WO2000014779A1 - Appareil et procede d'exposition, dispositif et procede de production dudit appareil - Google Patents

Appareil et procede d'exposition, dispositif et procede de production dudit appareil Download PDF

Info

Publication number
WO2000014779A1
WO2000014779A1 PCT/JP1999/004757 JP9904757W WO0014779A1 WO 2000014779 A1 WO2000014779 A1 WO 2000014779A1 JP 9904757 W JP9904757 W JP 9904757W WO 0014779 A1 WO0014779 A1 WO 0014779A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
optical system
stage
exposure apparatus
substrate
Prior art date
Application number
PCT/JP1999/004757
Other languages
English (en)
French (fr)
Inventor
Masato Takahashi
Nobukazu Ito
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US09/786,238 priority Critical patent/US6538719B1/en
Priority to EP99940621A priority patent/EP1143492A4/en
Priority to AU54474/99A priority patent/AU5447499A/en
Publication of WO2000014779A1 publication Critical patent/WO2000014779A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Definitions

  • the present invention relates to an exposure apparatus and an exposure method, and a device and a method of manufacturing the same. More specifically, the present invention relates to an exposure apparatus and an exposure method used in a lithographic process when manufacturing a semiconductor device such as a semiconductor integrated circuit or a liquid crystal display. The present invention also relates to a device manufactured by using the exposure apparatus and a method of manufacturing a device by using the exposure method. Background art
  • a resist photosensitive agent
  • a circuit pattern formed on a mask or reticle hereinafter, collectively referred to as a “reticle”.
  • Various exposure apparatuses for transferring images onto a substrate such as a wafer or a glass plate are used.
  • a reticle pattern is projected onto a wafer using a projection optical system in accordance with the miniaturization of the minimum line width (device rule) of a pattern accompanying the high integration of an integrated circuit in recent years.
  • a reduction projection exposure apparatus that performs reduction transfer is mainly used.
  • This reduction projection exposure apparatus includes a step-and-repeat type static exposure reduction projection exposure apparatus (so-called stepper) that sequentially transfers a reticle pattern to a plurality of shot areas on a wafer, and a stepper.
  • stepper static exposure reduction projection exposure apparatus
  • Step-and-scan method for transferring a reticle pattern to each shot area on a wafer by synchronously moving a reticle and a wafer in a one-dimensional direction as disclosed in Japanese Patent Publication No. 8-166003
  • a scanning exposure type exposure apparatus (so-called scanning-stepper).
  • a base plate which is a reference of the apparatus, is first installed on the floor surface, and a reticle stage, a wafer stage, and a projection optical system are placed on the base plate via a vibration isolating table for isolating floor vibration.
  • the main body column that supports etc. is placed.
  • Recent reduction projection exposure systems are equipped with an air mount that can control the internal pressure and an actuator such as a voice coil motor as the anti-vibration table.
  • the six accelerometers mounted on the main body column (main frame)
  • An active anti-vibration table for controlling the vibration of the main body column by controlling the voice coil motor or the like based on the measured value is employed.
  • the wafer stage in the case of a stepper or the reticle stage and the wafer stage (scanner)
  • the reaction force generated by the acceleration and deceleration movements of the stepper (stepper) causes vibration of the main body column, causing an undesired phenomenon of causing a relative position error between the projection optical system and the wafer.
  • the above relative position error during alignment and exposure may result in image blur (increase in pattern line width) when the pattern is transferred to a position different from the design value on the wafer as a result, or when the position error includes a vibration component. Therefore, in order to suppress such a pattern transfer position shift and an image blur, it is necessary to sufficiently attenuate the vibration of the main body column by the above-described active vibration isolating table or the like. Yes, for example, in the case of a stepper, it is necessary to start the alignment operation and the exposure operation after the wafer stage is positioned at a desired position and fully settled, and in the case of a scanning stepper, Exposure had to be performed with sufficient synchronization settling between the reticle stage and wafer stage. For this reason, the throughput (productivity) was reduced.
  • Japanese Patent Application Laid-Open No. 2-199813 discloses that a stage for holding a substrate and a projection lens mount for holding a projection lens are mounted on separate anti-vibration mounts. Exposure apparatuses that support each have been proposed.
  • a mount for a main body that supports a main body that holds a projection lens and a mount for an XY stage that supports an XY stage are mounted on the same positioning platen. For this reason, even in the exposure apparatus described in this publication, the vibration caused by the reaction force at the time of driving the XY stage is transmitted to the positioning platen via the mount for the XY stage, and the vibration is further transmitted to the mount for the main body. It is apparent that the above-described pattern transfer misalignment, image blur, and the like cannot be completely prevented because the light is transmitted to the projection optical system held by the main body via the main body.
  • the present invention has been made under such circumstances, and a first object of the present invention is to provide an exposure apparatus and an exposure method capable of improving both exposure accuracy and throughput.
  • a second object of the present invention is to provide a highly integrated device in which a fine pattern is formed with high accuracy, and a method for manufacturing the device. Disclosure of the invention
  • a substrate (W) is formed by using an exposure optical system (PL).
  • An exposure apparatus for forming a predetermined pattern thereon comprising: a main body column (14) for supporting the exposure optical system; and a first vibration isolator (56A-56) for supporting the main body column. C) and; a first base member (BP 1) mounted on the floor (FD) while the first vibration isolator is mounted; and a substrate stage (WST) for holding the substrate.
  • the first vibration isolator supporting the main body column is mounted on the first base member
  • the second vibration isolator supporting the stage base is independent of the first base member. Since it is mounted on the second base member placed on the floor, the transmission of vibration between the first and second base members is substantially blocked. For this reason, the reaction force when the substrate stage supported on the stage base plate is moved (driving) is transmitted to the second vibration isolator and the second base member, but is transmitted to the first base member. And the reaction force when the substrate stage is moved (driving) does not cause vibration of the exposure optical system supported by the main body column mounted on the first base member. .
  • a passive vibration isolator having only a role of insulating minute vibrations from the floor may be used, but at least one of the first and second vibration isolators may be used.
  • an active vibration isolator that can actively control the vibration of the main body column or stage base.
  • an active vibration isolator is provided with an air mount that can control the internal pressure, an actuator such as a voice coil motor, etc., and is attached to the vibration damping target.
  • the first vibration isolator (56A to 56C) is an active vibration isolator
  • the first base member BP A column position measuring device (98) for measuring a relative position between the main body column (14) and the main body column (14); and a control device for controlling the first vibration isolation device based on a measurement value of the column position measuring device. (5 0) and may be further provided.
  • the first vibration isolator is controlled by the control device based on the relative position between the first base member and the main body column measured by the column position measuring device, and the main body column is controlled. Therefore, the exposure optical system supported thereby can be maintained at a stable position with respect to the first base member.
  • a mask stage that holds a mask may be mounted on the main body column. In this case, vibration of the main body column caused by movement of the mask stage is caused by an active vibration isolator that supports the main body column. Can be suppressed or eliminated.
  • the second vibration isolator (66A to 66C) is an active vibration isolator
  • the first base member (BP 1) and a stage base position measuring device (94) for measuring a relative position between the stage base (16) and the second prevention device based on a measurement value of the stage base position measuring device.
  • the control device controls the second vibration isolator based on the relative position between the first base member and the stage base measured by the stage base position measuring device, and the base base is moved to the first base member. It is possible to maintain a stable position with respect to the base member. Further, vibration of the stage base caused by movement of the substrate stage can be suppressed or eliminated by the active vibration isolator.
  • the exposure optics may be A support member for supporting the system at three points by V-grooves, conical grooves and flat surfaces may be further provided.
  • the optical system for exposure is so-called kinematically supported with respect to the main body column via the support member, not only moment but also expansion and contraction force between the main body column and the optical system for exposure are provided. It is hardly transmitted. Therefore, it is easy to assemble the exposure optical system to the main body column, and it is possible to most effectively reduce the stress caused by vibration, temperature change, posture change, and the like of the main body column and the exposure optical system after assembly.
  • the exposure optical system and any one of the stage base and the substrate stage are used for the exposure.
  • a three-degree-of-freedom position measuring device that optically measures a positional relationship in the direction of the optical axis of the optical system and a direction of inclination with respect to the plane orthogonal to the optical axis, in a three-degree-of-freedom direction;
  • a control device for controlling the second vibration isolation device.
  • the optical axis direction of the optical system for exposure and any one of the stage base and the substrate stage with respect to the optical axis direction of the optical system for exposure and the tilt direction with respect to the plane orthogonal to the optical axis by the three-degree-of-freedom position measuring device.
  • the positional relationship in the three degrees of freedom is optically measured, and the control device controls the second vibration isolator based on the measured values of the three degrees of freedom position measuring device.
  • the positional relationship between the optical system for exposure and the optical system for exposure of the substrate stage in the direction of the optical axis and the direction of inclination with respect to the plane orthogonal to the optical axis is adjusted in three degrees of freedom.
  • the positional relationship between the exposure optical system and the substrate stage in the three degrees of freedom is adjusted, that is, focusing. It is possible to control or drive for that.
  • the main body column has a support member that supports a lens barrel of the exposure optical system
  • the three-degree-of-freedom position measuring device is configured to include one of the stage base and the substrate stage and the support member.
  • An interferometer (102) that measures the distance between the two points at three different points can be provided.
  • the interferometer may be fixed to the support member, or may be fixed to the lens barrel of the exposure optical system.
  • the three-degree-of-freedom position measuring device may include an interferometer that measures the distance between any of the stage base and the substrate stage and the optical system for exposure at three different points.
  • the predetermined pattern supported by the main body column (14) and projected onto the substrate (W) by the exposure optical system (PL) is provided.
  • a mask holding member (RST) for holding the formed mask (R) is further provided, a mask transfer system (110) for loading and unloading the mask with respect to the mask holding member and the substrate are provided.
  • At least one of a substrate transfer system (112) for loading and unloading the substrate stage (WST) is mounted on the first base member (BP1), and the first base member is mounted on the first base member (BP1).
  • the control device uses the interferometer when exchanging the mask, for example.
  • the position of the mask holding member with respect to the first base member during transport is constantly kept constant. This allows the mask to be loaded at a desired position on the mask holding member.
  • the control device may have an example. For example, at the time of substrate replacement, by controlling the substrate transfer system based on the measured values of the interferometer system and the position measurement system, the position of the substrate stage with respect to the first base member can be constantly changed. The substrate can be kept constant, and as a result, the substrate can be loaded at a desired position on the substrate stage.
  • the illumination optical system is independent of the first and second base members. It may be mounted on a third base member (BP 3) mounted on the floor. In such a case, it is possible to prevent the transmission of vibration between the objects mounted on the first, second and third base members, respectively.
  • the first vibration isolators (56A to 56C) are active vibration isolators and hold a mask (R) on which the predetermined pattern is formed.
  • a mask holding member (RST) for finely driving the mask on the main body column (14) in three directions of freedom in the plane; an illumination optical system (ILU) for illuminating the mask;
  • An active anti-vibration device (116) for supporting an optical system;
  • a 6-degree-of-freedom position measuring device (120) for measuring a relative position of the illumination optical system and the main body column in a 6-degree-of-freedom direction;
  • a controller that controls the mask holding member and any one of the first vibration isolator and the active vibration isolator that holds the illumination optical system based on the measurement value of the six-degree-of-freedom position measurement device; And may be further provided.
  • the control device sets the mask via the mask holding member based on the relative position of the illumination optical system and the main body column in the direction of 6 degrees of freedom obtained based on the measurement value of the 6 degrees of freedom position measuring device.
  • the mask is movable in a predetermined direction in a predetermined direction within a plane orthogonal to an optical axis of the exposure optical system
  • a driving device (44, 50, 72) for driving the substrate stage in the predetermined direction in synchronization with the substrate stage may be further provided.
  • the mask and the substrate stage are synchronously driven in a predetermined direction in a plane orthogonal to the optical axis of the exposure optical system by the driving device, so that the mask is driven by the exposure optical system by so-called scanning exposure.
  • the pattern is accurately transferred onto the substrate.
  • an exposure apparatus for forming a predetermined pattern on a substrate using an optical system for exposure, comprising: a main body column for supporting the optical system for exposure; A substrate stage supported independently of the main body column; and a focus detection device for detecting at least a position of the exposure optical system in the optical axis direction on the surface of the substrate (121a, 121) b) a substrate drive system for driving the substrate at least in the optical axis direction of the exposure optical system, and a substrate drive system provided independently of the focus detection device; A position measuring system (94, 98, 102) for measuring a positional relationship with the substrate stage; a driving device (70) for changing a positional relationship between the exposure optical system and the substrate stage; Focus detection device, substrate drive system, position measurement system And a control device (50) connected to the drive device, wherein the control device controls the drive device based on a value measured by the position measurement system during exposure.
  • the optical system for exposure and the substrate stage are set in a predetermined positional relationship with each other, and the image plane of the optical system for exposure and the substrate are connected via the substrate drive system based on the detection result of the focus detection device.
  • a second exposure apparatus characterized by adjusting the relative position of the second exposure apparatus. If the main body column that supports the exposure optical system and the substrate stage that holds the substrate are independently supported, there is an advantage that vibration is difficult to be transmitted between the two, but both may behave independently. Therefore, a response delay (time delay) may occur in the substrate focus control or focus / leveling control during exposure.
  • the position measurement system is controlled by the controller during exposure.
  • the driving device is controlled based on the value measured by the system, that is, the measurement result of the positional relationship between the exposure optical system and the substrate stage, and the exposure optical system and the substrate stage are set in a predetermined positional relationship.
  • the relative position between the image plane of the exposure optical system and the substrate is adjusted via the substrate drive system based on the detection result of the focus detection device. That is, the position of the exposure optical system and the position of the substrate stage are controlled based on the detection result of the position measurement system before the focus control of the substrate based on the detection result of the focus detection device or the start of the cascade leveling control.
  • the relationship is set to a predetermined positional relationship, it is possible to avoid a response delay in the above-described substrate focus control or focus / leveling control, and to achieve high-precision single-point control or force control.
  • the leveling control and, consequently, the exposure control can be improved. Also in this case, for the same reason as the above-described first exposure apparatus, the speed and size of the substrate stage can be further increased, so that the throughput can be improved.
  • the above-mentioned predetermined positional relationship is such that, for example, in consideration of the responsiveness of the substrate drive system, the substrate surface is located within a range where the focus can be sufficiently pulled in and there is no response delay in the focus control.
  • This is a positional relationship in which the substrate surface is located near the focal position of the exposure optical system, and the focus detection device can always detect the positional relationship.
  • the substrate drive system may be mounted on a substrate stage and drive the substrate at least in the optical axis direction of the exposure optical system.
  • the substrate drive system may drive the substrate through at least the light of the exposure optical system via the substrate stage. It may be driven in the axial direction.
  • the focus control or focus leveling control of the substrate can be performed based on the detection result of the position measurement system, the so-called evening shot which is difficult to detect by the focus detection device can be performed. It is possible to perform focus control or focus / leveling control of the substrate during exposure or during exposure of inside / outside shots and edge shots, resulting in line width controllability. Can also be improved.
  • the position measurement system may measure the positional relationship in the optical axis direction of the optical system for exposure and in a direction of three degrees of freedom in a tilt direction with respect to the plane orthogonal to the optical axis. It is good.
  • the position measurement system may be fixed to a main body column that supports the exposure optical system, or may be fixed to a barrel of the exposure optical system.
  • the position measurement system when the apparatus further includes a stage support member that supports the substrate stage, the position measurement system includes the exposure optical system of the exposure optical system and the stage support member.
  • the positional relationship in the optical axis direction of the system can be measured.
  • the position measurement system measures the positional relationship between the exposure optical system and the stage support member in the optical axis direction of the exposure optical system.
  • the exposure optical system and the stage support member are measured.
  • the positional relationship of the exposure optical system with respect to the substrate axis supported by the optical axis direction is measured.
  • the stage support member is provided with three measurement points for measuring the positional relationship, and the position measurement system determines the distance between the exposure optical system and the stage support member as 3 It may be measured at a point.
  • the position measurement system determines the distance between the exposure optical system and the stage support member as 3 It may be measured at a point.
  • three degrees of freedom in the optical axis direction of the exposure optical system and the tilt direction with respect to the plane orthogonal to the optical axis of the exposure optical system between the exposure optical system and the stage support member With respect to the direction, the positional relationship between the exposure optical system and the stage support member, and furthermore, the exposure optical system and the substrate stage can be obtained.
  • the second exposure apparatus further includes a base member (BP1) for supporting the main body column, wherein the position measurement system measures a positional relationship between the base member and the exposure optical system.
  • a first position measuring device (98); a second position measuring device (98) for measuring a positional relationship between the base member and the stage support member. May be provided.
  • the positional relationship between the base member and the exposure optical system is measured by the first position measuring device, and the positional relationship between the base member and the stage support member is measured by the second position measuring device. Therefore, the positional relationship between the exposure optical system and the stage support member, that is, the positional relationship between the exposure optical system and the substrate stage, is determined based on the measurement results of the first position measuring device and the second position measuring device. Can be requested.
  • At least one of the first position measuring device and the second position measuring device may determine a relative position in a direction of six degrees of freedom as the positional relationship.
  • a predetermined pattern is formed on a substrate on a substrate stage supported independently of a main body column that supports the exposure optical system, by using the exposure optical system.
  • An exposure method comprising: a first step of measuring a positional relationship between the exposure optical system and the substrate stage; and a step of measuring the positional relationship between the exposure optical system and the substrate stage based on the value measured in the first step.
  • a response delay may occur in the focus control or focus leveling control of the substrate.
  • the positional relationship between the exposure optical system and the substrate stage is measured in the first step, and the measured value, that is, the position between the exposure optical system and the substrate stage, is measured in the second step.
  • the positional relationship between the exposure optical system and the substrate stage is set to a predetermined state based on the measurement result of the relationship.
  • a predetermined state is set. In the specified state, a pattern is formed on the substrate by adjusting the relative position between the image plane of the exposure optical system and the substrate surface based on the detection result of at least the position of the exposure optical system in the optical axis direction on the substrate surface. Is done.
  • the measurement of the first step in the second step Based on the result, the positional relationship between the exposure optical system and the substrate stage is set to a predetermined state. Therefore, it is possible to avoid a delay in the above-described focus control or focus / leveling control of the substrate, and it is possible to improve the focus control or focus / leveling control with high accuracy, and furthermore, to improve the exposure control.
  • the predetermined state is, for example, a state in which the substrate surface is positioned within a range in which the focus pull-in is sufficiently possible and the focus control is not delayed in response to the response of a system for driving the substrate. That is, the substrate surface is located near the focal position of the exposure optical system, and the focus detection device can always detect the substrate. In this case as well, as described above, the speed and size of the substrate stage can be further increased, so that the throughput can be improved.
  • the positional relationship in the direction of the optical axis of the exposure optical system and in the three-degree-of-freedom direction of the tilt direction with respect to the plane orthogonal to the optical axis may be measured.
  • the measurement in the first step, may be performed using a position measurement system fixed to a main body column that supports the exposure optical system.
  • the measurement may be performed using a position measurement system fixed to a lens barrel of an optical system.
  • the exposure method when the substrate stage is supported by a stage support member, in the first step, the light of the exposure optical system of the exposure optical system and the stage support member Measuring the positional relationship in the axial direction It is good.
  • the positional relationship between the exposure optical system and the stage support member in the optical axis direction of the exposure optical system is measured.
  • the exposure optical system and the stage support member are measured.
  • the positional relationship in the optical axis direction of the exposure optical system with the substrate stage supported on the substrate is measured.
  • the distance between the exposure optical system and the stage support member may be measured at three different measurement points set on the stage support member.
  • the three degrees of freedom in the optical axis direction and the tilt direction with respect to the plane orthogonal to the optical axis of the exposure optical system between the exposure optical system and the stage support member are determined. The positional relationship between the optical system for exposure and the stage support member, and thus the optical system for exposure and the substrate stage can be obtained.
  • the first step when the main body column is supported by a base member, the first step includes: a first measurement step of measuring a positional relationship between the base member and the exposure optical system; A second measuring step of measuring a positional relationship between the base member and the stage supporting member may be included.
  • the positional relationship between the base member and the exposure optical system is measured in the first measuring step, and the positional relationship between the base member and the stage supporting member is measured in the second measuring step.
  • the positional relationship between the optical system for exposure and the stage support member that is, the positional relationship between the optical system for exposure and the substrate stage can be obtained based on the measurement results of the measurement process and the second measurement process.
  • a relative position in a direction of six degrees of freedom may be obtained as the positional relationship.
  • a pattern of a plurality of layers can be formed on a substrate with a high degree of superposition accuracy. Can be manufactured with high yield, and the productivity can be improved.
  • lithographies By performing exposure using the exposure apparatus of the present invention, a pattern of a plurality of layers can be formed on a substrate with high overlay accuracy. Therefore, highly integrated microdevices can be manufactured with high yield, and the productivity can be improved. Therefore, from another viewpoint, the present invention is a device manufacturing method using the exposure method of the present invention or the exposure apparatus of the present invention, and can be said to be a device manufactured by the manufacturing method.
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus according to one embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view of the right side view of FIG. 1 of each component below the lens barrel base which constitutes a part of the main body column of the apparatus of FIG.
  • FIG. 3 is a block diagram schematically showing a configuration of a control system of the apparatus shown in FIG.
  • FIG. 4 is a perspective view showing the vicinity of the reticle stage in FIG.
  • FIG. 5 is a plan view showing a lens barrel base portion facing the flange FLG.
  • 6A is a sectional view taken along line AA of FIG. 5
  • FIG. 6B is a sectional view taken along line BB of FIG. 5
  • FIG. 6C is a sectional view taken along line CC of FIG.
  • FIG. 7 is a diagram for explaining a configuration of a position sensor that measures a relative position between the positioning surface plate BP 1 and the stage surface plate 16 in FIG.
  • FIG. 8 is a flowchart for explaining an embodiment of the device manufacturing method according to the present invention.
  • FIG. 9 is a flowchart showing the processing in step 304 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 schematically shows the entire configuration of an exposure apparatus 10 according to one embodiment.
  • the exposure apparatus 10 uses a reticle R as a mask and a wafer W as a substrate in a one-dimensional direction.
  • the circuit pattern formed on the reticle R is transferred to each shot area on the wafer W via the projection optical system PL while moving synchronously in the Y-axis direction.
  • It is a scanning type scanning exposure apparatus, that is, a so-called scanning stepper.
  • the exposure apparatus 10 includes a light source 12, an illumination unit ILU as an illumination optical system for illuminating the reticle R with illumination light from the light source 12, a reticle stage RST as a mask holding member for holding the reticle R, and a reticle R.
  • Projection optical system PL as an exposure optical system that projects the illumination light (ultraviolet pulse light) emitted from the wafer onto the wafer W, wafer stage WS as a substrate stage that holds the wafer W, projection optical system PL, and a reticle stage Equipped with a main column 14 supporting RST, a stage base 16 supporting the wafer stage WST, an anti-vibration system to suppress or eliminate vibration of the main column 14 and stage base 16 and a control system for these. I have.
  • an ArF excimer laser which outputs an ArF excimer laser light narrowed so as to avoid an oxygen absorption band between wavelengths 192 to 194 nm is used.
  • a light source 12 is used, and the main body of the light source 12 is installed on a floor FD in a clean room of a semiconductor manufacturing plant via a vibration isolator 18.
  • the light source 12 is provided with a light source control device 13 (not shown in FIG. 1; see FIG. 3).
  • the light source control device 13 has a main control device 50 (described in FIG. 1) described later. (See Fig. 3) to control the oscillation center wavelength and spectral half width of the emitted ultraviolet pulse light, trigger the pulse oscillation, and control the gas in the laser chamber. ing.
  • the light sources 1 and 2 may be installed in another room (service room) with a lower degree of cleanliness than the clean room or in a utility space provided under the floor of the clean room.
  • Light source 12 is beam-matched via light-blocking bellows 20 and pipe 22
  • One end (incident end) of the unit BMU is connected, and the other end (outgoing end) of the beam matching unit BMU is connected to the illumination unit ILU via a pipe 24.
  • a plurality of movable reflecting mirrors are provided in the beam matching unit BMU.
  • the main controller 50 uses these movable reflecting mirrors from the light source 12 through the bellows 20 and the pipe 22.
  • the optical path of the incident narrow-band ultraviolet pulse light (ArF excimer laser light) is positionally matched with the illumination unit ILU described below. That is, the optical path is always aligned with the optical axis of the illumination unit ILU.
  • the position and angle of incidence of the UV pulse light on the illumination unit ILU are adjusted optimally so that the light is incident in a predetermined positional relationship.
  • the illumination unit ILU includes an illumination system housing 26 for making the inside airtight with respect to outside air, a variable attenuator 28A housed in a predetermined positional relationship within the illumination system housing 26, and a beam shaping optical system.
  • 28B 1st fly-eye lens system 28C, vibrating mirror 28D, condenser lens system 28E, mirror 28F, 2nd fly-eye lens system 28G, illumination system aperture stop plate 28H, beam splitter 28 J, 1st relay lens 28K, reticle blind mechanism 28mm, 2nd relay lens 28mm, mirror 28Q, main condenser lens system 28R, etc.
  • the lighting system housing 26 is filled with clean dry nitrogen gas (N 2 ) or helium gas (H e) having a concentration of air (oxygen) of several percent or less, preferably less than 1%. ing.
  • the variable attenuator 28 A is for adjusting the average energy of each pulse of the ultraviolet pulse light.
  • a plurality of optical filters having different dimming rates can be switched so that the dimming rate can be changed stepwise.
  • One that changes the optical attenuation and one that continuously varies the dimming rate by adjusting the degree of overlap between two optical filters whose transmittance continuously changes are used.
  • An example of such a variable dimmer is disclosed in, for example, Japanese Patent Application Laid-Open No. HEI 3-1799357 and The corresponding US Pat. No.
  • variable dimmer 28 A is a lighting control device 30 described later under the control of the main control device 50. (Not shown in FIG. 1; see FIG. 3).
  • the beam shaping optical system 28B is provided with a double fly eye (described later) provided with a cross-sectional shape of the ultraviolet pulse light adjusted to a predetermined peak intensity by the variable dimmer 28A behind the optical path of the ultraviolet pulse light.
  • the first fly-eye lens system 28C constituting the entrance end of the lens system is shaped so as to be similar to the overall shape of the entrance end of the 28C, and is efficiently incident on the first fly-eye lens system 28C. It consists of a cylinder lens and a beam spreader (both not shown).
  • the double fly's eye lens system is for uniformizing the intensity distribution of the illumination light.
  • the first fly's eye lens system 2 is sequentially arranged on the optical path of the ultraviolet pulsed light behind the beam shaping optical system 28 B. 8 C, a condenser lens 28 E, and a second fly-eye lens system 28 G.
  • interference fringes and weak speckles generated on the irradiated surface are smoothed.
  • the vibration mirror 28D is arranged.
  • the vibration (deflection angle) of the vibrating mirror 28D is controlled by a lighting control device 30 under the control of the main control device 50 via a drive system (not shown).
  • An illumination system aperture stop plate 28H made of a disc-shaped member is arranged near the exit surface of the second fly-eye lens system 28G.
  • the illumination system aperture stop plate 28 H is provided at substantially equal angular intervals, for example, an aperture stop composed of a normal circular aperture, an aperture stop composed of a small circular aperture, for reducing the ⁇ value, which is a coherence factor, and a ring.
  • a ring-shaped aperture stop for illumination, and a modified aperture stop formed by eccentrically arranging, for example, four apertures are used for the modified light source method.
  • This illumination system aperture stop plate 28 ⁇ is rotated by a motor (not shown) controlled by the illumination control device 30 so that one of the aperture stops is positioned on the optical path of the ultraviolet pulse light. It is selectively set, and the shape of the light source surface in the Köhler illumination, which will be described later, is limited to an annular zone, a small circle, a large circle, or a fourth circle.
  • the reticle blind mechanism 28 M is arranged on a surface slightly defocused from a conjugate plane with respect to the pattern surface of the reticle R, and has a fixed reticle blind formed with an opening having a predetermined shape that defines an illumination area on the reticle R. And a movable reticle blind having an opening arranged at a position near the fixed reticle blind and having a variable position and width in a direction corresponding to the scanning direction.
  • the opening of the fixed reticle blind is a slit extending linearly in the X-axis direction perpendicular to the moving direction ( ⁇ -axis direction) of the reticle R during scanning exposure at the center of the circular visual field of the projection optical system P. Alternatively, it is assumed to be formed in a rectangular shape.
  • the movable reticle blind is controlled by main controller 50 via a drive system (not shown).
  • the main condenser lens system 28 R is arranged on the optical path of the ultraviolet pulse light behind the mirror 28 Q.
  • the entrance surface of the first fly-eye lens 28 C, the entrance surface of the second fly-eye lens 28 G, the arrangement surface of the movable reticle blind of the reticle blind mechanism 28 M, and the pattern surface of the reticle R are optical.
  • Light source surface formed on the exit surface side of the first fly-eye lens system 28 C, the light source surface formed on the exit surface side of the second fly-eye lens system 28 G, and projection optics The Fourier transform plane (exit pupil plane) of the system P is set to be optically conjugate to each other, forming a Keller illumination system.
  • the ultraviolet pulse light from the light source 12 enters the illumination unit ILU via the beam matching unit BMU, the ultraviolet pulse light is variable. After being adjusted to a predetermined peak intensity by the dimmer 28 A, the light enters the beam shaping optical system 28 B. Then, the cross-sectional shape of the ultraviolet pulse light is shaped by the beam shaping optical system 28B so as to efficiently enter the rear first fly-eye lens system 28C. Next, when this ultraviolet pulse light enters the first fly-eye lens system 28C via the mirror 28F, a surface light source, that is, a large number of light source images, is emitted to the exit end side of the first fly-eye lens system 28C. (Point light source) is formed.
  • a surface light source that is, a large number of light source images
  • Ultraviolet pulse light diverging from each of these many point light sources enters the second fly-eye lens system 28 G via the vibrating mirror 28 D and the condenser lens system 28 E.
  • a tertiary light source is formed at the exit end of the second fly-eye lens system 28G, in which a large number of minute light source images are uniformly distributed in a region of a predetermined shape.
  • UV pallets emitted from these numerous tertiary light sources After passing through one of the aperture stops on the illumination system aperture stop plate 28H, the light reaches a beam splitter 28J having a large reflectance and a small transmittance.
  • the ultraviolet pulse light as the exposure light reflected by the beam splitter 28 J is uniformly distributed through the opening of the fixed reticle blind constituting the reticle blind mechanism 28 M by the first relay lens 28 K. To illuminate. However, in the intensity distribution, interference fringes and weak speckles depending on the coherence of the ultraviolet pulse light from the light source 12 can be superimposed with a contrast of about several percent. For this reason, the exposure amount unevenness due to interference fringes and weak speckles may occur on the wafer surface. The unevenness in the exposure amount is described in Japanese Patent Application Laid-Open No. 7-142354 and the corresponding US As in Patent No.
  • smoothing is performed by shaking the vibrating mirror in synchronization with the movement of the reticle R or wafer W during scanning exposure and the oscillation of the ultraviolet pulse light.
  • the ultraviolet light After passing through the opening of the fixed reticle blind, the ultraviolet light passes through the movable reticle blind, passes through the second relay lens 28N, and the optical path is bent vertically downward by the mirror 28Q.
  • a predetermined illumination area on the reticle R held on the reticle stage RST (a slit or rectangular illumination area extending linearly in the X-axis direction) ) Is illuminated with a uniform illuminance distribution.
  • the rectangular slit-shaped illuminating light applied to the reticle R is set to extend in the X-axis direction (non-scanning direction) in the center of the circular projection field of the projection optical system PL in FIG.
  • the width of the illumination light in the Y-axis direction (scanning direction) is set almost constant.
  • the ultraviolet pulsed light transmitted through the beam splitter 28 J is incident on an integrator sensor 34 composed of a photoelectric conversion element via a condenser lens 32, where it is photoelectrically converted. Then, the photoelectric conversion signal of the integrator sensor 34 is supplied to the main controller 50 via a peak hold circuit and an A / D converter (not shown).
  • the Integra sensor 34 has sensitivity in the deep ultraviolet region, and In order to detect the pulse light emission of the light source 12, a PIN type die having a high response frequency or the like can be used. The correlation coefficient between the output of the integrator sensor 34 and the illuminance (exposure amount) of the ultraviolet pulse light on the surface of the wafer W is obtained in advance and stored in a memory in the main controller 50.
  • a reflected light monitor 38 comprising a light receiving element similar to the condenser lens 36 and the integrator sensor 34 is arranged.
  • the reflected light from the reticle R pattern surface is the main condenser lens system 28 R, mirror 28 Q, 2nd relay lens 28 N, movable reticle blind, fixed reticle blind opening, 1st relay lens 28 K
  • the light After passing through the beam splitter 28 J, the light enters the reflected light monitor 38 via the condenser lens 36, where it is photoelectrically converted.
  • the photoelectric conversion signal of the reflected light monitor 38 is supplied to the main controller 50 via a peak hold circuit (not shown) and an A / D converter.
  • the reflected light monitor 38 is mainly used for measuring the transmittance of the reticle R.
  • the support structure of the lighting unit ILU will be described later in detail.
  • the reticle stage R ST is arranged on a reticle base platen 42 horizontally fixed above a support column 40 constituting a main body column 14 described later.
  • Reticle stage RST can drive reticle R linearly with a large stroke in the Y direction on reticle base platen 42, and can also drive minutely in the X direction and in the direction (rotation direction about ⁇ axis). It has become.
  • the reticle stage RS is moved in the ⁇ direction by a pair of linear motors 202 and 202 on the reticle base platen 42 as shown in FIG.
  • the one Y linear motor 202 is mounted on a reticle base surface plate 42 by a plurality of air bearings (air pads) 210 and is supported by a stator 2 ⁇ 2 extending in the Y-axis direction.
  • the other Y linear motor 202 B is provided with a stator 211 B, which is levitated and supported on a reticle base surface plate 42 by a plurality of air bearings (not shown) and extends in the Y-axis direction. It is provided corresponding to the stator 2 12 B, and includes a mover 2 14 B fixed to the reticle coarse movement stage 204 via a connecting member 2 16 B.
  • the reticle coarse movement stage 204 is composed of a pair of Y guides 2 18 A, 21 fixed to the upper surface of an upper protruding portion 42 a formed at the center of the reticle base platen 42 and extending in the Y-axis direction. 8 B guides in the Y-axis direction. Further, reticle coarse movement stage 204 is supported in a non-contact manner by air bearing (not shown) with respect to these Y guides 218A and 218B.
  • the reticle fine movement stage 208 has an opening formed in the center thereof, and the reticle R is suction-held in the opening via a vacuum chuck (not shown).
  • Y linear motor 2 fixed to reticle coarse movement stage 204 is used.
  • the movers 2 14 A and 2 14 B of the 0 2 A and 202 B and the stators 2 12 A and 2 12 B relatively move in opposite directions. That is, reticle stage RST and stators 21A and 21B relatively move in opposite directions.
  • the reticle stage RST The amount of movement of the stators 2 12 A and 2 12 B during the movement depends on the entire reticle stage RST (reticle coarse movement stage 204, connecting member 2 16 A , 2 16 B, mover 2 14 A, 2 14 B, reticle fine movement stage 208, reticle R, etc. and entire stator (stator 2 12 A, 2 12 B, air bearing) 2 10 etc.).
  • the reaction force of the reticle stage RST during acceleration and deceleration in the scanning direction is absorbed by the movement of the stators 212A and 212B, and the reticle base plate 42 vibrates due to the above reaction force. Can be effectively prevented. Also, reticle stage RST and stators 2 12 A and 2 12 B move relatively in opposite directions, and reticle stage RS and reticle stage surface plate
  • a moving mirror 48 that reflects the measurement beam from the reticle laser interferometer 46 as an interferometer system for measuring the position and movement of the reticle stage RST is attached to a part of the reticle stage RST. Have been.
  • the reticle laser interferometer 46 is fixed to the upper end of the support column 40.
  • a pair of Y movable mirrors 48 yl and 48 y2 each composed of a corner cube are fixed to the end of the reticle fine movement stage 208 in the Y direction.
  • X movable mirror 4 8 X consisting of a plane mirror one extending in the Y-axis direction is fixed.
  • three laser interferometers for irradiating the measuring beams to these movable mirrors 48 yl , 48 y2 and 48 X are actually fixed to the upper end of the support column 40.
  • a reticle laser interferometer 46 typically shown as a reticle laser interferometer 46 and a movable mirror 48.
  • the fixed mirror corresponding to each laser interferometer is provided on the side surface of the lens barrel of the projection optical system PL or inside each interferometer main body.
  • the above three Of the reticle stage RST (specifically, the reticle fine movement stage 208) in the X, ⁇ , and Sz directions using the reticle laser interferometer of the projection optical system PL (or part of the main body column) as a reference.
  • the reticle laser interferometer 46 simultaneously and individually measures the position in the X, ⁇ , and ⁇ z directions with respect to the projection optical system PL (or a part of the main body column).
  • the position information (or speed information) of reticle stage R S ⁇ (that is, reticle R) measured by reticle laser interferometer 46 is sent to main controller 50 (see FIG. 3).
  • Main controller 50 basically operates drive unit 4 so that the position information (or speed information) output from reticle laser interferometer 46 matches the command value (target position, target speed). It controls the linear motor, voice coil, motor, etc. that make up part 4.
  • both the object plane (reticle R) side and the image plane (wafer W) side have a telecentric and circular projection field, and quartz or fluorite is an optical glass material.
  • a 1/4 (or 1/5) refractive optical system consisting of only a refractive optical element (lens element) is used. For this reason, when the reticle R is irradiated with ultraviolet pulse light, an image forming light beam from a portion of the circuit pattern area on the reticle R illuminated by the ultraviolet pulse light is incident on the projection optical system PL.
  • a partial inverted image of the road pattern is formed with a slit or rectangular shape (polygonal shape) at the center of the circular field on the image plane side of the projection optical system PL at each pulse irradiation of the ultraviolet pulse light.
  • the projected partial inverted image of the circuit pattern becomes one of a plurality of shot areas on the wafer W arranged on the imaging plane of the projection optical system PL. It is reduced and transferred to the resist layer on the surface of the shot area.
  • the projection optical system PL is constructed by using a refractive optical element and a reflective optical element as disclosed in Japanese Patent Application Laid-Open No. 3-282725 and the corresponding US Pat. No. 5,220,454. It is a matter of course that a so-called power storage system combining elements (concave mirror, beam splitter, etc.) may be used. To the extent permitted by the national laws of the designated or designated elected country in this International Application, the disclosures in the above-mentioned publications and corresponding US patents are incorporated by reference into the present specification.
  • an image distortion correction plate 51 for effectively reducing the distance component is disposed between the projection optical system PL and the reticle R.
  • This correction plate 51 locally polishes the surface of a parallel quartz plate having a thickness of about several millimeters in the order of the wavelength, and slightly deflects the principal ray of the imaging light beam passing through the polished portion. .
  • An example of how to make such a compensator is disclosed in detail in Japanese Patent Application Laid-Open No. 8-209380 and U.S. application Ser. No.
  • the projection optical system PL has an image forming characteristic (projection magnification and a certain kind of dissolution) by moving a specific lens element inside in parallel in the optical axis direction or by slightly tilting it.
  • image forming characteristic projection magnification and a certain kind of dissolution
  • the main body column 14 includes three columns 5 provided on a first positioning platen B P 1 as a first base member serving as a reference of a device placed horizontally on the floor FD.
  • the positioning surface plate BP1 a rectangular shape having a rectangular opening partially formed in a plan view, that is, a rectangular frame shape is used.
  • FIG. 2 is a partial cross-sectional view of the right side view of FIG. 1 of each component below the lens barrel base plate 58 that constitutes a part of the main body column 14 of the exposure apparatus 10 of FIG. I have.
  • the anti-vibration unit 56B includes an air mount 60 capable of adjusting the internal pressure and a voice coil motor 62 arranged in series on a support 54B. Have been.
  • the remaining vibration isolating units 56A and 56C also include an air mount 60 and a voice coil motor 62 arranged in series on the columns 54A and 54C, respectively.
  • the lens barrel base 58 is made of a material or the like, and a projection optical system PL is inserted into the inside of an opening 58a at the center thereof from above with the optical axis AX direction as the Z axis direction. .
  • a flange FLG as a support member integrated with the lens barrel is provided on the outer periphery of the lens barrel of the projection optical system PL.
  • the material of this flange FLG is a material with low thermal expansion, for example, Invar (36% nickel, manganese). 0.25%, and a low-expansion alloy made of iron containing trace amounts of carbon and other elements).
  • the flange FLG supports the projection optical system PL against the barrel base 58. This constitutes a so-called kinematic support mount.
  • FIG. 5 is a plan view of the barrel base 58 at a portion opposed to the flange FLG
  • FIGS. 6A, 6B, and 6C are cross-sectional views taken along the line A-A and B_B of FIG. The figure and the C-C line sectional view are shown, respectively.
  • three hemispherical projections 1 52a, 15 2b are provided on the lower surface of the flange FLG at intervals of approximately 120 ° on a circumference almost concentric with the projection optical system PL.
  • 152c are integrally formed, and these convex portions 152a, 152b, and 152c are engaged with the conical groove 154a and the V-shaped groove 154b, respectively.
  • Groove (circular hole with a flat inner bottom surface) 1 54 c is formed on the upper surface of the barrel base 58.
  • the projection optical system The PL is kinematically supported on the barrel base 58 via the flange FLG. Adopting such a kinematic support structure makes it easy to assemble the projection optical system PL onto the barrel base 58, and furthermore, vibration, temperature change, and attitude change of the barrel base 58 and the projection optical system PL after assembly. There is an advantage that the stress caused by the above can be reduced most effectively.
  • a plurality of air bearings (air pads) 64 are fixed to the bottom surface of the wafer stage WS T, and the wafer stage WS T is mounted on the stage base 16 by these air bearings 64. For example, it is levitated and supported through a clearance of about several microns.
  • the stage base 16 is in the rectangular opening of the first positioning base BP 1 described above.
  • the second positioning table BP2 as a second base member placed on the floor FD and placed on the floor FD, three vibration-isolating units as second vibration-isolating devices including an active actuator It is held almost horizontally through the racks 66A to 66C (the anti-vibration unit 66C on the back side of the paper is not shown in FIG. 1; see FIG. 2).
  • the vibration isolation unit 66 B includes an air mount 68 and a voice coil module 70.
  • the other vibration isolating units 66 A and 66 C also include an air mount 68 and a voice coil motor 70.
  • Micro vibrations from the floor surface transmitted to the stage base 16 via the second positioning base BP 2 can be isolated at the micro G level by the vibration isolating units 66 A to 66 C. .
  • the wafer stage WST is driven in a two-dimensional XY direction on a stage base 16 by a drive unit 72 (not shown in FIG. 1; see FIG. 3) including two sets of linear motors.
  • a drive unit 72 (not shown in FIG. 1; see FIG. 3) including two sets of linear motors.
  • the X-direction drive of the wafer stage WST is performed by a pair of linear motors 74A and 74B shown in FIG.
  • the stators of these linear motors 74 A and 74 B extend along the X direction on both outer sides of the Y stage of the YST in the Y direction, and are disposed between the two ends by a pair of connecting members 76.
  • the movers of the linear motors 74 A and 74 B project from both sides of the wafer stage WST in the Y direction.
  • an armature unit 80 A is provided on a pair of connecting members 76 constituting the frame 78 or the lower end surfaces of the stators of the linear motors 74 A, 74 B.
  • 80 B are provided, and a pair of magnet units 82 A, 82 B extend in the Y direction corresponding to these armature units 80 A, 80 B.
  • These magnet units 82A and 82B are fixed to the upper surfaces of a pair of frames 84A and 84B extending in the Y direction on the upper surface of the second positioning surface plate BP2.
  • the armature unit 80 A and the magnet unit 82 A make a motion
  • the armature unit 80B and the magnet unit 82B constitute a moving coil type linear motor 86B.
  • the linear motors 86 A and 86 B drive the wafer stage WST in the Y direction integrally with the frame 78.
  • the drive unit 72 including the two sets of linear motors 74 A, 74 B, 86 A, and 86 B is configured in this manner, and the drive unit 72 includes the drive stage WST Is driven two-dimensionally along the XY plane parallel to the image plane of the projection optical system PL.
  • the drive unit 72 since the drive unit 72 is independently supported by the frames 84 A and 84 B outside the stage base 16, the drive unit 72 can be used when accelerating the wafer stage WST in the XY plane.
  • the reaction force generated during deceleration is transmitted directly to the positioning platen BP2 via the frames 84A and 84B, but is not transmitted to the stage platen 16.
  • Wafer W is fixed to the upper surface of wafer stage WST via wafer holder 88 by vacuum suction or the like.
  • the XY position of the wafer stage WST is a part of the wafer stage WST with reference to the reference mirror MrKMr2 fixed to the lower end of the projection optical system PL.
  • Laser interferometers 90 ⁇ and 90X that measure the position change of the moving mirror M s UM s 2 fixed to the camera at a predetermined resolution, for example, about 0.5 to 1 nm in real time Is done. The measured values of these laser interferometers 90Y and 90X are supplied to the main controller 50 (see Fig. 3).
  • the laser interferometer 90 9 and the laser interferometer 90X constitute an interferometer system that measures the position of the wafer stage WS ⁇ with reference to the projection optical system PL.
  • at least one of the laser interferometers 90 ⁇ and 90X is a multi-axis interferometer having two or more measuring axes. Therefore, in the main controller, the laser interferometers 90 ⁇ and 9OX are provided. Based on the measured values, not only the XY position of the wafer stage WST, but also the amount of rotation or In addition to these, the amount of repelling can be obtained.
  • the wafer holder 88 is actually held by a holder driving mechanism (not shown) mounted on the wafer stage WST and holds the wafer W in a Z
  • the micro drive is performed in the direction and the tilt direction with respect to the XY plane.
  • This holder driving mechanism supports, for example, three different points of the wafer holder 88, and drives each of the supporting points independently in the Z-axis direction. Can be included. That is, in the present embodiment, the wafer W is moved in three directions of the Z direction, the direction (rotation direction around the X axis) and the direction (rotation direction around the Y axis) by the wafer holder 88 and the holder driving mechanism.
  • a Z-leveling table is configured as a substrate drive system to be driven.
  • this wafer holder 88 will also be referred to as “Z ⁇ leveling table 88” for convenience.
  • the factories constituting the Z-leveling table 88 are controlled by the main controller 50 (see FIG. 3).
  • the distance between the focal position of the projection optical system PL and the upper surface (surface) of the wafer W or a value corresponding to the distance, for example, the projection optical system corresponds to the Z-leveling table 88 described above.
  • a focus sensor 121 serving as a focus detection device for detecting the position of the wafer W surface in the Z-axis direction with respect to the image plane of the system PL and the inclination with respect to the XY plane is provided on the side surface of the projection optical system PL.
  • the focus sensor 1221 includes a light projecting unit (irradiation optical system) 121a for obliquely entering the detection light into the wafer W, and the detection light reflected by the wafer W.
  • a multi-point focal position detection system composed of a light receiving section (light receiving optical system) 1 2 1 b for receiving light is used.
  • the output (detection result) of the focus sensor 1 2 1 (light receiving section 1 2 1 b) is supplied to the main controller 50 (see FIG. 3).
  • the shot area of the wafer W (more accurately Z is a leveling table such that the area on the wafer conjugate to the slit-shaped illumination area on reticle R always coincides with the image plane of projection optical system PL (within a range of a predetermined depth of focus). 8 to control 8. In other words, in this way, so-called cas-leveling control is performed.
  • a multipoint focal position detection system similar to the focus sensor 121 is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 6-284304 and US Pat. No. 5,448,333 corresponding thereto.
  • the disclosure in the above-mentioned gazettes and U.S. patents is part of the description of this specification as far as it is disclosed in detail in the above-mentioned publications and U.S. And
  • the light projecting unit 121 a and the light receiving unit 122 b may be fixed to the lens barrel base 58 instead of the projection optical system PL.
  • the stage base 16 actually has three vibration sensors (for example, an accelerometer) that measure the Z-direction vibration of the stage base 16. ) And three vibration sensors (for example, an accelerometer) that measure the vibration in the XY plane (for example, two of these sensors measure the vibration of the stage base 16 in the Y direction and the remaining vibration The sensor measures the vibration in the X direction).
  • these six vibration sensors are collectively referred to as a vibration sensor group 92.
  • the measurement value of the vibration sensor group 92 is supplied to the main controller 50 (see FIG. 3). Accordingly, the main controller 50 controls the vibrations of the stage base 16 in the six degrees of freedom (X, ⁇ , Z, ⁇ X, ⁇ y, Sz directions) based on the measured values of the vibration sensors 92. You can ask.
  • the Z-direction vibration of the main body column 14 is actually measured on the lens barrel base 58 constituting the main body column 14.
  • Three vibration sensors for example, an accelerometer
  • three vibration sensors for example, an accelerometer
  • these six vibration sensors are collectively referred to as a vibration sensor group 96 for convenience.
  • the measurement values of the vibration sensor group 96 are supplied to the main controller 50 (see FIG. 3).
  • main controller 50 can determine the vibration of main body column 14 in the direction of six degrees of freedom based on the measurement value of vibration sensor group 96. Further, in the present embodiment, as described above, the stage base 16 and the lens barrel base 58 are supported by different positioning bases BP2 and BP1, respectively. It is necessary to confirm the relative positional relationship with the lens barrel base 58. Therefore, as shown in FIG.
  • Position sensor 98 as a column position measuring device (and position measuring system) that measures the position of the barrel base 58 with respect to the positioning base BP 1 via the positioning base plate BP 1, and the evening fixed to the stage base 16
  • a position sensor 94 as a stage base position measuring device for measuring the position of the stage base 16 with respect to the positioning base BP 1 via the gate 93 is provided.
  • a base end is fixed to a stage base plate 16, and a reflecting surface 93 3 perpendicular to the X, Y, and ⁇ axes is provided at the front end thereof.
  • An L-shaped member on which a, 93b, and 93c are formed is used.
  • the position sensor 94 the measuring beams are respectively applied to the reflecting surfaces 93a, 93b, and 93c.
  • a laser interferometer that irradiates RIX, RI ⁇ , and RIZ can be used.
  • the present embodiment by using a plurality of sets of such a target 93 and a laser interferometer 94, at least two Z positions of the stage base 16 based on the position-based base BP 1, The X position is measured at two places and the Y position is measured at two places.
  • the position table 94 and the stage table 16 by the position sensor 94 in Fig. 2 for convenience. Assume that six relative positions are measured.
  • the measurement value of the position sensor 94 is supplied to the main controller 50 (see FIG. 3).
  • the position sensor 98 is also configured in the same way as the position sensor 94, and measures the Z position, the X position, and the Y position of the lens barrel base 58 based on the positioning base BP1 at two locations. In the following description, it is assumed that, for convenience, the above-described six relative positions of the positioning surface plate BP 1 and the barrel surface plate 58 are measured by the position sensor 98 of FIG. The measured value of the position sensor 98 is also supplied to the main controller 50 (see FIG. 3).
  • main controller 50 can determine the relative positions of positioning surface plate BP 1 and stage surface plate 16 in the six degrees of freedom based on the measurement values of position sensor 94, The relative positions of the positioning surface plate BP 1 and the lens barrel surface plate 58 in the six degrees of freedom direction can be obtained based on the measurement values of 8.
  • the reaction force at the time of driving the wafer stage WST is not transmitted to the stage base 16 as it is, but the reaction force is transmitted from the frames 84 A and 84 B via the positioning base BP 2 Slightly transmitted to the stage base 16, it may cause vibration of the stage base 16.
  • the main controller 50 uses a vibration isolation unit 6 6 A in order to eliminate the vibration in the 6 degrees of freedom direction of the stage base 16 obtained based on the measured values of the vibration sensors 92. It is possible to control the speed of ⁇ 66 C by feedback control, for example, and to reliably suppress the vibration of the stage base 16.
  • the wafer stage WST moves on the stage base 16 As a result, the position of the center of gravity of the stage base 16 moves, causing an eccentric load. For this reason, it is possible to correct the inclination of the stage base 16 caused by the eccentric load based on the position signals from the laser interferometers 90X and 90Y.
  • so-called active vibration isolation tables are used as the vibration isolation units 66A to 66C.
  • main controller 50 obtains a relative position in six degrees of freedom with respect to positioning surface plate BP1 of stage surface plate 16 based on the measurement value of position sensor 94, and uses the information of the relative position to prevent the position. By controlling the units 66 A to 66 C, the stage base 16 can be constantly maintained at a stable position relative to the positioning base BP 1.
  • main controller 50 uses, for example, when reticle stage RST is moved, to prevent vibration of main body column 14 in six directions of freedom determined based on the measured values of vibration sensors 96.
  • the speed of the unit 56A to 56C can be controlled by, for example, feedback control or feedback control and feedforward control, and the vibration of the main unit column 14 can be effectively suppressed. is there. That is, so-called active vibration isolators are used as the vibration isolators 56A to 56C.
  • main controller 50 obtains the relative position of main body column 14 with respect to positioning platen BP1 in the direction of six degrees of freedom based on the measurement value of position sensor 98, and uses the information on the relative position to prevent the position.
  • the vibration units 56 A to 56 C the lens barrel base 58 can be constantly maintained at a stable position relative to the positioning base BP 1.
  • three laser interferometers 102 are fixed at three different places of the flange FLG of the projection optical system PL (however, in FIG. One of the laser interferometers is shown as a representative).
  • the portion of the barrel base 58 facing these three laser interferometers 102 is formed with an opening 58b, respectively. And each of these openings through 5 8b
  • a laser beam in the Z-axis direction is emitted from the laser interferometer 102 toward the stage base 16.
  • a reflection surface is formed on the upper surface of the stage base 16 at a position facing each of the measurement beams. Therefore, three different Z positions of the stage base 16 are measured by the three laser interferometers 102 with reference to the flange FLG.
  • FIG. 2 shows a state in which the central shot area of wafer W on wafer stage WST is directly below optical axis AX of projection optical system P. It is blocked by WST.
  • a reflecting surface may be formed on the upper surface of wafer stage WST, and an interferometer for measuring three different Z-direction positions on the reflecting surface with reference to projection optical system PL or flange FLG may be provided.
  • the three laser interferometers 102 are fixed to the barrel base 58, and the stage base 16 or the Z direction of the wafer stage WST with respect to the barrel base 58. It may be configured to measure the position.
  • the measured values of the laser interferometer 102 are also supplied to the main controller 50 (see FIG. 3), and the main controller 50 projects, for example, when exposing a wafer peripheral portion. It is possible to determine the positional relationship of the projection optical system PL between the optical system PL and the stage base 16 in the directions of three degrees of freedom ( ⁇ , ⁇ X, y) in the optical axis AX direction and the tilt direction with respect to the plane orthogonal to the optical axis. it can. That is, in the present embodiment, the laser interferometer 102 and the main control device 50 constitute a three-degree-of-freedom position measurement device.
  • a reticle loader 110 serving as a mask transport system for loading and unloading the reticle R to and from the reticle stage RST, and a wafer W to the wafer stage WST.
  • a wafer loader 112 as a substrate transfer system for unloading is also mounted.
  • the reticle loader 110 and the wafer slot—loader 112 are under the control of the main controller 50 (see Fig. 3).
  • the main controller 50 controls the reticle loader 110 based on the measurement value of the reticle laser interferometer 46 and the measurement value of the position sensor 98.
  • the position of the reticle stage RST with respect to the positioning platen BP1 during transport can be constantly kept constant.As a result, the reticle R is moved to the desired position on the reticle stage RST. You can talk.
  • the main controller 50 controls the wafer loader 112 based on the measured values of the laser interferometers 90 X and 90 Y and the position sensor 94 even when replacing the wafer.
  • the position of the wafer stage WST with respect to the positioning platen BP 1 can be constantly kept constant, and as a result, the wafer W can be loaded at a desired position on the wafer stage WST.
  • the lighting unit ILU is placed on a positioning base BP3 as a third base member placed on the floor FD independently of the first and second positioning bases BP1 and BP2. It is supported by a support column 118 mounted via a three-point support anti-vibration table 116. As with the anti-vibration units 56 A to 56 C and 66 A to 66 C, the anti-vibration table 1 16 can also be mounted on the air mount, voice coil motor (Akuchi Yue), and the support column 118. An active vibration isolator equipped with an attached vibration detection sensor (for example, accelerometer) is used, and the vibration from the floor FD is isolated at the micro G level by the active vibration isolator 116.
  • an active vibration isolator equipped with an attached vibration detection sensor (for example, accelerometer) is used, and the vibration from the floor FD is isolated at the micro G level by the active vibration isolator 116.
  • a base interferometer 120 as a 6-degree-of-freedom position measuring device for measuring a relative position in the 6-degree-of-freedom direction between the illumination unit ILU and the reticle base platen 42 (see FIG. 3) ).
  • the upper surface of the reticle base surface plate 42 has an L-shape similar to the above-mentioned evening gate 93, which is arranged opposite to the lighting unit ILU.
  • a pair of targets 230A and 230B which are made of a cylindrical member, are fixed, and the positions of these targets 230A and 230B in the X, Y, and ⁇ directions are measured, respectively.
  • a total of six laser interferometers (not shown in FIG. 4) are fixed to the illumination unit housing 26 of the illumination unit ILU. These six laser interferometers constitute the base interferometer 120 of FIG.
  • This base interferometer 1 The six measurement values from 20, that is, two pieces of position information (displacement information) in each of the X, ⁇ , and Z directions are sent to the main controller 50. Then, main controller 50, based on the six measured values from base interferometer 120, has six degrees of freedom (X, ⁇ , Z, ⁇ X) between illumination unit ILU and reticle base platen 42. , ⁇ y, direction).
  • the main controller 50 uses the reticle stage RST (via the drive unit 44) based on the relative position in the six degrees of freedom direction obtained based on the measured value from the base interferometer 120.
  • the main controller 50 controls the vibration isolation units 56 5 to 56 C based on the measurement values of the vibration sensor group 96 to suppress the coarse vibration of the main body column 14, By controlling the position of reticle stage RS ⁇ (reticle fine movement stage 208) based on the measurement value of interferometer 120, fine vibration of main body column 14 can also be effectively suppressed.
  • FIG. 3 simply shows a configuration of a control system of the above-described exposure apparatus 10.
  • This control system is mainly configured with a main controller 50 as a controller composed of a workstation (or a microcomputer).
  • the main control device 50 performs the various controls described above and controls the entire device as a whole. Next, an exposure operation in the exposure apparatus 10 configured as described above will be described.
  • various exposure conditions for scanning and exposing the shot area on the wafer W with an appropriate exposure amount are set in advance.
  • Preparation work such as reticle alignment and baseline measurement using a reticle microscope (not shown) and an optics alignment sensor (not shown) is performed.
  • ESA enhanced 'global * alignment
  • the array coordinates of multiple shot areas on wafer W are obtained.
  • the main controller 50 drives while monitoring the measurement values of the laser interferometers 90X and 90Y based on the alignment result.
  • the wafer stage WST is moved to a scanning start position for exposing the first shot of the wafer W by controlling the unit 72.
  • main controller 50 starts scanning in the Y direction between reticle stage RST and wafer stage WST via drive units 44 and 72, and both stages RS and WST reach their respective target scanning speeds. Then, the pattern area of the reticle R starts to be illuminated by the ultraviolet pulse light, and the scanning exposure is started.
  • the light source 12 Prior to the start of the scanning exposure, the light source 12 starts to emit light, but the movement of each blade of the movable blind constituting the reticle blind mechanism 28 M by the main controller 50 causes the reticle stage RST to move. Since the movement is controlled in synchronization with the movement, the irradiation of the ultraviolet pulse light to the outside of the pattern area on the reticle R is shielded in the same manner as in a normal scanning stepper.
  • main controller 50 the moving speed Vr of reticle stage RST in the Y-axis direction and the moving speed Vw of reticle stage RST in the ⁇ -axis direction during the above-described scanning exposure are determined by the projection magnification of projection optical system PL (1/1 /
  • the reticle stage RST and the wafer stage WST are synchronously controlled via the drive unit 44 and the drive unit 72 so as to maintain the speed ratio according to (5 times or 1/4 times). That is, in the present embodiment, a driving device that synchronously moves the reticle R and the wafer W along the Y-axis direction is configured by the driving unit 44, the driving unit 72, and the main controller 50.
  • the pattern area of the reticle R are sequentially illuminated with the ultraviolet pulse light, and the illumination of the entire pattern area is completed, thereby completing the scanning exposure of the first shot on the wafer W.
  • the pattern of reticle R is projected It is reduced and transferred to the first shot via the optical system PL.
  • main controller 50 moves the wafer stage WST stepwise in the X and Y-axis directions via the drive unit 72, thereby exposing the second shot. Is moved to the scanning start position.
  • main controller 50 measures the position displacement of wafer stage WST in the X, Y, and ⁇ directions in real time based on the measurement values of laser interferometers 90X and 90Y. Based on the measurement result, main controller 50 controls drive unit 72 to control the position of wafer stage W S # so that X ⁇ position displacement of wafer stage W S # is in a predetermined state.
  • main controller 50 controls drive unit 44 based on the information of the displacement of wafer stage WS in the direction of S ⁇ , and adjusts reticle stage RST ( The rotation of the reticle fine movement stage 208) is controlled.
  • main controller 50 performs the same scanning exposure on the second shot as described above.
  • the main controller 50 measures the position of the first sensor 121 as in the case of the recent scanning stepper. Based on the value, focus-leveling control is performed as described above, and exposure is performed with focus at a depth of focus of several hundred nm or less.
  • main body column 14 supporting the projection optical system PL and the wafer stage WST holding the wafer W are supported independently, it is difficult for vibration to be transmitted between the two.
  • main body column 1 and wafer The stage base 16 supporting the stage WST and the wafer stage WS ⁇ ⁇ ⁇ may behave independently of each other. Therefore, a response delay occurs in the focus control or focus / leveling control of the wafer W during exposure ( (Time delay) may occur.
  • the exposure apparatus 10 of the present embodiment when exposing the wafer w, the exposure of the wafer W via the ⁇ ⁇ leveling table 88 based on the measurement value of the focus sensor 121 described above is performed.
  • the main controller 50 controls the projection optical system PL and the stage base 16 based on the measured values of the laser interferometer 102 and the optical axis AX of the projection optical system AX. Obtain the positional relationship in the three degrees of freedom ( ⁇ , ⁇ X, direction) of the direction and the tilt direction relative to the plane orthogonal to the optical axis.
  • the main controller 50 feedback-controls the vibration isolating units 66 A to 66 C, specifically each voice coil motor 70, based on this positional relationship, and the stage base 16 projects. A fixed positional relationship with the optical system P or the barrel base 58 is maintained.
  • the above-mentioned fixed positional relationship is, for example, considering the response of the Z-leveling table 88, the surface of the wafer W is within a range where the focus can be sufficiently pulled in and there is no response delay in the focus control. This is a positional relationship where the surface of the wafer W is located near the focal position of the projection optical system PL and the focus sensor 122 can always detect the position.
  • the anti-vibration units 66 A to 6 6 C is controlled to adjust the stage base 16 and the wafer stage WZ through this to move the Z position of the wafer W within a certain range.
  • Focus leveling that controls the Z leveling table 8 based on the detected surface condition of the wafer W to match the wafer W within the range of the depth of focus of the image plane of the projection optical system PL. And fine-tuning.
  • the stage base 16 is used to set the projection optical system PL or the barrel base. 5 and 8 are maintained in the above-mentioned fixed positional relationship, so that there is no response delay in the focus / leveling control, and of course, the focus pull-in is also performed during the exposure of so-called outer and inner shots and edge shots.
  • the edge shot means a shot area located in the peripheral portion of the wafer W
  • the outer / inner shot means that an illumination area conjugate to the slit-shaped illumination area on the reticle R extends from the outside to the inside of the wafer W. Means the shot area that is relatively scanned.
  • the relative positions of the surface plate BP 1 and the lens barrel surface 58 in the six degrees of freedom are determined based on the measured values of the position sensors 98, and the positioning is performed based on the measured values of the position sensors 94.
  • the relative positions of the surface plate BP 1 and the stage surface plate 16 in the direction of 6 degrees of freedom are obtained. Therefore, the main controller 50 may determine the relative position between the lens barrel 58 (projection optical system P L) and the stage base 16 from these relative positions during exposure.
  • the projection optical system PL (barrel base plate 58) and the stage base 16 have an optical axis AX direction and a plane orthogonal to the optical axis of the projection optical system PL.
  • the focus sensor 12 1 and the Z ⁇ leveling table 88 are used.
  • the shot area of the wafer W (more specifically, the area conjugate to the slit-shaped illumination area on the reticle R) can be made to coincide with the depth of focus of the image plane of the projection optical system PL. This enables high-precision focus and leveling control.
  • the device rules are becoming increasingly finer.
  • the uniformity of the line width of the pattern image transferred onto the wafer W It is becoming increasingly difficult to ensure high precision. This is because, in the case of a shot around the wafer, the line width of the pattern image differs between the side where the adjacent shot does not exist and the side where the adjacent shot does not exist due to the difference in the influence of so-called flare.
  • the optical axis AX direction of the projection optical system PL between the projection optical system PL and the stage base 16 based on the measurement value of the laser interferometer 102 described above.
  • the focus of the wafer stage WST 'Leveling control is performed. Accordingly, even during the above-described dummy exposure, highly accurate focus control is possible, and as a result, the line width controllability is also improved.
  • the anti-vibration units 56 A to 56 C supporting the main body column 14 are mounted on the positioning platen BP 1, and the stage The anti-vibration units 66 A to 66 C supporting the surface plate 16 are mounted on the positioning surface plate BP 2 placed on the floor FD independently of the positioning surface plate BP 1. Therefore, the transmission of vibration between the positioning platens BP 1 and BP 2 is almost shut off. For this reason, the reaction force when the wafer stage WST supported on the stage base 16 is moved (driving) is not transmitted to the positioning base BP1, and the reaction force when the wafer stage WST is moved (driving) is not transmitted to the positioning base BP1. The reaction force does not cause vibration of the projection optical system PL supported by the main body column 14 mounted on the positioning platen BP1.
  • active anti-vibration tables are used as the anti-vibration units 56 A to 56 C, and the main controller 50 uses a position sensor 998 to measure the relative position between the positioning platen BP 1 and the main body column 14.
  • the vibration isolation units 56 A to 56 C are controlled based on the measured values of the main body column 14, and therefore the projection optics PL supported by this is positioned on the positioning platen BP 1 It can be maintained at a stable position with respect to.
  • the reticle stage RST is mounted on the main body column 14, but since the reticle stage RST uses a counterweight type stage, the vibration of the main body column 14 due to the reaction force due to the movement of the reticle stage RST. Is slight. Also, the slight vibration of the main body column 14 can be suppressed or eliminated by the vibration isolating units 56 A to 56 C supporting the main body column 14.
  • An active anti-vibration table is used as the anti-vibration units 66 A to 66 C, and the main controller 50 measures the relative position between the positioning surface plate BP 1 and the stage surface plate 16.
  • the vibration isolating units 66 A to 66 C are controlled based on the measured values of the stage, so that the stage base 16 is positioned and a stable position based on the base plate BP 1 is set. Can be maintained. Further, the vibration of the stage base 16 caused by the movement of the wafer stage WS can be suppressed or eliminated by the vibration isolating units 66A to 66C.
  • the present embodiment it is possible to effectively prevent the occurrence of a pattern transfer position shift, an image blur, and the like due to the vibration of the projection optical system PL, thereby improving the exposure accuracy.
  • vibration and stress at each part of the device are reduced, Since the relative positional relationship between the parts can be maintained and adjusted with higher accuracy, the speed and size of the wafer stage WST can be further increased and the throughput can be improved.
  • the present invention is not limited to this.
  • a controller for controlling each of these may be provided separately, or an arbitrary combination of these may be controlled by a plurality of controllers.
  • the present invention is not limited to this. That is, all of them, any of them, or any plural of them may be a passive vibration isolating table.
  • the present invention is applied to the scanning stepper.
  • the step of transferring the pattern of the mask onto the substrate while the mask and the substrate are stationary and sequentially moving the substrate step by step The present invention can be suitably applied to an AND-repeat type reduction projection exposure apparatus or a proximity exposure apparatus that transfers a mask pattern onto a substrate by bringing the mask and the substrate into close contact without using a projection optical system. It is.
  • the present invention is not limited to an exposure apparatus for manufacturing a semiconductor, but may be, for example, an exposure apparatus for a liquid crystal for transferring a liquid crystal display element pattern onto a square glass plate, or an exposure apparatus for manufacturing a thin-film magnetic head. Widely applicable to equipment.
  • the illumination light for exposure of the exposure apparatus of the present invention is not limited to an ArF excimer laser beam, but may be a g-line (436 nm), an i-line (365 nm), or a KrF excimer laser beam.
  • thermoelectron emission type lanthanum hexaborite (La B fi ) or tantalum (T a) may be used as an electron gun.
  • La B fi thermoelectron emission type lanthanum hexaborite
  • Ta a tantalum
  • the present invention provides any one of a pencil beam method, a variable shaped beam method, a cell projection method, a blanking aperture method, and an EBPS, as long as the electron beam exposure apparatus uses an electron optical system as an exposure optical system. However, it is applicable.
  • the magnification of the projection optical system may be not only the reduction system but also any one of the same magnification and the magnification system.
  • a projection optical system when far ultraviolet rays such as excimer lasers are used, a material that transmits far ultraviolet rays such as quartz or fluorite is used as the glass material.
  • a laser or X-ray When a laser or X-ray is used, a catadioptric or reflective system is used. (The reflection type reticle is also used.)
  • an electron optical system including an electron lens and a deflector may be used as the optical system. It goes without saying that the optical path through which the electron beam passes is in a vacuum state.
  • a catadioptric system may be used as the projection optical system.
  • the catadioptric projection optical system include, for example, Japanese Patent Application Laid-Open No. Hei 8-117504 and US Pat. Nos. 5,668,672 corresponding thereto and Japanese Patent Application Laid-Open No. H10-17072.
  • a plurality of refractive optics disclosed in U.S. Patent Nos. 5,031,976, 5,488,229, and 5,717,518.
  • the element and two mirrors are arranged on the same axis.
  • a catadioptric system that re-images an intermediate image of the reticle pattern formed by the plurality of refractive optical elements on the wafer by the primary mirror and the secondary mirror may be used.
  • a primary mirror and a secondary mirror are arranged following a plurality of refractive optical elements, and illumination light passes through a part of the primary mirror and is reflected in the order of the secondary mirror and the primary mirror. Part to reach the wafer.
  • the catadioptric projection optical system has, for example, a circular image field, and both the object side and the image side are telecentric, and the projection magnification is 1/4 or 1/5. May be used.
  • the irradiation area of the illumination light is substantially centered on the optical axis in the field of view of the projection optical system, and is in the scanning direction of the reticle or wafer. It may be a type defined in a rectangular slit shape extending along a direction substantially orthogonal to the slit.
  • a scanning exposure apparatus provided with such a catadioptric projection optical system, for example, a fine of about 1 0 0 nm L / S patterns using F 2 laser beam having a wavelength ⁇ 5 7 nm as illumination light for exposure It is possible to transfer a pattern onto a wafer with high precision.
  • a linear motor disclosed in U.S. Pat. No. 5,623,853 or U.S. Pat. —Evening may be used, and in such a case, either an air levitation type using an air bearing or a magnetic levitation type using a mouth force or a reactance force may be used.
  • one of the magnet unit and the armature unit may be connected to the stage, and the other of the magnet unit and the electromagnetic unit may be provided on the moving surface side of the stage.
  • the stage may be a type that moves along a guide or a guideless type that does not have a guide.
  • the reaction force generated by the movement of the reticle stage is, for example, as disclosed in Japanese Unexamined Patent Application Publication No. H8-330224 and the corresponding US Pat. No. 5,874,820. It may be mechanically released to the floor FD (earth) by using a room member. To the extent permitted by the national laws of the designated or designated elected States in this International Application, the disclosures in the above publications and US patents are incorporated herein by reference.
  • the illumination optical system and projection optical system composed of multiple lenses are incorporated into the exposure apparatus main body for optical adjustment, and the reticle stage consisting of many mechanical parts and the wafer stage are attached to the exposure apparatus main body for wiring and piping.
  • the exposure apparatus according to the above embodiment can be manufactured by connecting them and further performing overall adjustment (electrical adjustment, operation confirmation, etc.). It is desirable to manufacture the exposure apparatus in a clean room where the temperature, cleanliness, etc. are controlled.
  • the semiconductor device includes a step of designing the function and performance of the device, a step of manufacturing a reticle based on the design step, a step of manufacturing a wafer from a silicon material, and a patterning of the reticle by the exposure apparatus of the above-described embodiment. Transfer process to wafer, device assembling step (including dicing process, bonding process, package process), inspection step, etc. It is.
  • FIG. 8 shows a flowchart of an example of manufacturing devices (semiconductor chips such as IC and LSI, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.).
  • device function and performance design for example, circuit design of semiconductor device
  • pattern design for realizing the function is performed. I do.
  • step 302 mask manufacturing step
  • a mask (reticle) on which the designed circuit pattern is formed is manufactured.
  • step 303 wafer manufacturing step
  • a wafer is manufactured using a material such as silicon.
  • step 304 wafer processing step
  • the mask (reticle) prepared in steps 301 to 303 and the wafer are used, and as described later, the wafer is actually placed on the wafer by lithography technology or the like. Is formed.
  • step 304 device assembling step
  • device assembling is performed using the wafer processed in step 304.
  • This step 305 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary.
  • step 304 inspection step
  • inspection of the operation confirmation test, durability test, and the like of the device manufactured in step 305 is performed. After these steps, the device is completed and shipped.
  • FIG. 9 shows a detailed flow example of step 304 in the case of a semiconductor device.
  • the surface of the wafer is oxidized in step 311 (oxidation step).
  • Step 3 1 2 (CVD step)
  • an insulating film is formed on the wafer surface.
  • step 3 13 electrode formation step
  • electrodes are formed on the wafer by vapor deposition.
  • step 3 14 ion implantation step
  • ions are implanted into the wafer.
  • Each of the above steps 311 to 3114 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed in each stage according to necessary processing.
  • the post-processing step is executed as follows.
  • step 315 register forming step
  • step 3 16 exposure step
  • step 317 imaging step
  • Step 318 etching step
  • step 3 16 exposure is performed using the exposure apparatus 10 of the above-described embodiment. Can be produced with good yield. Industrial applicability
  • the exposure apparatus and the exposure method according to the present invention form a fine pattern on a substrate such as a wafer with high accuracy in a lithographic process of manufacturing a micro device such as an integrated circuit.
  • the device manufacturing method according to the present invention is suitable for manufacturing a device having a fine pattern.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

明 細 書
露光装置及び露光方法、 並びにデバイス及びその製造方法 技術分野
本発明は、 露光装置及び露光方法、 並びにデバイス及びその製造方法に係り 、 さらに詳しくは、 半導体集積回路や液晶ディスプレイ等の半導体デバイスを 製造する際にリソグラフイエ程で用いられる露光装置及び露光方法、 並びに前 記露光装置を用いて製造されるデバイス及び前記露光方法を用いてデバイスを 製造する方法に関する。 背景技術
従来より、 半導体デバイスの製造工程の 1つであるリソグラフイエ程におい ては、 マスク又はレチクル (以下、 「レチクル」 と総称する) に形成された回 路パターンをレジス卜 (感光剤) が塗布されたウェハ又はガラスプレー卜等の 基板上に転写する種々の露光装置が用いられている。
例えば、 半導体素子用の露光装置としては、 近年における集積回路の高集積 化に伴うパターンの最小線幅 (デバイスルール) の微細化に応じて、 レチクル のパターンを投影光学系を用いてウェハ上に縮小転写する縮小投影露光装置が 主として用いられている。
この縮小投影露光装置には、 レチクルのパターンをウェハ上の複数のショッ 卜領域に順次転写するステップ ·アンド · リピー卜方式の静止露光型の縮小投 影露光装置 (いわゆるステツバ) や、 このステツパを改良したもので、 特開平
8— 1 6 6 0 4 3号公報等に開示されるようなレチクルとウェハを一次元方向 に同期移動してレチクルパターンをウェハ上の各ショッ卜領域に転写するステ ップ ·アンド ■スキャン方式の走査露光型の露光装置 (いわゆるスキャニング -ステツパ) が知られている。 これらの縮小投影露光装置では、 床面に先ず装置の基準になるベースプレー 卜が設置され、 その上に床振動を遮断するための防振台を介してレチクルステ ージ、 ウェハステージ及び投影光学系 (投影レンズ) 等を支持する本体コラム が載置されている。 最近の縮小投影露光装置では、 前記防振台として、 内圧が 制御可能なエアマウント、 ボイスコイルモータ等のァクチユエ一夕を備え、 本 体コラム (メインフレーム) に取り付けられた 6個の加速度計の計測値に基づ いて前記ボイスコイルモータ等を制御することにより前記本体コラムの振動を 制振するァクティブ防振台が採用されている。
上記のステツパ等は、 ウェハ上のあるショット領域に対する露光の後、 他の ショット領域に対して順次露光を繰り返すものであるから、 ウェハステージ ( ステツバの場合)、 あるいはレチクルステージ及びウェハステージ (スキヤ二 ング 'ステツパの場合) の加速、 減速運動によって生じる反力が本体コラムの 振動要因となって、 投影光学系とウェハ等との相対位置誤差を生じさせるとい う好ましくない現象が生じていた。
ァライメン卜時及び露光時における上記相対位置誤差は、 結果的にウェハ上 で設計値と異なる位置にパターンが転写されたり、 その位置誤差に振動成分を 含む場合には像ボケ (パターン線幅の増大) を招いたりする原因となっていた 従って、 このようなパターンの転写位置ずれや像ボケ等を抑制するためには 、 上記のアクティブ防振台等により本体コラムの振動を十分に減衰させる必要 があり、 例えばステツパの場合には、 ウェハステージが所望の位置に位置決め され十分に整定されるのを待ってァライメン卜動作や露光動作を開始する必要 があり、 また、 スキャニング ·ステツパの場合には、 レチクルステージとゥェ ハステージとの同期整定を十分に確保した状態で露光を行う必要があった。 こ のため、 スループット (生産性) を悪化させる要因となっていた。
また、 近年におけるウェハの大型化に伴い、 ウェハステージが大型化し、 上 記のアクティブ防振台を用いてもスループッ卜をある程度確保しつつ高精度な 露光を行うことは困難となってきた。
このような不都合を改善しようとの目的から、 特開平 2 _ 1 9 9 8 1 3号公 報には基板を保持するステージと投影レンズを保持する投影レンズ取付台とを 別々の防振マウントでそれぞれ支持する露光装置が提案されている。
しかるに、 防振マウントを直接床面に設置することはその性質上困難であり 、 また、 装置の基準となる部材が必要であることから、 上記特開平 2— 1 9 9 8 1 3号公報に開示される露光装置では、 同一の位置決め定盤上に、 投影レン ズを保持する本体を支持する本体用マウントと、 X Yステージを支持する X Y ステージ用マウントとが搭載されている。 このため、 この公報に記載の露光装 置にあっても、 X Yステージの駆動時の反力に起因する振動が、 X Yステージ 用マウントを介して位置決め定盤に伝わり、 さらにこの振動が本体用マウント を介して本体に保持された投影光学系に伝わるため、 前述したパターン転写位 置ずれや像ボケ等を完全に防止できないことが明らかである。
デバイスルールは、 将来的にさらに微細化し、 また、 ウェハ及びレチクルが 大型化するため、 ステージ駆動に伴う振動が従来にも増してより大きな問題と なることは確実である。 従って、 装置各部の振動が露光精度に与える悪影響を より効果的に抑制するための新技術の開発が急務となっている。
本発明は、 かかる事情の下になされたもので、 その第 1の目的は、 露光精度 及びスループッ卜をともに向上することができる露光装置及び露光方法を提供 することにある。
また、 本発明の第 2の目的は、 微細パターンが精度良く形成された高集積度 のデバイス及びそのデバイスの製造方法を提供することにある。 発明の開示
本発明は、 第 1の観点からすると、 露光用光学系 (P L ) を用いて基板 (W ) 上に所定のパターンを形成する露光装置であって、 前記露光用光学系を支持 する本体コラム ( 1 4 ) と ;前記本体コラムを支持する第 1の防振装置 (5 6 A - 5 6 C ) と ;前記第 1の防振装置が搭載されるとともに、 床面 (F D ) に 載置された第 1のベース部材 (B P 1 ) と ;前記基板を保持する基板ステージ ( W S T ) を支持するステージ定盤 ( 1 6 ) と ;前記ステージ定盤を支持する 第 2の防振装置 (6 6 A〜6 6 C ) と ;前記第 2の防振装置が搭載されるとと もに、 前記床面に載置された前記第 1のべ一ス部材とは独立した第 2のベース 部材 (B P 2 ) と、 を備える第 1の露光装置である。
これによれば、 本体コラムを支持する第 1の防振装置が第 1のベース部材に 搭載され、 ステージ定盤を支持する第 2の防振装置が第 1のベース部材とは独 立して床面に載置された第 2のべ一ス部材に搭載されているので、 第 1、 第 2 のベース部材相互間の振動の伝達がほぼ遮断される。 このため、 ステージ定盤 上に支持された基板ステージの移動時 (駆動時) の反力が、 第 2の防振装置及 び第 2のべ一ス部材までは伝わるが、 第 1のべ一ス部材側に伝わることがなく 、 基板ステージの移動時 (駆動時) の反力が第 1のベース部材上に搭載された 本体コラムに支持された露光用光学系の振動要因となることがない。 従って、 露光用光学系の振動に起因する基板上に形成されたパターンの位置ずれや線幅 均一性の劣化等を効果的に抑制して露光精度の向上を図ることができるととも に、 基板ステージのより高速化、 大型化が可能であるためスループットの向上 をも図ることができる。
この場合、 防振装置としては、 床面からの微振動を絶縁する役目のみを有す るパッシブ防振装置を用いても良いが、 前記第 1、 第 2の防振装置の少なくと も一方が、 本体コラムあるいはステージ定盤の振動を積極的に制振できるァク ティブ防振装置であることが望ましい。
本明細書において、 アクティブ防振装置とは、 内圧が制御可能なエアマウン 卜、 ボイスコイルモータ等のァクチユエ一夕を備え、 制振対象に取り付けられ た振動センサ (例えば加速度計) の計測値に基づいて前記ボイスコイルモータ 等を制御することにより制振対象物の振動を除去する機能を有する防振装置を 意味する。
本発明に係る第 1の露光装置では、 例えば、 前記第 1の防振装置 (5 6 A〜 5 6 C ) がアクティブ防振装置である場合には、 前記第 1のべ一ス部材 (B P 1 ) と前記本体コラム ( 1 4 ) との相対位置を計測するコラム位置計測装置 ( 9 8 ) と ;前記コラム位置計測装置の計測値に基づいて前記第 1の防振装置を 制御する制御装置 (5 0 ) と、 を更に備えていても良い。 かかる場合には、 コ ラム位置計測装置によつて計測される第 1のべ一ス部材と本体コラムとの相対 位置に基づいて制御装置によリ第 1の防振装置が制御され、 本体コラム、 従つ てこれに支持される露光用光学系を第 1のべ一ス部材を基準とした安定した位 置に維持することができる。 また、 例えば本体コラムにマスクを保持するマス クステージが搭載される場合があるが、 この場合、 マスクステージの移動によ り生じる本体コラムの振動は本体コラムを支持するァクティブ防振装置によつ て抑制あるいは除去することができる。
また、 本発明に係る第 1の露光装置では、 例えば、 前記第 2の防振装置 (6 6 A〜 6 6 C ) がアクティブ防振装置である場合には、 前記第 1のべ一ス部材 ( B P 1 ) と前記ステージ定盤 ( 1 6 ) との相対位置を計測するステージ定盤 位置計測装置 (9 4 ) と ;前記ステージ定盤位置計測装置の計測値に基づいて 前記第 2の防振装置を制御する制御装置 (5 0 ) とを更に備えていても良い。 かかる場合には、 ステージ定盤位置計測装置によって計測される第 1のベース 部材とステージ定盤との相対位置に基づいて制御装置により第 2の防振装置が 制御され、 ベース定盤を第 1のべ一ス部材を基準とする安定した位置に維持す ることができる。 また、 基板ステージの移動により生ずるステージ定盤の振動 はァクティブ防振装置によって抑制あるいは除去することができる。
本発明に係る第 1の露光装置では、 前記本体コラムに対し、 前記露光用光学 系を V溝、 円錐溝及び平面で 3点支持する支持部材を更に備えていても良い。 かかる場合には、 露光用光学系が支持部材を介して本体コラムに対していわゆ るキネマティック支持されるので、 本体コラムと露光用光学系との間で、 モー メン卜は勿論、 伸縮力も殆ど伝達されることがない。 従って、 露光用光学系の 本体コラムに対する組み付けが容易で、 しかも組み付け後の本体コラ厶及び露 光用光学系の振動、 温度変化、 姿勢変化等に起因する応力を最も効果的に軽減 できる。
本発明に係る第 1の露光装置では、 前記第 2の防振装置がアクティブ防振装 置である場合に、 前記露光用光学系と前記ステージ定盤及び前記基板ステージ のいずれかとの前記露光用光学系の光軸方向及び前記光軸直交面に対する傾斜 方向の 3自由度方向の位置関係を光学的に計測する 3自由度位置計測装置と ; 前記 3自由度位置計測装置の計測値に基づいて前記第 2の防振装置を制御する 制御装置と、 を更に備えていても良い。 かかる場合には、 3自由度位置計測装 置により、 露光用光学系と前記ステージ定盤及び前記基板ステージのいずれか との前記露光用光学系の光軸方向及び前記光軸直交面に対する傾斜方向の 3自 由度方向の位置関係が光学的に計測され、 制御装置ではその 3自由度位置計測 装置の計測値に基づいて第 2の防振装置を制御する。 これにより、 露光用光学 系と基板ステージとの露光用光学系の光軸方向及び光軸直交面に対する傾斜方 向の 3自由度方向の位置関係が調整される。 従って、 例えば基板表面の前記 3 自由度方向の位置 ·姿勢の検出が困難な場合であっても、 露光用光学系と基板 ステージとの 3自由度方向の位置関係の調整、 すなわちフォーカス ■ レペリン グ制御あるいはそのための追い込みが可能となる。
この場合において、 前記本体コラムは、 前記露光用光学系の鏡筒を支持する 支持部材を有し、 前記 3自由度位置計測装置は、 前記ステージ定盤及び前記基 板ステージのいずれかと前記支持部材との間の距離を異なる 3点で計測する干 渉計 ( 1 0 2 ) を備えることとすることができる。 この場合において、 前記干 渉計は、 支持部材に固定されていても勿論良いが、 前記露光用光学系の鏡筒に 固定されていても良い。
あるいは、 前記 3自由度位置計測装置は、 前記ステージ定盤及び前記基板ス テージのいずれかと前記露光用光学系との間の距離を異なる 3点で計測する干 渉計を備えていても良い。
本発明に係る第 1の露光装置では、 前記本体コラム ( 1 4) に支持され、 前 記露光用光学系 (P L) により前記基板 (W) 上に投影される前記所定のパ夕 —ンが形成されたマスク (R) を保持するマスク保持部材 (R S T) を更に備 える場合に、 前記マスクを前記マスク保持部材に対して搬入及び搬出するマス ク搬送系 ( 1 1 0) と前記基板を前記基板ステージ (WS T) に対して搬入及 び搬出する基板搬送系 ( 1 1 2) との少なくとも一方が前記第 1のベース部材 (B P 1 ) 上に搭載され、 前記第 1のべ一ス部材と前記本体コラムとの相対位 置を計測する位置計測システム (9 8) と ;前記マスク保持部材及び前記基板 ステージの少なくとも一方の位置を前記露光用光学系及び本体コラムの一部の いずれかを基準として計測する干渉計システム (4 6、 9 0 X, 9 0 Y) と ; 前記位置計測システム及び前記干渉計システムの計測値に基づいて前記第 1の ベース部材に搭載された前記搬送系を制御する制御装置 (5 0) と、 を更に備 えることとすることができる。 このようにすると、 例えば干渉計システムが、 マスク保持部材の位置を露光用光学系 (又は本体コラムの一部) を基準として 計測するものである場合、 制御装置では、 例えばマスク交換に際して、 干渉計 システムの計測値と位置計測システムの計測値とに基づいてマスク搬送系を制 御することにより、 搬送時の第 1のべ一ス部材を基準とするマスク保持部材の 位置を定常的に一定に保つことができ、 結果的にマスク保持部材上の所望の位 置にマスクをロードすることができる。
また、 例えば干渉計システムが、 基板ステージの位置を露光用光学系 (又は 本体コラムの一部) を基準として計測するものである場合、 制御装置では、 例 えば基板交換時等に、 干渉計システムの計測値と位置計測システムの計測値と に基づいて基板搬送系を制御することにより、 第 1のベース部材を基準とする 基板ステージの位置を定常的に一定に保つことができ、 結果的に基板ステージ 上の所望の位置に基板をロードすることができる。
本発明に係る第 1の露光装置では、 前記マスクを照明する照明光学系 ( I L U ) を更に備える場合、 前記照明光学系は、 前記第 1 、 第 2のべ一ス部材とは 独立して前記床面に載置された第 3のべ一ス部材 (B P 3 ) 上に搭載されてい ても良い。 かかる場合には、 第 1、 第 2及び第 3のべ一ス部材上にそれぞれ搭 載された物体相互間の振動の伝達を防止することができる。
本発明に係る第 1の露光装置では、 前記第 1 の防振装置 (5 6 A〜5 6 C ) がアクティブ防振装置であり、 前記所定のパターンが形成されたマスク (R ) を保持するとともに、 当該マスクを前記本体コラム ( 1 4 ) 上でその面内の 3 自由度方向に微少駆動するマスク保持部材 (R S T ) と ;前記マスクを照明す る照明光学系 ( I L U ) と ;前記照明光学系を支持するアクティブ防振装置 ( 1 1 6 ) と ;前記照明光学系と前記本体コラムとの 6自由度方向の相対位置を 計測する 6自由度位置計測装置 ( 1 2 0 ) と ;前記 6自由度位置計測装置の計 測値に基づいて前記マスク保持部材と前記第 1の防振装置及び前記照明光学系 を保持する前記アクティブ防振装置のいずれかとを制御する制御装置 (5 0 ) と、 を更に備えることとしても良い。 かかる場合には、 制御装置では、 6自由 度位置計測装置の計測値に基づいて求めた照明光学系と本体コラムとの 6自由 度方向の相対位置に基づいて、 マスク保持部材を介してマスクをその面内の 3 自由度方向の位置を調整するとともに、 第 1の防振装置又は前記照明光学系を 保持するァクティプ防振装置を制御することにより、 照明光学系とマスクとの 6自由度方向の相対位置関係を調整することができる。
本発明に係る第 1の露光装置では、 前記マスクは、 前記露光用光学系の光軸 に直交する面内で所定方向に所定ス卜ロークで移動可能であり、 前記マスクと 前記基板ステージとを同期して前記所定方向に駆動する駆動装置 (4 4、 5 0 、 7 2 )、 を更に備えることとしても良い。 かかる場合には、 駆動装置により マスクと基板ステージとが同期して露光用光学系の光軸に直交する面内で所定 方向に駆動されることにより、 いわゆる走査露光により露光用光学系によって マスクのパターンが基板上に精度良く転写される。
本発明は、 第 2の観点からすると、 露光用光学系を用いて基板上に所定のパ ターンを形成する露光装置であって、 前記露光用光学系を支持する本体コラム と ;前記基板を保持するとともに、 前記本体コラムとは独立して支持された基 板ステージと ;前記基板表面の少なくとも前記露光用光学系の光軸方向の位置 を検出する焦点検出装置 ( 1 2 1 a、 1 2 1 b ) と ;前記基板を少なくとも前 記露光用光学系の光軸方向に駆動する基板駆動系 (8 8 ) と ;前記焦点検出装 置とは独立して設けられ、 前記露光用光学系と前記基板ステージとの位置関係 を計測する位置計測システム (9 4, 9 8、 1 0 2 ) と ;前記露光用光学系と 前記基板ステージとの位置関係を変化させる駆動装置 (7 0 ) と ;前記焦点検 出装置、 基板駆動系、 前記位置計測システム及び前記駆動装置に接続された制 御装置 (5 0 ) と、 を備え、 前記制御装置は、 露光の際に、 前記位置計測シス テムによって計測された値に基づいて前記駆動装置を制御して前記露光用光学 系と前記基板ステージとを所定の位置関係に設定するとともに、 前記焦点検出 装置の検出結果に基づいて前記基板駆動系を介して前記露光用光学系の像面と 前記基板との相対位置を調整することを特徴とする第 2の露光装置である。 露光用光学系を支持する本体コラムと基板を保持する基板ステージとが独立 して支持されている場合、 両者間で振動が伝達され難いという利点がある反面 、 両者がそれぞれ独立の挙動をするおそれがあり、 このため露光時の基板のフ オーカス制御あるいはフォーカス · レべリング制御に応答遅れ (時間遅れ) が 生じるおそれがある。
しかるに、 本発明によれば、 露光の際に、 制御装置により、 位置計測システ 厶によって計測された値、 すなわち露光用光学系と基板ステージとの位置関係 の計測結果に基づいて駆動装置が制御され、 露光用光学系と基板ステージとが 所定の位置関係に設定されるとともに、 焦点検出装置の検出結果に基づいて基 板駆動系を介して露光用光学系の像面と基板との相対位置が調整される。 すな わち、 焦点検出装置の検出結果に基づく基板のフォーカス制御、 あるいはフ才 一カス · レべリング制御の開始前に位置計測システムの検出結果に基づき露光 用光学系と基板ステージとの位置関係が所定の位置関係に設定されるので、 上 述した基板のフォーカス制御あるいはフォーカス · レべリング制御に応答遅れ が生じるのを回避することができ、 高精度なフ才一カス制御あるいはフォー力 ス ' レべリング制御、 ひいては露光制御の向上が可能である。 この場合も、 前 述した第 1の露光装置と同様の理由により、 基板ステージのより高速化、 大型 化が可能であるためスループットの向上をも図ることができる。
ここで、 上記の所定の位置関係は、 例えば、 基板駆動系による応答性を考慮 した際に、 フォーカスの引き込みが十分可能でフォーカス制御に応答遅れがで ないような範囲内に基板表面が位置する位置関係、 すなわち基板表面が露光用 光学系の焦点位置近傍に位置し、 常に焦点検出装置の検出が可能となる位置関 係である。
また、 前記基板駆動系は、 基板ステージ上に搭載され基板を少なくとも露光 用光学系の光軸方向に駆動するものであっても良く、 あるいは基板ステージを 介して基板を少なくとも露光用光学系の光軸方向に駆動するものであっても良 い。
さらに、 本発明によれば、 基板のフォーカス制御あるいはフォーカス · レべ リング制御を、 位置計測システムの検出結果に基づいて行うことができるので 、 焦点検出装置による検出が困難ないわゆる夕ミ一ショットの露光の際や、 外 内ショッ卜かつエッジショッ卜の露光の際にも基板のフォーカス制御あるいは フォーカス, レべリング制御を行なうことが可能になり、 結果的に線幅制御性 の向上も可能である。
本発明に係る第 2の露光装置では、 前記位置計測システムは、 前記露光用光 学系の光軸方向及び前記光軸直交面に対する傾斜方向の 3自由度方向の前記位 置関係を計測することとしても良い。
この場合において、 前記位置計測システムは、 露光用光学系を支持する本体 コラムに固定されていても良いが、 前記露光用光学系の鏡筒に固定されていて も良い。
本発明に係る第 2の露光装置では、 前記基板ステージを支持するステージ支 持部材を更に備える場合に、 前記位置計測システムは、 前記露光用光学系と前 記ステージ支持部材との前記露光用光学系の光軸方向に関する位置関係を計測 することとすることができる。 かかる場合には、 位置計測システムにより、 露 光用光学系とステージ支持部材との露光用光学系の光軸方向に関する位置関係 が計測されるので、 結果的に、 露光用光学系とステージ支持部材に支持された 基板ステージとの露光用光学系の光軸方向に関する位置関係が計測されること となる。
この場合において、 前記ステージ支持部材には前記位置関係を計測するため の計測点が 3点設けられ、 前記位置計測システムは、 前記露光用光学系と前記 ステージ支持部材との間の距離を前記 3点で計測することとしても良い。 かか る場合には、 その 3点における距離の計測結果に基づいて、 露光用光学系とス テージ支持部材との露光用光学系の光軸方向及び光軸直交面に対する傾斜方向 の 3自由度方向について露光用光学系とステージ支持部材、 ひいては露光用光 学系と基板ステージとの位置関係を求めることができる。
本発明に係る第 2の露光装置では、 前記本体コラムを支持するベース部材 ( B P 1 ) を更に備え、 前記位置計測システムは、 前記べ一ス部材と前記露光用 光学系の位置関係を計測する第 1の位置計測装置 (9 8 ) と、 前記べ一ス部材 と前記ステージ支持部材との位置関係を計測する第 2の位置計測装置 (9 4 ) とを有していても良い。 かかる場合には、 第 1の位置計測装置によりベース部 材と前記露光用光学系の位置関係が計測され、 第 2の位置計測装置によりべ一 ス部材と前記ステージ支持部材との位置関係が計測されるので、 第 1の位置計 測装置と第 2の位置計測装置との計測結果に基づいて露光用光学系とステージ 支持部材との位置関係、 すなわち露光用光学系と基板ステージとの位置関係を 求めることができる。
この場合において、 前記第 1の位置計測装置及び前記第 2の位置計測装置の 少なくとも一方は、 前記位置関係として 6自由度方向の相対位置を求めること としても良い。
本発明は、 第 3の観点からすると、 露光用光学系を用いて、 該露光用光学系 を支持する本体コラムとは独立して支持された基板ステージ上の基板上に所定 のパターンを形成する露光方法であつて、 前記露光用光学系と前記基板ステー ジとの位置関係を計測する第 1工程と ;前記第 1工程で計測された値に基づい て前記露光用光学系と前記基板ステージとの位置関係を所定の状態に設定する 第 2工程と ;前記第 2工程で前記所定の状態が設定された状態で、 前記基板表 面の少なくとも前記露光用光学系の光軸方向の位置の検出結果に基づいて前記 露光用光学系の像面と前記基板表面との相対位置を調整しつつ前記基板上に前 記パターンを形成する第 3工程とを含む露光方法である。
前述の如く、 露光用光学系を支持する本体コラムと基板を保持する基板ステ ージとが独立して支持されている場合、 両者間で振動が伝達され難いという利 点がある反面、 露光時の基板のフォーカス制御あるいはフォーカス ' レベリン グ制御に応答遅れ (時間遅れ) が生じるおそれがある。
しかるに、 本発明によれば、 第 1工程で露光用光学系と基板ステージとの位 置関係が計測され、 第 2工程でその計測された値、 すなわち露光用光学系と基 板ステージとの位置関係の計測結果に基づいて露光用光学系と基板ステージと の位置関係が所定の状態に設定される。 そして、 第 3工程で、 所定の状態が設 定された状態で、 基板表面の少なくとも露光用光学系の光軸方向の位置の検出 結果に基づいて露光用光学系の像面と基板表面との相対位置を調整して基板上 にパターンが形成される。
従って、 第 3工程における基板表面の露光用光学系の光軸方向の位置の検出 結果に基づく基板のフォーカス制御、 あるいはフォーカス · レべリング制御の 開始前に、 第 2工程において第 1工程の計測結果に基づき露光用光学系と基板 ステージとの位置関係が所定の状態に設定される。 そのため、 上述した基板の フォーカス制御あるいはフォーカス · レべリング制御に応答遅れが生じるのを 回避することができ、 高精度なフォーカス制御あるいはフォーカス · レベリン グ制御、 ひいては露光制御の向上が可能である。
ここで、 上記所定の状態は、 例えば、 基板を駆動する系の応答性を考慮した 際に、 フォーカスの引き込みが十分可能でフォーカス制御に応答遅れがでない ような範囲内に基板表面が位置する状態、 すなわち基板表面が露光用光学系の 焦点位置近傍に位置し、 常に焦点検出装置の検出が可能となる状態である。 こ の場合も、 前述と同様、 基板ステージのより高速化、 大型化が可能であるため スループッ卜の向上をも図ることができる。
この場合において、 前記第 1工程では、 前記露光用光学系の光軸方向及び前 記光軸直交面に対する傾斜方向の 3自由度方向の前記位置関係を計測すること としても良い。
本発明に係る露光方法では、 第 1工程において露光用光学系を支持する本体 コラムに固定された位置計測システムを用いて前記計測を行っても良いが、 前 記第 1工程では、 前記露光用光学系の鏡筒に固定された位置計測システムを用 いて前記計測を行っても良い。
本発明に係る露光方法では、 前記基板ステージはステージ支持部材によって 支持されている場合には、 前記第 1工程では、 前記露光用光学系と前記ステー ジ支持部材との前記露光用光学系の光軸方向に関する位置関係を計測すること としても良い。 かかる場合には、 第 1工程で、 露光用光学系とステージ支持部 材との露光用光学系の光軸方向に関する位置関係が計測されるので、 結果的に 、 露光用光学系とステージ支持部材に支持された基板ステージとの露光用光学 系の光軸方向に関する位置関係が計測されることとなる。
この場合において、 前記第 1工程では、 前記露光用光学系と前記ステージ支 持部材との間の距離を前記ステージ支持部材上に設定された異なる 3点の計測 点において計測することとしても良い。 かかる場合には、 その 3点における距 離の計測結果に基づいて、 露光用光学系とステージ支持部材との露光用光学系 の光軸方向及び光軸直交面に対する傾斜方向の 3自由度方向について露光用光 学系とステージ支持部材、 ひいては露光用光学系と基板ステージとの位置関係 を求めることができる。
本発明に係る露光方法では、 前記本体コラムがベース部材によって支持され る場合には、 前記第 1工程は、 前記ベース部材と前記露光用光学系の位置関係 を計測する第 1計測工程と、 前記べ一ス部材と前記ステージ支持部材との位置 関係を計測する第 2計測工程とを含むこととすることができる。 かかる場合に は、 第 1計測工程でベース部材と前記露光用光学系の位置関係が計測され、 第 2計測工程でベース部材と前記ステージ支持部材との位置関係が計測されるの で、 第 1計測工程と第 2計測工程との計測結果に基づいて露光用光学系とステ ージ支持部材との位置関係、 すなわち露光用光学系と基板ステージとの位置関 係を求めることができる。
この場合において、 前記第 1計測工程及び第 2計測工程の少なくとも一方で は、 前記位置関係として 6自由度方向の相対位置を求めることとしても良い。 また、 リソグラフイエ程において、 本発明の露光方法を用いて露光を行うこ とにより、 基板上に複数層のパターンを重ね合せ精度良く形成することができ 、 これにより、 より高集積度のマイクロデバイスを歩留まり良く製造すること ができ、 その生産性を向上させることができる。 同様に、 リソグラフイエ程に おいて、 本発明の露光装置を用いて露光を行うことにより、 基板上に複数層の パターンを重ね合せ精度良く形成することができる。 従って、 より高集積度の マイクロデバイスを歩留まり良く製造することができ、 その生産性を向上させ ることができる。 従って、 本発明は別の観点からすると、 本発明の露光方法又 は本発明の露光装置を用いるデバイス製造方法であり、 また、 該製造方法によ つて製造されたデバイスであるとも言える。 図面の簡単な説明
図 1 は、 本発明の一実施形態の露光装置の構成を概略的に示す図である。 図 2は、 図 1 の装置の本体コラムの一部を構成する鏡筒定盤より下方の構成 各部の図 1の右側面図を一部断面して示す図である。
図 3は、 図 1の装置の制御系の構成を概略的に示すプロック図である。 図 4は、 図 1のレチクルステージ近傍を示す斜視図である。
図 5は、 フランジ F L Gに対向する鏡筒定盤部分を示す平面図である。 図 6 Aは図 5の A— A線断面図、 図 6 Bは図 5の B— B線断面図、 図 6 Cは 図 5の C— C線断面図である。
図 7は、 図 1の位置決め定盤 B P 1 とステージ定盤 1 6との相対位置を計測 する位置センサの構成を説明するための図である。
図 8は、 本発明に係るデバイス製造方法の実施形態を説明するためのフロー チヤ一卜である。
図 9は、 図 8のステップ 3 0 4における処理を示すフローチヤ一卜である。 発明を実施するための最良の形態
以下、 本発明の一実施形態を図 1〜図 7に基づいて説明する。 図 1 には、 一 実施形態の露光装置 1 0の全体構成が概略的に示されている。 この露光装置 1 0は、 マスクとしてのレチクル Rと基板としてのウェハ Wとを一次元方向 (こ こでは Y軸方向とする) に同期移動しつつ、 レチクル Rに形成された回路バタ ーンを投影光学系 P Lを介してウェハ W上の各ショッ卜領域に転写する、 ステ ップ ·アンド ·スキャン方式の走査型露光装置、 すなわちいわゆるスキヤニン グ ·ステツパである。
露光装置 1 0は、 光源 1 2、 この光源 1 2からの照明光によりレチクル Rを 照明する照明光学系としての照明ユニット I L U、 レチクル Rを保持するマス ク保持部材としてのレチクルステージ R S T、 レチクル Rから射出される照明 光 (紫外パルス光) をウェハ W上に投射する露光用光学系としての投影光学系 P L、 ウェハ Wを保持する基板ステージとしてのウェハステージ W S丁、 投影 光学系 P L及びレチクルステージ R S Tを支持する本体コラム 1 4、 ウェハス テージ W S Tを支持するステージ定盤 1 6、 本体コラム 1 4及びステージ定盤 1 6の振動を抑制あるいは除去する防振システム、 及びこれらの制御系等を備 えている。
前記光源 1 2としては、 ここでは波長 1 9 2〜 1 9 4 n mの間で酸素の吸収 帯を避けるように狭帯化された A r Fエキシマレ一ザ光を出力する A r Fェキ シマレ一ザ光源が用いられており、 この光源 1 2の本体は、 防振台 1 8を介し て半導体製造工場のクリ一ンル一厶内の床面 F D上に設置されている。 光源 1 2には、 光源制御装置 1 3 (図 1では図示せず、 図 3参照) が併設されており 、 この光源制御装置 1 3では、 後述する主制御装置 5 0 (図 1では図示せず、 図 3参照) からの指示に応じて、 射出される紫外パルス光の発振中心波長及び スペクトル半値幅の制御、 パルス発振の卜リガ制御、 レーザチャンバ内のガス の制御等を行うようになっている。
なお、 光源 1 2をクリーンルームよりクリーン度が低い別の部屋 (サービス ルーム) あるいはクリーンルームの床下に設けられたユーティリティスペース に設置しても構わない。
光源 1 2は遮光性のベローズ 2 0及びパイプ 2 2を介してビームマッチング ユニット BMUの一端 (入射端) に接続されており、 このビ一厶マッチングュ ニット BMUの他端 (出射端) は、 パイプ 24を介して照明ユニット I L Uに 接続されている。
前記ビームマッチングユニット BMU内には、 複数の可動反射鏡 (図示省略 ) が設けられており、 主制御装置 50ではこれらの可動反射鏡を用いて光源 1 2からべローズ 20及びパイプ 22を介して入射する狭帯化された紫外パルス 光 (A r Fエキシマレーザ光) の光路を次に述べる照明ュニッ卜 I L Uとの間 で位置的にマッチングさせる、 すなわち照明ユニット I L Uの光軸に対して、 常に所定の位置関係で入射するように、 紫外パルス光の照明ュニッ卜 I L Uへ の入射位置や入射角度を最適に調整する。
前記照明ユニット I L Uは、 内部を外気に対して気密状態にする照明系ハウ ジング 26と、 この照明系ハウジング 26内に所定の位置関係で収納された可 変減光器 28 A、 ビーム整形光学系 28 B、 第 1 フライアイレンズ系 28 C、 振動ミラー 28 D、 集光レンズ系 28 E、 ミラー 28 F、 第 2フライアイレン ズ系 28 G、 照明系開口絞り板 28 H、 ビ一ムスプリッタ 28 J、 第 1 リレー レンズ 2 8 K、 レチクルブラインド機構 28 Μ、 第 2リレーレンズ 28 Ν、 ミ ラー 28 Q、 及び主コンデンサーレンズ系 28 R等とから構成される。
前記照明系ハウジング 2 6内には、 空気 (酸素) の含有濃度を数%以下、 望 ましくは 1 %未満にしたクリーンな乾燥窒素ガス (N2) やヘリウムガス (H e) が充填されている。
ここで、 照明系ハウジング 26内の上記構成各部について説明する。 可変減 光器 2 8 Aは、 紫外パルス光のパルス毎の平均エネルギを調整するためのもの で、 例えば減光率が異なる複数の光学フィルタを切リ換え可能に構成して減光 率を段階的に変更するものや、 透過率が連続的に変化する 2枚の光学フィル夕 の重なり具合を調整することにより減光率を連続的に可変にするものが用いら れる。 かかる可変減光器の一例は、 例えば特開平 3— 1 7 935 7号公報及び これに対応する米国特許第 5, 1 9 1 , 3 7 4号に詳細に開示されており、 本 国際出願で指定した指定国又は選択した選択国の国内法令が許す限りにおいて 、 上記公報及び米国特許における開示を援用して本明細書の記載の一部とする この可変減光器 2 8 Aを構成する光学フィル夕は、 主制御装置 5 0の管理下 にある後述する照明制御装置 3 0 (図 1では図示せず、 図 3参照) によって制 御されるモータを含む駆動機構 2 9によって駆動される。
ビ一厶整形光学系 2 8 Bは、 可変減光器 2 8 Aによって所定のピーク強度に 調整された紫外パルス光の断面形状を該紫外パルス光の光路後方に設けられた 後述するダブルフライアイレンズ系の入射端を構成する第 1 フライアイレンズ 系 2 8 Cの入射端の全体形状と相似になるように整形して該第 1 フライアイレ ンズ系 2 8 Cに効率よく入射させるもので、 例えばシリンダレンズやビー厶ェ キスパンダ (いずれも図示省略) 等で構成される。
前記ダブルフライアイレンズ系は、 照明光の強度分布を一様化するためのも ので、 ビーム整形光学系 2 8 B後方の紫外パルス光の光路上に順次配置された 第 1 フライアイレンズ系 2 8 Cと、 集光レンズ 2 8 Eと、 第 2フライアイレン ズ系 2 8 Gとから構成される。 この場合、 第 1 フライアイレンズ系 2 8 Cと集 光レンズ 2 8 Eとの間には、 被照射面 (レチクル面又はウェハ面) に生じる干 渉縞や微弱なスペックルを平滑化するための振動ミラ一 2 8 Dが配置されてい る。 この振動ミラー 2 8 Dの振動 (偏向角) は不図示の駆動系を介して主制御 装置 5 0の管理下にある照明制御装置 3 0によって制御されるようになってい る。
本実施形態のようなダブルフライアイレンズ系と振動ミラ一とを組み合わせ た構成については、 例えば特開平 1 一 2 3 5 2 8 9号公報、 特開平 7— 1 4 2 3 5 4号公報並びにこれらに対応する米国特許第 5, 3 0 7, 2 0 7号、 第 5 , 5 3 4, 9 7 0号などに詳細に開示されており、 本国際出願で指定した指定 国又は選択した選択国の国内法令が許す限りにおいて、 上記各公報及び各米国 特許における開示を援用して本明細書の記載の一部とする。
前記第 2フライアイレンズ系 2 8 Gの射出面の近傍に、 円板状部材から成る 照明系開口絞り板 2 8 Hが配置されている。 この照明系開口絞り板 2 8 Hには 、 ほぼ等角度間隔で、 例えば通常の円形開口より成る開口絞り、 小さな円形開 口より成りコヒーレンスファクタである σ値を小さくするための開口絞り、 輪 帯照明用の輪帯状の開口絞り、 及び変形光源法用に例えば 4つの開口を偏心さ せて配置して成る変形開口絞り等が配置されている。 この照明系開口絞り板 2 8 Ηは、 照明制御装置 3 0により制御される不図示のモータ等により回転され るようになっており、 これによりいずれかの開口絞りが紫外パルス光の光路上 に選択的に設定され、 後述するケ一ラー照明における光源面形状が輪帯、 小円 形、 大円形、 或いは 4つ目等に制限される。
照明系開口絞り板 2 8 Η後方の紫外パルス光の光路上に、 反射率が大きく透 過率が小さなビームスプリッタ 2 8 Jが配置され、 更にこの後方の光路上に、 レチクルブラインド機構 2 8 Mを介在させて第 1 リレ一レンズ 2 8 K及び第 2 リレ一レンズ 2 8 Nから成るリレー光学系が配置されている。
レチクルプラインド機構 2 8 Mは、 レチクル Rのパターン面に対する共役面 から僅かにデフォーカスした面に配置され、 レチクル R上の照明領域を規定す る所定形状の開口部が形成された固定レチクルブラインドと、 この固定レチク ルブラインドの近傍の位置に配置され、 走査方向に対応する方向の位置及び幅 が可変の開口部を有する可動レチクルブラインドとを含んで構成されている。 固定レチクルブラインドの開口部は、 投影光学系 Pしの円形視野内の中央で走 査露光時のレチクル Rの移動方向 (丫軸方向) と直交した X軸方向に直線的に 伸びたスリッ卜状又は矩形状に形成されているものとする。
この場合、 走査露光の開始時及び終了時に可動レチクルブラインドを介して 照明領域を更に制限することによって、 不要な部分の露光が防止されるように なっている。 この可動レチクルブラインドは、 不図示の駆動系を介して主制御 装置 5 0によって制御される。
前記リレー光学系を構成する第 2リレ一レンズ 2 8 Nの後方の紫外パルス光 の光路上には、 第 2リレーレンズ 2 8 Nを通過した紫外パルス光をレチクル R に向けて反射するミラ一 2 8 Qが配置され、 このミラ一 2 8 Q後方の紫外パル ス光の光路上に主コンデンサーレンズ系 2 8 Rが配置されている。
以上の構成において、 第 1 フライアイレンズ 2 8 Cの入射面、 第 2フライア ィレンズ 2 8 Gの入射面、 レチクルブラインド機構 2 8 Mの可動レチクルブラ インドの配置面、 レチクル Rのパターン面は、 光学的に互いに共役に設定され 、 第 1 フライアイレンズ系 2 8 Cの射出面側に形成される光源面、 第 2フライ アイレンズ系 2 8 Gの射出面側に形成される光源面、 投影光学系 Pしのフーリ ェ変換面 (射出瞳面) は光学的に互いに共役に設定され、 ケ一ラー照明系とな つている。
このようにして構成された照明ユニット I L Uの作用を簡単に説明すると、 光源 1 2からの紫外パルス光がビームマッチングュニッ卜 B M Uを介して照明 ユニット I L U内に入射すると、 この紫外パルス光は可変減光器 2 8 Aにより 所定のピーク強度に調整された後、 ビーム整形光学系 2 8 Bに入射する。 そし て、 この紫外パルス光は、 ビーム整形光学系 2 8 Bで後方の第 1 フライアイレ ンズ系 2 8 Cに効率よく入射するようにその断面形状が整形される。 次いで、 この紫外パルス光がミラー 2 8 Fを介して第 1 フライアイレンズ系 2 8 Cに入 射すると、 第 1 フライアイレンズ系 2 8 Cの射出端側に面光源、 すなわち多数 の光源像 (点光源) から成る 2次光源が形成される。 これらの多数の点光源の 各々から発散する紫外パルス光は、 振動ミラ一 2 8 D、 集光レンズ系 2 8 Eを 介して第 2フライアイレンズ系 2 8 Gに入射する。 これにより、 第 2フライア ィレンズ系 2 8 Gの射出端に多数の微少な光源像を所定形状の領域内に一様分 布させた 3次光源が形成される。 この多数の 3次光源から射出された紫外パル ス光は、 照明系開口絞り板 2 8 H上のいずれかの開口絞りを通過した後、 反射 率が大きく透過率が小さなビームスプリッ夕 2 8 J に至る。
このビームスプリッ夕 2 8 Jで反射された露光光としての紫外パルス光は、 第 1 リレーレンズ 2 8 Kによってレチクルブラインド機構 2 8 Mを構成する固 定レチクルブラインドの開口部を一様な強度分布で照明する。 但し、 その強度 分布には、 光源 1 2からの紫外パルス光の可干渉性に依存した干渉縞や微弱な スペックルが数%程度のコントラス卜で重畳し得る。 そのためウェハ面上には 、 干渉縞や微弱なスペックルによる露光量むらが生じ得るが、 その露光量むら は先に挙げた特開平 7— 1 4 2 3 5 4号公報及びこれに対応する米国特許第 5 , 5 3 4 , 9 7 0号のように、 走査露光時のレチクル Rやウェハ Wの移動と紫 外パルス光の発振とに同期させて振動ミラ一 2 8 Dを振ることで平滑化される こうして固定レチクルブラインドの開口部を通った紫外パルス光は、 可動レ チクルブラインドを通過した後、 第 2リレ一レンズ 2 8 Nを通過してミラー 2 8 Qによって光路が垂直下方に折り曲げられた後、 主コンデンサ一レンズ系 2 8 Rを経て、 レチクルステージ R S T上に保持されたレチクル R上の所定の照 明領域 (X軸方向に直線的に伸びたスリット状又は矩形状の照明領域) を均一 な照度分布で照明する。 ここで、 レチクル Rに照射される矩形スリット状の照 明光は、 図 1 中の投影光学系 P Lの円形投影視野の中央に X軸方向 (非走査方 向) に細長く延びるように設定され、 その照明光の Y軸方向 (走査方向) の幅 はほぼ一定に設定されている。
—方、 ビ一ムスプリッ夕 2 8 Jを透過した紫外パルス光は、 集光レンズ 3 2 を介して光電変換素子よりなるインテグレー夕センサ 3 4に入射し、 そこで光 電変換される。 そして、 このインテグレー夕センサ 3 4の光電変換信号が、 不 図示のピークホールド回路及び A / D変換器を介して主制御装置 5 0に供給さ れる。 インテグレ一夕センサ 3 4としては、 例えば遠紫外域で感度があり、 且 つ光源 1 2のパルス発光を検出するために高い応答周波数を有する P I N型の フ才卜ダイ才一ド等が使用できる。 このインテグレータセンサ 3 4の出力と、 ウェハ Wの表面上での紫外パルス光の照度 (露光量) との相関係数は予め求め られて、 主制御装置 5 0内のメモリに記憶されている。
さらに、 照明系ハウジング 2 6内のレチクル R側からの反射光の光路上には 、 集光レンズ 3 6及びインテグレー夕センサ 3 4と同様の受光素子から成る反 射光モニタ 3 8が配置されている。 レチクル Rのパターン面からの反射光は、 主コンデンサレンズ系 2 8 R、 ミラー 2 8 Q、 第 2リレーレンズ 2 8 N、 可動 レチクルブラインド、 固定レチクルブラインドの開口部、 第 1 リレーレンズ 2 8 Kを経て、 ビ一ムスプリッ夕 2 8 Jを透過し、 集光レンズ 3 6を介して反射 光モニタ 3 8に入射し、 そこで光電変換される。 この反射光モニタ 3 8の光電 変換信号が、 不図示のピークホールド回路及び A / D変換器等を介して主制御 装置 5 0に供給される。 この反射光モニタ 3 8は、 主として、 レチクル Rの透 過率測定の際に用いられる。
なお、 照明ユニット I L Uの支持構造等については、 後に詳述する。
前記レチクルステージ R S Tは、 後述する本体コラム 1 4を構成する支持コ ラム 4 0の上方に水平に固定されたレチクルべ一ス定盤 4 2上に配置されてい る。 レチクルステージ R S Tは、 レチクル Rをレチクルべ一ス定盤 4 2上で Y 方向に大きなストロークで直線駆動するとともに、 X方向と 方向 (Ζ軸回 りの回転方向) に関しても微小駆動が可能な構成となっている。
これを更に詳述すると、 レチクルステージ R S Τは、 図 4に示されるように 、 レチクルベース定盤 4 2上を一対の Υリニアモ一夕 2 0 2 Α、 2 0 2 Βによ つて Υ方向に所定ス卜ロークで駆動されるレチクル粗動ステージ 2 0 4と、 こ のレチクル粗動ステージ 2 0 4上を一対の Xボイスコイルモ一夕 2 0 6 Xと一 対の丫ボイスコイルモータ 2 0 6 Υとによって X、 丫、 方向に微少駆動さ れるレチクル微動ステージ 2 0 8とを含んで構成されている。 前記一方の Yリニアモ一夕 2 0 2 Αは、 レチクルべ一ス定盤 4 2上に複数の エアベアリング (エアパッド) 2 1 0によって浮上支持され Y軸方向に延びる 固定子 2 〗 2 と、 この固定子 2 〗 2 Aに対応して設けられ、 連結部材 2 1 6 Aを介してレチクル粗動ステージ 2 0 4に固定された可動子 2 1 4 Aとから構 成されている。 他方の Yリニアモータ 2 0 2 Bは、 上記と同様に、 複数のエア ベアリング (図示省略) によってレチクルベース定盤 4 2上に浮上支持され Y 軸方向に延びる固定子 2 1 2 Bと、 この固定子 2 1 2 Bに対応して設けられ、 連結部材 2 1 6 Bを介してレチクル粗動ステージ 2 0 4に固定された可動子 2 1 4 Bとから構成されている。
レチクル粗動ステージ 2 0 4は、 レチクルベース定盤 4 2の中央部に形成さ れた上部突出部 4 2 aの上面に固定され Y軸方向に延びる一対の Yガイド 2 1 8 A、 2 1 8 Bによって Y軸方向に案内されるようになっている。 また、 レチ クル粗動ステージ 2 0 4は、 これらの Yガイド 2 1 8 A、 2 1 8 Bに対して不 図示のエアべァリングによって非接触で支持されている。
前記レチクル微動ステージ 2 0 8には、 その中央部に開口部が形成されてお り、 この開口部内に不図示のバキュームチャックを介してレチクル Rが吸着保 持されるようになっている。
この場合、 レチクル粗動ステージ 2 0 4が、 レチクル微動ステージ 2 0 8と 一体で走査方向 (Y軸方向) に移動する際には、 レチクル粗動ステージ 2 0 4 に固定された Yリニアモータ 2 0 2 A、 2 0 2 Bの可動子 2 1 4 A、 2 1 4 B と固定子 2 1 2 A、 2 1 2 Bとが相対的に逆方向に移動する。 すなわち、 レチ クルステージ R S Tと固定子 2 1 2 A、 2 1 2 Bとが相対的に逆方向に移動す る。 レチクルステージ R S Tと固定子 2 1 2 A、 2 1 2 Bとレチクルベース定 盤 4 2との 3者間の摩擦が零である場合には、 運動量保存の法則が成立し、 レ チクルステージ R S Tの移動に伴う固定子 2 1 2 A、 2 1 2 Bの移動量は、 レ チクルステージ R S T全体 (レチクル粗動ステージ 2 0 4、 連結部材 2 1 6 A , 2 1 6 B、 可動子 2 1 4 A , 2 1 4 B、 レチクル微動ステージ 2 0 8、 レチ クル R等) と固定子全体 (固定子 2 1 2 A、 2 1 2 B、 エアべァリング 2 1 0 等) の重量比で決定される。 このため、 レチクルステージ R S Tの走査方向の 加減速時の反力は固定子 2 1 2 A、 2 1 2 Bの移動によって吸収されるので、 上記反力によってレチクルべ一ス定盤 4 2が振動するのを効果的に防止するこ とができる。 また、 レチクルステージ R S Tと固定子 2 1 2 A、 2 1 2 Bとが 相対的に逆方向に移動して、 レチクルステージ R S丁、 レチクルステージ定盤
4 2等を含む系の全体の重心位置が所定の位置に維持されるので、 重心位置の 移動による偏荷重が発生しないようになっている。 かかる詳細は、 例えば、 特 開平 8— 6 3 2 3 1号公報及びこれに対応する米国特許出願第 0 9 / 2 6 0,
5 4 4号に開示されている。 本国際出願で指定した指定国又は選択した選択国 の国内法令が許す限りにおいて、 上記公報及び米国特許出願における開示を援 用して本明細書の記載の一部とする。
図 1 に戻り、 前記レチクルステージ R S Tの一部には、 その位置や移動量を 計測するための干渉計システムとしてのレチクルレーザ干渉計 4 6からの測長 ビームを反射する移動鏡 4 8が取り付けられている。 レチクルレ一ザ干渉計 4 6は、 支持コラム 4 0の上端部に固定されている。
これを更に詳述すると、 図 4に示されるように、 レチクル微動ステージ 2 0 8の— Y方向の端部には、 コーナーキューブから成る一対の Y移動鏡 4 8 yl、 4 8 y2が固定され、 また、 レチクル微動ステージ 2 0 8の— X方向の端部には 、 Y軸方向に延びる平面ミラ一から成る X移動鏡 4 8 Xが固定されている。 そ して、 これらの移動鏡 4 8 y l、 4 8 y2、 4 8 Xに対して測長ビームを照射する 3 つのレーザ干渉計が実際には支持コラム 4 0の上端部に固定されているが、 図 1 においては、 これらが代表的にレチクルレ一ザ干渉計 4 6、 移動鏡 4 8とし て示されている。 また、 各レーザ干渉計に対応した固定鏡は、 投影光学系 P L の鏡筒の側面、 あるいは各干渉計本体内に設けられている。 そして、 上記 3つ のレチクルレーザ干渉計によってレチクルステージ R S T (具体的にはレチク ル微動ステージ 2 0 8 ) の X, 丫, S z方向の位置計測が投影光学系 P L (又 は本体コラムの一部) を基準としてそれぞれ行われるが、 以下の説明において は、 便宜上、 レチクルレーザ干渉計 4 6によって投影光学系 P L (又は本体コ ラムの一部) を基準として X , Υ , Θ z方向位置計測が同時に個別に行われる ものとする。 また、 以下においては、 必要に応じて、 上記の Yリニアモータ 2 0 2 A、 2 0 2 B、 一対の Xボイスコイルモー夕 2 0 6 Xと一対の Yボイスコ ィルモータ 2 0 6 Υとによって、 レチクルステージ R S Τを X、 丫、 0 ζ方向 に駆動する駆動ユニット 4 4 (図 3参照) が構成されているものとして説明を 行う。
上記のレチクルレーザ干渉計 4 6によって計測されるレチクルステージ R S Τ (即ちレチクル R ) の位置情報 (又は速度情報) は主制御装置 5 0に送られ る (図 3参照)。 主制御装置 5 0は、 基本的にはレチクルレ一ザ干渉計 4 6か ら出力される位置情報 (或いは速度情報) が指令値 (目標位置、 目標速度) と 一致するように上記駆動ュニッ卜 4 4を構成するリニアモ一夕、 ボイスコイル モータ等を制御する。
前記投影光学系 P Lとしては、 ここでは、 物体面 (レチクル R ) 側と像面 ( ウェハ W ) 側の両方がテレセン卜リックで円形の投影視野を有し、 石英や螢石 を光学硝材とした屈折光学素子 (レンズ素子) のみから成る 1 / 4 (又は 1 Ζ 5 ) 縮小倍率の屈折光学系が使用されている。 このため、 レチクル Rに紫外パ ルス光が照射されると、 レチクル R上の回路パターン領域のうちの紫外パルス 光によって照明された部分からの結像光束が投影光学系 P Lに入射し、 その回 路パターンの部分倒立像が紫外パルス光の各パルス照射の度に投影光学系 P L の像面側の円形視野の中央にスリット状または矩形状 (多角形) に制限されて 結像される。 これにより、 投影された回路パターンの部分倒立像は、 投影光学 系 P Lの結像面に配置されたウェハ W上の複数のショッ卜領域のうちの 1つの ショッ卜領域表面のレジス卜層に縮小転写される。
なお、 投影光学系 P Lを特開平 3— 2 8 2 5 2 7号公報及びこれに対応する 米国特許第 5 , 2 2 0 , 4 5 4号に開示されているように屈折光学素子と反射 光学素子 (凹面鏡やビー厶スプリツ夕等) とを組み合わせたいわゆる力夕ディ 才プ卜りック系としても良いことは勿論である。 本国際出願で指定した指定国 又は選択した選択国の国内法令が許す限りにおいて、 上記公報及びこれに対応 する米国特許における開示を援用して本明細書の記載の一部とする。
さらに、 本実施形態では、 走査露光時に発生するダイナミックな歪曲収差、 特に円形視野内の実効的な像投影領域 (固定レチクルブラインドの開口部で規 定) に形成される投影像に含まれるランダムなデイス ! ^一シヨン成分を有効に 低減させるための像歪み補正板 5 1が、 投影光学系 P Lとレチクル Rとの間に 配置されている。 この補正板 5 1 は、 数ミリ程度の厚みを持つ平行な石英板の 表面を局所的に波長オーダーで研磨加工し、 その研磨部分を通る結像光束の主 光線を微小に偏向させるものである。 このような補正板の作り方の一例は、 特 開平 8— 2 0 3 8 0 5号公報及びこれに対応する米国出願番号 0 8 / 5 8 1 , 0 1 6号に詳細に開示されており、 本実施形態においても基本的にはその公報 及び対応米国特許に示された手法を応用するものとする。 本国際出願で指定し た指定国又は選択した選択国の国内法令が許す限りにおいて、 上記公報及び米 国出願における開示を援用して本明細書の記載の一部とする。
また、 投影光学系 P Lには、 内部の特定のレンズ素子を光軸方向に平行移動 させたり、 微小傾斜させたりすることで、 結像特性 (投影倍率やある種のディ ス ! シヨン) を、 露光すべきウェハ W上のショット領域の歪み状態の検出結 果、 投影光路内の媒体 (光学素子や充填される気体) の温度変化の検出結果、 大気圧変化による投影光学系 P L内の内圧変化の検出結果に基づいて自動調整 するためのァクチユエ一夕 5 1 A、 5 1 Bが設けられている。 これらのァクチ ユエ一夕 5 1 A、 5 1 Bは主制御装置 5 0の管理下にあるレンズコン卜ローラ 5 2 (図 1では図示せず、 図 3参照) によって制御される。
前記本体コラム 1 4は、 床面 F Dに水平に載置された装置の基準となる第 1 のベース部材としての第 1 の位置決め定盤 B P 1上に設けられた 3本の支柱 5
4 A - 5 4 C (但し、 図 1 においては紙面奥側の支柱 5 4 Cは図示せず、 図 2 参照) 及びこれらの支柱 5 4 A〜5 4 Cの上部に固定された第 1の防振装置と しての防振ュニッ卜 5 6 A ~ 5 6 C (但し、 図 1 においては紙面奥側の防振ュ ニット 5 6 Cは図示せず、 図 2参照) を介してほぼ水平に支持された鏡筒定盤
5 8と、 この鏡筒定盤 5 8上に立設された前記支持コラム 4 0とによって構成 されている。
前記位置決め定盤 B P 1 としては、 本実施形態では、 平面視で一部に矩形の 開口が形成された矩形状、 すなわち矩形枠状のものが用いられている。
図 2には、 図 1の露光装置 1 0の本体コラム 1 4の一部を構成する鏡筒定盤 5 8より下方の構成各部の図 1の右側面図が一部断面して示されている。 この 図 2に示されるように、 前記防振ユニット 5 6 Bは、 支柱 5 4 Bの上部に直列 に配置された内圧が調整可能なエアマウント 6 0とボイスコイルモータ 6 2と を含んで構成されている。 残りの防振ユニット 5 6 A、 5 6 Cも、 同様に支柱 5 4 A、 5 4 Cの上部にそれぞれ直列に配置されたエアマウント 6 0とボイス コイルモータ 6 2とを含んで構成されている。 防振ュニッ卜 5 6 A ~ 5 6 に よって、 第 1の位置決め定盤 B P 1及び支柱 5 4 A - 5 4 Cを介して鏡筒定盤 5 8に伝わる床面 F Dからの微振動がマイクロ Gレベルで絶縁されるようにな つている。
前記鏡筒定盤 5 8は錶物等で構成されており、 その中央部の開口 5 8 aの内 部に投影光学系 P Lがその光軸 A X方向を Z軸方向として上方から挿入されて いる。 投影光学系 P Lの鏡筒部の外周部には、 該鏡筒部に一体化された支持部 材としてのフランジ F L Gが設けられている。 このフランジ F L Gの素材とし ては、 低熱膨張の材質、 例えばインバー (Inve r;ニッケル 3 6 %、 マンガン 0. 25 %、 及び微量の炭素と他の元素を含む鉄からなる低膨張の合金) が用 いられており、 このフランジ F LGは、 投影光学系 P Lを鏡筒定盤 58に対し て支持するいわゆるキネマティック支持マウントを構成している。
ここで、 このキネマティック支持マウントの構成について図 5及び図 6 A〜 図 6 Cを用いて簡単に説明する。 図 5は、 フランジ F LGに対向する部分の鏡 筒定盤 58の平面図を示し、 図 6 A、 図 6 B、 図 6 Cは、 図 5の A— A線断面 図、 B_ B線断面図、 C一 C線断面図をそれぞれ示す。
これらの図を総合すると明らかなように、 フランジ F L Gの下面には、 投影 光学系 P Lとほぼ同心の円周上ほぼ 1 20° 間隔で 3つの半球状の凸部 1 52 a、 1 5 2 b, 1 52 cが一体的に形成されており、 これらの凸部 1 52 a、 1 5 2 b, 1 5 2 cがそれぞれ係合する円錐溝 1 54 aと V形溝 1 54 bと遊 合溝 (内底面が平面の円形の穴) 1 54 cが鏡筒定盤 58の上面に形成されて いる。 そして、 上記 3っ凸部 1 52 a、 1 52 b, 1 52 cと円錐溝 1 54 a 、 V形溝 1 54 b、 遊合溝 1 54 cとがそれぞれ係合した状態で、 投影光学系 P Lがフランジ F L Gを介して鏡筒定盤 58上にいわゆるキネマティック支持 されている。 このようなキネマティック支持構造を採用すると、 投影光学系 P Lの鏡筒定盤 58に対する組み付けが容易で、 しかも組み付け後の鏡筒定盤 5 8及び投影光学系 P Lの振動、 温度変化、 姿勢変化等に起因する応力を最も効 果的に軽減できるという利点がある。
次にウェハステージ WS Tの近傍の構成各部について、 図 1及び図 2に基づ いて説明する。
ウェハステージ WS Tの底面には、 図 2に示されるように、 複数のエアベア リング (エアパッド) 64が固定されており、 これらのエアベアリング 64に よってウェハステージ WS Tがステージ定盤 1 6上に例えば数ミクロン程度の クリアランスを介して浮上支持されている。
ステージ定盤 1 6は、 前述した第 1の位置決め定盤 B P 1の矩形の開口部内 に配置され床面 F Dに載置された第 2のベース部材としての第 2の位置決め定 盤 B P 2の上方に、 ァクティプなァクチユエ一夕を含む 3つの第 2の防振装置 としての防振ュニッ卜 6 6 A〜 6 6 C (図 1 においては紙面奥側の防振ュニッ 卜 6 6 Cは図示せず、 図 2参照) を介してほぼ水平に保持されている。 防振ュ ニット 6 6 Bは、 図 2に示されるように、 エアマウント 6 8とボイスコイルモ —夕 7 0とを含んで構成されている。 残りの防振ユニット 6 6 A、 6 6 Cも同 様にエアマウント 6 8とボイスコイルモータ 7 0とによって構成されている。 防振ュニッ卜 6 6 A〜6 6 Cによって、 第 2の位置決め定盤 B P 2を介してス テージ定盤 1 6に伝わる床面からの微振動がマイクロ Gレベルで絶縁できるよ うになっている。
前記ウェハステージ W S Tは、 2組みのリニアモータを含む駆動ュニッ卜 7 2 (図 1では図示せず、 図 3参照) によって、 ステージ定盤 1 6上を X Y 2次 元方向に駆動されるようになっている。 これをさらに詳述すると、 ウェハステ ージ W S Tの X方向駆動は、 図 1 に示される一対のリニアモータ 7 4 A、 7 4 Bによって行われる。 これらのリニアモータ 7 4 A、 7 4 Bの固定子は、 ゥェ 八ステージ W S Tの Y方向両外側に X方向に沿って延設されており、 一対の連 結部材 7 6によって両端部相互間が連結され、 矩形の枠体 7 8 (図 2参照) が 形成されている。 リニアモータ 7 4 A、 7 4 Bの可動子は、 ウェハステージ W S Tの Y方向両側面に突設されている。
また、 枠体 7 8を構成する一対の連結部材 7 6又は前記リニアモータ 7 4 A 、 7 4 Bの固定子の下端面には、 図 2に示されるように、 電機子ユニット 8 0 A、 8 0 Bがそれぞれ設けられており、 これらの電機子ユニット 8 0 A、 8 0 Bに対応して一対の磁石ュニッ卜 8 2 A、 8 2 Bが Y方向に延設されている。 これらの磁石ユニット 8 2 A、 8 2 Bは、 第 2の位置決め定盤 B P 2の上面に Y方向に延設された一対のフレーム 8 4 A、 8 4 Bの上面に固定されている。 この場合、 前記電機子ュニッ卜 8 0 Aと磁石ュニッ卜 8 2 Aとによって厶ービ ングコイル型のリニアモータ 8 6 Aが構成され、 同様に前記電機子ュニッ卜 8 0 Bと磁石ュニッ卜 8 2 Bとによって厶ービングコイル型のリニアモータ 8 6 Bが構成されている。 そして、 これらのリニアモータ 8 6 A、 8 6 Bによって 枠体 7 8と一体的にウェハステージ W S Tが Y方向に駆動されるようになって いる。
すなわち、 このようにして、 2組のリニアモータ 7 4 A, 7 4 B、 8 6 A , 8 6 Bを含む駆動ュニッ卜 7 2が構成され、 この駆動ュニッ卜 7 2によってゥ ェ八ステージ W S Tが投影光学系 P Lの像面と平行な X Y平面に沿って 2次元 的に駆動されるようになっている。 本実施形態では、 駆動ユニット 7 2はステ 一ジ定盤 1 6の外部のフレーム 8 4 A、 8 4 Bによって独立して支持されてい るので、 ウェハステージ W S Tの X Y平面内での加速時や減速時に発生する反 力は、 フレーム 8 4 A、 8 4 Bを介して位置決め定盤 B P 2に直接伝わるが、 ステージ定盤 1 6に伝わらないようになつている。
ウェハステージ W S Tの上面に、 ウェハホルダ 8 8を介してウェハ Wが真空 吸着等によって固定されている。 ウェハステージ W S Tの X Y位置は、 図 1及 び図 2に示されるように、 投影光学系 P Lの鏡筒下端にそれぞれ固定された参 照鏡 M r K M r 2を基準としてウェハステージ W S Tの一部に固定された移 動鏡 M s U M s 2の位置変化を計測するレーザ干渉計 9 0 Υ、 9 0 Xによつ て所定の分解能、 例えば 0 . 5〜 1 n m程度の分解能でリアルタイムに計測さ れる。 これらのレーザ干渉計 9 0 Y、 9 0 Xの計測値は、 主制御装置 5 0に供 給されるようになっている (図 3参照)。 すなわち、 レーザ干渉計 9 0 Υ及び レーザ干渉計 9 0 Xによって、 ウェハステージ W S Τの位置を投影光学系 P L を基準として計測する干渉計システムが構成されている。 ここで、 レーザ干渉 計 9 0 Υ、 9 0 Xの少なくとも一方は、 測長軸を 2軸以上有する多軸干渉計で あり、 従って、 主制御装置では、 レーザ干渉計 9 0 Υ、 9 O Xの計測値に基づ いて、 ウェハステージ W S Tの X Y位置のみならず、 回転量、 あるいはこ れらに加えレペリング量をも求めることができるようになつている。
前記ウェハホルダ 8 8は、 図 2では図示が省略されているが、 実際には、 ゥ ェハステージ W S T上に搭載された不図示のホルダ駆動機構によって、 ウェハ Wを保持してウェハステージ W S Tに対して Z方向及び X Y平面に対する傾斜 方向に微少駆動されるようになっている。 このホルダ駆動機構は、 例えば、 ゥ ェハホルダ 8 8の異なる 3点をそれぞれ支持するとともに、 各支持点を独立し て Z軸方向に駆動する 3つのボイスコイルモータあるいはピエゾ素子等から成 るァクチユエ一夕を含んで構成することができる。 すなわち、 本実施形態では 、 ウェハホルダ 8 8とホルダ駆動機構とによって、 ウェハ Wを Z方向、 方 向 (X軸回りの回転方向) 及び 方向 (Y軸回りの回転方向) の 3自由度方 向に駆動する基板駆動系としての Z · レべリングテーブルが構成されている。 以下においては、 このウェハホルダ 8 8を、 便宜上、 適宜 「Z ■ レベリングテ —ブル 8 8」 とも呼ぶものとする。 本実施形態では、 この Z · レベリングテ一 プル 8 8を構成する各ァクチユエ一夕が主制御装置 5 0によって制御されるよ うになつている (図 3参照)。
また、 本実施形態では、 上記の Z · レべリングテーブル 8 8に対応して、 投 影光学系 P Lの焦点位置とウェハ W上面 (表面) の距離または該距離に応じた 値、 例えば投影光学系 P Lの像面に対するウェハ W表面の Z軸方向位置、 及び X Y面に対する傾斜を検出する焦点検出装置としてのフォーカスセンサ 1 2 1 が投影光学系 P Lの側面に設けられている。 このフォーカスセンサ 1 2 1 とし ては、 図 2に示されるように、 検出光をウェハ Wに斜入射させる投光部 (照射 光学系) 1 2 1 aと、 ウェハ Wで反射した前記検出光を受光する受光部 (受光 光学系) 1 2 1 bとで構成された多点焦点位置検出系が用いられている。 この フォーカスセンサ 1 2 1 (受光部 1 2 1 b ) の出力 (検出結果) が主制御装置 5 0に供給されるようになっており (図 3参照)、 主制御装置 5 0では、 フォ 一カスセンサ 1 2 1の出力に基づいて、 ウェハ Wのショット領域 (より正確に はレチクル R上のスリツ卜状照明領域に共役なウェハ上の領域) が常に投影光 学系 P Lの像面に一致する (所定の焦点深度の範囲内となる) ように、 Z ■ レ ベリングテーブル 8 8を制御する。 すなわち、 このようにして、 いわゆるフ才 —カス · レべリング制御が行われるようになつている。 なお、 フォーカスセン サ 1 2 1 と同様の多点焦点位置検出系については、 例えば特開平 6— 2 8 3 4 0 3号公報及びこれに対応する米国特許第 5, 4 4 8, 3 3 2号などに詳細に 開示されており、 本国際出願で指定した指定国又は選択した選択国の国内法令 が許す限りにおいて、 上記公報及び米国特許における開示を援用して本明細書 の記載の一部とする。
なお、 投光部 1 2 1 aと受光部 1 2 1 bは、 投影光学系 P Lではなく鏡筒定 盤 5 8に固定しても良い。
前記ステージ定盤 1 6には、 図 1及び図 2では図示が省略されているが、 実 際には、 ステージ定盤 1 6の Z方向の振動を計測する 3つの振動センサ (例え ば加速度計) と X Y面内方向の振動を計測する 3つの振動センサ (例えば加速 度計) (例えばこの内の 2つの振動センサは、 ステージ定盤 1 6の Y方向の振 動を計測し、 残りの振動センサは X方向の振動を計測する) とが取り付けられ ている。 以下においては、 便宜上、 これら 6つの振動センサを総称して振動セ ンサ群 9 2と呼ぶものとする。 この振動センサ群 9 2の計測値は、 主制御装置 5 0に供給されるようになっている (図 3参照)。 従って、 主制御装置 5 0で は振動センサ群 9 2の計測値に基づいてステージ定盤 1 6の 6自由度方向 (X , Υ , Z , θ X , Θ y , S z方向) の振動を求めることができる。
また、 本実施形態では、 前述したように、 特開平 8— 6 3 2 3 1号公報及び これに対応する米国特許出願第 0 9 Z 2 6 0 , 5 4 4号に開示されるようない わゆるカウンタウェイ卜方式のレチクルステージが採用され、 レチクルステ一 ジ R S T、 固定子 ( 2 1 2 Α、 2 1 2 Β ) 及びレチクルステージ定盤 4 2の 3 者間の摩擦が零であれば、 レチクルステージ R S Τの移動に伴う反力/偏荷重 は理論的には零となる害であるが、 実際には摩擦力は零ではなく、 また力の作 用線等が異なる等の理由から零とはならない。
このため、 本体コラム 1 4を構成する鏡筒定盤 5 8には、 図 1及び図 2では 図示が省略されているが、 実際には、 本体コラム 1 4の Z方向の振動を計測す る 3つの振動センサ (例えば加速度計) と X Y面内方向の振動を計測する 3つ の振動センサ (例えば加速度計) (例えば、 この内の 2つの振動センサは、 本 体コラム 1 4の Y方向の振動を計測し、 残りの振動センサは、 本体コラム 1 4 の X方向の振動を計測する) とが取り付けられている。 以下においては、 便宜 上、 これら 6つの振動センサを総称して振動センサ群 9 6と呼ぶものとする。 この振動センサ群 9 6の計測値は、 主制御装置 5 0に供給されるようになって いる (図 3参照)。 従って、 主制御装置 5 0では、 振動センサ群 9 6の計測値 に基づいて本体コラム 1 4の 6自由度方向の振動を求めることができる。 また、 本実施形態では、 前述の如く、 ステージ定盤 1 6と鏡筒定盤 5 8とは 互いに異なる位置決め定盤 B P 2、 B P 1 によってそれぞれ支持されているた め、 ステージ定盤 1 6と鏡筒定盤 5 8との相対位置関係を確認する必要がある そのため、 図 2に示されるように、 位置決め定盤 B P 1上に、 鏡筒定盤 5 8 に固定された夕ーゲッ卜 9 7を介して位置決め定盤 B P 1 に対する鏡筒定盤 5 8の位置を計測するコラム位置計測装置 (及び位置計測システム) としての位 置センサ 9 8と、 ステージ定盤 1 6に固定された夕一ゲッ卜 9 3を介して位置 決め定盤 B P 1 に対するステージ定盤 1 6の位置を計測するステージ定盤位置 計測装置としての位置センサ 9 4とが設けられている。
前記夕一ゲッ卜 9 3としては、 例えば、 図 7に示されるように、 ステージ定 盤 1 6に基端が固定され、 その先端部に X、 Y、 Ζ軸にそれぞれ垂直な反射面 9 3 a、 9 3 b , 9 3 cが形成された L字部材が用いられる。 この場合、 位置 センサ 9 4として反射面 9 3 a、 9 3 b , 9 3 cに対してそれぞれ測長ビーム R I X、 R I 丫、 R I Zを照射するレーザ干渉計を用いることができる。 本実 施形態では、 このようなターゲッ卜 9 3とレーザ干渉計 9 4とを複数組用いて 、 少なくとも位置基め定盤 B P 1 を基準とするステージ定盤 1 6の Z位置を 2 箇所、 X位置を 2箇所、 Y位置を 2箇所で計測するようになっているが、 以下 においては、 便宜上、 図 2の位置センサ 9 4によって、 位置決め定盤 B P 1 と ステージ定盤 1 6との上記 6つの相対位置が計測されるものとする。 この位置 センサ 9 4の計測値は、 主制御装置 5 0に供給されるようになっている (図 3 参照)。
位置センサ 9 8も位置センサ 9 4と同様に構成され、 位置決め定盤 B P 1 を 基準とする鏡筒定盤 5 8の Z位置を 2箇所、 X位置を 2箇所、 Y位置を 2箇所 で計測するようになっているが、 以下においては、 便宜上、 図 2の位置センサ 9 8によって、 位置決め定盤 B P 1 と鏡筒定盤 5 8との上記 6つの相対位置が 計測されるものとする。 この位置センサ 9 8の計測値も主制御装置 5 0に供給 されるようになつている (図 3参照)。
従って、 主制御装置 5 0では、 位置センサ 9 4の計測値に基づいて位置決め 定盤 B P 1 とステージ定盤 1 6との 6自由度方向の相対位置を求めることがで きるとともに、 位置センサ 9 8の計測値に基づいて位置決め定盤 B P 1 と鏡筒 定盤 5 8との 6自由度方向の相対位置を求めることができる。
本実施形態では、 ウェハステージ W S Tの駆動時の反力がそのままステージ 定盤 1 6に伝わることはないが、 その反力がフレーム 8 4 A、 8 4 Bから位置 決め定盤 B P 2を介してステージ定盤 1 6に僅かながら伝わり、 ステージ定盤 1 6の振動要因となることがある。 このような場合、 主制御装置 5 0では、 振 動センサ群 9 2の計測値に基づいて求めたステージ定盤 1 6の 6自由度方向の 振動を除去すべく、 防振ュニッ卜 6 6 A ~ 6 6 Cの速度制御を例えばフィード バック制御によって行い、 ステージ定盤 1 6の振動を確実に抑制することが可 能である。 また、 ウェハステージ W S Tがステージ定盤 1 6上で移動すること により、 ステージ定盤 1 6の重心位置が移動し、 偏荷重が生じる。 このため、 レーザ干渉計 9 0 X、 9 0 Yからの位置信号に基づいて、 偏荷重により生じる ステージ定盤 1 6の傾きを補正することが可能である。 このように、 防振ュニ ッ卜 6 6 A〜 6 6 Cとしていわゆるァクティブ防振台が採用されている。 また 、 主制御装置 5 0では、 位置センサ 9 4の計測値に基づいてステージ定盤 1 6 の位置決め定盤 B P 1 に対する 6自由度方向の相対位置を求め、 この相対位置 の情報を用いて防振ュニッ卜 6 6 A ~ 6 6 Cを制御することにより、 ステージ 定盤 1 6を位置決め定盤 B P 1を基準として定常的に安定した位置に維持する ことができるようになっている。
また、 主制御装置 5 0では、 例えばレチクルステージ R S Tの移動時等には 、 振動センサ群 9 6の計測値に基づいて求めた本体コラム 1 4の 6自由度方向 の振動を除去すべく、 防振ュニッ卜 5 6 A ~ 5 6 Cの速度制御を例えばフィー ドバック制御あるいはフィ一ドバック制御及びフイードフォワード制御によつ て行い、 本体コラム 1 4の振動を効果的に抑制することが可能である。 すなわ ち、 防振ュニッ卜 5 6 A〜5 6 Cとしていわゆるアクティブ防振装置が用いら れている。 また、 主制御装置 5 0では、 位置センサ 9 8の計測値に基づいて本 体コラム 1 4の位置決め定盤 B P 1 に対する 6自由度方向の相対位置を求め、 この相対位置の情報を用いて防振ユニット 5 6 A ~ 5 6 Cを制御することによ り、 鏡筒定盤 5 8を位置決め定盤 B P 1を基準として定常的に安定した位置に 維持することもできるようになつている。
さらに、 本実施形態では、 図 2に示されるように、 投影光学系 P Lのフラン ジ F L Gの異なる 3箇所に 3つのレーザ干渉計 1 0 2が固定されている (但し 、 図 2においてはこれらのレーザ干渉計の内の 1つが代表的に示されている) これらの 3つのレーザ干渉計 1 0 2に対向する鏡筒定盤 5 8の部分には、 開 口 5 8 bがそれぞれ形成されており、 これらの開口 5 8 bを介してそれぞれの レーザ干渉計 1 0 2から Z軸方向の測長ビームがステージ定盤 1 6に向かって 照射されている。 ステージ定盤 1 6の上面の各測長ビームの対向位置には、 反 射面がそれぞれ形成されている。 このため、 上記 3つのレーザ干渉計 1 0 2に よってステージ定盤 1 6の異なる 3点の Z位置がフランジ F L Gを基準として それぞれ計測される。 但し、 図 2においては、 ウェハステージ W S T上のゥェ ハ Wの中央のショッ卜領域が投影光学系 Pしの光軸 A Xの直下にある状態が示 されているため、 測長ビームがウェハステージ W S Tで遮られた状態となって いる。 なお、 ウェハステージ W S Tの上面に反射面を形成して、 この反射面上 の異なる 3点の Z方向位置を投影光学系 P L又はフランジ F L Gを基準として 計測する干渉計を設けても良い。
また、 3つのレーザ干渉計 1 0 2をフランジ F L Gに固定する代わりに鏡筒 定盤 5 8に固定して、 鏡筒定盤 5 8を基準としてステージ定盤 1 6又はウェハ ステージ W S Tの Z方向位置を計測する構成としても良い。
上記レーザ干渉計 1 0 2の計測値も主制御装置 5 0に供給されるようになつ ており (図 3参照)、 主制御装置 5 0では、 例えば、 ウェハ周辺部の露光の際 等に投影光学系 P Lとステージ定盤 1 6との投影光学系 P Lの光軸 A X方向及 び光軸直交面に対する傾斜方向の 3自由度方向 (Ζ、 θ X , Θ y ) の位置関係 を求めることができる。 すなわち、 本実施形態ではレーザ干渉計 1 0 2と主制 御装置 5 0とによって、 3自由度位置計測装置が構成されている。
図 1 に戻り、 位置決め定盤 B P 1上には、 レチクル Rをレチクルステージ R S Tに対して搬入及び搬出するマスク搬送系としてのレチクルローダ 1 1 0と 、 ウェハ Wをウェハステージ W S Tに対して搬入及び搬出する基板搬送系とし てのウェハローダ 1 1 2も搭載されている。 レチクルローダ 1 1 0、 ウェハ口 —ダ 1 1 2は主制御装置 5 0の管理下に置かれている (図 3参照)。
主制御装置 5 0では、 例えばレチクル交換に際しては、 レチクルレーザ干渉 計 4 6の計測値と位置センサ 9 8の計測値に基づいてレチクルローダ 1 1 0を 制御することにより、 搬送時の位置決め定盤 B P 1 を基準とするレチクルステ ージ R S Tの位置を定常的に一定に保つことができ、 結果的にレチクルステー ジ R S T上の所望の位置にレチクル Rを口一ドすることができる。
同様に、 主制御装置 5 0では、 ウェハ交換時等においてもレーザ干渉計 9 0 X、 9 0 Yの計測値と位置センサ 9 4の計測値とに基づいてウェハローダ 1 1 2を制御することにより、 位置決め定盤 B P 1 を基準とするウェハステージ W S Tの位置を定常的に一定に保つことができ、 結果的にウェハステージ W S T 上の所望の位置にウェハ Wをロードすることができる。
前記照明ュニッ卜 I L Uは、 第 1 、 第 2の位置決め定盤 B P 1 、 B P 2とは 独立して床面 F Dに載置された第 3のべ一ス部材としての位置決め定盤 B P 3 上に 3点支持の防振台 1 1 6を介して搭載された支持コラム 1 1 8によって支 持されている。 この防振台 1 1 6としても、 防振ユニット 5 6 A ~ 5 6 C、 6 6 A ~ 6 6 Cと同様に、 エアマウントとボイスコイルモータ (ァクチユエ一夕 ) と支持コラム 1 1 8に取り付けられた振動検出センサ (例えば加速度計) を 備えたアクティブ防振装置が用いられており、 このアクティブ防振装置 1 1 6 によって床面 F Dからの振動がマイクロ Gレベルで絶縁される。
さらに、 本実施形態では、 照明ユニット I L Uとレチクルべ一ス定盤 4 2と の 6自由度方向の相対位置を計測する 6自由度位置計測装置としてのベース干 渉計 1 2 0 (図 3参照) を備えている。
これを更に詳述すると、 図 4に示されるように、 レチクルベース定盤 4 2の 上面には、 照明ュニッ卜 I L Uに対向して配置された前述した夕一ゲッ卜 9 3 と同様の L字状部材から成る一対のターゲッ卜 2 3 0 A、 2 3 0 Bが固定され ており、 これらのターゲット 2 3 0 A、 2 3 0 Bの X、 Y、 Ζ方向の位置をそ れぞれ計測する合計 6つのレーザ干渉計 (図 4では図示せず) が、 照明ュニッ 卜 I L Uの照明系ハウジング 2 6に固定されている。 これら 6つのレーザ干渉 計によって図 3のベース干渉計 1 2 0が構成されている。 このべ一ス干渉計 1 2 0からの 6つの計測値、 すなわち X、 丫、 Z方向の各 2つの位置情報 (変位 情報) は、 主制御装置 5 0に送られるようになつている。 そして、 主制御装置 5 0ではこのベース干渉計 1 2 0からの 6つの計測値に基づいて照明ュニッ卜 I L Uとレチクルベース定盤 4 2との 6自由度方向 (X , Υ , Z , θ X , Θ y , 方向) の相対位置を求めることができるようになつている。
従って、 主制御装置 5 0では、 上記ベース干渉計 1 2 0からの計測値に基づ いて求めた 6自由度方向の相対位置に基づいて、 駆動ュニッ卜 4 4を介してレ チクルステージ R S T (レチクル微動ステージ 2 0 8 ) の Χ Υ面内の位置を調 整するとともに、 防振ユニット 5 6 Α ~ 5 6 C又はアクティブ防振装置 1 1 6 を制御することにより、 照明ユニット I L Uとレチクル Rとの 6自由度方向の 相対位置関係を微調整する。
また、 主制御装置 5 0では、 振動センサ群 9 6の計測値に基づいて防振ュニ ッ卜 5 6 Α ~ 5 6 Cを制御することにより本体コラム 1 4の粗振動を抑制し、 ベース干渉計 1 2 0の計測値に基づいてレチクルステージ R S Τ (レチクル微 動ステージ 2 0 8 ) の位置を制御することにより、 本体コラム 1 4の微振動を も効果的に抑制することができる。
図 3には、 上述した露光装置 1 0の制御系の構成が簡単に示されている。 こ の制御系は、 ワークステーション (又はマイクロコンピュータ) から成る制御 装置としての主制御装置 5 0を中心として構成されている。 主制御装置 5 0は 、 これまでに説明した各種の制御を行う他、 装置全体を統括的に制御する。 次に、 上述のようにして構成された露光装置 1 0における露光動作について 説明する。
前提として、 ウェハ W上のショット領域を適正露光量 (目標露光量) で走査 露光するための各種の露光条件が予め設定される。 また、 不図示のレチクル顕 微鏡及び不図示のオファクシス ·ァライメントセンサ等を用いたレチクルァラ ィメン卜、 ベースライン計測等の準備作業が行われ、 その後、 ァライメントセ ンサを用いたウェハ Wのファインァライメン卜 (E G A (ェンハンス卜 'グロ —バル *ァライメン卜) 等) が終了し、 ウェハ W上の複数のショット領域の配 列座標が求められる。
このようにして、 ウェハ Wの露光のための準備動作が終了すると、 主制御装 置 5 0では、 ァライメン卜結果に基づいてレーザ干渉計 9 0 X、 9 0 Yの計測 値をモニタしつつ駆動ュニッ卜 7 2を制御してウェハ Wの第 1 ショッ卜の露光 のための走査開始位置にウェハステージ W S Tを移動する。
そして、 主制御装置 5 0では駆動ユニット 4 4、 7 2を介してレチクルステ —ジ R S Tとウェハステージ W S Tとの Y方向の走査を開始し、 両ステージ R S丁、 W S Tがそれぞれの目標走査速度に達すると、 紫外パルス光によってレ チクル Rのパターン領域が照明され始め、 走査露光が開始される。
この走査露光の開始に先立って、 光源 1 2の発光は開始されているが、 主制 御装置 5 0によってレチクルプラインド機構 2 8 Mを構成する可動ブラインド の各ブレードの移動がレチクルステージ R S Tの移動と同期制御されているた め、 レチクル R上のパターン領域外への紫外パルス光の照射が遮光されること は、 通常のスキャニング ·ステツパと同様である。
主制御装置 5 0では、 特に上記の走査露光時にレチクルステージ R S Tの Y 軸方向の移動速度 V rとウェハステージ W S Tの丫軸方向の移動速度 V wとが 投影光学系 P Lの投影倍率 (1 / 5倍或いは 1 / 4倍) に応じた速度比に維持 されるように駆動ュニッ卜 4 4、 駆動ュニッ卜 7 2を介してレチクルステージ R S T及びウェハステージ W S Tを同期制御する。 すなわち、 本実施形態では 、 駆動ユニット 4 4、 駆動ユニット 7 2及び主制御装置 5 0によってレチクル Rとウェハ Wとを Y軸方向に沿って同期移動する駆動装置が構成されている。 そして、 レチクル Rのパターン領域の異なる領域が紫外パルス光で逐次照明 され、 パターン領域全面に対する照明が完了することにより、 ウェハ W上の第 1 ショットの走査露光が終了する。 これにより、 レチクル Rのパターンが投影 光学系 P Lを介して第 1 ショッ卜に縮小転写される。
このようにして、 第 1 ショットの走査露光が終了すると、 主制御装置 5 0に より駆動ュニッ卜 7 2を介してウェハステージ W S Tが X、 Y軸方向にステツ プ移動され、 第 2ショットの露光のための走査開始位置に移動される。 このス テツビングの際に、 主制御装置 5 0ではレーザ干渉計 9 0 X、 9 0 Yの計測値 に基づいてウェハステージ W S Tの X、 Y、 ζ方向の位置変位をリアルタイ 厶に計測する。 この計測結果に基づき、 主制御装置 5 0では駆動ユニット 7 2 を制御してウェハステージ W S Τの X Υ位置変位が所定の状態になるようにゥ ェハステージ W S Τの位置を制御する。
また、 主制御装置 5 0ではウェハステージ W S Τの S ζ方向の変位の情報に 基づいて駆動ュニッ卜 4 4を制御し、 そのウェハ W側の回転変位の誤差を補償 するようにレチクルステージ R S T (レチクル微動ステージ 2 0 8 ) を回転制 御する。
そして、 主制御装置 5 0では第 2ショッ卜に対して上記と同様の走査露光を 行う。
このようにして、 ウェハ W上のショッ卜の走査露光と次ショッ卜露光のため のステッピング動作とが繰り返し行われ、 ウェハ W上の露光対象ショッ卜の全 てにレチクル Rのパターンが順次転写される。
ところで、 上記では特に説明をしなかったが、 最近のスキャニング ·ステツ パと同様に、 ウェハ W上の各ショット領域に対する走査露光中、 主制御装置 5 0では、 フ才一カスセンサ 1 2 1の計測値に基づいて、 前述の如くフォーカス - レべリング制御を行い、 焦点深度数百 n m以下でフォーカスを合わせて露光 を行うようになっている。
しかるに、 本実施形態では、 投影光学系 P Lを支持する本体コラム 1 4とゥ ェハ Wを保持するウェハステージ W S Tとが独立して支持されているので、 両 者間で振動が伝達され難いという利点がある反面、 本体コラム 1 2とウェハス テージ W S Tを支持するステージ定盤 1 6及びウェハステージ W S Τとがそれ ぞれ独立の挙動をするおそれがあり、 このため露光時のウェハ Wのフォーカス 制御あるいはフォーカス · レべリング制御に応答遅れ (時間遅れ) が生じるお それがある。
そこで、 本実施形態の露光装置 1 0では、 ウェハ wの露光の際には、 上述し たフォーカスセンサ 1 2 1 の計測値に基づく、 Ζ · レべリングテーブル 8 8を 介してのウェハ Wのフォーカス · レべリング制御と併せて、 主制御装置 5 0が 、 レーザ干渉計 1 0 2の計測値に基づいて投影光学系 P Lとステージ定盤 1 6 との投影光学系 Ρしの光軸 A X方向及び光軸直交面に対する傾斜方向の 3自由 度方向 (Ζ、 θ X , 方向) の位置関係を求める。 そして、 主制御装置 5 0 では、 この位置関係に基づいて防振ュニッ卜 6 6 A〜 6 6 C、 具体的には各ボ イスコイルモータ 7 0をフィードバック制御し、 ステージ定盤 1 6が投影光学 系 Pしまたは鏡筒定盤 5 8と一定の位置関係を維持するようにしている。
上記の一定の位置関係は、 例えば、 Z · レベリングテ一プル 8 8の応答性を 考慮した際に、 フォーカスの引き込みが十分可能でフォーカス制御に応答遅れ がでないような範囲内にゥェハ W表面が位置する位置関係、 すなわちゥェハ W 表面が投影光学系 P Lの焦点位置近傍に位置し、 常にフォーカスセンサ 1 2 1 の検出が可能となる位置関係である。
換言すれば、 本実施形態の露光装置 1 0では、 ウェハ Wのフォーカス■ レべ リング制御を行うに当たり、 レーザ干渉計 1 0 2の計測値に基づき、 防振ュニ ッ卜 6 6 A ~ 6 6 Cを制御してステージ定盤 1 6及びこれを介してウェハステ —ジ W S T上のウェハ Wの Z位置をある程度の範囲内に追い込むフォーカス■ レべリングの粗調整と、 フォーカスセンサ 1 2 1 により検出されたウェハ Wの 表面状態の検出結果に基づき、 Z · レべリングテーブル 8 8を制御してウェハ Wを投影光学系 P Lの像面の焦点深度の範囲内に一致させるフォーカス · レべ リングの微調整とを行うようになっている。 従って、 露光装置 1 0においては、 ウェハ wの内部に位置するショット領域 を順次露光する際の、 そのショット領域間のステッピング動作中は、 ステージ 定盤 1 6が投影光学系 P Lまたは鏡筒定盤 5 8とが上述した一定の位置関係に 維持されるので、 フォーカス · レべリング制御に応答遅れが発生しないことは 勿論、 いわゆる外内ショットかつエッジショットの露光の際にも、 フォーカス の引き込みが可能となる。 ここで、 エッジショットとは、 ウェハ Wの周辺部に 位置するショット領域を意味し、 外内ショットとは、 レチクル R上のスリット 状照明領域と共役な照明領域がウェハ Wの外側から内側に向けて相対走査され るショッ卜領域を意味する。
なお、 上述した投影光学系 P Lとステージ定盤 1 6との投影光学系 P Lの光 軸 A X方向および光軸交面に対する傾斜方向の 3自由度方向 、 θ X , Θ y 方向)の位置関係は、 位置センサ 9 8及び位置センサ 9 4の計測値に基づいて も求めることができる。 すなわち、 位置センサ 9 8の計測値に基づいて位置決 め定盤 B P 1 と鏡筒定盤 5 8との 6自由度方向の相対位置が求まり、 位置セン サ 9 4の計測値に基づいて位置決め定盤 B P 1 とステージ定盤 1 6との 6自由 度方向の相対位置が求まる。 従って、 主制御装置 5 0では、 露光の際に、 これ らの相対位置から鏡筒 5 8 (投影光学系 P L )とステージ定盤 1 6との相対位置 を求めるようにしても良い。
いずれにしても、 本実施形態の露光装置 1 0では、 投影光学系 P L (鏡筒定 盤 5 8 ) とステージ定盤 1 6との投影光学系 P Lの光軸 A X方向および光軸直 交面に対する傾斜方向の 3自由度方向 (Ζ、 θ X , 0 y方向) の位置関係を所 定の位置関係に維持した状態で、 フォーカスセンサ 1 2 1及び Z · レべリング テーブル 8 8を用いてウェハ Wのショッ卜領域 (より具体的にはレチクル R上 のスリッ卜状照明領域に共役な領域) を投影光学系 P Lの像面の焦点深度の範 囲内に一致させることができる。 これにより、 高精度なフォーカス ' レベリン グ制御が可能となる。 しかし、 このようなウェハ Wのショッ卜の走査露光中のフォーカス制御のみ では、 デバイスルールがますます微細化する今日にあっては、 ウェハ W上に転 写されたパターン像の線幅の均一性を高精度に確保することが困難になりつつ ある。 これは、 ウェハ周辺のショットの場合、 その隣接ショットの存在しない 側とそうでない側とでは、 いわゆるフレアの影響の相違等に起因してパターン 像の線幅が異なるためである。 かかる不都合の発生を未然に防止あるいは抑制 するためには、 ウェハ W上の周辺ショッ卜の更に外側に仮想のショッ卜を想定 したダミー露光を行うことが望ましい。
そこで、 本実施形態では、 このダミー露光の際に、 前述したレーザ干渉計 1 0 2の計測値に基づいて、 投影光学系 P Lとステージ定盤 1 6との投影光学系 P Lの光軸 A X方向及び光軸直交面に対する傾斜方向の 3自由度方向 (Ζ、 Θ x、 Θ y ) の位置関係を求め、 防振ユニット 6 6 A ~ 6 6 C等を制御すること により、 ウェハステージ W S Tのフォーカス ' レべリング制御を行うようにな つている。 従って、 上記のダミー露光に際しても、 高精度なフォーカス制御が 可能であり、 結果的に線幅制御性の向上も可能である。
なお、 1枚のウェハ Wに対して複数のダミーショット (上記ウェハ Wの周辺 ショットの更に外側に想定される仮想のショット) を想定し、 それぞれのダミ —ショットについて、 ダミー露光を行う場合には、 各ダミーショットの露光の 度に前述したウェハステージ W S Tのフ才一カス · レべリング制御を行うこと が望ましい。 同様に、 1枚のウェハ Wについて複数回 (複数レイヤ) の露光を 行う場合にも、 ダミーショッ卜の露光の度に前述したウェハステージ W S丁の フォーカス · レべリング制御を行うことが望ましい。
以上詳細に説明したように、 本実施形態の露光装置 1 0によると、 本体コラ 厶 1 4を支持する防振ュニッ卜 5 6 A ~ 5 6 Cが位置決め定盤 B P 1 に搭載さ れ、 ステージ定盤 1 6を支持する防振ュニッ卜 6 6 A〜 6 6 Cが位置決め定盤 B P 1 とは独立して床面 F Dに載置された位置決め定盤 B P 2に搭載されてい るので、 位置決め定盤 B P 1 、 B P 2相互間の振動の伝達がほぼ遮断される。 このため、 ステージ定盤 1 6上に支持されたウェハステージ W S Tの移動時 ( 駆動時) の反力が、 位置決め定盤 B P 1 に伝わることがなく、 ウェハステージ W S Tの移動時 (駆動時) の反力が位置決め定盤 B P 1上に搭載された本体コ ラム 1 4に支持された投影光学系 P Lの振動要因となることがない。
また、 防振ユニット 5 6 A ~ 5 6 Cとしてアクティブ防振台が採用され、 主 制御装置 5 0が、 位置決め定盤 B P 1 と本体コラム 1 4との相対位置を計測す る位置センサ 9 8の計測値に基づいて防振ュニッ卜 5 6 A〜 5 6 Cを制御する ようになつていることから、 本体コラム 1 4、 従ってこれに支持される投影光 学系 P Lを位置決め定盤 B P 1 を基準とした安定した位置に維持することがで きる。 また、 本体コラム 1 4にレチクルステージ R S Tが搭載されているが、 該レチクルステージ R S Tとしてカウンタウェイ卜方式のステージが採用され ているので、 レチクルステージ R S Tの移動による反力による本体コラム 1 4 の振動は僅かである。 また、 この僅かな本体コラム 1 4の振動も本体コラム 1 4を支持する防振ュニッ卜 5 6 A ~ 5 6 Cによって抑制あるいは除去すること ができる。
また、 防振ユニット 6 6 A ~ 6 6 Cとして、 アクティブ防振台が採用され、 主制御装置 5 0が位置決め定盤 B P 1 とステージ定盤 1 6との相対位置を計測 する位置センサ 9 4の計測値に基づいて防振ュニッ卜 6 6 A ~ 6 6 Cを制御す るようになっていることから、 ステージ定盤 1 6を位置基め定盤 B P 1を基準 とする安定した位置に維持することができる。 また、 ウェハステージ W S丁の 移動により生ずるステージ定盤 1 6の振動は防振ュニッ卜 6 6 A〜 6 6 Cによ つて抑制あるいは除去することができる。
従って、 本実施形態では、 投影光学系 P Lの振動に起因するパターン転写位 置ずれや像ボケ等の発生を効果的に防止して露光精度の向上を図ることができ る。 また、 上述した数々の工夫により、 装置各部の振動や応力を低減し、 装置 各部間の相対位置関係をより高精度に維持 ·調整できるので、 ウェハステージ W S Tをより高速化、 大型化することが可能であり、 これによりスループット の向上をも図ることができるという効果がある。
なお、 上記実施形態では、 主制御装置 5 0によって、 防振ユニット、 防振台 、 レチクルローダ及びウェハローダの全てが制御される場合について説明した が、 本発明がこれに限定されることはなく、 これらを各別に制御するコント口 —ラをそれぞれ設けても良く、 あるいはこれらの任意の組み合わせを複数のコ ン卜ローラで制御するようにしても良い。
また、 上記実施形態では、 防振ユニット、 防振台の全てがアクティブ防振台 である場合について説明したが、 本発明がこれに限定されないことは勿論であ る。 すなわち、 これらの全て、 これらのいずれか、 あるいは任意の複数がパッ シプ防振台であっても良い。
なお、 上記実施形態では、 本発明が、 スキャニング ·ステツパに適用された 場合について説明したが、 マスクと基板とを静止した状態でマスクのパターン を基板に転写するとともに、 基板を順次ステップ移動させるステップ ·アンド - リピート方式の縮小投影露光装置や、 投影光学系を用いることなくマスクと 基板とを密接させてマスクのパターンを基板に転写するプロキシミティ露光装 置にも本発明は好適に適用できるものである。
また、 本発明は、 半導体製造用の露光装置に限らず、 例えば、 角型のガラス プレー卜に液晶表示素子パターンを転写する液晶用の露光装置や、 薄膜磁気へ ッドを製造するための露光装置にも広く適用できる。
また、 本発明の露光装置の露光用照明光としては、 A r Fエキシマレーザ光 に限らず、 g線 (4 3 6 n m )、 i線 ( 3 6 5 n m )、 K r Fエキシマレーザ光
( 2 4 8 n m )、 F , レーザ光 ( 1 5 7 n m )、 X線や電子線などの荷電粒子線 を用いることができる。 例えば、 電子線を用いる場合には電子銃として、 熱電 子放射型のランタンへキサボライ卜 (L a B fi)、 タンタル (T a ) を用いるこ とができる。
更に、 電子線を用いる場合は、 マスクを用いる構成としても良いし、 マスク を用いずに電子線による直接描画により基板上にパターンを形成する構成とし ても良い。 すなわち、 本発明は、 露光用光学系として電子光学系を用いる電子 ビーム露光装置であれば、 ペンシルビー厶方式、 可変成形ビーム方式、 セルプ ロジェクシヨン方式、 ブランキング■アパーチャ方式、 及び E B P Sのいずれ のタイプであっても、 適用が可能である。
また、 投影光学系の倍率は縮小系のみならず等倍および拡大系のいずれでも 良い。 投影光学系としては、 エキシマレ一ザなどの遠紫外線を用いる場合は硝 材として石英や蛍石などの遠紫外線を透過する材料を用い、 」 レーザや X線 を用いる場合は反射屈折系または反射系の光学系にし (レチクルも反射型タイ プのものを用いる)、 また、 電子線を用いる場合には光学系として電子レンズ および偏向器からなる電子光学系を用いれば良い。 なお、 電子線が通過する光 路は真空状態にすることはいうまでもない。
また、 波長 2 0 0 n m程度以下の真空紫外光 (V U V光) を用いる露光装置 では、 投影光学系として反射屈折系を用いることも考えられる。 この反射屈折 型の投影光学系としては、 例えば特開平 8— 1 7 1 0 5 4 .号公報及びこれに対 応する米国特許第 5 , 6 6 8 , 6 7 2号、 並びに特開平 1 0— 2 0 1 9 5号公 報及びこれに対応する米国特許第 5, 8 3 5 , 2 7 5号などに開示される、 反 射光学素子としてビームスプリッ夕と凹面鏡とを有する反射屈折系を用いるこ とができる。 また、 特開平 8 — 3 3 4 6 9 5号公報及びこれに対応する米国特 許第 5 , 6 8 9 , 3 7 7号、 並びに特開平 1 0— 3 0 3 9号公報及びこれに対 応する米国特許出願第 8 7 3, 6 0 5号 (出願日 : 1 9 9 7年 6月 1 2日) な どに開示される、 反射光学素子としてビ一ムスプリッ夕を用いずに凹面鏡など を有する反射屈折系を用いることができる。 本国際出願で指定した指定国又は 選択した選択国の国内法令が許す限りにおいて、 上記各公報及びこれらに対応 する米国特許、 及び米国特許出願における開示を援用して本明細書の記載の一 部とする。
この他、 米国特許第 5 , 0 3 1 , 9 7 6号、 第 5, 4 8 8, 2 2 9号、 及び 第 5 , 7 1 7, 5 1 8号に開示される、 複数の屈折光学素子と 2枚のミラ一 ( 凹面鏡である主鏡と、 屈折素子又は平行平面板の入射面と反対側に反射面が形 成される裏面鏡である副鏡) とを同一軸上に配置し、 その複数の屈折光学素子 によって形成されるレチクルパターンの中間像を、 主鏡と副鏡とによってゥェ ハ上に再結像させる反射屈折系を用いても良い。 この反射屈折系では、 複数の 屈折光学素子に続けて主鏡と副鏡とが配置され、 照明光が主鏡の一部を通って 副鏡、 主鏡の順に反射され、 さらに副鏡の一部を通ってウェハ上に達すること になる。 本国際出願で指定した指定国又は選択した選択国の国内法令が許す限 りにおいて、 上記米国特許における開示を援用して本明細書の記載の一部とす る。
さらに、 反射屈折型の投影光学系としては、 例えば円形イメージフィールド を有し、 かつ物体面側、 及び像面側が共にテレセン卜リックであるとともに、 その投影倍率が 1 /4倍又は 1 /5倍となる縮小系を用いても良い。 また、 こ の反射屈折型の投影光学系を備えた走査型露光装置の場合、 照明光の照射領域 が投影光学系の視野内でその光軸をほぼ中心とし、 かつレチクル又はウェハの 走査方向とほぼ直交する方向に沿って延びる矩形スリッ卜状に規定されるタイ プであっても良い。 かかる反射屈折型の投影光学系を備えた走査型露光装置に よれば、 例えば波長〗 5 7 n mの F2 レーザ光を露光用照明光として用いても 1 0 0 n m L/Sパターン程度の微細パターンをウェハ上に高精度に転写する ことが可能である。 また、 ウェハステージゃレチクルステージの駆動系として米国特許第 5, 6 2 3 , 8 5 3号又は米国特許第 5 , 5 2 8, 1 1 8号等に開示されるリニアモ —夕を用いても良く、 かかる場合には、 エアベアリングを用いたエア浮上型及 び口一レンツ力又はリアクタンス力を用いた磁気浮上型のどちらを用いても良 い。 本国際出願で指定した指定国又は選択した選択国の国内法令が許す限りに おいて、 上記各米国特許における開示を援用して本明細書の記載の一部とする また、 ステージの駆動装置として平面モータを用いる場合、 磁石ユニットと 電機子ュニッ卜のいずれか一方をステージに接続し、 磁石ュニッ卜と電磁子ュ ニッ卜の他方をステージの移動面側に設ければ良い。
また、 ステージは、 ガイドに沿って移動するタイプでも良いし、 ガイドを設 けないガイドレスタイプでも良い。
レチクルステージの移動により発生する反力は、 例えば特開平 8 _ 3 3 0 2 2 4号公報及びこれに対応する米国特許第 5, 8 7 4 , 8 2 0号に開示される ように、 フレー厶部材を用いて機械的に床 F D (大地) に逃がしても良い。 本 国際出願で指定した指定国又は選択した選択国の国内法令が許す限りにおいて 、 上記公報及び米国特許における開示を援用して本明細書の一部とする。 また、 複数のレンズから構成される照明光学系、 投影光学系を露光装置本体 に組み込み光学調整をするとともに、 多数の機械部品からなるレチクルステ一 ジゃウェハステージを露光装置本体に取り付けて配線や配管を接続し、 更に総 合調整 (電気調整、 動作確認等) をすることにより上記実施形態の露光装置を 製造することができる。 なお、 露光装置の製造は温度およびクリーン度等が管 理されたクリーンルームで行うことが望ましい。
また、 半導体デバイスは、 デバイスの機能 ·性能設計を行うステップ、 この 設計ステップに基づいたレチクルを製作するステップ、 シリコン材料からゥェ ハを製作するステップ、 前述した実施形態の露光装置によりレチクルのパター ンをウェハに転写するステップ、 デバイス組み立てステップ (ダイシング工程 、 ボンディング工程、 パッケージ工程を含む)、 検査ステップ等を経て製造さ れる。
以下、 デバイス製造方法について更に詳細に説明する。
《デバイス製造方法》
次に、 上述した露光装置をリソグラフイエ程で使用したデバイスの製造方法 の実施形態について説明する。
図 8には、 デバイス ( I Cや L S I等の半導体チップ、 液晶パネル、 C C D 、 薄膜磁気ヘッド、 マイクロマシン等) の製造例のフローチヤ一卜が示されて いる。 図 8に示されるように、 まず、 ステップ 3 0 1 (設計ステップ) におい て、 デバイスの機能 ·性能設計 (例えば、 半導体デバイスの回路設計等) を行 い、 その機能を実現するためのパターン設計を行う。 引き続き、 ステップ 3 0 2 (マスク製作ステップ) において、 設計した回路パターンを形成したマスク (レチクル) を製作する。 一方、 ステップ 3 0 3 (ウェハ製造ステップ) にお いて、 シリコン等の材料を用いてウェハを製造する。
次に、 ステップ 3 0 4 (ウェハ処理ステップ) において、 ステップ 3 0 1 〜 ステップ 3 0 3で用意したマスク (レチクル) とウェハを使用して、 後述する ように、 リソグラフィ技術等によってウェハ上に実際の回路等を形成する。 次 いで、 ステップ 3 0 5 (デバイス組立ステップ) において、 ステップ 3 0 4で 処理されたウェハを用いてデバイス組立を行う。 このステップ 3 0 5には、 ダ イシング工程、 ボンディング工程、 及びパッケージング工程 (チップ封入) 等 の工程が必要に応じて含まれる。
最後に、 ステップ 3 0 6 (検査ステップ) において、 ステップ 3 0 5で作製 されたデバイスの動作確認テス卜、 耐久性テス卜等の検査を行う。 こうしたェ 程を経た後にデバイスが完成し、 これが出荷される。
図 9には、 半導体デバイスの場合における、 上記ステップ 3 0 4の詳細なフ ロー例が示されている。 図 8において、 ステップ 3 1 1 (酸化ステップ) にお いてはウェハの表面を酸化させる。 ステップ 3 1 2 ( C V Dステップ) におい てはウェハ表面に絶縁膜を形成する。 ステップ 3 1 3 (電極形成ステップ) に おいてはウェハ上に電極を蒸着によって形成する。 ステップ 3 1 4 (イオン打 込みステップ) においてはウェハにイオンを打ち込む。 以上のステップ 3 1 1 〜ステップ 3 1 4それぞれは、 ウェハ処理の各段階の前処理工程を構成してお り、 各段階において必要な処理に応じて選択されて実行される。
ウェハプロセスの各段階において、 上述の前処理工程が終了すると、 以下の ようにして後処理工程が実行される。 この後処理工程では、 まず、 ステップ 3 1 5 (レジス卜形成ステップ) において、 ウェハに感光剤を塗布する。 引き続 き、 ステップ 3 1 6 (露光ステップ) において、 上で説明した露光装置 1 0を 用いてマスクの回路パターンをウェハに転写する。 次に、 ステップ 3 1 7 (現 像ステップ) においては露光されたウェハを現像し、 ステップ 3 1 8 (エッチ ングステップ) において、 レジス卜が残存している部分以外の部分の露出部材 をエッチングにより取り去る。 そして、 ステップ 3 1 9 (レジス卜除去ステツ プ) において、 エッチングが済んで不要となったレジス卜を取り除く。
これらの前処理工程と後処理工程とを繰り返し行うことによって、 ウェハ上 に多重に回路パターンが形成される。
以上説明した本実施形態のデバイス製造方法によると、 露光工程 (ステップ 3 1 6 ) において上記実施形態の露光装置 1 0を用いて露光が行われるので、 露光精度の向上により、 高集積度のデバイスを歩留まり良く生産することがで さる。 産業上の利用可能性
以上説明したように、 本発明に係る露光装置及び露光方法は、 集積回路等の マイクロデバイスを製造するリソグラフイエ程において、 微細パターンをゥェ ハ等の基板上に精度良く複数層重ねて形成するのに適している。 また、 本発明 に係るデバイス製造方法は、 微細なパターンを有するデバイスの製造に適して OAV '
3

Claims

請 求 の 範 囲
1 . 露光用光学系を用いて基板上に所定のパターンを形成する露光装置であ つて、
前記露光用光学系を支持する本体コラムと ;
前記本体コラムを支持する第 1の防振装置と ;
前記第 1の防振装置が搭載されるとともに、 床面に載置された第 1のベース 部材と ;
前記基板を保持する基板ステージを支持するステージ定盤と ;
前記ステージ定盤を支持する第 2の防振装置と ;
前記第 2の防振装置が搭載されるとともに、 前記床面に載置された前記第 1 のべ一ス部材とは独立した第 2のベース部材と、 を備える露光装置。
2 . 請求項 1 に記載の露光装置において、
前記第 1、 第 2の防振装置の少なくとも一方がアクティブ防振装置であるこ とを特徴とする露光装置。
3 . 請求項 1 に記載の露光装置において、
前記第 1の防振装置がアクティブ防振装置であり、
前記第 1のべ一ス部材と前記本体コラムとの相対位置を計測するコラム位置 計測装置と ;
前記コラム位置計測装置の計測値に基づいて前記第 1の防振装置を制御する 制御装置と、 を更に備えることを特徴とする露光装置。
4 . 請求項 1 に記載の露光装置において、
前記第 2の防振装置がアクティブ防振装置であり、 前記第 1のベース部材と前記ステージ定盤との相対位置を計測するステージ 定盤位置計測装置と ;
前記ステージ定盤位置計測装置の計測値に基づいて前記第 2の防振装置を制 御する制御装置と、 を更に備えることを特徴とする露光装置。
5 . 請求項 1 に記載の露光装置において、
前記本体コラムに対し、 前記露光用光学系を V溝、 円錐溝及び平面で 3点支 持する支持部材を更に備えることを特徴とする露光装置。
6 . 請求項 1 に記載の露光装置において、
前記第 2の防振装置がアクティブ防振装置であり、
前記露光用光学系と前記ステージ定盤及び前記基板ステージのいずれかとの 前記露光用光学系の光軸方向及び前記光軸直交面に対する傾斜方向の 3自由度 方向の位置関係を光学的に計測する 3自由度位置計測装置と ;
前記 3自由度位置計測装置の計測値に基づいて前記第 2の防振装置を制御す る制御装置と、 を更に備えることを特徴とする露光装置。
7 . 請求項 6に記載の露光装置において、
前記本体コラムは、 前記露光用光学系の鏡筒を支持する支持部材を有し、 前記 3自由度位置計測装置は、 前記ステージ定盤及び前記基板ステージのい ずれかと前記支持部材との間の距離を異なる 3点で計測する干渉計を備えるこ とを特徴とする露光装置。
8 . 請求項 7に記載の露光装置において、
前記干渉計は、 前記露光用光学系の鏡筒に固定されていることを特徴とする
9 . 請求項 6に記載の露光装置において、
前記 3自由度位置計測装置は、 前記ステージ定盤及び前記基板ステージのい ずれかと前記露光用光学系との間の距離を異なる 3点で計測する干渉計を備え ることを特徴とする露光装置。
1 0 . 請求項 1 に記載の露光装置において、
前記本体コラムに支持され、 前記露光用光学系により前記基板上に投影され る前記所定のパターンが形成されたマスクを保持するマスク保持部材を更に備 えるとともに、
前記マスクを前記マスク保持部材に対して搬入及び搬出するマスク搬送系と 前記基板を前記基板ステージに対して搬入及び搬出する基板搬送系との少なく とも一方が前記第 1のベース部材上に搭載され、
前記第 1のべ一ス部材と前記本体コラムとの相対位置を計測する位置計測シ ステムと ;
前記マスク保持部材及び前記基板ステージの少なくとも一方の位置を前記露 光用光学系及び本体コラムの一部のいずれかを基準として計測する干渉計シス テムと ;
前記位置計測システム及び前記干渉計システムの計測値に基づいて前記第 1 のベース部材に搭載された前記搬送系を制御する制御装置と、 を更に備えるこ とを特徴とする露光装置。
1 1 . 請求項 1 0に記載の露光装置において、
前記マスクを照明する照明光学系を更に備え、
前記照明光学系は、 前記第 1、 第 2のベース部材とは独立して前記床面に載 置された第 3のべ一ス部材上に搭載されていることを特徴とする露光装置。
1 2 . 請求項 1 に記載の露光装置において、
前記第 1の防振装置がァクティブ防振装置であり、
前記所定のパターンが形成されたマスクを保持するとともに、 当該マスクを 前記本体コラム上でその面内の 3自由度方向に微少駆動するマスク保持部材と 前記マスクを照明する照明光学系と ;
前記照明光学系を支持するアクティブ防振装置と ;
前記照明光学系と前記本体コラムとの 6自由度方向の相対位置を計測する 6 自由度位置計測装置と ;
前記 6自由度位置計測装置の計測値に基づいて前記マスク保持部材と前記第 1の防振装置及び前記照明光学系を保持する前記ァクティブ防振装置のいずれ かとを制御する制御装置と、 を更に備えることを特徴とする露光装置。
1 3 . 請求項 1 0〜 1 2のいずれか一項に記載の露光装置において、 前記マスクは、 前記露光用光学系の光軸に直交する面内で所定方向に所定ス 卜ロークで移動可能であり、
前記マスクと前記基板ステージとを同期して前記所定方向に駆動する駆動装 置を更に備えることを特徴とする露光装置。
1 4 . 露光用光学系を用いて基板上に所定のパターンを形成する露光装置で あって、
前記露光用光学系を支持する本体コラムと ;
前記基板を保持するとともに、 前記本体コラムとは独立して支持された基板 ステージと ;
前記基板表面の少なくとも前記露光用光学系の光軸方向の位置を検出する焦 点検出装置と ;
前記基板を少なくとも前記露光用光学系の光軸方向に駆動する基板駆動系と 前記焦点検出装置とは独立して設けられ、 前記露光用光学系と前記基板ステ -ジとの位置関係を計測する位置計測システムと ;
前記露光用光学系と前記基板ステージとの位置関係を変化させる駆動装置と 前記焦点検出装置、 基板駆動系、 前記位置計測システム及び前記駆動装置に 接続された制御装置と、 を備え、
前記制御装置は、 露光の際に、 前記位置計測システムによって計測された値 に基づいて前記駆動装置を制御して前記露光用光学系と前記基板ステージとを 所定の位置関係に設定するとともに、 前記焦点検出装置の検出結果に基づいて 前記基板駆動系を介して前記露光用光学系の像面と前記基板との相対位置を調 整することを特徴とする露光装置。
1 5 . 請求項 1 4に記載の露光装置において、
前記位置計測システムは、 前記露光用光学系の光軸方向及び前記光軸直交面 に対する傾斜方向の 3自由度方向の前記位置関係を計測することを特徴とする
1 6 . 請求項 1 4に記載の露光装置において、
前記位置計測システムは、 前記露光用光学系の鏡筒に固定されていることを 特徴とする露光装置。
1 7 . 請求項 1 4に記載の露光装置において、
前記基板ステージを支持するステージ支持部材を更に備え、 前記位置計測システムは、 前記露光用光学系と前記ステージ支持部材との前 記露光用光学系の光軸方向に関する位置関係を計測することを特徴とする露光
1 8 . 請求項 1 7に記載の露光装置において、
前記ステージ支持部材には前記位置関係を計測するための計測点が 3点設け られ、
前記位置計測システムは、 前記露光用光学系と前記ステージ支持部材との間 の距離を前記 3点で計測することを特徴とする露光装置。
1 9 . 請求項 1 4に記載の露光装置において、
前記本体コラムを支持するベース部材を更に備え、
前記位置計測システムは、 前記ベース部材と前記露光用光学系の位置関係を 計測する第 1の位置計測装置と、 前記ベース部材と前記ステージ支持部材との 位置関係を計測する第 2の位置計測装置とを有していることを特徴とする露光
2 0 . 請求項 1 9に記載の露光装置において、
前記第 1の位置計測装置及び前記第 2の位置計測装置の少なくとも一方は、 前記位置関係として 6自由度方向の相対位置を求めることを特徴とする露光装
2 1 . 露光用光学系を用いて、 該露光用光学系を支持する本体コラムとは独 立して支持された基板ステージ上の基板上に所定のパターンを形成する露光方 法であって、
前記露光用光学系と前記基板ステージとの位置関係を計測する第 1工程と ; 前記第 1工程で計測された値に基づいて前記露光用光学系と前記基板ステー ジとの位置関係を所定の状態に設定する第 2工程と ;
前記第 2工程で前記所定の状態が設定された状態で、 前記基板表面の少なく とも前記露光用光学系の光軸方向の位置の検出結果に基づいて前記露光用光学 系の像面と前記基板表面との相対位置を調整しつつ前記基板上に前記パターン を形成する第 3工程とを含む露光方法。
2 2 . 請求項 2 1 に記載の露光方法において、
前記第 1工程では、 前記露光用光学系の光軸方向及び前記光軸直交面に対す る傾斜方向の 3自由度方向の前記位置関係を計測することを特徴とする露光方 法。
2 3 . 請求項 2 1 に記載の露光方法において、
前記第 1工程では、 前記露光用光学系の鏡筒に固定された位置計測システム を用いて前記計測を行うことを特徴とする露光方法。
2 4 . 請求項 2 1 に記載の露光方法において、
前記基板ステージはステージ支持部材によって支持され、
前記第 1工程では、 前記露光用光学系と前記ステージ支持部材との前記露光 用光学系の光軸方向に関する位置関係を計測することを特徴とする露光方法。
2 5 . 請求項 2 4に記載の露光方法において、
前記第 1工程では、 前記露光用光学系と前記ステージ支持部材との間の距離 を前記ステージ支持部材上に設定された異なる 3点の計測点において計測する ことを特徴とする露光方法。
2 6 . 請求項 2 1 に記載の露光方法において、
前記本体コラムはベース部材によって支持され、
前記第 1工程は、 前記ベース部材と前記露光用光学系の位置関係を計測する 第 1計測工程と、 前記ベース部材と前記ステージ支持部材との位置関係を計測 する第 2計測工程とを含むことを特徴とする露光方法。
2 7 . 請求項 2 6に記載の露光方法において、
前記第 1計測工程及び第 2計測工程の少なくとも一方では、 前記位置関係と して 6自由度方向の相対位置を求めることを特徴とする露光装置。
2 8 . 所定のパターンが形成されたデバイスであって、
請求項 1 ~ 1 2のいずれか一項に記載の露光装置を用いて製造されたことを 特徴とするデバイス。
2 9 . 所定のパターンが形成されたデバイスであって、
請求項 1 3に記載の露光装置を用いて製造されたことを特徴とするデバイス
3 0 . 所定のパターンが形成されたデバイスであって、
請求項 1 4 ~ 2 0のいずれか一項に記載の露光装置を用いて製造されたこと を特徴とするデバイス。
3 1 . リソグラフイエ程を含むデバイスの製造方法であって、
前記リソグラフイエ程で請求項 2 1 ~ 2 7のいずれか一項に記載の露光方法 を用いて露光を行うことを特徴とするデバイスの製造方法。
PCT/JP1999/004757 1998-09-03 1999-09-02 Appareil et procede d'exposition, dispositif et procede de production dudit appareil WO2000014779A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/786,238 US6538719B1 (en) 1998-09-03 1999-09-02 Exposure apparatus and exposure method, and device and method for producing the same
EP99940621A EP1143492A4 (en) 1998-09-03 1999-09-02 EXPOSURE APPARATUS AND METHOD, DEVICE AND METHOD FOR PRODUCING SAID APPARATUS
AU54474/99A AU5447499A (en) 1998-09-03 1999-09-02 Exposure apparatus and exposure method, and device and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/248938 1998-09-03
JP24893898 1998-09-03

Publications (1)

Publication Number Publication Date
WO2000014779A1 true WO2000014779A1 (fr) 2000-03-16

Family

ID=17185659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004757 WO2000014779A1 (fr) 1998-09-03 1999-09-02 Appareil et procede d'exposition, dispositif et procede de production dudit appareil

Country Status (5)

Country Link
US (1) US6538719B1 (ja)
EP (1) EP1143492A4 (ja)
KR (1) KR100697569B1 (ja)
AU (1) AU5447499A (ja)
WO (1) WO2000014779A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084720A2 (fr) * 2001-04-06 2002-10-24 Nikon Corporation Dispositif d'exposition, systeme de traitement de substrat et procede permettant de produire ce dispositif
US6809323B2 (en) 2002-04-03 2004-10-26 Nikon Corporation Isolated frame caster
JP2005294790A (ja) * 2003-06-13 2005-10-20 Asml Netherlands Bv 支持器具、リソグラフィ投影装置および支持器具を使用した器具製造方法および支持器具内で使用するよう配置構成された位置制御システム
US6977716B2 (en) 2002-05-29 2005-12-20 Asml Holding N.V. Catadioptric lithography system and method with reticle stage orthogonal to wafer stage
JP2006086442A (ja) * 2004-09-17 2006-03-30 Nikon Corp ステージ装置及び露光装置
US7158213B2 (en) 2001-02-28 2007-01-02 Asml Holding N.V. Lithographic tool with dual isolation system and method for configuring the same
JP2011135077A (ja) * 2009-12-23 2011-07-07 Asml Netherlands Bv インプリントリソグラフィ装置およびインプリントリソグラフィ方法
JP2017021361A (ja) * 2010-09-07 2017-01-26 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246204B1 (en) 1994-06-27 2001-06-12 Nikon Corporation Electromagnetic alignment and scanning apparatus
US6737208B1 (en) * 2001-12-17 2004-05-18 Advanced Micro Devices, Inc. Method and apparatus for controlling photolithography overlay registration incorporating feedforward overlay information
SG99416A1 (en) 2002-03-05 2003-10-27 Asml Netherlands Bv Apparatus and system for improving phase shift mask imaging performance and associated methods
JP2003318080A (ja) * 2002-04-22 2003-11-07 Hitachi High-Technologies Corp 電子ビーム描画装置
US20040119964A1 (en) * 2002-12-18 2004-06-24 Nikon Corporation Double isolation fine stage
JP2004228473A (ja) * 2003-01-27 2004-08-12 Canon Inc 移動ステージ装置
US7037012B2 (en) * 2003-02-24 2006-05-02 Ziv-Av Engineering Ltd. Scanning mechanism for high-speed high-resolution scanning
KR20050109468A (ko) * 2003-03-26 2005-11-21 마쯔시다덴기산교 가부시키가이샤 영상 표시 시스템
SG141425A1 (en) 2003-04-10 2008-04-28 Nikon Corp Environmental system including vacuum scavange for an immersion lithography apparatus
KR101177330B1 (ko) 2003-04-10 2012-08-30 가부시키가이샤 니콘 액침 리소그래피 장치
US7097945B2 (en) * 2003-04-18 2006-08-29 Macronix International Co., Ltd. Method of reducing critical dimension bias of dense pattern and isolation pattern
JP2004363559A (ja) * 2003-05-14 2004-12-24 Canon Inc 光学部材保持装置
KR101613384B1 (ko) * 2003-08-21 2016-04-18 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
KR20050063439A (ko) * 2003-12-22 2005-06-28 삼성전자주식회사 레티클 관리 방법 및 시스템
EP2037489A3 (en) * 2004-01-15 2010-01-06 Nikon Corporation Exposure apparatus and device producing method
US20050174551A1 (en) * 2004-02-11 2005-08-11 Nikon Corporation Position control and heat dissipation for photolithography systems
JP2005268268A (ja) 2004-03-16 2005-09-29 Canon Inc 電子ビーム露光装置
TWI402893B (zh) 2004-03-25 2013-07-21 尼康股份有限公司 曝光方法
US7817243B2 (en) * 2004-04-12 2010-10-19 Asml Netherlands B.V. Vibration isolation system
TWI629569B (zh) * 2005-03-29 2018-07-11 日商尼康股份有限公司 曝光裝置、微元件的製造方法、及元件的製造方法
JP2006344685A (ja) * 2005-06-07 2006-12-21 Canon Inc 露光装置
US20070012874A1 (en) * 2005-06-07 2007-01-18 Psia Corporation Apparatus for and method of driving X-Y scanner in scanning probe microscope
US20100148813A1 (en) 2006-07-18 2010-06-17 Multiprobe, Inc. Apparatus and method for combined micro-scale and nano-scale c-v, q-v, and i-v testing of semiconductor materials
EP1921502B1 (de) * 2006-11-08 2011-02-02 Integrated Dynamics Engineering GmbH Kombiniertes Motion-Control-System
KR100830586B1 (ko) * 2006-12-12 2008-05-21 삼성전자주식회사 기판을 노광하는 장치 및 방법
US8144309B2 (en) * 2007-09-05 2012-03-27 Asml Netherlands B.V. Imprint lithography
NL2002902A1 (nl) * 2008-06-18 2009-12-22 Asml Netherlands Bv Lithographic apparatus having a feed forward pressure pulse compensation for the metrology frame.
NL2005374C2 (en) * 2010-09-20 2012-03-22 Mapper Lithography Ip Bv Method for arranging a lithography system on a foundation, and lithography system arranged on said foundation.
JP5905581B2 (ja) 2011-09-09 2016-04-20 マッパー・リソグラフィー・アイピー・ビー.ブイ. フレキシブルカップリングを備えた投影システム
JP2014530478A (ja) 2011-09-09 2014-11-17 マッパー・リソグラフィー・アイピー・ビー.ブイ. 除振モジュール及び基板処理システム
US9939728B2 (en) 2011-09-12 2018-04-10 Mapper Lithography Ip B.V. Vacuum chamber with a thick aluminum base plate
US8800998B2 (en) * 2011-12-30 2014-08-12 Multiprobe, Inc. Semiconductor wafer isolated transfer chuck
JP6371576B2 (ja) * 2014-05-02 2018-08-08 キヤノン株式会社 光学装置、投影光学系、露光装置、および物品の製造方法
CN106796338B (zh) * 2014-10-06 2019-11-08 徕卡显微系统(瑞士)股份公司 显微镜
EP3204809B1 (de) * 2014-10-06 2021-04-21 Leica Microsystems (Schweiz) AG Mikroskop
WO2016055177A1 (de) * 2014-10-06 2016-04-14 Leica Microsystems (Schweiz) Ag Mikroskop
JP6307101B2 (ja) * 2016-02-19 2018-04-04 キヤノン株式会社 リソグラフィ装置、および物品の製造方法
EP3563197B1 (en) 2016-12-30 2024-01-31 ASML Netherlands B.V. Substrate exposure system
US10048599B2 (en) 2016-12-30 2018-08-14 Mapper Lithography Ip B.V. Adjustment assembly and substrate exposure system comprising such an adjustment assembly
US10600614B2 (en) * 2017-09-29 2020-03-24 Hitachi High-Technologies Corporation Stage device and charged particle beam device
DE102018210996A1 (de) * 2018-07-04 2020-01-09 Carl Zeiss Smt Gmbh Abstützung einer optischen einheit
EP3726094A1 (de) * 2019-04-15 2020-10-21 Integrated Dynamics Engineering GmbH Stationäres schwingungsisolationssystem sowie verfahren zu dessen regelung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199813A (ja) * 1989-01-30 1990-08-08 Canon Inc 露光装置
JPH08166043A (ja) * 1994-10-11 1996-06-25 Nikon Corp 防振装置
JPH09148237A (ja) * 1995-11-24 1997-06-06 Canon Inc 投影露光装置およびこれを用いた露光方法ならびに半導体製造方法
JPH09306815A (ja) * 1996-05-16 1997-11-28 Canon Inc 露光装置とこれを利用したデバイス生産方法
JPH11294520A (ja) * 1998-04-08 1999-10-29 Canon Inc 除振装置、これを用いた露光装置およびデバイス製造方法、ならびに除振方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952858A (en) 1988-05-18 1990-08-28 Galburt Daniel N Microlithographic apparatus
JP3363662B2 (ja) * 1994-05-19 2003-01-08 キヤノン株式会社 走査ステージ装置およびこれを用いた露光装置
JP3659529B2 (ja) 1996-06-06 2005-06-15 キヤノン株式会社 露光装置およびデバイス製造方法
JP3266515B2 (ja) * 1996-08-02 2002-03-18 キヤノン株式会社 露光装置、デバイス製造方法およびステージ装置
US6222614B1 (en) * 1996-12-06 2001-04-24 Nikon Corporation Exposure elements with a cable-relaying support
US6128069A (en) * 1997-03-13 2000-10-03 Canon Kabushiki Kaisha Stage mechanism for exposure apparatus
JP3413122B2 (ja) * 1998-05-21 2003-06-03 キヤノン株式会社 位置決め装置及びこれを用いた露光装置並びにデバイス製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199813A (ja) * 1989-01-30 1990-08-08 Canon Inc 露光装置
JPH08166043A (ja) * 1994-10-11 1996-06-25 Nikon Corp 防振装置
JPH09148237A (ja) * 1995-11-24 1997-06-06 Canon Inc 投影露光装置およびこれを用いた露光方法ならびに半導体製造方法
JPH09306815A (ja) * 1996-05-16 1997-11-28 Canon Inc 露光装置とこれを利用したデバイス生産方法
JPH11294520A (ja) * 1998-04-08 1999-10-29 Canon Inc 除振装置、これを用いた露光装置およびデバイス製造方法、ならびに除振方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1143492A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158213B2 (en) 2001-02-28 2007-01-02 Asml Holding N.V. Lithographic tool with dual isolation system and method for configuring the same
US7164463B2 (en) * 2001-02-28 2007-01-16 Asml Holding N.V. Lithographic tool with dual isolation system and method for configuring the same
WO2002084720A2 (fr) * 2001-04-06 2002-10-24 Nikon Corporation Dispositif d'exposition, systeme de traitement de substrat et procede permettant de produire ce dispositif
WO2002084720A3 (fr) * 2001-04-06 2007-10-25 Nippon Kogaku Kk Dispositif d'exposition, systeme de traitement de substrat et procede permettant de produire ce dispositif
US6809323B2 (en) 2002-04-03 2004-10-26 Nikon Corporation Isolated frame caster
US6977716B2 (en) 2002-05-29 2005-12-20 Asml Holding N.V. Catadioptric lithography system and method with reticle stage orthogonal to wafer stage
JP2005294790A (ja) * 2003-06-13 2005-10-20 Asml Netherlands Bv 支持器具、リソグラフィ投影装置および支持器具を使用した器具製造方法および支持器具内で使用するよう配置構成された位置制御システム
JP2006086442A (ja) * 2004-09-17 2006-03-30 Nikon Corp ステージ装置及び露光装置
JP2011135077A (ja) * 2009-12-23 2011-07-07 Asml Netherlands Bv インプリントリソグラフィ装置およびインプリントリソグラフィ方法
JP2017021361A (ja) * 2010-09-07 2017-01-26 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法

Also Published As

Publication number Publication date
US6538719B1 (en) 2003-03-25
AU5447499A (en) 2000-03-27
EP1143492A1 (en) 2001-10-10
KR100697569B1 (ko) 2007-03-21
EP1143492A4 (en) 2004-06-02
KR20010052668A (ko) 2001-06-25

Similar Documents

Publication Publication Date Title
WO2000014779A1 (fr) Appareil et procede d'exposition, dispositif et procede de production dudit appareil
US6597002B1 (en) Scanning exposure apparatus and its making method, and device manufacturing method
US6819404B2 (en) Stage device and exposure apparatus
JP4333033B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
US7068350B2 (en) Exposure apparatus and stage device, and device manufacturing method
US6765647B1 (en) Exposure method and device
US6710850B2 (en) Exposure apparatus and exposure method
US6891603B2 (en) Manufacturing method in manufacturing line, manufacturing method for exposure apparatus, and exposure apparatus
WO2000025352A1 (fr) Dispositif a plateau, systeme d'exposition et procede de fabrication dudit dispositif
US20020080339A1 (en) Stage apparatus, vibration control method and exposure apparatus
KR20010033118A (ko) 스테이지 장치 및 노광장치
JP2000106340A (ja) 露光装置及び走査露光方法、並びにステージ装置
EP1248288A1 (en) Exposure method and exposure apparatus
JP3283767B2 (ja) 露光装置およびデバイス製造方法
JPWO2002043123A1 (ja) 露光装置、露光方法及びデバイス製造方法
US6641981B1 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2005276932A (ja) 露光装置及びデバイス製造方法
JP2004158610A (ja) 露光装置および露光方法
JPH11224854A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2002198285A (ja) ステージ装置およびその制振方法並びに露光装置
JP2003045785A (ja) ステージ装置及び露光装置、並びにデバイス製造方法
JP2003324053A (ja) ステージ装置および露光装置
JP2012033921A (ja) 露光装置及びデバイス製造方法
JP2012114198A (ja) 光学ユニット、光学系、露光装置、及びデバイスの製造方法
JP2002175963A (ja) ステージ装置とその位置制御方法および露光装置並びに露光方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AU BA BB BG BR CA CN CU CZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020007013911

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09786238

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999940621

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007013911

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999940621

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999940621

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007013911

Country of ref document: KR