WO2000014752A1 - Ferrite de manganese-zinc et procede de production - Google Patents

Ferrite de manganese-zinc et procede de production Download PDF

Info

Publication number
WO2000014752A1
WO2000014752A1 PCT/JP1999/004838 JP9904838W WO0014752A1 WO 2000014752 A1 WO2000014752 A1 WO 2000014752A1 JP 9904838 W JP9904838 W JP 9904838W WO 0014752 A1 WO0014752 A1 WO 0014752A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
temperature
zinc
ferrite
oxide
Prior art date
Application number
PCT/JP1999/004838
Other languages
English (en)
French (fr)
Inventor
Shoji Inoue
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to KR1020007004747A priority Critical patent/KR20010031685A/ko
Priority to EP99940692A priority patent/EP1030318A4/en
Publication of WO2000014752A1 publication Critical patent/WO2000014752A1/ja
Priority to US09/558,587 priority patent/US6352650B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Definitions

  • the present invention relates to a manganese-zinc ferrite and a method for producing the same, and more particularly to a manganese-zinc ferrite having a high initial permeability; i, which is preferably used for a core of a transformer for broadband transmission, and a method for producing the same.
  • transformers for broadband transmission such as pulse transformers
  • the manganese-zinc-based ferrite proposed in this patent publication has an initial permeability at 25 ° C of 10 kHz, 100 kHz and 500 kHz, which is higher than 900, 9000 and 3,000, respectively, over a wide band. Shows the initial permeability. Disclosure of the invention In order to achieve miniaturization and high-speed communication in the above-mentioned pulse transformer, it is important to show a higher initial permeability especially in a low frequency region of about 10 kHz. As a result, even when the number of windings is reduced, the rising of the output pulse can be made steep, and the amount of operation attenuation can be reduced, so that accurate digital communication can be performed.
  • an object of the present invention is to provide a manganese-zinc-based ferrite exhibiting high initial permeability over a wide band, and particularly exhibiting particularly high initial permeability in a low frequency region of about 10 kHz, and a method for producing the same.
  • the relative principal component, as the minor component has a B i 2 ⁇ equivalent to 3 80 Oppm following bismuth oxide component and a molybdenum oxide component of 120 Oppm following MO0 3 Conversion (1) Manganese - Zinc System ferrite.
  • a method for producing a manganese-zinc based ferrite comprising a main temperature holding step of 1200 to 1450 ° C during firing, and a cooling step during firing before the main temperature holding step. And that the minimum temperature in the temperature lowering step during firing is set to a temperature in the range of 100 to 140 ° C. and at least 50 ° C. lower than the holding temperature in the main temperature holding step. Characteristic method for producing manganese-zinc ferrite.
  • FIG. 1 is a diagram showing a temperature profile in firing in Example.
  • FIG. 2 is a diagram showing a temperature profile in firing in a comparative example.
  • FIG. 3 is a drawing-substitute photograph of a cross section of the sample of the present invention.
  • FIG. 4 is a drawing substitute photograph of a cross section of the comparative sample. Action and effect of the invention
  • the holding temperature of the main temperature holding step during the firing of the manganese-zinc ferrite is set to a temperature range of 1200 to 140 ° C, and before the main temperature holding step, A temperature lowering step during firing is provided, and a minimum temperature of the temperature lowering step during firing is in a temperature range of 100 to 140 ° C, and is at least 50 ° C lower than the holding temperature in the main temperature holding step.
  • This temperature is hereinafter referred to as “lowering temperature”.
  • the average crystal grain size is more than 50 and less than 150 / zm, preferably 1
  • a manganese-zinc based ferrite having an initial magnetic permeability at 0 kHz of 150000 or more was obtained.
  • the core obtained by the manganese-zinc based ferrite of the present invention is incorporated in, for example, a pulse transformer, even if the number of windings is reduced, the rise of the output pulse can be made steep, and the operation attenuation
  • the manganese-zinc-based ferrite of the present invention can be reduced in size, and can perform high-speed and accurate digital communication. Since the initial permeability at 100 kHz is equal to or higher than that of a light, the number of turns can be reduced when a transformer is used, and the transformer can be downsized.
  • Z permeability is a maximum of about 1.10 times.
  • Japanese Patent No. 2914554 discloses that a manganese-zinc-based ferrite is fired twice or more as a method for producing a highly efficient, low-cost, high-performance, high-permeability manganese-zinc-based ferrite.
  • a manufacturing method is disclosed. According to the disclosed manufacturing method, a cooling temperature lowering step during firing, which has the same concept as the cooling temperature lowering step during firing of the present invention, is shown.
  • the minimum temperature during the firing temperature lowering step is preferably 1100 ° C. or less. Is 1000 ° C or less, more preferably 500 ° C or less. From this description, it can be interpreted that the lower the minimum temperature of the cooling step during firing is, the better.
  • the minimum temperature of the cooling step during firing is set to a temperature range of 1000 to 1400 ° C. Further, in the present invention, it is sufficient that the above-mentioned temperature drop in the temperature lowering step during firing is 30 ° C or more, particularly 50 ° C or more. In the present invention, the reason why the minimum temperature of the cooling step during firing is set in the temperature range of 1000 to 1400 ° C. will be described later. According to this, in the firing method of the present invention, the cooling step during firing of the above-described conventional firing method is performed. , And as a result, the overall manufacturing time can be reduced.
  • the present invention mainly aims at improving the initial magnetic permeability in a low frequency region of about 10 kHz, but the conventional example described above aims at improving the initial magnetic permeability in a high frequency region of 100 kHz or more. They are different for the purpose.
  • the method for producing a manganese-zinc ferrite of the present invention is characterized in that the holding temperature in the main temperature holding step during firing of the calcined ferrite material compact is set to a temperature range of 1200 to 1450 ° C, particularly 1350 to 1450 ° C. Before and after the main temperature holding step, a temperature lowering step during firing is provided.
  • the minimum temperature of the temperature lowering step during firing is in a temperature range of 1000 to 1400 ° C, and the above-mentioned lowering temperature is 30 ° C or more. In particular, the temperature is set to 50 ° C or higher.
  • the temperature holding time in the main temperature holding step is preferably about 0.5 to 10 hours.
  • the lowest temperature of the firing in the temperature lowering step reasons for setting the temperature range of 1000 to 1400 D C is believed to mitigate the stress generated between the crystal grains and a grain boundary.
  • This minimum temperature is preferably between 1100 and 1350 ° C, in particular between 1150 and 1300 ° C, more preferably between 1200 and 1300 ° C.
  • This lowering temperature is preferably from 100 to 250 ° C., particularly preferably from 150 to 200 ° C.
  • a temperature holding step at the minimum temperature may be provided.
  • the time is kept within 3.0 hours.
  • the cooling rate in this cooling step during firing is 20 to 300 ° C / hour, preferably 30 to 300 ° C / hour. 2200 ° C./hour, the rate of temperature rise is 20-300 ° C.Z, preferably 30-20 (TC / hour. It is preferably performed within 0 hours.
  • the cooling step during the firing is not essential for obtaining the manganese-zinc ferrite of the present invention, but is preferably provided immediately before the main temperature holding step.
  • a sub-firing step or a sub-temperature maintaining step is provided before the temperature-lowering step during firing.
  • the maximum temperature In the sub-firing step or the sub-temperature holding step, the maximum temperature must be equal to or lower than the holding temperature in the main temperature holding step, and higher than the minimum temperature in the cooling step during firing.
  • the maximum temperature may be 1100 to 140 (TC is preferable). This maximum temperature may appear as a peak or may be maintained within a range of 5.0 hours.
  • the temperature at which the maximum temperature appears as a peak and the holding time is instantaneous is also referred to as the sub-temperature holding step.
  • the same temperature profile as that of the conventional firing can be used for the temperature raising step up to the sub temperature holding step and the temperature lowering step following the main temperature holding step.
  • the heating rate in the heating step is preferably from 20 to 500 ° CZ time.
  • the heating rate can be changed in two or more steps. In this case, it is preferable to increase the initial heating rate and gradually reduce the heating rate.
  • the first stage heating rate is about 200 to 500 ° C./hour
  • the second stage heating rate is about 20 to 200 ° CZ time.
  • the temperature decreasing rate in the temperature decreasing step is preferably 20 to 500 ° CZ time.
  • the cooling rate in this cooling step can also be changed in two or more steps. If two cooling steps are used, the cooling rate in the first step should be about 20 to 200 ° C / hour, and the cooling rate in the second step Is preferably set to about 200 to 500 ° CZ time.
  • the furnace used may be a continuous furnace or a batch furnace.
  • the atmosphere during firing may be adjusted in accordance with the theory of equilibrium oxygen partial pressure. It is preferable to perform the reaction in a controlled nitrogen atmosphere (sometimes, only oxygen exists).
  • the average crystal grain size of the manganese-zinc ferrite of the present invention is preferably more than 50 to 150 m, more preferably 60 to 130 urn, and particularly preferably 70 to 120 m.
  • those having a crystal grain size of more than 50 to 140 ⁇ are present preferably at least 50 Vo 1%, particularly at least 70 vo 1%, and more preferably at least 8 Ovol%. Is preferred.
  • the initial permeability at 10 kHz of the manganese-zinc ferrite of the present invention is preferably at least 20,000, particularly preferably at least 25,000.
  • the initial permeability at 10 kHz of the manganese-zinc-based ferrite of the present invention has attained a maximum of about 35,000 at present, and the higher the value, the more preferable.
  • the present invention can be adapted to the manganese-one zinc ferrite of a wide range of composition, the main component as described above, respectively, F e 2 0 3 in terms of 50 to 56 mol%, Mn_ ⁇ terms 22-39 mol%, ZnO converted 8 It is preferably about 25 mol%. Outside this range, the initial permeability at 10 kHz tends to decrease.
  • the manganese-zinc based ferrite of the present invention can also contain calcium oxide or silicon dioxide as an auxiliary component. These sub-components, respectively, Ca ⁇ converted 50 to 50 Oppm, particularly 100 ⁇ 30 Oppm, S I_ ⁇ 2 equivalent 50: and L 5 Oppm about. Incidentally, CaO and S i 0 2 are generally present at grain boundaries.
  • Such ferrite of the present invention comprises bismuth oxide and molybdenum oxide,
  • the added bismuth-molybdenum oxide component may partially evaporate or sublimate during firing, and the content of bismuth oxide or molybdenum oxide in the ferrite is determined by the amount added. May not match. That is, containing Yuryou of bismuth oxide, B i 2 ⁇ 3 amount of 50 to about 100 wt% in terms of addition, the content of the oxidized molybdenum is added the amount of 10 to 60% by weight Mo_ ⁇ 3 terms About 10 to 30% by weight is preferred.
  • the ferrite of the present invention may further contain one or more of niobium oxide, indium oxide, vanadium oxide, tantalum oxide, zirconium oxide, and the like, if necessary. These are each Nb 2 ⁇ 5 conversion, I n 2 0 3 in terms, V 2 0 5 conversion, Ta 2 ⁇ 5 terms, Z R_ ⁇ at 2 equivalent, preferably that it is a about 0 to 300 Oppm in total.
  • the average crystal grain size of the ferrite of the present invention containing such a component is preferably more than 5 O ⁇ m and within 150 tm. If the average crystal grain size is too large or too small, the initial permeability at 10 kHz will decrease, and it may not be possible to achieve an initial permeability of 15,000 or more at 1 ° kHz.
  • the average crystal grain size may be determined as the average of the average diameters of the polycrystals observed with an optical microscope after the mirror-polished surface is acid-etched and converted into a circle.
  • the initial permeability at 25 ° C at 10 kHz is 15,000 or more, especially 20,000 or more, and more than 25,000, for example. 15,000 to 35,000 can be achieved, and the initial permeability at 100 kHz is 8000 or more, especially 9000 or more, and even 9500 or more, for example, 95 ⁇ 0 to: L5 ⁇ 00, the initial permeability at 500 kHz is 2000 or more, especially 3000 or more, and 3500 or more, for example 35 An initial permeability of about or greater is obtained.
  • a mixture of a normal iron oxide component, a manganese oxide component, and a zinc oxide component is prepared as a main component.
  • These main components are mixed so as to have the above-mentioned quantitative ratio as the final composition of ferrite, and are provided as raw materials.
  • a raw material of the auxiliary component a compound or calcium oxide that becomes calcium oxide by firing calcium carbonate or the like, and a compound or silicon oxide that becomes silicon oxide by firing are added.
  • the raw materials of these subcomponents are added so as to have the above-mentioned quantitative ratio as the final composition of the magnetic material.
  • a bismuth oxide component and a molybdenum oxide component are further added.
  • the acid bismuth components other B i 2 ⁇ 3, B i 2 (S_ ⁇ 4) cut with be used 3 or the like, B i 2 0 3 are preferred.
  • the molybdenum oxide component other M o 0 3, but the M o C 1 3 or the like can and Mochiiruko, M o 0 3 are preferred.
  • the amount of the molybdenum oxide component to be added is 1200 ppm in terms of Mo 3 , particularly 100 ppm or less, and preferably 100 to 100 ppm. If the added amount exceeds the above range, the initial magnetic permeability will rather decrease. If necessary, one or more of niobium oxide, indium oxide, vanadium oxide, tantalum oxide, and zirconium oxide are further added to the raw material mixture.
  • an appropriate binder for example, polyvinyl alcohol
  • a spray-dryer or the like to obtain 80 to 20%.
  • the molded product is fired.
  • the firing conditions are as described above.
  • the temperature profile of the comparative example except for the sub-temperature holding step and the cooling step during firing was used as the temperature profile of the comparative example.
  • the average crystal grain size is as large as 52 to 146, and the initial permeability at 10 kHz is extremely large as compared with the conventional one, and the initial permeability at 100 kHz or more is also the conventional one. It can be seen that they are equal or better.
  • crystals having a particle diameter of more than 50 to 140 m accounted for 80 V o 1% or more.
  • FIGS. 3 and 4 show photographs of the cross sections of the samples of these examples and comparative examples, respectively, which were polished and taken with an optical microscope.
  • the composition of the manganese-zinc ferrite was the same as in Example 1, with the main component being the same as in Example 1.
  • the addition of C a C ⁇ 3 and Si 0 2 was the same as in Example 1, and Sample 14 was added. in ⁇ 16, without the addition of these, 81 2 ⁇ 3 except that the 1 ⁇ 00 3 amount to the amount added was the following, the same procedure as in example 1, samples 12 to the core of the examples and Comparative examples I got 16.
  • the manganese-zinc based ferrite of the present invention exhibits a particularly high initial permeability in a low frequency range of about 1 OkHz. In addition, it has the same or higher initial permeability even in the high frequency range above 10 OkHz.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Description

明 細 書
マンガン一亜鉛系フェライトおよびその製造方法 技術分野
本発明は、 マンガン一亜鉛系フェライトおよびその製造方法に関し、 特に広帯 域伝送用トランスのコアに用いて好ましい高初透磁率; iのマンガン一亜鉛系フ ェライトおよびその製造方法に関する。 背景技術
上記のような広帯域伝送用トランス、 例えばパルストランスにおいては、 正確 なデジタル通信を行なうため、 広帯域で透磁率が高く、 10〜500 kHzの全域 で高い透磁率を示すコア用のマンガン—亜鉛系フェライトが必要である。
このような要求により、 本出願人は、 特開平 6 _ 204025号公報において、 広帯域で透磁率が高く、 10〜500 kHzの全域で高い透磁率を示すマンガン一 亜鉛系フェライトを提供した。 この特許公開公報で提案されたマンガン—亜鉛系 , フェライトは、 F e 203換算で 50〜56モル%の酸化鉄と、 MnO換算で 2 2〜39モル%の酸化マンガンと、 211〇換算で8〜25モル%の酸化亜鉛とを 含有するマンガン—亜鉛系フェライトであって、 B i 23換算で 80 Oppm以下 の酸化ビスマス成分と、 Mo〇3換算で 120 Oppm以下の酸化モリブデン成分 とを添加して焼結したものである。
この特許公開公報で提案されたマンガン—亜鉛系フェライトは、 25°Cにおけ る 10 kHz、 100 kHzおよび 500 kHzの初透磁率が、 それぞれ 900 0以上、 9000以上および 3000以上と、 広帯域で高い初透磁率を示す。 発明の開示 上記のようなパルストランスにおいて、 小型化、 高速通信化を実現するために は、 特に 10 kHz程度の低周波領域においてさらに高い初透磁率を示すことが 重要である。 これにより、 巻線数を減らしても出力パルスの立ち上げを急峻にで き、 動作減衰量を低減できるので、 正確なデジタル通信を行なうことができる。 そこで、 本発明は、 広帯域で高い初透磁率を示し、 特に 10 kHz程度の低周 波領域において特に高い初透磁率を示すマンガン—亜鉛系フェライトおよびその 製造方法を提供することを目的とする。
(1) F e 23換算で 50〜56モル%の酸化鉄と、 MnO換算で 22〜3 9モル%の酸化マンガンと、 21 〇換算で8〜25モル%の酸化亜鉛とを主成分 として含有し、
平均結晶粒径が 5 超 150 ^ιη以下であるマンガン一亜鉛系フェライト。
(2) 前記主成分に対し、 副成分として、 B i 23換算で 80 Oppm 以下の 酸化ビスマス成分と、 Mo03換算で 120 Oppm以下の酸化モリブデン成分と を有する (1) のマンガン—亜鉛系フェライト。
(3) さらに C aO換算で 50〜 50 Oppm の酸化カルシウムを含有する (1) または (2) のマンガン—亜鉛系フェライト。
(4) 周波数 10kHzにおいて、 磁束密度 B= 100ミリテスラで測定したと きの透磁率 。。が、 磁束密度 B= 1ミリテスラで測定したときの透磁率 の 1. 20倍以上である (1) 〜 (3) のいずれかのマンガン一亜鉛系フェライト。 (5) 1 0 kHzにおける初透磁率 iが 1 5, 000以上でぁる (1) 〜 (4) のいずれかのマンガン一亜鉛系フェライト。
(6) 焼成中に少なくとも 1回の降温工程を有する (1) 〜 (5) のいずれか のマンガン—亜鉛系フェライト。
(7) マンガン一亜鉛系フェライトの製造方法であって、 焼成中、 1200〜 1450°Cの主温度保持工程を有し、 この主温度保持工程の前に焼成中降温工程 を設け、 この焼成中降温工程の最低温度を、 1 0 0 0〜 1 4 0 0 °Cの温度範囲で あって、 主温度保持工程の保持温度より少なくとも 5 0 °C以上低く設定したこと を特徴とするマンガン一亜鉛系フェライ卜の製造方法。
( 8 ) ( 1 ) 〜 (6 ) のいずれかのマンガン一亜鉛系フェライトを得る (7 ) のマンガン—亜鉛系フェライトの製造方法。 図面の簡単な説明
図 1は、 実施例の焼成における温度プロファイルを示す図である。
図 2は、 比較例の焼成における温度プロファイルを示す図である。
図 3は、 本発明サンプルの断面を撮影した図面代用写真である。
図 4は、 比較サンプルの断面を撮影した図面代用写真である。 発明の作用 ·効果
本発明においては、 マンガン—亜鉛系フェライ卜の焼成中における主温度保持 工程の保持温度を 1 2 0 0〜 1 4 5 0 °Cの温度範囲に設定し、 この主温度保持ェ 程の前に焼成中降温工程を設け、 この焼成中降温工程の最低温度を、 1 0 0 0〜 1 4 0 0 °Cの温度範囲であって、 主温度保持工程の保持温度より少なくとも 5 0 °C以上低く (この温度を以下 「低下温度」 と称する) 設定したことにより、 結 晶の異常成長が生ぜず、 平均結晶粒径が 5 0 超であって 1 5 0 /zm 以下であ り、 好ましくは 1 0 k H zにおける初透磁率が 1 5, 0 0 0以上であるマンガン 一亜鉛系フェライトが得られた。 これにより、 本発明のマンガン一亜鉛系フェラ ィトにより得られたコアを例えばパルストランスに組み込んだ場合には、 巻線数 を減らしても、 出力パルスの立ち上げを急峻にでき、 動作減衰量を低減できるの で、 小型化でき、 しかもより高速で正確なデジタル通信等を行なうことができる また、 本発明のマンガン一亜鉛系フェライトは、 従来のマンガン一亜鉛系フエ ライトと比べて、 100 kHzの初透磁率も同等かそれ以上であるので、 トラン スとした場合に、 巻線数を低減でき、 トランスの小型化を図ることができる。 さらにまた、 本発明のマンガン一亜鉛系フェライトは、 10 kHzにおいて、 磁束密度 B= l 00ミリテスラで測定したときの透磁率 が、 磁束密度 B = 1ミリテスラで測定したときの透磁率 / の 1. 20倍以上であるという特異な 特性を示す。 ちなみに、 従来のマンガン一亜鉛系フェライトの透磁率^ 1()。Z透 磁率 は、 最高で、 1. 10倍程度である。
なお、 特許第 2914554号公報には、 極めて効率よく、 低コストで、 高性 能の高透磁率マンガン一亜鉛系フェライトを製造することのできる方法として、 マンガン—亜鉛系フェライトを 2回以上焼成する製造方法が開示されている。 こ の開示された製造方法によれば、 本発明の焼成中降温工程と同概念の焼成中降温 工程が示されているが、 焼成中降温工程の最低温度は、 1100°C以下、 望まし くは 1000°C以下、 さらに望ましくは 500°C以下が好ましいとしている。 こ の記載からは、 焼成中降温工程の最低温度は、 低ければ低い程望ましいと解釈で さる。
これに対し、 本発明においては、 焼成中降温工程の最低温度を 1000〜14 00°Cの温度範囲に設定した。 また、 本発明においては、 焼成中降温工程の上記 低下温度を 30°C以上、 特に 50°C以上であればよいとした。 本発明において、 焼成中降温工程の最低温度を 1000〜 1400°Cの温度範囲に設定した理由は 後述するが、 これにより、 本発明の焼成方法においては、 上記従来の焼成方法の 焼成中降温工程に要する時間を短縮でき、 結果として全体の製造時間を短縮する ことができる。
また、 本発明は、 主として 10 kHz程度の低周波領域における初透磁率の向 上を目的としているが、 上記従来例は、 100 kHz以上の高周波領域での初透 磁率の向上を目的としており、 両者は目的からして異なっている。 発明を実施するための最良の形態
以下、 本発明の具体的構成について詳細に説明する。
本発明のマンガン一亜鉛系フェライ卜の製造方法は、 仮焼後のフェライト材料 の成形体の焼成中における主温度保持工程の保持温度を 1200〜 1450 °C、 特に 1350〜 1450°Cの温度範囲に設定し、 この主温度保持工程の前に焼成 中降温工程を設け、 この焼成中降温工程の最低温度を、 1000〜1400°Cの 温度範囲であって、 上記低下温度を 30°C以上、 特に 50°C以上に設定したこと を特徴とする。
上記主温度保持工程の保持温度を 1200〜 1450°Cの温度範囲に設定した 理由は、 フェライト化促進ならびに結晶粒径の制御のためであり、 この温度範囲 で特に 10 kH zにおける初透磁率が向上する。 この主温度保持工程の温度保持 時間は、 0. 5〜10時間程度が好ましい。
また、 上記焼成中降温工程の最低温度を、 1000〜 1400DCの温度範囲に 設定した理由は、 結晶粒子と粒界との間に発生する応力を緩和するためと考えて いる。
この最低温度は、 好ましくは、 1 100〜 1350°C、 特に 1150〜 130 0°C, 更に好ましくは 1200〜1300°Cである。
さらに、 上記低下温度が 50°C未満の場合は、 焼成中降温の効果が薄れ、 10 kHzにおける初透磁率の向上が充分でない。 この低下温度は、 好ましくは 10 0〜250°Cであり、 特に好ましくは 150〜200°Cである。
なお、 焼成中降温工程では、 上記最低温度での温度保持工程を設けてもよい。 この最低温度での温度保持工程を設ける場合には、 3. 0時間以内とすることが 好ましい。
この焼成中降温工程での降温速度は、 20〜 300 °C/時間、 好ましくは 30 〜 2 0 0 °C /時間、 昇温速度は 2 0〜 3 0 0 °CZ時間、 好ましくは 3 0〜 2 0 (TC /時間に設定することが好ましい。 この焼成中降温工程は、 6 . 0時間以内 で行なわれることが好ましい。
上記焼成中降温工程は、 本発明のマンガン一亜鉛系フェライトを得る上で必須 ではないが、 主温度保持工程の直前に設けるのが好ましい。
上記焼成中降温工程の前には、 副焼成工程あるいは副温度保持工程が設けられ ている。 この副焼成工程あるいは副温度保持工程においては、 最高温度が、 上記 主温度保持工程の保持温度と同じかそれより低く、 かつ焼成中降温工程の最低温 度より高いことが必要であり、 具体的には、 1 1 0 0〜1 4 0 (TC程度が好まし レ^ この最高温度は、 ピークとしてあらわれても、 5 . 0時間以内の範囲で保持 してもよい。 なお、 以下の説明においては、 最高温度がピークとしてあらわれる 保持時間が瞬間的なものも副温度保持工程と称することとする。
本発明の焼成においては、 上記副温度保持工程にいたる昇温工程、 および主温 度保持工程に続く降温工程は、 従来の焼成の温度プロファイルと同様のものを用 いることができる。 具体的には、 上記昇温工程における昇温速度は、 2 0〜5 0 0 °CZ時間であることが好ましい。 また、 この昇温速度は 2段階以上に変化させ ることができ、 この場合は、 当初の昇温速度を速くし、 徐々に昇温速度を遅くす るのが好ましい。 例えば 2段とする場合は、 1段目の昇温速度を 2 0 0〜 5 0 0 °C/時間程度とし、 2段目の昇温速度を 2 0〜2 0 0 °CZ時間程度とすること が好ましい。 一方、 降温工程における降温速度は、 2 0〜5 0 0 °CZ時間である ことが好ましい。 この降温工程における降温速度も 2段階以上に変化させること ができ、 2段とする場合は、 1段目の降温速度を 2 0〜2 0 0 °C/時間程度とし、 2段目の降温速度を 2 0 0〜5 0 0 °CZ時間程度とすることが好ましい。
本発明の焼成においては、 用いる炉は、 連続炉でもバッチ炉でもよい。 また、 焼成時の雰囲気は、 平衡酸素分圧の理論に従い調整すればよく、 特に酸素分圧を 制御した窒素雰囲気 (酸素のみの場合も存在する) で行なうことが好ましい。 以上の条件の本発明の焼成によっても、 平均結晶粒径が 50超であって 150 m 以下であり、 10 kHzにおける初透磁率が 1 5, 000以上であるマンガ ンー亜鉛系フェライトが得られる。
本発明のマンガン一亜鉛系フェライトの平均結晶粒径は、 好ましくは 50超〜 150 m 、 さらに好ましくは 60〜 130 urn, 特に好ましくは 70〜 120 mである。 また、 本発明のマンガン—亜鉛系フェライトにおいては、 50超〜 140 μιτιの結晶粒径のものが、 好ましくは 50 V o 1 %以上、 特に 70 v o 1 %以上、 更には 8 Ovol%以上存在していることが好ましい。 また、 本発明の マンガン—亜鉛系フェライトの 10 kHzにおける初透磁率は、 好ましくは 20, 000以上、 特に 25, 000以上であることが好ましい。 本発明のマンガン一 亜鉛系フェライトの 10 kHzにおける初透磁率は、 現在のところ、 最高 35, 000程度が達成できており、 この値は、 高ければ高いほど好ましい。
本発明のマンガン—亜鉛系フェライトは、 10 kHzにおいて、 磁束密度 B = 100ミリテスラで測定したときの透磁率 。。が、 磁束密度 B=lミリテスラ で測定したときの透磁率 の 1. 20倍以上とすることができる。 この 1 0 0 Ζ·^は、 現在のところ、 1. 50倍程度が達成できている。
本発明は、 広範囲の組成のマンガン一亜鉛系フェライトに適合できるが、 上記 した主成分は、 それぞれ、 F e 203換算 50〜56モル%、 Mn〇換算 22〜 39モル%、 ZnO換算 8〜 25モル%程度とすることが好ましい。 この範囲外 では、 10 kHzでの初透磁率が低下する傾向がある。
また、 本発明のマンガン一亜鉛系フェライトは、 酸化カルシウムや、 二酸化ケ ィ素を副成分として含有することもできる。 これらの副成分は、 それぞれ、 Ca 〇換算 50〜 50 Oppm 、 特に 100〜30 Oppm 、 S i〇2 換算 50〜: L 5 Oppm程度とする。 なお、 CaOや S i 02は、 一般に粒界に存在する。 このような本発明のフェライトは、 酸化ビスマスと酸化モリブデンとを、 特に
B i 23や Mo〇3の形で含有することが好ましい。 この場合、 添加したビスマ スゃモリブデンの酸化物成分、 特に酸化モリブデン成分は、 焼成により一部蒸発 ないし昇華してしまうことがあり、 フェライト中のビスマス酸化物やモリブデン 酸化物の含有量は添加量と一致しないことがある。 すなわち、 酸化ビスマスの含 有量は、 B i 23換算で添加量の 50〜 100重量%程度、 また、 酸化モリブ デンの含有量は、 Mo〇3換算で添加量の 10〜60重量%程度、 特に 10〜3 0重量%程度が好ましい。
なお、 本発明のフェライト中には、 必要に応じて、 さらに、 酸化ニオブ、 酸化 インジウム、 酸化バナジウム、 酸化タンタル、 酸化ジルコニウム等の 1種以上を 含有させてもよい。 これらは、 それぞれ Nb25換算、 I n 203換算、 V205 換算、 Ta25換算、 Z r〇2換算にて、 合計で 0〜300 Oppm程度であるこ とが好ましい。
このような成分を含有する本発明のフェライ卜の平均結晶粒径は 5 O^m超 1 50 tm以内が好ましい。 平均結晶粒径が大きすぎても小さすぎても 10 kHz における初透磁率が低下してしまい、 1◦ kHzにおける初透磁率 15, 000 以上を達成できなくなるおそれがある。 なお、 平均結晶粒径は、 鏡面研摩面を酸 エッチング後、 光学顕微鏡にて観察される多結晶体を円換算した場合の平均直径 の平均として求めればよい。
このように平均結晶粒径が大きく、 しかも均一に揃っていると、 25°Cにおけ る 10 kHzの初透磁率 15, 000以上、 特に 20, 000以上、 さらには 2 5, 000以上、 例えば 15, 000〜35, 000を達成でき、 しかも 100 kHz の初透磁率は 8000以上、 特に 9000以上、 さらには 9500以上、 例 えば 95◦ 0〜: L 5◦ 00程度、 500kHz の初透磁率は 2000以上、 特に 3 000以上、 さらには 3500以上、 例えば 35◦ 0〜6000程度と従来と同 程度かそれ以上の初透磁率が得られる。
本発明のマンガン一亜鉛系フェライトを製造するには、 まず、 主成分として、 通常の酸化鉄成分、 酸化マンガン成分および酸化亜鉛成分の混合物を用意する。 これらの主成分は、 フェライトの最終組成として前記の量比になるように混合さ れ、 原料として供される。 また、 副成分の原料として、 炭酸カルシウム等の焼成 により酸化カルシウムになる化合物や酸化カルシウムと、 焼成により酸化ケィ素 になる化合物や酸化ケィ素等が添加される。 この場合、 これらの副成分の原料は、 磁性材料の最終組成として前記の量比になるように添加される。
そして、 さらに酸化ビスマス成分と、 酸化モリブデン成分とが添加される。 酸 化ビスマス成分としては、 B i 23の他、 B i 2 ( S〇4) 3等を用いることがで きるが、 B i 203が好ましい。 酸化ビスマス成分の添加量は、 B i 20 3換算で 8 0 O ppm 以下、 特に 6 0 O ppm 以下、 好ましくは 1 0 0〜 4 0 0 ppm とする。 添加量が前記範囲を超えると却って初透磁率が減少する。
また、 酸化モリブデン成分としては、 M o 03の他、 M o C 1 3等を用いるこ とができるが、 M o 03が好適である。 酸化モリブデン成分の添加量は、 M o O 3換算で 1 2 0 0 ppm 、 特に 1 0 0 0 ppm 以下、 好ましくは 1 0 0〜 1 0 0 0 pp m とする。 添加量が前記範囲を超えると却って初透磁率が減少する。 なお、 必要 に応じて、 酸化ニオブ、 酸化インジウム、 酸化バナジウム、 酸化タンタル、 酸化 ジルコニウムの 1種以上がさらに原料混合物中に添加される。
このように主成分および添加微量成分を混合した後、 これに適当なバインダー、 例えばポリビニルアルコールを少量、 例えば 0 . 1〜 1 . 0重量%加え、 スプレ ―ドライヤ一等にて 8 0〜2 0 0 程度の径の顆粒とし、 成型する。
次いで、 この成型品を焼成する。 この焼成条件については、 上記した内容に従 ラ。
以上により、 本発明のマンガン—亜鉛系フェライトを得ることができる。 実施例
以下、 本発明の具体的実施例を示し、 本発明をさらに詳細に説明する。
実施例 1
MnO (24モル%) 、 ZnO (23モル%) 、 F e 203 ( 53モル%) を 主成分とし、 副成分として CaC〇3 (磁性材料の最終組成における C a O換算 で 20 Oppm ) と S i〇2 (磁性材料の最終組成において 10 Oppm ) と B i 23 ( 200 Dm ) と Mo03 ( 200 ppm ) とを添加して、 サンプルを得た。 これらを混合後、 バインダを加えスプレ一ドライヤーにて平均粒径 150 m に顆粒化し、 成形し、 成形体 100個を得た。 これらを酸素分圧を制御した雰囲 気中で、 図 1 (実施例) および図 2 (比較例) に示した温度プロファイルにて、 50個ずつ焼成し、 外径 6mm、 内径 3画、 高さ 1. 5臓のトロイダルコアを得た c なお、 上記図 1 (実施例) および図 2 (比較例) に示した温度プロファイルを 下に詳述する。
実施例の温度プロファイル
昇温工程
1200°Cまでの昇温速度: 300°CZ時間
1200°Cから 1300°Cまでの昇温速度: 100aCZ時間
副温度保持工程
1300°Cで 1. 0時間保持
焼成中降温工程
最低温度: 1200 °C
(主温度保持工程の保持温度との差: 200°C)
1300°Cから 1200°Cまでの降温速度: 100°CZ時間
1200°Cから 1400°Cまでの昇温速度: 100°CZ時間
主温度保持工程 1400°Cで 3. 0時間保持
降温工程
1400°Cから 1000°Cまでの降温速度: 100°CZ時間
1000°Cから常温までの降温速度: 250°CZ時間
比較例の温度プロファイル
昇温工程
1200°Cまでの昇温速度: 300°CZ時間
1200°Cから 1400°Cまでの昇温速度: 100°C/時間
副温度保持工程
なし
焼成中降温工程
なし
主温度保持工程
1400°Cで 3. 0時間保持
降温工程
1400°Cから 1000°Cまでの降温速度: 100°CZ時間
1000°Cから常温までの降温速度: 250°CZ時間
すなわち、 実施例の温度プロファイルのうち副温度保持工程と焼成中降温工程 を除いたものを比較例の温度プロファイルとした。
なお、 実施例および比較例のものの最終組成を蛍光 X線により測定したところ、 主成分と Ca、 S iは、 原料組成とほぼ対応するものであり、 酸化ビスマスと酸 化モリブデンは添加量の 10〜80重量%であった。
得られた各トロイダルコアの 25°Cにおける 10kHz と 100kHz と 500kH z での初透磁率およびを平均結晶粒径を測定した。 なお、 透磁率の測定にはイン ■ ピーダンスアナライザーを用いた。 これらの結果を表 1に示す。 平均結晶粒径 初透磁率 μί
( ΐη ) 10kHz 】 00kHz 500kHz サンプル 1* 27 13000 12600 3300 サンプノレ 2* 30 15600 13200 3500 サンプル 3* 33 17800 11400 2800 サンプノレ 4 52 22900 11800 3700 サンプル 5 67 27500 12000 4000 サンプル 6 89 35700 15100 5200 サンプル 7 114 33400 14400 4700 サンプル 8 132 30200 12700 4200 サンプル 9 146 28200 11100 3900
*)は本発明の範囲外を表す。 表 1に示される結果から本発明の効果が明らかである。 すなわち、 本発明に従 い平均結晶粒径が 52〜146 と大きくなり、 特に 10 kHzでの初透磁率 が従来に比べて極めて大きくなり、 また、 100 kHz以上の初透磁率も従来の ものと同等あるいはそれ以上であることがわかる。 また、 実施例のものでは、 5 0超〜 140 mの粒径の結晶が 80 V o 1 %以上であった。
さらに、 実施例と比較例のサンプルを 1つずつ任意に選び出し、 それぞれ、 1 0 kHzにおいて、 磁束密度 10および 100ミリテスラ下での透磁率 ( W100) を測定したしたところ、 実施例では、 ^1が32, 500であり、 10 。が 49, 7 00と、
Figure imgf000014_0001
53となったが、 比較例では、 が 12, 500であり、 100が 13, 900と、 ^ 。ノ が 1 1であ つた。 また、 これらの実施例と比較例のサンプルの断面を研磨し、 光学顕微鏡に て撮影した写真をそれぞれ図 3, 図 4に示す。
実施例 2
マンガン一亜鉛系フェライトの組成を、 主成分を実施例 1と同一にし副成分を、 サンプル 12および 13については C a C〇3および S i 02の添加を実施例 1 と同様にし、 サンプル 14〜16では、 これらを添加せず、 8123と1^003 の添加量を下記した量とした以外は、 実施例 1と同様にして、 実施例と比較例の コアのサンプル 12~16を得た。
サンプル 12
B i 203: 300 ppm
M o O 3: 0
3
B i 23: 300 ppm
M o O 3: 300 ppm
サンプル 14
B i 2 O 3 : 400 ppm
M o O 3 : 400 ppm
サンプル 15
B i 2Os: 60 Oppm
M o O 3 : 200 ppm
サンプル 16
B i 23: 200 ppm
M o O 3: 800 ppm
以上の 12〜 16のサンプルのコアにつき、 実施例 1と同様に初透磁率等を測 定したところ、 実施例 1と同様の傾向が得られた。 発明の効果
本発明のマンガン一亜鉛系フイライトは、 周波数 1 O kHz程度の低周波領域 で特に高い初透磁率を示す。 しかも周波数 10 OkHz 以上の高周波領域でも従来 と同等かそれ以上の初透磁率を有する。

Claims

請求の範囲
1. F e 23換算で 50〜56モル%の酸化鉄と、 Mn〇換算で 22〜39 モル%の酸化マンガンと、 2110換算で8〜25モル%の酸化亜鉛とを主成分と して含有し、
平均結晶粒径が 50 / m超 150 m以下であるマンガン—亜鉛系フェライ卜。
2. 前記主成分に対し、 副成分として、 B i 23換算で 80 Oppm 以下の酸 化ビスマス成分と、 Mo03換算で 120 Oppm以下の酸化モリブデン成分とを 有する請求の範囲第 1項記載のマンガン一亜鉛系フェライト。
3. さらに C a〇換算で 50〜 50 Oppm の酸化カルシウムを含有する請求の 範囲第 1項または第 2項記載のマンガン—亜鉛系フェライト。
4. 周波数 10kHzにおいて、 磁束密度 B= 100ミリテスラで測定したとき の透磁率 / i 0。が、 磁束密度 B = 1ミリテスラで測定したときの透磁率 ^ iの 1. 20倍以上である請求の範囲第 1項〜第 3項のいずれかに記載のマンガン一亜鉛 系フェライト。
5. 10 kHzにおける初透磁率 iが 15, 000以上である請求の範囲第 1項〜第 4項のいずれかに記載のマンガン一亜鉛系フェライト。
6. 焼成中に少なくとも 1回の降温工程を有する請求の範囲第 1項〜第 5項の いずれかに記載のマンガン—亜鉛系フェライト。
7. マンガン—亜鉛系フェライトの製造方法であって、 焼成中、 1200〜1 450°Cの主温度保持工程を有し、 この主温度保持工程の前に焼成中降温工程を 設け、 この焼成中降温工程の最低温度を、 1000〜1400°Cの温度範囲であ つて、 主温度保持工程の保持温度より少なくとも 50°C以上低く設定したことを 特徴とするマンガン一亜鉛系フェライトの製造方法。
8. 請求の範囲第 1項〜第 6項のいずれかに記載のマンガン一亜鉛系フェライ トを得る請求の範囲第 7項記載のマンガン一亜鉛系フェライトの製造方法。
PCT/JP1999/004838 1998-09-07 1999-09-07 Ferrite de manganese-zinc et procede de production WO2000014752A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020007004747A KR20010031685A (ko) 1998-09-07 1999-09-07 망간-아연계 페라이트 및 그 제조방법
EP99940692A EP1030318A4 (en) 1998-09-07 1999-09-07 MANGANESE ZINC FERRITE AND PROCESS FOR PRODUCING THE SAME
US09/558,587 US6352650B1 (en) 1998-09-07 2000-04-26 Manganese-zinc ferrite and making method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26892398 1998-09-07
JP10/268923 1998-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/558,587 Continuation US6352650B1 (en) 1998-09-07 2000-04-26 Manganese-zinc ferrite and making method

Publications (1)

Publication Number Publication Date
WO2000014752A1 true WO2000014752A1 (fr) 2000-03-16

Family

ID=17465162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004838 WO2000014752A1 (fr) 1998-09-07 1999-09-07 Ferrite de manganese-zinc et procede de production

Country Status (4)

Country Link
US (1) US6352650B1 (ja)
EP (1) EP1030318A4 (ja)
CN (1) CN1155024C (ja)
WO (1) WO2000014752A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3607203B2 (ja) 2000-03-31 2005-01-05 Tdk株式会社 MnZn系フェライトの製造方法、MnZn系フェライト、および電源用フェライトコア
CN100368341C (zh) * 2005-03-21 2008-02-13 乳源东阳光磁性材料有限公司 频率特性优异的高磁导率锰锌系铁氧体及其制备方法
CN100415653C (zh) * 2005-03-24 2008-09-03 上海大学 纳米尖晶石型ZnFe2O4的制备方法
CN100400462C (zh) * 2005-08-11 2008-07-09 横店集团东磁有限公司 一种Mn-Zn铁氧体材料
CN1333411C (zh) * 2005-11-01 2007-08-22 淄博宇星电子材料有限公司 18k锰锌铁氧体磁粉磁芯的制造方法
CN1328210C (zh) * 2005-12-01 2007-07-25 上海交通大学 低功耗锰锌铁氧体系列材料的组合合成和高通量筛选方法
CN100565722C (zh) * 2006-07-12 2009-12-02 横店集团东磁有限公司 一种超高磁导率、高居里温度的Mn-Zn铁氧体及其制备方法
CN101859621B (zh) * 2009-04-08 2012-07-04 广东江粉磁材股份有限公司 一种高磁导率MnZn铁氧体材料及其制造方法
CN101857426B (zh) * 2009-04-08 2013-01-16 广东江粉磁材股份有限公司 一种宽频高阻抗MnZn铁氧体材料及其制造方法
CN101859622B (zh) * 2009-04-08 2012-02-15 广东江粉磁材股份有限公司 一种中频低损耗MnZn铁氧体磁芯的制造方法
CN102190501B (zh) * 2010-03-08 2013-06-19 无锡斯贝尔磁性材料有限公司 一种MnZn铁氧体粉料的预烧工艺
CN101811861A (zh) * 2010-03-31 2010-08-25 苏州天铭磁业有限公司 一种高饱和磁感应强度和高电阻率的纳米晶MnZn铁氧体材料及其制备方法
CN102360916B (zh) * 2011-08-12 2014-04-09 山东凯通电子有限公司 宽频高导锰锌铁氧体磁芯的制造方法
CN102376408A (zh) * 2011-11-28 2012-03-14 无锡斯贝尔磁性材料有限公司 一种宽温锰锌铁氧体
JP6806324B2 (ja) * 2016-06-16 2021-01-06 新光電気工業株式会社 亜鉛フェライト膜の製造方法及び亜鉛フェライト膜
CN107098693B (zh) * 2017-04-28 2021-01-19 苏州冠达磁业有限公司 一种高频抗干扰锰锌铁氧体及其制备方法
CN107056268A (zh) * 2017-04-28 2017-08-18 苏州冠达磁业有限公司 汽车充电桩用大功率锰锌铁氧体磁芯及其制备方法
CN115132442A (zh) * 2022-07-12 2022-09-30 广州大学 一种超高磁饱和锰锌铁氧体磁芯材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117804A (ja) * 1984-11-14 1986-06-05 Sumitomo Special Metals Co Ltd Mn−Zn系ソフトフエライト及びその製造方法
JPH06204025A (ja) * 1992-12-28 1994-07-22 Tdk Corp マンガン−亜鉛系フェライト

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1144285A (en) * 1967-02-09 1969-03-05 Matsushita Electric Ind Co Ltd Improvements in and relating to magnetic materials and devices
JPS6286510A (ja) * 1985-10-11 1987-04-21 Tdk Corp 磁気ヘツド
JPS6297114A (ja) * 1985-10-23 1987-05-06 Tdk Corp 磁気ヘツド
JPH05128423A (ja) * 1991-10-31 1993-05-25 Sony Corp 磁気ヘツド
DE69428593T2 (de) 1994-04-27 2002-06-06 Tdk Corp., Tokio/Tokyo Ferrit und ferritkern für schaltnetzteile
JP2914554B2 (ja) * 1994-07-07 1999-07-05 川崎製鉄株式会社 高透磁率MnZnフェライトの製造方法
US5779930A (en) 1996-03-22 1998-07-14 Tdk Corporation Ferrite core for line filters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117804A (ja) * 1984-11-14 1986-06-05 Sumitomo Special Metals Co Ltd Mn−Zn系ソフトフエライト及びその製造方法
JPH06204025A (ja) * 1992-12-28 1994-07-22 Tdk Corp マンガン−亜鉛系フェライト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1030318A4 *

Also Published As

Publication number Publication date
US6352650B1 (en) 2002-03-05
EP1030318A1 (en) 2000-08-23
CN1277727A (zh) 2000-12-20
CN1155024C (zh) 2004-06-23
EP1030318A4 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
WO2000014752A1 (fr) Ferrite de manganese-zinc et procede de production
JPH11135317A (ja) マンガン−亜鉛系フェライト
JP3743795B2 (ja) マンガン−亜鉛系フェライトの製造方法
JP3607203B2 (ja) MnZn系フェライトの製造方法、MnZn系フェライト、および電源用フェライトコア
WO2004028997A1 (ja) フェライト材料
KR100298511B1 (ko) 망간-아연계 페라이트
JP2003306376A (ja) Mn−Zn系フェライトの製造方法
JP3635410B2 (ja) マンガン−亜鉛系フェライトの製造方法
JP3471896B2 (ja) フェライトおよび電源用フェライトコア
JPH06290925A (ja) 電源用高周波低損失フェライト
JP3454472B2 (ja) マンガン−亜鉛系フェライトおよびその製造方法
JP3790606B2 (ja) Mn−Coフェライト材料
JPH10256025A (ja) Mn−Zn系フェライト
JP3499283B2 (ja) 高透磁率酸化物磁性材料
JP3856898B2 (ja) ラインフィルタ用フェライトコアおよびその製造方法
JP2939035B2 (ja) 酸化物軟質磁性材料
WO2023182133A1 (ja) MnZn系フェライト
JPH06267726A (ja) 低損失マンガン亜鉛フェライトおよびその製造方法
JPH05299230A (ja) 低損失酸化物磁性材料の製造方法
JPH097814A (ja) 酸化物磁性材料及びその製造方法
JPH1064716A (ja) 低損失酸化物磁性材料およびその製造方法
JPH06314608A (ja) 低損失酸化物磁性材料
JPH08236335A (ja) 低損失酸化物磁性材料
KR20010031685A (ko) 망간-아연계 페라이트 및 그 제조방법
JPH11273931A (ja) 酸化物軟質磁性材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801528.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09558587

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999940692

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007004747

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999940692

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004747

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007004747

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999940692

Country of ref document: EP