WO2000014306A1 - Method for plating substrate and apparatus - Google Patents

Method for plating substrate and apparatus Download PDF

Info

Publication number
WO2000014306A1
WO2000014306A1 PCT/JP1999/004797 JP9904797W WO0014306A1 WO 2000014306 A1 WO2000014306 A1 WO 2000014306A1 JP 9904797 W JP9904797 W JP 9904797W WO 0014306 A1 WO0014306 A1 WO 0014306A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
group
copper
substrate
carbon atoms
Prior art date
Application number
PCT/JP1999/004797
Other languages
English (en)
French (fr)
Inventor
Mizuki Nagai
Akihisa Hongo
Kanji Ohno
Kazuo Ishii
Ryoichi Kimizuka
Megumi Maruyama
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP24945398A external-priority patent/JP2000080494A/ja
Priority claimed from JP22036399A external-priority patent/JP2001049490A/ja
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to EP99940656A priority Critical patent/EP1118696A4/en
Priority to KR20017002719A priority patent/KR100656581B1/ko
Publication of WO2000014306A1 publication Critical patent/WO2000014306A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer

Definitions

  • the present invention relates to a method and an apparatus for plating a substrate for performing a plating process on a surface of the substrate, and more particularly, to a method for plating a groove or a hole of a substrate having fine grooves or holes for wiring formed on a surface of a semiconductor substrate or the like with copper.
  • the present invention relates to a method and an apparatus for plating a substrate suitable for embedding, and a composition of a plating solution.
  • the copper concentration of the plating liquid has been lowered to uniformly grow the film thickness in the through-hole, and so-called throwing power has been improved (high-throw bath). This is to increase the cathode overvoltage by increasing the cathode polarization and to improve the throwing power.
  • the size of the holes in these print substrates is about 50 m-100 / m, and the liquid flow in the holes is in a range that can be expected as much as possible.
  • the width and diameter of the wiring grooves and holes formed on the surface of the semiconductor wafer are dead-end grooves and holes of 0.2 m or less as described above. With such fine grooves and holes, it is impossible to generate a liquid flow in the grooves and holes, and the electrophoresis speed due to the electric field is numerically small, and copper ions are almost never replenished in the holes. Covered by diffusion of ion concentration. The amount of copper ions diffused into the hole is inversely proportional to its square (the area of the hole entrance) as the hole diameter decreases.
  • the amount of copper ion deposited in the hole is substantially inversely proportional to the diameter of the hole. Therefore, in the future, the integration of semiconductor devices will increase, and as the groove width and hole diameter become smaller, it is expected that the copper ions in the grooves and holes will become diffusion-limited. In particular, the diffusion rate is easily controlled by the method of stirring the plating solution, which has a hole diameter of 0.15 m or less and increases the aspect ratio. Disclosure of the invention
  • the present invention has been made in view of the above points, and is a copper damascene wiring substrate capable of efficiently performing copper plating on fine grooves or holes without requiring any special mechanical or electrical equipment. It is an object of the present invention to provide a plating method and apparatus.
  • the present inventors have conducted intensive studies on a copper plating bath suitable for the copper damascene method.
  • the acidic copper plating bath in which the concentrations of the main components copper sulfate, sulfuric acid, and chloride ion are within a certain range has no bubbles. It has been found that it is possible to deposit a copper film even in a small groove and a small hole having a small amount, a good throwing power, and a high aspect ratio.
  • the copper plating suitable for the more preferable copper damascene method is performed. I found it to be a bath.
  • the copper sulfate concentration is 4 to 250 g / l (preferably 100 to 250 g, the sulfuric acid concentration is 10 to 200 g / 1 (preferably 10 to 100 g / l). 1) and chloride ion concentration of 0 to 100 mg / l
  • a copper plating solution for copper damascene wiring characterized by being 1 is used.
  • the present invention further comprises an iodide compound, and when the mixing ratio of the iodide compound is 1 or less, the ratio of sulfuric acid / copper sulfate pentahydrate is 0.05 to 10 mg / 1, When the ratio of copper sulfate pentahydrate is 1 or more, the above copper plating solution for copper damascene wiring having a concentration of 0.1 to 50 mg / l is used.
  • the present invention also relates to a plating solution having the above composition, comprising at least 0.14 to 70 ⁇ -mo 1/1 at least a certain type of zeocompound and a certain high molecular compound at 10 mg / l to 5 mg / mol. g / l, and a copper plating solution for copper damascene wiring containing a nitrogen compound in an amount of 0.1 mg / l to 100 mg / 1.
  • FIG. 1 is a diagram showing the relationship between the amount of an iodide compound added and the B / A ratio, which is particularly preferable for depositing metallic copper in a fine wiring groove or a fine wiring hole.
  • FIG. 2 is a diagram showing a comparative example of the amount of diffusion and the amount of precipitation in a hole of a coated substrate.
  • FIG. 3 is a diagram showing an example of the shape of a hole formed on the surface of the covering substrate.
  • FIG. 4 is a diagram showing a configuration example of a plating tank of the plating apparatus according to the present invention.
  • FIG. 5 is an enlarged view of part B of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the copper plating solution for copper damascene wiring according to the first embodiment of the present invention contains copper sulfate, sulfuric acid, and usually chlorine ions as its basic constituent components. From 250 to 250 g / l, sulfuric acid concentration from 100 to 200 g / l, and chloride ion concentration from 0 to 100 mg / l. Also The ratio of sulfuric acid / copper sulfate pentahydrate in the bath (hereinafter referred to as “B / A ratio”) is about 0.1 to 25, and particularly preferably about 0.2 to 5.
  • the copper plating solution for copper damascene wiring of the present invention may contain an iodide compound as an additive.
  • this Y ⁇ -based compound the following formula (I) ⁇ "sshiichi X (I)
  • L is a lower alkyl group, a lower alkoxy group, hydroxyl group or halogen atom in an optionally substituted alkylene group having a carbon number of 1 6
  • X is a hydrogen atom
  • - S 0 3 M group or a P 3 M represents a group (where M represents a hydrogen atom, an alkali metal atom or an amino group)
  • Y represents an alkylamino carbothio group or the following group
  • L ' is a lower alkyl group, a lower alkoxy group, an alkylene group optionally substituted by hydroxyl or halo gen atom from a good 1 -C 6, X, is - S 0 3 M group or a P 0 3 M group (M has the above-mentioned meaning), and n represents an integer of 1 to 5].
  • This zeolite-based compound has an action of densifying a precipitate, and specific examples thereof include N, N-dimethyldithiolrubamylpropylsulfonate, 0-ethyl-1-S- (3-propylsulfone). Acid) -dithiocarbonate, bis- (sulfopropyl) disulfide and the like, and salts thereof.
  • the amount of Y-based compound added to the copper damascene plating solution depends on the copper damascene It must be determined according to the sulfuric acid / copper sulfate ratio of the liquor. Specifically, when the B / A ratio is 1 or less, it is 0.14 to 70 ⁇ mo 1/1, and when the B / A ratio is 1 or more, 0.14 to 150 5mo l / l is required.
  • FIG. 1 shows a particularly preferred range of the zeolite compound addition amount and the B / A ratio.
  • the copper plating solution for copper damascene wiring of the present invention may contain a polymer organic additive as an additive.
  • a polymer organic additive As an example of the polymer organic additive, the following formula (II)
  • R is a residue of a higher alcohol having 8 to 25 carbon atoms, a residue of an alkylphenol having an alkyl group of 1 to 25 carbon atoms, an alkyl group of 1 to 25 carbon atoms.
  • R 2 and R 3 represent a hydrogen atom or Represents a methyl group
  • m and n represent an integer of 1 to 100].
  • This polymer organic additive has a function of polarizing the deposition potential of copper and suppressing the deposition of copper.
  • Specific examples thereof include PPG and PEG.
  • polyethers such as random or block polymerized polymers thereof or derivatives thereof.
  • This polymer organic additive is added in an amount of about 10 mg / 1 to about 5 g / 1 to the copper damascene plating solution.
  • the copper damascene plating solution of the present invention further includes a phenazine compound, a phthalocyanine compound, a polyalkyleneimine such as polyethyleneimine and polybenzylethyleneimine and derivatives thereof, and an N-dye-substituted compound.
  • Safranin compounds such as thiourea derivatives, phenosafuranine, safranin azo naphthol, getyl safranin azo phenol, dimethyl safranin dimethyl aniline, polyepichlorohydrin and its derivatives, phenylthiazonium compounds such as thioflavin, and acrylylamine
  • Nitrogen-containing compounds such as amides such as amides, propylamides and polyacrylamides can be added. This nitrogen-containing compound has an effect of suppressing the precipitation of copper and flattening the precipitate.
  • This nitrogen-containing compound is preferably added in an amount of about 0.01 mg / l to 100 mg / l to the copper damascene plating solution.
  • the width or diameter formed on the semiconductor wafer surface is 1.0 ⁇ m or less, usually about 0.1 to 0.2 ⁇ m, and the aspect ratio is 0.1 to 0.2 ⁇ m. Copper plating is performed in the wiring groove or wiring hole, which is about 50, and no special mechanical or electrical operation is required to embed copper here. Just do it.
  • the ordinary DC power supply 0.0 2 from 5 A / dm 2, preferably about plating operation at a current density of about 3 A / dm 2 0.1 Should be performed.
  • machine, pump, etc. It is preferable to employ the swinging of the product and the stirring of the liquid using the above method.
  • the mounting time in the case of a slot with a width or diameter of about 0.2 to 1 ⁇ m and an aspect ratio of about 1 to 5, it should be completely filled in about 0.5 to 5 minutes. Is possible.
  • CMP chemical mechanical polishing
  • a copper sulfate plating bath was constructed with the bath composition shown below. Using this copper sulfate plating bath, a single Si wafer plate (sample) having pores with a diameter of 0.2 and a depth of 0.4 m made conductive by Cu sputtering was treated under the following conditions. . As a result, a copper film having a semi-glossy appearance was obtained. The microporous portion was cut, and its fillability was evaluated. When the resistivity ( ⁇ ) of the precipitate (copper film) was measured, it was 1.75 ⁇ ⁇ cm. In this case, the thickness of the copper plating film on the plane portion was about 100 nm.
  • Example 2 Using the copper sulfate plating bath having the following composition, copper plating was performed on exactly the same samples as in Example 1 under the following plating conditions. The appearance after plating was semi-glossy, and the pore filling properties of the micropores were good. The resistivity was 1.95 ⁇ ⁇ cm. The thickness of the copper plating film on the flat surface was about 100 nm.
  • Example 2 Using the copper sulfate plating bath having the following composition, copper plating was performed on exactly the same samples as in Example 1 under the following plating conditions. The appearance after plating was glossy and the fillability of the micropores was good. The resistivity was 1.8 ⁇ ⁇ cm. The thickness of the copper plating film on the flat surface was about 800 nm.
  • Polyethylene glycol 600 0 0.1 g / l
  • Example 2 Using the copper sulfate plating bath having the following composition, copper plating was performed on exactly the same samples as in Example 1 under the following plating conditions. Appearance after plating is glossy, fine pores The fillability of the minute was good. The resistivity was 1.9 ⁇ ⁇ cm. The thickness of the copper plating film on the flat part was about 100 O nm.
  • Example 2 Using the copper sulfate plating bath having the following composition, copper plating was performed on exactly the same samples as in Example 1 under the following plating conditions. The appearance after plating was glossy and the fillability of the micropores was good. The resistivity was 1.8 ⁇ ⁇ cm.
  • the thickness of the copper plating film on the flat surface was about 500 nm.
  • Example 2 Using the copper sulfate plating bath having the following composition, copper plating was performed on exactly the same samples as in Example 1 under the following plating conditions. The appearance after plating was glossy and the fillability of the micropores was good. The resistivity was 1.85 ⁇ ⁇ cm. The thickness of the copper plating film on the flat part was about lOOOnm.
  • Example 2 Using the copper sulfate plating bath having the following composition, copper plating was performed on exactly the same samples as in Example 1 under the following plating conditions. The appearance after plating was dull, and the micropores were large in copper particle size and had many voids, so the hole filling properties were poor. The resistivity was 1.9 ⁇ ⁇ cm, and the thickness of the copper plating film on the flat part was about 100 nm.
  • Example 2 Using the copper sulfate plating bath having the following composition, copper plating was performed on exactly the same samples as in Example 1 under the following plating conditions. The appearance after plating was glossy, but voids (voids) were present in the micropores, and the fillability was poor. The resistivity was 2.0 ⁇ ⁇ cm, and the thickness of the copper plating film on the flat part was about 100 It was 0 nm.
  • Example 2 Using the copper sulfate plating bath having the following composition, copper plating was performed on exactly the same samples as in Example 1 under the following plating conditions. Although the appearance after plating was glossy, voids (voids) reaching the surface were present in the micropores, and the fillability was poor. The resistivity was 1.95 ⁇ 0 * 0111, and the thickness of the copper-plated film on the flat surface was about 800 nm.
  • Second Embodiment copper damascene wiring copper plated solution of the present invention includes, as its basic components, copper sulfate (C u S 0 4 ⁇ 5 H 2 0) at a concentration of 100 to 250 g / l , sulfuric acid (H 2 S 0 4) at a concentration of 10 to 100 g / l, the concentration of chlorine Ion is 0 to 1 0 Omg / 1.
  • the plating solution contains at least 0.14 to 70 mo1 / 1 of a compound represented by the following formula (A) and a polymer compound represented by the following formula (B): Is preferably 10 mg / l to 5 g / l, and the nitrogen compound is preferably 0.01 mg / l to 100 mg / l.
  • R 1 represents a residue of a higher alcohol having 8 to 25 carbon atoms, a residue of an alkyl phenol having an alkyl group having 1 to 25 carbon atoms, and 1 to 25 carbon atoms.
  • stirring the stirrer is necessary. It is effective to reduce the thickness of the diffusion layer and keep the current density low, but it is also effective to increase the copper concentration in the plating solution. Increasing the copper concentration in the plating solution increases the diffusion rate in proportion. The diffusion rate can be further increased if the liquid is stirred.
  • FIG. 2 is a diagram showing an example of comparing the diffusion amount and the precipitation amount in the hole H having a depth of 1.2 zm shown in FIG.
  • the vertical axis represents the amount of Cu deposited / diffused (g / s)
  • the horizontal axis represents the hole diameter ⁇ (Mm) of the hole H.
  • the diffusion coefficient 0. 7 2 x 1 0 '9 m 2 / s, the diffusion layer thickness and 5 zm. If the amount of diffusion is greater than the amount of precipitation, the reaction is rate-limiting, and the copper ions in the hole H do not wither and voids do not occur. If the diffusion amount ⁇ the precipitation amount, the diffusion rate is determined, and voids may occur in the hole H.
  • curve A represents the amount of diffusion at a copper sulfate concentration of 2 25 g / 1.
  • curve B the amount of precipitated at a current density of 3 A / dm 2 (second), the amount of precipitated o'clock curve C current density 2. 5 A / dm 2 (second), curve D current density 2 A /
  • the amount of precipitation at dm 2 (per second) and curve E show the amount of dispersion (per second) at a copper sulfate concentration of 75 g / hour.
  • the plating solution contains the iodide compound represented by the formula [8] of 0.14 to 40 ⁇ 11101 and the polymer compound represented by the formula [B] as described above.
  • This zeolite compound densifies the precipitation.
  • Specific examples include N.N-dimethyldithiocarbamylpropylsulfonic acid, 0-ethyl-1S- (3-propylsulfonic acid) dithiol. Carbonate, bis- (sulfopropyl) disulfide and the like can be mentioned.
  • the addition amount of the copper-based compound is 0.14 to 0.5% since copper sulfate is larger than the amount of sulfuric acid. 70 ⁇ mo 1/1 is preferred.
  • the addition amount is smaller than in the case of the solution having a low concentration of copper sulfate is that the amount of the copper compound as an accelerator is small because the abundance of copper ions near the cathode is sufficient.
  • the high molecular weight organic additive include polyethers such as PPG, PEG, and random or block polymerized polymers thereof or derivatives thereof.
  • the addition amount of these high-molecular organic substances is about 10 mg / 1 to 5 g / 1.
  • Levelers include phenathidine compounds, phthalocyanine compounds, polyalkyleneimines such as polyethyleneimine and polybenzylethyleneimine and derivatives thereof, thiourea derivatives such as N-dye-substituted compounds, phenosafranin, safraninazonaphthol, Jetyl safranin azo phenol, dimethyl safranin dimethyl ani Nitrogen-containing compounds such as safranine compounds such as phosphorus, polyepichlorohydrin and its derivatives, phenylthiazonium compounds such as thioflavin, acrylamide, propylamide, and amides such as polyacrylamide.
  • FIG. 4 is a diagram showing a configuration example of a plating apparatus for performing the plating method according to the present invention.
  • the plating apparatus includes a plating tank 10, and a substrate holder for holding a substrate 13 such as a semiconductor wafer in a plating tank main body 11. 1 2 are housed.
  • the substrate holder 12 includes a substrate holder 12-1 and a shaft part 12-2.
  • the shaft part 12-2 has bearings 15, 15 on the inner wall of a cylindrical guide member 14. It is rotatably supported via 15.
  • the guide member 14 and the substrate holder 12 are attached to each other and can be moved up and down by a predetermined stroke by a cylinder 16 provided on the top of the tank body 11.
  • the substrate holder 12 is rotatable in the direction of arrow A via a shaft part 12-2 by a motor 18 provided above the inside of the guide member 14.
  • a space C for accommodating a substrate holding member 17 composed of a substrate holding portion 17-1 and a shaft portion 17-2 is provided inside the substrate holding member 12, and the substrate holding member 17 is provided.
  • the cylinder 19 is provided at the upper part in the shaft portion 12-2 of the substrate holder 12 so that it can be moved up and down by a predetermined stroke up and down.
  • FIG. 5 is an enlarged view of a portion B in FIG.
  • a flat plating solution chamber 20 is provided below the substrate holding portion 12-1 of the plating tank body 11, that is, below the plating surface of the substrate 13 exposed to the opening 12a.
  • a flat plating solution introducing chamber 22 is provided below a plating solution chamber 20 via a porous plate 21 having a large number of holes 21a formed therein.
  • a collecting trough 23 is provided outside the plating liquid chamber 20 to overflow the plating liquid chamber 20 and collect the liquid Q.
  • the collecting liquid Q collected in the collecting trough 23 returns to the plating liquid tank 24.
  • the plating solution Q in the plating solution tank 24 is introduced horizontally from both sides of the plating solution chamber 20 by the pump 25.
  • the immersion liquid Q introduced from both sides of the plating liquid chamber 20 passes through the holes 2 la of the perforated plate 21 and flows into the plating liquid chamber 20 as a vertical jet.
  • the distance between the perforated plate 21 and the covering substrate 13 is 5 to 15 mm, and the jet of the plating liquid Q passing through the holes 21 a of the perforated plate 21 maintains the vertical ascent. Covers as a uniform jet.
  • the plating solution Q that overflows the plating solution chamber 20 is collected by the collecting trough 23 and flows into the plating solution tank 24. That is, the plating solution Q circulates between the plating solution chamber 20 of the plating tank main body 11 and the plating solution tank 24.
  • the plating liquid level 20 of the plating solution chamber 20 is slightly higher than the plating surface level LW of the substrate 13 by plating ⁇ L, and the entire surface of the substrate 13 is in contact with the plating liquid Q. are doing.
  • the step portion 12-1 b of the substrate holding portion 12-1 of the substrate holding member 12 is provided with an electrical contact 27 electrically connected to the conductive portion of the covering substrate 13.
  • the contact 27 is connected via a brush 26 to the cathode of an external plating power supply (not shown).
  • an anode electrode 28 is provided at the bottom of the plating solution introducing chamber 22 of the plating tank body 11 so as to face the substrate 13 to be plated, and the anode electrode 28 is connected to the anode of the plating power supply. It is connected.
  • a loading / unloading slit 29 for taking in / out the coated substrate 13 with a substrate loading / unloading jig such as a robot arm is provided.
  • the cylinder 16 when plating is performed, first, the cylinder 16 is operated, and the substrate holder 12 is moved by a predetermined amount together with the guide member 14 (the substrate held by the substrate holder 12-1).
  • the printed circuit board 13 is raised to the position corresponding to the loading / unloading slit 29), and at the same time, the cylinder 19 is actuated to move the board holding member 17 by a predetermined amount (the board holding portion 17-1 is loaded and unloaded). (To the position reaching the top of the cut 29).
  • the substrate 13 to be covered is carried into the space c of the substrate holder 12 with a substrate carrying-in / out jig such as a robot arm, and the covered substrate 13 is placed so that the surface of the substrate 13 faces downward. Place it on the step 1 2 _ 1 b.
  • the motor 18 is operated to rotate the substrate holder 12 and the substrate 13 at low speed.
  • the low-speed rotation is set so that a plating film having a uniform thickness can be formed on the plating surface of the plating substrate 13 without disturbing the vertical jet of the plating solution Q in the plating solution chamber 20.
  • the plating solution Q having the following composition was used, and the plating board Q having a hole diameter of 0.15111 and a hole depth of 1.2 was formed.
  • electroplating was performed at a current density of 2 A / dm ⁇ at a liquid temperature of 25 ° C and a plating time of 150 seconds, good hole filling was obtained.
  • Nitrogen compounds (Safranine compounds, janus green B)
  • the hole diameter 0.1 5 ⁇ M for minute holes of hole depth 1. 2 .pi.1 Copper plating with good hole filling properties can be performed.
  • the copper plating was performed using the plating solution having the above composition.
  • the composition of the plating solution is not limited to this. It is easy to predict that copper plating with the same hole filling property can be achieved by using the plating solution to perform copper plating.
  • the configuration of the plating apparatus according to the present invention is not limited to that shown in FIG. 4, copper sulfate plating solution (CuS 0 4.
  • the copper plating is performed using a plating solution having a high concentration of copper sulfate having a chloride ion concentration of 0 to 100 mg / 1, the diffusion rate of copper ions increases.
  • Industrial applicability INDUSTRIAL APPLICABILITY The present invention is applicable to a method and an apparatus for plating a substrate in which fine grooves and holes for wiring are formed on the surface of a semiconductor substrate or the like and the grooves and holes are filled with copper.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

明 細 書 基板のめっき方法及び装置
技術分野
本発明は基板の表面にめつき処理を施す基板のめっき方法及び装置に 関し、 特に半導体基板等の表面に配線用の微細な溝や穴が形成された基 板の該溝ゃ孔を銅めつきで埋め込むのに好適な基板のめつき方法及び装 置、 更にめつき液の組成に関するものである。 背景技術
従来、 プリ ン ト基板の銅めつきではスルーホール中の膜厚を均一に成 長させるためめつき液の銅濃度は低く し、 所謂スローイ ングパワーを良 く している (ハイスロー浴) 。 これは陰極分極を高めることで陰極の過 電圧を上げ均一電着性を向上させるためである。 但し、 これらのプリ ン ト基板の孔の寸法は 5 0 m - 1 0 0 / m程度で、 孔中の液流がある程 度期待できる範囲にある。
半導体ウェハの面に形成される配線用の溝や穴の幅ゃ径寸法は、 上述 したように 0 . 2〃m以下の行き止まりの溝や穴である。 このようなレ ベルの微細な溝や穴になると該溝ゃ穴中に液流を生じさせることが無理 で、 また電場による電気泳動速度も数値的に小さく銅イオンの穴中への 補充はほとんどイオン濃度の拡散によって賄われる。 穴中への銅イオン の拡散量は穴の径が小さ くなるに従い、 その 2乗 (穴の入り口の面積) に反比例する。
これに対して、 穴中への銅ィオンの析出量は略穴の径に反比例する。 従って、 将来半導体デバイスの集積度が上がり、 溝幅や穴径が小さ くな ることで溝や穴中の銅ィオンは拡散律速になることが予想できる。 特に 穴径が 0. 1 5〃 m以下になり、 アスペク ト比が大きくなるめっき液の 攪拌方法によっては、 拡散律速になりやすい状況にある。 発明の開示
本発明は上述の点に鑑みてなされたもので、 特別の機械あるいは電気 的設備を必要とせずに、 微細な溝あるいは孔に対し、 効率よく銅めつき を行うことのできる銅ダマシン配線用基板のめつき方法及び装置を提供 することを目的とする。
また、 半導体デバイスの集積度が上がり、 溝幅や穴径が小さくなつて も溝や穴中の銅イオンが拡散律速になることなく、 銅めつきにより基板 面上に形成された微細な溝や穴を良好に埋め込むことができる基板めつ き方法及び装置を提供することを目的とする。
本発明者は、 銅ダマシン法に適した銅めつき浴について鋭意検討した 結果、 主要構成成分である硫酸銅、 硫酸および塩素イオン濃度を一定の 範囲とした酸性銅めつき浴は気泡の発生が少なく、 しかもつき回り よく ァスぺク ト比の高い微小溝や微小孔の中にも銅皮膜を析出することが可 能なことを見出した。
また、 添加剤としてィォゥ系化合物と高分子化合物を添加し、 その濃 度を硫酸/硫酸銅五水塩の比に応じて選択することにより、 より好まし い銅ダマシン法に適した銅めつき浴となることを見出した。
すなわち本発明は、 硫酸銅濃度が 4乃至 2 5 0 g/ l (好ましくは 1 0 0乃至 2 5 0 、 硫酸濃度が 1 0乃至 2 0 0 g/1 (好ましく は 1 0乃至 l O O g/ 1 ) および塩素イオン濃度が 0乃至 l O O mg/ 1であることを特徴とする銅ダマシン配線用銅めつき液を用いるもので ある。
また本発明は、 更にィォゥ系化合物を含有し、 ィォゥ系化合物の配合 量が、 硫酸/硫酸銅五水塩の比が 1以下の場合は、 0.0 5乃至 1 0 mg / 1であり、 硫酸/硫酸銅五水塩の比が 1以上の場合は、 0. 1乃至 5 0 mg/ lである上記の銅ダマシン配線用銅めつき液を用いるものである。 また本発明は、 前記組成のめつき液中に少なく とも 0. 1 4乃至 7 0 μ-m o 1/ 1のある種のィォゥ化合物と、 ある種の高分子化合物を 1 0 mg/ 1乃至 5 g/ l と、 窒素化合物を 0. O l mg/ 1乃至 1 0 0 m g / 1含有する銅ダマシン配線用銅めつき液を用いるものである。 図面の簡単な説明
図 1は微小配線溝または微小配線孔に金属銅を析出させるために特に 好ましいィォゥ系化合物添加量と B/A比の関係を示す図である。
図 2は被めつき基板の穴中での拡散量と析出量の比較例を示す図であ る。
図 3は被めつき基板の表面に形成される穴の形状例を示す図である。 図 4は本発明に係るめつき装置のめつき槽の構成例を示す図である。 図 5は図 4の B部分の拡大図である。 発明を実施するための最良の形態
本発明の第 1の実施の形態の銅ダマシン配線用銅めつき液は、 その基 本構成成分として硫酸銅、 硫酸および通常塩素イオンを含むが、 これら 各成分の濃度は、 硫酸銅濃度が 4乃至 2 5 0 g/ l、 硫酸濃度が 1 0乃 至 2 0 0 g/ l、 塩素イオン濃度が 0乃至 1 0 O mg/ 1である。 また 浴中の硫酸/硫酸銅五水塩の比 (以下、 「B/A比」 という) は、 0.1 から 2 5程度であり、 0.2から 5程度が特に好ましい。
また、 本発明の銅ダマシン配線用銅めつき液 (以下、 「銅ダマシンめ つき液」 という) には、 添加剤としてィォゥ系化合物を配合することが できる。 このィォゥ系化合物の例としては、 次の式 (I) 丫 "s し一 X ( I )
[式中、 Lは低級アルキル基、 低級アルコキシ基、 水酸基またはハロゲ ン原子で置換されていても良い炭素数 1から 6のアルキレン基を示し、 Xは水素原子、 — S 03M基または一 P 03M基 (ここで、 Mは水素原子、 アルカリ金属原子またはアミノ基を示す) を示し、 Yはアルキルアミノ カルボチォ基または、 次の基
-じ一 X,
(ここで、 L'は低級アルキル基、 低級アルコキシ基、 水酸基またはハロ ゲン原子で置換されていても良い炭素数 1から 6のアルキレン基を示し、 X,は— S 03M基または一 P 03M基 (Mは前記した意味を有する) を示 し、 nは 1〜5の整数を示す] で表される多硫化アルキレン化合物が挙 げられる。
このィォゥ系化合物は、 析出物を緻密化する作用を有するものであり、 その具体例としては、 N, N—ジメチルジチ才力ルバミルプロピルスルホ ン酸、 0—ェチル一 S— ( 3—プロピルスルホン酸) —ジチォカルボネ —ト、 ビス— (スルホプロビル) ジスルフィ ド等ゃそれらの塩を挙げる ことができる。
ィォゥ系化合物の銅ダマシンめつき液への添加量は、 銅ダマシンめつ き液の硫酸/硫酸銅の比に対応して定める必要がある。 具体的には、 B /A比が 1以下の場合は、 0.1 4乃至 7 0〃m o 1 / 1であり、 B/A 比が 1以上の場合は、 0.1 4乃至 1 5 0〃mo l/ lとすることが必要 である。 ィォゥ系化合物添加量と B/A比の特に好ましい範囲を図に示 せば図 1の通りである。 すなわち、 ィォゥ系化合物添加量 (〃mo 1 ) を縦軸に、 B/A比を横軸に取った場合、 次の 9個の座標、 ( 0.0 5, 0.1 4 ) 、 ( 0.0 5 , 1 ) , ( 0.1 , 1 1 ) , ( 1 , 7 0 ) 、 ( 3 0 , 1 0 0 ) 、 ( 5 0 , 1 5 0 ) 、 ( 3 0 , 1 0 ) 、 ( 1 0 , 1.4 ) および ( 1 , 0.1 4 ) で囲まれる範囲が特に好ましい範囲である。
更に、 本発明の銅ダマシン配線用銅めつき液には、 添加剤として高分 子系有機添加剤を配合することができる。 高分子系有機添加剤の例とし ては、 次の式 (II)
R2
Ri-iCH2CH0)m "~ (CH2CHO)k-H (π)
[式中、 R iは、 炭素数 8から 2 5の高級アルコールの残基、 炭素数 1か ら 2 5のアルキル基を有するアルキルフヱノールの残基、 炭素数 1から 2 5のアルキル基を有するアルキルナフ トールの残基、 炭素数 3から 2 2の脂肪酸ァミ ドの残基、 炭素数 2から 4のアルキルアミンの残基また は水酸基を示し、 R 2および R 3は、 水素原子またはメチル基を示し、 m および nは 1から 1 0 0の整数を示す] で表される高分子化合物を挙げ ることができる。
この高分子系有機添加剤は、 銅の析出電位を分極し、 銅の析出を抑制 する作用を有するものであり、 その具体例としては、 P P G、 P E Gあ るいはそれらのランダムまたはプロック重合ポリマ一あるいはそれらの 誘導体等のポリエーテル類が挙げられる。
この高分子系有機添加剤は、 銅ダマシンめつき液に対し、 1 0 mg/ 1から 5 g/ 1程度添加される。
本発明の銅ダマシンめつき液には、 更にフエナチジン系化合物、 フタ ロシアニン系化合物、 ポリエチレンィ ミン、 ポリベンジルエチレンイ ミ ンなどのポリアルキレンィ ミンおよびその誘導体、 N—染料置換体化合 物などのチォ尿素誘導体、 フエノサフラニン、 サフラニンァゾナフ ト一 ル、 ジェチルサフラニンァゾフエノール、 ジメチルサフラニンジメチル ァニリ ンなどのサフラニン化合物、 ポリェピクロルヒ ドリンおよびその 誘導体、 チオフラ ビン等のフエ二ルチアゾニゥム化合物、 アク リルアミ ド、 プロピルアミ ド、 ポリアク リル酸アミ ドなどのアミ ド類等の含窒素 化合物を添加することができる。 この含窒素化合物は、 銅の析出を抑え、 析出物の平坦化作用を有するものである。
この含窒素化合物は、 好ましくは銅ダマシンめつき液に対し、 0.0 1 mg/ 1から 1 0 0 mg/ 1程度添加される。
以上説明した本発明の銅ダマシンめつき液を用いて、 半導体ウェハ面 に形成される幅または径が 1.0〃m以下、 通常は 0.1から 0.2〃m程 度でァスぺク ト比が 0.1から 5 0程度である配線溝ないし配線孔内に銅 めっきを行い、 ここに銅を埋め込むには、 特段の機械的あるいは電気的 操作を必要とせず、 通常の酸性銅めつきに準じてめつき操作を行えばよ い。
具体的には、 1 5から 3 5°C程度の浴温で、 一般の直流電源により、 0.0 2から 5 A/ dm 2程度、 好ましくは 0.1から 3 A/dm2程度の 電流密度でめっき操作を行えばよい。 なお、 この場合、 機械、 ポンプ等 を利用した品物の揺動や液の攪拌を採用することが好ましい。 また、 め つき時間としては、 幅または径が 0 . 2〜 1〃m程度、 ァスぺク ト比 1〜 5程度の溝ゃ孔の場合、 0 . 5〜 5分程度で完全に埋めることが可能とな る。
以上のように、 本発明の銅ダマシンめつき液を用いることにより、 極 めて微少で、 ァスぺク ト比の高い微小溝および微小孔の内部まで均一に 銅金属を析出させることが可能になり、 めっき後、 化学機械研磨 ( C M P ) を施すことにより、 半導体ウェハ面上の微細な配線溝ないし配線孔 を形成することが可能となる。
次に実施例を挙げ、 本発明を更に詳しく説明するが、 本発明はこれら 実施例等に何ら制約されるものではない。
[実施例 1 ]
下に示す浴組成で硫酸銅めつき浴を建浴した。 この硫酸銅めつき浴を 用い、 下記条件で、 C uスパッ夕により導電化した孔径 0 . 2 深さ 0 . 4 mの微孔中を有する S iウェハ一板 (試料) をめつき処理した。 この結果、 外観が半光沢状の銅皮膜が得られ、 微孔部分を切断し、 そ の穴埋め性を評価したところ、 十分に埋まっており良好であった。 また. 析出物 (銅皮膜) の抵抗率 ( <ο ) を測定したところ、 1 . 7 5 Ω · c m であった。 なお、 この場合の平面部の銅めつき皮膜の膜厚は約 1 0 0 0 n mであった。
(めっき浴組成)
硫酸銅五水塩 2 3 0 g / l
硫 酸 5 0 g / 1
( B / A比 0 . 2 2 )
塩素ィオン 4 0 m g / 1 ィォゥ系化合物 1 " 0.5 mg/ 1
1) 次の式で表されるィォゥ系化合物 :
Figure imgf000010_0001
(めつき条件)
浴 温 2 5 °C
電流密度 1 A/d m
めっき時間 5分間
[実施例 2 ]
下記組成の硫酸銅めつき浴を用い、 下記めつき条件で、 実施例 1 と全 く同じ試料に銅めつきを行った。 めっき後の外観は半光沢状であり、 微 孔部分の穴埋め性は良好であった。 また、 抵抗率は 1.9 5 Ω · c m であった。 なお、 平面部の銅めつき皮膜の膜厚は約 1 0 0 0 nmであつ た。
(めつき浴組成)
硫酸銅五水塩 2 0 g/ 1
硫 酸 2 0 0 g/ 1
( B/A比 1 0 )
塩素ィオン 4 0 m g / 1
ィォゥ系化合物1) 3 0 mg/ 1
1) 実施例 1で用いたものと同じ
(めっき条件)
浴 温 2 5 °C 電流密度 Ι Α/dm2 めっき時間 5分間
[実施例 3 ]
下記組成の硫酸銅めつき浴を用い、 下記めつき条件で、 実施例 1 と全 く同じ試料に銅めつきを行った。 めっき後の外観は光沢があり、 微孔部 分の穴埋め性は良好であった。 また、 抵抗率は 1.8 Ω · c mであつ た。 なお、 平面部の銅めつき皮膜の膜厚は約 8 0 0 nmであった。
(めつき浴組成)
硫酸銅五水塩 1 2 0 g/ 1
硫 酸 1 2 0 g / 1
(B/A比 1 )
塩素ィオン 40 m g/ 1
ィォゥ系化合物 22) 2 mg/ 1
ポリエチレングリコ一ル 6 0 0 0 0.1 g/ l
2) 次の式で表されるィォゥ系化合物
Na03S— {CH2)3-S -S -(C H2)3-SO 3 N a
(めっき条件)
浴 温 2 5 °C
電流密度 2 A/dm
めっき時間 2分間
[実施例 4 ]
下記組成の硫酸銅めつき浴を用い、 下記めつき条件で、 実施例 1 と全 く同じ試料に銅めつきを行った。 めっき後の外観は光沢があり、 微孔部 分の穴埋め性は良好であった。 また、 抵抗率は 1.9 Ω · c mであつ た。 なお、 平面部の銅めつき皮膜の膜厚は約 1 0 0 O nmであった。
(めっき浴組成)
硫酸銅五水塩 7 5 g/ 1
硫 酸 1 8 0 g/ 1
2.4 )
塩素ィオン 4 0 m g / 1
ィォゥ系化合物 1 " 2 mg/ l
ポリ プロピレン 4 0 0 0.2 g/ 1
含窒素化合物 3) 2 m g/ 1
1) 実施例 1で用いたものと同じ
3) サフラニン化合物 ( j a nu sグリーン B)
(めっき条件)
浴 温 2 5 °C
電流密度 l A/dm2
めっき時間 5分間
[実施例 5 ]
下記組成の硫酸銅めつき浴を用い、 下記めつき条件で、 実施例 1 と全 く同じ試料に銅めつきを行った。 めっき後の外観は光沢があり、 微孔部 分の穴埋め性は良好であった。 また、 抵抗率は 1.8 Ω · c mであつ た。
なお、 平面部の銅めつき皮膜の膜厚は約 5 0 0 nmであった。
(めっき浴組成)
硫酸銅五水塩 1 2 0 g/ 1
硫 酸 1 2 0 g / 1 (B/A比 1 )
塩素イオン 6 0 m g / 1
ィォゥ系化合物" 2 mg/ 1
含窒素化合物 4) 8 m g/ 1
1) 実施例 2で用いたものと同じ
4) チオフラ ビン T (和光純薬工業 (株) 社製)
(めっき条件)
浴 温 2 5 °C
電流密度 O . S AZdm2
めっき時間 5分間
[実施例 6 ]
下記組成の硫酸銅めつき浴を用い、 下記めつき条件で、 実施例 1 と全 く同じ試料に銅めつきを行った。 めっき後の外観は光沢があり、 微孔部 分の穴埋め性は良好であった。 また、 抵抗率は 1.8 5 Ω · c mであ つた。 なお、 平面部の銅めつき皮膜の膜厚は約 l O O O nmであった。
(めつき浴組成)
硫酸銅五水塩 2 3 0 g/ 1
硫 酸 5 0 g/ 1
(B/A比 0.2 2 )
塩素イオン 4 0 m g/ 1
ィォゥ系化合物1) 1 m g / 1
含窒素化合物 5) 8 m g/ 1
1) 実施例 2で用いたものと同じ
5) ポリエチレンィ ミン (P E I - 6 )
(めっき条件) 浴 温 2 5 °C
電流密度 1 A/dm
めっき時間 5分間
[比較例 1 ]
下記組成の硫酸銅めつき浴を用い、 下記めつき条件で、 実施例 1 と全 く同じ試料に銅めつきを行った。 めっき後の外観は無光沢で、 微孔部分 は銅の粒径が大きく、 空隙が多いため穴埋め性は不良であった。 なお、 抵抗率は 1.9 Ω · c mであり、 平面部の銅めつき皮膜の膜厚は約 1 0 0 0 n mであつた。
(めつき浴組成)
硫酸銅五水塩 2 3 0 g/ 1
硫 酸 5 0 g/ 1
( B / A比 0.2 2 )
塩素ィオン 40 m g/ 1
ィォゥ系化合物1) 3 0 mg/ 1
1) 実施例 1で用いたものと同じ
(めっき条件)
浴 温 2 5 °C
電流密度 1 A/dm
めっき時間 5分間
[比較例 2 ]
下記組成の硫酸銅めつき浴を用い、 下記めつき条件で、 実施例 1 と全 く同じ試料に銅めつきを行った。 めっき後の外観は光沢があつたが、 微 孔部分にボイ ド (空孔) が存在し、 穴埋め性は不良であった。 なお、 抵 抗率は 2.0〃 Ω · c mであり、 平面部の銅めつき皮膜の膜厚は約 1 0 0 0 n mであった。
(めっき浴組成)
硫酸銅五水塩 2 0 g/1
硫 酸 2 0 0 g/ 1
(B/A比 1 0 )
塩素ィオン 4 0 m g/ 1
ィォゥ系化合物2) 0.5 m g/ 1
ポリエチレングリ コール 6 0 0 0 0.1 / 1
含窒素化合物 3) 2 mg/ 1
2) 実施例 3で用いたものと同じ
3) 実施例 4で用いたものと同じ
(めっき条件)
浴 温 2 5 °C
電流密度 1 A/dm
めっき時間 5分間
[比較例 3 ]
下記組成の硫酸銅めつき浴を用い、 下記めつき条件で、 実施例 1 と全 く同じ試料に銅めつきを行った。 めっき後の外観は光沢があつたが、 微 孔部分に表面に至るボイ ド (空孔) が存在し、 穴埋め性は不良であった。 なお、 抵抗率は 1.9 5〃 0 * 0 111であり、 平面部の銅めつき皮膜の膜 厚は約 8 0 0 nmであった。
(めっき浴組成)
硫酸銅五水塩 2 0 g/1
硫 酸 2 0 0 g/ 1
( B / A比 1 0 ) 塩素イオン 40 m g/ 1
ィォゥ系化合物2) 1 m g/ 1
ポリプロピレングリコール 400 200 m g/ 1
2) 実施例 3で用いたものと同じ (めつき条件) 浴 温 25 °C
電流密度 2 A/dm2
めっき時間 2分間 本発明の銅ダマシンめつき浴を利用すれば、 半導体ウェハ上の微細な 配線溝や配線孔中に効率よく金属銅を析出させることができるので、 銅 または銅合金を配線材料として使用し、 集積度の高い配線パターンを半 導体ウェハ上に経済性良く形成することが可能となる。 本発明の第 2の実施の形態の銅ダマシン配線用銅めつき液は、 その基 本構成成分として、 硫酸銅 ( C u S 04 · 5 H20) の濃度が 100乃至 250 g/l、 硫酸 (H2S 04) の濃度が 10乃至 100 g/l、 塩素 ィオンの濃度が 0乃至 1 0 Omg/1である。
また、 めっき液は前記組成のめっき液中に少なく とも 0. 14乃至 7 0 m o 1/1の下記 〔A〕 式で表されるィォゥ化合物と、 下記 〔B〕 式で表される高分子化合物を 1 0mg/l乃至 5 g/lと、 窒素化合物 を 0. 0 1 m g/ 1乃至 1 00 m g/ 1含有することが好ましい。
X— L— ( S ) n— L— X [A]
R 2 R3
1
R 一 (CH2 CHO) (CH2 CHO) k— H [B]
〔A〕 式中、 Lは低級アルキル基、 低級アルコキシ基、 水酸基又はハロ ゲン原子で置換されてもよい炭素数 1乃至 6のアルキル基を示し、 Xは 水素原子、 一 S 03M基又は一 P 03M基 (Mは水素原子、 アルカリ金属 原子又はアミノ基を示す) を示し、 〔B〕 式中、 R 1は炭素数 8乃至 2 5の高級アルコールの残基、 炭素数 1乃至 2 5のアルキル基を有するァ ルキルフヱノールの残基、 炭素数 1乃至 2 5のアルキル基を有するアル キルナフ トール残基、 炭素数 3乃至 2 2の脂肪酸アミ ドの残基、 炭素数 2乃至 4のアルキルアミ ンの残基又は水酸基を示し、 R2及び R3は水素 原子又はメチル基を示し、 m及び kは 1乃至 1 0 0の整数を示す。
上記のように半導体デバイスの集積度が上がり、 溝幅や穴径が小さく なっても溝や穴中の銅ィオンが拡散律速になるのを防止するには、 めつ き液を攪拌することで拡散層の厚さを薄く したり、 電流密度を低く抑え 'ることも有効であるが、 めっき液の銅濃度を上げることも効果的である。 めっき液の銅濃度を上げることで拡散速度は比例して上昇する。 液の攪 拌を併用すれば、 拡散速度は更に速くなる。
図 2は図 3に示す深さ 1. 2 zmの穴 Hの中での拡散量と析出量を比 較した例を示す図である。 同図において、 縦軸は C u析出量 ·拡散量 ( g/s ) 、 横軸は穴 Hの穴径 ø ( Mm) を示す。 なお、 ここで拡散係 数を 0. 7 2 x 1 0'9m2/s、 拡散層厚さを 5 zmとする。 拡散量 >析 出量ならば反応律速であり、 穴 Hの中の銅イオンが枯渴してボイ ドが生 じることがない。 拡散量 <析出量ならば拡散律速度であり、 穴 Hにボイ ドが生じることがある。 図 2からも明らかなように、 穴径 øが微細化す ればするほど硫酸銅濃度は高いほうが有利となり、 飽和濃度の関係で相 対的に硫酸濃度は低くなる。 硫酸濃度を低くすることで、 液の電気抵抗 を高く し析出する膜厚の均一性を向上させている。
なお、 図 2において、 曲線 Aは硫酸銅濃度 2 2 5 g/ 1時の拡散量 (毎秒) 、 曲線 Bは電流密度 3 A/dm2時の析出量 (毎秒) 、 曲線 C は電流密度 2. 5 A/d m2時の析出量 (毎秒) 、 曲線 Dは電流密度 2 A/ dm2時の析出量 (毎秒) 、 曲線 Eは硫酸銅濃度 7 5 g/ 1時の拡 散量 (毎秒) をそれぞれ示す。
また、 めつき液には上記のように 0. 1 4〜 4 0〃1110 1の 〔八〕 式 で表されるィォゥ化合物と 〔B〕 式で表される高分子化合物を含有して いる。 このィォゥ化合物は、 析出を緻密化させるものであり、 具体例と しては、 N. N—ジメチルジチォカルバミルプロピルスルホン酸、 0 _ ェチル一 S— ( 3—プロピルスルホン酸) 一ジチォカルボネート、 ビス - (スルホプロピル) ジスルフィ ド等ゃそれらの塩を挙げることができ ィォゥ系化合物の添加量は本発明では、 硫酸銅が硫酸の量に比べて大 きいため、 0. 1 4〜 7 0〃m o 1 / 1が好ましい。 硫酸銅濃度が低い 液の場合に比べて添加量が少ないのは陰極近傍の銅イオンが豊富に存在 するため、 促進剤としてのィォゥ化合物の量は少なくて済むためである 更に、 めっき液に含有する高分子系有機添加剤は具体例としては、 P P G、 P E G或いはそれらのランダム又はブロック重合ポリマ一或いは それらの誘導体等のポリエーテル類が挙げられる。 これらの高分子系有 機物の添加量は 1 0 mg/ 1〜 5 g/ 1程度である。
また、 上記めつき液には、 更に銅の析出を抑制し、 穴の底のめっき成 長を促進させる所謂レベラを添加する。 レベラはフェナチジン系化合物、 フタロシアニン化合物、 ポリエチレンィ ミン、 ポリベンジルエチレンィ ミン等のポリアルキレンイ ミン及びその誘導体、 N—染料置換体化合物 等のチォ尿素誘導体、 フエノサフラニン、 サフラニンァゾナフ トール、 ジェチルサフラニンァゾフエノール、 ジメチルサフラニンジメチルァニ リン等のサフラニン化合物、 ポリェピクロルヒ ドリン及びその誘導体、 チオフラビン等のフエ二ルチアゾニゥム化合物、 アク リルアドミ、 プロ ピルアミ ド、 ポリアク リル酸ァミ ド等のァミ ド類等含窒素化合物である。 この含窒素化合物は 0 . O l m g / 1〜: L 0 0 m g / 1程度添加される。 図 4は、 本発明に係るめっき方法を実施するためのめつき装置の構成 例を示す図である。 図示するように、 本めつき装置は、 めっき槽 1 0を 具備し、 該めっき槽 1 0はめつき槽本体 1 1内に半導体ウェハ等の被め つき基板 1 3を保持するための基板保持体 1 2が収容されている。 該基 板保持体 1 2は基板保持部 1 2— 1 とシャフ ト部 1 2— 2からなり、 該 シャフ ト部 1 2— 2は円筒状のガイ ド部材 1 4の内壁に軸受 1 5、 1 5 を介して回転自在に支持されている。 そして該ガイ ド部材 1 4と基板保 持体 1 2はめつき槽本体 1 1の頂部に設けられたシリンダ 1 6により上 下に所定のス トロークで昇降できるようになっている。
また、 基板保持体 1 2はガイ ド部材 1 4の内部上方に設けられたモ一 夕 1 8により、 シャフ ト部 1 2— 2を介して矢印 A方向に回転できるよ うになつている。 また、 基板保持体 1 2の内部には基板押え部 1 7— 1 及びシャフ ト部 1 7— 2からなる基板押え部材 1 7を収納する空間 Cが 設けられており、 該基板押え部材 1 7は基板保持体 1 2のシャフ ト部 1 2 - 2内の上部に設けられたシリ ンダ 1 9により上下に所定のス トロー クで昇降できるようになつている。
基板保持体 1 2の基板保持部 1 2 _ 1の下方には空間 Cに連通する開 口 1 2— 1 aが設けられ、 該開口 1 2— 1 aの上部には、 図 5に示すよ うに被めつき基板 1 3の縁部が載置される段部 1 2— 1 bが形成されて いる。 該段部 1 2— 1 bに被めつき基板 1 3の縁部を載置し、' 被めつき 基板 1 3の上面を基板押え部材 1 7の基板押え部 1 7— 1で押圧するこ とにより、 被めつき基板 1 3の縁部は基板押え部 1 7— 1 と段部 1 2— 1 bの間に挟持される。 そして被めつき基板 1 3の下面 (めっき面) は 開口 1 2— 1 aに露出する。 なお、 図 5は図 4の B部分の拡大図である。 めつき槽本体 1 1の基板保持部 1 2— 1の下方、 即ち開口 1 2 _ 1 a に露出する被めつき基板 1 3のめつき面の下方に扁平なめっき液室 2 0 が設けられ、 めっき液室 2 0の下方に多数の孔 2 1 aが形成された多孔 板 2 1を介して、 扁平なめつき液導入室 2 2が設けられている。 また、 めつき液室 2 0の外側には該めつき液室 2 0をオーバーフローしためつ き液 Qを捕集する捕集樋 2 3が設けられている。
捕集樋 2 3で回収されためつき液 Qはめつき液タンク 2 4に戻るよう になっている。 めっき液タンク 2 4内のめっき液 Qはポンプ 2 5により、 めつき液室 2 0の両側から水平方向に導入される。 めつき液室 2 0の両 側から導入されためつき液 Qは多孔板 2 1の孔 2 l aを通って、 垂直噴 流となってめつき液室 2 0に流れ込む。 多孔板 2 1 と被めつき基板 1 3 の間隔は 5〜 1 5 m mとなっており、 該多孔板 2 1の孔 2 1 aを通った めつき液 Qの噴流は垂直上昇を維持したまま均一な噴流として被めつき 基板 1 3のめつき面に当接する。 めつき液室 2 0をオーバ一フローした めつき液 Qは捕集樋 2 3で回収され、 めっき液タンク 2 4に流れ込む。 即ち、 めっき液 Qはめつき槽本体 1 1のめつき液室 2 0 とめつき液タン ク 2 4の間を循環するようになつている。
めっき液室 2 0のめつき液面レベル L Qは被めつき基板 1 3のめつき 面レベル L Wより若干△ Lだけ高くなつており、 被めつき基板 1 3の全 面はめつき液 Qに接触している。
基板保持体 1 2の基板保持部 1 2 - 1の段部 1 2 - 1 bは被めつき基 板 1 3の導電部と電気的に導通する電気接点 2 7が設けられて、 該電気 接点 2 7はブラシ 2 6を介して外部のめっき電源 (図示せず) の陰極に 接続されている。 また、 めっき槽本体 1 1のめつき液導入室 2 2の底部 には被めつき基板 1 3と対向して陽極電極 2 8が設けられて、 該陽極電 極 2 8はめつき電源の陽極に接続されている。 めつき槽本体 1 1の壁面 の所定位置には例えばロボッ トアーム等の基板搬出治具で被めつき基板 1 3を出し入れする搬出入スリ ッ ト 2 9が設けられている。
上記構成のめっき装置において、 めっきを行うに際しては、 先ずシリ ンダ 1 6を作動させ、 基板保持体 1 2をガイ ド部材 1 4ごと所定量 (基 板保持部 1 2 - 1に保持された被めつき基板 1 3が搬出入スリ ッ ト 2 9 に対応する位置まで) 上昇させると共に、 シリ ンダ 1 9を作動させ基板 押え部材 1 7を所定量 (基板押え部 1 7— 1が搬出入スリ ッ ト 2 9の上 部に達する位置まで) 上昇させる。 この状態でロボッ トアーム等の基板 搬出入治具で被めつき基板 1 3を基板保持体 1 2の空間 cに搬入し、 該 被めつき基板 1 3をそのめつき面が下向きになるように段部 1 2 _ 1 b に載置する。 この状態でシリンダ 1 9を作動させ基板押え部 1 7— 1の 下面が被めつき基板 1 3の上面に当接するまで下降させ、 基板押え部 1 7— 1 と段部 1 2— 1 bの間に被めつき基板 1 3の縁部を挟持する。 この状態でシリンダ 1 6を作動させ、 基板保持体 1 2をガイ ド部材 1 4ごと被めつき基板 1 3のめつき面がめつき液室 2 0のめつき液 Qに接 触するまで (めっき液レベル L qより上記△ Lだけ低い位置まで) 下降 させる。 この時、 モー夕 1 8を起動し、 基板保持体 1 2 と被めつき基板 1 3を低速で回転させながら下降させる。 めつき液室 2 0にはめつき液 Qが充満し、 且つ多孔板の穴 2 1 aを通した垂直の上昇流が噴出してい る。 この状態で陽極電極 2 8 と上記電気接点 2 7の間にめつき電源から 所定の電圧を印加すると、 陽極電極 2 8から被めつき基板 1 3へとめつ き電流が流れ、 被めつき基板のめっき面にめつき膜が形成される。
上記めつき中はモ一夕 1 8を運転し、 基板保持体 1 2と被めつき基板 1 3を低速回転させる。 この低速回転はめつき液室 2 0内のめっき液 Q の垂直噴流を乱すことなく、 被めつき基板 1 3のめつき面に均一な膜厚 のめつき膜を形成できるように設定する。
めっきが終了するとシリ ンダ 1 6を作動させ、 基板保持体 1 2と被め つき基板 1 3を上昇させ、 基板保持部 1 2— 1の下面がめっき液レベル LQより上になったら、 モ一夕 1 8を高速で回転させ、 遠心力で被めつ き基板 1 3のめつき面及び基板保持部 1 2— 1の下面に付着しためっき 液を振り切る。 めっき液を振り切ったら、 被めつき基板 1 3を搬出入ス リ ッ ト 2 9の位置まで上昇させ、 シリ ンダ 1 9を作動させて、 基板押え 部 1 7— 1を上昇させると被めつき基板 1 3は解放され、 基板保持部 1 2 - 1の段部 1 2— 1 bに載置された状態となる。 この状態でロボヅ ト アーム等の基板搬出入治具を搬出入スリ ッ ト 2 9から、 基板保持体 1 2 の空間 Cに侵入させ、 被めつき基板 1 3をピックアップして外部に搬出 する。
上記構成のめつき装置において、 めっき液 Qには下記の組成のものを 用い、 穴径 0. 1 5 111、 穴深さ 1. 2 の穴が形成された被めつき 基板 1 3の穴の中に電流密度 2 A/dm\ 液温 2 5°C、 めっき時間 1 5 0秒で電解めつきを行ったところ、 良好な穴埋性が得られた。
めつき液 Qの組成
C u S 0 · 5 H 20 2 2 5 g/ 1
H S 0 5 5 g/ 1
C I- 6 0 m g/ 1 ィォゥ化合物 (N, N—ジメチルジチォカルバミルプロピルスルホ ン酸)
5 m g/ 1
高分子化合物 (P E G 6000 ) 0. 1 g/1
窒素化合物 (サフラニン化合物、 j anu sグリーン B)
2 m g/ 1
上記のように硫酸銅 (CuS 04 * 5 H 2 O ) 濃度の高いめっき液を用 いることにより、 穴径 0. 1 5〃m、 穴深さ 1. 2 Π1という微細な穴 に対して穴埋め性の良い銅めつきを行うことができる。
なお、 上記実施の形態では、 上記組成のめっき液を用いて銅めつきを 行ったが、 めっき液の組成はこれに限定されるものではなく、 基板のめ つき方法において、 上述した組成のめつき液を用いて銅めつきを行えば 同じような穴埋め性の良い銅めつきができることは容易に予測できる。 また、 本発明に係るめっき装置の構成は図 4に示すものに限定される ものではなく、 めっき液に硫酸銅 (CuS 04. 5 H 20 ) の濃度が 1 0 0乃至 250 g/l、 硫酸 (H2S O の濃度が 1 0乃至 100 g/l、 塩素イオンの濃度が 0乃至 100 mg/ 1の硫酸銅濃度の高いめつき液 を用い、 めっき槽のめつき液中に被めつき基板と陽極基板を配置し、 該 被めつき基板と被めつき基板に所定のめつき電圧を印加し、 電解めつき を行うめつき装置であればよい。
上記のように本発明によれば、 塩素イオンの濃度が 0乃至 1 00 mg / 1の硫酸銅濃度の高いめっき液を用いて銅めつきを行うので、 銅ィォ ンの拡散速度が上昇し、 被めつき基板の表面に形成された微細な溝や穴 の埋め込み性のよい銅めつきを行うことができる。 産業上の利用の可能性 本発明は、 半導体基板等の表面に配線用の微細な溝や穴が形成された 基板の該溝ゃ孔を銅めつきで埋め込む基板のめっき方法及び装置に適用 可能である。

Claims

請求の範囲
1. 表面に配線用の微細な溝や穴が形成された被めつき基板の該表面に 銅めつきを行い該溝ゃ穴を銅めつき膜で埋める基板のめつき方法であつ て、
硫酸銅 ( C u S 0 · 5 H20) の濃度が 4乃至 2 5 0 g / 1、 硫酸 (H2S 04) の濃度が 1 0乃至 2 0 0 g / 1、 塩素イオンの濃度が 0乃 至 1 0 O mg/ 1のめつき液を用いて電解めつきを行うことを特徴とす る基板のめつき方法。
2. 請求項 1のめつき方法において、
前記めつき液は前記組成のめっき液中に少なく とも 0. 1 4乃至 7 0 umo 1/ 1の下記 〔A〕 式で表されるィォゥ化合物と、 下記 〔B〕 式 で表される高分子化合物を 1 0 mg/ l乃至 5 g/ lと、 窒素化合物を 0. O l mg/ 1乃至 l O O mg/ 1含有しためつき液であることを特 徴とする基板のめっき方法。
X— L一 (S) n-L- X [A]
R 2 R3
R (CH2 CHO) (CH2 CHO) k— H [B]
〔A〕 式中、 Lは低級アルキル基、 低級アルコキシ基、 水酸基又はハロ ゲン原子で置換されてもよい炭素数 1乃至 6のアルキル基を示し、 Xは 水素原子、 一 S 03M基又は一 P 03M基 (Mは水素原子、 アルカリ金属 原子又はアミノ基を示す) を示し、 〔B〕 式中、 R 1は炭素数 8乃至 2 5の高級アルコールの残基、 炭素数 1乃至 2 5のアルキル基を有するァ ルキルフヱノールの残基、 炭素数 1乃至 2 5のアルキル基を有するアル キルナフ トール残基、 炭素数 3乃至 2 2の脂肪酸アミ ドの残基、 炭素数 2乃至 4のアルキルアミ ンの残基又は水酸基を示し、 R 2及び R 3は水素 原子又はメチル基を示し、 m及び kは 1乃至 1 0 0の整数を示す。
3. めっき槽のめつき液中に被めつき基板と陽極基板を配置し、 該被め つき基板と被めつき基板に所定のめつき電圧を印加し、 電解めつきを行 う基板のめつき装置において、
前記めつき液は、 硫酸銅 ( C u S O 5 H2O) の濃度が 4乃至 2 5 0 g / 1、 硫酸 (H2 S〇4 ) の濃度が 1 0乃至 2 0 0 g/ l、 塩素ィォ ンの濃度が 0乃至 1 0 0 mg/ lであることを特徴とする基板のめっき 装置。
4. 請求項 3に記載の基板のめっき装置において、
前記めつき液は前記組成のめっき液中に少なく とも 0. 1 4乃至 7 0 mo 1/ 1の下記 〔A〕 式で表されるィォゥ化合物と、 下記 〔B〕 式 で表される高分子化合物を 1 0 mg/ l乃至 5 g/ lと、 窒素化合物を 0. 0 l mg/ 1乃至 1 0 O mg/ 1含有しためっき液であることを特 徴とする基板のめっき装置。
X— L— ( S ) n— L— X [A]
R 2 Λ 3
1 I
R 1— (CH2 CHO) n— ( C H 2 C H 0 ) k— H [ B ]
〔A〕 式中、 Lは低級アルキル基、 低級アルコキシ基、 水酸基又はハロ ゲン原子で置換されてもよい炭素数 1乃至 6のアルキル基を示し、 は 水素原子、 一 S 03M基又は一 P 03M基 (Mは水素原子、 アルカリ金属 原子又はアミノ基を示す) を示し、 〔B〕 式中、 R 1は炭素数 8乃至 2 5の高級アルコールの残基、 炭素数 1乃至 25のアルキル基を有するァ ルキルフエノールの残基、 炭素数 1乃至 25のアルキル基を有するアル キルナフ トール残基、 炭素数 3乃至 22の脂肪酸アミ ドの残基、 炭素数 2乃至 4のアルキルアミ ンの残基又は水酸基を示し、 R 2及び R 3は水素 原子又はメチル基を示し、 m及び kは 1乃至 1 00の整数を示す。
5. 硫酸銅濃度が 4乃至 250 g/ 1、 硫酸濃度が 1 0乃至 200 g/ 1および塩素イオン濃度が 0乃至 1 00 m g / 1であることを特徴とす る銅ダマシン配線用銅めつき液。
6. 更にィォゥ系化合物を含有し、 ィォゥ系化合物の配合量が、 硫酸/ 硫酸銅五水塩の比が 1以下の場合は、 0.14乃至 70 mo 1/1であ り、 硫酸/硫酸銅五水塩の比が 1以上の場合は、 0.14乃至 1 50〃111 o 1/1である請求の範囲第 5項記載の銅ダマシン配線用銅めつき液。
7. ィォゥ系化合物が次の式 ( I ) 丫 H L— X ( I )
[式中、 Lは低級アルキル基、 低級アルコキシ基、 水酸基またはハロゲ ン原子で置換されていても良い炭素数 1から 6のアルキレン基を示し、 Xは水素原子、 — S 03M基または— P 03M基 (ここで、 Mは水素原子、 アルカリ金属原子またはアミノ基を示す) を示し、 Yはアルキルアミノ カルボチォ基または、 次の基 一し一 X
[ここで、 L 'は低級アルキル基、 低級アルコキシ基、 水酸基またはハロ ゲン原子で置換されていても良い炭素数 1から 6のアルキレン基を示し、 X,は— S〇 3 M基または一 P 0 3 M基 (Mは前記した意味を有する) を示 し、 nは 1〜 5の整数を示す]
で表される多硫化アルキレン化合物である請求の範囲第 6項記載の銅ダ マシン配線用銅めつき液。
8 . 更に、 次の式 ( II )
R2
RHCH CH Ofe- ■fCH2CH0)k- H ( Π )
[式中、 は、 炭素数 8から 2 5の高級アルコールの残基、 炭素数 1か ら 2 5のアルキル基を有するアルキルフエノ一ルの残基、 炭素数 1から 2 5のアルキル基を有するアルキルナフ トールの残基、 炭素数 3から 2 2の脂肪酸ァミ ドの残基、 炭素数 2から 4のアルキルアミンの残基また は水酸基を示し、 R 2および R 3は、 水素原子またはメチル基を示し、 m および kは 1から 1 0 0の整数を示す]
で表される高分子化合物を含有する請求の範囲第 6項または第 7項記載 の銅ダマシン配線用銅めつき液。
PCT/JP1999/004797 1998-09-03 1999-09-03 Method for plating substrate and apparatus WO2000014306A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99940656A EP1118696A4 (en) 1998-09-03 1999-09-03 METHOD AND DEVICE FOR COATING SUBSTRATES
KR20017002719A KR100656581B1 (ko) 1998-09-03 1999-09-03 기판의 도금방법 및 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP24945398A JP2000080494A (ja) 1998-09-03 1998-09-03 銅ダマシン配線用めっき液
JP10/249453 1998-09-03
JP22036399A JP2001049490A (ja) 1999-08-03 1999-08-03 基板のめっき方法及び装置
JP11/220363 1999-08-03

Publications (1)

Publication Number Publication Date
WO2000014306A1 true WO2000014306A1 (en) 2000-03-16

Family

ID=26523669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004797 WO2000014306A1 (en) 1998-09-03 1999-09-03 Method for plating substrate and apparatus

Country Status (3)

Country Link
EP (1) EP1118696A4 (ja)
KR (1) KR100656581B1 (ja)
WO (1) WO2000014306A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054080A2 (en) * 1999-05-17 2000-11-22 Shipley Company LLC Electrolytic copper plating solutions
WO2001083854A2 (en) * 2000-04-27 2001-11-08 Intel Corporation Electroplating bath composition and method of using
EP1199383A2 (en) * 2000-10-20 2002-04-24 Shipley Company LLC Seed layer repair bath
WO2002045142A2 (en) * 2000-11-15 2002-06-06 Intel Corporation Copper alloy interconnections for integrated circuits and methods of making same
EP1249861A2 (en) * 2001-03-23 2002-10-16 Interuniversitair Micro-Elektronica Centrum A multi-step method for metal deposition
JP6990342B1 (ja) * 2020-12-28 2022-02-03 株式会社荏原製作所 基板の接液方法、およびめっき装置
TWI775262B (zh) * 2020-12-30 2022-08-21 日商荏原製作所股份有限公司 基板之接液方法及鍍覆裝置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773573B2 (en) * 2001-10-02 2004-08-10 Shipley Company, L.L.C. Plating bath and method for depositing a metal layer on a substrate
US8002962B2 (en) 2002-03-05 2011-08-23 Enthone Inc. Copper electrodeposition in microelectronics
US7316772B2 (en) 2002-03-05 2008-01-08 Enthone Inc. Defect reduction in electrodeposited copper for semiconductor applications
JP3964263B2 (ja) * 2002-05-17 2007-08-22 株式会社デンソー ブラインドビアホール充填方法及び貫通電極形成方法
EP1477588A1 (en) * 2003-02-19 2004-11-17 Rohm and Haas Electronic Materials, L.L.C. Copper Electroplating composition for wafers
TWI400365B (zh) 2004-11-12 2013-07-01 Enthone 微電子裝置上的銅電沈積
KR100711426B1 (ko) * 2005-09-05 2007-08-13 (주)랩솔루션 인쇄회로기판 스루홀 도금용 산성 동전해 용액의 조성물
JP5525762B2 (ja) * 2008-07-01 2014-06-18 上村工業株式会社 無電解めっき液及びそれを用いた無電解めっき方法、並びに配線基板の製造方法
EP2547731B1 (en) 2010-03-18 2014-07-30 Basf Se Composition for metal electroplating comprising leveling agent
KR101705734B1 (ko) * 2011-02-18 2017-02-14 삼성전자주식회사 구리 도금 용액 및 이것을 이용한 구리 도금 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827992A (ja) * 1981-07-24 1983-02-18 ロ−ヌ−ブ−ラン・スペシアリテ・シミ−ク 酸性電解銅メッキ浴用添加剤、その製造法及びプリント回路の銅メッキへのその応用
JPS59200786A (ja) * 1983-04-28 1984-11-14 Okuno Seiyaku Kogyo Kk 硫酸銅メツキ浴及びこれを使用するメツキ方法
JPH04143289A (ja) * 1990-10-03 1992-05-18 Asahi Chem Ind Co Ltd 厚膜メッキ導体の形成方法
JPH0598491A (ja) * 1991-10-07 1993-04-20 Sumitomo Metal Mining Co Ltd 電気銅めつき法
JPH07505187A (ja) * 1991-08-07 1995-06-08 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング 銅の電解析出のための酸性めっき浴及び当該浴の使用法
JPH07157890A (ja) * 1993-12-08 1995-06-20 Okuno Chem Ind Co Ltd 酸性銅めっき浴及びこれを使用するめっき方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328273A (en) * 1966-08-15 1967-06-27 Udylite Corp Electro-deposition of copper from acidic baths
DE3836521C2 (de) * 1988-10-24 1995-04-13 Atotech Deutschland Gmbh Wäßriges saures Bad zur galvanischen Abscheidung von glänzenden und rißfreien Kupferüberzügen und Verwendung des Bades
JPH07316876A (ja) * 1994-05-23 1995-12-05 C Uyemura & Co Ltd 電気銅めっき用添加剤及び電気銅めっき浴

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827992A (ja) * 1981-07-24 1983-02-18 ロ−ヌ−ブ−ラン・スペシアリテ・シミ−ク 酸性電解銅メッキ浴用添加剤、その製造法及びプリント回路の銅メッキへのその応用
JPS59200786A (ja) * 1983-04-28 1984-11-14 Okuno Seiyaku Kogyo Kk 硫酸銅メツキ浴及びこれを使用するメツキ方法
JPH04143289A (ja) * 1990-10-03 1992-05-18 Asahi Chem Ind Co Ltd 厚膜メッキ導体の形成方法
JPH07505187A (ja) * 1991-08-07 1995-06-08 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング 銅の電解析出のための酸性めっき浴及び当該浴の使用法
JPH0598491A (ja) * 1991-10-07 1993-04-20 Sumitomo Metal Mining Co Ltd 電気銅めつき法
JPH07157890A (ja) * 1993-12-08 1995-06-20 Okuno Chem Ind Co Ltd 酸性銅めっき浴及びこれを使用するめっき方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1118696A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054080A2 (en) * 1999-05-17 2000-11-22 Shipley Company LLC Electrolytic copper plating solutions
EP1054080A3 (en) * 1999-05-17 2004-03-03 Shipley Company LLC Electrolytic copper plating solutions
WO2001083854A3 (en) * 2000-04-27 2002-10-03 Intel Corp Electroplating bath composition and method of using
US6893550B2 (en) 2000-04-27 2005-05-17 Intel Corporation Electroplating bath composition and method of using
WO2001083854A2 (en) * 2000-04-27 2001-11-08 Intel Corporation Electroplating bath composition and method of using
EP1199383A3 (en) * 2000-10-20 2004-02-11 Shipley Company LLC Seed layer repair bath
EP1199383A2 (en) * 2000-10-20 2002-04-24 Shipley Company LLC Seed layer repair bath
WO2002045142A3 (en) * 2000-11-15 2003-06-05 Intel Corp Copper alloy interconnections for integrated circuits and methods of making same
WO2002045142A2 (en) * 2000-11-15 2002-06-06 Intel Corporation Copper alloy interconnections for integrated circuits and methods of making same
EP1249861A2 (en) * 2001-03-23 2002-10-16 Interuniversitair Micro-Elektronica Centrum A multi-step method for metal deposition
EP1249861A3 (en) * 2001-03-23 2007-11-21 Interuniversitair Micro-Elektronica Centrum A multi-step method for metal deposition
JP6990342B1 (ja) * 2020-12-28 2022-02-03 株式会社荏原製作所 基板の接液方法、およびめっき装置
WO2022144988A1 (ja) * 2020-12-28 2022-07-07 株式会社荏原製作所 基板の接液方法、およびめっき装置
CN115003865A (zh) * 2020-12-28 2022-09-02 株式会社荏原制作所 基板的接液方法和镀覆装置
CN115003865B (zh) * 2020-12-28 2024-05-31 株式会社荏原制作所 基板的接液方法和镀覆装置
TWI775262B (zh) * 2020-12-30 2022-08-21 日商荏原製作所股份有限公司 基板之接液方法及鍍覆裝置

Also Published As

Publication number Publication date
EP1118696A1 (en) 2001-07-25
EP1118696A4 (en) 2007-10-17
KR100656581B1 (ko) 2006-12-12
KR20010074915A (ko) 2001-08-09

Similar Documents

Publication Publication Date Title
WO2000014306A1 (en) Method for plating substrate and apparatus
KR101474377B1 (ko) 전기도금방법
US6610192B1 (en) Copper electroplating
US6024856A (en) Copper metallization of silicon wafers using insoluble anodes
US6863795B2 (en) Multi-step method for metal deposition
US20050081744A1 (en) Electroplating compositions and methods for electroplating
US20050045486A1 (en) Plating method and plating solution
TWI541388B (zh) 電鍍方法
CN1529772A (zh) 用于电子器件制造的金属电化学共沉积
CN111020649B (zh) 一种整平剂及其制备方法、电镀液及其应用、线路板的电镀方法及线路板
JP2012224944A (ja) 電気めっき方法
KR100694562B1 (ko) 기판 도금방법 및 장치
WO2003083182A2 (en) Process window for gap-fill on very high aspect ratio structures using additives in low acid copper baths
US8268155B1 (en) Copper electroplating solutions with halides
US20030221969A1 (en) Method for filling blind via holes
JP2000080494A (ja) 銅ダマシン配線用めっき液
JP2014029028A (ja) めっき方法
JP2001049490A (ja) 基板のめっき方法及び装置
US20050126919A1 (en) Plating method, plating apparatus and a method of forming fine circuit wiring
US20220102209A1 (en) Electrodeposition of cobalt tungsten films
US20030188974A1 (en) Homogeneous copper-tin alloy plating for enhancement of electro-migration resistance in interconnects
JP2000297395A (ja) 電気銅めっき液
JP4472673B2 (ja) 銅配線の製造方法及び銅めっき用電解液
US20040118699A1 (en) Homogeneous copper-palladium alloy plating for enhancement of electro-migration resistance in interconnects
JP4226994B2 (ja) 微細回路配線の形成方法並びにこれに用いるめっき液およびめっき装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09786265

Country of ref document: US

Ref document number: 1020017002719

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999940656

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999940656

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017002719

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020017002719

Country of ref document: KR