the separated organic layer was in the form of a salt. Then, pure water was added so as to be 28% by weight, and the mixture was stirred and mixed. Then, the solvent was distilled off under the conditions shown in Table 2.
  • the liquid temperature reached 52 ° C. 12 hours after the start of the distillation, and the distillation was terminated to obtain an aqueous solution of potassium N-cocoyl-L-glutamic acid.
  • the steps up to the water washing step were performed under the same conditions as in Example 1 to obtain an organic layer.
  • the obtained organic layer Further, add water and water, and adjust the composition to 29/18/53 with N-cocoil-L-gulminic acid and water / water. ) was prepared, the temperature was adjusted to 65 ° C, and the mixture was stirred for 20 minutes. 20 minutes after stopping stirring
  • a 25% aqueous sodium hydroxide solution is added to the organic layer so that 75% is in the form of a salt, and pure water is further added and mixed with stirring so that the solid content is 25% by weight.
  • the process was performed under the conditions shown in Table 2.
  • the water washing step was performed up to the second time under the same conditions as in Example 3 to obtain an organic layer.
  • To the obtained organic layer weight was further added evening water and water, and the composition was 19-27 / 54 (N-cocoyl-L-glucamic acid / water-sharing water / water). % By weight), the temperature was adjusted to 65 ° C., and the mixture was stirred for 20 minutes. After the stirring was stopped, the mixture was allowed to stand at 65 ° C for 20 minutes to separate into an organic layer and an aqueous layer. After layer separation, the organic layer was separated and obtained.
  • Triethanolamine is added to the organic layer so that 50% of the carboxyl group of N-cocoyl-L-glucamic acid in the separated organic layer is in the form of a salt, and the solid content is 30% by weight. And pure water was added and mixed with stirring.
  • Fig. 2 shows an example of a spray evaporator.
  • the equipment consists of (1) evaporator (inner diameter 300mm, height 700mm), (2) pump for circulating liquid, (3) heat exchanger, (4) spraying heated gas-liquid multiphase flow to evaporator It consists of a nozzle (4 mm inside diameter at the pipe end), (5) a condenser for condensing evaporative gas, and (6) a distillate tank.
  • TI is a temperature indicator
  • FI is a flow indicator.
  • the liquid is circulated by a pump from the lower part of the evaporator and introduced into the heat exchanger.
  • the liquid exiting the heat exchanger is overheated and approaches the nozzle end And gradually evaporates into a gas-liquid multiphase flow.
  • Distillation can be performed in a foaming solution in a non-foaming state.
  • the pressure was 163 mmH: the linear velocity of the liquid at the end of the nozzle was about 1.5 m / sec, and the superheat of the liquid was about 20 ° C.
  • Vacuum distillation was performed while adding pure water so as to maintain the weight%. 3.5 Hr after the start of distillation, the liquid temperature reached 62 ° C., and the distillation was terminated. Thus, an aqueous solution of N-cocoyl-L-glucamic acid triethanolamine was obtained.
  • the water washing step was performed up to the second time in the same manner as in Example 3, and hydroxylation was performed so that 75% of the carboxyl groups of N-cocoyl-L-glucamic acid in the separated and obtained organic layer were in the form of a salt. Potassium was added to the organic layer, and pure water was further added so as to have a solid content of 28% by weight, followed by stirring and mixing. Then, a neutralizing solvent distillation step was performed as follows. Using the same apparatus as in Example 4, the same operation as in Example 4 was performed except that the pressure condition was 83 mmHg. 3.5 Hr after the start of the distillation, the liquid temperature reached 46 ° C, and the distillation was terminated. Thus, an aqueous solution of N-cocoyl- 1 L-potassium glutamate was obtained.
  • the water washing step was performed up to the second time in the same manner as in Example 3 so that 75% of the carboxyl group of N-cocoyl-L-glucamic acid in the separated and obtained organic layer was in a salt form.
  • % Sodium hydroxide aqueous solution was added to the organic layer, and pure water was further added so as to have a solid content of 25% by weight, followed by stirring and mixing. Then, a neutralizing solvent distillation step was carried out as follows. .
  • Example 4 Using the same apparatus as in Example 4, the same operation as in Example 4 was performed except that the pressure condition was set to 254 mmHg. 3.5 Hr after the start of the distillation, the liquid temperature reached 72 ° C, and the distillation was terminated. Thus, an aqueous solution of N-cocoyl-l-glutamic acid sodium salt was obtained.
  • Example 2 The same procedure as in Example 1 was repeated except that cocoyl chloride was replaced with lauroyl chloride, and the same procedure was followed up to the washing step.
  • the N-lauroyl-L-glucamic acid in the organic layer separated and obtained was Toluene-lamine is added to the organic layer so that 50% is in the form of a salt, and pure water is further added so as to have a solid content of 30% by weight, followed by stirring and mixing.
  • the distillation step was performed as follows.
  • Example 4 Using the same apparatus as in Example 4, the same operation as in Example 4 was performed except that the pressure condition was set to 149 mmHg. 4 Hr after the start of the distillation, the liquid temperature reached 60 ° C., and the distillation was terminated. Thus, an aqueous solution of N-lauroyl-L-glutamic acid trienoamine salt was obtained.
  • the solvent distillation step was performed as follows.
  • Example 4 Using the same apparatus as in Example 4, the same operation as in Example 4 was performed except that the spray nozzle of the spray evaporator had a tube end inner diameter of 10 mm and the pressure was 27 O mmHg.
  • the weight ratio of N-cocoyl mono-L-glutamic acid to water was 55/45, and the concentration of sulfur in the liquid was 4.2 wt% (in liquid).
  • the liquid temperature at this time was 68 ° C.
  • the weight ratio of N-cocoyl-L-glutamic acid to water is 53/47, and the concentration of the solvent in the liquid is 5 ppm by weight (the concentration in the liquid).
  • the liquid temperature reached 73 ° C., and the distillation was completed, to obtain a mixed liquid containing 53% by weight of N-cocoyl-L-glutamic acid. This was dried to obtain a white solid of N-cocoyl-L-glucamic acid.
  • the solvent distillation step was performed as follows. Using the same apparatus as in Example 4, the same operation as in Example 4 was performed except that the spray nozzle of the spray evaporator was set to a tube end inner diameter of 10 mm and the pressure was set to 356 mmHg.
  • the spray nozzle of the spray evaporator was set to a tube end inner diameter of 10 mm and the pressure was set to 356 mmHg.
  • the weight ratio of N-cocoil / L-glucamic acid to water was 40/60, and the concentration of the sulfur in the liquid was 2.Owt% (in the liquid).
  • the liquid temperature at this time was 75 ° C.
  • the weight ratio of N-cocoyl-L-glucamic acid to water is 41/59
  • the concentration of sorbin in the liquid is 6 ppm by weight (concentration in liquid)
  • the temperature reached 80 ° C., and the distillation was completed to obtain a mixed solution containing 41% by weight of N-cocoyl-L-glutamic acid. This was dried to obtain a white solid of N-cocoyl-L-glucamic acid.
  • the solvent distillation step was performed as follows.
  • Example 4 Using the same apparatus as in Example 4, the same operation as in Example 4 was performed except that the spray nozzle of the spray evaporator was set to a tube end inner diameter of 1 Omm and the pressure was set to 434 mmHg.
  • the spray nozzle of the spray evaporator was set to a tube end inner diameter of 1 Omm and the pressure was set to 434 mmHg.
  • the weight ratio of N-cocoyl-L-glutamic acid to water was 60/40, and the concentration of the sulfur in the liquid was 2.5 wt% (in the liquid).
  • the liquid temperature at this time was 81 ° C.
  • the weight ratio of N-cocoyl-L-glutamic acid to water is 62/38
  • the concentration of the residue in the liquid is 6 ppm by weight (the concentration in the liquid)
  • the liquid temperature is 87 °
  • the mixture became C and the distillation was completed to obtain a mixed solution containing 62% by weight of N-cocoyl-l-glutamic acid. This was dried to obtain a white solid of N-cocoyl-L-glucamic acid.
  • Example 1 the cocoyl chloride was changed to lauroyl chloride in the acylation reaction step, and the temperature was set to 50 ° C. in the water washing step. Thereafter, the solvent distillation step was performed as follows. Using the same apparatus as in Example 4, the same operation as in Example 4 was performed except that the spray nozzle of the spray evaporator was set to a tube end inner diameter of 10 mm and the pressure was set to 234 mmHg. When the liquid was sampled 2 hours after the start of distillation, the weight ratio of N-lauroyl-L_glutamic acid to water was 51/49, and the concentration of the phenol in the liquid was 3.5 wt% (concentration in the liquid). The liquid temperature at this time was 64 ° C.
  • the weight ratio of N-lauroyl-L-glucamic acid to water is 50/50, and the concentration of phenol in the liquid is 5 wt ppm (concentration in liquid)
  • the liquid temperature reached 70 ° C., and the distillation was terminated to obtain a mixed liquid containing 50% by weight of N-lauroyl-L-glutamic acid. This was dried to obtain a white solid of N-lauroylu L-glutamic acid.
  • Example 1 sodium L-gluformate monohydrate and its amount in the acylation reaction step were set to 1028 g (7.72 mol) of L-aspartic acid, and the temperature of the acid precipitation step and the temperature of the water washing step were changed.
  • the procedure up to the water washing step was performed under the same conditions as in Example 1 except that the temperature was changed to 50 ° C. Thereafter, the solvent distillation step was performed as follows.
  • Example 4 Using the same apparatus as in Example 4, the same operation as in Example 4 was performed except that the spray nozzle of the spray evaporator had a tube end inner diameter of 10 mm and the pressure was 27 OmmHg.
  • the solvent distillation step was performed as follows.
  • Example 1 except that the solvent used in the acylation reaction step was changed to acetone, the amount of pure water used for charging the reaction solution was set to 2,405 g, and the amount of acetone was set to 2,312 ml.
  • the acylation reaction step was performed in the same manner as in Example 1. 20 L of water was added to the obtained reaction mixture, the pH of the solution was adjusted to 1 by adding 75% sulfuric acid dropwise, and the precipitated crude crystals of N-cocoyl-1 L-glutamic acid were filtered and dried. .
  • Example 4 Using the same apparatus as in Example 4, the same operation as in Example 4 was performed except that the spray nozzle of the spray evaporator had a tube end inner diameter of 10 mm and the pressure was 27 OmmHg.
  • the weight ratio of N-cocoil / L-glumic acid to water was 53/47, and the concentration of the liquid in the liquid was 4.lwt% ( The liquid temperature at this time was 68 ° C.
  • the weight ratio of N-cocoyl-L-glutamic acid to water was 53/47, the concentration of sulfur in the solution was 5 ppm by weight (the concentration in the solution), and the temperature of the solution When the temperature reached 73 ° C, the distillation was terminated, and a mixed solution containing 53% by weight of N-cocoyl-L-glutamic acid was obtained. This was dried to obtain a white solid of N-cocoyl-L-glutamic acid. Almost no odor derived from the acetone condensate was felt in these crystals.
  • the solvent was distilled off from this mixture under the same conditions as in the solvent distillation step of Example 1. After 12 hours from the start of distillation, the liquid temperature reached 78 ° C., and the distillation was terminated. An aqueous solution of triethanolamine salt of amino acid was obtained. It had a high content of free fatty acids and inorganic salts.
  • Example 1 the solvent tertiary solvent was used as the acetone in the acylation reaction step, the amount of pure water used for preparing the reaction solution was 2,405 g, and the amount of acetone was 2,312 ml.
  • the procedure up to the acid precipitation step was performed in the same manner as in Example 1 except that the temperature was set to 50 ° C. in the acid precipitation layer step. Acetone and water were added to the obtained organic layer, and the same mixture composition as in the water washing step of Example 1, N-cocoyl-L-glutamic acid / acetone Z water was added to 33/25/5/42 (each weight%). ), Stirred at 50 ° C. for 20 minutes, and allowed to stand still for 60 minutes, but no layer separation occurred.
  • This mixture was subjected to solvent distillation in the same manner as in Example 1, except that the pressure was changed to normal pressure, and the solvent temperature was reduced to 15 Hr after the start of distillation.
  • the distillation was completed at 100 ° C., and a solid solution of 30% by weight] ⁇ -cocoyl-L-glutamic acid triethanolamine aqueous solution was obtained. It had a high content of free fatty acids and inorganic salts and smelled like an acetone condensate.
  • Example 2 The same procedure as in Example 1 was carried out up to the acid precipitation step, and 25% of the carboxyl group of N-cocoyl-L-glutamic acid in the obtained organic layer was converted to a salt form so that 25% An aqueous sodium hydroxide solution is added to the organic layer, and pure water is further added so as to have a solid content of 25% by weight.
  • the solvent distillation step is performed under the following conditions. Performed the same operation as in Example 1. Vacuum distillation was performed under a pressure of 187 mmHg without adding pure water.
  • the concentration progressed, the viscosity of the solution increased, and eventually the solution solidified into a gel.
  • the solid content concentration was 55% by weight, and the residue was 5% by weight based on N-cocoyl-L-glutamic acid.
  • the process up to the acid precipitation step was performed in the same manner as in Example 1, and the obtained organic layer was heated under reduced pressure using a 10 L glass container without adding water during distillation. Distillation removal of knol and water was performed. On the way, while the liquid was in a foaming state and the pressure was adjusted between 40 mmHg and normal pressure, the liquid temperature reached 105 ° C after 15 Hr of the distillation, and the distillation was terminated.
  • N-cocoyl-L-glucamic acid is added so that 50% of the carboxyl groups of N-cocoyl-L-glucamic acid in the solution are in the form of a salt, and the solid content is further reduced to 30% by weight.
  • an aqueous solution of N-cocoyl- 1-L-glutamic acid triethanolamine salt was obtained.
  • the yield of N-cocoyl-L-glutamic acid (as an acid) was 92.3%
  • the concentration of phenol was 80 weight ppm
  • the free fatty acid content was 6.5 weight%.
  • the acid precipitation layer process was performed under the same conditions and method as in Example 1 except that the salted cocoyl was changed to salted laucoyl in Example 1, and a 10 L glass container was obtained from the separated and obtained organic layer.
  • the mixture was heated under reduced pressure, and water was removed during distillation. On the way, the liquid was in a foaming state, and while adjusting the pressure between 40 mmHg and normal pressure, the liquid temperature reached 110 ° C after the distillation started, and the distillation was completed.
  • the odor function test of the aqueous solution of N-long-chain acetyl acid amino acid salt produced in the above Examples and Comparative Examples was carried out at room temperature and 80 ° C. by the method shown in (e) above.
  • the N-cocoyl-L-glucamic acid or N-lauroyl-L-glucamic acid obtained in Examples 8 to 13 was prepared such that 50% of the carboxyl groups were in a salt form. Triethanolamine was added thereto, and pure water was further added so that the solid content became 30% by weight to prepare a 30% by weight solid amine aqueous solution of triethanolamine salt.
  • Example 4 Example 7, Comparative Example 1, Comparative Example 2, Comparative Example 4, Comparative Example 5, Comparative Example 5 and the aqueous solution of N-long-chain acylic acid amino acid salt obtained in Comparative Example 6, and Example 8, Triethanolamine was added to the products prepared in Examples 10, 11 and 13 so that 50% of the carboxyl groups of the N-long-chain acylamino acid in the liquid were in a salt form. Further, a low-temperature stability test was performed on the drug substance described in (v) above using a triethanolamine salt aqueous solution obtained by adding pure water so that the solid content became 30% by weight.
  • the shampoo compositions shown in Table 5 were blended in the following manner using the products manufactured in Example 1, Example 4, Comparative Example 2, and Comparative Example 6.
  • the shampoo composition solution thus obtained was stored at 5 ° C., and after 1 day, 1 week, 1 month, 3 months and 6 months, the presence or absence of turbidity was examined.
  • the shampoo composition using the compositions of Examples 1 and 4 was transparent even after 6 months, whereas the shampoo composition using the compositions of Comparative Examples 2 and 6 was 1 day later. At that time, a considerable amount of turbidity was observed, and the original properties of the product were significantly impaired. Further, an odor sensory test was carried out at room temperature and at 80 ° C. using the shampoo composition liquid by the method shown in (e) above.
  • the shampoo composition liquids of Examples 1, 4 and Comparative Example 6 had an odor result of ⁇ , while those of Comparative Example 2 had an odor result of X.
  • the production method of the present invention is a simple and industrially stable method for producing an N-long-chain acyl-amino acid.
  • the N-long-chain acetic acid amino acid or a salt thereof produced according to the present invention has substantially no odor, and becomes turbid when stored in a liquid detergent or a cosmetic composition, particularly during long-term storage at a low temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)

Description

明 細 書
N—長鎖ァシル酸性アミノ酸の製造方法 技術分野
本発明は N—長鎖ァシル酸性アミノ酸又はその塩、 及びその簡易な製造方法に 関するものである。 詳しくは、 無香料分野にも使用できるほど実質的に臭気がな く、 無機塩等の水溶性不純物や反応副生物である遊離脂肪酸の量を低減し、 また、 液体洗浄剤に配合した場合でも沈殿や濁りを生じさせることのない洗浄剤又は香 粧品組成物の製造に適した N—長鎖ァシル酸性アミノ酸に関する。
背景技術
従来、 N—長鎖ァシル酸性アミノ酸のアミン塩又はアルカリ金属塩は、 その界 面活性作用から界面活性剤や抗菌剤として広く利用されており、 特に洗剤、 及び 医薬部外品 ·化粧品などの香粧品分野での利用が多く、 直接人体に接触する場合 も多いため、 使用者に不快感をもたらすようなものであってはならない。 このよ うな分野では最終製品に濁りが生じないことが要求される場合が多く、 また最終 製品の香りが重要な商品価値をもたらす場合も多い。 そのためこのような分野で N—長鎖ァシル酸性アミノ酸又はその塩を使用する際には、 最終製品に濁りを引 き起こすような不純物や、 最終製品の香りに影響を及ぼすような不純物を極力低 減させることが求められている。
N—長鎖ァシル酸性アミノ酸を製造する方法として、 U S— A— 3, 7 5 8 , 5 2 5公報には、 反応溶媒として親水性有機溶媒 1 5〜 8 0容量%と水 8 5〜 2 0容量%からなる混合溶媒を使用し、 アルカリの存在下で、 酸性アミノ酸と長鎖 脂肪酸ハロゲン化物とを縮合反応させ、 反応終了後反応液を鉱酸で p H 1に調整 して N -長鎖ァシル酸性アミノ酸の粗結晶を析出させ、 ろ過、 洗浄により親水性 有機溶媒を除去して N—長鎖ァシル酸性アミノ酸を得る方法が開示されている。 しかしこの方法で得られた N—長鎖ァシル酸性アミノ酸は無機塩の除去が不十分 であるだけでなく、 上記のような N—長鎖ァシル酸性ァミノ酸の分離法は設備、 操作ともに工業的ではない。 特開昭 5 1 - 1 3 7 1 7号公報には、 水と親水性有機溶媒との混合溶媒中、 ァ ル力リの存在下で酸性ァミノ酸と長鎖脂肪酸ハロゲン化物とを反応させて得られ る反応液を、 4 0 °Cから該親水性有機溶媒の沸点までの温度で鉱酸を用いて p H 1 ~ 6に調整することにより、 水層と生成物を含む有機層とに分層し、 次いで有 機層から親水性溶媒を除去して N—長鎖ァシル酸性アミノ酸を分離取得する方法 が開示されている。 しかし、 この方法では無機塩含有量は 1〜2 %にしか低減し ておらず、 また溶媒に由来する臭気物質の除去も不十分である。 具体的に実施例 には、 有機層から真空加熱により大部分のアセトンを除去した後、 残渣に水を加 え 6 5 °Cで撹拌しながら空気を液面に吹きつけることにより残余のァセトンを除 去するとの記載がある。 しかしながら、 この空気を液面に吹き付ける程度の脱溶 媒手法では残留するァセトンの完全な除去や後述する高沸点臭気物質の除去は困 難である。
さらに U S— A— 3 , 7 5 8 , 5 2 5公報及び特開昭 5 1— 1 3 7 1 7号公報 と同じ出願人による特開平 3— 2 8 4 6 8 5号公報には、 N—長鎖ァシル酸性ァ ミノ酸中に残存し製品の臭いの原因となる物質としてァセトンゃァセトンのアル ドール縮合物であるジァセトンアルコールゃメシチルォキシドを挙げており、 特 開昭 5 1— 1 3 7 1 7号公報記載の方法を用いてもこれらの臭気物質を完全に除 くことができず、 N—長鎖ァシル酸性アミノ酸中に残存し、 製品の臭いの原因と なると記載されており、 そのような前提の下で、 これらの臭気物質及び塩類を逆 浸透膜により N—長鎖ァシル酸性ァミノ酸塩水溶液から除去することが開示され ている。 しかしこの方法は、 高価な膜分離装置を使用する点で不利であること、 濃度管理、 膜管理等の運転管理に煩雑さが伴うことから工業的に簡易な方法であ るとは言えない。
また、 特開昭 5 0— 5 3 0 5号公報には、 アミノ酸と長鎖脂肪酸ハロゲン化物 とをアルカリの存在下で縮合させる際に、 反応溶媒として含水低級アルコールを 用いることが開示されており、 含水低級アルコールとして、 メタノール、 ェ夕ノ ール、 n—プロパノール、 イソプロパノール、 n—ブ夕ノ一ル、 イソブ夕ノール、 及び s e c—ブ夕ノールが限定的に列挙されている。 しかし上記アルコールはい ずれも 1級又は 2級アルコールであり、 液の p Hを酸性にする工程において、 生 成物の N—長鎖ァシル酸性ァミノ酸とこのアルコール溶媒との間で脱水縮合反応 が起こり、 エステルが生成してしまう。 またアルコール溶媒は、 原料の長鎖脂肪 酸ハロゲン化物が加水分解して副生する遊離脂肪酸とも fl兌水縮合反応を起こしェ ステルを生成する。 このように生成したエステルは N—長鎖ァシル酸性アミノ酸 からの分離除去が困難な化合物である。
特閧平 7— 2 7 4 7号公報でも膜分離プロセスが提案されているが、 特開平 3 - 2 8 4 6 8 5号公報記載の方法と同様に不利な点を有している。 特開平 7— 2 7 4 7号公報の比較例では得られた N—長鎖ァシル酸性アミノ酸が含まれている 有機層の直接濃縮が記載されているが、 この例ではその過程において大幅に遊離 脂肪酸の量が増加すること、 及び親水性有機溶媒が除去困難であることが実証さ れている。
また特開平 3— 2 7 9 3 5 4号公報ではアセトンとイソプロパノールからなる 親水性有機溶媒と水との混合溶媒を用いることにより、 アセトン単独溶媒を用い たのでは多量に副生するジァセトンアルコールゃメシチルォキシドのような臭気 成分の生成を抑制する反応方法、 また反応液を酸性化後、 晶析分離して得られた 結晶を親水性有機溶媒に溶解し、 高濃度の硫酸ナトリゥム水溶液を添加した後、 有機層と水層に分層する方法を開示している。 しかしこの方法では、 一旦晶析分 離した結晶を再溶解する工程が煩雑であること、 多量の硫酸ナトリウムを使用す る限りそれの製品への混入が避けられないこと、 また高濃度の硫酸ナトリゥムを 含む廃液の処理が必要なことが問題となる。 さらに、 親水性有機溶媒としてァセ トンとイソプロパノールの混合溶媒を用いたとしても、 除去が不要な程度にジァ セトンアルコールやメシチルォキシドが低減する訳ではなく、 依然としてこれら の臭気成分の除去は必須である。 また有機層から有機溶媒を除去する方法につい ては実施例中にも真空加熱による除去以外に何ら具体的な方法の記載がなく、 得 られた N—長鎖ァシル酸性アミノ酸中のァセトン縮合物の量も痕跡量であると記 述されているだけで、 最終製品の香りに影響を及ぼさない程度に除去されている かどうかは不明である。
以上のように、 実質的に臭気が無く、 無機塩等の水溶性不純物及び遊離脂肪酸 の低減された N—長鎖ァシル酸性アミノ酸、 及びその簡易な製造方法は今までに 知られていなかった。
このように、 従来の方法で得られた N—長鎖ァシル酸性アミノ酸又は塩は、 反 応溶媒由来の副生物による臭気が避けられず、 無機塩類や遊離脂肪酸といつた不 純物を含有しているため、 無香料系での配合には用いることができなかったり、 洗浄剤等の製品に配合したとき特に低温下での保存の際に濁りや沈殿を生ずると いう問題があった。
発明の開示
こうした状況の下で、 本発明の目的は、 製品の香りに影響せず、 かつ低温安定 性に優れた N—長鎖ァシル酸性アミノ酸を提供することであり、 また、 該 N—長 鎖ァシル酸性アミノ酸の製造方法を提供するものである。
一般に親水性有機溶媒と水との混合溶媒を反応溶媒として用い、 アル力リの存 在下に酸性ァミノ酸と長鎖脂肪酸ハロゲン化物とを縮合させて N—長鎖ァシル酸 性アミノ酸を生成させること (ァシル化反応) によって得られた反応液を、 鉱酸 で p Hを 1 ~ 6にすることにより有機層と水層とに分層し N—長鎖ァシル酸性ァ ミノ酸を含む有機層を取得することができる (酸沈分層工程) が、 ここで得られ る N—長鎖ァシル酸性アミノ酸は無機塩類の除去が不十分である。
本発明者らは、 前記従来技術の課題を克服すべく鋭意検討した結果、 N—長鎖 ァシル酸性ァミノ酸と、 少なくとも夕一シャリーブ夕ノール及び水を含む媒体と の混合液は、 3成分の組成によって水層と N—長鎖ァシル酸性ァミノ酸を含む有 機層とに分層すること、 これによつて N—長鎖ァシル酸性アミノ酸中に残存する 無機塩類を水層に移行させ除去できることを見出した (以下、 この操作を水洗と 称す) 。 従って、 無機塩類を含有する N—長鎖ァシル酸性アミノ酸に夕一シャリ ーブタノ一ル及び水を添加して 3成分系とし、 その組成を適宜選択することで、 分層除去処理を繰返し実施することにより所望の無機塩類含有量を達成すること が可能である。
本発明者らは、 上記水洗工程で用いる夕一シャリ一ブ夕ノールを、 N—長鎖ァ シル酸性アミノ酸製造のためのァシル化反応工程の段階から反応溶媒として用い ることによりさらに利点が得られることを見出した。 即ち、 ァシル化反応時に夕 ーシャリーブ夕ノール/水の混合溶媒を用いてァシル化反応を行った場合、 先行 技術にあるァセトン /水混合溶媒を反応溶媒とした場合に生成するアルドール縮 合物のような臭気物質の生成が全く見られないことを見出した。
N—長鎖ァシル酸性アミノ酸の製造に用いた有機溶媒及び有機溶媒由来の不純 物は、 得られた N—長鎖ァシル酸性アミノ酸を界面活性剤などに利用する場合、 可能な限り除去することが望まれるが、 実質的には微量残存してしまう。 実際、 現在市場に流通している N—長鎖ァシル酸性アミノ酸又はその塩の中にも、 ァセ トン溶媒由来と考えられるジァセトンアルコールゃメシチルォキシドが検出され る。 これらジァセトンアルコールやメシチルォキシドが微量でも悪臭の原因とな るのは先述したとおりである。 また、 これらの臭気物質を可能な限り除去した場 合であっても、 N—長鎖ァシル酸性アミノ酸又はその塩には脂肪酸臭のような臭 気が残存し、 それ故無香料化粧品等への配合が困難であつた。
従って、 夕一シャリーブ夕ノールを反応溶媒に用いた場合、 アセトンを用いた 場合のようなアルド一ル縮合物などを伴わないために、 製品中に残留する臭気物 質としては夕一シャリーブ夕ノール自体のみを考慮すればよい。 夕一シャリーブ 夕ノールの臭気閾値は、 アセトンの縮合物であるジアセトンアルコールやメシチ ルォキシドに比べるとはるかに高く、 従って臭気の管理から見て除去の負荷もァ セトンに比べ夕一シャリーブ夕ノールの場合は、 はるかに小さいと言える。 従来より、 N—長鎖ァシル酸性アミノ酸又はその塩を液体洗浄剤等に配合した 場合、 特に該配合組成液を 5 °C程度の低温下で静置した場合に起こる濁りや沈殿 の大きな原因は、 N—長鎖ァシル酸性アミノ酸塩中の遊離脂肪酸や無機塩類であ り、 これらは原料からの持ち込みによるもの、 又は N—長鎖ァシル酸性アミノ酸 塩の製造工程において生成するものである。 特に、 遊離脂肪酸は N—長鎖ァシル 酸性ァミノ酸の分解により生成し、 一度生成すると N—長鎖ァシル酸性アミノ酸 又はその塩との分離が困難となり、 製造工程においてその発生を抑えることが重 要である。 N—長鎖ァシル酸性アミノ酸の製造工程において、 遊離脂肪酸の増加 は先行技術にも記載されているように、 N—長鎖ァシル酸性アミノ酸を含む有機 層を直接濃縮することにより親水性有機溶媒を除去するような熱履歴を受けるェ 程で見られる。
これは N—長鎖ァシル酸性アミノ酸を含む有機層から溶媒を蒸留除去するとき の液の状態、 即ち液の流動性が悪く、 しかも液が発泡状態となり非常に不安定な 状態であることに起因する。
通常、 N—長鎖ァシル酸性アミノ酸が水と親水性有機溶媒との混合溶媒中に含 有されている混合液から親水性有機溶媒を蒸留除去する場合は、 熱供給の点から 減圧下で蒸留を実施するのが一般的である。 しかしながら、 かかる混合液からの 親水性有機溶媒の蒸留除去を減圧下で実施すると、 液の粘度が上昇し、 ほとんど 流動性のないペースト状となることが一般である。 この状態からの有機物の蒸留 除去は極めて効率が悪く、 臭気物質であるアセトン、 及びジアセトンアルコール ゃメシチルォキシドのようなァセトンの縮合物はほとんど除去されないことが判 つた。
このように N—長鎖ァシル酸性アミノ酸が水と親水性有機溶媒との混合溶媒中 に含有されている混合液から親水性有機溶媒を蒸留除去していくと、 液の濃度が 上昇し高粘度化していくため液の流動性を維持して蒸留を継続するためには、 液 の温度を上げざるを得ない。 さらに、 蒸留を継続していく途中において、 液中に 分散気泡が多数発生する、 いわゆる発泡状態が生じて、 系が非常に不安定な状態 となる場合がある。 この場合は、 液の突沸を防ぐために系の圧力を高めたり低め たりして発泡状態を制御する操作を断続的に行うか、 あるいは発生蒸気量を極端 に低下させるかして、 非常に多大な時間を要して蒸留を行わざるを得ない。 従って、 このような方法で親水性有機溶媒を濃縮除去していくと、 その過程で N—長鎖ァシル酸性アミノ酸が多大な熱履歴を受けて分解を起こし、 分解物であ る遊離脂肪酸を生成することとなる。 N—長鎖ァシル酸性アミノ酸中の遊離脂肪 酸の増加は、 N—長鎖ァシル酸性アミノ酸の塩を液体洗浄剤に配合した場合に、 その配合香粧品組成物が低温下で濁りを生じ、 製品本来の性状を著しく損なう要 因となる。
本発明者らは、 遊離脂肪酸の生成を抑えながら親水性有機溶媒を除去するとい う課題を達成すベく鋭意検討した結果、 N—長鎖ァシル酸性ァミノ酸が含まれて いる水と親水性有機溶媒との混合溶液中から親水性有機溶媒を除去する際に、 液 の組成、 温度といった条件を制御することにより、 溶媒の蒸留除去時に液の流動 状態が大幅に改善され、 液の温度を低く保ちながらも蒸留操作時の液の粘性を良 好な範囲に保ちながら製品の臭いに影響しない程度にまで蒸留除去を行うことが できることを見出した。 即ち、 N—長鎖ァシル酸性アミノ酸を含む有機層から親 水性有機溶媒を除去する場合に、 N—長鎖ァシル酸性アミノ酸をアル力リ塩の形 にし、 一定温度条件下で、 かつ蒸留中に液中の固形分濃度を一定条件に保持する こと、 又は一定温度条件下で、 混合液中の有機溶媒が 5 w t %以下の組成におい て、 混合液中における N—長鎖ァシル酸性アミノ酸と水の比を一定範囲に維持す ることを見出したのである。
上記のような条件で親水性有機溶媒を蒸留除去すると、 液の流動性が改善され、 従って蒸留時の液温度を低く保つことができ、 熱履歴が大幅に低減され、 N—長 鎖ァシル酸性アミノ酸の分解による遊離脂肪酸の生成を実質的に抑えることがで きることを見出した。 またこのようにして得られる遊離脂肪酸含有量が一定量以 下の N—長鎖ァシル酸性アミノ酸は格段に優れた性能を発揮することをも見出し 本発明を完成するに到った。
即ち本発明は、 以下のとおりである。
無機塩を含む N—長鎖ァシル酸性アミノ酸と、 実質的に水及び夕一シャリーブ 夕ノールからなる媒体との混合状態から、 3 5 °C;〜 8 0 °Cの温度において、 水層 と N—長鎖ァシル酸性ァミノ酸を含む有機層とに分層し前記不純物を除去するェ 程 (水洗工程) を含むことを特徴とする N—長鎖ァシル酸性アミノ酸の製造方法。 前記無機塩を含む N—長鎖ァシル酸性アミノ酸が、 以下の工程より得られるも のである上記記載の N—長鎖ァシル酸性アミノ酸の製造方法:
1 ) 実質的に水と夕一シャリーブ夕ノールからなる混合溶媒中、 酸性アミノ酸と 長鎖脂肪酸ハロゲン化物とをアル力リの存在下で縮合させる工程 (ァシル化反応 工程) 、 及び
2 ) 得られた反応液を鉱酸で p Hを 1〜6にすることにより有機層と水層とに分 層し N—長鎖ァシル酸性アミノ酸を含む有機層を取得する工程 (酸沈分層工程) c 前記水洗工程において得られた N—長鎖ァシル酸性ァミノ酸を含む有機層から、 N—長鎖ァシル酸性アミノ酸のカルボキシル基量の 1 / 2 0以上をアル力リ塩と し、 混合液の温度が 9 0 °Cを超えない条件で、 かつ、 蒸留時において水を添加し 混合液中の固形分濃度を 5 ~ 5 0重量%に維持して有機溶媒を蒸留除去する上記 記載の方法。
前記水洗工程において得られた N—長鎖ァシル酸性アミノ酸を含む有機層から、 混合液の温度が 9 0 °Cを超えない条件で、 かつ、 混合液中の有機溶媒が 5 w t % 以下の組成において、 水を添加して混合液中における N—長鎖ァシル酸性アミノ 酸と水の比を重量比で 3 5 / 6 5〜6 5 / 3 5の範囲に維持して有機溶媒を蒸留 除去する上記記載の方法。
また本発明は、 N—長鎖ァシル酸性アミノ酸に対して、 無機塩が 1重量%以下、 夕一シャリ一ブ夕ノールが 0 . 1〜7 5 0重量 111、 及び/又はさらに遊離脂 肪酸含有量が 3 . 0重量%以下である N—長鎖ァシル酸性アミノ酸、 及び該 N— 長鎖ァシル酸性アミノ酸を配合した洗浄剤又は香粧品組成物に関する。
図面の簡単な説明
図 1は、 本発明における N—長鎖ァシル酸性アミノ酸の精製の原理を説明する もので、 前記アミノ酸としての N—ココイル一 L—グル夕ミン酸/夕一シャリ一 ブ夕ノール/水の間で分層の生じる組成 (線で囲まれた領域) を示す (図中の各 軸の目盛りは重量分率) 。
図 2は、 噴霧式蒸発装置の略図である。
発明を実施するための最良の形態
本発明の N—長鎖ァシル酸性アミノ酸の製造方法は、 次のような工程からなる c 本発明の製造方法においてァシル化反応工程は、 水と親水性有機溶媒の混合溶 媒中、 酸性アミノ酸と長鎖脂肪酸ハロゲン化物とを縮合させて (ァシル化反応) 、 粗 N—長鎖ァシル酸性アミノ酸を生成させる工程である。 以下では最も好ましい 親水性有機溶媒として夕ーシャリーブ夕ノール単独を用いた系で本発明を詳述す るが、 親水性有機溶媒として従来汎用の、 例えばアセトン、 メタノール、 ェ夕ノ ール、 プロパノール、 イソプロパノール、 ブ夕ノール、 イソブ夕ノール、 メチル ェチルケトン、 テトラヒドロフラン、 ジォキサン等を本発明の効果を阻害しない 範囲において少量併用することも可能である。
従来、 酸性アミノ酸と長鎖脂肪酸ハロゲン化物との縮合反応時に広く利用され ていると考えられる水/ァセトン混合溶媒では、 ァセトンが酸性側又はアル力リ 側で二量化してジアセトンアルコールを生成しやすく、 更に加熱により脱水して メシチルォキシドを生成しやすいことがわかっている。 いわゆるァセトンのアル ドール縮合物が生成する。 これらは極微量で悪臭の原因となり、 N—長鎖ァシル 酸性ァミノ酸モノトリェ夕ノ一ルァミン塩の 3 0重量%水溶液を例にとると、 ジ ァセトンアルコールとメシチルォキシドはそれそれ水溶液中数重量 p p m以下に しなければならない。
そこで本発明者らはアルドール縮合が起こり得ない、 即ち非ケトン類の親水性 溶媒として低級アルコールに着目した。 特公昭 5 1 - 3 8 6 8 1号公報にメ夕ノ —ル、 エタノール、 n—プロパノール、 イソプロパノール、 n—ブ夕ノール、 ィ ソブ夕ノール、 及び s e c—ブ夕ノールの使用が記載されているが、 特開平 7— 2 7 4 7号公報にも記載されているように、 これらの水/アルコール混合溶媒で は、 アルコールが酸性側でァシル化反応生成物である N—長鎖ァシル酸性ァミノ 酸及び長鎖脂肪酸ハロゲン化物とエステルをつくり易いことを本発明者等は確認 した。 ところが夕ーシャリーブ夕ノールを用いて、 水/夕一シャリーブ夕ノール 混合溶媒を反応溶媒にすると、 驚くべきことに本発明の条件下では全く上記のェ ステルが生成しないことが判明し、 かつ、 その他何らの不純物の生成も確認され なかった。
以上より、 水/夕一シャリーブタノ一ル混合溶媒をァシル化反応溶媒として用 いることにより、 ケトン類のような微量で悪臭の原因となるアルドール縮合物を 生成せず、 また 1級、 2級アルコールのような N—長鎖ァシル酸性ァミノ酸及び 長鎖脂肪酸ハロゲン化物とのエステルが生成することもないことが判明した。 ァシル化工程を経て酸沈分層工程で得られる有機層中にはまだ無機塩類が除去 すべき程度に含まれている。 例えば特開昭 5 1 - 1 3 7 1 7号公報の実施例では 有機層から溶媒を蒸留除去した後に得られる N—長鎖ァシル酸性アミノ酸におい ては、 無機塩類の含有量は 1〜2 %と多い。 無機塩類が多いと例えばトリェ夕ノ —ルァミンの塩の 3 0重量%水溶液にしたとき、 低温での濁りが激しく、 時には 沈殿物を生じる。 本発明の N—長鎖ァシル酸性アミノ酸又はその塩においては無 機塩類の含有量は、 N—長鎖ァシル酸性アミノ酸に対し 1重量%以下、 好ましく は 0 . 5重量%以下、 さらに好ましくは 0 . 1重量%以下であることが好ましい c 反応溶媒を水/夕一シャリ一ブ夕ノール混合溶媒とすることによりさらに利点 が生じる。 水/アセトン混合溶媒を用い、 反応精製系からアセトンを回収して再 使用する場合、 例えば有機層から蒸留分離したアセトンを再使用する場合、 先に 述べたようにアルドール縮合物をアセトンと分離するために精留しなければなら ないが、 夕一シャリ一プ夕ノールを用いる場合、 このような不純物が生じないた めに有機層から蒸留分離した夕一シャリーブ夕ノールをそのまま使用できる点で 工程上有利である。
また取扱いの上でも夕一シャリーブ夕ノールは利点を有している。 アセトンを 回収して再使用するためにアルドール縮合物を分離する目的で精留を実施すると、 実質的に水含有量が低い高純度のアセトンとして回収せざるを得なくなるが、 ァ セトンは引火性 ·可燃性が大きく、 また空気とも爆鳴気を作りやすいので、 回収 再使用時に貯蔵、 取扱いに注意しなければならない。 これに対して、 夕一シャリ ーブ夕ノールの場合、 水と共沸するため回収再使用の際も夕一シャリーブ夕ノー ル /水 = 8 5 / 1 5 (重量比) 以上に夕一シャリーブ夕ノールが濃縮されること はなく、 常に含水率 1 5重量%以上の状態で夕一シャリ一プ夕ノールを取り扱う ことになるため、 貯蔵、 取扱いがアセトンより容易である。
水/夕一シャリーブ夕ノール混合溶媒を反応溶媒に用いるとさらに大きな利点 がある。 即ち、 水/夕ーシャリーブ夕ノールを反応溶媒に用いた場合、 酸沈分層 後に得られた有機層に水及び/又は夕一シャリーブ夕ノールを添加して、 N—長 鎖ァシル酸性アミノ酸/夕一シャリーブ夕ノール/水の組成が所定範囲内になる ように調整しさえすれば水層と有機層とに分層すること、 これによつて有機層中 の無機塩類を除去できる。
一方、 水/アセトン混合溶媒での反応の場合、 酸沈分層後に得られた有機層の 組成及び液温度をどのように変化させても有機層と水層とに二相分離は起こらな かった。 水/アセトン溶媒系において酸沈分層で有機層と水層とに二相分離する のは N a C l及び N a 2 S 04の無機塩が多量に存在することによる塩析効果によ るものと推察される。 従って、 水/アセトン混合溶媒系である限り特開平 3— 2 7 9 3 5 4号公報で開示された高濃度の硫酸ナトリゥム水溶液を添加するような 手法を用いないと有機層を分層洗浄することはできなくなり、 その場合には必然 的に塩の残存を伴うことになる。 このようにして水層と有機層とに分層して得られた有機層から夕ーシャリーブ 夕ノールを除去することにより、 N—長鎖ァシル酸性アミノ酸が得られる。 ここ で得られた N—長鎖ァシル酸性アミノ酸又はその塩を界面活性剤などに利用する 場合、 夕一シャリーブ夕ノールは蒸留手段等の常法によって可能な限り除去する ことが望まれるが実質的に微量残存することは避けられない。 現在市場に流通し ている N—長鎖ァシル酸性アミノ酸又はその塩の中にも、 ァセトン溶媒由来と考 えられるジァセトンアルコールやメシチルォキシドが検出される。 これら除去で きずに残存したジァセトンアルコールゃメシチルォキシドが悪臭の原因となるの に対し、 微量残存した夕ーシャリーブ夕ノールは、 逆に N—長鎖ァシル酸性アミ ノ酸又はその塩特有の脂肪酸臭をマスキングすることが判明した。 近年、 化粧品 等の分野において無香料の傾向があるが、 この場合配合される原料が無臭である ことが求められる。 従来、 N—長鎖ァシル酸性アミノ酸又はその塩では、 ジァセ トンアルコールゃメシチルォキシドを可能な限り除去しても臭気がどうしても残 存し、 無香料化粧品へ配合する際問題となっていた。
夕一シャリーブ夕ノールそのものの臭気閾値は高く、 例えば N—長鎖ァシル酸 性アミノ酸の一つである N—ココイル一 L—グル夕ミン酸のモノトリエ夕ノール ァミン塩の 30重量%水溶液を例にとると、 臭気閾値はこの水溶液中 150重量 ppmであり、 即ちこの時の夕ーシャリーブ夕ノール含量は N—ココイル— L— グルタミン酸に対し 750重量 ppmに相当する。 本発明の N—ァシル酸性アミ ノ酸の脂肪酸臭をマスキングする効果が得られる夕一シャリーブ夕ノール含有量 は、 N—ァシル酸性アミノ酸に対し 0. 1〜750重量 111、 好ましくは 0. 1〜300重量 111、 さらに好ましくは 0. 1〜: I 50重量 ppmである。 この値は、 モノトリエタノ一ルァミン塩の 30重量%水溶液中ではそれそれ 0. 02〜: L 50重量 ppm、 0. 02〜60重量 ppm、 0. 02〜30重量 pp mに相当し、 これにより該水溶液は実質的に臭気が無くなり産業上大きな利点と なりうる。
本発明の製造方法において、 原料として用いられる酸性アミノ酸は、 分子中に 存在するカルボキシル基とアミノ基の数がそれそれ 2個と 1個のモノアミノジカ ルボン酸であり、 アミノ基は置換基として N—メチル基又は N—ェチル基を有し ていてもかまわない。 また光学異性体、 例えば D—体、 L一体であるか、 ラセミ 体であるかは問わない。 例えばグルタミン酸、 ァスパラギン酸、 ランチォニン、 メチルランチォニン、 シス夕チォニン、 ジェンコール酸、 フェリニン、 アミ ノマロン酸、 ォキシァスパラギン酸、 ひ一アミノーひ一メチルコハク酸、 β —ォキシグルタミン酸、 ァ一ォキシグルタミン酸、 ァーメチルグルタミン酸、 γ ーメチレングルタミン酸、 ァーメチルーァーォキシグルタミン酸、 ひ一アミノア ジピン酸、 ひ一アミノーア一ォキシアジビン酸、 ひ一アミノビメリン酸、 ひ一ァ ミノ一ァ一ォキシピメリン酸、 ?—アミノピメリン酸、 ひ一アミノスべリン酸、 ひ一アミノセバシン酸、 パントテン酸等が挙げられる。 これらをァシル化反応に 供する際には、 そのアルカリ金属塩又はアミン塩等の形でもかまわない。
本発明の製造方法において、 原料として用いられる長鎖脂肪酸ハロゲン化物は、 好ましくは炭素原子数 8〜 2 0の、 飽和又は不飽和脂肪酸の酸塩化物、 酸臭化物 又は酸沃化物であれば何でも良く、 直鎖、 分岐又は環状であるかは問わない。 例 えば、 力プリル酸、 ペラルゴン酸、 力プリン酸、 ゥンデカン酸、 ラウリン酸、 ト リデカン酸、 ミリスチン酸、 ペン夕デカン酸、 ノ リレミチン酸、 マルガリン酸、 ス テアリン酸、 ノナデカン酸、 ァラキン酸のような直鎖脂肪酸のハロゲン化物; 2 —ブチルー 5—メチルペンタン酸、 2 Τソブチル一 5—メチルペンタン酸、 ジ メチルオクタン酸、 ジメチルノナン酸、 2—ブチル一 5—メチルへキサン酸、 メ チルゥンデカン酸、 ジメチルデカン酸、 2—ェチルー 3—メチルノナン酸、 2 , 2—ジメチルー 4—ェチルオクタン酸、 メチルドコサン酸、 2—プロビル一 3— メチルノナン酸、 メチルトリデカン酸、 ジメチルドデカン酸、 2—プチルー 3— メチルノナン酸、 メチルテトラデカン酸、 ェチルトリデカン酸、 プロピルドデカ ン酸、 プチルゥンデカン酸、 ペンチルデカン酸、 へキシルノナン酸、 2— ( 3— メチルブチル) 一 3—メチルノナン酸、 2— (2—メチルブチル) 一 3—メチル ノナン酸、 プチルェチルノナン酸、 メチルペン夕デカン酸、 ェチルテトラデカン 酸、 プロビルトリデカン酸、 ブチルドデカン酸、 ペンチルゥンデカン酸、 へキシ ルデカン酸、 ヘプチルノナン酸、 ジメチルテトラデカン酸、 プチルペンチルヘプ タン酸、 トリメチルトリデカン酸、 メチルへキサデカン酸、 ェチルペン夕デカン 酸、 プロピルテトラデカン酸、 ブチルトリデカン酸、 ペンチルドデカン酸、 へキ シルゥンデカン酸、 ヘプチルデカン酸、 メチルヘプチルノナン酸、 ジペンチルへ プ夕ン酸、 メチルヘプ夕デカン酸、 ェチルへキサデカン酸、 ェチルへキサデカン 酸、 プロピルペン夕デカン酸、 プチルテトラデカン酸、 ペンチルトリデカン酸、 へキシルドデカン酸、 へプチルゥンデカン酸、 ォクチルデカン酸、 ジメチルへキ サデカン酸、 メチルォクチルノナン酸、 メチルォク夕デカン酸、 ェチルヘプ夕デ カン酸、 ジメチルヘプ夕デカン酸、 メチルォクチルデカン酸、 メチルノナデカン 酸、 メチルノナデカン酸、 ジメチルォク夕デカン酸、 ブチルヘプチルノナン酸の ような分岐 β旨肪酸のハロゲン化物;ォクテン酸、 ノネン酸、 デセン酸、 カブロレ イン酸、 ゥンデシレン酸、 リンデル酸、 トウハク酸、 ラウロレイン酸、 トリデセ ン酸、 ヅズ酸、 ミリストレイン酸、 ペンタデセン酸、 へキサデセン酸、 ノ ルミ ト レイン酸、 ヘプ夕デセン酸、 ォク夕デセン酸、 ォレイン酸、 ノナデセン酸、 ゴン ドィン酸のような直鎖モノエン酸のハロゲン化物;メチルヘプテン酸、 メチルノ ネン酸、 メチルゥンデセン酸、 ジメチルデセン酸、 メチルドデセン酸、 メチルト リデセン酸、 ジメチルドデセン酸、 ジメチルトリデセン酸、 メチルォクタデセン 酸、 ジメチルヘプ夕デセン酸、 ェチルォク夕デセン酸のような分岐モノエン酸の ノヽロゲン化物; リノール酸、 リノエライジン酸、 エレォステアリン酸、 リノレン 酸、 リノレンエライジン酸、 プソイ ドエレォステアリン酸、 パリナリン酸、 ァラ キドン酸のようなジ又はトリェン酸のハロゲン化物;ォクチン酸、 ノニン酸、 デ シン酸、 ゥンデシン酸、 ドデシン酸、 トリデシン酸、 テトラデシン酸、 ペン夕デ シン酸、 ヘプ夕デシン酸、 ォク夕デシン酸、 ノナデシン酸、 ジメチルォク夕デシ ン酸のようなアセチレン酸のハロゲン化物;メチレンォク夕デセン酸、 メチレン ォク夕デカン酸、 ァレプロール酸、 ァレプレスチン酸、 ァレプリル酸、 ァレプリ ン酸、 ヒドノカルプン酸、 ショールムーグリン酸、 ゴルリン酸、 ひ一シクロペン チル酸、 ひ—シクロへキシル酸、 ひ一シクロペンチルェチル酸のような環状酸の ノ、ロゲン化物等が挙げられる。 また天然油脂由来の脂肪酸のハロゲン化物でも良 く、 上記の炭素原子数 8〜 2 0の飽和又は不飽和脂肪酸を 8 0 %以上含む混合脂 肪酸のハロゲン化物であれば本発明製造方法における長鎖脂肪酸ハロゲン化物と して使用できる。 例えば、 ヤシ油脂肪酸、 パーム油脂肪酸、 パ一ム核油脂肪酸、 トウモロコシ油脂肪酸、 落花生油脂肪酸、 綿実油脂肪酸、 アマ二油脂肪酸、 ヒマ ヮリ油脂肪酸、 大豆油脂肪酸、 ゴマ油脂肪酸、 ヒマシ油脂肪酸、 オリブ油脂肪酸、 ツバキ油脂肪酸、 牛脂脂肪酸、 硬化牛脂脂肪酸、 豚脂脂肪酸、 乳脂脂肪酸、 魚油 脂肪酸等のハロゲン化物が挙げられる。 長鎖脂肪酸ハロゲン化物中の遊離脂肪酸 は少ないほど好ましい。
長鎖脂肪酸はハロゲン化物/酸性アミノ酸の比は、 モル比で 1 . 0 5以下、 好 ましくは 1 . 0以下、 更に好ましくは、 0 . 9 8以下である。 1 . 0を超えると 脂肪酸ハロゲン化物が加水分解し、 遊離脂肪酸を生成する。
本発明の製造方法におけるァシル化反応工程の反応溶媒に用いられる夕ーシャ リーブタノ一ルは高純度である必要はなく、 水含有品であってもよく、 反応精製 系から回収された夕一シャリ一ブ夕ノールであっても精製することなしに使うこ とができる。 反応時における水 Z夕一シャリーブタノ一ルの混合比は 8 5 / 1 5 〜2 0 / 8 0 (容量比) の範囲が好ましい。
本発明の製造方法におけるァシル化反応工程における酸性ァミノ酸の仕込み濃 度は特に限定されないが、 反応中経時的に反応液の粘度が上昇するため、 反応終 了に近くなつた時点で攪拌混合が可能な程度の仕込み濃度にすべきである。
本発明のァシル化反応工程で使用されるアル力リ物質としては、 例えば水酸化 ナトリウム、 水酸化カリウム、 水酸化カルシウム、 水酸化バリウム等の無機塩基 があげられる。 反応中 p Hは 9〜 1 3 . 5に維持するのが良く、 好ましくは 1 0 〜1 3の範囲である。 p Hが 9を下回ると長鎖脂肪酸ハロゲン化物が酸性アミノ 酸と縮合せずに、 加水分解により生じた遊離脂肪酸の量が増え、 p Hが 1 3 . 5 を超えても実質的に不利な点は発生しないが、 必要以上のアルカリ量、 及びそれ に応じて次工程の酸沈分層工程で消費する酸の量が増えるため資源浪費の観点か ら好ましくない。
本発明の製造方法におけるァシル化反応工程の反応温度は特に限定されないが、 —般的に言えることは、 反応温度が低いほど遊離脂肪酸の生成比率は少なくなる ので有利である。 またあまり低温にすると、 生成する N—長鎖ァシル酸性アミノ 酸の種類や反応液中濃度によっては反応中に反応液が高粘度になり混合不能にな つたり、 反応中に生成物が析出したりするので、 このような事態にならない範囲 で反応温度を設定すべきである。 反応中経時的に反応温度を変化させても良い。 通常ァシル化反応温度は— 1 0〜7 0 °Cの範囲、 好ましくは— 1 0〜2 0 °Cの範 囲、 さらに好ましくは一 5〜 1 0 °Cの範囲である。
本発明の製造方法におけるァシル化反応工程の反応形態は、 撹拌槽で所定量の 酸性アミノ酸、 アルカリ、 反応溶媒を仕込んだ後、 長鎖脂肪酸ハロゲン化物を連 続的に供給しながら、 同時に p Hをアルカリ側にするため、 いっしょにアルカリ を供給する半回分方式でも良いし、 反応溶媒を仕込んだ後、 酸性アミノ酸のアル カリ水溶液、 長鎖脂肪酸ハロゲン化物を同時に連続供給する方式でも良く、 所定 量を反応させた後撹拌槽内の液を次工程の酸沈分層工程に付する。 撹拌槽内に長 鎖脂肪酸ハロゲン化物を供給する際、 噴霧させても良いし、 あるいは液中に供給 するようにしても良い。 また、 撹拌槽又は管型反応器を用いて反応溶媒、 酸性ァ ミノ酸のアル力リ水溶液及び長鎖脂肪酸ハロゲン化物を反応器に連続的に供給し ながら反応液を連続的に抜き出して次工程の酸沈分層工程に付する連続方式でも 良い。
本発明の製造方法においては、 酸性アミノ酸と長鎖脂肪酸ハロゲン化物との縮 合反応を攪拌下又は液の混合が十分な状態の下において行うことが重要である。 攪拌状態が悪い場合には、 酸性アミノ酸と長鎖脂肪酸ハロゲン化物との縮合反応 の選択率が低下し、 長鎖脂肪酸ハロゲン化物の加水分解反応により遊離脂肪酸の 生成が増大する。 この原因としては反応系が二相となり、 液中に分散した長鎖脂 肪酸ハロゲン化物の界面で反応が進行し、 その界面の更新が反応選択率を維持す るのに必須であるためと推測される。
攪拌条件として攪拌動力を指標にすると 0 . 2 kW/m3以上であることが必 要である。 これより低い攪拌動力でも、 N—長鎖ァシル酸性アミノ酸を得ること は可能であるが、 本発明の一態様である遊離脂肪酸含量が 3重量%以下の N—長 鎖ァシル酸性アミノ酸を得るには不十分である。 攪拌動力は好ましくは 0 . 3 k W/m3以上であり、 さらに好ましくは 0 . 5 kW/m3以上である。
本発明の製造方法における酸沈分層工程は、 ァシル化反応液を塩酸、 硫酸のよ うな鉱酸で p Hを 1〜 6にすることにより有機層と水層の二層に分離して有機層 を取得する工程である。 ァシル化反応液においては、 生成した N—長鎖ァシル酸 性アミノ酸がアル力リ塩の形で存在している。 これに鉱酸を加えることで N—長 鎖ァシル酸性アミノ酸中のカルボキシル基の一部又は全部を遊離の酸にするとと もに反応液が有機層と水層とに分離される。
酸沈分層時の p Hによって、 カルボキシル基の解離状態が変わり分層状態、 即 ち有機層と水層との重量比や無機塩類の除去性が変わるため、 酸沈分層工程を p H 1〜3で実施することが好ましく、 ρ Η 1〜2 . 5で実施することがさらに 好ましい。
酸沈分層温度は 3 5 °C〜親水性有機溶媒の沸点、 例えば親水性有機溶媒が夕一 シャリ一ブ夕ノールであれば 8 0 °Cである。 好ましくは 4 0〜7 0 °Cである。 3 5 °Cより低い温度では分層平衡に達するまでの時間が長くなつたり、 平衡に達し ても有機層中にかなりの量の無機塩が残存したり、 N—長鎖ァシル酸性アミノ酸 の種類やその液中濃度によっては全く分層が起こらない場合があるからである。 水/夕一シャリーブ夕ノールの共沸組成の常圧における沸点が 8 0 °C近傍にある ので、 8 0 °Cを超すと沸騰が起こるため加圧下での分層が必要となり、 特別な装 置が必要となり不利である。
本発明の製造方法における水洗工程は、 酸沈分層工程で得られた有機層中の水 溶性不純物を液液抽出法により水層中に移行させることにより低減する工程であ る。 具体的には、 酸沈分層後の有機層に水及び/又は夕一シャリーブ夕ノールを 添加して N—長鎖ァシル酸性アミノ酸/夕ーシャリーブタノ一ル /水の組成を調 整し、 液液抽出で有機層中の水溶性不純物、 主に反応及び酸沈分層工程で生成す る無機塩類を水層中に移行させる。
この時、 上記 3成分の濃度を、 N—長鎖ァシル酸性アミノ酸濃度が 0 . 0 0 1 〜5 5重量%、 かつ夕一シャリーブ夕ノール濃度が 5〜4 5重量%、 かつ水濃度 が 2 0〜9 9重量%の組成に調整することで液の分層が起こる。 この液の分層を 利用することによって N—長鎖ァシル酸性アミノ酸を含む有機層中に残存する無 機塩の除去が可能である。
さらにこの分層挙動を、 N—ココイル一 L—グル夕ミン酸/夕一シャリーブ夕 ノール/水の組成 (重量分率) を例に取って三角図で表すと、 分層の起こる組成 は図 1の線で囲まれた領域 (分層領域) になる。
この領域内の組成であれば、 混合液は N—ココイル— L一グル夕ミン酸を含む 有機層と水層の二相に分離するので、 この領域内に入るように各成分組成を決定 すれば何回でも有機層の精製は可能となり、 有機層中の無機塩が希望する含有量 となるまで精製を繰り返すことができる。 これを図 1の例を用いてより詳細に説 明する。
図 1の各軸の目盛りは重量分率である。 酸沈分層後の有機層組成が A点である 時、 水を添加して B点の組成にすると有機層と水層の二層に分かれ各層の組成は それそれ C点と D点になる。 さらに C点組成の有機層に水を添加して E点の組成 にすれば二層に分層し有機層水層の組成はそれそれ F点と G点になる。 この時点 で F点の有機層中に含まれる無機塩の含有量が希望する程度に低減されていれば 水洗工程は終了することになるが、 そうでない場合さらに同様な分層操作を実施 すればよい。
本発明においては、 無機塩類の含量は N—長鎖ァシル酸性アミノ酸に対し 1重 量%以下であり、 好ましくは 0 . 5重量%以下、 さらに好ましくは 0 . 1重量% 以下となるようにする。 N—長鎖ァシル酸性アミノ酸塩中の無機塩類が N一長鎖 ァシル酸性アミノ酸に対し、 1重量%よりも多い場合には、 N—長鎖ァシル酸性 ァミノ酸塩を液体洗浄剤に配合した場合に低温下において沈殿や濁りを生じてし まう。
本発明の製造方法における水洗工程では、 分層平衡に達する時間は分層領域に おいて夕一シャリーブ夕ノール濃度が高いほど短くなるので分層が実施可能な範 囲で夕ーシャリーブ夕ノール濃度を高くするのが好ましい。
本発明の製造方法における水洗工程では、 水洗温度は 3 5〜 8 0 °C、 好ましく は 4 0〜7 0 °Cである。 3 5 °Cより低い温度では分層平衡に達するまでの時間が 長くなつたり、 平衡に達しても有機層中にかなりの量の無機塩が残存したり、 N —長鎖ァシル酸性アミノ酸の種類や液中濃度によっては全く分層しない場合があ るからである。 水/夕一シャリーブ夕ノールの共沸組成の沸点が 8 0 °C近傍にあ るので、 8 0 °Cを超すと沸騰が起こるため加圧下での分層が必要となり、 特別な 装置が必要となり不利である。
こうした N—長鎖ァシル酸性アミノ酸と、 水と夕ーシャリーブ夕ノール混合溶 媒との関係から明らかなように、 本発明の水洗工程を適用することにより、 本発 明の製法以外の製法によって得られた無機塩類などの不純物を含む N—長鎖ァシ ル酸性アミノ酸についても、 同様にして無機塩類不純物を所望のレベルまで低下 させることができる。
本発明の製造方法における溶媒留去工程では、 N—長鎖ァシル酸性アミノ酸を 含む有機層から親水性有機溶媒を除去するに際し、 N—長鎖ァシル酸性アミノ酸 のカルボキシル基の一部を中和して溶媒留去を実施するか (中和溶媒留去) 、 又 は中和せずに行う (未中和溶媒留去) 。
まず、 中和溶媒留去工程について説明する。 この方法では、 N—長鎖ァシル酸 性アミノ酸塩の存在下で親水性有機溶媒を蒸留除去する。
アルカリ塩の形態としては特に限定されることはなく、 ナトリウム、 カリウム、 リチウム等とのアルカリ金属塩、 カルシウム、 マグネシウム等とのアルカリ土類 金属塩、 アルミニウム塩、 亜鉛塩、 アンモニゥム塩、 モノエタノールァミン、 ジ エタノールァミン、 トリエタノールァミン、 トリイソプロパノールァミン等との 有機アミン塩、 アルギニン、 リジン等との塩基性アミノ酸塩が挙げられる。
N—長鎖ァシル酸性アミノ酸を有機アミン塩又はアル力リ金属塩とするには、 例えばアル力リ又はその水溶液を添加すればよい。 N—長鎖ァシル酸性アミノ酸 塩とするに際にアルカリは、 N—長鎖ァシル酸性アミノ酸中のカルボキシル基含 量の 1 / 2 0以上がアル力リ塩となるように添加することが好ましい。 アルカリ 塩の割合が、 カルボキシル基含量の 1 / 2 0よりも少ないとアル力リ添加の効果 が小さく混合液の流動性が改善されない。 好ましくは、 アルカリ塩割合がカルボ キシル基含量の少なくとも 1 / 1 0以上となるようにする。 さらに好ましくは、 アルカリ塩割合がカルボキシル基含量の少なくとも 1 / 3以上となるようにする c 本発明の中和溶媒留去工程においては、 蒸留時の混合液温度は 9 0 °Cを超えな いようにする。 9 0 °Cを超えると N—長鎖ァシル酸性アミノ酸又はその塩の熱に よる加水分解反応等が促進され、 製品の品質低下の原因となる。 好ましくは 8 0 °Cを超えないようにする。 さらに好ましくは、 7 0 °Cを超えないようにする。 こ のような条件で液温度を管理する点を考慮すると、 蒸留圧力は減圧下において一 定の圧力を維持するように実施することが好ましい。
このような条件により遊離脂肪酸の生成を実質上抑えて親水性有機溶媒の蒸留 除去を実施することができる。
ここで、 N—長鎖ァシル酸性アミノ酸/親水性有機溶媒/水の系において、 圧 カー沸点曲線は親水性有機溶媒/水の系の圧力一沸点曲線に一致する。 N—長鎖 ァシル酸性アミノ酸は圧力—沸点曲線に全く関与しないので、 混合液温度を決め ると親水性有機溶媒/水系の圧力—沸点曲線から操作圧力を決めることができる。 本発明の製造方法において、 蒸留除去の間に親水性有機溶媒とともに水も失わ れるので、 場合によっては N—長鎖ァシル酸性アミノ酸の過度の濃縮を防く、手段 が必要になる。 その手段としては、 例えば蒸留除去の間、 水 (ここで水とは、 冷 水、 温水、 水蒸気を含む) を間欠的又は連続的に溶液に補充しても良い。 撹拌槽 で本発明の方法を実施する場合、 この水蒸気を吹き込む手段は潜熱を利用するの で熱供給という点から効果的である。
本発明の中和溶媒留去工程において重要な要素の 1つは、 例えば上記の如き手 法により、 蒸留時の液中の固形分濃度を 5〜 5 0重量%に維持することにある。 5 0重量%よりも固形分濃度を高くすると、 液の高粘度化及び固化等が起こる可 能性がある。 5重量%よりも固形分濃度を下げると親水性有機溶媒濃度が低下し 蒸留効率が低下するとともに、 最終製品として必要な固形分濃度がこれより高い 場合には、 さらなる濃縮を要する点で不利である。 固形分濃度は好ましくは、 2 0〜4 0重量%に維持する。 さらに好ましくは、 2 5〜3 5重量%に維持する。 次に、 未中和溶媒留去工程について説明する。 N—長鎖ァシル酸性アミノ酸を 含む有機層から親水性有機溶媒を除去するに際し、 この方法では、 N—長鎖ァシ ル酸性ァミノ酸を中和することなく溶媒を蒸留除去する。
本発明の未中和溶媒留去工程においては、 親水性有機溶媒が溶液中 5 w t %以 下の組成において、 N—長鎖ァシル酸性アミノ酸と水の重量比を 3 5 / 6 5〜 6 5 / 3 5の範囲に維持し、 かつ溶液温度を 7 5〜1 0 0 °Cに維持することが重要 である。
蒸留時の混合液温度は 9 0 °Cを超えないようにする。 9 0 °Cを超えると、 N— 長鎖ァシル酸性アミノ酸又はその塩の熱による加水分解反応等が促進され、 これ は製品の品質低下の原因となる。 好ましくは 8 0 °Cを超えないようにする。 さら に好ましくは、 7 0 °Cを超えないようにする。 このような条件で液温度を管理す る点を考慮すると、 蒸留圧力は減圧下において一定の圧力を維持することが好ま しい。
蒸留時、 液中の親水性有機溶媒が 5重量%以下の場合において、 N—長鎖ァシ ル酸性アミノ酸と水の重量比として 6 5 / 3 5より水が少なくなると、 溶液がぺ —スト状になりやすく、 一方、 N—長鎖ァシル酸性アミノ酸と水の重量比として 3 5 / 6 5より水が多くなると溶液が寒天状になりやすく、 どちらの場合も液流 動性に欠けることになる。 理由は定かでないが、 混合脂肪酸から導入されたァシ ル基、 すなわちァシル基の炭素数に分布をもつ N—長鎖ァシル酸性アミノ酸では この傾向が強い。
本発明の未中和溶媒留去工程においては、 蒸留除去の間に親水性有機溶媒とと もに水も失われるので、 場合によっては N—長鎖ァシル酸性アミノ酸と水の重量 比を 3 5 / 6 5〜6 5 / 3 5の範囲に保つ手段が必要になる。 N—長鎖ァシル酸 性アミノ酸と水の重量比を上記範囲に保つ手段としては、 例えば水を間欠的又は 連続的に溶液に補充しても良い。 撹拌槽で本発明の方法を実施する場合、 この水 蒸気を吹き込む手段は潜熱を利用するので熱供給という点から効果的である。 上記のような溶媒除去工程を実施することにより、 遊離脂肪酸の生成を実質上 抑えて親水性有機溶媒を蒸留除去することができる。
溶媒留去時の液の性状を考慮すると、 中和液に溶媒を留去する方が熱履歴を抑 えられるので、 中和溶媒留去工程の方が好ましい。
本発明の中和及び未中和溶媒留去工程を、 特に工業的レベルにおいてさらに有 効に実施する手段として次のような方法が有効である。
本発明の実施においては、 N—長鎖ァシル酸性アミノ酸が水と親水性有機溶媒 の混合溶媒中に含有されている混合液から親水性有機溶媒を蒸留除去するに際し、 例えば特開平 5— 4 9 8 0 1号公報に記載されているように、 該混合液を気液混 相流として蒸発缶内に噴霧し親水性有機溶媒を蒸発させる噴霧式蒸発器を用いた 蒸発方式が有効である。
この方法は、 蒸発缶の下部から液を抜き出し、 これをポンプで熱交換器に循環、 送液し所定の過熱状態とした後、 蒸発缶上部に設けられた配管から蒸発缶内に噴 霧し、 溶媒を蒸発させる方法であって以下のような特徴を有する。 1 ) 蒸発缶の気相部には液面に向けて設置されている 1個又は複数個のほぼ円筒 状の管端が有り、 これが缶上部に設けた配管に接続している。
2 ) 熱交換器における液の流量と熱交換器出口部における過熱度とを制御するこ とにより、 熱交換器を出た過熱液体を管端までの間に蒸発させて気液混相流とす る。
3 ) 管端から噴霧された液滴中の残過熱熱量を、 液滴が蒸発缶内部の液相に着水 するまでの間に気相部において放出する。
気液混相流の流動形態は、 例えば化学工学便覧改訂 5版、 第 2 7 2〜 2 7 3頁 の鉛直気液二相流の流動状態図に示されるように分類されている。
発泡性液体を上記のような方式で蒸留する場合には、 管端における気液混相流 の流動形態を間欠流又は環状流とする。 実際の流動形態の調整は管端における液 の線速、 及び過熱器出口における液温度と蒸発缶の操作圧力における液の沸点と の温度差 (過熱度) とを制御することにより達せられる。
また、 こうした噴霧蒸発器を用いた方法によれば、 ァシル化反応工程において アセトン/水混合溶媒を用いてァシル化反応を実施した場合に生成し、 製品中に 残存して除去困難であった高沸点のアルドール縮合物等もその影響がない程度に まで除去することが可能である。
本発明の溶媒留去工程の実施においては、 N—長鎖ァシル酸性アミノ酸が水と 親水性有機溶媒の混合溶媒中に含有されている混合液から親水性有機溶媒を蒸留 除去するに際し、 薄膜式蒸発器を用いることもできる。
薄膜式蒸発器としては、 例えば、 液を液膜状に流下させ加熱し溶媒を蒸発せし め蒸発缶で蒸気と濃縮液とを分離する流下薄膜式蒸発器、 遠心力で液を伝熱面に 押し広げて薄膜を形成する遠心式薄膜蒸発器、 あるいは伝熱面を攪拌羽根によつ て搔き取ることで伝熱面に液の薄膜を形成する攪拌薄膜式蒸発器等がある。 本発明の N—長鎖ァシル酸性アミノ酸又はその塩においては、 親水性有機溶媒 は製品の香りに影響を及ぼさない程度にまで除去されていればよい。 溶媒留去ェ 程にて、 夕一シャリーブ夕ノール含有量は、 N—ァシル酸性アミノ酸に対し 0 . 1〜7 5 0重量 p p m、 より好ましくは 0 . 1〜3 0 0重量 p p m、 さらに好ま しくは 0 . 1〜: 1 5 0重量 p p mとなるようにする。 本発明は N—長鎖ァシル酸性アミノ酸又はその塩に関するものでもあり、 これ について説明する。
上記の製造方法を達成することにより、 本発明の N—長鎖ァシル酸性ァミノ酸 の製造工程において遊離脂肪酸の生成は実質上ないか、 又はあっても極めてわず かな量に抑えることができる。 また、 得られた N—長鎖ァシル酸性アミノ酸は実 質的に臭気がなく、 無機塩類の含有量も非常に少ない高純度のものであり、 産業 上極めて有用である。
本発明の N—長鎖ァシル酸性アミノ酸又はその塩においては、 無機塩類の含量 は N—長鎖ァシル酸性アミノ酸に対し 1重量%以下、 夕一シャリーブ夕ノールの 含量は N—長鎖ァシル酸性アミノ酸に対し 0 . 1〜7 5 0重量 p p mである。 無機塩類が N—長鎖ァシル酸性アミノ酸に対し 1重量%よりも多いと、 該 N— 長鎖ァシル酸性アミノ酸塩水溶液ゃ該 N—長鎖ァシル酸性アミノ酸塩を液体洗浄 剤に配合した香粧品組成物の場合、 低温での沈殿や濁りを生じてしまう。 無機塩 類の含量は、 より好ましくは 0 . 5重量%以下、 さらに好ましくは 0 . 1重量% 以下である。
夕—シャリーブ夕ノールが N—長鎖ァシル酸性アミノ酸に対し 0 . 1重量 p p mより少ない場合にはマスキング効果が十分ではない。 一方これより多い場 合でもマスキング効果は見られるが、 夕一シャリーブ夕ノールの臭気が問題とな o
このような N—長鎖ァシル酸性アミノ酸又はその塩は上記の製造工程の少なく とも水洗工程を実施することにより得られる。
本発明の他の態様の N—長鎖ァシル酸性アミノ酸又はその塩においては、 無機 塩類の含量は N—長鎖ァシル酸性アミノ酸に対し 1重量%以下、 遊離脂肪酸含量 は N—長鎖ァシル酸性アミノ酸に対し 3 . 0重量%以下である。 長鎖ァシル酸性 アミノ酸に対し 3 . 0重量%以下の遊離脂肪酸含量の N—長鎖ァシル酸性アミノ 酸又はその塩は、 我々の知る限りでは知られていないものである。 遊離脂肪酸が N—長鎖ァシル酸性アミノ酸に対し 3 . 0重量%よりも多い場合には、 該 N—長 鎖ァシル酸性アミノ酸塩水溶液ゃ該 N—長鎖ァシル酸性アミノ酸塩を液体洗浄剤 に配合した香粧品組成物の場合、 低温で沈殿や濁りを生じてしまう。 遊離脂肪酸 の含量は、 好ましくは 2 . 5重量%以下、 さらに好ましくは 2 . 0重量%以下で ある。 このような N—長鎖ァシル酸性アミノ酸又はその塩は、 上記製造工程の少 なくともァシル化反応工程、 水洗工程、 溶媒留去工程を実施することにより得ら れ 。
また、 本発明さらに他の態様の N—長鎖ァシル酸性アミノ酸又はその塩におい ては、 無機塩類の含量は N—長鎖ァシル酸性アミノ酸に対し 1重量%以下、 夕一 シャリーブ夕ノールの含量は N—長鎖ァシル酸性アミノ酸に対し 0 . 1〜7 5 0 重量 p p m、 遊離脂肪酸含量は N—長鎖ァシル酸性アミノ酸に対し 3 . 0重量% 以下である。 このような N—長鎖ァシル酸性アミノ酸又はその塩は、 上記製造ェ 程の少なくともァシル化反応工程、 水洗工程、 溶媒留去工程を実施することによ り得られる。
このように本発明の親水性有機溶媒由来の臭気物質、 無機塩類や遊離脂肪酸の ような不純物含量が一定含有量以下の N—長鎖ァシル酸性アミノ酸は、 従来のも のに比べ格段に優れた性能を発揮する。
N—長鎖ァシル酸性アミノ酸の用途の代表例としては、 例えば工業用洗浄剤及 び処理剤の原料、 家庭用(衣料 ·台所,住居等)洗剤の原料、 香粧品の原料等を挙 げることができる。 特に香粧品原料用途は N—長鎖ァシル酸性ァミノ酸又はその 塩の特徴である低刺激性を活かした有用な用途と言える。
本発明における香粧品とは、 薬事法に言う医薬部外品及び化粧品の総称であり、 具体的には、 医薬部外品としては口中清涼剤、 腋臭防止剤、 てんか粉類、 養毛剤、 除毛剤、 染毛剤、 パーマネントウエーブ用剤、 浴用剤、 薬用化粧品、 薬用歯磨き 類などを列挙することができ、 化粧品としては、 化粧石鹼、 洗顔料 (クリーム - ペースト状、 液 'ジエル状、 顆粒 '粉末状、 エアゾールなど) 、 シャンプー、 リ ンスなどの清浄用化粧品、 染毛料、 ヘアトリートメント剤 (クリーム状、 ミスト 状、 オイル状、 ジエル状その他の形態の物及び枝毛コート剤を含む) 、 ヘアセッ ト剤 (髪油、 セットローション、 力一ラ一ローション、 ポマード、 チック、 びん つけ油、 ヘアスプレー、 ヘアミスト、 ヘアリキッド、 ヘアフォーム、 へアジエル、 ウォー夕一グリース) などの頭髪用化粧品、 一般クリーム '乳液 (クレンジング クリーム、 コールドクリーム、 バニシングクリーム、 ハンドクリームなど) 、 ひ げ剃り用クリーム (ァフタ一シェービングクリーム、 シェービングクリームな ど) 、 化粧水 (ハンドローション、 一般化粧水など) 、 オーデコロン、 ひげ剃り 用ローション (ァフ夕一シェービングローション、 シェービングローションな ど) 、 化粧油、 パックなどの基礎化粧品、 おしろい (クリームおしろい、 固形お しろい、 粉おしろい、 タルカムパウダー、 練りおしろい、 ベビーパウダー、 ボデ ィパウダー、 水おしろいなど) 、 パウダー、 ファンデーション (クリーム状、 液 状、 固形など) 、 ほお紅、 まゆずみ、 アイクリーム、 アイシャドウマスカラなど のメークアップ化粧品、 一般香水、 練り香水、 粉末香水などの香水類、 日焼け - 日焼け止めクリーム、 日焼け · 日焼け止めローション、 日焼け · 日焼け止めオイ ルなどの日焼け · 日焼け止め化粧品、 爪クリーム、 エナメル、 エナメル除去液な どの爪化粧品、 アイライナ一化粧品、 口紅、 リップクリームなどの口唇化粧品、 歯磨きなどの口腔化粧品、 バスソルト、 バスオイルなどの浴用化粧品などを列挙 することができる。 中でも、 本発明品は上記の清浄用化粧品、 頭髪用化粧品、 基 礎化粧品等に使われることが多く、 特に清浄用化粧品での使用に最適である。 また、 本発明品は通常香粧品に用いられる各種の基材と併用することができる c 具体的には、 脂肪酸塩 (石鹼) 、 アルキル硫酸エステル塩 (A S ) 、 ポリオキシ エチレンアルキルエーテル硫酸エステル塩 (A E S ) 、 アルファ—ォレフインス ルホン酸塩 (A O S ) 、 アルキルベンゼンスルホン酸塩、 アルキルナフ夕レンス ルホン酸塩、 アルキルスルホン酸塩 (S A S ) 、 ジアルキルスルホコハク酸塩、 アルファ一スルホン化脂肪酸塩、 N—ァシルアミノ酸塩、 N—ァシル— N—メチ ル夕ゥリン塩、 硫酸化油脂、 ポリオキシエチレンスチレン化フエ二ルェ一テル硫 酸塩、 アルキルリン酸塩、 ポリオキシエチレンアルキルエーテルリン酸塩、 ポリ ォキシエチレンアルキルフエ二ルェ一テルリン酸塩、 ナフタリンスルホン酸塩ホ ルマリン縮合物などの陰ィォン性界面活性剤、 アルキルべ夕ィン類、 アルキルァ ミ ドべ夕イン類、 アルキルスルホベ夕イン類、 イミダゾリニゥムべ夕イン類など の両性界面活性剤、 脂肪酸アルキロ一ルアミ ド、 アルキルアミンォキシド、 ポリ ォキシエチレンアルキルエーテル (A E ) 、 ポリオキシエチレンアルキルフエ二 ルェ一テル、 ポリオキシエチレンポリスチリルフエ二ルェ一テル、 ポリオキシェ チレンポリオキシプロピレングリコール、 ポリオキシエチレンポリオキシプロビ レンアルキルエーテル、 多価アルコール脂肪酸部分エステル、 ポリオキシェチレ ン多価アルコール脂肪酸部分エステル、 ポリオキシエチレン脂肪酸エステル、 ポ リグリセリン月旨肪酸エステル、 ポリオキシエチレン硬化ひまし油、 ポリオキシェ チレンアルキルァミン、 トリエタノ一ルァミン脂肪酸部分エステルなどの非ィォ ン性界面活性剤、 第 1〜第 3級脂肪族ァミン塩、 塩化アルキルアンモニゥム塩、 テトラアルキルアンモニゥム塩、 トリアルキルべンジルアンモニゥム塩、 アルキ ルピリジニゥム塩、 アルキルヒドロキシェチルイミダゾリニゥム塩、 ジアルキル モルホリニゥム塩などの陽イオン性界面活性剤、 アルギン酸ナトリウム、 デンプ ン誘導体、 トラガントゴムなどの高分子界面活性剤、 レシチン、 ラノリン、 コレ ステロール、 サポニンなどの天然界面活性剤、 ァボガド油、 アーモンド油、 オリ ーブ油、 カカオ油、 ゴマ油、 サフラワー油、 大豆油、 椿油、 パーシック油、 ひま し油、 ミンク油、 綿実油、 モクロウ、 ヤシ油、 卵黄油、 パーム油、 パーム核油、 合成トリグリセリ ド等の油脂、 流動パラフィン、 ワセリン、 セレシン、 マイクロ クリス夕リンワックス、 イソパラフィン等の炭化水素、 ミツロウ、 鯨ロウ、 ラノ リン、 カルナバロウ、 キャンデリラロゥ及びその誘導体等のロウ、 ラウリン酸、 ミリスチン酸、 ノ レミチン酸、 ステアリン酸、 イソステアリン酸、 ォレイン酸、 ベへニン酸、 ゥンデシレン酸、 ラノリン脂肪酸、 硬質ラノリン脂肪酸、 軟質ラノ リン脂肪酸等の高級脂肪酸、 ラウリルアルコール、 セ夕ノール、 セトステアリル アルコール、 ステアリルアルコール、 ォレイルアルコール、 ベへニルアルコール、 ラノリンアルコール、 水添ラノリンアルコール、 へキシルデカノール、 ォクチル ドデカノ一ル等の高級アルコール、 ミリスチン酸イソプロピル、 ステアリン酸ブ チル等のその他のエステル油、 金属石鹼、 ストレートシリコーン油、 変成シリコ ーン油等のシリコーン類等の揮発性及び不揮発性の油分、 グリセリン、 1、 3— ブタンジオール、 プロパンジオール、 ポリエチレングリコールなどのポリオール 類やトリメチルグリシン、 ソルビトール、 ピロリ ドンカルボン酸塩類、 乳酸塩類、 ヒアルロン酸塩類などの保湿剤、 ヒドロキシェチルセルロース、 カルボキシメチ ルセルロース、 ヒドロキシェチルセルロースヒドロキシプロビルトリメチルアン モニゥムクロリ ドエ一テル、 メチルセルロース、 ェチルセルロース、 ヒドロキシ プロピルセルロース、 メチルヒドロキシプロピルセル口一ス、 可溶性デンプン、 カルボキシメチルデンプン、 メチルデンプン、 アルギン酸プロピレングリコール エステル、 ポリビニルアルコール、 ポリビニルピロリ ドン、 ポリビニルメチルェ 一テル、 カルボキシビ二ルポリマ一、 ポリアクリル酸塩、 グァーガム、 ローカス トビンガム、 クィンスシード、 カラギーナン、 ガラクタン、 アラビアガム、 ぺク チン、 マンナン、 デンプン、 キサンタンガム、 デキストラン、 サクシノグルカン、 力一ドラン、 ヒアルロン酸、 ゼラチン、 カゼイン、 アルブミン、 コラーゲン、 メ トキシエチレン無水マレイン酸共重合体、 両性メ夕クリル酸エステル共重合体、 ポリ塩化ジメチルメチレンビベリジ二ゥム、 ポリアクリル酸エステル共重合体、 ポリ酢酸ビニル、 ニトロセルロース、 シリコーンレジン等の水溶性及び油溶性高 分子やポリエチレングリコール脂肪酸エステル、 ポリオキシエチレン脂肪酸エス テルメチルグリコシド、 テトラデセンスルホン酸塩等の増粘、 増泡成分、 ェチレ ンジァミン四酢酸及びその塩類、 ヒドロキシエチレンジァミン 3酢酸及びその塩 類、 リン酸、 ァスコルビン酸、 コハク酸、 グルコン酸、 ポリリン酸塩類、 メ夕リ ン酸塩類などの金属イオン封鎖剤、 パラォキシ安息香酸エステル類、 安息香酸及 びその塩類、 フエノキシエタノール等の防腐剤、 クェン酸、 リンゴ酸、 アジビン 酸、 グルタミン酸、 ァスパラギン酸等の p H調整剤、 その他トリクロロルカルバ 二リ ド、 サリチル酸、 ジンクピリチオン、 イソプロビルメチルフエノールなどの ふけ 'かゆみ防止剤、 ペンゾフヱノン誘導体、 パラアミノ安息香酸誘導体、 パラ メトキシ桂皮酸誘導体、 サリチル酸誘導体その他の紫外線吸収剤、 アルプチン、 コウジ酸、 ァスコルビン酸及びその誘導体などの美白剤、 センプリエキス、 セフ ァランチン、 ビタミン E及びその誘導体、 ガンマ一オリザノールなどの血行促進 剤、 トウガラシチンキ、 ショォゥキヨウチンキ、 カンタリスチンキ、 ニコチン酸 ベンジルエステルなどの局所刺激剤、 各種ビタミンやアミノ酸などの栄養剤、 女 性ホルモン剤、 毛根賦活剤、 グリチルレチン酸、 グリチルリチン酸誘導体、 ァラ ントイン、 ァズレン、 アミノカプロン酸、 ヒドロコルチゾンなどの抗炎症剤、 酸 化亜鉛、 硫酸亜鉛、 アラントインヒドロキシアルミニウム、 塩化アルミニウム、 スルホ石炭酸亜鉛、 タンニン酸などの収斂剤、 メントール、 カンフルなどの清涼 剤、 抗ヒスタミン剤、 高分子シリコーン、 環状シリコーン等のシリコーン系物質、 トコフエロール類、 B H A、 B H T、 没食子酸、 N D G Aなどの酸化防止剤、 精 製水等などを含むことができる。
特に、 脂肪酸ジエタノールアミ ド、 ポリオキシエチレンジォレイン酸メチルグ ルコシド、 ジステアリン酸ポリエチレングリコール、 テトラデセンスルホン酸塩、 ミリスチン酸塩類、 ミリスチルジメチルァミンとの併用は粘度、 起泡力を増加さ せる点で有用であり、 また、 各両イオン性界面活性剤との併用は刺激性を一層低 減させるという点においてきわめて有用である。
以下で、 本発明を実施例等を用いてさらに具体的に説明するが、 本発明はこれ ら実施例等により何ら限定されるものではない。
本発明の実施例等で用いる分析手段などは以下の通りである。
(ィ) 無機塩類の定量
各イオンを誘導結合型ブラズマ発光分析装置 IRIS ZAP (Thermo J ar r e 11 A s h製) で測定した。 塩素イオンのみはイオンクロマトグラ フィ一で測定した。 イオンクロマトグラフィーの条件は、 カラム DIONEX AS4ASC、 ガードカラム AG4 AS C、 サブレッサー AMMS、 溶離液 3 mmo l/L Na2C03、 lmmo 1/L N a H C 03混合溶液、 再生液は 0. 05Nの H2S04である。
実施例中、 無機塩含有量は N—長鎖ァシル酸性アミノ酸重量に対する値で示す c (口) N—長鎖ァシル酸性ァミノ酸及び遊離脂肪酸の定量
高速液体クロマトグラフィー (HPLC) にて、 ODSカラムに、 メタノール /水/リン酸系の溶離液で、 紫外検出器及び示差屈折率検出器を用いて行った。 実施例中、 遊離脂肪酸含有量は全て N—長鎖ァシル酸性アミノ酸に対する重量% に換算して表示した。
(ハ) 固形分の定量
105°C、 3 Hrでの乾燥減量法により測定した。 固形分の定義は以下の通り c 固形分 (重量%) =乾燥後重量/乾燥前重量 X 100
(二) 夕一シャリーブ夕ノールの定量
ガスクロマトグラフィー (島津製作所 (株) 製 GC— 14A) にて、 検出器を 水素炎ィォン化型検出器、 カラムは内径 3 mmのガラスカラムに充填剤として液 相 PEG20M 20%、 担体 Chr omo s o r bW AW— DMCSの 60 ~ 8 0メッシュを用い、 インジェクション温度 2 0 0 °C、 カラム温度は 0〜 1 0 分が 1 2 0 °C、 その後 3 0 °C/m i nで 2 0 0 °Cまで昇温し、 2 0 0 °Cで 1 5分 ホールドというパターンで測定した。
実施例中の夕一シャリーブ夕ノール量は N—長鎖ァシル酸性アミノ酸に対する 量で示す。
(ホ) 臭気官能試験
N -長鎖ァシル酸性ァミノ酸塩水溶液、 又はこの N—長鎖ァシル酸性ァミノ酸 塩水溶液を用いて調合したシャンブー配合組成物についての臭気評価を、 液をガ ラスのスクリユー管 (直径 3 5 mm x高さ 7 8 mm )に入れて、 液の温度を室温 に、 及び 8 0 °Cに保持した状態で健常な男性 4名、 女性 1名で行った。 実施例中 の評価結果については、 脂肪酸臭、 夕ーシャリーブ夕ノール臭等の臭気が 5名中 1人も感じられなかった物は〇、 1人でも臭気の感じられた物については Xで 示す。
(へ) 原体での低温安定性評価
固形分 3 0重量%トリェ夕ノ一ルァミン塩水溶液 1 0 m 1を— 1 8 °C以下の温 度で冷却していき、 液中に濁りが見られるか、 又は白い析出物が出る温度 (凝固 点) を測定した。
液の温度を— 1 o °cまで冷却しても液中に濁り又は析出のなかった物は〇、 ― 1 0 °C以上で濁り又は析出の発生した物については Xで示す。
この試験は液体洗浄剤等に配合した香粧品組成物での低温安定性と非常に相関 性が高い試験法である。
(ト) シャンブー配合組成液での低温安定性評価
シャンプー組成物を表 2の組成で配合し、 これを 5 °Cにて保存し、 1日後、 1 週間後、 1ヶ月後、 3ヶ月後及び 6ヶ月後に濁りの発生の有無を検討した。 以下、 実施例に従って本発明の方法を詳細に説明する。
(チ) カルボキシル基量の定量
試料約 0 . 3 gを精秤しエタノール/水に溶解する。 これにフエノールフ夕レ ィン指示薬を加えてエタノール性水酸化力リゥムで滴定する方法で測定した。 参考例 1〜 7 本発明の製造方法において水洗工程における N_長鎖ァシル酸性アミノ酸の精 製原理である N—長鎖ァシル酸性ァミノ酸 Z夕一シャリ一ブ夕ノ一ル /水混合系 での分層領域を示す例として、 表 1に上記混合比を変えたときの分層デ一夕を示 す。 N—ココイル— L—グル夕ミン酸/夕一シャリーブ夕ノール/水の系で有機 層、 水層に分層した時の各層組成デ一夕を示す。
条件:温度 40°C
参考例 8〜 9
参考例 1〜7と同様に水洗工程の N—長鎖ァシル酸性アミノ酸/夕ーシャリ一 ブ夕ノール/水混合系での分層領域を示す例として、 表 1に分層データを示す。 N—ココイル— L—グル夕ミン酸/夕一シャリーブタノ一ル Z水の系で有機層、 水層に分層した時の各層組成デ一夕を示す。
条件:温度 65°C
実施例 1
ァシル化工程
L—グルタミン酸モノナトリウム一水和物 1, 444 g (7. 72mo l) 、 純水 3, 070 g、 25重量%水酸化ナトリウム水溶液 1 , 235 g (水酸化ナ トリウム 7. 72mo 1) の混合溶液に、 88容量%夕ーシャリーブ夕ノール水 溶液 1 647mlを加え、 この溶液を氷冷しながら 25重量%水酸化ナトリウ ムで pHを 12に調整しながら塩化ココイル 1, 760 g (7. 56mo l、 遊 離脂肪酸 2重量%含有) を攪拌動力を 0. 5 kW/m3において、 2. 5時間を 要して滴下した。
酸沈分層工程
さらに 30分攪拌を続けた後、 75%硫酸を滴下して液の pH値を 2に、 また 液の温度を 65°Cに調整した。 滴下終了後、 攪拌を停止し、 20分間 65°Cで静 置すると有機層と水層とに分層し、 これから有機層を分離した。
得られた有機層中の組成を表 2に示す。
水洗工程
水洗 1回目
分離した有機層に夕一シャリーブ夕ノール及び水を添加して、 組成が N—ココ ィル— L—グル夕ミン酸/夕一シャリーブ夕ノール/水で 3 3 / 2 5 /4 2 (各 重量%) の混合液を調製し、 温度を 6 5 °Cにして 2 0分攪拌した。 攪拌停止後、 2 0分間 6 5 °Cで静置すると有機層と水層とに分層した。
ここから分離した有機層の組成と無機塩の残量を表 2に示す。
溶媒留去工程
分離取得した有機層中の N—ココイル— L一グル夕ミン酸のカルボキシル基の 5 0 %が塩の形となるようにトリエ夕ノールアミンを有機層に添カ卩し、 さらに固 形分含量が 3 0重量%となるように純水を添加して攪拌混合した。
その後、 1 0 Lガラス製容器を用いて圧力 3 2 7 mmH gの下、 蒸留時に固形 分を 3 0重量%に維持するように純水を添加しながら減圧蒸留を行った。 蒸留開 始 1 2 H r後には液温度は 7 8 °Cとなり蒸留を終了し、 N—ココイル一 L—グル 夕ミン酸トリエタノールアミン塩水溶液を得た。 この水溶液の固形分は 3 0重量 %、 N—ココイル— L—グルタミン酸の収率 (酸として) 9 6 . 5 %、 夕一シャ リーブ夕ノール濃度は 6 0重量 p p mで、 遊離脂肪酸含量は 2 . 3重量%であつ た。
結果をまとめて表 2及び表 3に示す。
実施例 2
実施例 1において酸沈工程の温度を 5 0 ° 静置時間を 2 5分とし、 及び水洗 工程において温度を 5 0 °Cとし 3 0分静置した以外は、 実施例 1と同様の操作を 実施した。 分層後、 有機層を分離して得た。
さらに、 分離取得した有機層中の N—ココイル— L—グル夕ミン酸のカルボキシ ル基の 7 5 %が塩の形となるように水酸化カリウムを有機層に添加し、 さらに固 形分含量が 2 8重量%となるように純水を添加して攪拌混合した後、 溶媒留去ェ 程を表 2のような条件で実施した。
蒸留開始 1 2 H r後には液温度は 5 2 °Cとなり蒸留を終了し、 N—ココイル一 L—グル夕ミン酸カリゥム塩水溶液を得た。
結果をまとめて表 2及び表 3に示す。
実施例 3
実施例 1と同じ条件で水洗工程までを実施し有機層を得た。 得られた有機層に さらに夕一シャリ一ブ夕ノ一ル及び水を添加して、 組成が N—ココイル一 L—グ ル夕ミン酸ノ夕一シャリ一ブ夕ノール/水で 29/18/53 (各重量%) の混 合液を調製し、 温度を 65 °Cに調整して 20分攪拌した。 攪拌停止後、 20分間
65 °Cで静置すると有機層と水層とに分層した。 分層後、 有機層を分離して得た。 分離取得した有機層中の N—ココイル一 L—グルタミン酸のカルボキシル基の
75%が塩の形となるように 25%水酸化ナトリウム水溶液を有機層に添加し、 さらに固形分含量が 25重量%となるように純水を添加して攪拌混合した後、 溶 媒留去工程を表 2のような条件で実施した。
蒸留開始 12Hr後には液温度は 68°Cとなり蒸留を終了し、 N—ココイル— L—グル夕ミン酸ナトリゥム塩水溶液を得た。
結果をまとめて表 2及び表 3に示す。
実施例 4
実施例 3と同じ条件で水洗工程を 2回目まで実施し有機層を得た。 得られた有 機層重量に対しさらに夕ーシャリーブ夕ノール及び水を添加して、 組成が N—コ コイル一 L—グル夕ミン酸/夕一シャリーブ夕ノール/水で 19/27/54 (各重量%) の混合液を調製し、 温度を 65 °Cに調整して 20分攪拌した。 攪拌 停止後、 20分間 65°Cで静置すると有機層と水層とに分層した。 分層後、 有機 層を分離して得た。
分離取得した有機層中の N—ココイル— L—グル夕ミン酸のカルボキシル基の 50%が塩の形となるようにトリエタノールアミンを有機層に添加し、 さらに固 形分含量が 30重量%となるように純水を添加して攪拌混合した。
その後、 噴霧式蒸発器を用いて中和溶媒留去工程を実施した。
噴霧式蒸発装置を図 2に例示する。 装置は、 (1)蒸発缶 (内径 300mm、 高さ 700mm)、 ( 2 )液を循環するポンプ、 (3) 熱交換器、 (4)加熱さ れた気液混相流を蒸発缶に噴霧するノズル (管端は内径 4 mm)、 (5)蒸発ガ スを凝縮するコンデンサ一、 (6)留出液タンクからなる。 図 2中、 TIは温度 指示計、 F Iは流量指示計である。
装置の概略の運転方法を例示する。 蒸発缶下部よりポンプにて液を循環し、 これ を熱交換器へ導入する。 熱交換器を出た液は過熱されておりノズル末端に近づく につれ徐々に蒸発し気液混相流となる。 特にこの時の流動状態を間欠流とするよ うに、 循環流の流速 (ノズル末端における液線速) 、 液の過熱度 (熱交換器入り、 出における液の温度差) を制御することで、 発泡性溶液においても無発泡状態で 蒸留を実施できる。
本実施例では、 圧力 1 6 3 mm H :、 ノズル末端における液の線速約 1 . 5 m /秒、 液の過熱度を約 2 0 °Cの条件にて、 蒸留時に固形分を 3 0重量%に維持す るように純水を添加しながら減圧蒸留を行った。 蒸留開始 3 . 5 H r後には液温 度は 6 2 °Cとなり蒸留を終了し、 N—ココイル一 L一グル夕ミン酸トリエタノ一 ルァミン塩水溶液を得た。
結果をまとめて表 2及び表 3に示す。
実施例 5
実施例 3と同じ方法で水洗工程を 2回目まで実施し、 分離取得した有機層中の N—ココイル— L一グル夕ミン酸のカルボキシル基の 7 5 %が塩の形となるよう に水酸化カリウムを有機層に添加し、 さらに固形分含量が 2 8重量%となるよう に純水を添加して攪拌混合した後、 中和溶媒留去工程を以下のように実施した。 実施例 4と同じ装置を用いて、 圧力条件を 8 3 mmH gとする以外は実施例 4と 同様の操作を実施した。 蒸留開始 3 . 5 H r後には液温度は 4 6 °Cとなり蒸留を 終了し、 N—ココイル一 L—グルタミン酸カリウム塩水溶液を得た。
結果をまとめて表 2及び表 3に示す。
実施例 6
実施例 3と同じ方法で水洗工程を 2回目まで実施し、 分離取得した有機層中の N—ココイル一 L—グル夕ミン酸のカルボキシル基の 7 5 %が塩の形となるよう に 2 5 %水酸化ナトリゥム水溶液を有機層に添加し、 さらに固形分含量が 2 5重 量%となるように純水を添加して攪拌混合した後、 中和溶媒留去工程を以下のよ うに実施した。
実施例 4と同じ装置を用いて、 圧力条件を 2 5 4 mmH gとする以外は実施例 4と同様の操作を実施した。 蒸留開始 3 . 5 H r後には液温度は 7 2 °Cとなり蒸 留を終了し、 N—ココイル一 L—グル夕ミン酸ナトリウム塩水溶液を得た。
結果をまとめて表 2及び表 3に示す。 実施例 7
実施例 1において塩化ココイルを塩化ラウロイルとした以外は実施例 1と同じ 条件、 同じ方法で水洗工程まで実施し、 分離取得した有機層中の N—ラウロイル — L一グル夕ミン酸のカルボキシル基の 5 0 %が塩の形となるようにトリェ夕ノ —ルァミンを有機層に添加し、 さらに固形分含量が 3 0重量%となるように純水 を添加して攪拌混合した後、 中和溶媒留去工程を以下のように実施した。
実施例 4と同じ装置を用いて、 圧力条件を 1 4 9 mmH gとする以外は実施例 4と同様の操作を実施した。 蒸留開始 4 H r後には液温度は 6 0 °Cとなり蒸留を 終了し、 N—ラウロイル一L一グルタミン酸トリエ夕ノールアミン塩水溶液を得 た。
結果をまとめて表 2及び表 3に示す。
実施例 8
実施例 3と同じ方法で水洗工程を 2回目まで実施した後、 溶媒留去工程を以下の ように実施した。
実施例 4と同じ装置を用いて、 噴霧蒸発装置の噴霧ノズルを管端内径 1 0 mm とし、 圧力を 2 7 O mmH gとする以外は、 以外は実施例 4と同様の操作を実施 した。
蒸留開始 2 H r後に液をサンプリングしたところ、 N—ココイル一 Lーグルタミ ン酸と水との重量比は 5 5 /4 5、 液中の夕ーシャリーブ夕ノール濃度は 4 . 2 w t % (液中の濃度である)、 この時の液温度は 6 8 °Cであった。 さらに蒸留開 始 4 H r後には、 N—ココイル一 L一グルタミン酸と水との重量比は 5 3 /4 7、 液中の夕一シャリーブ夕ノール濃度は 5重量 p p m (液中濃度である) 、 液温度 は 7 3 °Cとなり蒸留を終了し、 N—ココイル— L—グルタミン酸を 5 3重量%含 有する混合液を得た。 これを乾燥して N—ココイル— L—グル夕ミン酸の白色固 体を得た。
結果をまとめて表 2及び表 3に示す。
実施例 9
実施例 3と同じ方法で水洗工程まで実施した後、 溶媒留去工程を以下のように 実施した。 実施例 4と同じ装置を用いて、 噴霧蒸発装置の噴霧ノズルを管端内径 10mm とし、 圧力を 356mmHgとする以外は、 以外は実施例 4と同様の操作を実施 した。 蒸留開始 2Hr後に液をサンプリングしたところ、 N—ココイル一 Lーグ ル夕ミン酸と水との重量比は 40/60、 液中の夕一シャリーブ夕ノール濃度は 2. Owt % (液中の濃度である)、 この時の液温度は 75 °Cであった。 蒸留開 始 4Hr後には、 N—ココイル— L一グル夕ミン酸と水との重量比は 41/59、 液中の夕一シャリーブ夕ノール濃度は 6重量 ppm (液中濃度である) 、 液温度 は 80°Cとなり蒸留を終了し、 N—ココイル— L—グルタミン酸を 41重量%含 有する混合液を得た。 これを乾燥して N—ココイル一 L—グル夕ミン酸の白色固 体を得た。
結果をまとめて表 2及び表 3に示す。
実施例 10
実施例 3と同じ方法で水洗工程まで実施した後、 溶媒留去工程を以下のように実 施した。
実施例 4と同じ装置を用いて、 噴霧蒸発装置の噴霧ノズルを管端内径 1 Omm とし、 圧力を 434mmHgとする以外は、 実施例 4と同様の操作を実施した。 蒸留開始 2 Hr後に液をサンプリングしたところ、 N—ココイル一 L—グルタミ ン酸と水との重量比は 60/40、 液中の夕一シャリーブ夕ノール濃度は 2. 5 wt % (液中の濃度である) 、 この時の液温度は 81°Cであった。 蒸留開始 4 Hr後には、 N—ココイル— L—グルタミン酸と水との重量比は 62/38、 液 中の夕ーシャリーブ夕ノール濃度は 6重量 ppm (液中濃度である) 、 液温度は 87°Cとなり蒸留を終了し、 N—ココイル一 L—グルタミン酸を 62重量%含有 する混合液を得た。 これを乾燥して N—ココイル— L—グル夕ミン酸の白色固体 を得た。
結果をまとめて表 2及び表 3に示す。
実施例 11
実施例 1において、 ァシル化反応工程において塩化ココイルを塩化ラウロイル とし、 水洗工程において温度を 50°Cとした以外は実施例 1と同じ条件及び方法 で水洗工程まで実施した。 その後、 溶媒留去工程を以下のように実施した。 実施例 4と同じ装置を用いて、 噴霧蒸発装置の噴霧ノズルを管端内径 10mm とし、 圧力を 234mmHgとする以外は、 以外は実施例 4と同様の操作を実施 した。 蒸留開始 2 Hr後に液をサンプリングしたところ、 N—ラウロイル一 L_ グルタミン酸と水との重量比は 51/49、 液中の夕ーシャリーブ夕ノール濃度 は 3. 5wt% (液中の濃度である)、 この時の液温度は 64 °Cであった。 蒸留 開始 4 Hr後には、 N—ラウロイル— L—グル夕ミン酸と水との重量比は 50/ 50、 液中の夕一シャリ一プ夕ノール濃度は 5重量 ppm (液中濃度である) 、 液温度は 70°Cとなり蒸留を終了し、 N—ラウロイル— L一グルタミン酸を 50 重量%含有する混合液を得た。 これを乾燥して N—ラウロイルー L—グルタミン 酸の白色固体を得た。
結果をまとめて表 2及び表 3に示す。
実施例 12
実施例 1においてァシル化反応工程での L—グル夕ミン酸ナトリゥム一水和物 とその量を L—ァスパラギン酸 1028g (7. 72mo 1) とし、 酸沈分層ェ 程と水洗工程の温度を 50°Cとした以外は実施例 1と同じ条件で水洗工程まで実 施した。 その後、 溶媒留去工程を以下のように実施した。
実施例 4と同じ装置を用いて、 噴霧蒸発装置の噴霧ノズルを管端内径 10mm とし、 圧力を 27 OmmHgとする以外は、 以外は実施例 4と同様の操作を実施 した。
溶媒留去工程を以下のように実施した。
蒸留開始 2 Hr後に液をサンプリングしたところ、 N—ココイル一 L—ァスパ ラギン酸と水との重量比は 54/46、 液中の夕一シャリーブ夕ノール濃度は 3.
6wt % (液中の濃度である)、 この時の液温度は 69 °Cであった。 さらに蒸留 開始 4 Hr後には、 N—ココイル— Lーァスパラギン酸と水との重量比は 54/ 46、 液中の夕一シャリーブ夕ノール濃度は 10重量 ppm (液中濃度である) 、 液温度は 73°Cとなり蒸留を終了し、 N—ココイル— L—ァスパラギン酸を 54 重量%含有する混合液を得た。 これを乾燥して N—ココイル一 Lーァスパラギン 酸の白色固体を得た。
結果をまとめて表 2及び表 3に示す。 実施例 13
実施例 1において、 ァシル化反応工程で溶媒の夕一シャリーブ夕ノールをァセ トンとし、 反応液の仕込みに用いる純水の量を 2 , 405 g、 アセトンの量を 2, 312mlとする以外は実施例 1と同じ方法でァシル化反応工程を実施した。 得 られた反応混合物に水を 20 L添加して、 75 %硫酸を滴下して液の p Hを 1に 調整し、 析出した N—ココイル一 L一グルタミン酸の粗結晶を濾過した後、 乾燥 した。 得られた N—ココイル— L—グルタミン酸は、 N—ココイル一L—グル夕 ミン酸に対し、 無機塩類として塩化ナトリウムを 1. 7重量%、 硫酸ナトリウム を 1. 2重量%含有していた。 また、 アセトン縮合物由来の臭気が強かった。 さらに、 得られた N—ココイル— L—グル夕ミン酸を実施例 1の水洗工程と同じ 混合液組成、 即ち N—ココイル— L—グルタミン酸/夕一シャリ一ブ夕ノ一ル / 水 =33/25/42 (各重量%) に調製し、 65 °Cで 20分攪拌した後、 20 分間 65°Cで静置すると有機層と水層とに分層した。
その後、 この混合液を用いて溶媒留去工程を以下のように実施した。
実施例 4と同じ装置を用いて、 噴霧蒸発装置の噴霧ノズルを管端内径 10mm とし、 圧力を 27 OmmHgとする以外は、 以外は実施例 4と同様の操作を実施 した。 蒸留開始 2 Hr後に液をサンプリングしたところ、 N—ココイル一 Lーグ ル夕ミン酸と水との重量比は 53/47、 液中の夕一シャリ一ブ夕ノール濃度は 4. lwt % (液中の濃度である)、 この時の液温度は 68 °Cであった。 さらに 蒸留開始 4Hr後には、 N—ココイル— L—グルタミン酸と水との重量比は 53 /47、 液中の夕一シャリ一ブ夕ノール濃度は 5重量 ppm (液中濃度である) 、 液温度は 73 °Cとなり蒸留を終了し、 N—ココイル一 L一グルタミン酸を 53重 量%含有する混合液を得た。 これを乾燥して N—ココイル一 Lーグルタミン酸の 白色固体を得た。 この結晶にはァセトン縮合物由来の臭気はほとんど感じられな かった。
結果をまとめて表 2及び表 3に示す。
比較例 1
実施例 1においてァシル化反応工程での塩化ココイルの量を 1, 976 g (8. 49mo 1) とした以外は実施例 1と同じ方法で酸沈工程まで実施した。 得られ た有機層に夕一シャリーブタノ一ル及び水を添加して、 組成が N—ココイル— L —グルタミン酸/夕ーシャリーブ夕ノール/水で 2 8 / 5 8 / 1 4 (各重量%) の混合液を調製し、 温度を 6 5 °Cにして 2 0分攪拌した。 攪拌停止後、 6 0分間 6 5 °Cで静置しても液は分層しなかった。
この混合液を実施例 1の溶媒留去工程と同じ条件で溶媒留去を実施し、 蒸留開 始 1 2 H r後には液温度は 7 8 °Cとなり蒸留を終了し、 N—ココイル— Lーグル 夕ミン酸トリエタノールアミン塩水溶液を得た。 このものは、 遊離脂肪酸と無機 塩類含有量が多かった。
結果をまとめて表 2及び表 3に示す。
比較例 2
実施例 1において、 ァシル化反応工程で溶媒のターシャリーブ夕ノールをァセ トンとし、 反応液の仕込みに用いる純水の量を 2, 4 0 5 g、 アセトンの量を 2, 3 1 2 m lとし、 酸沈分層工程で温度を 5 0 °Cとする以外は実施例 1と同じ方法 で酸沈工程まで実施した。 得られた有機層にアセトン及び水を添加して、 実施例 1の水洗工程と同じ混合液組成、 N—ココイル— L—グルタミン酸/アセトン Z 水で 3 3 / 2 5 /4 2 (各重量%) に調製し、 5 0 °Cで 2 0分攪拌した後、 6 0 分静置したが分層しなかった。
この混合液を実施例 1の溶媒留去工程と同じ方法で、 圧力を常圧とした以外は 実施例 1と同じ条件で溶媒留去を実施し、 蒸留開始 1 5 H r後には液温度は 1 0 0 °Cとなり蒸留を終了し、 固形分 3 0重量%の]^ーココイル—L一グルタミン酸 トリエタノールアミン塩水溶液を得た。 このものは、 遊離脂肪酸と無機塩類含有 量が多く、 アセトン縮合物の臭いがした。
結果をまとめて表 2及び表 3に示す。
比較例 3
実施例 1と同じ方法で酸沈分層工程まで実施し、 得られた有機層中の N -ココ ィル— L—グルタミン酸のカルボキシル基の 7 5 %が塩の形となるように 2 5 % 水酸化ナトリゥム水溶液を有機層に添加し、 さらに固形分含量が 2 5重量%とな るように純水を添加して攪拌混合した後、 溶媒留去工程を以下のような条件とす る以外は実施例 1と同様の操作を実施した。 圧力 1 8 7 mmH gの下、 純水を添加しないで減圧蒸留を行った。
濃縮が進むとともに、 液の粘性が高まりやがてゲル状に固化してしまつたため蒸 留を中止した。 この時の固形分濃度は 5 5重量%で、 夕ーシャリーブ夕ノールは N—ココイル一 Lーグルタミン酸に対し 5重量%残存していた。
結果をまとめて表 2及び表 3に示す。
比較例 4
実施例 1と同じ方法で酸沈分層工程まで実施し、 得られた有機層から、 1 0 L ガラス製容器を用いて減圧下加熱し蒸留中の水添加はせずに、 夕一シャリーブ夕 ノール及び水の蒸留除去を実施した。 途中、 液が発泡状態となり圧力を 4 0 mmH g〜常圧の間で調節しながら、 蒸留開始 1 5 H r後には液温度は 1 0 5 °C となり蒸留を終了した。
この液に、 液中の N—ココイル— L—グル夕ミン酸のカルボキシル基の 5 0 % が塩の形となるようにトリエタノールアミンを添加し、 さらに固形分含量が 3 0 重量%となるように純水を添加して攪拌混合した後、 N—ココイル一 L—グル夕 ミン酸トリエタノールアミン塩水溶液を得た。 N—ココイル— L—グルタミン酸 の収率 (酸として) 9 2 . 3 %、 夕ーシャリーブ夕ノール濃度は 8 0重量 p p m で、 遊離脂肪酸含量は 6 . 5重量%であった。
結果をまとめて表 2及び表 3に示す。
比較例 5
実施例 1において塩ィ匕ココイルを塩ィ匕ラウロイルとした以外は実施例 1と同じ 条件及び方法で酸沈分層工程まで実施し、 分離取得した有機層から、 1 0 Lガラ ス製容器を用いて減圧下加熱し蒸留中の水添加はせずに、 夕一シャリーブ夕ノー ル及び水の蒸留除去を実施した。 途中、 液が発泡状態となり圧力を 4 0 mmH g 〜常圧の間で調節しながら、 蒸留開始 1 5 11 1^後には液温度は1 1 0 °Cとなり蒸 留を終了した。
この液に、 液中の N—ラウロイル一 L—グル夕ミン酸のカルボキシル基の 5 0 %が塩の形となるようにトリエタノールアミンを添加し、 さらに固形分含量が 3 0重量%となるように純水を添加して攪拌混合した後、 N—ラウロイルー L—グ ル夕ミン酸トリエ夕ノールアミン塩水溶液を得た。 N—ラウロイル— L—グル夕 ミン酸の収率 (酸として) 9 0 . 5 %、 夕一シャリーブ夕ノール濃度は 6 0重量 p p mで、 遊離脂肪酸含量は 8 . 3重量%であった。
結果をまとめて表 2及び表 3に示す。
比較例 6
実施例 1と同じ方法で酸沈分層工程まで実施し、 有機層を分離取得した。 この 混合液を実施例 1の溶媒留去工程と同じ方法で、 圧力を 5 8 8 mmH gとした以 外は実施例 1と同じ条件で溶媒留去を実施し、 蒸留開始 1 2 H r後には液温度は 9 3 °Cとなり蒸留を終了し、 固形分 3 0重量%の]^ーココイル— L—グルタミン 酸トリェ夕ノ一ルァミン塩水溶液を得た。
N—ココイル— L—グルタミン酸の収率 (酸として) 9 5 . 3 %、 夕一シャリ ーブ夕ノール濃度は 6 0重量 p p mで、 遊離脂肪酸含量は 3 . 5重量%であった c 結果をまとめて表 2及び表 3に示す。
実施例 1 4
上記実施例、 比較例で製造した N—長鎖ァシル酸性アミノ酸塩水溶液の臭気官 能試験を上記 (ホ) に示す方法で室温と 8 0 °Cとで実施した。 なお、 実施例 8〜 1 3で得られた N—ココイル— L一グル夕ミン酸又は N—ラウロイル— L—グル 夕ミン酸については、 カルボキシル基の 5 0 %が塩の形となるようにトリェ夕ノ ールァミンを添加し、 さらに固形分含量が 3 0重量%となるように純水を添加し て固形分 3 0重量%のトリエ夕ノールアミン塩水溶液としたものを用いた。
この結果も表 3に示す。
実施例 1 5
実施例 実施例 4、 実施例 7、 比較例 1、 比較例 2、 比較例 4、 比較例 5及 び比較例 6で得られた N—長鎖ァシル酸性ァミノ酸塩水溶液、 並びに実施例 8, 実施例 1 0, 実施例 1 1及び実施例 1 3で製造したものについては液中の N—長 鎖ァシル酸性アミノ酸のカルボキシル基の 5 0 %が塩の形となるようにトリエ夕 ノールアミンを添加し、 さらに固形分含量が 3 0重量%となるように純水を添加 してトリエタノールアミン塩水溶液としたものを用いて上記 (へ) に示す原体で の低温安定性試験を実施した。
評価結果を表 4に示す。 実施例 1 6
実施例 1、 実施例 4及び比較例 2、 比較例 6で製造したものを用いて表 5に示 すシャンプー組成液を次の方法で配合した。
精製水の一部をとり、 カチオン化セルロースを加熱しつつ溶解した。 残りの成 分を 8 0 °Cにて均一になるまで混合し、 保持した。 両者を併せ、 さらに均一にな るまで混合した後に室温まで冷却し容器に充填した。
こうして得られたシャンプー組成液を 5 °Cにて保存し、 1日後、 1週間後、 1 ヶ月後、 3ヶ月後及び 6ヶ月後に濁りの発生の有無を検討した。
この結果、 実施例 1及び実施例 4のものを用いたシャンプ一組成液は 6ヶ月後 においても透明だったが、 比較例 2及び比較例 6のものを用いたシャンプ一組成 液は 1日後の時点で著量の濁りを認め、 製品本来の性状を著しく損なった。 また、 シャンプー組成液を用いて上記 (ホ) に示す方法で臭気官能試験を室温 と 8 0 °Cとで実施した。
その結果、 実施例 1, 実施例 4、 比較例 6を用いたシャンプー組成液は臭気結 果は〇、 一方、 比較例 2を用いたものは臭気結果は Xであった。
産業条の利用可能性
本発明の製造方法は簡易であるとともに、 工業的にも安定して実施可能な N - 長鎖ァシル酸性アミノ酸の製造方法である。 また、 本発明によって製造された N —長鎖ァシル酸性アミノ酸又はその塩は、 実質的に臭気がなく、 液体洗浄剤又は 香粧品組成物に配合した場合において、 特に低温下での長期保存時に濁りや沈殿 を生じない N—長鎖ァシル酸性アミノ酸塩配合香粧品組成物を与える。
混合液 有機/ i 水屠 ココイル 〕コィル ココイル
参考例 ク'ルタミン TBA H20 グルタミン TBA Η20 グルタミン TBA Η20 酸 酸
wt¼ wt% νΛ% t% wt% νΛ% wt%
1 34 26 40 45 32 24 0.2 14 86
2 38 25 37 43 27 30 0.4 14 86
3 38 25 37 43 27 30 0.4 14 86
4 28 14 58 43 15 42 0.4 12 88
5 14 35 51 17 39 44 0.4 19 81
6 29 39 32 31 40 29 0.4 17 82
7 10 30 60 21 44 35 0.4 18 81
8 32 21 46 46 27 27 0.2 8 92
9 31 28 41 40 31 29 0.5 7 93
DO
Figure imgf000044_0001
Figure imgf000045_0001
^
Figure imgf000046_0001
5 成分 配合 部) 一ココイル一し一グルタミン酸 ·トリエタノールアミン塩水溶液 34.5 ラウリルジメチルァミノ酢酸べタイン 12 ヤシ油脂肪酸ジエタノールアミド 5 カチオン化セルロース 0.6
1. 3—ブタンジオール 0.5 精製水 全 S:を l ooとする

Claims

請 求 の 範 囲
1. 無機塩を含む N—長鎖ァシル酸性アミノ酸と、 実質的に水及び夕一シャリ ーブ夕ノールからなる媒体との混合状態から、 3 5 °C〜8 0 °Cの温度において、 水層と N—長鎖ァシル酸性ァミノ酸を含む有機層とに分層し前記不純物を除去す る工程 (水洗工程) を含むことを特徴とする N—長鎖ァシル酸性アミノ酸の製造 方法。
2. 上記水洗工程における混合状態における各成分濃度を、 N—長鎖ァシル酸 性アミノ酸濃度を 0 . 0 0 1〜5 5重量%、 かつ夕ーシャリーブ夕ノール濃度を 5 ~ 4 5重量%、 かつ水濃度を 2 0〜 9 9重量%として分層する請求項 1記載の 方法。
3. 前記無機塩を含む N—長鎖ァシル酸性アミノ酸が、 以下の工程より得られ るものである請求項 1又は 2に記載の N—長鎖ァシル酸性アミノ酸の製造方法:
1 ) 実質的に水と夕ーシャリーブ夕ノールからなる混合溶媒中、 酸性アミノ酸と 長鎖脂肪酸ハロゲン化物とをアル力リの存在下で縮合させる工程 (ァシル化反応 工程) 、 及び
2 ) 得られた反応液を鉱酸で p Hを 1〜6にすることにより有機層と水層とに分 層し N—長鎖ァシル酸性アミノ酸を含む有機層を取得する工程 (酸沈分層工程) c
4. 前記ァシル化反応工程において、 長鎖脂肪酸ハロゲン化物/酸性アミノ酸 比がモル比で 1 . 0 5以下である請求項 3記載の方法。
5. 前記酸沈分層工程において p Hが 1〜 3である請求項 3記載の方法。
6. 前記水洗工程において得られた N _長鎖ァシル酸性アミノ酸を含む有機層 から、 N—長鎖ァシル酸性アミノ酸のカルボキシル基量の 1 / 2 0以上をアル力 リ塩とし、 混合液の温度が 9 0 °Cを超えない条件で、 かつ、 蒸留時において水を 添加し混合液中の固形分濃度を 5〜 5 0重量%に維持して有機溶媒を蒸留除去す る請求項 1〜 5のいずれかに記載の方法。
7. 前記水洗工程において得られた N—長鎖ァシル酸性アミノ酸を含む有機層 から、 混合液の温度が 9 0 °Cを超えない条件で、 かつ、 混合液中の有機溶媒が 5 重量%以下の組成において、 水を添加して混合液中における N—長鎖ァシル酸性 アミノ酸と水の比を重量比で 3 5 / 6 5〜 6 5 / 3 5の範囲に維持して有機溶媒 を蒸留除去する請求項 1〜 5のいずれかに記載の方法。
8. 前記水洗工程において得られた N—長鎖ァシル酸性アミノ酸を含む有機層 から有機溶媒を蒸留除去するに際し、 混合液を気液混合相となして蒸発缶内に噴 霧し溶媒を蒸発させる噴霧式蒸発器を用いて、 有機溶媒を蒸留除去する請求項 1 〜 5のいずれかに記載の方法。
9. N—長鎖ァシル酸性アミノ酸に対し、 無機塩の含量が 1重量%以下、 夕一 シャリーブ夕ノールの含量が 0 . 1〜7 5 0重量 p p mである N—長鎖ァシル酸 性アミノ酸又はその塩。
10. N—長鎖ァシル酸性アミノ酸に対し、 無機塩の含量が 1重量%以下、 遊離 脂肪酸含有量が 3 . 0重量%以下である N—長鎖ァシル酸性アミノ酸又はその塩。
11. N—長鎖ァシル酸性アミノ酸に対し、 遊離脂肪酸含有量が 3 . 0重量%以 下である請求項 9記載の N—長鎖ァシル酸性ァミノ酸及びその塩。
12. 実質的に夕ーシャリーブ夕ノールと水とを含む混合溶媒中で、 酸性アミノ 酸と長鎖脂肪酸ノ、ロゲン化物との反応により得られる請求項 9〜 1 1のいずれか に記載の N—長鎖ァシル酸性アミノ酸又はその塩。
13. 無機塩を含む N—長鎖ァシル酸性アミノ酸と、 実質的に水及び夕一シャリ —ブ夕ノールからなる媒体との混合状態から、 3 5 °C〜8 0 °Cの温度において、 水層と N—長鎖ァシル酸性ァミノ酸を含む有機層とに分層し前記無機塩を除去す る工程 (水洗工程) を含む製造工程により得られる請求項 9〜1 1のいずれかに 記載の N—長鎖ァシル酸性アミノ酸又はその塩。
14. 以下の工程により得られる請求項 9〜1 3のいずれかに記載の N—長鎖ァ シル酸性ァミノ酸又はその塩:
1 ) 実質的に水と夕一シャリーブ夕ノールを含む混合溶媒中、 酸性アミノ酸と長 鎖脂肪酸ハロゲン化物とをアル力リの存在下で縮合させる工程 (ァシル化反応ェ 程) 、
2 ) 得られた反応液を鉱酸で p Hを 1〜6にすることにより有機層と水層とに分 層し N—長鎖ァシル酸性アミノ酸を含む有機層を取得する工程 (酸沈分層工程) 、 及び 3 ) 得られた有機層を水及び/又は夕ーシャリーブ夕ノールと混合し、 3 5 °C〜 8 0 °Cの温度において水層と N—長鎖ァシル酸性アミノ酸を含む有機層とに分層 し不純物を除去する工程 (水洗工程) 。
15. 以下の工程により得られる N—長鎖ァシル酸性アミノ酸又はその塩: 1 ) 実質的に水と夕一シャリーブ夕ノールを含む混合溶媒中、 酸性アミノ酸と長 鎖脂肪酸ハロゲン化物とをアル力リの存在下で縮合させる工程 (ァシル化反応ェ 程) 、
2 ) 得られた反応液を鉱酸で p Hを 1〜6にすることにより有機層と水層とに分 層し N—長鎖ァシル酸性アミノ酸を含む有機層を取得する工程 (酸沈分層工程) 、 3 ) 得られた有機層を水及び/又は夕一シャリーブ夕ノールと混合し、 3 5 °C〜 8 0 °Cの温度において水層と N—長鎖ァシル酸性アミノ酸を含む有機層とに分層 し不純物を除去する工程 (水洗工程) 、 及び
4 ) 前記水洗工程において得られた N—長鎖ァシル酸性アミノ酸を含む有機層か ら、 N—長鎖ァシル酸性アミノ酸のカルボキシル基量の 1 Z 2 0以上をアルカリ 塩とし、 混合液の温度が 9 0 °Cを超えない条件で、 かつ、 蒸留時において水を添 加し混合液中の固形分濃度を 5〜5 0重量%に維持して有機溶媒を蒸留除去する 工程 (中和溶媒留去工程) 。
16. 以下の工程により得られる請求項 9〜1 1のいずれかに記載の N—長鎖ァ シル酸性ァミノ酸又はその塩:
1 ) 実質的に水と夕一シャリーブ夕ノールを含む混合溶媒中、 酸性アミノ酸と長 鎖脂肪酸ハロゲン化物とをアル力リの存在下で縮合させる工程 (ァシル化反応ェ 程) 、
2 ) 得られた反応液を鉱酸で p Hを 1〜6にすることにより有機層と水層とに分 層し N _長鎖ァシル酸性アミノ酸を含む有機層を取得する工程 (酸沈分層工程) 、 3 ) 得られた有機層を水及び/又は夕ーシャリーブ夕ノールと混合し、 3 5 °C〜 8 0 °Cの温度において水層と N—長鎖ァシル酸性アミノ酸を含む有機層とに分層 し不純物を除去する工程 (水洗工程) 、 及び
4 ) 前記水洗工程において得られた N—長鎖ァシル酸性アミノ酸を含む有機層か ら、 N—長鎖ァシル酸性アミノ酸のカルボキシル基量の 1 Z 2 0以上をアルカリ 塩とし、 混合液の温度が 9 0 °Cを超えない条件で、 かつ、 蒸留時において水を添 加し混合液中の固形分濃度を 5〜 5 0重量%に維持して有機溶媒を蒸留除去する 工程 (中和溶媒留去工程) 。
17. 以下の工程により得られる請求項 9 ~ 1 1のいずれかに記載の N—長鎖ァ シル酸性ァミノ酸又はその塩:
1 ) 実質的に水と夕一シャリーブ夕ノールを含む混合溶媒中、 酸性アミノ酸と長 鎖脂肪酸ハロゲン化物とをアル力リの存在下で縮合させる工程 (ァシル化反応ェ 程) 、
2 ) 得られた反応液を鉱酸で p Hを 1〜6にすることにより有機層と水層とに分 層し N—長鎖ァシル酸性アミノ酸を含む有機層を取得する工程 (酸沈分層工程) 、
3 ) 得られた有機層を水及び/又は夕ーシャリーブ夕ノールと混合し、 3 5 °C〜 8 0 °Cの温度において水層と N—長鎖ァシル酸性アミノ酸を含む有機層とに分層 し不純物を除去する工程 (水洗工程) 。
4 ) 前記水洗工程において得られた N—長鎖ァシル酸性アミノ酸を含む有機層か ら、 混合液の温度が 9 0 °Cを超えない条件で、 かつ、 混合液中の有機溶媒が 5 w t %以下の組成において、 水を添加して混合液中における N—長鎖ァシル酸性 アミノ酸と水の比を重量比で 3 5 / 6 5〜6 5 / 3 5の範囲に維持して有機溶媒 を蒸留除去する工程 (未中和溶媒留去工程) 。
18. N—長鎖ァシル酸性アミノ酸に対し、 無機塩の含量が 1重量%以下、 夕一 シャリ一ブ夕ノールの含量が 0 . 1〜7 5 0重量 p p mである N—長鎖ァシル酸 性ァミノ酸又はその塩を含む液体状又は固体状香粧品組成物。
19. N—長鎖ァシル酸性アミノ酸に対し、 無機塩の含量が 1重量%以下、 遊離 脂肪酸の含有量が 3 . 0重量%以下である N—長鎖ァシル酸性ァミノ酸又はその 塩を含む液体状又は固体状香粧品組成物。
20. N—長鎖ァシル酸性アミノ酸に対し、 無機塩の含量が 1重量%以下、 夕一 シャリーブ夕ノールの含量が 0 . 1〜7 5 0重量 111、 遊離脂肪酸の含有量が 3 . 0重量%以下である N—長鎖ァシル酸性アミノ酸又はその塩を含む液体状又 は固体状香粧品組成物。
21. N—長鎖ァシル酸性アミノ酸に対し、 無機塩の含量が 1重量%以下、 夕一 シャリーブ夕ノールの含量が 0 . 1〜7 5 0重量 p pmである N—長鎖ァシル酸 性アミノ酸又はその塩を含む洗浄剤組成物。
22. N—長鎖ァシル酸性アミノ酸に対し、 無機塩の含量が 1重量%以下、 遊離 脂肪酸の含有量が 3 . 0重量%以下である N—長鎖ァシル酸性アミノ酸又はその 塩を含む洗浄剤組成物。
23. N—長鎖ァシル酸性アミノ酸に対し、 無機塩の含量が 1重量%以下、 夕一 シャリーブ夕ノールの含量が 0 . 1〜7 5 0重量 111、 遊離脂肪酸の含有量が 3 . 0重量%以下である N—長鎖ァシル酸性アミノ酸又はその塩を含む洗浄剤組 成物。
PCT/JP1999/000730 1998-12-28 1999-02-18 Processus de production d'acide amine acide n-(chaine acyle longue) WO2000040546A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR10-2001-7008188A KR100459279B1 (ko) 1998-12-28 1999-02-18 장쇄 n-아실 산성 아미노산의 제조 방법
EP99905240A EP1156033B1 (en) 1998-12-28 1999-02-18 Process for producing acidic n-(long-chain acyl)amino acid
CA002358118A CA2358118A1 (en) 1998-12-28 1999-02-18 Process for producing long chain n-acyl acidic amino acid
US09/868,700 US6569829B1 (en) 1998-12-28 1999-02-18 Process for producing long chain N-acyl acidic amino acid
AU25477/99A AU753513C (en) 1998-12-28 1999-02-18 Process for producing acidic N-(long-chain acyl)amino acid
BR9916591-0A BR9916591A (pt) 1998-12-28 1999-02-18 Processo para produzir um aminoácido ácidon-acilado de cadeia longa, aminoácido ácidon-acilado de cadeia longa ou um sal do mesmo,composição cosmética lìquida ou sólida, e,composição detergente
ES99905240T ES2373528T3 (es) 1998-12-28 1999-02-18 Procedimiento para la producción de un n-acilaminoácido ácido de cadena larga.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP37403998A JP4392884B2 (ja) 1998-12-28 1998-12-28 N−長鎖アシル酸性アミノ酸塩、およびその製造方法
JP10/374039 1998-12-28

Publications (1)

Publication Number Publication Date
WO2000040546A1 true WO2000040546A1 (fr) 2000-07-13

Family

ID=18503167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000730 WO2000040546A1 (fr) 1998-12-28 1999-02-18 Processus de production d'acide amine acide n-(chaine acyle longue)

Country Status (13)

Country Link
US (1) US6569829B1 (ja)
EP (1) EP1156033B1 (ja)
JP (1) JP4392884B2 (ja)
KR (1) KR100459279B1 (ja)
CN (1) CN1240672C (ja)
AU (1) AU753513C (ja)
BR (1) BR9916591A (ja)
CA (1) CA2358118A1 (ja)
ES (1) ES2373528T3 (ja)
ID (1) ID29030A (ja)
RU (1) RU2204550C2 (ja)
TW (1) TW577864B (ja)
WO (1) WO2000040546A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057217A2 (de) * 2001-01-18 2002-07-25 Cognis Deutschland Gmbh & Co. Kg Verfahren zur herstellung von acylaminosäuren
WO2017179627A1 (ja) * 2016-04-14 2017-10-19 旭化成ファインケム株式会社 洗浄剤組成物及びその製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841075B2 (ja) * 2000-09-22 2011-12-21 旭化成ケミカルズ株式会社 美白化粧料
US6703517B2 (en) 2001-11-26 2004-03-09 Ajinomoto Co., Inc. Method for preparing N-long chain acyl neutral amino acid
JP4716501B2 (ja) * 2003-10-02 2011-07-06 旭化成ケミカルズ株式会社 洗浄剤組成物
US20060019836A1 (en) * 2004-06-02 2006-01-26 Fang Li Multicomponent viscoelastic surfactant fluid and method of using as a fracturing fluid
US7772164B2 (en) 2004-06-02 2010-08-10 Rhodia, Inc. Multicomponent viscoelastic surfactant fluid and method of using as a fracturing fluid
US7951232B2 (en) * 2006-02-09 2011-05-31 Elevance Renewable Sciences, Inc. Surface coating compositions and methods
EP2007199A2 (en) * 2006-02-09 2008-12-31 Elevance Renewable Sciences, Inc. Antimicrobial compositions, methods and systems
DE102007055265A1 (de) * 2007-11-20 2009-05-28 Clariant International Ltd. Verfahren zur Herstellung von Acylglycinaten
CN102126984B (zh) * 2010-12-30 2014-10-01 上海奥利实业有限公司 N-长链酰基氨基酸盐的缩合生产工艺和专用设备
CN102093241B (zh) * 2011-01-06 2014-07-23 福建科宏生物工程有限公司 一种结晶型n-脂肪酰基谷氨酸盐的制备方法
WO2013183748A1 (ja) * 2012-06-08 2013-12-12 花王株式会社 口腔用組成物
RU2624026C2 (ru) 2012-08-23 2017-06-30 Гэлакси Сёфэктентс Лтд. Способ получения основанных на n-ациламинокислоте поверхностно-активных веществ с применением основанных на n-ациламинокислоте поверхностно-активных веществ или соответствующих ангидридов в качестве катализаторов
CN103435509B (zh) * 2013-08-21 2016-03-16 南京华狮化工有限公司 一种n-酰基酸性氨基酸或其盐的制备方法及其应用
CN105001111A (zh) * 2015-06-30 2015-10-28 广州天赐高新材料股份有限公司 低无机盐含量的月桂酰基丙氨酸盐溶液的制备方法
EP3647303B1 (en) 2018-10-31 2022-08-31 Clariant International Ltd Process for preparing fatty acid chlorides and n-acyl amino acid salts
PL441022A1 (pl) 2022-04-26 2023-10-30 Pcc Exol Spółka Akcyjna Sposób wytwarzania wysoko oczyszczonej soli N-acylowanego aminokwasu należącego do grupy obojętnych oraz wodna kompozycja wysoko oczyszczonej soli N-acylowanego aminokwasu otrzymana tym sposobem
CN115160189B (zh) * 2022-08-11 2023-06-16 广州天赐高新材料股份有限公司 一种n-酰基甲基牛磺酸钠的连续化制备方法
CN116333796A (zh) * 2023-03-14 2023-06-27 新疆金雪驰科技股份有限公司 一种多功能添加剂、液压支架浓缩液及它们的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113717A (en) * 1974-07-26 1976-02-03 Ajinomoto Kk Nn chosaashirusanseiaminosanno bunriho
JPH03284658A (ja) * 1990-03-30 1991-12-16 Ajinomoto Co Inc 膜処理によるn―長鎖アシルアミノ酸塩の濃縮及び精製法
JPH0597787A (ja) * 1991-10-09 1993-04-20 Kao Corp N−長鎖アシルアミノカルボン酸又はn−長鎖アシルアミノスルホン酸型界面活性剤の製造方法及び該界面活性剤を含有する洗浄剤組成物
JPH1171334A (ja) * 1997-08-27 1999-03-16 Asahi Chem Ind Co Ltd N−長鎖アシル酸性アミノ酸の製造方法
EP0982325A1 (en) 1997-04-25 2000-03-01 Asahi Kasei Kogyo Kabushiki Kaisha Polyvinylidene chloride latex and process for the preparation thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758525A (en) 1969-04-01 1973-09-11 Ajinomoto Kk Process for preparing n-higher aliphatic acyl acidic amino acids
JPS5138681B2 (ja) * 1973-05-29 1976-10-23
JPH0676593B2 (ja) * 1989-09-29 1994-09-28 株式会社資生堂 透明固形洗浄剤
JP2777455B2 (ja) 1990-03-29 1998-07-16 日精化学工業株式会社 N―長鎖アシル酸性アミノ酸の製造方法
JPH072747A (ja) 1990-12-14 1995-01-06 Hoechst Japan Ltd N−長鎖アシル酸性アミノ酸塩の精製法
US5776438A (en) * 1992-06-26 1998-07-07 Shiseido Co., Ltd. External preparation
JP3279354B2 (ja) 1992-09-29 2002-04-30 富士通株式会社 3次元ボリュームデータの動き補償予測方式
JP3284658B2 (ja) 1993-04-16 2002-05-20 トヨタ自動車株式会社 自動組付システム
DE69631026T2 (de) * 1995-07-12 2004-09-09 Kyowa Hakko Kogyo Co., Ltd. Verwendung von Kokosölfettsäureacylglutamin in Reinigungsmitteln
DE69615206T2 (de) * 1996-11-20 2002-05-08 Clariant Finance (Bvi) Ltd., Road Town Verfahren zur Herstellung von N-Acylaminodicarbonsäuren
JPH11171334A (ja) 1997-12-08 1999-06-29 Amada Co Ltd 複合加工ラインにおけるワーク旋回方法及びその装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113717A (en) * 1974-07-26 1976-02-03 Ajinomoto Kk Nn chosaashirusanseiaminosanno bunriho
JPH03284658A (ja) * 1990-03-30 1991-12-16 Ajinomoto Co Inc 膜処理によるn―長鎖アシルアミノ酸塩の濃縮及び精製法
JPH0597787A (ja) * 1991-10-09 1993-04-20 Kao Corp N−長鎖アシルアミノカルボン酸又はn−長鎖アシルアミノスルホン酸型界面活性剤の製造方法及び該界面活性剤を含有する洗浄剤組成物
EP0982325A1 (en) 1997-04-25 2000-03-01 Asahi Kasei Kogyo Kabushiki Kaisha Polyvinylidene chloride latex and process for the preparation thereof
JPH1171334A (ja) * 1997-08-27 1999-03-16 Asahi Chem Ind Co Ltd N−長鎖アシル酸性アミノ酸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1156033A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057217A2 (de) * 2001-01-18 2002-07-25 Cognis Deutschland Gmbh & Co. Kg Verfahren zur herstellung von acylaminosäuren
WO2002057217A3 (de) * 2001-01-18 2004-03-25 Cognis Deutschland Gmbh Verfahren zur herstellung von acylaminosäuren
US6828452B2 (en) 2001-01-18 2004-12-07 Cognis Deutschland Gmbh & Co. Kg Method for producing acyl amino acids
WO2017179627A1 (ja) * 2016-04-14 2017-10-19 旭化成ファインケム株式会社 洗浄剤組成物及びその製造方法
KR20180100665A (ko) 2016-04-14 2018-09-11 아사히 가세이 파인켐 가부시키가이샤 세정제 조성물 및 그 제조 방법
JPWO2017179627A1 (ja) * 2016-04-14 2018-12-13 旭化成ファインケム株式会社 洗浄剤組成物及びその製造方法
CN109072128A (zh) * 2016-04-14 2018-12-21 旭化成精细化工股份有限公司 洗涤剂组合物及其制造方法
KR102051789B1 (ko) 2016-04-14 2019-12-04 아사히 가세이 파인켐 가부시키가이샤 세정제 조성물 및 그 제조 방법
CN109072128B (zh) * 2016-04-14 2020-07-10 旭化成精细化工股份有限公司 洗涤剂组合物及其制造方法

Also Published As

Publication number Publication date
JP4392884B2 (ja) 2010-01-06
EP1156033A4 (en) 2005-01-05
EP1156033A1 (en) 2001-11-21
BR9916591A (pt) 2001-11-13
ID29030A (id) 2001-07-26
AU753513C (en) 2003-07-24
CN1332721A (zh) 2002-01-23
US6569829B1 (en) 2003-05-27
RU2001121140A (ru) 2004-03-20
TW577864B (en) 2004-03-01
KR20010099971A (ko) 2001-11-09
CN1240672C (zh) 2006-02-08
EP1156033B1 (en) 2011-12-07
CA2358118A1 (en) 2000-07-13
AU2547799A (en) 2000-07-24
AU753513B2 (en) 2002-10-17
ES2373528T3 (es) 2012-02-06
KR100459279B1 (ko) 2004-12-03
RU2204550C2 (ru) 2003-05-20
JP2000191613A (ja) 2000-07-11

Similar Documents

Publication Publication Date Title
WO2000040546A1 (fr) Processus de production d'acide amine acide n-(chaine acyle longue)
JP2705848B2 (ja) 穀物タン白質の水解物から由来するアミノ酸の混合物のn−アシル化誘導体及びそれらの応用
JPWO2004020394A1 (ja) 新規アシル基含有組成物
JP2002167313A (ja) 界面活性剤
JP2017095451A (ja) 界面活性剤組成物
CN108779065A (zh) N-酰基-氨基酸的水溶液
JP6653751B2 (ja) 洗浄剤組成物及びその製造方法
JPH0322993A (ja) 水溶性l−チロシン誘導体およびl−チロシン誘導体の製造方法
JP6103210B2 (ja) 皮膚洗浄剤組成物
JP4205804B2 (ja) N−長鎖アシル酸性アミノ酸、およびその製造法
JP4059983B2 (ja) N−長鎖アシル酸性アミノ酸、およびその製造方法
JP4349800B2 (ja) ポリオキシプロピレン脂肪酸イソプロパノールアミド界面活性剤精製物の製造方法
JPH09505621A (ja) 無水かつ流動性の糖テンシド粉末の製造方法
US20050085651A1 (en) Crystal of N-long-chain acylglycine salt, method of production thereof, and detergent composition using said crystal
US20040228825A1 (en) Production method of N-acylamino acid and a salt thereof
JP2002003461A (ja) 新規アミド化合物
JP2003221371A (ja) N−長鎖アシル中性アミノ酸の製造方法
JPH0987289A (ja) 界面活性剤
JP2021147358A (ja) ヒドロキシ脂肪酸アシル−N−メチル−β−アラニンまたはその塩
JP3783097B2 (ja) 界面活性剤及び洗浄剤組成物
JPS63245495A (ja) 両性界面活性剤の製造方法
JP2005220021A (ja) N−アシル酸性アミノ酸結晶の製造方法
JPH0967325A (ja) ポリオキシプロピレン脂肪酸アルカノールアミドスルホコハク酸エステル塩化合物混合物、その製造方法および洗浄剤組成物
JPH1171334A (ja) N−長鎖アシル酸性アミノ酸の製造方法
US20210147761A1 (en) Thermolabile pro-fragrances of fragrance ketones

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99815178.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT GD)

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999905240

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2358118

Country of ref document: CA

Ref document number: 2358118

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017008188

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 25477/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09868700

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017008188

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999905240

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 25477/99

Country of ref document: AU

WWR Wipo information: refused in national office

Ref document number: 1020017008188

Country of ref document: KR