WO2000010756A1 - Method and transferred arc plasma system for production of fine and ultrafine powders - Google Patents
Method and transferred arc plasma system for production of fine and ultrafine powders Download PDFInfo
- Publication number
- WO2000010756A1 WO2000010756A1 PCT/CA1999/000759 CA9900759W WO0010756A1 WO 2000010756 A1 WO2000010756 A1 WO 2000010756A1 CA 9900759 W CA9900759 W CA 9900759W WO 0010756 A1 WO0010756 A1 WO 0010756A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vapor
- cooling
- plasma
- section
- quench tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/14—Making metallic powder or suspensions thereof using physical processes using electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/12—Making metallic powder or suspensions thereof using physical processes starting from gaseous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J12/00—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
- B01J12/002—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out in the plasma state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J12/00—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
- B01J12/02—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor for obtaining at least one reaction product which, at normal temperature, is in the solid state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00121—Controlling the temperature by direct heating or cooling
- B01J2219/00123—Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/0015—Controlling the temperature by thermal insulation means
- B01J2219/00155—Controlling the temperature by thermal insulation means using insulating materials or refractories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0803—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J2219/0805—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
- B01J2219/0807—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
- B01J2219/0809—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0803—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J2219/0805—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
- B01J2219/0845—Details relating to the type of discharge
- B01J2219/0847—Glow discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0879—Solid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
- B01J2219/0898—Hot plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the present invention relates to a method for the production of fine and ultrafine powders of various materials such as metals, alloys, ceramics, composites and the like with controlled physical properties.
- a novel and flexible transferred arc plasma system providing the ability to control powder properties with a high production rate has been developed.
- the transferred arc plasma system comprises a transferred arc plasma reactor and a separate quench system within which powder condensation occurs.
- Fine powders of metals, alloys, ceramics, composites and the like have a wide variety of applications in various fields such as aeronautics, electronics, microelectronics, ceramics and medicine.
- generation of fine powder i.e.,
- Thermal plasma based vapor condensation methods have demonstrated their ability to generate average particle sizes below 100 nm without the handling and environmental problems associated with hydrometallurgical and spray pyrolysis
- feed materials are generally inert. Examples of such materials include pure metals, alloys, oxides, carbonates etc.
- plasma methods are able to vaporize or decompose these feed materials because of the high-energy input that can be achieved.
- Thermal plasma generation is typically accomplished via 2 methods, i.e., high intensity DC arcs which uses currents higher than 50 A and pressures higher than 10 kPa, or high frequency discharges such as an RF plasma. Because of their high-energy efficiency, DC arcs are generally preferred. DC arcs are classified as transferred when one of the electrodes is a material being processed, and non-
- the powder product is then typically recovered in a filtration unit.
- transferred arc plasma systems can also be used for the production of fine
- transferred arc plasma systems can operate batchwise, it is preferred that they be operated in a continuous manner.
- the material to be vaporized or decomposed can be fed continuously in the reactor in several manners. For example, it can be fed into a crucible either from the top thereof by a side tube in the reactor wall. The material can also be pushed upward underneath the plasma in a continuous manner, or fed directly into the plasma torch. Depending on the powder to be produced, the operator will select the appropriate method. Generally, the preferred feeding method is through one or more tubes located in the upper portion of the reactor.
- the feed materials can be in solid (wire, rod, bar, chunks, shots etc.) or liquid form. When in liquid form, the feed material can also be pumped into the reactor.
- U.S. Patent No. 4,376,740 discloses a method for producing fine metal powders which involves reacting a molten metal or alloy with hydrogen using an arc or plasma discharge, or an infrared radiation which dissolves the hydrogen in the metal. When the dissolved hydrogen is released from the molten metal, fine metal powders are generated. Using this method, a low production rate and yield is attained because of the use of a cold-walled reactor and a water-cooled copper mold which is used to support the material being processed. The maximum production rate reported is less than 240 g/hr. Further, there is no mention or suggestion of control of powder properties.
- a critical aspect of transferred arc plasma systems is that they consume a lot of energy. It is therefore imperative to maximize its efficiency to have a viable commercial method. This means that the temperature within the reactor must be maintained as high as possible to prevent condensation of the vaporized or
- aluminium nitride (A1N) powder using a transferred arc thermal plasma based vapor condensation method. Vaporizing aluminium and reacting it with nitrogen and
- Aluminium is vaporized by using it as the anode material in a transferred arc configuration that employs a thoriated tungsten tip cathode.
- the aluminium being
- vaporized is in the form of an ingot placed in a graphite crucible surrounded by a water-cooled stainless steel support. Because of the presence of that water-cooled
- the aluminium nitride powders generated with this method have a mean particle size of approximately 20 nm.
- the reactor exit gas containing the aluminium vapor is quenched at a single point
- silver/tin anode is vaporized by striking an arc to it while it is contained in a graphite
- a reactive gas i.e., oxygen, is added to the plasma chamber,
- the vaporization and reactive steps in the production of the powder compound are separated to better control the particle formation process.
- silica powders are produced.
- the silica raw material is vaporized
- a particulate form i.e., sand with a particle size of 100 - 315 ⁇ m
- the method comprises the steps of:
- quench tube comprising a first section for indirectly cooling or heating the vapor and any particle present therein, to substantially control particle growth and crystallization; and a second section coupled to the first section for directly cooling the vapor and
- the diluting gas is heated to a temperature corresponding to that of the vapor, or at least 1000 K, before being injected continuously or semi-continuously in the plasma chamber.
- the injection flow rate of the diluting gas can be varied depending on several parameters such as production rate, powder properties, plasma gas flow rate, vapor concentration etc. Any operator
- the liquid material in the crucible is the anode
- the electrode is the cathode.
- the electrode is non-consumable and is
- the quench tube suitable for the condensation of vapor such as that produced from a transferred arc reactor. More specifically, the quench tube comprises a first section with an
- the second section comprises an extension of the tubular body of the first section, and the direct cooling is done by injecting a
- tube can be varied depending on various parameters, such as powders to be produced, properties desired for these powders, flow rate of the carrier gas, particle size desired, etc. Any experienced engineer or operator skilled in the art may adjust these parameters according to powder properties desired. IN THE DRAWINGS
- FIG. 1 illustrates the components of a typical transferred arc plasma
- Figure 2 illustrates a transferred arc plasma chamber suitable for the
- Figure 3 illustrates preferred embodiments of transferred arc
- Figure 4 illustrates a preferred embodiment of a quench tube according to the present invention.
- FIG. 5 illustrates another embodiment of the quench tube according to the present invention.
- Figure 6 illustrates the size distribution of copper particles produced in accordance with the method of the present invention.
- Figure 8 illustrates the crystallinity obtained for copper and nickel powders produced in accordance with the present method.
- cooling or heating can be defined as cooling or heating means wherein the coolant or heating does not come in direct contact with the vapor and condensed particles therein,
- cooling means wherein the coolant is directly contacted with the material's
- the present method comprises striking an arc between an electrode
- a non-consumable electrode inside the torch preferably a non-consumable electrode inside the torch, and a material acting as the
- the material vaporized or decomposed acts as the anode and the non-consumable electrode acts as the cathode.
- the material vaporized or decomposed is therefore in a liquid state.
- suitable materials for the method include any electrically conductive material, such as pure metals, alloys, ceramics, composites etc. Examples of metal powders that can be
- Ceramic powders include, without being restricted thereto,
- composite or coated powders include, without being restricted thereto, powders of SiC/Si, SisN Si, NiO/Ni, CuO/Cu etc.
- a non-electrically conductive crucible which does not have these limitations can be used along with an auxiliary electrode connection.
- the feed material it can be in any form including solid particles, wire, rod, liquids etc.
- Typical plasma torch feed gas flow rates vary depending on the power
- plasma chamber may be required. Dilution reduces the concentration of the vapor and prevents significant condensation of the vapor, which would lead to the formation of
- the diluting gas can be added directly to the plasma gas, but this method is usually limited to the maximum operating flow rate of the plasma torch. This is why it is necessary to have additional means for injecting diluting gases in the plasma chamber. Also, such diluting gas
- At least one gas port is installed to allow additional hot gas to be
- the plasma chamber pressure is preferably maintained
- the fine or ultrafine powder product o can then be collected through any conventional collection/filtration equipment.
- the method of the present invention provides an energy efficient method for producing fine and ultrafine powders at a production rate of about at least 0.5 kg/h while avoiding the handling and environmental problems associated with conventional hydrometallurgical and spray pyrolysis methods.
- Current transferred arc systems can only produce at a rate not exceeding 0.2 kg/h, and lack extensive control of powder properties.
- the present method permits the relatively simple and cost effective production of fine and ultrafine powders of materials like pure metals, alloys, ceramics, composites etc. with the ability to substantially control the properties of the powders.
- a plasma system 10 comprising a transferred arc plasma reactor 12 insulated with an insulating material 13 such as alumina felt, a quench tube 14, and a powder collection unit 16.
- Reactor 12 is coupled to a power supply 11, which is itself coupled to a control panel 15.
- a supply control unit 19 is also provided for controlling the supply of gases and water in reactor 12.
- a heat exchanger 21 may optionally be inserted between unit 16 and quench tube 14 to further lower the temperature of the powder before collecting it.
- a feeder 23 is provided to feed the material inside plasma chamber 17.
- Figure 2 illustrates the interior of plasma reactor 12, which comprises a plasma chamber 17.
- An arc 18 is struck between an electrode 33, preferably non- consumable, located inside torch 20 and material 22 contained in a ceramic crucible 24.
- electrode 33 preferably non- consumable
- material 22 is vaporized or decomposed, further material is added continuously or semi-continuously in the crucible, for example through at least one
- a heated diluting gas preferably argon, helium, hydrogen, nitrogen,
- ammonia, methane or mixtures thereof is injected through a pipe 28 into chamber 17
- exiting the quench tube 14 can be recovered in any suitable solid/gas or solid/liquid separator, such as a particle filtration unit, a scrubber or the like.
- decomposing material 22 is supplied by arc 18 maintained between material 22, which
- gas is continuously or semi-continuously injected into plasma chamber 17 in addition to the feed gas of plasma torch 20, this at least one diluting gas being heated to a temperature preferably corresponding to the temperature of the vapor exiting the plasma chamber, or at least higher than 1000 K, to minimize localized condensation of the vapor.
- electrode 33 acts as the cathode and liquid material 22
- Preferred arc lengths are from about 2 to 20 cm, but the operator, depending on the material to be produced, can vary the length at will. Pressure inside
- chamber 17 is preferably maintained between 0.2 - 2.0 arm, the most preferred
- FIG. 3 illustrates various alternative transferred arc arrangements
- Figure 3A illustrates a preferred crucible arrangement
- FIGS. 3B and 3C illustrate configurations wherein an
- auxiliary electrode 32 is used. Such configuration is suitable when the electrical
- auxiliary electrode may be used even when the crucible is electrically conductive at the operating temperature.
- connection 32 may or may not be in direct contact with material 22.
- contact to material 22 can be either from the top ( Figure 3C), bottom or side.
- auxiliary electrode 32 can be a plasma torch, as per Figure 3B, a water-cooled probe or the feed material.
- Preferred materials of construction for crucible 24 include high melting point materials such as graphite, carbides such as tantalum carbide, silicon carbide, titanium carbide etc.; oxides such as magnesia, alumina, zirconia etc.; nitrides such as titanium nitride, tantalum nitride, zirconium nitride, boron nitride etc.; borides such as titanium diboride, tantalum diboride, zirconium diboride etc.; as well as refractory metals such as tungsten, tantalum, molybdenum, niobium etc.
- Figure 4 illustrates a preferred embodiment of a quench tube according to the present invention.
- the vaporized or decomposed material exits chamber 17 in the form of vapor combined with the diluting gas and the plasma gas, and enters into the first section 34 of quench tube 14.
- First section 34 allows an indirect controlled cooling or heating of the vapor to nucleate the desired product and control the particle growth and crystallization.
- the indirect heating or cooling can be done using a heating or cooling fluid that is circulated in channel 29 which is formed by the inner surface of an external coaxial tube 36 and the external surface of tube 38.
- Tube 36 can also be replaced or combined with one or more heating or cooling elements 40 also
- Tube 36 includes at least one inlet 42 and an at least one outlet 44 to allow fluid circulation therein.
- the reagent may be introduced in the form of a hot reactive gas at one or more points in the first section 34, for example through an inlet 46.
- reactive gases include nitrogen, hydrogen, ammonia, methane, oxygen, water, air, carbon monoxide or mixtures thereof.
- the hot reactive gas is also injected at a temperature preferably close to the temperature of the vapor exiting the plasma reactor, or at least higher than 1000 K, to minimize direct cooling of the vapor. Most preferably, the temperature of the injected hot reactive gas is higher than or at least equal to the temperature of the vapor exiting chamber 17.
- the inner tube of the quench tube should be constructed from a material that can support the temperature of the vapor exiting the plasma chamber. A preferred material is graphite.
- a second section 50 provided for the
- Direct cooling is performed by injecting a fluid
- particles include argon, nitrogen, helium, ammonia, methane, oxygen, air, carbon monoxide, carbon dioxide or mixtures thereof.
- Preferred liquids include water, methanol, ethanol or mixtures thereof, which are typically injected as a spray.
- the cross-section of the inner tube 38 can be any shape. As an example,
- tube 38 is an annular design with the vapor flowing through the annular
- tube 38 is provided inside tube 38 to form a channel between the inner surface of body 38 and the external surface of body 27.
- Fine metal powder production was carried out using a transferred arc thermal plasma system as illustrated in Figure 1 comprising a reactor as illustrated in Figure 2, and a quench tube as illustrated in Figure 4.
- a transferred arc thermal plasma system as illustrated in Figure 1 comprising a reactor as illustrated in Figure 2, and a quench tube as illustrated in Figure 4.
- any conventional plasma torch can be used.
- the crucible can be graphite or any suitable ceramic.
- the material to be vaporized was fed into the crucible in the form of pellets or shots through a port in the upper section of the
- Fine copper powders with controlled mean particle size and distribution were produced.
- Tests 1 and 2 the control of mean particle size is demonstrated using different quench tube operating conditions.
- Test 3 control of the size distribution is demonstrated.
- the size distribution was increased in Test 3 compared to Tests 1 and 2 (see Figure 7).
- the reactor conditions were substantially the same.
- the degree of crystallinity was measured by the maximum peak count in the X-ray diffraction
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Powder Metallurgy (AREA)
- Discharge Heating (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000566062A JP3541939B2 (ja) | 1998-08-18 | 1999-08-16 | 微細及び超微細の粉体の製造方法及び移行型アークプラズマシステム |
| AT99938107T ATE240177T1 (de) | 1998-08-18 | 1999-08-16 | Verfahren und plasmareaktor mit übertragendem lichtbogen zur hestellung von feinen und ultrafeinen pulvern |
| EP99938107A EP1115523B1 (en) | 1998-08-18 | 1999-08-16 | Method and transferred arc plasma system for production of fine and ultrafine powders |
| AU52752/99A AU5275299A (en) | 1998-08-18 | 1999-08-16 | Method and transferred arc plasma system for production of fine and ultrafine powders |
| CA002340669A CA2340669C (en) | 1998-08-18 | 1999-08-16 | Method and transferred arc plasma system for production of fine and ultrafine powders |
| DE69907933T DE69907933T2 (de) | 1998-08-18 | 1999-08-16 | Verfahren und plasmareaktor mit übertragendem lichtbogen zur hestellung von feinen und ultrafeinen pulvern |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/136,043 US6379419B1 (en) | 1998-08-18 | 1998-08-18 | Method and transferred arc plasma system for production of fine and ultrafine powders |
| US09/136,043 | 1998-08-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2000010756A1 true WO2000010756A1 (en) | 2000-03-02 |
Family
ID=22470991
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CA1999/000759 Ceased WO2000010756A1 (en) | 1998-08-18 | 1999-08-16 | Method and transferred arc plasma system for production of fine and ultrafine powders |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US6379419B1 (enExample) |
| EP (1) | EP1115523B1 (enExample) |
| JP (3) | JP3541939B2 (enExample) |
| KR (1) | KR100594562B1 (enExample) |
| AT (1) | ATE240177T1 (enExample) |
| AU (1) | AU5275299A (enExample) |
| CA (1) | CA2340669C (enExample) |
| DE (1) | DE69907933T2 (enExample) |
| WO (1) | WO2000010756A1 (enExample) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001060551A3 (en) * | 2000-02-18 | 2002-06-20 | Canadian Electronics Powders C | Nickel powder for use as electrodes in base metal electrode multilayered ceramic capacitors |
| US6902601B2 (en) | 2002-09-12 | 2005-06-07 | Millennium Inorganic Chemicals, Inc. | Method of making elemental materials and alloys |
| US6972115B1 (en) | 1999-09-03 | 2005-12-06 | American Inter-Metallics, Inc. | Apparatus and methods for the production of powders |
| US7384448B2 (en) | 2004-02-16 | 2008-06-10 | Climax Engineered Materials, Llc | Method and apparatus for producing nano-particles of silver |
| US7465430B2 (en) | 2004-07-20 | 2008-12-16 | E. I. Du Pont De Nemours And Company | Apparatus for making metal oxide nanopowder |
| US7708975B2 (en) | 2004-07-20 | 2010-05-04 | E.I. Du Pont De Nemours And Company | Process for making metal oxide nanoparticles |
| US7794629B2 (en) | 2003-11-25 | 2010-09-14 | Qinetiq Limited | Composite materials |
| JP2014518565A (ja) * | 2011-04-26 | 2014-07-31 | ヒ スング メタル リミテッド | 廃ルテニウム(Ru)ターゲットを用いた超高純度ルテニウム(Ru)粉末及びターゲットの製造方法 |
| EP2839906A4 (en) * | 2012-04-20 | 2015-02-25 | Shoei Chemical Ind Co | METHOD FOR PRODUCING A METAL POWDER |
| EP2789414A4 (en) * | 2011-12-06 | 2015-12-30 | Shoei Chemical Ind Co | PLASMA DEVICE FOR MANUFACTURING A METAL POWDER |
| CN108130524A (zh) * | 2017-12-22 | 2018-06-08 | 中国科学院电工研究所 | 等离子体射流沉积薄膜装置及浅化表面陷阱能级的方法 |
| RU2746673C1 (ru) * | 2020-10-09 | 2021-04-19 | федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» | СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА, СОДЕРЖАЩЕГО ОДНОФАЗНЫЙ ВЫСОКОЭНТРОПИЙНЫЙ КАРБИД СОСТАВА Ti-Nb-Zr-Hf-Ta-C С КУБИЧЕСКОЙ РЕШЕТКОЙ |
| WO2021088217A1 (zh) * | 2019-11-07 | 2021-05-14 | 深圳航科新材料有限公司 | 新型球形粉末及其制备方法 |
| RU210733U1 (ru) * | 2022-01-28 | 2022-04-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Устройство для получения порошка на основе карбида бора |
| RU2835832C1 (ru) * | 2024-04-22 | 2025-03-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Способ получения порошкового металломатричного композита из алюминия и карбида вольфрама |
Families Citing this family (110)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7576296B2 (en) * | 1995-03-14 | 2009-08-18 | Battelle Energy Alliance, Llc | Thermal synthesis apparatus |
| KR100743844B1 (ko) * | 1999-12-01 | 2007-08-02 | 도와 마이닝 가부시끼가이샤 | 구리 분말 및 구리 분말의 제조 방법 |
| WO2001046067A1 (en) * | 1999-12-21 | 2001-06-28 | Bechtel Bwxt Idaho, Llc | Hydrogen and elemental carbon production from natural gas and other hydrocarbons |
| RU2263006C2 (ru) * | 2000-02-10 | 2005-10-27 | Тетроникс Лимитед | Плазменно-дуговой реактор и способ получения тонких порошков |
| US6924004B2 (en) * | 2000-07-19 | 2005-08-02 | Regents Of The University Of Minnesota | Apparatus and method for synthesizing films and coatings by focused particle beam deposition |
| US7572430B2 (en) * | 2000-11-09 | 2009-08-11 | Cyprus Amax Minerals Company | Method for producing nano-particles |
| US6468497B1 (en) * | 2000-11-09 | 2002-10-22 | Cyprus Amax Minerals Company | Method for producing nano-particles of molybdenum oxide |
| AUPR186200A0 (en) * | 2000-12-04 | 2001-01-04 | Tesla Group Holdings Pty Limited | Plasma reduction processing of materials |
| US7442227B2 (en) | 2001-10-09 | 2008-10-28 | Washington Unniversity | Tightly agglomerated non-oxide particles and method for producing the same |
| EP1441835B1 (en) * | 2001-11-06 | 2012-08-22 | Cyprus Amax Minerals Company | Apparatus and method for producing pigment nano-particles |
| US6688494B2 (en) * | 2001-12-20 | 2004-02-10 | Cima Nanotech, Inc. | Process for the manufacture of metal nanoparticle |
| US6755886B2 (en) * | 2002-04-18 | 2004-06-29 | The Regents Of The University Of California | Method for producing metallic microparticles |
| US6868896B2 (en) * | 2002-09-20 | 2005-03-22 | Edward Scott Jackson | Method and apparatus for melting titanium using a combination of plasma torches and direct arc electrodes |
| RU2238824C1 (ru) * | 2003-08-20 | 2004-10-27 | Открытое акционерное общество "ВНИИЭТО" | Установка для плазмохимического восстановления оксидов металлов |
| RU2238174C1 (ru) * | 2003-09-30 | 2004-10-20 | Военная академия Ракетных войск стратегического назначения им. Петра Великого | Способ получения ультрадисперсного порошка и устройство для его осуществления |
| US7494527B2 (en) * | 2004-01-26 | 2009-02-24 | Tekna Plasma Systems Inc. | Process for plasma synthesis of rhenium nano and micro powders, and for coatings and near net shape deposits thereof and apparatus therefor |
| JP2005289776A (ja) * | 2004-04-05 | 2005-10-20 | Canon Inc | 結晶製造方法および結晶製造装置 |
| JP3938770B2 (ja) * | 2004-04-16 | 2007-06-27 | Tdk株式会社 | ニッケル粉の製造方法とニッケル粉の製造装置とニッケル粉製造用坩堝 |
| WO2005116650A2 (en) * | 2004-04-19 | 2005-12-08 | Sdc Materials, Llc | High throughput discovery of materials through vapor phase synthesis |
| US7297619B2 (en) * | 2004-08-24 | 2007-11-20 | California Institute Of Technology | System and method for making nanoparticles using atmospheric-pressure plasma microreactor |
| EP1810001A4 (en) | 2004-10-08 | 2008-08-27 | Sdc Materials Llc | APPARATUS AND METHOD FOR SAMPLING AND COLLECTING POWDERS FLOWING IN A GAS STREAM |
| US7476851B2 (en) * | 2004-11-12 | 2009-01-13 | Regents Of The University Of Minnesota | Aerodynamic focusing of nanoparticle or cluster beams |
| US7354561B2 (en) * | 2004-11-17 | 2008-04-08 | Battelle Energy Alliance, Llc | Chemical reactor and method for chemically converting a first material into a second material |
| PL1843834T3 (pl) | 2005-01-28 | 2011-11-30 | Tekna Plasma Systems Inc | Synteza nanoproszków przy użyciu plazmy indukcyjnej |
| US8079838B2 (en) * | 2005-03-16 | 2011-12-20 | Horiba, Ltd. | Pure particle generator |
| DE102005028463A1 (de) * | 2005-06-17 | 2006-12-28 | Basf Ag | Verfahren zur Herstellung von nanopartikulären Lanthanoid/Bor-Verbindungen von nanopartikuläre Lanthanoid/Bor-Verbindungen enthaltenden Feststoffgemischen |
| CN100431748C (zh) * | 2005-07-27 | 2008-11-12 | 北京工业大学 | 稀土元素钆的纳米颗粒及纳米晶块体材料的制备方法 |
| US8240190B2 (en) * | 2005-08-23 | 2012-08-14 | Uwm Research Foundation, Inc. | Ambient-temperature gas sensor |
| US8268405B2 (en) * | 2005-08-23 | 2012-09-18 | Uwm Research Foundation, Inc. | Controlled decoration of carbon nanotubes with aerosol nanoparticles |
| CA2581806C (en) * | 2006-03-08 | 2012-06-26 | Tekna Plasma Systems Inc. | Plasma synthesis of nanopowders |
| KR100840229B1 (ko) | 2006-09-08 | 2008-06-23 | 재단법인 포항산업과학연구원 | 초미세 솔더 분말, 초미세 솔더 분말의 제조방법 및 그제조장치 |
| US7736421B2 (en) * | 2006-10-10 | 2010-06-15 | Aerosol Dynamics Inc. | High saturation ratio water condensation device and method |
| JP5052291B2 (ja) | 2006-11-02 | 2012-10-17 | 株式会社日清製粉グループ本社 | 合金超微粒子、およびその製造方法 |
| KR100788413B1 (ko) | 2007-03-13 | 2007-12-24 | 호서대학교 산학협력단 | 열플라즈마를 이용한 나노 복합 분말 제조 방법 |
| EP2153157A4 (en) | 2007-05-11 | 2014-02-26 | Sdcmaterials Inc | WATER COOLING SYSTEM AND HEAT TRANSFER SYSTEM |
| US9630162B1 (en) * | 2007-10-09 | 2017-04-25 | University Of Louisville Research Foundation, Inc. | Reactor and method for production of nanostructures |
| US8481449B1 (en) | 2007-10-15 | 2013-07-09 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
| EP2107862B1 (de) | 2008-04-03 | 2015-09-02 | Maicom Quarz GmbH | Verfahren und Vorrichtung zur Behandlung von Dispersionsmaterialien |
| USD627900S1 (en) | 2008-05-07 | 2010-11-23 | SDCmaterials, Inc. | Glove box |
| KR101009656B1 (ko) | 2008-09-17 | 2011-01-19 | 희성금속 주식회사 | 초미세 귀금속 분말 제조방법 |
| KR20110089131A (ko) * | 2008-10-27 | 2011-08-04 | 바스프 에스이 | 나노미립자 금속 붕소화물의 현탁액의 제조 방법 |
| KR101024971B1 (ko) | 2008-12-12 | 2011-03-25 | 희성금속 주식회사 | 열플라즈마를 이용한 귀금속 분말 및 귀금속 타겟 제조방법 |
| CA2756143C (en) | 2009-03-24 | 2017-08-29 | Tekna Plasma Systems Inc. | Plasma reactor for the synthesis of nanopowders and materials processing |
| US8591821B2 (en) | 2009-04-23 | 2013-11-26 | Battelle Energy Alliance, Llc | Combustion flame-plasma hybrid reactor systems, and chemical reactant sources |
| KR100943453B1 (ko) * | 2009-08-18 | 2010-02-22 | 이대식 | 초미세 금속분말 제조 장치 및 방법, 이에 사용되는 금속증발장치 |
| KR101134501B1 (ko) * | 2009-12-07 | 2012-04-13 | 주식회사 풍산 | 열플라즈마를 이용한 고순도 구리분말의 제조방법 |
| US8803025B2 (en) | 2009-12-15 | 2014-08-12 | SDCmaterials, Inc. | Non-plugging D.C. plasma gun |
| US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
| US8470112B1 (en) | 2009-12-15 | 2013-06-25 | SDCmaterials, Inc. | Workflow for novel composite materials |
| US8557727B2 (en) * | 2009-12-15 | 2013-10-15 | SDCmaterials, Inc. | Method of forming a catalyst with inhibited mobility of nano-active material |
| US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
| US9090475B1 (en) | 2009-12-15 | 2015-07-28 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for silicon SiO2 |
| US9149797B2 (en) | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
| US8545652B1 (en) | 2009-12-15 | 2013-10-01 | SDCmaterials, Inc. | Impact resistant material |
| WO2011119494A1 (en) * | 2010-03-22 | 2011-09-29 | The Regents Of The University Of California | Method and device to synthesize boron nitride nanotubes and related nanoparticles |
| KR101175676B1 (ko) * | 2010-03-25 | 2012-08-22 | 희성금속 주식회사 | 폐 루테늄(Ru) 타겟을 이용한 고순도화 및 미세화된 루테늄(Ru)분말 제조법 |
| KR101193683B1 (ko) | 2010-03-29 | 2012-10-22 | 현대제철 주식회사 | 지르코늄 코어드 와이어 투입법을 이용한 지르코늄 함유 철계 합금 제조 방법 및 그 제조 장치 |
| RU2455119C2 (ru) * | 2010-08-27 | 2012-07-10 | Алексей Александрович Калачев | Способ получения наночастиц |
| CN102166654B (zh) * | 2010-12-30 | 2015-11-25 | 广东高鑫科技股份有限公司 | 高效镍-石墨粉体的制备方法及其专用装置 |
| US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
| CN102211197B (zh) * | 2011-05-06 | 2014-06-04 | 宁波广博纳米新材料股份有限公司 | 金属蒸发装置及用该装置制备超微细金属粉末的方法 |
| RU2460816C1 (ru) * | 2011-05-20 | 2012-09-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н.Туполева - КАИ" (КНИТУ-КАИ) | Способ получения порошкового материала на основе меди |
| JP5824906B2 (ja) * | 2011-06-24 | 2015-12-02 | 昭栄化学工業株式会社 | 金属粉末製造用プラズマ装置及び金属粉末製造方法 |
| AU2012299065B2 (en) | 2011-08-19 | 2015-06-04 | SDCmaterials, Inc. | Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions |
| JP5821579B2 (ja) * | 2011-12-01 | 2015-11-24 | 昭栄化学工業株式会社 | 金属粉末製造用プラズマ装置 |
| WO2013184458A1 (en) * | 2012-06-05 | 2013-12-12 | Dow Corning Corporation | Fluid capture of nanoparticles |
| CN102950292B (zh) * | 2012-10-15 | 2015-07-08 | 宁波广博纳米新材料股份有限公司 | 亚微米级铜锰镍合金粉的生产方法 |
| CN102950290B (zh) * | 2012-10-15 | 2014-11-26 | 宁波广博纳米新材料股份有限公司 | 纳米级镍锰合金粉的生产方法 |
| CN102950291B (zh) * | 2012-10-15 | 2015-02-11 | 宁波广博纳米新材料股份有限公司 | 亚微米级锡铜合金粉的生产方法 |
| CN102950293B (zh) * | 2012-10-15 | 2015-01-07 | 宁波广博纳米新材料股份有限公司 | 纳米铝粉的生产方法 |
| CN102950289B (zh) * | 2012-10-15 | 2014-10-15 | 宁波广博纳米新材料股份有限公司 | 纳米级铜锰合金粉的生产方法 |
| CN102873323B (zh) * | 2012-11-01 | 2014-04-23 | 泰克科技(苏州)有限公司 | 电子钽粉性能改善装置 |
| CN103008673B (zh) * | 2012-11-07 | 2014-08-06 | 宁波广博纳米新材料股份有限公司 | 蒸发冷凝法制备含硫镍粉的方法 |
| JP6089186B2 (ja) * | 2012-11-12 | 2017-03-08 | 国立大学法人弘前大学 | 超微細粉末、高強度鋼焼結体及びそれらの製造方法 |
| US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
| US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
| KR20150003580A (ko) * | 2013-07-01 | 2015-01-09 | 희성금속 주식회사 | 루테늄 분말 및 루테늄 타겟의 제조방법 |
| US9586179B2 (en) | 2013-07-25 | 2017-03-07 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters and methods of making and using same |
| CN103537703B (zh) * | 2013-09-12 | 2017-04-12 | 江苏博迁新材料股份有限公司 | 一种内回流式除垃圾方法 |
| US9427732B2 (en) | 2013-10-22 | 2016-08-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
| CA2926135A1 (en) | 2013-10-22 | 2015-04-30 | SDCmaterials, Inc. | Compositions of lean nox trap |
| WO2015143225A1 (en) | 2014-03-21 | 2015-09-24 | SDCmaterials, Inc. | Compositions for passive nox adsorption (pna) systems |
| CN104084595B (zh) * | 2014-07-11 | 2016-08-24 | 湖南娄底华星锑业有限公司 | 一种锑粉生产系统 |
| DE102014220817B4 (de) * | 2014-10-14 | 2021-02-04 | Universität Duisburg-Essen | Lichtbogenreaktor und Verfahren zur Herstellung von Nanopartikeln |
| CN104722764B (zh) * | 2015-03-11 | 2017-01-25 | 江永斌 | 循环冷却的金属粉体蒸发制取装置 |
| CN104690266A (zh) * | 2015-03-18 | 2015-06-10 | 宁波广博纳米新材料股份有限公司 | 用于制备晶片电阻器正面、背面电极的铜锰合金粉 |
| JP5954470B2 (ja) * | 2015-06-26 | 2016-07-20 | 昭栄化学工業株式会社 | 金属粉末製造用プラズマ装置及び金属粉末製造方法 |
| WO2017069067A1 (ja) | 2015-10-19 | 2017-04-27 | 住友金属鉱山株式会社 | ニッケル粉末の製造方法 |
| CN105252012B (zh) * | 2015-11-18 | 2017-02-08 | 长春工业大学 | 一种多电极等离子弧连续制造金属粉末的装置及方法 |
| JP6573563B2 (ja) | 2016-03-18 | 2019-09-11 | 住友金属鉱山株式会社 | ニッケル粉末、ニッケル粉末の製造方法、およびニッケル粉末を用いた内部電極ペーストならびに電子部品 |
| CN105598460B (zh) * | 2016-03-21 | 2018-03-06 | 台州市金博超导纳米材料科技有限公司 | 用于制造微纳米级金属粉末的高温蒸发器 |
| CN110049840B (zh) | 2016-12-05 | 2022-06-24 | 住友金属矿山株式会社 | 镍粉末的制造方法 |
| JP6920676B2 (ja) * | 2017-04-19 | 2021-08-18 | パナソニックIpマネジメント株式会社 | 微粒子製造装置および微粒子製造方法 |
| CN107030292A (zh) * | 2017-05-03 | 2017-08-11 | 江苏天楹环保能源成套设备有限公司 | 一种多级冷却制备金属粉末的等离子体雾化装置 |
| JP7194544B2 (ja) * | 2017-10-03 | 2022-12-22 | 三井金属鉱業株式会社 | 粒子の製造方法 |
| US10612111B2 (en) * | 2018-08-21 | 2020-04-07 | Robert Ten | Method and apparatus for extracting high-purity gold from ore |
| KR102141225B1 (ko) * | 2018-08-29 | 2020-08-04 | 한국생산기술연구원 | 온도급감장치를 구비한 열플라즈마 토치 및 이를 이용한 금속 나노 분말 가공장치. |
| KR20220038023A (ko) | 2019-07-31 | 2022-03-25 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 니켈 분말, 니켈 분말의 제조 방법 |
| JP7557689B2 (ja) * | 2020-03-25 | 2024-09-30 | 国立大学法人弘前大学 | 高強度Zn焼結体の製造方法 |
| RU2746197C1 (ru) * | 2020-05-11 | 2021-04-08 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" | Способ получения мелкодисперсного порошка тугоплавкого материала |
| CN112846206A (zh) * | 2020-12-29 | 2021-05-28 | 江苏博迁新材料股份有限公司 | 一种脉冲式金属粉制备冷凝方法 |
| CN214260700U (zh) * | 2021-01-08 | 2021-09-24 | 江苏博迁新材料股份有限公司 | 一种使用等离子转移弧加热的高温蒸发器 |
| WO2022156229A1 (zh) * | 2021-01-25 | 2022-07-28 | 钟笔 | 一种用于控制超微粉粒子成型的控制器 |
| WO2022156227A1 (zh) * | 2021-01-25 | 2022-07-28 | 钟笔 | 一种气相法制备微细粉的耐高温液体回流与出气结构 |
| CN216421070U (zh) * | 2021-10-19 | 2022-05-03 | 江苏博迁新材料股份有限公司 | 一种物理气相法制备超细粉体材料用的金属蒸气成核装置 |
| KR102572728B1 (ko) * | 2021-11-19 | 2023-08-31 | 한국생산기술연구원 | 금속분말 제조장치 및 이를 이용한 금속분말 제조방법 |
| WO2023147506A1 (en) * | 2022-01-28 | 2023-08-03 | Aerosol Dynamics Inc. | Aerosol mobility imaging |
| JP2023183703A (ja) | 2022-06-16 | 2023-12-28 | 昭栄化学工業株式会社 | 金属粉末の製造方法および金属粉末の製造装置 |
| KR102465825B1 (ko) * | 2022-09-06 | 2022-11-09 | 이용복 | 열플라즈마를 이용한 금속분말 제조장치 및 그 제조방법 |
| CN120205063B (zh) * | 2025-05-28 | 2025-08-22 | 畅的新材料科技(上海)有限公司 | 一种纳米氮化钛粉末的制备设备及方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2002208A (en) * | 1977-08-01 | 1979-02-14 | Thermo Electron Corp | Process of and apparatus for producing a particulate product from a feed material |
| DD269157A1 (de) * | 1987-12-28 | 1989-06-21 | Akad Wissenschaften Ddr | Plasmareaktor fuer die pyrolyse hochviskoser, teerartiger, kohlenwasserstoffhaltiger produkte |
| WO1992014576A1 (en) * | 1991-02-22 | 1992-09-03 | Idaho Research Foundation | Plama production of ultra-fine ceramic carbides |
| US5782952A (en) * | 1996-08-30 | 1998-07-21 | Massachusetts Institute Of Technology | Method for production of magnesium |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE269157C (enExample) | 1911-12-12 | |||
| US4076640A (en) * | 1975-02-24 | 1978-02-28 | Xerox Corporation | Preparation of spheroidized particles |
| US4376470A (en) | 1980-11-06 | 1983-03-15 | Little Giant Industries, Inc. | Fiberglass ladder |
| US4376740A (en) | 1981-01-05 | 1983-03-15 | National Research Institute For Metals | Process for production fine metal particles |
| US4990179A (en) * | 1990-04-23 | 1991-02-05 | Fmc Corporation | Process for increasing the life of carbon crucibles in plasma furnaces |
| US5147448A (en) * | 1990-10-01 | 1992-09-15 | Nuclear Metals, Inc. | Techniques for producing fine metal powder |
| JP3245965B2 (ja) * | 1992-05-29 | 2002-01-15 | 株式会社村田製作所 | 銅粉末の製造方法 |
| US5460701A (en) * | 1993-07-27 | 1995-10-24 | Nanophase Technologies Corporation | Method of making nanostructured materials |
| US5514350A (en) | 1994-04-22 | 1996-05-07 | Rutgers, The State University Of New Jersey | Apparatus for making nanostructured ceramic powders and whiskers |
| US5855642A (en) * | 1996-06-17 | 1999-01-05 | Starmet Corporation | System and method for producing fine metallic and ceramic powders |
| JPH10102109A (ja) * | 1996-09-30 | 1998-04-21 | Tanaka Kikinzoku Kogyo Kk | ニッケル粉末の製造方法 |
-
1998
- 1998-08-18 US US09/136,043 patent/US6379419B1/en not_active Expired - Lifetime
-
1999
- 1999-08-16 DE DE69907933T patent/DE69907933T2/de not_active Expired - Lifetime
- 1999-08-16 AT AT99938107T patent/ATE240177T1/de not_active IP Right Cessation
- 1999-08-16 KR KR1020017002087A patent/KR100594562B1/ko not_active Expired - Lifetime
- 1999-08-16 CA CA002340669A patent/CA2340669C/en not_active Expired - Lifetime
- 1999-08-16 EP EP99938107A patent/EP1115523B1/en not_active Expired - Lifetime
- 1999-08-16 JP JP2000566062A patent/JP3541939B2/ja not_active Expired - Lifetime
- 1999-08-16 AU AU52752/99A patent/AU5275299A/en not_active Abandoned
- 1999-08-16 WO PCT/CA1999/000759 patent/WO2000010756A1/en not_active Ceased
-
2003
- 2003-10-27 JP JP2003366114A patent/JP2004036005A/ja active Pending
-
2005
- 2005-02-10 JP JP2005034922A patent/JP2005163188A/ja active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2002208A (en) * | 1977-08-01 | 1979-02-14 | Thermo Electron Corp | Process of and apparatus for producing a particulate product from a feed material |
| DD269157A1 (de) * | 1987-12-28 | 1989-06-21 | Akad Wissenschaften Ddr | Plasmareaktor fuer die pyrolyse hochviskoser, teerartiger, kohlenwasserstoffhaltiger produkte |
| WO1992014576A1 (en) * | 1991-02-22 | 1992-09-03 | Idaho Research Foundation | Plama production of ultra-fine ceramic carbides |
| US5782952A (en) * | 1996-08-30 | 1998-07-21 | Massachusetts Institute Of Technology | Method for production of magnesium |
Non-Patent Citations (2)
| Title |
|---|
| RONSHEIM P ET AL: "Direct current arc-plasma synthesis of tungsten carbides", JOURNAL OF MATERIALS SCIENCE, OCT. 1981, UK, vol. 16, no. 10, pages 2665 - 2674, XP002123725, ISSN: 0022-2461 * |
| YOUNG R M ET AL: "Generation and behavior of fine particles in thermal plasmas-a review", PLASMA CHEMISTRY AND PLASMA PROCESSING, MARCH 1985, USA, vol. 5, no. 1, pages 1 - 37, XP002123724, ISSN: 0272-4324 * |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6972115B1 (en) | 1999-09-03 | 2005-12-06 | American Inter-Metallics, Inc. | Apparatus and methods for the production of powders |
| WO2001060551A3 (en) * | 2000-02-18 | 2002-06-20 | Canadian Electronics Powders C | Nickel powder for use as electrodes in base metal electrode multilayered ceramic capacitors |
| US7520914B2 (en) | 2000-02-18 | 2009-04-21 | Canadian Electronic Powders Corporation | Nickel powder for use as electrodes in base metal electrode multilayered ceramic capacitors |
| CN101284312B (zh) * | 2000-02-18 | 2012-06-13 | 加拿大电子学粉末公司 | 一种通过传递电弧等离子系统生产镍粉末的方法 |
| US6902601B2 (en) | 2002-09-12 | 2005-06-07 | Millennium Inorganic Chemicals, Inc. | Method of making elemental materials and alloys |
| US7794629B2 (en) | 2003-11-25 | 2010-09-14 | Qinetiq Limited | Composite materials |
| US7384448B2 (en) | 2004-02-16 | 2008-06-10 | Climax Engineered Materials, Llc | Method and apparatus for producing nano-particles of silver |
| GB2425779B (en) * | 2004-02-16 | 2008-08-06 | Climax Engineered Mat Llc | Method and apparatus for producing nano-particles of silver |
| US7575711B2 (en) | 2004-02-16 | 2009-08-18 | Climax Engineered Materials, Llc | Apparatus for producing nano-particles of silver |
| US7465430B2 (en) | 2004-07-20 | 2008-12-16 | E. I. Du Pont De Nemours And Company | Apparatus for making metal oxide nanopowder |
| US7708975B2 (en) | 2004-07-20 | 2010-05-04 | E.I. Du Pont De Nemours And Company | Process for making metal oxide nanoparticles |
| JP2014518565A (ja) * | 2011-04-26 | 2014-07-31 | ヒ スング メタル リミテッド | 廃ルテニウム(Ru)ターゲットを用いた超高純度ルテニウム(Ru)粉末及びターゲットの製造方法 |
| EP2789414A4 (en) * | 2011-12-06 | 2015-12-30 | Shoei Chemical Ind Co | PLASMA DEVICE FOR MANUFACTURING A METAL POWDER |
| US9375789B2 (en) | 2011-12-06 | 2016-06-28 | Shoei Chemical Inc. | Plasma device for production of metal powder |
| EP2839906A4 (en) * | 2012-04-20 | 2015-02-25 | Shoei Chemical Ind Co | METHOD FOR PRODUCING A METAL POWDER |
| US9561543B2 (en) | 2012-04-20 | 2017-02-07 | Shoei Chemical Inc. | Method for manufacturing metal powder |
| CN108130524A (zh) * | 2017-12-22 | 2018-06-08 | 中国科学院电工研究所 | 等离子体射流沉积薄膜装置及浅化表面陷阱能级的方法 |
| WO2021088217A1 (zh) * | 2019-11-07 | 2021-05-14 | 深圳航科新材料有限公司 | 新型球形粉末及其制备方法 |
| US12472554B2 (en) | 2019-11-07 | 2025-11-18 | Shenzhen Aerospace Science Advanced Materials Co., Ltd | Spherical powder and preparation method therefor |
| RU2746673C1 (ru) * | 2020-10-09 | 2021-04-19 | федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» | СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА, СОДЕРЖАЩЕГО ОДНОФАЗНЫЙ ВЫСОКОЭНТРОПИЙНЫЙ КАРБИД СОСТАВА Ti-Nb-Zr-Hf-Ta-C С КУБИЧЕСКОЙ РЕШЕТКОЙ |
| RU210733U1 (ru) * | 2022-01-28 | 2022-04-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Устройство для получения порошка на основе карбида бора |
| RU2835832C1 (ru) * | 2024-04-22 | 2025-03-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Способ получения порошкового металломатричного композита из алюминия и карбида вольфрама |
| RU2851827C1 (ru) * | 2025-05-07 | 2025-12-01 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Способ получения порошка диборида вольфрама |
Also Published As
| Publication number | Publication date |
|---|---|
| DE69907933D1 (de) | 2003-06-18 |
| US6379419B1 (en) | 2002-04-30 |
| EP1115523A1 (en) | 2001-07-18 |
| CA2340669C (en) | 2009-04-07 |
| ATE240177T1 (de) | 2003-05-15 |
| JP3541939B2 (ja) | 2004-07-14 |
| JP2004036005A (ja) | 2004-02-05 |
| JP2005163188A (ja) | 2005-06-23 |
| AU5275299A (en) | 2000-03-14 |
| KR20010099622A (ko) | 2001-11-09 |
| DE69907933T2 (de) | 2004-04-01 |
| JP2002530521A (ja) | 2002-09-17 |
| CA2340669A1 (en) | 2000-03-02 |
| EP1115523B1 (en) | 2003-05-14 |
| KR100594562B1 (ko) | 2006-06-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1115523B1 (en) | Method and transferred arc plasma system for production of fine and ultrafine powders | |
| CA2581806C (en) | Plasma synthesis of nanopowders | |
| EP0282291B1 (en) | Process for producing ultrafine particles of metals, metal compounds and ceramics and apparatus used therefor | |
| US5618475A (en) | Evaporator apparatus and method for making nanoparticles | |
| US8092570B2 (en) | Method for producing titanium metal | |
| EP1843834B1 (en) | Induction plasma synthesis of nanopowders | |
| EP0071351B1 (en) | A transferred-arc plasma reactor for chemical and metallurgical applications | |
| US9516734B2 (en) | Plasma reactor for the synthesis of nanopowders and materials processing | |
| JP3892490B2 (ja) | フルオロカーボンの製造方法および製造装置 | |
| Taylor et al. | Thermal plasma processing of materials: A review | |
| US20030108459A1 (en) | Nano powder production system | |
| WO1993012634A1 (en) | A torch device for chemical processes | |
| WO1993023331A1 (en) | Plasma method for the production of fullerenes | |
| US20050150759A1 (en) | Powder and coating formation method and apparatus | |
| US5939151A (en) | Method and apparatus for reactive plasma atomization | |
| WO1993002787A1 (en) | Process for the production of ultra-fine powdered materials | |
| EP0819109B1 (en) | Preparation of tetrafluoroethylene | |
| JP2023183703A (ja) | 金属粉末の製造方法および金属粉末の製造装置 | |
| WO1992014576A1 (en) | Plama production of ultra-fine ceramic carbides | |
| US5684218A (en) | Preparation of tetrafluoroethylene | |
| Pirzada | Silicon carbide synthesis and modeling in a nontransferred arc thermal plasmareactor | |
| Venkatramani | Thermal plasmas in material processing | |
| Samokhin et al. | Characteristics of heat and mass transfer to the wall of a confined-jet plasma flow reactor in the processes of nanopowder preparation from metals and their compounds | |
| JPH11502852A (ja) | テトラフルオロエチレンの製造法 | |
| HK1017025A (en) | Fast quench reactor and method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 1999938107 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2340669 Country of ref document: CA Kind code of ref document: A Ref document number: 2340669 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020017002087 Country of ref document: KR |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWP | Wipo information: published in national office |
Ref document number: 1999938107 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020017002087 Country of ref document: KR |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1999938107 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1020017002087 Country of ref document: KR |